ITEA Office
I T E c 3 High Tech Campus 69 - 3 T +31880036136
5656 AG Eindhoven E info@itea3.org

The Netherlands W www.itea3.org

ITEA 3 is a EUREKA strategic ICT cluster programme

Exploitable Results by Third Parties
15010 REVaMP?

Project details

Project leader:
Email:

Website:

Andrey Sadovykh

andrey.sadovykh@softeam.fr

revamp2-project.eu

X ITEAZ 2

Exploitable Results by Third Parties
15010 REVaMP?

Name: ComAnl (Commit Analysis Infrastructure)

Input(s): Main feature(s) Output(s):
= Configuration file = Open, extensible, and configurable = Cached, extracted
= Optional: single infrastructure for commit extraction commits (optional,
commit and analysis intermediate result)
= Decoupled commit extraction and = Depending on the
analysis components for user-defined purpose of the
combination and easy extension analysis component,
= Support for three different extraction e.g., the intensity of
variants variability changes
over time
Unique Selling Configurable infrastructure for defining different setups of extraction and

Proposition(s):

Integration
constraint(s):

Intended user(s):

Provider:
Contact point:

Condition(s) for
reuse:

analysis components

Easy development and integration of new extraction and analysis
components due to provided capabilities of the infrastructure
Integrated caching and parallelization

Support for different version control systems and analyses

SVN or Git has to be installed
For some analyses, R needs to be installed
Java 8 or higher

Software developers
Software analysists
Researchers

Stiftung University of Hildesheim
Christian Kréher — kroeher@sse.uni-hildesheim.de

Apache Licence 2.0

Latest update: 3 July 2019

X ITEAZ ;

Exploitable Results by Third Parties
15010 REVaMP?

Name: pure::variants Asset Variability Framework

Input(s): Main feature(s) Output(s):
= Artifacts containing = Extraction of Variability = Different outputs
variability = Analysis of extracted variability possible, depending

on implemented
extractors and
analyzers

= Example: Extracted
#defines from
source code

modeled in
pure::variants family
models

Unique Selling = Flexible and extensible framework for extracting and analyzing variability

Proposition(s):

Integration = pure:variants

constraint(s): = other artifact tools depending on implemented extractors and analyzers

Intended user(s): [= Product Line Engineer

Provider: = pure-systems GmbH

Contact point: = Uwe Ryssel - uwe.ryssel@pure-systems.com
Condition(s) for = Licensing

reuse:

Latest update: < >

X ITEAZ ‘

Exploitable Results by Third Parties
15010 REVaMP?

Name: KernelHaven

Input(s): Main feature(s) Output(s):
= Configuration file = Open, extensible, and configurable = Results are
= Dependent on infrastructure for static product lines analysis. outputted in
analysis: Code files = Among others, supports the following tabular
(*.c, *.h, *.S) analyses: formats like
= Dependent on o Feature Effect analysis to reverse engineer CSV, Excel,
analysis: Build files implemented variability dependencies or SQLite.

(make, Excel)

= Dependent on
analysis: Variability
models (Kconfig,
Excel, DIMACS)

= Dependent on
analysis: Further
resources, e.g.,
mailing list archives

Unique Selling L]
Proposition(s):

Integration L]
constraint(s):]

Intended user(s): | =

Provider: -

o Configuration Mismatch analysis to verify
whether modeled and implemented variability
is inline

o Dead Code analysis to detect implemented
variability, that cannot be enabled

o Over 42,000 variability-aware code metrics
that optionally integrate variability model to
measure complexity of variability

o Architecture analysis to detect whether
implemented variability is aligns with
architecture

o Mailing list analysis, to trace features in code,
variability model, architectural descriptions,
and mailing list.

Configurable infrastructure for defining different static analyses on
software product lines

Decouples parsing from analysis to enable reusing of analyses on new
artifact types.

KernelHaven is designed to support and simplify reproducibility of
(published) results.

Allows reuse of implemented analyses to simplify development of new
analysis plug-ins.

Transparent use of parallelization to improve performance on large-scale
product lines, without overwhelming developers with implementation
details.

Java 8 or higher

Kconfig extractor requires Linux and build tools installed, other plug-ins
are platform independent.

MailingList analysis requires GIT to be installed.

Software developers
Software analysists
Researchers

Stiftung University of Hildesheim

X ITEAZ ;

Exploitable Results by Third Parties
15010 REVaMP?

Name: KernelHaven

Contact point:

Klaus Schmid — schmid@sse.uni-hildesheim.de
Sascha El-Sharkawy — elscha@sse.uni-hildesheim.de
Christian Kréher — kroeher@sse.uni-hildesheim.de

Condition(s) for
reuse:

Apache Licence 2.0
Some plug-ins contain 3rd party components and are published under
GPLv3 for this reason.

