Mapping Natural Language to Description Logic

Bikash Gyawali, Anastasia Shimorina, Claire Gardent, Samuel Cruz-Lara, and
Mariem Mahfoudh

CNRS/LORIA, Nancy, France
firstname.lastname@loria.fr

Abstract. While much work on automated ontology enrichment has fo-
cused on mining text for concepts and relations, little attention has been
paid to the task of enriching ontologies with complex axioms. In this pa-
per, we focus on a form of text that is frequent in industry, namely system
installation design principle (SIDP) and we present a framework which
can be used both to map SIDPs to OWL DL axioms and to assess the
quality of these automatically derived axioms. We present experimental
results on a set of 960 SIDPs provided by Airbus which demonstrate (i)
that the approach is robust (97.50% of the SIDPs can be parsed) and
(ii) that DL axioms assigned to full parses are very likely to be correct
in 96% of the cases.

Keywords: Natural Language Processing, OWL, Quality Checks

1 Introduction

While there has been much work on enriching ontologies from texts [14,23],
most of this work focuses on concepts and relations. As noted in [21], “ontology
learning from text is mostly restricted to inexpressive ontologies while the ac-
quisition of complex axioms involving logical connectives, role restrictions and
other expressive features of OWL remains largely unexplored.”

There are several reasons why addressing this bottleneck is important.

First, manually creating ontologies is a difficult and time consuming task
which requires a high level of domain knowledge and technical expertise. Being
able to automate or semi-automate the enrichment of ontologies with complex
axioms would help diminish the time and expertise required for building the
knowledge bases required by semantic applications.

Second, being able to enrich an ontology using complex axioms derived from
text would permit semantic reasoning on the content of that text. In particular,
it would permit querying the content of that text in the context of the back-
ground knowledge encoded in the ontology (using e.g., conjunctive tree queries
on the enriched ontology). It would also allow for consistency checking. Is the
text consistent with the knowledge contained in the initial ontology? Is a set of
text consistent both internally (are all texts consistent with each other?) and
externally (is each text in this set consistent with the ontology?).

Third, it would help bridge the gap between a document-centric and a model-
centric view of information. In industries and in governmental services and Eu-
ropean organizations, a great number of technical documents (i.e. documents
meant to pass information in a way as less ambiguous as possible) are manip-
ulated. Alternatively to this text-based document approach, there is also a use
of multiple kinds of “models” (Description Logic Knowledge Bases, UML dia-
grams, Enterprise Architecture diagrams, etc.), which have increasing popularity.
Document-centric and model-centric approaches are, nowadays, largely discon-
nected however. Being able to automatically map a text to the corresponding
model would facilitate the task of technical authors. This would mean that not
only the human-friendly text is distributed, but also the associated computer-
processable equivalent (model) of the text content.

In this paper, we consider the task of enriching an existing OWL DL (De-
scription Logic) ontology with complex axioms derived from text. We focus on
a form of text that is frequent in industry, namely system installation design
principles (SIDP) such as (1a-b).

(1) a. Pipes shall be identified with labels.
b. Spacer shall be used only with attachment device to increase distance
with regards to structure, bundles or other systems.

System installation design principles are regulations and directives about
how to install a system or a set of systems in a functional area (e.g., electrical
and optical system or Water Waste System). For instance, at Airbus, for each
aircraft project, a set of SIDPs is produced to ensure that planes comply with
all system requirements and take into consideration applicable regulations and
procedures. In what follows, we distinguish between simple SIDPs consisting of
a single clause (e.g., 1a) and complex SIDPs which involve more than one clause
(e.g., 1b).

Our contribution is threefold.

— Semantic Parsing. We propose a framework for mapping SIDPs to OWL
DL axioms which combines an automatically derived lexicon, a small hand-
written grammar, a parser and a surface realiser. This framework is modular,
robust and reversible. It is modular in that, different lexicons or grammars
may be plugged to meet the requirements of the semantic application being
considered. For instance, the lexicon (which relates words and concepts)
could be built using a concept extraction tool, i.e. a text mining tool that
extracts concepts from text (e.g., [2]). And the grammar could be replaced
by a grammar describing the syntax of other document styles such as cooking
recipes. It is robust in that, in the presence of unknown words, the parser
can skip words and deliver a connected (partial) parse. And, it is reversible
in that the same grammar and lexicon can be used both for parsing and for
generation.

