ITEA 3 is a EUREKA strategic ICT cluster programme ## **Exploitable Results by Third Parties** 16043 OPTIMUM ## **Project details** | Project leader: | Anja Fischer | |-----------------|-------------------------------| | Email: | anja.fischer@demagcranes.com | | Website: | https://www.optimum-itea3.eu/ | | Name: Industrial Internet of Things Platform Architecture (Document) | | | | |--|--|---|--| | Input(s): | | Main feature(s) | Output(s): | | Data request or
commands via MQTT and OPC U | | OPC UA interface to device data and
control, retrofit for legacy devices to
enable I4.0 communication | Requested data,
control status | | Unique Selling Proposition(s): | IIoT platform turns any device into an OPC UA device without the need of a gateway | | | | Integration constraint(s): | Support of MQTT | | | | interiaca acer(e): | Manufacturers of (I)IoT devices TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | Will be provided as part of the open source distribution of the IIoT-
Platform with support of University of Rostock (URO). | | | | Contact point: | optimum@ws4d.org | | | | Condition(s) for reuse: | Creative Commons (CC BY 4.0) | | | | | | | Latest update: 12.05.2021 | | Name: Contribution to the Companion Profile for Material Handling Machines (Standardization) | | | | | |--|---|--|--|--| | Input(s): | Main feature(s) | Output(s): | | | | Knowledge of
material handling
domain and OPC
UA | Standardized OPC UA data model for cranes | Companion Specification for Cranes & Hoists (document and xml file) | | | | Unique Selling Proposition(s): | | | | | | Integration constraint(s): | Needs IP capable networks or gateways or OPTIMUM IIoT platform | | | | | Intended user(s): | Material handling domain and logistics | | | | | Provider: | Joint VDMA Working Group OPC UA for Cranes and Hoists | | | | | Contact point: | Link to the VDMA Workgroup: https://opcua.vdma.org/viewer/-/v2article/render/31851036 | | | | | Condition(s) for reuse: | Companion spec and node set will be freely available to registered UA users | | | | | | | Latest update: 12.05.2021 | | | | Name: Extension of OPC UA by lightweight publish/subscribe protocol MQTT (Technology) | | | | | |--|---|---|--|--| | Input(s): | Main feature(s) | Output(s): | | | | Messages
containing requests
/ commands via
MQTT or OPC UA | Relay between MQTT and OPC UA
communication protocols, broker-
based OPC UA data distribution using
an MQTT broker | Full support of
MQTT in OPC UA
publish-subscribe
layer of open62541
library | | | | Unique Selling Proposition(s): | Open62541 stack extended with MQTT feature subscriber (open62541 offers only the published) | | | | | Integration constraint(s): | Support of MQTT | | | | | Intended user(s): | initial destates of (i)ion devices | | | | | Provider: | Will be provided as a fork of open62541 stack via gitlab of University of
Rostock (URO). Potentially handed over to open62541 developers. | | | | | Contact point: | • optimum@ws4d.org | | | | | Condition(s) for reuse: | Mozilla public license MPL 2.0 | | | | | | | Latest update: 12.05.2021 | | | | Name: Extension of OPC UA by lightweight publish/subscribe protocol AMQP (Technology) | | | | | |--|--|---|---------------------------|--| | Input(s): | | Main feature(s) | Output(s): | | | Messages containing requests / commands via AMQP or OPC UA Relay between AMQP and OPC UA communication protocols, broker- based OPC UA data distribution using an AMQP broker | | Full support of
AMQP in OPC UA
publish-subscribe
layer of open62541
library | | | | Unique Selling
Proposition(s): | Open62541 stack extended with AMQP features for both publisher and
subscriber (open62541 offers only the publisher) | | | | | Integration constraint(s): | Support of AMQP | | | | | Intended user(s): | Manufacturers of (I)IoT devices TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | | Provider: | Will be provided as a fork of open62541 stack via Gitlab of University of
Rostock (URO). Potentially handed over to open62541 developers. | | | | | Contact point: | optimum@ws4d.org | | | | | Condition(s) for reuse: | Mozilla public license MPL 2.0 | | | | | | | | Latest update: 12.05.2021 | | | Name: OPTIMUM Platform Data Model (Document, Software) | | | | | |--|--|---|--|--| | Input(s): | Main feature(s) | Output(s): | | | | Knowledge of OPC
UA standardization
activities,
OPTIMUM