Latest update: 18 November 2019 (still maintained)

X ITEAZ ;

Exploitable Results by Third Parties
15010 REVaMP?

Name: VEXA
Input(s): Main feature(s) Output(s):
= C/C++ source files: .c, .h, = Plugin for the Neo4j graph = Neodj graph
.cpp, -hpp database database
= Excel files: .xIsx = Custom code metrics generation = Code metrics in
= JSON files: .json = Support for incremental source tabular form
= Build artefacts: code analyses = Simple interactive
compile_commands.json graph visualization
Unique Selling = Extensible framework for variability extraction from source code

Proposition(s): artefacts

= User guided incremental dependency analyses for source code
artefacts utilizing Neo4j’s powerful graph processing capabilities

= Z3 theorem prover integration for high level reasoning and
simplification of constraint expressions

= High performance scalability for large-scale source analyses

= Easy integration using the Cypher query language and Neo4;j
driver APIs (e.g., REST) for various programming languages

Integration = Neo4j Community Edition (> 3.2.14)

constraint(s): = Java 8 or higher

= Supported OS: Linux & Windows

= Interoperability via Neo4j drivers and Cypher query language

= srcML (srcml.org) dependency for C/C++ source code analysis

Intended user(s): = Software developers
= Researchers

Provider: = FZI Forschungszentrum Informatik

Contact point: = Anton Paule — anton.paule@fzi.de
= Sebastian Reiter — sebastian.reiter@fzi.de

Condition(s) for reuse: = Licensing

Latest update: 21 November 2019

mailto:anton.paule@fzi.de

X ITEAZ 7

Exploitable Results by Third Parties
15010 REVaMP?

Name: FeDeV (Feature Dependency Visualization)

Input(s): Main feature(s) Output(s):

= SQLite Database = Visualization and exploration of = Visualization of
with KernelHaven extraction results features and feature
results = Additional integrations with tools like dependencies

= Neo4j database
with VEXA results

Unique Selling L]
Proposition(s):]
Integration L]
constraint(s):]

Intended user(s): | =

Provider:]
Contact point: =
Condition(s) for L]
reuse:

Eclipse Capra for traceability

Easy to use application to visualize extraction results

Tree-, table-, and graph-views for visualization

Navigation capabilities between the views

Stepwise exploration of analysis results

Color coding for feature visualization

Visualization of feature dependencies including color coding
Visualization of submodules and submodule dependencies
Cypher view to execute Cypher queries and interact with VEXA
Full Text Search in analysis results

Export of table views to Excel

Neo4j Community Edition (> 3.2.14)

Java 8 or higher

Interoperability via Neo4j drivers and Cypher query language
Network connection for the Capra integration

Software developers
Software analysts
System integrators

ScopeSET GmbH

Michael Benkel — benkel@scopeset.de
Felix Suda — felix.suda@scopeset.de

TomSawyer runtime license

Latest update: 21 November 2019

mailto:benkel@scopeset.de
mailto:felix.suda@scopeset.de

X ITEAZ ;

Exploitable Results by Third Parties
15010 REVaMP?

Name: ReVaMP2 Plugin by The Reuse Company

Input(s):

Main feature(s) Output(s):

= Requirements

= Configure the Formalization of = SRL Feature Model

Specification Requirement Assets to SRL Representation.
= Ontology with = Formalize requirement = Requirements templates
information about the specification to SRL. based on semantic
domain. = Merge formalized SRL and patterns matching.
process to generate the SRL = Variability Exchange
Feature Model view. Language (VEL) Output.
= Visualize Feature Model. = Traceability from sources
= Feature Configuration and to extracted/generated
requirement generation from assets.
extracted templates.
= Export to Variability Exchange
Language (VEL).
Unique Selling Semantic approach to semi-automatic feature model extraction based on

Proposition(s):

Integration
constraint(s):

Intended user(s):
Provider:

Contact point:

Condition(s) for
reuse:

ontologies.

SRL Feature Model tree visualization.

Reuse of legacy requirement templates to generate requirements based
on feature configuration.

Multiple sources Rational Doors, DNG, PTC Integrity, Excel.

SRL — System Representation Language (available at
https://github.com/trc-research/oslc-km)

Knowledge Reuse and Systems Engineers
The REUSE Company a trademark of Knowledge Centric Solutions, SL

José Fuentes (jose.fuentes@reusecompany.com)
Elena Gallego (elena.gallego@reusecompany.com)
Borja Lépez (borja.lopez@reusecompany.com)
Luis Pérez (luis.perez@reusecompany.com)

Commercial license (Evaluation license available)

Latest update: 21 November 2019

https://github.com/trc-research/oslc-km
mailto:jose.fuentes@reusecompany.com
mailto:elena.gallego@reusecompany.com
mailto:borja.lopez@reusecompany.com
mailto:luis.perez@reusecompany.com

X ITEAZ 9

Exploitable Results by Third Parties
15010 REVaMP?