— Quality Assessment. We provide a method for assessing the system out-
put. A chief difficulty when mapping text to semantic representations is the

lack of accepted criteria for assessing the correctness of the semantic rep-
resentations derived by the system. We tackle this issue by exploiting tech-
niques from both natural language generation and automated reasoning. We
evaluate our approach on a dataset of 960 System Installation Design Princi-
ples and report results on coverage (proportion of SIDP parsed) and quality
assessment (BLEU score for re-generated sentences, statistics on syntactic
well-formedness). In particular, we show that the system provides a DL for-
mula for 97.50% of the input SIDPs and that the DL formulae assigned to
full parses are very likely to be correct in 96% of the cases.

— Ontology Enrichment. We show that the output of our semantic parser
can be used to enrich an existing ontology.

2 Related Work

[21] propose a method for converting natural language definitions to complex DL
axioms by first, parsing definitions and second, applying ad hoc transformation
rules to parse trees. One main difference with our approach is that we use a
generic framework for semantic parsing instead. This allows for a more modular
and principled approach (for instance, different semantics could be experimented
with). This permits the exploitation of well-understood, highly optimised parsing
algorithms (we use a standard CKY algorithms extended to increase robustness
to unknown words). And this supports a mapping between natural language
and logical formulae that is both direct and reversible — by contrast, [21]’s two
step approach (dependency parsing followed by the application of transformation
rules) makes it more difficult to identify sources of errors as re-generation cannot
be used to “visualise” the natural language content of the derived semantic
formulae.

More recently, [17] proposed a neural semantic parser which derives DL for-
mulae from natural language definitions. One important difference with our ap-
proach is that the data they are training on has been synthesised. In particular,
the input text has been authored using ACE (Attempto Controlled English [13])
and grammar based generation. In contrast, we work on human authored text.

Our work also differs from approaches such as [20, 1] which support the au-
thoring of complex DL axioms. In these approaches, DL axioms are authored
in an interactive fashion using controlled languages. The main difference with
our work is that our approach does not require the use of a control language.
Instead, we provide a framework for automatically parsing uncontrolled natural
language as can be found for instance, in industrial documentation.

Finally, there has been much work on extracting knowledge from dictio-
naries [3,18] but as mentioned in the introduction, in these approaches, the
knowledge derived is restricted to the lower layer of the “ontology-learning layer
cake” [3] and thus focuses mostly on extracting concepts and relations rather
than complex axioms.

4

3 Approach Overview

A central bottleneck when developing semantic parsers and text generators is the
lack of parallel corpus aligning text and semantic representations. Such corpora
are not generally available and are costly and difficult to build (humans find
it difficult to associate a text with a logical formula representing its meaning).
Moreover, as noted in [22], even if such corpora can be built, their logical coverage
is often restricted and so any semantic parser trained on them will fail to analyse
logical structures missing from the training data.

We therefore explore an alternative approach in which we combine a symbolic
grammar-based approach with an automatically acquired lexicon and a robust
parsing algorithm which can skip unknown words to produce connected, possibly
partial, parses. The approach also integrates a surface realiser which given a DL
formula can produce a text expressing the meaning of that formula. Figure 1
outlines our approach showing the interaction of various components. The lexicon
maps verbs and noun phrases to complex and simple concepts respectively. The
grammar provides a declarative specification of how text relates to meaning
(as represented by OWL DL formulae). The parser and the generator exploit
the grammar and the lexicon to map natural language to OWL DL formulae
(semantic parsing) and OWL DL formulae to natural language (generation and
more specifically, surface realisation), respectively.

In the following sections, we describe each of these components in detail.
Section 4 summarises the results obtained when processing 960 SIDPs from
Airbus to enrich an existing ontology developed by Airbus engineers.

Input
SIDPs

—
) Full/Partial
Grammar (Manual) E Parse
Z
Lexicon (Automatic) g Syntax
E Validation
—

Generated
SIDPs

Fig. 1. Parsing and Generation of Airbus SIDPs.

3.1 Grammar

The grammar provides a declarative specification of the relation between natu-
ral language phrases and Description Logic formulae. We use a Feature-Based
Lexicalised Tree Adjoining Grammar augmented with a unification-based flat
semantics (FB-LTAG, [7]). We start by introducing FB-LTAG. We then define
the semantic representation language it integrates and its mapping to OWL.
Finally, we show how lexical and grammatical knowledge can be dissociated
thereby allowing for increased genericity.

