
Scaling Software
ITEA2 — SCALARE Project Newsletter No. 2 — June 2015

FEATURE ARTICLE
Scaling the Organization with Crowdsourcing
// Page 3

§ SCALARE News // Page 2

§ Project Activities // Page 7

§ Publications // Page 8

Image by Alex Kwa
from The Noun Project

2

Welcome to the second issue of the
Scaling Software Newsletter! We
have seen many activities and new
developments within the project
since the last newsletter. Since
August 2014, the project is led by
Miguel Ángel Oltra Rodríguez,
who has taken over from Jesus
Bermejo. We are grateful for
Jesús’ initial leadership and thank
him for his enthusiastic input in
the first year. At the same time,
we are very happy that Miguel is
able to take over the leadership of
the project.
In this issue we report on the
latest news of the project, the new
project website, and a feature
article on one organization that
scaled up through crowdsourcing.
Enjoy!

Klaas-Jan Stol
Editor-in-Chief

Scaling Software Newsletter

New Project Leader for
SCALARE
The SCALARE project has had a
change of leadership. The project was
initially led by Jesús Bermejo from
Telvent, now part of Schneider
Electric; however due to
reorganizations within Telvent, Jesús
was no longer able to provide his
leadership. Since August 2014, the
project leader is Miguel Ángel Oltra
Rodríguez, also from Telvent.

SCALARE Passed First Review
Meeting
The SCALARE project has had its
first review meeting on 27 January
2015. The review meeting was held in
the offices of Tieto in Stockholm. The
review report was very constructive
and the project passed. Based on the
constructive feedback, the consortium
held a strategy meeting after in order
to define the activities for the next
year.

New Logo for the SCALARE
Project
The SCALARE project has a new
logo. The new logo now features a

SCALARE News
Project News and Events

FROM THE EDITOR
black-green color scheme and depicts the
Pterophyllum Scalare, a fish first drawn
during the Thayer Expedition, which
was led by Louis Argassiz and financed
by Nathaniel Thayer.

New Website for SCALARE
With an increasing number of activities
and outputs in the SCALARE project,
we have revamped the website, hosted at
www.scalare.org. The new website now
features more information about news,
events, and publications.

SCALARE Project Meetings
The SCALARE consortium has had
several meetings in the last few months.
In January 2015 the project members
came together for a strategy meeting to
discuss next steps and activities for the
months to come after the feedback from
the first review by ITEA. In March
2015, several of the partners came
together in Seville and met in the offices
of Telvent, now part of Schneider
Electric.

Miguel Ángel Oltra Rodríguez, the
new SCALARE Project Leader

The new logo resembles the
Pterophyllum Scalare more closely

3

Scaling the
Organization with
Crowdsourcing
Klaas-Jan Stol and Brian Fitzgerald, Lero, University of Limerick

A number of potential benefits have been
linked to the use of crowdsourcing in general,
and these would also be applicable in the
context of software development specifically:
• Cost reduction through lower

development costs for developers in
certain regions

• Faster time-to-market through accessing
a critical mass of necessary technical
talent who can achieve follow-the-sun
development across time zones;

• Higher quality through broad
participation: the ability to get access to a
broad and deep pool of development
talent who self-select on the basis that
they have the necessary expertise;

• Creativity and open innovation: there
are many examples of “wisdom of
crowds” creativity whereby the variety of
expertise available ensures that more
creative solutions can be explored.

Crowdsourcing at TechPlatform Inc.
The application which TPI selected for
crowdsourcing was Titan, a web application
to be used by TPI field engineers when
migrating from one platform to another as
part of a customer engagement. Within TPI a
technical decision was taken that future
development should use HTML5, and this
was the technology chosen for the front end,
which was replacing the desktop application.
The back-end services were based on a
similar technology set used by the previous

desktop-based solution. Thus, TPI were keen
to leverage HTML5 expertise from the large
global TC community.

Similarly in the front-end, topics such as
migration planning, importing and the
scripting engine were retained for
development by TPI. The two activities that
are part of the TC crowdsourced
development are asset modeling and
automation testing. Modeling refers to the
arrays and switches that need to be migrated
and thus have to be modeled (i.e. created and
configured) in the Titan application.
Automation testing complements unit and
integration testing which is designed by TPI
developers, and refers to the testing designed
by QA to test the front-end GUI interaction
with the back-end.