Name: Configuration Mining

Input(s):

Main feature(s) Output(s):

= Valid product
configurations
(feature selections)

Unique Selling L]
Proposition(s):

Integration L]
constraint(s):

Intended user(s): | =

Provider:]
Contact point: =
Condition(s) for L]
reuse:

Set of configuration rules
satisfied by every
configuration

= Detect configuration rules .
satisfied by every configuration

= Configurable rule detection
(support and confidence
parameters)

= |terative detection approach,
can involve user input and
feature models to reduce false
positive ratio

Reverse engineering approach to constraint extraction from past
configurations.

Bootstrap feature modeling with automatically proposed configuration
rules.

Conversion of input and output data, depending on the configuration
storage format and the feature modelling tool (e.g. pure::variants)

Product Line architects
Robert Bosch GmbH

Slawomir Duszynski (Slawomir.Duszynski@de.bosch.com)
Tobias Beichter (Tobias.Beichter@de.bosch.com)

Documentation of the algorithms. No software provided.

Latest update: 25 November 2019

mailto:Slawomir.Duszynski@de.bosch.com
mailto:Tobias.Beichter@de.bosch.com

X ITEAZ K

Exploitable Results by Third Parties
15010 REVaMP?

Name: Configuration Mining

Name: PLPV-CE (Product-Line-Product-Variant Co-Evolution)

Input(s): Main feature(s) Output(s):
= Root directory of a = Creation of code property graph = Code property graph
C software project (abstract syntax tree, data flow, (intermediate result)
= Entry point (feature control flow, variability information) = Patches for
name or code = |dentification of semantically related transferring
element) lines of code based on a given entry semantic units from
point and code property graph one project to
= Generation of patches containing all another one
semantically related lines of code for
merging
Unique Selling = Variability-aware code property graph (abstract syntax tree extend by

Proposition(s):

Integration .
constraint(s):]

Intended user(s): | =

Provider:]
Contact point: =
Condition(s) for L]
reuse:

data flow, control flow, and variability information

Automatic slicing of semantically related lines of code based on user-
defined entry point

Provides variability- and structure-preserving slices containing C- and
preprocessor code

Patch generation for transferring the user-defined entry point and all
related lines of code guaranteeing the desired functionality after transfer

Executable on Linux only
Git

Java 8 or higher

Python 3

Software developers
Researchers

Stiftung University of Hildesheim

Christian Kréher — kroeher@sse.uni-hildesheim.de
Lea Gerling — gerling@sse.uni-hildesheim.de

GNU Lesser General Public License v3.0

Latest update: 05 November 2019

X ITEAZ

11

Exploitable Results by Third Parties

15010 REVaMP?

Name: PSS-CE (Problem-Solution-Space Co-Evolution)

Input(s): Main feature(s) Output(s):
= Root directory of a = Creation of variability mapping = Problem-solution
software product between problem and solution space space mapping
line project artifacts (code, build, variability = Detected
= KernelHaven model) divergences with
configuration = |dentification of divergences between locations
the variability information in problem = Correction proposals
and solution space artifacts
= Proposals for corrections of identified
divergences
Unique Selling = |dentification and relation of variability information in different artifact

Proposition(s):

Integration .
constraint(s):]

Intended user(s): | =

Provider: =

Software developers
= Researchers

Stiftung University of Hildesheim

types (code, build, and variability model artifacts)
= Automatic detection of unrelated, undefined, or unused variability
information
= Proposal for correction of detected divergences

Depending on the KernelHaven configuration: Linux only
C-preprocessor Code
= Makefiles (build)

= Kconfig-based or pure Boolean (CNF) variability models
= Java 8 or higher

Contact point: L]

Condition(s) for L]
reuse:

Christian Kréher — kroeher@sse.uni-hildesheim.de

Depending on the KernelHaven bundle: GPLv3 or Apache License 2.0

Latest update: 27 June 2019

X ITEAZ E

Exploitable Results by Third Parties
15010 REVaMP?

Name: SIMULTime

Input(s): Main feature(s) Output(s):
= SW source code or = Fast and accurate timing estimations = SW execution time
SW binary code for the execution time of the input SW prediction
= HW platform(s) program considering its execution on = Visualization of
= (Heterogeneous the given HW platforms timing properties
system’s partition = Timing estimations produced directly on Simulink
scheme) executing context-sensitive timing simulations
simulations based on hardware- = Early timing
independent LLVM IR code estimations for
porting the SW to
heterogeneous HW
Unique Selling = Fast and accurate timing estimations that are essential in developing or

Proposition(s):

Integration .
constraint(s):]

Intended user(s): | =

Provider:]
Contact point: =
Condition(s) for L]
reuse:

evolving an embedded system.
Measurement-based technique that implicitly models the different
hardware resources included in HW processors.

