
 

   

 

 
 
 

 
 
 
DELIVERABLE D7.3 

Public report of project results 

•••••••••••••••••••••••••••••••••••••••••  

 
 
Project number:   ITEA 20044 

Document version no.: v1.0 

Edited by:   Ernst Hermens, Robert Hofsink 

Date:   14.09.2024 

 

 

 

ITEA Roadmap challenge: 

Smart Health 

 

 

 

 
 



 
 

 <Public> 15/09/2024 

ASSIST 

ITEA 20044 

WP7 Deliverable D7.3 

Page 2 of 63 

 

 
HISTORY 
 

Document 
version # 

Date Remarks 

V0.1 24.02.2022 Starting version, template  

V0.2 14.04.2024 First version started from D1.1, scope was adjusted 

V0.3 29.08.2024 Input provided by Innova 

V0.4 06.09/2024 Integration and review of all use cases 

V1.0 14.09.2024 Final version 

 
 

Deliverable review procedure: 

 

• 2 weeks before due date: deliverable owner sends deliverable –approved by 
WP leader– to Project Manager  

• Upfront PM assigns a co-reviewer from the PMT group to cross check the 
deliverable 

• 1 week before due date: co-reviewer provides input to deliverable owner 

• Due date: deliverable owner sends the final version of the deliverable to PM 
and co-reviewer 



 
 

 <Public> 15/09/2024 

ASSIST 

ITEA 20044 

WP7 Deliverable D7.3 

Page 3 of 63 

 

 

TABLE OF CONTENTS 
 

1 INTRODUCTION ................................................................................................. 4 

2 CLINICAL DISEASE AREAS .............................................................................. 5 

2.1 Intracranial haemorrhage .............................................................................. 5 
2.1.1 Introduction .................................................................................................. 5 
2.1.2 Clinical state of the art ................................................................................. 5 
2.1.3 Workflow inefficiencies and bottlenecks ....................................................... 8 
2.1.4 Outcomes and project results ...................................................................... 9 

2.1.4.1 Synthetic CT Images for Epidural Haemorrhage .................................. 9 
2.1.4.2 PACS-based Inference System .......................................................... 10 
2.1.4.3 Deep learning-based Explainable ICH Detection and Classification 
System 13 

2.2 Brain tumours .............................................................................................. 18 
2.2.1 Introduction ................................................................................................ 18 
2.2.2 Clinical state of the art ............................................................................... 19 

2.2.2.1 Surgery .............................................................................................. 19 
2.2.2.2 Radiotherapy ...................................................................................... 20 
2.2.2.3 Chemotherapy ................................................................................... 20 

2.2.3 Workflow inefficiencies and bottlenecks ..................................................... 21 
2.2.4 Outcomes and project results .................................................................... 21 

2.3 Lung Cancer................................................................................................. 31 
2.3.1 Introduction ................................................................................................ 31 
2.3.2 Clinical state of the art ............................................................................... 32 
2.3.3 Workflow inefficiencies and bottlenecks ..................................................... 34 
2.3.4 Outcomes and project results .................................................................... 36 

2.4 Hepato Pancreato Billiary oncology (HPB) ................................................ 43 
2.4.1 Introduction ................................................................................................ 43 
2.4.2 Clinical state of the art ............................................................................... 44 
2.4.3 Workflow inefficiencies and bottlenecks ..................................................... 47 
2.4.4 Outcomes and project results .................................................................... 48 

2.5 Prostate enlargement .................................................................................. 53 
2.5.1 Introduction ................................................................................................ 53 
2.5.2 Clinical state of the art ............................................................................... 54 
2.5.3 Workflow inefficiencies and bottlenecks ..................................................... 56 
2.5.4 Outcomes and project results .................................................................... 57 

3 CONCLUSIONS ................................................................................................ 61 

4 REFERENCES .................................................................................................. 62 



 
 

 <Public> 15/09/2024 

ASSIST 

ITEA 20044 

WP7 Deliverable D7.3 

Page 4 of 63 

 

1 Introduction 

This document provides a description of the updated State of the Art for the clinical 
disease areas addressed in the ASSIST project. The goal of ASSIST is to develop 
technologies and solutions that provide support for diagnosis, treatment planning, 
image visualization and treatment execution. Typically, the developed solutions are 
data driven and heavily rely on Artificial Intelligence as the discriminating factor to 
deliver improvements in terms of speed and accuracy of diagnosis and better 
treatment outcome. 
 
