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1 Abbreviations 

AI  Artificial intelligence 
API  Application programming interface 
CIFAR  Canadian institute for advanced research 
CNN  Convolutional neural network 
CT  Computed tomography   
FedAvg  Federated averaging 
FedCostWAvg Federated learning with cost based averaging 
FedSA  Federated Staleness Aware 
FL  Federated learning 
GAN  Generative adversarial network 
GDPR  General data protection regulation 
HD  Hausdorff distance 
IDA  Inverse distance aggregation 
iid  independent and identically distributed 
ML  Machine learning 
MNIST  Modified national institute of standards and technology 
MR  Magnetic resonance 
MRI  Magnetic resonance imaging 
MHAT   Model heterogenous aggregation training  
PPFL  Privacy preserving federated learning 
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2 Executive summary  

 
This document presents state-of-the-art methods for federated learning and 
hyperparameter optimization, focused on medical images. The document starts with 
an introduction to federated learning, and why it can be a solution to obtain large 
datasets to train deep learning models for medical applications. The next chapter 
covers different aggregation functions, i.e. how to combine updates from all nodes in 
the federation to create a new global model, which is the core of federated learning. 
This is followed by methods for data privacy, and methods for harmonizing images 
and annotations between nodes (hospitals). The final chapter considers 
hyperparameter optimization, both for general machine learning and for federated 
learning. 
 
Document 2.1 in ASSIST focuses on other topics related to federated learning; data 
lakes, FL frameworks, configuration of FL in hospitals, legal aspects of FL in different 
countries, and how FL can be used for different uses cases in ASSIST. 
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3 Introduction to federated learning 

This section will introduce federated learning, interested readers are referred to 
recently published papers about FL in health care for more information (Rieke et al., 
2020; Antunes et al., 2022; Kairouz et al., 2021; Xu et al., 2021).  

3.1 Why federated learning? 

One could argue that "deep-learning" is the state-of-the-art for machine learning. 
Architectures such as deep CNNs or transformers typically outperform other ML 
methods on several established benchmarks. But these networks have two 
drawbacks; training is costly both in time and computation, and a huge amount of 
training data is required. No element is more essential in machine learning than high 
quality training data, and this is especially true for deep learning. The work involved in 
acquiring, labelling, and preparing training data is daunting. To collect and annotate a 
large high quality training set is especially difficult in medical imaging, as researchers 
and companies then need to follow more regulations compared to other types of data. 
  
Medical data is sensitive and need to be anonymized before inclusion into any training 
set. GDPR regulations restrict this further, and the terms of agreement may prohibit 
sharing of the data. Different hospitals, regions and countries may have different rules 
for sharing data, even if they should all follow GDPR. In short, the creation of large 
medical image data sets is hard and time consuming. 
 
Federated learning seems to be the obvious remedy to the data collection problem. 
The hospitals/clinics become nodes/clients in an asynchronous training network 
instead of being simple contributors of raw data. Model updates are shared instead of 
sharing data. This way, the images still become part of the training set, but the data is 
never shared between nodes, see Figure 1. See Figure 2 for a comparison of FL and 
centralized training. Another benefit of federated learning is that it is sufficient if each 
node in the federation uses a decent computer, instead of using a supercomputer for 
centralized training. 
 

 
Figure 1. The main idea in FL is to not store all data in a single large, centralized 
database or data lake, but to instead store for example image data locally at each 
hospital. Instead of sending medical images and other medical data between the 
hospitals, the hospitals send updates, or parameters, of deep learning models. This 
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process is then iterated to convergence. Instead of having one large supercomputer, it 
is with federated learning sufficient if each hospital has a smaller computer. 
 