Task Decomposition
The choice as to what parts of the product
were appropriate for crowdsourcing was not
entirely trivial for TPI. Code and executables
which were self-contained would be easier to
merge and hence were more suitable for
crowdsourcing. However, if code from TC
had to be directly merged with code being
developed in-house, this would be more
problematic. The decision as to what work to
crowdsource was primarily based on internal
resources (or lack thereof) and the amount of
domain knowledge required for a certain
task. Tasks that required the least amount of
domain knowledge were deemed most
suitable.

Software engineering no longer takes place in small, isolated groups of developers, but increasingly takes place in organizations
and communities involving many people. There is an increasing trend towards globalization with a focus on collaborative
methods and infrastructure. One emerging approach to getting work done is crowdsourcing, a sourcing strategy that emerged
in the 1990s. Driven by Web 2.0 technologies, organizations can tap into a workforce consisting of anyone with an Internet
connection. Customers, or requesters, can advertise chunks of work, or tasks, on a crowdsourcing platform, where suppliers
(i.e., individual workers) select those tasks that match their interests and abilities.

Feature Article

This article is an abridged
version of the paper “Two’s
Company, Three’s a Crowd: A
Case Study of Crowdsourcing
Software Development,” by K.
Stol and B. Fitzgerald,
published in ICSE 2014.

Crowdsourcing
has worked

particularly well
for such tasks.

Examples include
tagging images.

4

TPI divided the project into five
development phases. The first dashboards
phase was the front-end which involved the
high-level dashboard interface pages, e.g., for
customer creation, project creation and
navigation. The next two development phases
involved configuration of TPI’s flagship
product. Following this, Phase 4 was
concerned with the various network devices
which also form part of the migration
configuration. Finally, Phase 5 dealt with the
low-end legacy products and various third
party solutions that also need to be migrated.
In order to minimize the modifications that
would need to be made to the TC code after
delivery, TPI made the header and footer
browser code available to TC developers.
This was to ensure this standard format
would be maintained by all TC developers.
For the Titan application, TPI’s policy was to
only use HTML5 where a feature was
supported by all platforms to increase
portability. Initially, there was an expectation
that the TC community would deliver some
innovative HTML5 code. However, the TPI
requirement that HTML5 features would
have to be supported by all browser platforms
resulted in a very small proportion of all
potential HTML5 features being available for
use by TC developers. The expected
innovation from the “crowd” was thus
precluded by the TPI specification.

In order to minimize integration effort
later on, the architect had wanted to let TC
developers work against a real back-end core
as opposed to stub services. However, by the
time development with TC started, the core
was not ready and stubs were used during
most development contests. Consequently,
this integration effort was pushed back to a
later stage in the development process, which
was not ideal.

For traditional in-house development,
TPI developers had internalized a great deal
of information in relation to coding standards
and templates, and technical specifications.
However, many of the coding standards and
templates were documented informally and
not stored centrally on the internal wiki
installation. This scattering of information
and URLs prevented it from being packaged
as a deliverable for TC developers. A great
deal of extra work was necessary to ensure
that this information was made explicit in the
requirements specification for the external
TC developers. Most of the effort was related
to the technical specifications.

Coordination and Communication
From the TC perspective, the software
development process consists of a number of
interrelated phases. While the TC process is
essentially a waterfall one, an agile

development process, based on Scrum, was in
use at TPI. Synthesizing these different
development processes was problematic. TC
development had to be assigned to a Scrum
team. within TPI, and TC contributions
needed to be subsequently injected into the
appropriate sprints. There were also quite a
number of layers in the engagement model
between TC and TPI. Firstly at the TC end,
a co-pilot liaised between the TC developer
community on the one hand, and TPI
personnel on the other hand. Furthermore, a
platform specialist and the TPI account
manager were involved, effectively overseeing
the co-pilot and recommending changes at
that level. In this case, following some
problems, a new co-pilot was selected with a
tendency to be more proactive than his
predecessor.
Within TPI, the choice of personnel to
interact with the TC co- pilot was a difficult
decision. While TC would prefer a single
point of contact within the customer
organization, there were significant
management and technical issues involved,
thus requiring senior people from TPI on
both the management and technical end. A
senior TC program manager was appointed
specifically for all programs being developed
with TC. This manager ensured that
management were aware of any scheduling
issues that could arise, for example, and also
ensured that training was provided.
However, there was also a specific Titan
program manager, and thus there was
inevitably some overlap between both roles.
On the technical side, a senior architect was
allocated to coordinate the TC development
for the Titan project. This role of TC liaison
which had daily contact with the TC
community was considered to be problematic
within TPI, given the considerable pressure
to answer questions which was also very time
consuming. There was some concern within
TPI about allocating such a senior resource
to this liaison role given the significant cost.
At the initial stage, this liaison role involved
answering questions on the TC Forums.
There was significant time pressure involved
since a time penalty applied if forum
questions were not answered in a timely
fashion by TPI, which would mean that the
original committed delivery date for TC
development would be pushed out. Also, the
architect estimated the time answering
questions on the TC Forums to be at least
twice as long as would be the case with
internal development.
In contrast to distributed development which
typically involves other developers from the
same organization, the only relationship
which tended to build over time was that with
the TC co-pilot. There was no real
opportunity to build up a relationship with

