
 Visit Other Sites

Search ChipDesignMag.com

BLOGS

Verification Vertigo

To
subdue
the
enemy
without
fighting is

the supreme
excellence
I am excited today to
be able to talk about a
new product that I had
to keep quiet about for
some time. First of all
some...

EDA Thoughts

Merry
Mergers

In 2009 I expect that
EDA companies will
continue to merge in
order to stay
financially viable. Here
are a few rules and...

Domeika's Dilemma

5 months
in multi-
core -
what has
changed?

This week found me in
Zurich, Switzerland,
delivering a talk to
researchers. The
purpose of my talk and
the other talks at...

Wizards of Microwave

Meet Us
IRL (In
Real Life)
At

DesignCon 2009
Despite rumors from
some Web 2.0
fanatics that it isn't
necessary, you can
still actually meet
people "IRL" (in real
life...

POLL

Where will the
device design
growth be in ten
years?

Multicore

Programmable

• ARTICLE

[Printer Friendly]

Published in September / August 2008 issue of Chip Design Magazine

[ESL]Platform-Development Approach Simpli��?es
Mobile-Device Design

Try a service-oriented NoTA method when designing mobile-device
platforms.

-
B y V i n c e n t P e r r i e r a n d K l a u s K r o n l ö f

At the Nokia Research Center (NRC), signi��?cant research

activity is performed in the area of mobile-terminal architectures. The NRC

is a separate unit within Nokia (www.nokia.com) and therefore isn’t

attached to a speci��?c product-development

business unit. For the ITEA model-based approach to real-time

embedded systems (MARTES; www.martes-itea.org) European

research project, the NRC worked on a mobile-terminal case study.

That study focused on communication-centric mobile-terminal

architectures, which are designed for the digital-convergence era. In

this context, NRC has adopted the MCSE method for architectural

modeling. (MCSE is a French acronym for an electronic system co-

design methodology, which was developed by Professor Calvez at

the University of Nantes, France.) The NRC also used CoFluent

Studio as a mobile-device platform-architecture modeling toolset

supporting the MCSE method.

Nokia’s work in the MARTES project is closely connected to

the NRC’s own service-oriented architecture concept, which is

called Network-on-Terminal Architecture (NoTA). NoTA is

an interconnect-centric, modular, service-oriented architecture

for current and future mobile-device platforms. It promises to

provide superior performance and effective horizontalization

via eased integration. The development method associated with

NoTA ensures that designs are stepwise veri��?able against end-

user requirements. That method also is flexible and scalable,

enabling reuse on different levels.

Speci��?cally, a NoTA platform consists of loosely connected

services running on heterogeneous subsystems. In NoTA-

based systems, service and data communication is routed via the

network stack. NoTA takes these principles and adapts them for

use in a highly embedded system. The NoTA method includes

DESIGN CENTERS

TECHNICAL PAPERS

ZeBu™: A Unified Verification Approach for Hardware
Designers and Embedded Software Developers

VISIT THE SYSTEM-LEVEL DESIGN ONLINE
COMMUNITY

This brand new online community is the destination for
embedded system design, verification and debugging of
system-on-chip (SoC) designs.

Site includes news, articles, white papers, videos, blogs,
polls, ask the expert and other valuable resources provided
in an advertising-free environment. VISIT TODAY!

Sponsored by:

Chips - ASIC and ASSP

Low Power

IP Design, Verification,

Integration

DFM-DFY-Verification

Electronic System Level

(ESL)

SOC Interfaces

Memory

Programmable Logic

Analog/Mixed Signal

Chip-Package-Board

Emerging Technologies

Page 1 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

View Results

Wireless

Low-Power

IP

New Technology

 Vote!

a platform-development flow, which ensures that services,

subsystems, and the interconnect topology are matched to end-

user requirements. It also provides formal, reusable speci��?cations

for the platform entities. The NoTA logical architecture consists

of three types of foundation elements called application nodes

(ANs), service nodes (SNs), and interconnect (see Figure 1).