requirements | Common data model for OPTIMUM
devices. Additionally, support for OPC
UA for Machinery specification that
allows all Machinery-conform OPC UA
clients to read basic data of
OPTIMUM devices | M2M communication
between devices
using the same data
structure | | | | Unique Selling Proposition(s): | One of few open data models including the ma handling | achinery profile for material | | | | Integration constraint(s): | Requires an OPC UA server | | | | | Intended user(s): | | | | | | Provider: | • URO | | | | | Contact point: | optimum@ws4d.org | | | | | Condition(s) for reuse: | Mozilla public license MPL 2.0 | | | | | | | Latest update: 12.05.2021 | | | | Name: Distributed Control Platform Specification | | | | |--|---|---|---| | Input(s): | | Main feature(s) | Output(s): | | Requirements for
control tasks and
limits of hardware
components | | Investigations about efficient
communication protocols, design of
software components needed for
distributed control, | Specification of DCP design | | Unique Selling Proposition(s): | DCP concept offers new options for collaborations of machines in production process | | | | Integration constraint(s): | Requires operating system at embedded device | | | | Intended user(s): | Manufacturers of controllers with generic or specific applications TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | ■ IFAK | | | | Contact point: | matthias.riedl@ifak.eu | | | | Condition(s) for reuse: | Subject to PCA | | | | | | | Latest update:20.05.2021 | | Name: Prototypical integration of secured communication | | | | |--|--|---|--| | Input(s): | Main fea | ature(s) | Output(s): | | Valuable data
(assets) Data to be
cryptographically
processed | (ass
Easy
inter | eure storage of valuable data
sets), e.g. private key, certificates
by integration via different
rfaces, mainly I2C
vide cryptographic functionality to
ernal entities | Secures assetscryptographic processed data | | Unique Selling
Proposition(s): | The EdgeLock SE050 product family of Plug & Trust devices offers
enhanced Common Criteria EAL 6+ based security, for unprecedented
protection against the latest attack scenarios. This ready-to-use secure
element for IoT devices provides a root of trust at the IC level and
delivers real end-to-end security – from edge to cloud – without the new
to write security code. | | security, for unprecedented s. This ready-to-use secure rust at the IC level and | | Integration constraint(s): | SE can only be integrated by using NXP's middleware. Also possible to
do without but with much higher effort | | | | Intended user(s): | Manufacturers of (I)IoT devices TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | ■ NXP | | | | Contact point: | ■ EdgeLock SE05x: giuseppe.guagliardo@nxp.com | | | | Condition(s) for reuse: | Hardware: one-time investment Software: Apache License v2.0 | | | | | | | Latest update: 03.05.2021 | | Name: Prototypical implementation of Distributed Control Platform | | | | |---|---|-----------------|---| | Input(s): | | Main feature(s) | Output(s): | | Architecture
specification,
existing
communication
system routable
wireless network | ttion, application specific control programs using more than one controller and establishes communication relations outable via automatically at runtime | | Portable runtime for
distributed control
system running on
embedded
hardware, IPC or
PC, uses secured
communication | | Unique Selling
Proposition(s): | Portable runtime will be provided as customized packages | | | | Integration constraint(s): | Requires an operating system at embedded device | | | | Intended user(s): | Manufacturers of controllers with generic or specific applications, adaptable at runtime TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | ■ IFAK | | | | Contact point: | ■ matthias.riedl@ifak.eu | | | | Condition(s) for reuse: | License to be negotiated | | | | | | | Latest update: 20.05.2021 | | Name: Integration of MQTT in DCP | | | | |---|---|-----------------|---| | Input(s): | | Main feature(s) | Output(s): | | Data requested
be exchanged
between DCP at
IIoT components
MQTT | annotating the interfaces of control and application | | Handable solution to
exchange data
between IIoT and
control application | | Unique Selling