LLVM Compiler Infrastructure 5.0 (or newer)
Lauterbach TRACE32 tracer

Radare2 disassembler

Matlab 2016a (or newer)

libboost

Avast RetDec

Embedded system designers and embedded engineers that face with
system timing requirements (non-functional requirements)

FZl Forschungszentrum Informatik

Alessandro Cornaglia — cornaglia@fzi.de

Sebastian Reiter — sreiter@fzi.de

Licensing

Latest update: < >

mailto:cornaglia@fzi.de
mailto:sreiter@fzi.de

X ITEAZ E

Exploitable Results by Third Parties
15010 REVaMP?

Name: Co-Evolution extension for pure::variants

Input(s): Main feature(s) Output(s):

= Modified product = Updates the variant to reflect = Updated variant with
line modifications of the product line and merged

= Modified variant keep modifications of the variant modifications
derived from a = List of merge
previous version of conflicts

the product line

Unique Selling = Enables aligning of parallel evolution of product line and multiple
Proposition(s): variants

Integration = pure:variants

constraint(s): = an artifact tool supporting three-way-merging, e.g. requirement tool,

source code tool, modeling tool

Intended user(s): | = System Application Engineers

Provider: = pure-systems GmbH

Contact point: = Uwe Ryssel - uwe.ryssel@pure-systems.com
Condition(s) for = Licensing

reuse:

Latest update: < >

X ITEAZ B

Exploitable Results by Third Parties
15010 REVaMP?

Name: Co-Evolution extension for pure::variants

Name: VariaMos

Input(s): Main feature(s) Output(s):

= A variability model = Graphical edition of feature models = A verified defect-free
(optional as it can be = Graphical edition of asset models and feature model
created through the their link to FRAGment Oriented = A valid product
VariaMos Web GUI) Programming (FragOP) source code configuration

= A partial product files selection
configuration (also = Feature model defect detection = One or of several
optional as it can be automation valid products

selected through the
Web GUI)

Unique Selling .
Proposition(s):

Integration "
constraint(s):

Intended user(s): | =

Provider: "
Contact point: .
Condition(s) for "
reuse:

= Manual, semi-automated or fully
automated product configuration by
feature selection and constraint
propagation

= Product derivation automation by
assembling fragments realizing the
selected features

Collaborative engineering product lines with automated reasoning
assistance with just a web browser

Allows combining both the compositional and annotative styles of asset
modeling thanks to FragOP

The verification, configuration and product derivation automation
services are accessible through a REST API

Software engineers

Université Paris 1 Panthéon-Sorbonne and Ecole National Supérieure
des Techniques Avancées Bretagne

raul.mazo@ensta-bretagne.fr

MIT License

Latest update: 13 November 2019

mailto:raul.mazo@ensta-bretagne.fr

X ITEAZ '

Exploitable Results by Third Parties
15010 REVaMP?

Name: KernelHaven

Input(s): Main feature(s) Output(s):
= Configuration file = Open, extensible, and configurable = Results are
= Dependent on infrastructure for static product lines analysis. outputted in
analysis: Code files = Among others, supports the following tabular
(*.c, *.h, *.S) analyses: formats like
= Dependent on o Feature Effect analysis to reverse engineer CSV, Excel,
analysis: Build files implemented variability dependencies or SQLite.

(make, Excel)

= Dependent on
analysis: Variability
models (Kconfig,
Excel, DIMACS)

= Dependent on
analysis: Further
resources, e.g.,
mailing list archives

Unique Selling L]
Proposition(s):

Integration L]
constraint(s):]

Intended user(s): | =

Provider: -

o Configuration Mismatch analysis to verify
whether modeled and implemented variability
is inline

o Dead Code analysis to detect implemented
variability, that cannot be enabled

o Over 42,000 variability-aware code metrics
that optionally integrate variability model to
measure complexity of variability

o Architecture analysis to detect whether
implemented variability is aligns with
architecture

o Mailing list analysis, to trace features in code,
variability model, architectural descriptions,
and mailing list.

Configurable infrastructure for defining different static analyses on
software product lines

Decouples parsing from analysis to enable reusing of analyses on new
artifact types.

KernelHaven is designed to support and simplify reproducibility of
(published) results.

Allows reuse of implemented analyses to simplify development of new
analysis plug-ins.

Transparent use of parallelization to improve performance on large-scale
product lines, without overwhelming developers with implementation
details.

Java 8 or higher

Kconfig extractor requires Linux and build tools installed, other plug-ins
are platform independent.

