
PROJECT RESULTS

Robust and Open

ROBOCOP
(ITEA 00001)

As the complexity of technology
grows and the demand for
interoperability increases, there’s
an ever greater need for fully open
middle-ware solutions that can
replace the traditional proprietary
software that’s commonly used in
embedded systems today.

Open platform solutions for
embedded systems
In order to guarantee reliability,
robustness, security, and at an
acceptable price, most embedded
systems are based on proprietary
software. This has slowed down
the introduction of new services
and caused problems with inter-
operability. It has become clear that
this way of working can’t compete
with the network economy model,
where each participant can focus
on a specific role within a supporting
framework. ROBOCOP managed
to make a significant step towards
opening the market for embedded
software in consumer and industrial
devices by enabling independent
system integrators and third
parties to develop system-level
components for that market.

Middleware for high volume
embedded appliances
ROBOCOP defined a component-
based software architecture for the
middleware layer of high-volume
embedded appliances. Such appli-
ances include mobile phones, personal
digital assistants (PDAs), internet

and broadcast terminals (set top
boxes), network gateways, digital
televisions and programmable logic
controllers. The middleware layer
is the part of the software stack
that sits between the (downloaded)
application software on one side,
and the operating system and device
drivers on the other. ROBOCOP
focused on this middleware layer
only and didn’t address the specifics
of the application and/or operating
system/services layers.

With this new architecture the project
team has solved a number of critical
problems, such as enabling software
IP exchange and the support of (dis-
tributed) development of resource-
constrained, robust, reliable and
manageable components. The
approach followed has its roots in
the IC industry’s design of Systems-
On-Silicon, where it has proved to
be quite successful. The intention is
to enable the (vendor independent)
interchange of software components
for the embedded application domain.
Different abstraction levels will
enable the interchange of components
at multiple levels of the system inte-
gration process, each with different
associated business models.

An open framework
The demands for interoperability
and exchangeability of the compo-
nents within this system required a
well-defined framework architecture
with open (published and standardised)

• • • • • • • • • • • • • • • •

Partners
CSEM
Eindhoven University of
 Technology
ESI
FAGOR Electrodomésticos
IKERLAN-Electrónica
Nokia
Philips
SAIA-Burgess Electronics
Technical University of Madrid
Visual Tools

Countries involved
Finland
The Netherlands
Spain
Switzerland

Start of the project
July 2001

End of the project
June 2003

Component-based software architecture for
configurable devices
• •

Component

development

Host Host DeviceRepository Repository and/or Host

Published

Component

Component

tailoring

Component

certification

Execution

integration
Tailored

Component

Component

development

E
x
t.

C
e
rt

.
In

t.

Published

Component

Component

tailoring

Development

integration
Tailored

Component

Consumer

Product

Download

Component development and integration

PROJECT RESULTS ITEA Office
Eindhoven University of
Technology Campus
Laplace Building 0.04
PO box 513
5600 MB Eindhoven
The Netherlands
Tel : +31 40 247 5590
Fax : +31 40 247 5595
Email : itea2@itea2.org
Web : www.itea2.org

ITEA - Information Technology
for European Advancement -
is an eight-year strategic
pan-European programme for
pre-competitive research and
development in embedded and
distributed software. Our work
has major impact on government,
academia and business.

ITEA was established in 1999
as a EUREKA strategic cluster
programme. We support
coordinated national funding
submissions, providing the
link between those who
provide finance, technology
and software engineering.
We issue annual Calls for
Projects, evaluate projects, and
help bring research partners
together. We are a prominent
player in European software
development with some 8,000
person-years of R&D invested
in the programme so far.

ITEA-labelled projects build
crucial middleware and prepare
standards, laying the foundations
for the next generation of
products, systems, appliances
and services. Our projects
are industry-driven initiatives,
involving complementary R&D
from at least two companies in
two countries. Our programme
is open to partners from large
industrial companies, small and
medium-sized enterprises (SMEs)
as well as public research
institutes and universities.

October 2004

Σ! 2023

interfaces. And as well as having
functional characteristics, it also
needed to support the management
of the extra-functional characteristics
of the software components in the
hosting framework.

Such a component-based model
supports different abstraction levels
for the components defined for
different purposes. For example,
a high abstraction level is made
available without charge to enable
a product manager to carry out a
functional level simulation where
only footprint and processor or
power demands are utilised within
the model. In the case of a system
architect, a model that also provides
details on real time behaviour or
resource usage might be more
appropriate and is available under
certain conditions (basic fee, non-
disclosure agreements, memory of
understanding, and the like). The
component framework also allows
the use of heterogeneous components
(coming from different frameworks)
and supports robust and reliable
operation. Robust relates to the fact
that the system will always be able
to fulfil a (predefined) minimal set
of services even under unexpected/
unpredictable conditions. In this
context robustness has two essential
aspects: one in respect to operation
of the system in relation to its inputs,
and the other a consideration of its
lifetime, where the ability to carry out
remote upgrade and extension is
important. Robustness with respect
to the input signals requires well-
defined resource management with
control and monitoring of the com-
ponents in the system. Robustness
during upgrade and or extension
requires very well designed compo-
nents with explicit dependencies.
Testability both at module level, and
of the integrated system, is of crucial
importance if the goal is to be
achieved. Being able to test and
master the complexity of the system
is an essential ingredient for con-

formance in the application domain.
Other essentials of a component
framework that have been taken into
account are the independence from
specific implementations, design
for reuse, design for debugging at
the application level and support for
the application of re-configurable
computing.

Vendor independent trading of
software components
The ROBOCOP approach enables
vendor-independent trading of
the software components (and
associated IPR) used in embedded
applications. Different abstraction
levels enables the interchange of
components at many levels of the
system integration process. The
project results will give a powerful
boost to the global competitiveness
of Europe’s electronics industry, to
system integrators and independent
embedded software suppliers.

As early adopters of the technology,
the project partners will be able to
improve time to market, extend the
functionality of their products by
using third-party components, and
become IP component traders. The
project results will also radically im-
prove the market position of software
houses – who can concentrate on
providing system level components –
and open up new business opportun-
ities for small and medium enter-
prises. The ROBOCOP framework
will give them an easy entrance
into this market as it de-couples
application domain knowledge from
the specifics of individual systems.

Major project results:
These can be summarised as follows:
• component framework with well

defined interfaces (APIs);
• means to support for the frame-

work operation like component
download support and component
management support;

• templates for components compliant
 with the component framework.
• the definition of a number of

component views to support the
concept of component IP trading;

• a prototype simulation of the
component framework and a
number of components that can
be hosted in the framework that
make use of its services.

Major project outcomes

Dissemination
• Several internal papers
• 2 presentations/demos at events

Exploitation
• 4 new products for internal use