A great deal of
extra work

was necessary
to ensure that

this
information
was made

explicit in the
requirements.

5

any of the TC developers, as interaction was
filtered through a number of layers. Another
structural coordination issue arose in that TPI
allocate architects to products, and the desire
to get the TC project completed resulted in two
additional architects working on the project.
This was seen as a sub-optimal resource
allocation, given that the architect role was a
somewhat scarce and extremely valuable
resource.
TPI also had a so-called “tactical” Scrum team
that could be assigned to different tasks more
flexibly in that they were not formally assigned
to projects on a long-term basis, as was the case
with the normal Scrum teams at TPI. This
tactical team could deal with TC contributions
when they arrived. However, in some cases a
normal Scrum team would also be assigned to
the project, and in these cases involvement of
the tactical Scrum team would not then be
necessary. Overall, there was extra overhead
and duplication of work on the project in that
two teams had to become familiar with the
project and deliverables. These two teams also
had to communicate with each other. To
address this issue, TPI dropped the use of the
tactical team, and instead scheduled time in the
project sprints to integrate the deliveries from
TC.

Planning and Scheduling
The Titan project comprised more than fifty
TC competitions. These competitions involved
a total of 695 contest days, with an average
length of competition of just over 13 days. The
shortest completion time for a competition was
4 days while the longest competition took 32
days to complete. As discussed above, TPI had
structured the overall development of the Titan
product into five phases. The average duration
across these development phases is 80 days,
with the longest development duration (90
days) for the front-end HTML5 panels in the
first phase, and the shortest development
duration (69 days) for the final phase involving
the low-end legacy and third-party arrays.

Some of the specific timings and the
granularity of possible deci- sions for TC
development were somewhat problematic for
TPI. For example, TC allows a customer five
days to accept or reject a deliverable.
According to the architect, this was often not
long enough to analyze and fully test the
deliverable, and it was difficult to get these
reviews done in time internally. A further
difficulty arose in that TC deliverables must be
accepted as a whole, or rejected as a whole,
with no middle ground. It would be better
from TPI’s point of view if more flexible
granularity was possible in that certain parts of
deliverables could be accepted and partial
payment made for these acceptable parts.
Because TPI did not want to deter TC
developers from bidding on future

competitions, there was a tendency to accept
code, even with some defects. There was an
additional warranty period of 30 days, but
integrating fixes under this warranty would
pose considerable overhead in receiving,
checking and integrating new code with an
active code base which would more than likely
have undergone significant further modification
internally within TPI in the interim.
Furthermore, when issues were escalated within
the 30-day warranty, the resolutions were
generally not satisfactory to TPI. Overall, a
single longer initial acceptance period of 15
days would probably be more beneficial to TPI
than the two current periods of five and 30
days, respectively. Another issue related to
planning and scheduling arose when TPI had
to wait for a contest to finish, while the main
application was evolving, causing possible
integration issues. TPI’s schedule was also
jeopardized by several contests failing due to a
lack of submissions. These contests had to be
rescheduled thus causing a delay in TPI’s
schedule. When rescheduled, there was only a
single submission in one case, despite more
than 30 registrants indicating an interest.

Quality Assurance
Much research in software engineering has
focused on identifying and eliminating errors as
early as possible in the development process, on
the well established basis that errors cost
exponentially more to rectify, the later they are
found in the development cycle. However, the
structure of the TC development process made
it difficult to preserve this, as it shifted QA
issues towards the back-end of the development
process, after coding has been completed.