MailingList analysis requires GIT to be installed.

Software developers
Software analysists
Researchers

Stiftung University of Hildesheim

X ITEAZ ©

Exploitable Results by Third Parties
15010 REVaMP?

Name: KernelHaven

Contact point:

Klaus Schmid — schmid@sse.uni-hildesheim.de
Sascha El-Sharkawy — elscha@sse.uni-hildesheim.de
Christian Kréher — kroeher@sse.uni-hildesheim.de

Condition(s) for
reuse:

Apache Licence 2.0
Some plug-ins contain 3rd party components and are published under
GPLv3 for this reason.

Latest update: 18 November 2019 (still maintained)

X ITEAZ K

Exploitable Results by Third Parties
15010 REVaMP?

Name: KTH C code verifier

Input(s):

Main feature(s) Output(s):

= A C file with VCC
annotations that
correspond to
functional
requirements

Unique Selling
Proposition(s):

Integration
constraint(s):
Intended user(s):
Provider:

Contact point:

Condition(s) for
reuse:

= A textual editor to manually declare | =
the architecture of a configurable
software, and the corresponding
functional requirements

= Automated checks for the
consistency of the declared
architecture and corresponding "
functional requirements

= A wrapper around the VCC tool for
deductive verification of C code
that: (i) annotates a C file with
annotations related to the the C
language typing system, memory
management etc., (ii) executes the
VCC tool

Warning and error
messages about the
consistency of the
architecture and
specification in the
Eclipse IDE

A console output from
the VCC wrapper, about
successful/unsuccessful
verification of provided
C file

Simple, and general editor for describing arbitrary configurable systems
Quick start for working with VCC-based formal verification of C

Java 8 or higher
Eclipse IDE with Xtext plugins
VCC (available at https://github.com/microsoft/vcc)

Software analysists
Researchers

KTH Royal Institute of Technology

Dilian Gurov dilian@kth.se
Christina Lindstrom clind@kth.se

Damir NeSi¢ damirn@kth.se

The developed tools are not open source but are freely available upon
request
VCC is released under MIT license

Latest update: 24 June 2019

https://github.com/microsoft/vcc
mailto:dilian@kth.se
mailto:clind@kth.se
mailto:damirn@kth.se

X ITEAZ ®

Exploitable Results by Third Parties
15010 REVaMP?

Name: DragonflyME

Input(s): Main feature(s) Output(s):
= (Optional) = UML-based modelling environment to specify | = C++/SystemC
Variability and support the design of skeleton files for
specification virtual prototypes (SystemC) the manual
based on = Extensions to automatically or manually implementation of
the VEL annotate variability of the system under test the virtual prototype
(SISPL) to the virtual prototype specification = |P-XACT-based
= |terative, guided test case generation and configuration files for
exploration approach, for the dynamic the execution of the
parameterization of the virtual prototype, simulation-based test
w.r.t to the specified variability runs
Unique Selling Comprehensive modelling and execution frame work for SystemC-based

Proposition(s):

Integration
constraint(s):

Intended user(s):

Provider:

Contact point:

Condition(s) for
reuse:

virtual prototypes
Exploration approach to generate test cases in a high dimensional test
space (SUT and Testbench variability)

Modeling environment

o Eclipse Modeling Tools
o Papyrus UML

o Xtext Complete SDK
Virtual Prototype

o SystemC

Embedded system designers and embedded engineers that qualify
software intensive HW/SW systems with the help
of virtual prototypes (SystemC)

FZI Forschungszentrum Informatik

Paolo Care — pcare@fzi.de
Sebastian Reiter — sreiter@fzi.de

Proof-of-concept implementation

Latest update: still maintained

mailto:pcare@fzi.de
mailto:sreiter@fzi.de

X ITEAZ K

Exploitable Results by Third Parties
15010 REVaMP?

Name: MES Test Manager (MTest)

Input(s): Main feature(s) Output(s):
= Requirement = Derivation of (variant-specific) = Evaluation of the
Specification requirement observer scripts simulation results of the
= Simulink Model under | = Automatic selection of the system under test
Test dedicated requirement regarding the compliance
= Variant-specific observers (so called with the (testable part of
parameterization of assessments) when evaluating the) variant-specific
the Model under Test simulation results requirement specification

Unique Selling L]
Proposition(s):]
Integration .

constraint(s):

Intended user(s): | =

Provider: .
Contact point: L]
Condition(s) for L]
reuse:

= Coverage metrics of the
requirement specification
for test cycles

Explicit differentiation between test stimulation and evaluation
Automated derivation of requirement observers from formalized
requirements (using MARS, a formalized yet human-readable
requirement syntax developed by MES)

Matlab versions 2009-2018

Software developers and testers using model-based development
Model Engineering Solutions GmbH
Linda Schmuhl (linda.schmuhl@model-engineers.com)

Commercial license (Evaluation license available)

Latest update: 20 November 2019

X ITEAZ &

Exploitable Results by Third Parties
15010 REVaMP?