Proposition(s): | Integral part of DCP runtime, ease the use of MQTT in applications | | MQTT in applications | | Integration constraint(s): | • | | | | Intended user(s): | Manufacturers of controllers with generic or specific applications, connectivity to IIoT TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | ■ IFAK | | | | Contact point: | matthias.riedl@ifak.eu | | | | Condition(s) for reuse: | License to be negotiated | | | | | | | Latest update: 20.05.2021 | | Name: Improved development tool for DCP engineering, e.g. MQTT configuration | | | | | |--|---|-----------------|--|--| | Input(s): | | Main feature(s) | Output(s): | | | via MQTT, existi | support interaction annotated to exchange data via via MQTT, existing MQTT, no programming necessary configuration tool | | Engineering tool
configures the
distributed control
program for MQTT
data exchange | | | Unique Selling
Proposition(s): | Data to publish/subscribe can be annotated in control application Engineering configures runtime automatically | | control application | | | Integration constraint(s): | DCP runtime, operating system at embedded device, MQTT broker | | | | | Intended user(s): | manufacturers of controllers with generic or specific applications, connectivity to IIoT TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | | Provider: | • IFAK | | | | | Contact point: | matthias.riedl@ifak.eu | | | | | Condition(s) for reuse: | License to be negotiated | | | | | | | | Latest update: 20.05.2021 | | | | Name: Localization Fusion Architecture (Technology) | | | | |--|---|---|--|--| | Input(s): | | Main feature(s) | Output(s): | | | Movement and
Position data from
sensors and
infrastructure | m | Abstraction of movement and position
data for sensor independent data-
fusion | Position and
movement data with
increased
robustness | | | Unique Selling
Proposition(s): | Sensor independent combination of positioning data for increased robustness | | g data for increased | | | Integration constraint(s): | Computing platform for fusion computation | | | | | Intended user(s): | Manufacturers of mobile machines/devices TRL 4 – technology validated in lab | | | | | Provider: | - COMNOVO, URO | | | | | Contact point: | fabian.hoelzke2@uni-rostock.de | | | | | Condition(s) for reuse: | • | | | | | | | | Latest update: 12.05.2021 | | Latest update: 27.05.2021 | Name: Software tool to support layout-based engineering and visualization of overhead travelling cranes | | | | |---|--|---|--| | Input(s): | Main feature(s) | Output(s): | | | Plans of an existing
or ideas for a new
shop floor | Easy-to-use software No deep knowledge in programming
or 3D modeling required | Interactive 3D
scene, videos, parts
list or AML
description | | | Unique Selling Proposition(s): | Consideration of crane applications in factory planning software | | | | Integration constraint(s): | | | | | ` ' | Table Manufacturers, orang dystem operators, planners | | | | Provider: | • TARAKOS | | | | Contact point: | klaus.hanisch@tarakos.de | | | | Condition(s) for reuse: | ■ license | | | Latest update: 27.05.2021 | Name: Software module for simulation of complex material handling systems including cranes and corresponding environment | | | | |--|--|-----------------|--| | Input(s): | | Main feature(s) | Output(s): | | Virtual version of
planned shop flo
including cranes
forklifts, AGVs at
operators as well
commands from
control system | communicate like real ones when getting the real commands and ll as | | Support in the
development of new
control systems by
identifying errors at
an early stage of
development | | Unique Selling
Proposition(s): | Special behavior modules for aspects of crane simulation, considering context awareness | | | | Integration constraint(s): | Interface to the control system may have to be implemented | | | | Intended user(s): | Crane manufacturers, crane system operators, planners TRL 4 – technology validated in lab | | | | Provider: | • TARAKOS | | | | Contact point: | klaus.hanisch@tarakos.de | | | | Condition(s) for reuse: | license/service | | | ## Exploitable Results by Third Parties | Name: Software tool for realtime visualization of digital twins (cranes) | | | | |---|--|-----------------|--| | Input(s): | | Main feature(s) | Output(s): | | Position data &
information about
the current state
the real cranes | in a semi-semi-semi-g general program | | Interactive real-time
visualization of