 
Figure 2. Image and figure text from (Rieke et al., 2020). A comparison of federated 
learning workflows and centralized training. a) FL aggregation server—the typical FL 
workflow in which a federation of training nodes receive the global model, resubmit 
their partially trained models to a central server intermittently for aggregation and then 
continue training on the consensus model that the server returns. b) FL peer to peer—
alternative formulation of FL in which each training node exchanges its partially trained 
models with some or all of its peers and each does its own aggregation. c) Centralised 
training—the general non-FL training workflow in which data acquiring sites donate 
their data to a central computer from which they and others are able to extract data for 
local, independent training. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Anders Eklund <Consortium confidential> 21/07/2023 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.4 

Page 8 of 29 

 

4 Aggregation methods and algorithms for federated 
learning 

 
Federated learning is a decentralized machine learning technique which enables 
multiple nodes to collectively train a model without exposing their raw data. Aggregation 
methods are the core of federated learning, as they merge the locally obtained model 
updates from each node to create a new global model. There are many different 
aggregation methods as this is an active area of research. Simpler methods such as 
federated averaging and weighted federated averaging work well as long as the data is 
very similar at each node, while more advanced methods are required when the data 
are heterogeneous. Here, we will briefly cover federated averaging and inverse distance 
aggregation, FedGraph, federated staleness aware, and model heterogenous 
aggregation training.  
  
Federated averaging: Federated averaging is a prominent aggregation method widely 
used in federated learning research and in different applications. The federated 
averaging algorithm, Figure 3, was introduced by researchers at Google in 2017 
(McMahan et al, 2017). The purpose of developing this algorithm was to conduct 
collaborative training of deep neural networks on decentralized data, while still ensuring 
data privacy. To create a global model this aggregation method combines local model 
updates from multiple nodes. This is done by simply calculating the average update over 
all nodes/clients in the federation. This will work well as long as all nodes have a similar 
amount of data which is homogenous. However, in real-life applications it is common 
that some nodes have much more data than others (e.g. one hospital can provide data 
from 10 patients, while another hospital provides data from 100 patients). To 
compensate for this, weighted federated averaging can be used, where a weighted 
average is calculated instead of a standard average. The weight is then higher for nodes 
with more data, and this weight is for example calculated from the number of patients. 
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Figure 3. The algorithm for federated averaging. Each node/client performs an update 
of the deep learning model using its local data, and then sends the updated weights or 
the gradient to the server (combiner), which calculates a global average, with or without 
a specific node weight assigned to compensate for an uneven distribution of data. The 
new global model is then sent out to all clients to continue the training. 
 
Federated learning in non-iid data: Federated learning has been widely used in many 
industries for the prediction of words or detection of visual objects (Ma et al., 2022). FL 
can have multiple nodes with unequal distribution of data. Data heterogeneity is one of 
the key factors that needs to be considered when implementing federated learning in 
medical research, especially if FL is conducted between different countries. For 
example, different hospitals will have different imaging equipment (MR and CT 
scanners) that will produce images that look different. Furthermore, even if all patients 
have been diagnosed with the same disease, a disease may result in different 
symptoms depending on the ethnicity of the patient. While many FL researchers 
consider their data as iid (independent and identically distributed), this is not the case 
in many real-life scenarios (Ma et al., 2022). Therefore, we will here discuss more 
advanced aggregation algorithms which can handle non-iid data.  
 
Inverse distance aggregation (IDA): Inverse distance aggregation (IDA) (Yeganeh et 
al., 2020), Figure 4, can be seen as an extension of weighted federating averaging, 
where the weight of each node is instead calculated according to 
 

  
 

where Z is a normalization factor. This approach will put a lower weight on nodes which produce 

a model with parameters which are far away from the average model. IDA also uses the training 

accuracy of each node to obtain the final weight, to penalize overfitted nodes and encourage 

under-trained nodes. Experiments demonstrate that this approach works better than weighted 

federated averaging for two datasets. 

 

 
Figure 4. Federated learning with non-iid data is a more difficult problem which 

requires more advanced aggregation methods. In this figure it is illustrated that each 
node has data from a different distribution. The weight for each node in IDA is 
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calculated according to the distance between the model parameters at that node, and 
the global model parameters, so that “distant” models contribute less. 