NoTA de��?nes two main levels of protocols for the interconnect,

H_IN and L_IN. H_IN is a high-level protocol stack that

provides communication functionality for platform services and

applications. L_IN, the low-level protocol, provides the physical

connection between subsystems.

A NoTA subsystem implements a set of services. A subsystem

is an architectural concept that doesn’t necessarily align

with chip boundaries. There may be several subsystems

on a chip. In addition, a subsystem may extend outside the

boundaries of a chip (see Figure 2).

Platform-Architecture Development

The common practice in platform-architecture development is

quite informal. It also is heavily reliant upon the system architect’s

experience. Often, this development is done with spreadsheets that

forecast results based on the results that were observed

on previous designs. This approach is feasible when changes in

successive generations of the architecture are relatively small. Yet

such an informal approach becomes problematic when dealing with

truly novel architectural concepts, which call for the systematic

exploration of widely different alternatives. Furthermore, platform

requirements are typically expressed in technical terms that aren’t

properly connected to end-user needs.

The NoTA platform-architecture development method aims to

overcome these pitfalls of informal practices. NoTA-based systems

are engineered in a systematic-requirements-driven manner. The

NoTA approach is characterized by the following principles:

Separation of concerns: The ability to develop different system

aspects independently from each other facilitates reuse. It

also improves the ability to manage complexity. In the NoTA

method, the following domains are separated:

� End-user requirements

� Platform functionality (i.e., services provided by the platform)

� Platform architecture (i.e., definition of subsystems and communication)

� Infrastructure implementation of subsystems (software and hardware)

and interconnect protocols (software and hardware)

Each domain has self-contained models. In the final system,

these domains are related to each other. Fixing these

relations between domains is postponed until the time at

which the system instance is defined. The system instance

can be defined as a product or product platform.

Model-based engineering: In the NoTA method, the artifacts

developed in different phases of the process are models with

well-de��?ned semantics. This helps to avoid misunderstandings

NEWSLETTERS

SUBSCRIBE NOW

IP SEARCH

Find detailed information about thousands of commerically
available IP blocks from more than 230 suppliers

RESOURCE CATALOGS AND GUIDES

� Chip Design Resource Catalog

� Chip Design Buyers' Guide

� Interoperability Guides

� Cadence and Third-Party Solutions Guide

� Mentor Graphics Questa Vanguard Program

� OCP IP Member Guide

� Synopsys Interoperability Guide

� IP Solutions Resource Catalog

� Valuable Resources

� AdvancedTCA

� DSP

� MIPS ® Embedded Resource Catalog

� Multicore

� PCI Express

� Visit Dot.Org

� [Dot.org] The Second Commandment for
Effective Standards

� [DOT.ORG] Margin Myopia Blurs Chip Supply-
Chain Future

� [Dot.org] Debug Grows Increasingly Critical

Click here for more...

COMMENTARY

� Notification Notes For Hostile Takeovers

� Verification IP: Solace for the common integration
nightmare?

� Reader’s Gain with New Technology Community!

� eChip Debut Hints at Something New at Summer’s
End

More commentary...

Chip

Designer

Wireless Chip

Designer

FPGA

Developer

IP Designer &

Integrator

Page 2 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

and the consequent errors caused by ambiguousness or hidden

meanings of informal documentation. Nokia also requires

the availability of analysis, veri��?cation, transformation, code-

generation, and synthesis tools that operate on models.

Reuse of models: Nokia believes that the ability to effectively reuse

models in different contexts really improves design productivity

compared to conventional methodologies. In the NoTA method,

different types of models are stored in repositories. These models

can be retrieved and used to compose new system con��?gurations.

Early validation and veri��?cation: One motivation behind

model-based engineering is the early validation and veri��?cation of

speci��?cations and designs. In the NoTA method, the validation and

veri��?cation processes start early—at the end-user requirements

phase—with executable use-case models. Later, the focus is

on the correctness of platform speci��?cation and performance

analysis—both the speci��?cation and implementation phases. The

validation and veri��?cation in the NoTA method aren’t limited to

logical correctness. They also cover non-functional aspects, such

as real-time performance and energy consumption.