S
c NPLY VP
\L‘ \\\\ N /V\
NP 7 AUX AUXEL V
H 2
Pipes I/ a4 |
Lg :Pipe(X) shall” be used
Lo ,:Isubset(Y,Ll)
La :e:ciéts(useArg?z’nv,Lg)
e /' Ls :Use(Z)
AUXEs -~
_TT— ///
ADV AUX,~
not v
Ly not(Ls)

Fig. 2. Example FB-LTAG with Unification-Based Semantics. The variables decorating
the tree nodes (e.g., X) abbreviate feature structures of the form [idz : X]| where X is
a unification variable.

FB-LTAG. Figure 2 shows an illustrating FB-LTAG. In essence!, an FB-LTAG
with unification semantics consists of a set of (trees, semantics) pairs where tree
nodes may be labelled with non recursive feature structures (sets of feature-value
pairs where values can be constants or unification variables) and semantics may
contain unification variables shared with variables occurring in the corresponding
tree. During parsing, trees are combined using the grammar operations (adjunc-
tion and substitution) and unification is applied to both the feature structures
in the tree and the literals in the semantic representation. The semantics of a
derived tree is the union of the semantics of the trees contributing to its deriva-
tion modulo unification. For instance, given the sentence Pipes shall not be used,
the combination of the three trees shown in Figure 2 will yield the derived tree
and the semantics shown in Figure 3. That is, the grammar assigns to sentence

! See [7] for a more precise definition of the FB-LTAG framework.

(2), a flat semantic formula which is equivalent to the DL formula (2a) whose
interpretation (2b)? can be glossed as (2¢) or more simply, (2d).

(2) Pipes shall not be used
a. Pipe C —JuseArg2~.(Use)
b. {z | # € Pipe} C D'\ {y | (z,y) € useArg2 Az € Use}
c. Pipes are not in the set of things that are the arg2 participant of a Use
event
d. Pipes are not things that are used

Semantic Representation Language. In the grammar, the semantic representa-
tion language used is a flattened version of description logic where subformulae
are associated with labels and labels substituted for subformulae. For instance,
the flattened version of the DL formula C1 C 3 R.C2 is ly:subset(l,lz), l:C1,
lo:exists(l3), l3:C2. We convert the flat semantic representations output by the parser
to OWL functional syntax using the mapping shown below where 7(X) is the DL
conversion of X, l; are labels, C; are arbitrarily complex DL concepts, and R are DL
roles.

ObjectSomeValuesFrom(:R 7(C)) if ¢ =1; : exists(R,l;) I : C

SubClassOf(7(C1) 7(C?2)) if ¢ =1; : subset(l;,li) 1l : C1 I : Co

ObjectIntersectionOf(7(C1) 7(C2)) if ¢ =1 : and(l;,lx) 1 : C1 Ik : Co
. (T(Cl)ﬂT(C?)) ifqb:li:and(lj,lk) lj:C1 I : C2

@)= (1) ur(c2) i =1i:or(ly,0n) j: Cl I : C2

not(7(C)) if g =1; :not(ly) l;: C

R™ if ¢ = Rinv

C ifp=1:C(x)

Further examples of the DL translations assigned by our grammar to natural lan-
guage sentences are shown in Table 1. Semantically, the grammar makes use of the
following DL constructs: T (the most general concept), disjunction, conjunction, nega-
tion, role inverse, universal and existential restrictions. Syntactically, the grammar
covers simple and complex SIDPs (i.e., SIDP consisting of more than one clause). Note
that temporal or spatial relations such as after and near are not given any special
semantics. They are simply DL roles i.e., binary relations. Also numerical restrictions
have not been modelled yet and should be added for a finer grained semantics of nom-
inal phrases (E.g., at least 3 cables).

Dissociating Grammar and Lezicon. Figure 2 shows an FB-LTAG in which trees
and semantic representations are lexicalised in that each tree is associated with lexical
items and with a specific semantic predicate. In practice though, grammar and lexicons
are kept separate and the grammar contains trees and semantic schemas which are in-
stantiated during parsing or generation using a lexicon. Figure 4 shows an illustrating
example with a lexical entry on the left and the corresponding grammar unit on the
right. During generation/parsing, the semantic literals listed in the lexicon (here, Use

2 D! is the domain of interpretation.

S

.