 
Federated cost weighted averaging (FedCostWAvg): Mächler et al. (2021) propose 
another way to aggregate the updates from all nodes, which includes the amount by 
the cost function decreased during the last step. The new global model is calculated 
according to  

 

 
 
where c(M) returns the cost of model M and alpha is a hyperparameter. This approach 
will not only adjust for training data size, but also for the size of the local improvements 
that were made during the last round. A node which only marginally improved the cost 
will influence the global update less compared to nodes that made a larger 
improvement. Figure 5 illustrates a comparison with weighted federated averaging for 
brain tumour segmentation, showing a clear improvement. 
 

   
Figure 5. Comparing weighted FedAvg and FedCostWAvg for brain tumor 

segmentation, showing an improvement when using FedCostWAvg. 
 
FedGraph: To deal with non-iid data, FedGraph (Deng et al., 2022) is another approach 
which uses a combination of three factors to obtain a weight for each node, which is 
updated during training. The three factors are; the proportion of each local dataset (as 
in weighted federated averaging), the topology factor of model graphs, and the model 
weights of each node (similar to IDA), see Figure 6. 
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Figure 6. Overview of the FedGraph aggregation algorithm (Deng et al., 2022), which 

uses a combination of three weights (based on sample size, topology and model 
weights) to obtain a weight for each node. These node weights are updated during 

training. 
 

The FedGraph algorithm is given in Figure 7. The sample size weights are constant 
throughout the training, while the topology weights and the weight from the model 
parameters are updated in each round. Figure 8 demonstrates that this approach leads 
to higher Dice scores and lower Hausdorff distance for federated brain tumor 
segmentation, compared to federated averaging and FedCostWAvg.  
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Figure 7. The FedGraph algorithm proposed by Deng et al. (2022), where a weight for 
each node is calculated in each round of the federated learning.  

 

  
Figure 8. Comparison of Dice scores and Hausdorff distance for federated brain tumor 
segmentation, when using different aggregators (Deng et al. 2022). FedGraph clearly 

performs best. 
 
  
Federated Staleness – Aware (FedSA): Another issue in real case federated learning 
deployments is environment heterogeneity, i.e. unreliable connections and that the 
computer resources are limited for some nodes. This leads to that some nodes become 
inactive or slow (Chen et al., 2021). This eventually degrades the performance of global 
model, and the issue is known as “staleness effect”. To reduce this effect, asynchronous 
federated learning can be used (Chen et al., 2021). The overall process of FedSA is 
achievable by two stage training. Through this approach, it dynamically chooses proper 
hyperparameters by considering the heterogeneity in devices and the similarities among 
local models. At the initial stage, an arbitrary large number of epochs is used for each 
node to accelerate training with less communication. The second stage is the 
convergence stage where researchers carefully choose a smaller number of epochs by 
calculating the staleness of each node. See Figure 9 for an illustration of the process. 
Experiments show a much better convergence when a large proportion of nodes are 
stale. 
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Figure 9. An overview of FedSA (Deng et al., 2021). At the initial stage a large number 
of epochs are used at each node, to decrease communication. In the second stage, a 
smaller number of epochs are used, which is based on the staleness of each node. 
 

  
Model Heterogenous Aggregation Training (MHAT): In traditional federated learning 
training only the model parameters are considered, which can make the process slow 
and require quite a lot of communication (Hu et al., 2021). Also, in traditional federated 
learning training it is not possible to use different model architectures across the nodes. 
Hu et al. (2021) therefore proposed a knowledge distillation approach which collects 
information from each node, and trains an auxiliary model on the server to gather and 
combine the updated information from each node. Here the goal is to make the 
aggregation more sufficient by giving participants the freedom of designing their own 
model architecture. An illustration of the MHAT framework is given in Figure 10. 
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Figure 10. Illustration of the MHAT framework proposed by Hu et al. (2021). 

  
As an auxiliary model is trained on the server to have better understanding on the 
information aggregation, thus it improves the aggregation result, model convergence 
speed, and reduce interaction between the server and clients. 
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5 Privacy methods and algorithms for federated 
learning 

Federated learning has its unique set of vulnerabilities and potential risks which need 
to be considered. Even if no medical images are sent between the nodes, it has been 
shown that it is possible to recover the training images from the weights of a trained 
CNN (Haim et al., 2022). In Sweden it is currently discussed if (the weights of) a 
machine learning model trained with medical data should be considered personal 
data. Therefore, privacy methods and algorithms play a crucial role for ensuring the 
data confidentiality in FL. Under this section, several privacy methods which have 
been widely used in the federated learning will be discussed. 
 
