
M – ITEA 2 Magazine • September 2009 - no. 4

18

GGCC
(ITEA ~ 05012)

Arnaud Laprévote, Mandriva, France

SMEs show the way to quality
GCC compilation

A consortium with an unusual predominance of SME partners has added a new branch to the widely-used global GNU Compiler Collection (GCC). The tools

developed in the GGCC project allow the optimisation of complete programs and libraries – including static analysis for early bug fixes. This could help Europe

profit from a range of interesting commercial opportunities.

Explosive growth in the software content of digital
systems, coupled with increasing expectations that
operation will be trouble-free, creates overwhelm-
ing problems for program developers. Integration of
components and validation of complete packages now
consumes 70 to 90% of total development costs.

Large corporations spend heavily on proprietary
systems for the most mission-critical applications
in sectors such as aerospace. But even here, the
investment required to achieve zero-defect qual-
ity can prove ruinous. Most providers of enterprise,
consumer and embedded software cannot even afford
the same levels of expenditure. Yet, while quality as-
surance remains a heavy burden, cutting corners may
lead to brand-damaging numbers of faults in shipped
products.

buIldIng on InTERnATIonAl sTAndARd

Open-source tools are increasingly employed to re-
solve this dilemma. GCC, for example, has become
the standard compiler for most modern Unix-like
computer operating systems, including GNU/Linux,
the BSD family and Mac OS X. It has been adapted
to a wide variety of processor architectures, and is
widely deployed as a tool in commercial, proprietary
and closed-source software development environ-
ments.

GCC is also available for most embedded platforms,
including those for top-name gaming consoles.
Several companies base their businesses on supply-

Innovation reports • COSI – GGCC – GENE-AUTO

ing and supporting GCC ports to such platforms, and
today’s chip manufacturers consider its availability
almost essential to the success of an architecture.

This highly portable compiler suite offers exceptional
hardware- and vendor-independence as it is able to gen-
erate code for almost every current instruction set archi-
tecture. With a massive user base and contributions from
hundreds of professional developers, mainly in the USA,
its content has grown tenfold over the past decade.

The principal advantages of GCC are code generation
quality and compilation speed. However, despite its huge
expansion, an aspect that long remained unexplored was
global static analysis and coding-rule checking for de-
bugging and project-wide optimisation. Global analysis
makes it possible to process complete compilation units
such as programs or libraries together, and to manage
the relationships between them.

Coding-rule validation ensures programs conform to
rules established for a particular industry, company or
application. Cumulatively, they further improve coding
efficiency, enhance program performance and reduce
testing times – cutting costs and time to market.

Earlier work focused on academic prototypes or
closed commercial products such as Klocwork and
PolySpace. GGCC broke new ground by incorporat-
ing coding-rule validation into a popular mainstream
platform as a basis for new tools and interfaces ap-
plicable across many industries.

REInfoRcIng coMpETITIvEnEss

One of the direct aims of the ITEA project was to rein-
force the competitiveness of computer software pro-
viders. By improving the quality of the open-source
C/C++/Fortran/Java compiler and extending it with
static analysis, development time would be shortened
and test effort diminished – thus reducing time to
market.

Software-hazards detection exposes potential issues
in source code, hence lowering costly testing efforts;
coding rules conformance makes corporate knowl-
edge on specific software development processes
explicit, and its automatic validation helps enhance
software quality. Furthermore, GGCC integrates the
legacy compilation functionalities but also provides
quality assurance and verification & validation (V&V)
functionalities in one global package.

And finally, global optimisation opens GGCC to new
markets, allowing cutting-edge program optimisa-
tion to be integrated into production environments.
Target-specific compilers often produce up to 50%
faster code than GCC on real applications running
on general-purpose processors such as Pentium or
PowerPC. The gap can grow to factors of three to five
on specific or embedded architectures like Philips Tri-
media or Intel Itanium.

Improved performance is important for several rea-
sons, not the least of which is that code that uses
machine resources more efficiently can be executed

M – ITEA 2 Magazine • September 2009 - no. 4

19Innovation reports • COSI – GGCC – GENE-AUTO

using slower hardware. Such hardware is typically
cheaper and/or less power hungry, both extremely
important aspects for embedded systems.

noTAblE InnovATIons

GCC’s size, complexity and dynamic nature, plus the
strict rules imposed by the GCC community, made
the necessary development work daunting. The con-
sortium nevertheless achieved significant progress,
developing a common framework to accommodate
three main functions: analysis and optimisation,
hazard detection and code validation.

It was necessary to integrate a higher level language
as GCC is written in C, which – being independent of
the system in which it is implemented – is not ideal for
abstract interpretation. GGCC opted for Lisp and developed
a middle-end Lisp-to-C translator (MELT), which has
been adopted as an official branch of the GCC devel-
opment tree. MELT can be used to detect parallelism in
code and has many potential applications in prototyping.
Within the project, the first simple static analysers were
realised using MELT.