NP VP

T

AUX AUX
N

A]‘)V A[‘JX

Pipes shall not be used

Lg:Pipe(X) Lo :subset(Le,La) La:not(Ls)
Ls :exists(useArg2inv,Ls) Ls:Use(Z)

Pipe C —JuseArg2~.(Use)

Fig. 3. Derived Tree. The flat semantics representation produced by the grammar is
equivalent to the Description Logic Formula shown .

and useArg2inv) are used to instantiate the variables (here, A2 and Rel) in the seman-
tic schema (here, Lo:subset(X,L1) Lo:exists(A2,Ls) L3:Rel(Y)). Similarly, the Anchor
value (used) is used to label the terminal node marked with the anchor sign (¢) and
each coanchor is used to label the terminal node with corresponding name. Thus, the
strings shall and be will be used to label the terminal nodes V1 and V2 respectively.

/S\

Semantics: NPJX VP
Rel = Use
A2 = useArg2inv V Vf; VvV
Tree: nx0V ‘ \ ‘
Anchor: used oVL oV2 M
Coanchor: V1 — shall/V
Coanchor: V2 — be/V Lo:subset(X,L1)

Lo:exists(A2,Ls)

L3 Rel(Y)

Fig. 4. Example Lexical Entry and Grammar Unit

Importantly, this separation between grammar and lexicon supports modularity in
that e.g., different lexicons and/or grammars could be plugged into the system.

In essence, the lexicon provides a mapping between natural language phrases and
(simple or complex) DL concepts. For the work presented here, we built the lexicon in
a rather ad hoc fashion by applying regular expressions and a customised NP chunker?
to extract verbal and nominal lexical entries from SIDPs. This lexicon could instead

3 We use the NLTK regular expression chunker.

be built in a more principled way e.g., by using tools for automatically identifying and
extracting concepts and relations (cf. e.g., [6,5,4, 19]).

Similarly, to parse text whose syntax and semantics differs from those of SIDPs,
another grammar could be used and mapping SIDPs to a semantic representation lan-
guage other than OWL DL could be done by simply modifying the semantic component
of the grammar.

3.2 Semantic Parser and Surface Realiser

Given a grammar G, a lexicon L and an input sentence S, the semantic parser derives
from the input sentence S, the parse tree and the description logic formula associated by
G and L to S. For a given sentence, the automatically extracted lexicon can produce a
very large number of derivations. The parser uses a CKY algorithm [9] augmented with
a simple heuristic to prune the initial search space (lexical entries whose co-anchors
are not present in the input string are not selected) and a robustness mechanism for
skipping unknown words, i.e. words present in the input that are absent from the
lexicon.

Conversely, the surface realiser takes as input a grammar G, a lexicon L and a
DL formula ¢ and outputs a sentence S associated by G and L to ¢. The differences
with the semantic parser are twofold. First, grammar trees are selected based on their
associated semantics (rather than their associated lexical items for parsing). Second,
tree combinations are not constrained by word order (during parsing, only trees whose
yield matches the linear order of the input string are tried out for combination). We use
the Genl surface realiser?, a tabular bottom-up surface realisation algorithm optimised
with polarity filtering® to map DL formulae to natural language.

4 Evaluation and Results

We evaluate our approach on a dataset of 960 System Installation Design Principles
(SIDP) provided by Airbus. This evaluation is driven by three main research objectives:

— to study the coverage and robustness of the semantic parsing module (Section 4.1)

— to assess the correctness of the derived DL formulae (Section 4.2)

— to analyse the impact of our semantic parsing on the ontology learning task (Sec-
tion 4.3).

In average, each SIDP sentence consists of 19.88 tokens (min: 5, max: 87). While
their syntax is relatively simple (as illustrated in Example 1, an SIDP usually consists
of a main clause which may be complemented with a subordinate clause expressing a
condition), SIDPs have a complex compositional semantics resulting from the inter-
action of word order, logical operators, sentence structure and functor arity. Table 1
shows some of the semantic patterns that need to be derived. To capture this semantic

4 See [8] for a more detailed definition of the GenI Surface Realiser

5 Polarity filtering filters the initial search space by eliminating all combinations of
grammar trees which cannot possibly lead to a successful derivation either because
it can be calculated that a given tree will not be able to combine with the other
trees (a resource will not be used) or, conversely, that some tree(s) are missing to
yield a syntactically valid sentence (a resource will be missing).