Privacy preserving federated learning (PPFL) is designed to ensure the confidentiality 
of the data during the aggregation process in federated learning. Researchers and 
organizations have been working collaboratively to develop methods for ensuring the 
privacy of the individuals while doing decentralized training. PPFL can be divided into 
the following categories – encryption based PPFL, perturbation based PPFL, 
anonymization based PPFL and hybrid PPFL (Yin et al., 2021).  
 
Encryption based PPFL is just another extension of commonly used encryption 
methods. For this method, patient’s data or defence information, or weights of a 
network, are encrypted before it is shared with others. There are three types of 
encryptions based PPFL – homomorphic encryption, secure multi-party 
communication and secret sharing based encryption. Encrypted data-oriented 
computations are enabled by homomorphic encryption, whereas secure multi-party 
computation enables computing functions over the private inputs. In both cases they 
preserve privacy, but the underlying mechanisms are different from each other. On the 
other hand, secret sharing privacy preserving federated learning is a cryptographic 
technique where the data is fragmented and divided between multiple users. It 
ensures that not a single user has access to the whole dataset. The complete dataset 
can only be reconstructed when a sufficient amount of data is combined (Yin et al., 
2021). This approach ensures the highest protection of data while conducting the 
decentralized training.  
 
Perturbation based PPFL randomly adds noise or changes the data or model weights 
before sharing it with others. This method is divided into 4 different categories – global 
differential privacy, local differential privacy, additive perturbation and multiplicative 
perturbation. Under global differential privacy, the combiner assigns a random number 
to participant for global training. Nodes update their local model and send weights 
back to the global server, but random Gaussian noise is added to the weights to 
prevent data leakage (Abadi et al., 2016, Yin et al., 2021). On the other hand, for local 
differential privacy, participants have more control own their own dataset. They can 
add random noise, or assign values to their dataset before sharing it with others for 
federated learning. In summary, both of these methods provide privacy in FL; 
however, the control mechanism is different.  
 
Anonymization based PPFL is a widely used privacy method. Under this approach, the 
personal information, for example – date of birth, name or personal identity number 
are anonymized in such a way so that individuals can’t be identified from the dataset. 
Once the data is anonymized, it can be used for training the global model. This 
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approach ensures better data privacy and model performance than differential privacy- 
based FL method (Choquette-Choo et al., 2021). 
 
Using different privacy methods has its own merits and demerits, adding random noise 
to the weights will for example lead to worse performance of the global model. To 
balance out data privacy and data utility, researchers proposed hybrid based PPFL. 
The goal of this method is to combine the top attributes from each privacy method and 
create a better approach which will degrade performance as little as possible. For 
example – researchers combined differential privacy with secure multiparty 
computation methods (Truex et al., 2019). As a result, it could reduce the effect of 
noise injection even when the number of participants increases.   
 
To ensure the privacy of the data, Bonawitz et al. (2017) introduced secure 
aggregation for FL. Secure aggregation provides a protocol for protecting the data 
during the aggregation methods. This system is designed to mitigate unauthorized 
access of data; data leaking from the client end. By implementing this system in 
federated learning, researchers can ensure the data privacy and preserve the integrity 
of sensitive information throughout the process, see Figure 11.  
 
 

 
Figure 11. Difference between cloud hosted mobile intelligence, federated learning 
and federated learning with secure aggregation (Fereidooni et al., 2021). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
  



 
 

Anders Eklund <Consortium confidential> 21/07/2023 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.4 

Page 17 of 29 

 

6 Output privacy and federated machine learning 

 
Federated machine learning (FL) has risen as a key method for ensuring privacy in 
machine learning by eliminating the requirement to centralize data. This innovation 
enhances input privacy and addresses the duplication issue prevalent in machine 
learning. There's a significant amount of ongoing research in FL, primarily targeting 
computational aspects like model consolidation, resource distribution, and system 
diversity. Security and privacy implications are equally significant focus areas, with the 
goal of maintaining the integrity of federated machine learning systems in a complex, 
decentralized training environment. 
  