A mature version of the global optimisation frame-
work, bringing greatly enhanced performance and
tighter integration with the GCC internal application
program interfaces was also developed. Even if still
very slow, the global optimisation framework has
shown very good performances on par with propri-
etary compilers on the test codes that were chosen.

Add-ons include coding rules in sugared Prolog
(CRISP), a logic-based domain-specific language
making it possible to express coding rules easily even
without relevant expertise.

GGCC successfully tested the prototype coding rule
checker at full scale on Nokia’s C++ Qt cross-platform
library. The number of rules remains limited, but the
results offer a promising indication of code quality.

Two-wAy bEnEfIT

GGCC was unusual in several respects. Most ITEA consortia
are led by large companies, whereas this project was SME-led.
For a number of the SME members, it was also a first venture
into transnational co-operation. This created some operational
difficulties at the start, but the experience has proved valuable
– and several partners are already aiming to take part in further
collaborations.

Moreover, while SME partners were very interested

in software quality, none was a professional compiler
specialist. The initial goal was to produce tools for
internal use, taking the view that there is a real need
for effective quality-enhancement tools because the
cost of bug correction is huge. If the project outcomes
allowed automatic solution of even 10% of the prob-
lems, the effort could be considered worthwhile.

Although the results at the end of the funded period
remained at a relatively early stage of refinement, they
were nevertheless sufficiently advanced to be suitable
for offer to other projects in the field.

Many of the improvements have already helped GCC
to become a leading platform for global optimisa-
tion projects that go way beyond the capabilities of
competing compilers. By acquiring leading-edge
expertise, the partners have created an o pportunity
for Europe to establish a strong position in an area
with considerable potential.

Coding Rule Checking
Reliably, predictably, and early in the development
process
…………………………

RULE EXAMPLE OF VIOLATION CRISP, A RULE DEFINITION LANGUAGE

Contact:
Project Manager: Arnaud Laprévote
Mandriva - Paris, France ~ Tel: +33 3 87 50 87 90, Fax: +33 1 40 41 92 00
E-mail: anraud.laprevote@mandriva.com ~ Website: www.ggcc.info

These are
different
variables

User rule (C++)
Do not mix
overriding and
overloading

over-
riding

over-
loading

void func(char)
void func(int)

Superclass

void func(int)

Subclass

rule MyRule
violated by F: Function when

exists G: Function s.t.
 G overloads F

and exists H: Function s.t.
 H overrides F.

rule MISRA-C 5.2
violated by V,U: Variable when
exist S,T: Scope; N: Name s.t.

MISRA-C int i;
{

Do not hide a var of
an outer scope int i V definedIn S and

U definedIn T and
S nestedIn+ T and
V hasName N and
U hasName N.

 i = 3;
}

• Declarative
• Unambiguous

RULE VIOLATIONS REPORT
 Some High-Integrity C++ rules
 implemented and tested with
 open-source projects:

Project Violations Time (s)
Bacula 3 0.03
CLAM 131 0.84
Ogre 94 1.46
Firebird 191 1.40
Qt 1249 13.06

Modified
GCC

KB of rules +
program facts

Rules in
CRISP

Source
code

(C, C++,
Java, ...)

Get the code:
www.ggcc.info

Rule
checker

CRISP
compiler

Coding Rule Checking
Reliably, predictably, and early in the development
process
…………………………

RULE EXAMPLE OF VIOLATION CRISP, A RULE DEFINITION LANGUAGE

Contact:
Project Manager: Arnaud Laprévote
Mandriva - Paris, France ~ Tel: +33 3 87 50 87 90, Fax: +33 1 40 41 92 00
E-mail: anraud.laprevote@mandriva.com ~ Website: www.ggcc.info

These are
different
variables

User rule (C++)
Do not mix
overriding and
overloading

over-
riding

over-
loading

void func(char)
void func(int)

Superclass

void func(int)

Subclass

rule MyRule
violated by F: Function when

exists G: Function s.t.
 G overloads F

and exists H: Function s.t.
 H overrides F.

rule MISRA-C 5.2
violated by V,U: Variable when
exist S,T: Scope; N: Name s.t.

MISRA-C int i;
{

Do not hide a var of
an outer scope int i V definedIn S and

U definedIn T and
S nestedIn+ T and
V hasName N and
U hasName N.

 i = 3;
}

• Declarative
• Unambiguous

RULE VIOLATIONS REPORT
 Some High-Integrity C++ rules
 implemented and tested with
 open-source projects:

Project Violations Time (s)
Bacula 3 0.03
CLAM 131 0.84
Ogre 94 1.46
Firebird 191 1.40
Qt 1249 13.06

Modified
GCC

KB of rules +
program facts

Rules in
CRISP

Source
code

(C, C++,
Java, ...)

Get the code:
www.ggcc.info

Rule
checker

CRISP
compiler

codIng RulE chEckIng