Name: VERIFICATION Studio

Input(s): Main feature(s) Output(s):
= Requirements = User Interface for the creation = User interface to check
Specification of Verification Actions (Phase the expected results
1, Prepare for verification). against the obtained ones,
= Adaptations within the based on the evidences
verification process to compare calculated.

the expected results configured
in the Verification Actions
against the obtained results.

= User interface for the
suggested verification results
and the obtained evidences.

Unique Selling = Provide objective evidence that a system (or system element) fulfills its
Proposition(s): specified requirement and characteristics, according to the Verification
Process defined in the ISO 15288.

Integration = SRL - System Representation Language (available at
constraint(s): https://github.com/trc-research/oslc-km)

Intended user(s): | = Quality assurance and Systems engineers
Provider: = The REUSE Company, a trademark of Knowledge Centric Solutions, SL

Contact point: = José Fuentes (jose.fuentes@reusecompany.com)

= Elena Gallego (elena.gallego@reusecompany.com)
= Luis Pérez (luis.perez@reusecompany.com)

= Borja Lépez (borja.lopez@reusecompany.com)

Condition(s) for = Commercial license (Evaluation license available)
reuse:

Latest update: 25 November 2019

https://github.com/trc-research/oslc-km
mailto:jose.fuentes@reusecompany.com
mailto:elena.gallego@reusecompany.com
mailto:luis.perez@reusecompany.com
mailto:borja.lopez@reusecompany.com

X ITEAZ 7

Exploitable Results by Third Parties
15010 REVaMP?

Name: Relation Graph Analysis

Input(s): Main feature(s) Output(s):
= Feature model, = Transitive analysis of the = A view with found implicit
containing features relation graph relations and modelling
and feature relations = Detection of implicit relations, flaws for selected/all
selection effects, modelling model features

Unique Selling L]
Proposition(s):

Integration .
constraint(s):

Intended user(s): | =

Provider: .
Contact point: L]
Condition(s) for =
reuse:

flaws inside the feature model
and across models

= Detailed explanation of each
finding tracing to the existing
relations

Support for engineering complex feature models through uncovering
implicit consequences of modelled relations and providing detailed
explanations

Useful for determining feature selection effects, preserving model
correctness, analyzing model change impact

Can follow relations between different models to support cross-model
consistency

Integrated with pure::variants

Feature modelling experts
Robert Bosch GmbH

Slawomir Duszynski (Slawomir.Duszynski@de.bosch.com)
Tobias Beichter (Tobias.Beichter@de.bosch.com)

Documentation of the algorithms. No software provided.

Latest update: 25 November 2019

mailto:Slawomir.Duszynski@de.bosch.com
mailto:Tobias.Beichter@de.bosch.com

X ITEAZ &

Exploitable Results by Third Parties
15010 REVaMP?

Name: LittleDarwin

Input(s): Main feature(s) Output(s):

= Java Source Code = Mutation Testing Framework = Mutation testing

= Java Build and Test = Easily deployable in complicated test report
Environment environments = Mutated code

Unique Selling L]
Proposition(s):]
Integration L]
constraint(s):]

Intended user(s): | =

Provider: .
Contact point: L]
Condition(s) for L]
reuse:

= Possibility to add new languages,
mutation operators, etc.

Free and Open-source software
Easy to integrate

Maximum official supported version of Java is 8
The tool has been tested on Maven, and some features are not
available for other build systems

Software quality pofessionals
University of Antwerp

Ali Parsai (ali.parsai@uantwerpen.be)

Reuse allowed under license terms of GNU GPL v3

Latest update: 27 November 2019

mailto:ali.parsai@uantwerpen.be

X ITEAZ &

Exploitable Results by Third Parties
15010 REVaMP?

Name: Modelio Variablility Designer

Input(s): Main feature(s) Output(s):
= UML model = Create 150% UML or SysML model = VEL description
= SysML model = Add variability constraints = Model variants

= VEL configuration

Unique Selling L]
Proposition(s):]
Integration .

constraint(s):

Intended user(s): | =

Provider:]
Contact point: =
Condition(s) for =
reuse:

= Generate VEL description

= Import VEL configuration

= Generate Model variants

= |ntegrated with pure::variants by
pure::systems

Provides architects and analysts with variability engineering features.
Model system once and generate variants for your product line.
Integrated with pure::variants by pure::systems.