Platform-Architecture Modeling

The NRC has adopted MCSE for architectural modeling in NoTA.

According to this method, an architectural model is developed by

building the functional architecture or timed-behavioral model (e.g.,

the functional model of the system with timing information) as well

as the platform architecture (executive structure). In addition, the

functional blocks are mapped onto the executive structure. The

architectural-modeling toolset includes tools that support model

creation and mapping according to the MCSE method.

The requirements for a NoTA-based platform come from the end-

user requirements, which are expressed as use-case models. The

selected collection of use cases is ��?rst studied. All of the services used

in the re��?ned use-case models, which are called primary services, are

identi��?ed. Next, the set of required services is reduced in order to

minimize overlap and redundant services. When there are several

versions of the same service needed, the version that ful��?lls all of

the requirements is selected. The others are discarded. As a result of

this process, the set of required primary services is de��?ned.

The use-case models—together with the set of required primary

services—are used to build the functional architecture model.

That model consists of service-node (SN) and application-node

(AN) models. An SN model represents an instance of a service.

There may be several instances of the same service. For its part,

the AN model de��?nes the way that the application uses the

services in a particular use case.

In NoTA, a service is speci��?ed in a special format called service

interface speci��?cation (SIS). SIS includes the interface signature of the

service in question as well as a description of its externally observable

behavior. This description is expressed as a ��?nite state machine

(FSM). SIS also includes the relevant, non-functional attributes of

the service, such as timing and power consumption. In architectural

modeling, SN models are derived directly from the SIS. AN models

are derived from the execution traces of use-case models.

The platform-architecture model consists of blocks representing

the subsystems and routing switches. Mapping the SNs and

ANs into the subsystems and de��?ning the communication-

network topology among the subsystems yields the architectural

model. The interconnect-node (IN) functionality is integrated into the

components of the platform-architecture model. Figure 3 shows how the

architectural-modeling method is applied to

NoTA using the architectural-modeling toolset.

Page 3 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

Functional Architecture

The functional or timed-behavioral model describes the system’s

logical partitioning and behavior. The functional model in

NoTA consists of the ANs and SNs. The SNs include all of

the primary services of the use case as well as any additional

secondary services that are used by the primary services.

The functional editing tool in the architectural-modeling

toolset captures the graphical description of the SNs and ANs.

The internal model of each SN is derived directly from the

corresponding SIS. The behavior of the AN is de��?ned by the use

case utilizing the generated XML trace. The service requests to

the SNs are modeled as messages. All service requests in NoTA

are passed over the IN. The functional behavior of a system

consisting of the ANs, SNs, and an ideal IN can be simulated

independently without a de��?nite platform architecture.

In NoTA, the behavior of the SNs is modeled as FSMs. They

must be represented as either SystemC models or as graphical

functional models within the toolset. Functions are lower-

hierarchical-level models used as “black boxes” within the

model. The behavior of these functions can be further de��?ned

with algorithms written in C or C++. NRC has adopted the

latter approach with additional C++ algorithms to read in and

interpret the XML ��?les. A parser module extracts the needed

information from the XML model and assigns it to the correct placeholders

in the SN graphical template.

There are two main types of communication in the NoTA

network. Models for the data object communication are added

to the SNs in order to get insight about the data amount between

different nodes. In practice, the same functional link is used for

both the service communication and data traffc. The type of

link and the message that’s sent into it are modeled as a C++

class. That C++ class contains ��?elds for routing, message type,

and size and sub-classes for the content.

The use-case behavior is imported into the graphical model as an

XML-trace ��?le. That ��?le consists of a sequence of service requests

with possible additional parameters. The ��?le is read in the ANs.

Corresponding service requests are sent to the correct services.