Logical Operators

Only S shall be used by O -5 C —JuseA2™ .(Use M 3by.O)
S should be used by all O O C 3by~ .(Use N JuseA2.5)
S shall not be used by O S C —3JuseA2™.(Use M 3Iby.O)

Word Order
S shall be used by O only S C —JuseA2™.(Use M 3by.—0)
All S shall be used by O S C JuseA2™ .(Use M 3by.0O)

Arity

S shall be used S C JuseA2™ .(Use)
S shall be used by O S C JuseA2™ .(Use M 3by.0)
S shall be used by O on PO S C JuseA2™ .(Use M 3by.O N Jon.PO)

Sentence Structure
S shall be used by O before entering con- (Use M JuseA2.5 M Iby.0O) C
nections

Jbe fore.(Enter M Jenter A2.Connections)
Modifiers
S shall be used directly by O S C JuseA2™ .(Use M Idirectly.(Iby.0))
S shall be used by O between C and D S C JuseA2™ .(Use M JuseA3.(ON
JbetweenAl~.(Betweenl
JbetweenA2.C' M JbetweenA3.D)))
Table 1. Text and Meaning Variations

variability, we manually specify a grammar consisting of 52 trees. As mentioned above,
the lexicon (10 781 lexical entries) associating word and terms (sequences of tokens) to
grammar units is constructed automatically by applying regular expressions and NP
chunking to the input SIDPs.

4.1 Mapping SIDPs to Complex Axioms

Full Parse Partial Parse Failure Total & Ratio
Simple SIDP 155 290 11 456 (47.50 %)
Complex SIDP 48 443 13 504 (52.50 %)
Total & Ratio 203 (21.15 %) 733 (76.35 %) 24 (2.50 %) 960 (100 %)

Table 2. Parsing Results (Coverage)

Using the grammar, the lexicon and the parser described in the preceding sections,
we obtain the results shown in Table 2. Recall that simple SIDPs are rules consisting
of a single clause (la) while complex SIDPs are rules including a condition, usually
expressed by a subordinate or an infinitival clause (1b). Table 2 shows that most
(97.50%) SIDPs can be parsed. Manual examination of the results reveals that the few
cases where parsing fails (2.50 %) are mainly due to missing lexical entries resulting in
a syntactically incomplete parse tree (typically, a verbal argument is missing because
the corresponding lexical entry is missing).

10

Table 2 also shows that a high proportion (76.35%) of the parses are partial parses
that is, parses where some of the input words are ignored. Partial parses may be more
or less partial though. A partial parse may simply ignore (skip over) a single word or it
may ignore a whole subordinate clause. It is thus important to have some criteria for
evaluating the correctness of the semantic representations derived by the parser. We
show how this issue can be addressed in the following section.

4.2 Assessing Correctness

One key difficulty when using semantic parsing for ontology enrichment is that there
is no known metrics for automatically checking the correctness of the semantic repre-
sentations derived by the parser.

Checking Syntactic Well-Formedness. It is possible however to check the
well-formedness of the semantic representations. If the semantic representation derived
by the parser fails to convert to a well-formed description logic formula, we know
that either an incorrect semantics has been assigned to some lexical entry or there
is an inconsistency in the output of the syntactic component. To impose this well-
formedness check, we first convert the flat semantic representations output by the parser
to OWL functional syntax as explained in Section 3.1. We then input the resulting OWL
formulae to the OWL Functional Syntax parser provided by OWL API 4.1.3 [10] and
check that they are subclass axioms (because SIDP are rules which, in our modelling,
translate to DL axioms of the form C; T C?3). The results are as follows.

Full Parses Partial Parses All Parses
well-formed |ill-formed |well-formed |ill-formed | well-formed |ill-formed
203 0 695 38 898 38
100% 0% 94.8% 5.2% 96% 4%

Table 3. Well-Formedness Results

These results show that most parses produce a subclass axiom for both full and
partial parses. While this does not guarantee that the derived semantics correctly
captures the meaning of the input SIDP, the well-formedness check allows us to quickly
identify parses which are definitely incorrect. These are few (4% of all parses) and closer
examination of the data reveals that these are mostly due to syntactically complex
SIDP such as (3) which are insufficiently covered by the grammar and/or the lexicon.