Examining the security and privacy obligations of federated learning structures, it's 
important to differentiate between input privacy and output privacy, see Figure 12. 
Input privacy is associated with the forward training process, while output privacy 
deals with what information about the input data can be inferred from the trained 
model. This form of privacy is a concern for any machine learning model that provides 
predictions to end-users. Malicious attempts to steal models or violate output privacy 
are often classified as reverse engineering attacks. 
 

 
Figure 12. An overview of federated learning and the differences between input and 
output privacy. 

6.1 Model reverse engineering 

 
The process of reverse engineering a model entails acquiring its parameters and 
architectural specifics when only a black box is available. Two primary types of 
attempts can be identified: "model stealing" and "model inverting". The objective of 
model stealing is to duplicate a model's internal structure and predictive capability. 
Conversely, model inversion attacks are designed to rebuild training data or discern 
characteristics of that data. Various research initiatives have shown successful attacks 
that extract not just parameters but also the original training data (Tramer et al., 2016, 
Oh et al., 2019, Usynin et al., 2022). 
  
Model extraction attacks, an instance of model stealing, involves an adversary aiming 
to clone machine learning models through a series of queries. In one study (Tramer et 
al., 2016), it was discovered that by examining the responses obtained from a 
sequence of queries to a deep neural network service's API, it became feasible to 
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deduce the hyperparameters of deep neural networks hosted on well-known platforms 
such as Big ML and Amazon ML on AWS services. 
  
The majority of adversarial machine learning literature presumes a centralized 
environment where access to both data and computation is provided as a single 
coherent unit. This assumption, however, falls apart in the context of federated training 
and inference processes. It gives rise to a nuanced relationship between input and 
output privacy in federated settings. 
 

6.2 Output privacy in the context of federated machine 
learning 

Output privacy breaches occur when a trained model is violated, leading to the 
exposure of information about the training data. An attacker, by gaining access to the 
model, can attempt to reverse engineer characteristics of the input data, or even 
reconstruct entire data points from the training data. The type of information extracted 
through reverse engineering can vary from high-level aggregated information, like the 
overall distribution of training contributions, to precise details about the training data 
such as a specific image within the training dataset. Such risks are not exclusive to 
federated machine learning systems, but are a concern for any machine learning 
model that is accessible to end-users, whether as an API or in other forms. 
  
However, the distributed nature of federated learning adds an extra layer of complexity 
to the training process, necessitating a clear understanding of the differences between 
output breaches in centralized and federated systems. For instance, research has 
indicated that attacks significantly impacting centralized models might have minimal 
effects on federated models (Shejwalkar et al., 2022). In a centralized scenario, if a 
trained model is breached, reverse engineering could potentially reveal not just the 
training data's distribution but also the actual data and labels used for training. In the 
context of federated learning, it becomes crucial to identify whether an attacker can 
obtain knowledge about aspects like the number of clients participating in training, 
their identities, individual local data distributions, or individual client records. The 
exposure of such information in a federated setting can have implications not seen in 
centralized training and inference methods, such as potential harm to a participating 
organization's reputation. 
 
From a technical perspective, managing output privacy involves addressing statistical 
disclosure, model inversion, and membership inference attacks. The primary attack 
categories are targeted, backdoor, and untargeted attacks (Bhagoji et al., 2019, Jere 
et al., 2020). All these attacks occur during the training phase, falling within the realm 
of input privacy. To diminish the impact of these attacks on model inference, which 
pertains to output privacy, it's essential to comprehend the link between input and 
output privacy, especially in the context of federated learning. By bolstering input 
privacy, we can improve output privacy, thereby obstructing the reverse engineering 
process and protecting individual client data. 
 