Modelio 3.6 and upper

System Architects
Business Analysts

Softeam
etienne.brosse@softeam.fr

Proprietary license

Latest update: 21 November 2019

X ITEAZ 8

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Feature Annotation Extraction and Visualization
Involved Tools: FINALIsT?2 — BUT4Reuse — VEXA — FeDeV

Input(s): Main feature(s) Output(s):
= Code Base, suchas = |Integrated extraction of feature = Identification of
C/C++ files and annotations Features
other build artefacts = Visualization of features and variation (FINALIsT?,
(FINALIsT?, points BUT4Reuse) and
BUT4Reuse, VEXA) = Feature model definition Variation
= Neo4j database = I|dentification of differences of product Points(VEXA)
(FeDeV) variants = Variation Point
Visualization
(FeDeV)
Unique Selling = I|dentify, locate, document and isolate features
Proposition(s): = Definition of Feature Models
= Visualization of Variation Points
= Visual Inspection of a code base
Integration = Neo4j database required by VEXA and FeDeV
constraint(s): = Java 8 required by VEXA and FeDeV

Intended user(s): | =

Provider: =

Contact point: =

Software developers
Software analysts
System integrators
Researchers

FINALIsT?: ABB AG

BUT4Reuse: Sorbonne University

VEXA: FZI Forschungszentrum Informatik
FeDeV: ScopeSET GmbH

FINALIsT?
o Andreas Burger — andreas.burger@de.abb.com
o Sten Griner — sten.gruener@de.abb.com
BUT4Reuse
o Tewfik Ziadi — tewfik.ziadi@lip6.fr
o Xhevahire Térnava — xhevahire.ternava@lip6.fr
o Anas Shatnawi — anas.shatnawi@lIip6.fr
VEXA

Anton Paule — anton.paule@fzi.de
Sebastian Reiter — sebastian.reiter@fzi.de

FeDeV
Michael Benkel — benkel@scopeset.de
Felix Suda — felix.suda@scopeset.de

mailto:andreas.burger@de.abb.com
mailto:sten.gruener@de.abb.com
mailto:tewfik.ziadi@lip6.fr
mailto:xhevahire.ternava@lip6.fr
mailto:anas.shatnawi@lip6.fr
mailto:anton.paule@fzi.de
mailto:sebastian.reiter@fzi.de
mailto:benkel@scopeset.de
mailto:felix.suda@scopeset.de

X ITEAZ a

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Feature Annotation Extraction and Visualization
Involved Tools: FINALIsT?2 — BUT4Reuse — VEXA — FeDeV

Condition(s) for = Trade Secret (VEXA)
reuse: = TomSawyer Runtime License (FeDeV)

Latest update: 21 November 2019

X ITEAZ &

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Extraction and Variability Management

Involved Tools: BUT4Reuse — pure::variants

Input(s): Main feature(s) Output(s):

= Code base = Variability management = Feature Model

" = SIS variabilities identification and = Software Product
extraction from a code base Line (SPL)

Unique Selling
Proposition(s):

Integration
constraint(s):

Intended user(s):

Provider:

Contact point:

Condition(s) for
reuse:

= Feature model construction

Testing of feature identification and extraction approaches during
reverse engineering

Refactoring of related software systems to an SPL

Variability evolution during forward engineering

Software analysts
System integrators
Researchers

pure:variants:
BUT4Reuse: Sorbonne University

pure::systems
o Uwe Ryssel — uwe.ryssel@pure-systems.com
Sorbonne University
o Tewfik Ziadi — tewfik.ziadi@lip6.fr
o Xhevahire Térnava — xhevahire.ternava@lip6.fr
o Anas Shatnawi — anas.shatnawi@|Iip6.fr

Latest update: 21 November 2019

mailto:uwe.ryssel@pure-systems.com
mailto:tewfik.ziadi@lip6.fr
mailto:xhevahire.ternava@lip6.fr
mailto:anas.shatnawi@lip6.fr

X ITEAZ i

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Constraint Extraction

Involved Tools: KernelHaven — Configuration Mining — pure::variants

Input(s):

Main feature(s) Output(s):

= Code base
= Past feature
configuration

Unique Selling
Proposition(s):

Integration
constraint(s):

Intended user(s):

Provider:

Contact point:

Condition(s) for
reuse:

= Extraction of configuration constraints = Constraints enriched
= Creation of feature models feature model

Reduction of feature modeling effort

Developers
Product Line Engineer

KernelHaven: University of Hildesheim
Configuration Mining: Robert Bosch GmbH
pure::variants: pure-systems GmbH

University of Hildesheim
o Klaus Schmid — schmid@sse.uni-hildesheim.de
o Sascha El-Sharkawy — elscha@sse.uni-hildesheim.de
o Christian Kréher — kroeher@sse.uni-hildesheim.de
Robert Bosch GmbH
o Slawomir Duszynski — Slawomir.Duszynski@de.bosch.com
o Saura Jyoti Dhar — Saura.Jyoti@de.bosch.com
pure-systems GmbH
o Uwe Ryssel — uwe.ryssel@pure-systems.com