(3) Pipes shall be defined by considering red zones for repair in order to allow the
removal of the channel without having to modify the rest of the setup or to use
specific procedures and tools.®

In sum, the well-formedness check allows us to quickly identify cases where semantic
parsing yields a definitely incorrect semantic representation.

6 Because the SIDPs we are working on are confidential data, we modified the lexical
items contained in that example. The syntactic structure was preserved however and
illustrates the type of syntactic examples our grammar fails to cover.

11

Comparing Input and Re-generated Text. We can further evaluate the cor-
rectness of full and partial parses by exploiting the fact that the grammar is declarative
and can therefore be used both for parsing and for generation. Given an input SIDP §
with derived semantics ¢, we input ¢ to an existing FB-LTAG surface realiser (namely,
Genl [8]) and we compare the sentence generated by this surface realiser to the initial
input S. To measure the degree to which the re-generated sentence resembles the input
sentence, we use BLEU [16], a precision metric standardly used in Natural Language
Processing (in particular, in machine translation) for assessing the similarity between
two sentences. By re-generating from partial parse semantics and comparing the result-
ing text with the input using a sentence similarity metrics, we can get a more precise
assessment of the quality of the semantic parser output — a low BLEU score suggests
that indeed the partial parse is very partial and that the derived semantics is likely
incorrect while a high one will point to examples where e.g., a single word has been
skipped. Table 4 shows the results.

Low Medium High Total (Ratio)
 Parse S-SIDP 0 0 155 155 (16.55%)
C-SIDP 0 0 48 48 (5.12%)
P-Parse S-SIDP 105 122 63 290 (30.98%)
C-SIDP 296 102 45 443 (47.32%)
Total (Ratio) 401 (42.84%) 224 (23.93%) 311 (33.22%) 936 (100%)

Table 4. Measuring the similarity between input and re-generated sentences. Low:
BLEU < 32%, Medium: 33% > BLEU < 66% , High: BLEU > 67%

For full parses, the BLEU scores are high thereby indicating that re-generated
sentences are either identical or very similar to the input SIDP and suggesting that
the derived DL formulae adequately capture the meaning of the input SIDP (since
regenerating from it produces a sentence identical or highly similar to it). Note that,
because the grammar captures some paraphrastic relations (e.g., X will be used only
with Y / X will be used with Y only), a re-generated sentence may be different from
the input SIDP even if the parse is complete.

For partial parses, the proportion of low BLEU scores is noticeably higher for
complex SIDPs reflecting the fact that the syntax and semantics of conditions is only
partially covered by the grammar. Low BLEU scores for simple SIDPs with partial
parses are mainly due to missing or incorrect lexical entries. For instance, our lexicon
does not include lexical entries for references to tables and figures. Hence sentence (4a)
yields the partial parse covering the words in (4b).

(4) a. En6049 split conduit shall be attached to open backshell as defined in figure
below.
b. En6049 split conduit shall be attached to open backshell.

4.3 Ontology Enrichment

Given a DL formula produced by the semantic parser, we go on to enrich an existing on-
tology from Airbus with that formula. The Airbus ontology describes plane components

12

and encompasses about 650 classes, 1300 individuals, 200 object and data properties,
and more than 7400 various logical axioms. To enrich the ontology, we consider the
following subtasks:

1. Identifying classes and properties contained in the DL formula which already exist
in the ontology;

2. Enriching the ontology with classes and properties contained in the derived DL
formulae and which do not exist in the ontology;

3. Checking for consistency and for unsatisfiable classes when adding the full DL
formulae derived through parsing.

Once the ontology enrichment module” receives a new formula along with the lists
of classes and properties it contains, the following steps are performed (see Figure 5).

[SIDP formula]—)[Classes and Properties]
))

[Well-formedness Check } [Identiﬁcation of Existing Classes and Properties}

! §

[Subclass Axiom Type Check} [Lemmatisation J
[Presence in the Ontology Check} [Add New Classes and Properties}
[Add SIDP Formula } [Search for Superclasses and RDFS—labelsJ

[Consistency and Unsatisfiable Classes Check}

Fig. 5. Ontology enrichment component.

Classes and Properties. First, we check if classes presented in the formula exist
in the ontology. As classes do not have IRIs in formulae after the semantic parsing, an
IRI must be prepended to it. Along with that, we normalise a string underlying the
class name: it is set to the lower-case letters, and punctuation signs are removed. Then,
by a complete enumeration of all the IRIs existing in the ontology, we try to establish
a match between a new class and existing classes. If an exact match was found, we
consider that the class used in the axiom is already present in the ontology and should
therefore not be added to it.