6.3 Practical feasibility of attacks on federated learning 



 
 

Anders Eklund <Consortium confidential> 21/07/2023 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.4 

Page 19 of 29 

 

systems 

When reflecting on the practical facets of reverse engineering, it's crucial to recognize 
the assumptions typically made in research studies. Simplifying assumptions are often 
applied to the training setup or machine learning model to facilitate theoretical 
development and qualitative understanding. Furthermore, many studies rely on 
benchmark datasets such as MNIST and CIFAR-10, which might lead to an 
overstatement of risks. 
  
Google researchers have recently pointed out that some studies on privacy risks in 
federated learning propose scenarios that are far from realistic. For instance, certain 
attack scenarios suggest up to 25% of clients in a federation could be compromised. 
While this might seem feasible from a research viewpoint, it is a highly improbable 
situation in reality. Google disclosed that GBoard, heavily reliant on federated 
learning, is used on a billion mobile phones, making 25% compromised clients 
equivalent to 250 million compromised mobile phones. If that were the case, system 
developers would be grappling with issues far greater than a compromised ML training 
process. 
  
Nvidia researchers recently focused on gradient inversion attacks on federated 
learning systems in a cross-silo context (Hatamizadeh et al., 2023). Gradient 
inversion, an attack type that could target FL systems, capitalizes on potential access 
to gradients (or weights) exchanged between clients and servers. The intent is to 
create a generative model that can replicate data similar to the training input data. The 
researchers performed meticulous experiments to reverse-engineer chest X-ray 
images under various conditions, concluding that the risks of gradient inversion in FL 
are likely overemphasized in prior work, assuming that federated training employs 
realistic batch sizes, training image numbers at each client site, and a sensible 
quantity of local iterations. Additionally, they noted that several "low-hanging fruits" 
could be effortlessly integrated into an FL system to render attacks useless. 
  
Further research is required using realistic machine learning scenarios and 
production-grade FL implementations to gain a deeper understanding of the practical 
costs and constraints of different attacks. Still, numerous qualitative insights can be 
derived from studies on benchmark problems in controlled settings. For instance, we 
understand that the risk of model inversion increases with: 
  
- Limited training data points at a client site 
- Smaller batch sizes 
- Fewer local iterations before aggregation 
  
These are all factors that the owner or developer of the machine learning model can 
control. Being aware of these risks assists in organizing and managing the federated 
training process. Furthermore, for a gradient inversion attack to be successful, an 
adversary needs access to: 
  
- Local gradient/parameter updates from clients 
- The current state of the global model that updates were calculated from 
- The model architecture 
  
There are several relatively simple measures that can, and should, be implemented to 
lessen the risks of this information leaking outside the federation. 
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6.4 Ways to increase security and privacy of (federated) 
machine learning systems 

 
Combining federated learning with other privacy-enhancing technologies. 
Techniques like multi-party computations and homomorphic encryption can be 
employed to introduce secure aggregation, providing an extra layer of security against 
the exposure of weights or gradients transmitted to the aggregator (Truex et al., 2019). 
However, there are issues related to performance and scalability. Another option is 
differential privacy, where intentional noise is introduced during local training or weight 
aggregation, to diminish the risk of reverse engineering. One drawback to this 
approach is the potential decrease in final model accuracy, necessitating a balance 
between noise and model accuracy (Wei et al., 2020, Truex et al., 2019). 
  
Regularization. Employing regularization methods during loss computation and the 
aggregation process can enhance output privacy. Regularization bolsters 
anonymization without undermining model accuracy. Various studies have 
underscored the advantages of integrating regularization terms. For instance, a recent 
study by T. Wang and his team elaborated on the effects of regularization on model 
inversion attacks (Wang et al., 2021). 
  
Engineering solutions. Beyond solutions specific to machine learning, data 
engineering solutions can also fortify output privacy. One such approach involves the 
early assessment of incoming model inference requests. This could mean 
implementing rate limits, and effectively scanning for any unusual behaviour. This 
would allow for the interception of prediction requests showing suspicious patterns. To 
secure the model-serving environment, it's important to include authentication, 
authorization, and proxy/token-based access to inference in the platform. Additional 
security measures within the CI/CD pipeline can help avoid unintended model 
exposure. Specifically for federated learning, it's crucial to employ secure, industry-
standard communication protocols, and enforce client identity management. In a 
subsequent post, we will provide more details on system security for federated 
learning. 
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7 Harmonizing images and annotations  

This section considers the general problem of non-iid data, focusing on that images, 
annotations and dose plans for radiotherapy differ between hospitals.  