The number of defects identified was quite
significant. While many issues were of a
cosmetic nature, and therefore fairly trivial, the
sheer volume of issues required considerable
time and attention from developers within TPI.
Furthermore, as more contests were finished
and software delivered back to TPI, the rate of
new issues was increasing as well. There was
also a problem with lack of continuity. TC
developers do not remain idle at the end of
competitions, and may thus not be free to
continue with TPI development in subsequent
tasks. In fact, TPI experienced problems with
bugs which had previously been identified
being re-introduced to code after it went back
for further development with TC. Partly this
was due to how TC developers used the source
code control tool. This added to the critical
perception expressed by the Divisional CTO,
when he contrasted it with the investment one
would be prepared to make when using remote
development teams for development, in
describing crowdsourcing as being “a fleeting
relationship.” Given that the combination of
technical and specific domain expertise was

There was
no real

opportunity
to build up a
relationship
with any of

the TC
developers

6

considered by TPI to be quite rare
(based on experience in recruiting
developers), TPI took some initiatives to
improve the quality of crowdsourced
contributions. For example, a virtual
machine with a sample core application
was made available as an image that
could easily be downloaded and run.
This was used by the TC development
community both in development and as
a final test or demonstrator for code they
developed. Prior to this, TC code testing
was done with stubbed- out service calls
to the back-end, but there was a concern
within TPI that TC code would not
necessarily run smoothly when
connected fully to the back-end. When
the code for the initial HTML5 high-
level panel applications was produced by
TC, there were some quality issues, for
instance, the same header was repeated
in every file. TPI took this code and
further developed it to a “Gold
Standard,” at the level required by TPI.
This was delivered back to the TC
community as a template for future
development. This tactic was extended
to prepare sample code for a web
application that could act as a template
for the TC community. This included a
parent project object model (build
script), source code compliant with all
TPI code standards, unit and integration
tests, automation tests, and instructions
for deployment and setup.
Knowledge and IP
The “fleeting relationship” mentioned
earlier also has consequences for
knowledge management and IP.
According to the architect involved in
the project, the lack of depth in the
relationship with contestants meant that:
“there is a limited amount of carry-over
knowledge. We will get a few contestants that
will participate in multiple contests, but they
won’t build up domain knowledge in the
way that an internal person would.”

Also, given that there is no single
supplier as would be the case in a
traditional outsourcing scenario, any
intellectual property relating to
specifications and product knowledge is
more widely exposed simply by virtue of
its being viewed by the ‘crowd’ of
potential developers. Almost 90% of
those registered for a contest did not
actually submit anything to that contest.
In other words, making detailed product

and specification information available,
which is necessary to achieve the
benefit of tapping into the crowd’s
wisdom and creativity, seems (in this
case) not to be as fruitful as one would
hope given the limited numbers of
submissions.

TPI chose a pseudonym to disguise
their participation on the TC platform.
This was to obfuscate the fact that the
work was for the TPI platform as it was
felt that developers from competing
organizations might be working for TC
in their spare time. TPI took advantage
of the standard Competition
Confidentiality Agreement (CCA)
which TC use with their development
community. TPI will not do business
with certain countries, for example,
and this can be policed through the
CCA which identifies the home
location of TC developers. TPI were
still concerned about the extent to
which proprietary information may be
exposed in TC competitions. To
address this, TPI plan to identify the
“Secret Sauce” which should not be
shared without very careful
consideration. This would include the
source code for the flagship and legacy
applications, libraries and binaries from
other TPI business units, performance
calculation formulae, hardware
specifications and business rules.

Motivation and Remuneration
Given a potential development
community of a half million members,
TC would claim to have broad and
deep enough expertise to ensure a
healthy competition rate. However,
TPI have had to cancel some
competitions because of a lack of
participation and there had been a
number of others with just a single
contestant. The fact that TPI used a
pseudonym does appear to be
significant in that well known
companies do attract TC developers
more readily and TPI would certainly
be a very well known company
globally. The TC pricing structure was
quite complex, At the top level, there
was a monthly platform fee to TC. For
TPI this was a monthly fee of $30,000.

The co-pilot who was the principal
liaison between TC and TPI typically
cost $600 per contest. There was an

Dr Klaas-Jan Stol is a research fellow at Lero.
Contact him at klaas-jan.stol@lero.ie.

Prof. Brian Fitzgerald is Chief Scientist at Lero.
Contact him at bf@lero.ie

initial specification review before the
contest begins, and this cost $50. The
individual contest pricing was also quite
complex. In the case of TPI, first prizes for
contests ranged from $200 up to $2,400,
depending on the size and complexity of a
contest. A second prize of 50% of the first
prize was paid to the runner up in each
contest.