If the class was not found in the ontology, we resort to lemmatisation. We use the
Stanford CoreNLP Toolkit [15] to lemmatise and POS-tag each token making up the
class names. We also remove determiners such as the, a which might be present in the
class names produced by the parser. For the latter, we make use of the morphological
tag DT with which tokens were labelled during the POS-tagging phase. For instance,

7 For interaction with the ontology, we use OWL API 4.1.3 and HermiT 1.3.8.

13

the green pipes becomes a class with the name Green_Pipe. Once the class name derived
by parsing has been lemmatised, we proceed to compare it to the set of existing classes
in the ontology. If a match is detected, we mark the class as an existing one. Otherwise,
the class is listed as a new class, and it is added to the ontology using the base IRI,
the class name being its lemmatised form.

New classes 935
Existing classes 89

New object properties 84

Existing object properties 0
superclasses found 498
RDFS-label matches found 7

new added SIDP formulae 798 (85.3%)
rejected SIDP formulae due to syntax errors |38 (4.0%)
rejected SIDP formulae due to redundancy (91 (9.7%)
rejected SIDP formulae due to inconsistency |9 (1.0%)

Table 5. Ontology Enrichment Statistics

We also apply the matching procedure used for class names to the list of properties
contained in the DL formulae produced by parsing.

Statistics of the class and property identification are shown in the first section of
Table 5. The number of existing classes (89 cases) we found is relatively small compared
to the amount of new classes (935 cases). To better link those new classes with the
existing concepts, we searched (i) for RDFS-labels which bear the same name as the
derived class and (ii) for possible superclasses. We hypothesise that a class C is a
superclass of another class C; if C contains a substring of C;. Using this strategy with
superclasses was successful: we managed to relate more than a half of the new classes to
their super classes (498 cases). Conversely, RDFS-labels matching did not yield many
links (7 cases).

Complex DL Axioms. Once we added new classes and properties, we can en-
rich the ontology with the full formulae derived through parsing. Before adding a
formula to the ontology, we check for well-formedness, redundancy, inconsistency and
un-satisfiability:

— If the formula does not follow the OWL syntax and it is not of the subclass axiom
type, it is rejected (cf. Section 4.2).

— At each step of the ontology enrichment, we refresh the list of axioms which are
currently in the ontology. If the axiom is already present, we do not add it.

— If the axiom was successfully added, we perform the ontology consistency check
and verify that the ontology does not have unsatisfiable classes.

The results of the ontology enrichment procedure are presented in the third section
of Table 5. In total, 14.7% of formulae were rejected due to various reasons. Some of
the formulae (4.0%) were not well-formed (see Section 4.2), some of them were already
present in the ontology (9.7%), others were rejected as they led to inconsistency or

14

unsatisfiable classes (1.0%). Mainly the formula rejection occurred with partial parses.
Commonly, only the main clause of an SIDP rule was parsed, leaving out the subordi-
nate part. In such a way, different rules (S shall be used when Y, S shall be used if Z)
were either reduced to the same partial parse (S shall be used), or, in case of a negative
sentence, to two parses with contrasting meaning (.S shall be used, S shall not be used).
The former accounts for redundant formulae, the latter for inconsistent formulae.

Since we check the consistency and search for unsatisfiable classes after each ad-
dition of a new SIDP formula, it enables us to identify inconsistent formulae on the
fly. Thus, a strong point of our approach is the immediate detection of incompatible
SIDP rules without having to compute justifications, which is a challenging issue for
real-world ontologies (see [11], for example).

5 Conclusion

In industries, governmental services and European organizations, system requirements
are key information which need to be queried and checked for consistency. Mostly
however, these are listed in documents and disconnected from formal models. Being
able to translate text to model would permit e.g., to check consistency (analysis).
Conversely, being able to translate models to text (generation) would allow technical
authors to update the documentation to reflect changes in the model. In this paper,
we showed how techniques from natural language processing could be used to provide
a reversible framework for mapping natural language requirements to description logic
and vice versa. We further argued that such a reversible framework helps address one
key issue for semantic parsing namely, how to detect incorrect output.

