
PROJECT RESULTS GGCC
(ITEA 05012)
• • • • • • • • • • • • • • • •

Partners
AIRBUS France
AQUILINE
ANSWARE
BASE
BERTIN
CEA-LIST
IDI EIKON
INRIA-Futurs
Mandriva
MySQL A.B.
SICS
SQS
Syxoo
Telefónica I+D
UPM

Countries involved
France
Spain
Sweden

Start of the project
September 2006

End of the project
March 2009

Open-source compiler
extended
New GCC infrastructure cuts cost of quality
assurance
• •

The GGCC project has added
a new branch to the widely-
used global GNU compiler
(GCC) open-source compiler for
Unix-like operating systems.
Its capabilities allow global
processing and optimisation of
complete programs and libraries
– including static analysis for
early bug fixing. The expertise
acquired could help Europe to
profit from a range of valuable
business opportunities.

Explosive growth in the software
content of digital systems, coupled
with increasing expectations of
trouble-free operation, create
escalating problems for program
developers. Integration of
components and validation of
complete packages now consumes

70 to 90% of total development
costs.

Large corporations spend heavily
on proprietary systems for the
most mission-critical applications
in sectors such as aerospace.
But even here, the investment
required to achieve zero-defect
quality can prove ruinous.
Providers of enterprise, consumer
and embedded software cannot
usually afford the same levels of
expenditure. Yet, while quality
assurance remains a heavy burden,
cutting corners may lead to brand-
damaging numbers of faults in
shipped products.

Building on international
standard
Open-source tools are increasingly

M – ITEA 2 Magazine September 2009 - no. 4

19Innovation reports • COSI – GGCC – GENE-AUTO

using slower hardware. Such hardware is typically
cheaper and/or less power hungry, both extremely
important aspects for embedded systems.

noTAblE InnovATIons

GCC’s size, complexity and dynamic nature, plus the
strict rules imposed by the GCC community, made
the necessary development work daunting. The con-
sortium nevertheless achieved significant progress,
developing a common framework to accommodate
three main functions: analysis and optimisation,
hazard detection and code validation.

It was necessary to integrate a higher level language
as GCC is written in C, which – being independent of
the system in which it is implemented – is not ideal for
abstract interpretation. GGCC opted for Lisp and developed
a middle-end Lisp-to-C translator (MELT), which has
been adopted as an official branch of the GCC devel-
opment tree. MELT can be used to detect parallelism in
code and has many potential applications in prototyping.
Within the project, the first simple static analysers were
realised using MELT.

A mature version of the global optimisation frame-
work, bringing greatly enhanced performance and
tighter integration with the GCC internal application
program interfaces was also developed. Even if still
very slow, the global optimisation framework has
shown very good performances on par with propri-
etary compilers on the test codes that were chosen.

Add-ons include coding rules in sugared Prolog
(CRISP), a logic-based domain-specific language
making it possible to express coding rules easily even
without relevant expertise.

GGCC successfully tested the prototype coding rule
checker at full scale on Nokia’s C++ Qt cross-platform
library. The number of rules remains limited, but the
results offer a promising indication of code quality.

Two-wAy bEnEfIT

GGCC was unusual in several respects. Most ITEA consortia
are led by large companies, whereas this project was SME-led.
For a number of the SME members, it was also a first venture
into transnational co-operation. This created some operational
difficulties at the start, but the experience has proved valuable
– and several partners are already aiming to take part in further
collaborations.

Moreover, while SME partners were very interested

in software quality, none was a professional compiler
specialist. The initial goal was to produce tools for
internal use, taking the view that there is a real need
for effective quality-enhancement tools because the
cost of bug correction is huge. If the project outcomes
allowed automatic solution of even 10% of the prob-
lems, the effort could be considered worthwhile.

Although the results at the end of the funded period
remained at a relatively early stage of refinement, they
were nevertheless sufficiently advanced to be suitable
for offer to other projects in the field.

Many of the improvements have already helped GCC
to become a leading platform for global optimisa-
tion projects that go way beyond the capabilities of
competing compilers. By acquiring leading-edge
expertise, the partners have created an o pportunity
for Europe to establish a strong position in an area
with considerable potential.

RULE EXAMPLE OF VIOLATION CRISP, A RULE DEFINITION LANGUAGE

These are
different
variables

User rule (C++)
Do not mix
overriding and
overloading

over-
riding

over-
loading

void func(char)
void func(int)

Superclass

void func(int)

Subclass

rule MyRule
violated by F: Function when

exists G: Function s.t.
 G overloads F

and exists H: Function s.t.
 H overrides F.

rule MISRA-C 5.2
violated by V,U: Variable when
exist S,T: Scope; N: Name s.t.