7.1 Methods for harmonizing images between nodes 

MR and CT scanners at different hospitals will produce images that look different, 
which is a major problem when training deep learning models, and especially for 
federated learning. To some extent this can be solved with data augmentation, for 
example through applying random changes of the image contrast or by adding random 
noise, when training a network to perform classification or segmentation.  
 
In FeTS (federated tumor segmentation challenge) and BraTS (brain tumor 
segmentation challenge) the same preprocessing script is applied to the MR volumes 
of all subjects, to force all volumes to have the same resolution, to register them to the 
same coordinates (using a brain atlas), to apply bias field intensity correction, and to 
segment the brain from the head volume (Pati et al., 2022). Even after this 
preprocessing it is rather easy to see that brain images from one site look different 
compared to other sites. 
 
More advanced harmonization approaches are based on deep learning, especially 
using generative adversarial networks (GANs) such as CycleGAN (Zhu et al., 2017). 
These GANs are trained in an unsupervised manner, by simply showing MR or CT 
images from two different scanners, and the GAN will learn to translate an MR image 
from one scanner to look like an MR image from another scanner. This two-domain 
approach can be extended to translate images from many scanners / sites into a 
single type of image, for example using techniques such as StarGAN (Choi et al., 
2018). Figure 13 shows how a GAN can be used to translate between MR scanners 
(Bashyam et al., 2022) and Figure 14 shows how harmonization using StarGAN helps 
when training with one dataset and testing on other datasets (Bashyam et al., 2022). 
However, in a federated setting all the datasets will not be available in a single 
computer. It is therefore necessary to train the GAN in a federated manner, or solve 
this problem in some other way. Federated training of GANs is however not yet very 
common (Song & Ye, 2021). 
 

 
Figure 13. Harmonization of MR volumes from different MR scanners through deep 

learning (Bashyam et al., 2022). Top: a volume from MR scanner 1. Middle: The same 
volume translated to appear like a volume from MR scanner 2. Bottom: An MR volume 

from MR scanner 2.  
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Figure 14. Comparison of harmonization approaches for the task of brain age 

prediction (Bashyama et al., 2022). A brain age prediction model was trained on 
dataset 1, and then tested on 5 other datasets (not included in training). The two right 
columns show mean absolute error in predicted brain age, and correlation between 
real and predicted age. Clearly, no harmonization of the MR images leads to poor 
prediction results. Matching the histograms helps a bit, while deep learning based 

harmonization using a GAN works much better. 

7.2 Methods for harmonizing annotations between nodes 

 
A challenge when developing deep learning models for image segmentations is noisy 

labels, i.e., inconsistent contours in the training/test/validation datasets. There are two 

main sources to this noise, one is the segmentation guidelines used and the other is 

interpersonal variability. Within a clinic, there is typically an alignment on guidelines 

used and their interpretation (Scoccianti et al., 2015). In a federated setting, there is a 

risk that guidelines and/or interpretation of guidelines differ between the involved 

clinics (Sylolypavan et al., 2023). 

  

In order to succeed with federated learning for image segmentation, there should be 
an alignment before starting in terms of guidelines used as well as their interpretation. 
Ideally, a few cases from each node should be compared qualitatively as an initial step 
and there should be an agreement in the ground truth between the involved clinics. In 
real-life scenarios this may be difficult, as creating large datasets is often done using 
images with existing annotations. One possible solution to this problem is to put a 
lower certainty at the border of each annotated object, such that models are not 
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penalized for making errors at the border (where the annotations are most likely to 
differ between hospitals). It is in theory possible to use methods like CycleGAN, 
mentioned in the previous section, to also harmonize the annotations. This is 
especially true if the MR images and the corresponding annotations are harmonized at 
the same time, as multi-channel images or volumes. However, this is difficult as all the 
data are not available at one computer, and one must resort to federated training of 
these models or other solutions. 