In future work, we plan to explore how our reversible framework could be used to
build a text-semantics corpus using data extension and recombination as suggested in
[12]; and how to use this corpus to train a more robust, more generic semantic parser
for system requirements.

Acknowledgments. This research has been partially supported by the ITEA 2 Eureka
Cluster Programme under the ModelWriter project (Grant 13028).

References

1. Bernstein, A., Kaufmann, E., G6hring, A., Kiefer, C.: Querying ontologies: A con-
trolled english interface for end-users. In: International Semantic Web Conference.
pp. 112-126. Springer (2005)

2. Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle,
D., Schmitz, C., Staab, S., Stojanovic, L., et al.: KAON — towards a large scale Se-
mantic Web. In: E-Commerce and Web Technologies, pp. 304-313. Springer (2002)

3. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: methods,
evaluation and applications, vol. 123. IOS press (2005)

4. Charlet, J., Szulman, S., Pierra, G., Nadah, N., Téguiak, H.V., Aussenac-Gilles,
N., Nazarenko, A.: Dafoe: A multimodel and multimethod platform for building
domain ontologies. 2e Journées Francophones sur les Ontologies, Lyon, France:
ACM (2008)

5. Cimiano, P.; Volker, J.: Text20nto : A Framework for Ontology Learning and
Data-driven Change Discover. In: Natural language processing and information
systems, pp. 227-238. Springer (2005)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

15

Frantzi, K.T., Ananiadou, S., Tsujii, J.: The c-value/nc-value method of automatic
recognition for multi-word terms. In: Research and advanced technology for digital
libraries, pp. 585-604. Springer (1998)

Gardent, C., Kallmeyer, L.: Semantic construction in feature-based TAG. In: Pro-
ceedings of EACL. pp. 123-130. Association for Computational Linguistics (2003)
Gardent, C., Kow, E.: A symbolic approach to near-deterministic surface reali-
sation using tree adjoining grammar. In: Proceedings of ACL. pp. 328-335. ACL
(2007)

Harrison, M.A.: Introduction to formal language theory. Addison-Wesley Longman
Publishing Co., Inc. (1978)

Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL Ontologies.
Semantic Web 2(1), 11-21 (2011)

Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies.
In: International Conference on Scalable Uncertainty Management. pp. 124-137.
Springer (2009)

Jia, R., Liang, P.: Data recombination for neural semantic parsing. arXiv preprint
arXiv:1606.03622 (2016)

Kaljurand, K., Fuchs, N.E.: Verbalizing OWL in Attempto Controlled English. In:
OWLED. vol. 258 (2007)

Maedche, A., Staab, S.: Semi-automatic engineering of ontologies from text. In:
Proceedings of the 12th international conference on software engineering and
knowledge engineering. pp. 231-239. Citeseer (2000)

Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The Stanford CoreNLP Natural Language Processing Toolkit. In: ACL (System
Demonstrations). pp. 55—60 (2014)

Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic eval-
uation of machine translation. In: Proceedings of ACL. pp. 311-318. ACL (2002)
Petrucci, G., Ghidini, C., Rospocher, M.: Ontology Learning in the Deep. In:
Knowledge Engineering and Knowledge Management - 20th International Confer-
ence, EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings. pp. 480—
495. Springer (2016)

Ruiz-Casado, M., Alfonseca, E., Castells, P.: Automatic Extraction of Semantic
Relationships for Wordnet by Means of Pattern Learning from Wikipedia. In: Inter-
national Conference on Application of Natural Language to Information Systems.
pp. 67-79. Springer (2005)

Szulman, S., Aussenac-Gilles, N., Charlet, J., Nazarenko, A., Sardet, E., Teguiak,
H.: DAFOE: A Platform for Building Ontologies from Texts. In: EKAW (2010)
Tablan, V., Polajnar, T., Cunningham, H., Bontcheva, K.: User-friendly ontology
authoring using a controlled language. In: Proceedings of LREC (2006)

Volker, J., Hitzler, P., Cimiano, P.: Acquisition of OWL DL axioms from lexical
resources. In: European Semantic Web Conference. pp. 670-685. Springer (2007)
Wang, Y., Berant, J., Liang, P.: Building a Semantic Parser Overnight. In: Pro-
ceedings of ACL 2015. pp. 1332-1342 (2015)

Zouaq, A., Nkambou, R.: Building domain ontologies from text for educational
purposes. IEEE Transactions on Learning Technologies 1(1), 49-62 (2008)