MISRA-C int i;
{

Do not hide a var of
an outer scope int i V definedIn S and

U definedIn T and
S nestedIn+ T and
V hasName N and
U hasName N.

 i = 3;
}

• Declarative
• Unambiguous

RULE VIOLATIONS REPORT
 Some High-Integrity C++ rules
 implemented and tested with
 open-source projects:

Project Violations Time (s)
Bacula 3 0.03
CLAM 131 0.84
Ogre 94 1.46
Firebird 191 1.40
Qt 1249 13.06

Modified
GCC

KB of rules +
program facts

Rules in
CRISP

Source
code

(C, C++,
Java, ...)

Get the code:
www.ggcc.info

Rule
checker

CRISP
compiler

codIng RulE chEckIng

PROJECT RESULTS ITEA 2 Office
High Tech Campus 69 - 3
5656 AG Eindhoven
The Netherlands
Tel : +31 88 003 6136
Fax : +31 88 003 6130
Email : itea2@itea2.org
Web : www.itea2.org

ITEA - Information Technology
for European Advancement -
is an eight-year strategic
pan-European programme for
pre-competitive research and
development in embedded and
distributed software. Our work
has major impact on government,
academia and business.

ITEA was established in 1999
as a EUREKA strategic cluster
programme. We support
coordinated national funding
submissions, providing the link
between those who provide
finance, technology and
software engineering. We issue
annual Calls for Projects,
evaluate projects, and help
bring research partners
together. We are a prominent
player in European software
development with some 10,000
person-years of R&D invested
in the programme so far.

ITEA-labelled projects build
crucial middleware and prepare
standards, laying the foundations
for the next generation of
products, systems, appliances
and services. Our projects are
industry-driven initiatives,
involving complementary R&D
from at least two companies in
two countries. Our programme
is open to partners from large
industrial companies, small and
medium-sized enterprises (SMEs)
as well as public research
institutes and universities.

October 2009

employed to resolve this dilemma.
GCC, for example, has become
the standard C/C++/Fortran/Ada/
Java compiler for most modern
Unix-like operating systems. This
highly portable compiler suite
offers exceptional hardware and
vendor independence as it is able
to generate code for almost every
current instruction set architecture.
With a massive user base and
contributions from hundreds of
professional developers, mainly
in the USA, its content has grown
tenfold over the past decade.

The principal objectives of GCC
are code generation quality and
compilation speed. Despite its huge
expansion, an aspect that long
remained unexplored was global
static analysis and coding-rule
checking for debugging and project-
wide optimisation. Global analysis
makes it possible to process
complete compilation units such
as programs or libraries together,
and to manage the relationships
between them. Coding-rule
validation ensures programs
conform to rules established for
a particular industry, company or
application. Cumulatively, they
further improve coding efficiency,
enhance program performance and
reduce testing times, cutting costs
and time to market.

Earlier work focused on academic
prototypes or closed commercial
products such as Klocwork and
PolySpace. GGCC broke new
ground by incorporating them into
a popular mainstream platform as a
basis for new tools and interfaces
applicable across many industries.

Notable innovations
GCC’s size, complexity and
dynamic nature, plus the strict rules
imposed by the GCC community,
made this a daunting task. The
SME-led consortium nevertheless
achieved significant progress,
developing a common framework to
accommodate three main functions:

analysis and optimisation, hazard
detection and code validation.

GCC is written in C, which is not
ideal for abstract interpretation
– that is being independent of
the system in which it is being
implemented. It was therefore
necessary to integrate a higher
level language. GGCC opted for
Lisp and developed a middle-end
Lisp-to-C translator (MELT), which
has been adopted as an official
branch of the GCC development
tree.

Within the project, the first simple
static analysers were realised, as
was a mature version of the global
optimisation framework bringing
greatly enhanced performance
and tighter integration with the
GCC internal application program
interfaces. This is now on par
with proprietary compilers on
most targets, while preserving the
advantages of retargetability, multi-
language capability and openness.

Add-ons include Coding Rules in
Sugared Prolog (CRISP), a logic-
based domain-specific language
making it possible to express
coding rules easily even without
relevant expertise.

GGCC successfully tested a
prototype coding rule checker
at full scale on Nokia’s C++ Qt
cross-platform library. The number
of rules remains limited, but the
results offer a promising indication
of code quality

Europe can benefit
Many of the improvements have
already helped GCC to become
a leading platform for global
optimisation projects that go
way beyond the capabilities
of competing compilers. By
acquiring leading-edge expertise,
the partners have created an
opportunity for Europe to establish
a strong position in an area with
considerable potential.