Latest update: 21 November 2019

mailto:schmid@sse.uni-hildesheim.de
mailto:elscha@sse.uni-hildesheim.de
mailto:kroeher@sse.uni-hildesheim.de
mailto:Slawomir.Duszynski@de.bosch.com
mailto:Saura.Jyoti@de.bosch.com
mailto:uwe.ryssel@pure-systems.com

X ITEAZ &

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Feature Dependency Visualization and Traceability
Involved Tools: KernelHaven — PSS Mapper — FeDeV — Eclipse Capra

Input(s): Main feature(s) Output(s):
= Code base = Review of features and constraints = Feature effect
= Additional artefacts = Traceability between features and analysis
(e.g. requirements, other artefacts = Feature dependency

test cases, design
models, etc.)

Unique Selling L]
Proposition(s):]
Integration L]
constraint(s):]
Intended user(s): | =
Provider: .
Contact point: =
Condition(s) for =
reuse:

visualization
= Traceability model

Feature Dependency Visualization
Feature traceability

KernelHaven analysis has to store analysis in an SQLite file
FeDeV and Eclipse Capra communicate via localhost port

Developers
Software Architects

KernelHaven: University of Hildesheim
PSS Mapper: University of Hildesheim
FeDeV: ScopeSET GmbH

Eclipse Capra: University of Gothenburg

University of Hildesheim

o Klaus Schmid — schmid@sse.uni-hildesheim.de

o Sascha El-Sharkawy — elscha@sse.uni-hildesheim.de

o Christian Kréher — kroeher@sse.uni-hildesheim.de
ScopeSET GmbH

o Michael Benkel — benkel@scopeset.de

o Felix Suda — felix.suda@scopeset.de
University of Gothenburg

o Jan-Philipp Steghéfer — jan-philipp.steghofer@cse.qu.se

active internet connection to obtain a TomSawyer runtime license
(required for FeDeV)

Latest update: 21 November 2019

mailto:schmid@sse.uni-hildesheim.de
mailto:elscha@sse.uni-hildesheim.de
mailto:kroeher@sse.uni-hildesheim.de
mailto:benkel@scopeset.de
mailto:felix.suda@scopeset.de
mailto:jan-philipp.steghofer@cse.gu.se

X ITEAZ &

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Identify and Inspect Feature Locations

Involved Tools: Jittac — BUT4Reuse

Input(s): Main feature(s) Output(s):

= Code base = Visualization of features and = Overview of
interdependencies on architectural distribution of
level features across an

Unique Selling
Proposition(s):

Integration
constraint(s):

Intended user(s):

Provider:

Contact point:

Condition(s) for
reuse:

architecture

Identification of feature locations
Feature scattering across several modules
Overview of features and dependencies across modules

Software architects
Analysts

BUT4Reuse: Sorbonne University
Jittac: Karlstad University

Sorbonne University
o Tewfik Ziadi — tewfik.ziadi@lip6.fr
o Xhevahire Térnava — xhevahire.ternava@lip6.fr
o Anas Shatnawi — anas.shatnawi@lIip6.fr
Karlstad University
o Sebastian Herold — sebastian.herold@kau.se

Latest update: 21 November 2019

mailto:tewfik.ziadi@lip6.fr
mailto:xhevahire.ternava@lip6.fr
mailto:anas.shatnawi@lip6.fr
mailto:sebastian.herold@kau.se

X ITEAZ *

Exploitable Results by Third Parties
15010 REVaMP?

Name: Workflow Analyse Models and Extract Features
Involved Tools: FLIMEA — BUT4Reuse

Input(s): Main feature(s) Output(s):

= Code base = OQOverview of feature locations = Feature Locations
= Model fragments

Unique Selling = Feature extraction from models and a code base
Proposition(s):

Integration =
constraint(s):

Intended user(s): | = Analysts

Provider: = BUT4Reuse: Sorbonne University
= FLIiMEA: University San Jorge

Contact point: = Sorbonne University
o Tewfik Ziadi — tewfik.ziadi@lip6.fr
o Xhevahire Térnava — xhevahire.ternava@lip6.fr
o Anas Shatnawi — anas.shatnawi@lIip6.fr
= University San Jorge
o Ana C. Marcén — acmarcen@usj.es

o Jaime Font — jfont@usj.es

Condition(s) for =
reuse:

Latest update: 21 November 2019

mailto:tewfik.ziadi@lip6.fr
mailto:xhevahire.ternava@lip6.fr
mailto:anas.shatnawi@lip6.fr
mailto:acmarcen@usj.es
mailto:jfont@usj.es

	Exploitable Results by Third Parties
	Project details