Page 4 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

Platform Architecture

The platform model is an abstract representation of the physical

architecture. The architectural-modeling toolset provides a set of

building blocks for platforms. These generic performance models

of physical computing, communication, and storage units can be

parameterized by the user. The building blocks include processors,

shared memories, signals, and connections that use communication

nodes. At this design step, the subsystems are outlined as placeholders

for the SNs and ANs. One subsystem consists of a processor in which

the SNs are run in parallel. The subsystem’s actual implementation

isn’t modeled. The routing switch (RS) is modeled with a routing

model that contains built-in, performance-statistics-gathering

functionalities. One processor is reserved for each RS. The subsystems

are connected to the RS with communication nodes. The resulting

network topology represents the accurate interconnect that’s needed

in the architectural simulations (see Figure 4).

The SN and AN models contain performance data, such as the time

taken to process a service call. The generic hardware-processor model

provided within the toolset should therefore be selected as the processor

type. That model is capable of running the SN models independently

of each other. Later, real software models will be run for certain SNs.

At that point, the generic software-processor models—including a

generic real-time-operating-system (RTOS) model—become useful.

The platform models themselves have tunable parameters that affect

the overall system performance. For example, the bandwidths of the RSs

can be con��?gured independently.

Architectural Exploration

The architecture design consists of three main parts: decisions about

the number and type of subsystems in the device, the interconnect

topology between the subsystems, and the mapping of the SNs and

ANs into the subsystems. A subsystem can be de��?ned as a collection

of

SNs that have an IN connection. One subsystem can contain several

SNs. For example, a storage subsystem can act as a conventional

mass-storage or a streaming-media server. These require completely

diffrent services. Because they use the same hardware resources,

however, it’s bene��?cial to locate them inside the same subsystem. The

SNs can be distributed across the subsystems in several different ways.

Accordingly, several architectural con��?gurations can be evaluated to

identify potential bottlenecks and maximize system performance.

Network traffc analysis is a key output in verifying the designed

architecture. Each designed architecture needs to be simulated

against all of the use cases. There are certain parameters related

to the SNs, ANs, INs, and RSs that could be optimized during

the architecture design. Local buffer sizes are commonly the

most important of such parameters.

The steps within the architectural exploration comprise the

following:

1. De��?ne the number and types of subsystems.

2. De��?ne the interconnect topology to connect the subsystems.

This determines the number and types of routing switches.

3. Map SNs and ANs into the subsystems.

4. Run simulations against the original use cases.

5. Analyze results.

6. Go back to Step 3 to optimize the current architecture.

7. Go back to Step 1 to try different architectures.

Page 5 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

8. Choose the most optimal case(s).

9. Select the virtual architecture.

After the exploration of different architectures within the toolset

is complete and the optimal case is selected, the architecture

solution consists of the aspects listed below. These parts set the

requirement speci��?cations for each subsystem:

� A set of subsystems connected together with a certain

interconnect topology

� Mapping of the decomposed use-case-originated services

into the above subsystems

� Veri��?ed and re��?ned performance parameters for the services

� All of the above veri��?ed against the original end-user use case

Meta-Model-Based Integration

As part of their tool-enhancement work in MARTES, Telelogic and

CoFluent Design implemented a meta-model-based integration of

their tools using the Eclipse Modeling Framework (EMF) and its

Ecore format. This technology also has been used to implement other

MARTES meta-model-based tool integrations in the project.

The tool integration provides an alternative way to transfer use-

case behavior between the tools. The idea is to transfer the whole

executable use-case model instead of its execution trace. The

Telelogic Tau UML modeler is used purely for the application

model. Real-time performance attributes can be added to the

UML model as tagged values of the UML pro��?le. Although

that pro��?le is speci��?c for this purpose, it can be regarded as an

adaptation of the MARTES application model. One important

bene��?t of transferring the whole model is that users can now

deal with feedback from the platform-architecture model. 倅at

feedback will potentially affect use-case behavior.