existing facilities | | Unique Selling Proposition(s): | Consideration of crane applications in factory planning software | | | | Integration constraint(s): | Interface to the control system may have to be implemented | | | | Intended user(s): | Crane manufacturers, crane system operators TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | • TARAKOS | | | | Contact point: | klaus.hanisch@tarakos.de | | | | Condition(s) for reuse: | ■ license/service | | | | | | | Latest update: 27.05.2021 | | Name: Enhanced functionalities of collaborative Cranes / Machines | | | | |--|--|-----------------|---| | Input(s): | | Main feature(s) | Output(s): | | Operator reques
Activate/Deactiv Assist-Functions | vate wireless communication and HMI/GUI | | HMI-Devices, Device's and operator's location, Working state, etc. | | Unique Selling Proposition(s): | IIoT platform supporting decentralized device control, implemented context awareness and innovative assist functions | | | | Integration constraint(s): | DCP, IIoT-Platform, MQTT, OPC UA, Indoor Localization, wireless realtime network | | | | Intended user(s): | Smart factories, smart manufacturing and advanced material handling TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | ■ DEMAG, IFAK, COMNOVO, NXP, THORSIS, ERSTE | | | | Contact point: | giuliano.persico@demagcranes.com | | | | Condition(s) for reuse: | Licenses to be negotiated | | | | | | | Latest update: 26.05.2021 | | Name: Prototypical implementation of IIoT platform | | | | |---|--|---|--| | Input(s): | | Main feature(s) | Output(s): | | Data request or
commands via
MQTT and OPC | UA | Besides DCP, core component to
enable semi-autonomous functionality | Requested data,
control status | | Unique Selling
Proposition(s): | IIoT platform turns any device into an OPC UA device without the need
of a gateway. Enables the interaction with external distributed control
platform (DCP) | | | | Integration constraint(s): | Support of MQTT | | | | Intended user(s): | Manufacturers of (I)IoT devices TRL 5 – technology validated in relevant environment (industrially relevant environment in the case of key enabling technologies) | | | | Provider: | Will be provided by open source distribution platform (e.g. Github) with support of University of Rostock (URO). | | | | Contact point: | optimum@ws4d.org | | | | Condition(s) for reuse: | - N | Mozilla public license MPL 2.0 | | | | | | Latest update: 12.05.2021 | Name: Foundation of a cross-company VDMA working group for standardization activities with regards to OPC UA. Exploitable result will be an OPC UA companion profile for cranes as a new standard available in CY 2022. | Stariuaru avallable III CT 2022. | | | |--|---|--| | Input(s): | Main feature(s) | Output(s): | | Knowledge of
material handling
domain and OPC
UA | Standardized OPC UA data model for cranes | Companion Specification for Cranes & Hoists (document and xml file) | | | Ended interoportality between amoralic variation | | | Integration constraint(s): | Needs IP capable networks or gateways or OPTIMUM IIoT platform | | | • | Crane industries
Material handling domain and logistics
TRL 4 – technology validated in lab | | | Provider: | Joint VDMA Working Group OPC UA for Cranes and Hoists | | | Contact point: | ■ <u>frank.golatowski@uni-rostock.de</u> | | | Condition(s) for reuse: | Companion spec and node set will be freely available to registered OPC UA users | | | | | Latest update: 12.05.2021 | Name: Foundation of standardization activities with regards to Safety – Machine Directive (EU-Law) (cross-company working group under the umbrella of FEM). Exploitable results will be updated safety-related standards to include collaborative machines. This is prerequisite for semi-autonomous assistance functions from OPTIMUM | Input(s): | Main feature(s) | Output(s): | |--|---|--| | Knowledge of
hoists, cranes ar
material handling
domain and rela-
national and
international
standards | kinds and manufacturers | FEM Guideline for
the Implementation
of Assist functions in
the crane domain | | Unique Selling
Proposition(s): | Harmonized proposal for new EG-standard | | | Integration constraint(s): | - | | | Intended user(s): | Crane industriesMaterial handling domain and logistics | | | Provider: | Joint cross-company FEM Working Group | | | Contact point: | giuliano.persico@demagcranes.com | | | Condition(s) for reuse: | Purchase of FEM Guideline | | | | | Latest update: 26.05.2021 |