There was also a Reliability Bonus
which was paid to the winning submission.
The calculation of this bonus is quite
detailed, but basically it can be up to 20%
of the first prize, depending on the past
successful track record of the winning
contestant (i.e., his/her reliability – does a
contestant actually submit after
registering?). In addition, there was a cost
of 45% of the first prize to support the TC
Digital Run, an initiative whereby TC
share money with the TC development
community based on the monthly contest
revenue and proportional to the number
of points that TC developers have amassed
in contests. The Digital Run is an
additional mechanism to motivate
potential contestants to participate even if
they assess their chance of winning to be
low. Following the contests, three
reviewers from the TC community
evaluated submissions and this cost
approximately $800 on average. Finally,
TC charged a 100% commission equal to
the total development costs above.
Overall, the total average cost per
competition so far was approximately
$6,200 (excluding the monthly platform
fee).

7

Project Activities
Project Activities and Upcoming Events

New Book Launced on Sourcing in
the Age of Open
SCALARE researchers Prof. Brian Fitzgerald
and Dr. Klaas-Jan Stol, together with Prof.
Pär J. Ågerfalk from Uppsala University in
Sweden have published a book on software
sourcing in the age of open. The book is
published in the Springer Briefs series, which
are short books (up to 100 pages). The book
focuses on new and emerging strategies to
source software. In particular, the new
strategies that are studied are crowdsourcing,
opensourcing and innersourcing, all three of
which are derived from the open source
development paradigm. A sample chapter is
available for download on the SCALARE
website. The full book is available on
Amazon.com and Springer.com.

SCALARE Project Featured at ITEA
Co-Summit in Berling
The SCALARE project was presented at the
Speakers Corner at the ITEA Co-Summit in
Berlin, March 2015. Focus was to present
our major result coming out of Scalare, the
Scaling Management Framework (SMF).
The SMF should provide guidance to
SCALARE users to support them in their
scaling scenarios. The guidance will come
from case studies, patterns and experiences
connected to different business drivers
initiating a scaling scenario. At our
presentation in the speakers corner we
presented one case study from Work
Package 2 and showed the audience how a
future user could get guidance based on this
case study as a way to exemplify SMF.

Case Studies and Developing the
SMF
All SCALARE partners are currently
actively working on reporting case studies. A
Case Study in this context is defined as an
exemplar scaling scenario based on real-
world data. Sony Mobile, QUMAS and
Husqvarna are all encountering the scaling
phenomenon in their own ways, and the
goal is to document these scenarios so that
together they can be used as illustrations of
the scaling management framework. The
SMF itself is derived both from the
literature.

To further demonstrate the SMF, the
SCALARE consortium is also developing a
demonstrator, which can serve as a decision
making tool for organizations that need
support in their scaling management. The
demonstrator takes as input a number of key
parameters based on which it will identify
appropriate scaling strategies. We aim to
have the demonstrator complete before the
next review, which will take place in January
2016.

8

Publications

Book
P.J. Ågerfalk, B. Fitzgerald, K. Stol (2015)
Software Outsourcing in the Age of Open:
Leveraging the Unknown Workforce, Springer.

Journal Publications
K. Wnuk, J. Kabbedijk, S. Brinkkemper, B.
Regnell and D. Callele (forthcoming) Exploring
Factors Affecting Decision Outcome and Lead-
time in Large-Scale Requirements Engineering,
Journal of Software Maintenance and
Evolution.

M. Michlmayr, B. Fitzgerald, and K. Stol (2015)
Why and How Should Open Source Projects
Adopt Time-Based Releases? IEEE Software,
vol. 32(2). Special Isssue on Release Engineering

K. Stol and B. Fitzgerald (2015) Inner Source—
Adopting Open Source Development Practices
within Organizations: A Tutorial, IEEE
Software, vol. 32, no. 4

Conference Publications
P.J. Ågerfalk, B. Fitzgerald and K. Stol
(2015) Not so Shore Anymore: The New
Imperatives when Sourcing in the Age of
Open, Proceedings of the European
Conference on Information Systems
(ECIS) Münster, Germany

B. Fitzgerald and K. Stol (2015) The Dos
and Don’ts of Crowdsourcing Software
Development, Proceedings SOFSEM
2015, LNCS 8939, pp. 58-64

Workshop Publications
K. Stol and B. Fitzgerald (2015) A Holistic
Overview of Software Engineering
Research Strategies, In proceedings of the
Third International Workshop on
Conducting Empirical Studies in Industry
(CESI) co-located with ICSE ’15, Florence,
Italy.

Project Output

Write for Us!

Contributions to the Scaling Software Newsletter can be sent to Klaas-Jan
Stol (klaas-jan.stol@lero.ie). We welcome experience and lessons learned
reports, and case study reports.