A video-player case-study example is presented here to explain how

the model transfer works (see Figure 5). In this example, services

are modeled as state machines with performance attributes. 倅e

application node contains a state machine, which is modeling its

behavior in a particular use case. Modeling is done in a two-level

structure: use-case level and service level. Several use cases can be

examined by changing the application node.

The application model of the example contains ��?ve classes: Camera,

Display, VideoEncoder, VideoDecoder, and MassStorage. It also

houses the signals that are exchanged between them. The top-

level structure of the application model is de��?ned by a composite

structure diagram (see Figure 6). The behaviors of the classes are

modeled as state machines (see Figure 7). Use-case composition

also is achieved in UML (see Figure 8).

Page 6 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

The stereotypes of the UML pro��?le that’s used in the tool

integration contain tagged values. These values enable the setting

of performance attributes used by CoFluent Studio. Figure 9

shows an example of how to set those attributes in Tau. The

resulting model is executable and can be simulated in Tau (see

Figure 10). This simulation is untimed, as the UML simulator

doesn’t deal with real-time performance properties.

Page 7 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

The add-in developed in the MARTES project generates an

Ecore ��?le from the model according to the de��?ned meta model.

This Ecore ��?le can be imported to the architectural-modeling

toolset. The resulting application-model con��?guration has the

same structure as the original UML model (see Figure 11). The

model’s graphical representation is lost in the transfer. However,

the state-machine behavior and performance attributes are

preserved. Figure 12 shows the attributes originally set in UML

as tagged values. The application model can be simulated in

CoFluent Studio (see Figure 13). Although the functional

behavior is the same as in Tau, the simulation is now timed.

Page 8 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

The execution-platform and system-architecture models are

constructed in the architectural-modeling toolset. The system-

architecture model results from the mapping of the application

onto the execution platform model. Figure 14 shows an example with a

complex platform. That platform contains ��?ve processor units with an

interconnect to which the whole application model

is allocated. The allocated model is obtained by drag-and-drop

mapping. The resulting hierarchy is shown in Figure 15. It can be

simulated to study the impact of the platform and mapping. For

example, Figure 16 shows the scheduling of the VideoEncoder

and VideoDecoder in the single MediaProcessorSS CPU, which

prohibits overlap in their execution.

In conclusion, NRC’s report stated, “The choice of CoFluent

Studio for architectural exploration was straightforward for many

reasons…The link between UML-based requirements modeling

and non-UML architecture exploration is realized as execution

traces in the ��?rst phase of this case study… The meta-model-

based tool integration implemented by Telelogic and CoFluent

Design in the MARTES project enabled the use of the use-case

model directly instead of execution traces…We experimented

with the early version of the tool integration. (…) The principle

works as expected and the results are encouraging.”

-

Klaus Kronlöf graduated from Helsinki
University of Technology, Department of
Technical Physics in 1981 (Master of Science
in electrical engineering) and 1984 (Lic.
Tech.). He held various research and teaching
positions at Helsinki University of Technology
in 1981-85. He joined the Nokia Research
Center (NRC) in 1985 and has worked in
NRC as a project manager during 1987-93. Since
2008, Kronlöf

has worked as a Principal Member of Engineering Staff in the Smart
Spaces Laboratory of NRC focusing on system architecture.

Vincent Perrier is CoFluent Design’s co-founder
and director in charge of products and marketing.
An embedded-systems expert, Perrier has over
15 years of technical, sales, and marketing
experience in the embedded-systems industry and
design-automation tools. He holds a computer
engineering degree (Master of Science) from the
University of Nantes, France.

..

Page 9 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

USB connected FPGA system

USB connected programmable FPGA/DSP systems, IP, low cost. Buy online www.hunt-rtg.com

Ads by Google

HOME | ABOUT | SUBSCRIBE | ADVERTISE | CONTACT US | PRIVACY STATEMENT

All materials on this site Copyright © 2009 Extension Media LLC. All rights reserved.

Page 10 of 10Chip Design Magazine

22-1-2009http://www.chipdesignmag.com/display.php?articleId=2717&issueId=31