7.3 Harmonizing treatment plans between nodes 

Similar to image segmentation, it is important that all treatment plans used for training 
a dose prediction model (from the segmentations) are aligned in terms of treatment 
protocol including treatment modality, prescribed dose level, delivery technique, and 
delivery machine. It therefore makes sense to select a widely used protocol and 
involve clinics using this selected protocol in the federated learning process. Before 
starting, it is recommended to qualitatively and quantitatively compare a few examples 
of dose distributions between the nodes to ensure the variation is acceptable. 
 
There is typically a larger amount of flexibility in the post-processing of dose prediction 
models than image segmentation models, so while it is recommended to compare a 
few cases per clinic qualitatively before starting it is not as critical as for federated 
learning for image segmentation. 
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8 Hyperparameter optimization 

8.1 General hyperparameter optimization 

Hyperparameters are parameters that are set by the machine learning engineer, as 
opposed to the parameters that are learned by the model itself. Some examples of 
hyperparameters are as follows; number of hidden layers, number of neurons, the 
number of training epochs, activation functions, learning rate, input and hidden layer 
dropout values, batch size, loss functions, etc. Usually, the task of deciding these 
parameters requires both extensive trial-and-error, and machine learning expertise. 
Hyperparameter optimization, is the task of using algorithms like grid search, random 
search, and Bayesian methods to test combinations of pre-defined parameters and 
finding the optimal combination(s) of these parameters. Most neural architecture 
search methods use the same set of hyperparameters for all candidate architectures 
during the whole search stage; thus, after finding the most promising neural 
architecture, it is necessary to redesign a hyperparameter set and use it to retrain or 
fine-tune the architecture. Some hyperparameter optimization methods (such as 
Bayesian optimization and random search) have also been applied in neural 
architecture search. See Figure 15 for a list of common hyperparameter optimization 
algorithms (Yu & Zhu, 2020). 
 

 
Figure 15. Comparison of major hyperparameter optimization algorithms (Yu & Zhu, 
2020). 
 
 
There are two main approaches for learning rate decay in hyperparameter 
optimization; time-based, which is continuous, and drop-based, which is discrete, see 
Figure 16. 
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Figure 16. Linear decay of learning rate versus drop-based decay (Yu and Zhu, 2020). 
 
 

8.2 Federated learning hyperparameter optimization 

 
Similar to centralized machine learning, hyperparameter optimization remains a 
significant and time-consuming component of training a model. This process involves 
running experiments multiple times, each with a different set of hyperparameters. The 
importance of this task amplifies within the context of FL, considering the higher 
communication and computational costs associated with each experimental run. 
  
FL presents two broad categories of hyperparameters: global and local. Global 
hyperparameters, shared among all clients within the federation, include model 
architecture, data preprocessing methods, loss function, and aggregation algorithms. 
On the other hand, local hyperparameters are client-specific and entail elements such 
as batch size, number of epochs, or model updates. 
  
While optimizing local hyperparameters isn't a compulsory practice, it can provide 
several benefits. For instance, reducing the number of epochs could mitigate the issue 
of 'strugglers'—slow participants that delay the overall learning process. Furthermore, 
certain local settings might be critical for clients who wish to participate in the training, 
such as specifying a maximum batch size or outlining model architecture restrictions. 
While the latter counts as a global setting, it necessitates communication before 
initiating the experiments. 
  
An effective approach to initiating global hyperparameter optimization could be to fine-
tune the model on a single client's local dataset. However, it's important to note that 
the ideal hyperparameters for one client may not necessarily translate to optimal 
performance across the entire federation. This approach serves primarily as a starting 
point. According to recent research (Zhou et al., 2021), it's possible to optimize both 
global and local hyperparameters concurrently during a single experiment, potentially 
improving both the efficiency and performance of FL models. 
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9 Conclusion 

 
In this document we have provided an overview of state-of-the-art methods in 
federated learning, focusing on aggregation methods, privacy methods, harmonization 
of images between hospitals and hyperparameter optimization. Federated learning is a 
very active area of research, and this is reflected by the fact that most of the papers in 
the reference list were published during the last 3-5 years. 
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