Five clinical procedures are addressed so that it is possible to discriminate between 
common aspects of (in-)efficiencies for these disease areas and specific ones: 

• Intracranial hemorrhage 

• Brain oncology 

• Lung oncology 

• Hepato Pancreato Billiary oncology 

• Prostate enlargement 
 
This deliverable D7.3 builds further on D1.1 which already provided short descriptions 
of the abovementioned disease areas and their clinical procedures, summarizing 
existing workflow steps and bottlenecks. For each disease area a section is added, 
describing the advancements made in the ASSIST project for that particular area. 
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2 Clinical disease areas 

2.1 Intracranial haemorrhage 

Owner: Innova – Tufan Dogan 

2.1.1 Introduction 

 
Intracranial hemorrhage refers to any bleeding within the intracranial vault, including the 
brain parenchyma and surrounding meningeal spaces (Caceres, 2012). Acute 
intracranial hemorrhage (ICH) is a potentially life-threatening condition that requires fast 
and accurate detection because of its frequently rapid progression during the first 
several hours.  
  
ICH could be caused by various reasons ranging from trauma, vascular disease to 
congenital development (Ye, 2019). Hypertension and Cerebral amyloid angiopathy are 
the most common causes of hemorrhagic stroke. Cigarette smoking and moderate or 
heavy alcohol consumption, diabetes mellitus, chronic liver disease, decreased low-
density lipoprotein cholesterol and low triglycerides are other important risk factors 
(Unnithan AKA, 2022). Severe headache, loss of consciousness, vomiting, neck 
stiffness increases in blood pressure are neurological symptoms often associated with 
intracranial hemorrhage. (Burduja, 2020) (Unnithan AKA, 2022) 
  
The age-standardized incidence of stroke in Europe ranged from 95 to 290/100,000 per 
year and absolute number of stroke cases is expected to reach 1.5 million per year in 
2025 cases  (Béjot, 2016). Haemorrhagic stroke contributes to 10% to 20% of strokes 
annually (Unnithan AKA, 2022). However, it is deadlier, with a reported case fatality ratio 
of 24–37% at 7 days and 40–59% at 30 days (Qdaisat, 2022) 
  
The costs of hospitalization for stroke are also high and differed substantially by types 
of strokes. Due to frequent imaging and surgical intervention, patients admitted with 
intracranial haemorrhage have the potential to account for significant costs. Fernando 
et al (2018) found that the mean total cost for intracranial patients was C$75,869 and 
the mean cost per day for intracranial hemorrhage patients was C$3,994. (Fernando, 
2018) The estimated US national cost was $12.55 billion for intracerebral haemorrhage 
ICH-related hospitalization in 2011–2012 and mean cost per person for hospitalization 
is $24,077 and monthly 3-year homecare cost is $14,487 in the United States 
(Yousufuddin, 2020). 
 
 

2.1.2 Clinical state of the art 

 
Intracranial hemorrhage (ICH), a subtype of stroke, can be classified into five sub-types 
according to bleeding location: Intraventricular (IVH), Intraparenchymal (IPH), 
Subarachnoid (SAH), Epidural (EDH) and Subdural (SDH). The ICH that occurs within 
the brain issue is called UnHemorrhage (Figure 1). Although ICH is less frequent than 
ischemic stroke, it presents a higher mortality rate. The degrees of severity and 
interventions vary with bleeding types (Ye, 2019). 
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Figure 1 Sub-types of strokes and hemorrhagic strokes 

  
Emergency treatment differs for hemorrhagic and ischemic strokes. In ischemic strokes, 
emergency IV medication and emergency endovascular procedures are options to 
restore blow flood to the brain quickly. Carotid endarterectomy, angioplasty and stents 
are other procedures to decrease risk of having another stroke. However, emergency 
treatment of hemorrhagic stroke focuses on controlling the bleeding and reducing 
pressure in the brain.  Emergency measures, surgery, surgical clipping, coiling, surgical 
arteriovenous malformation removal and stereotactic radiosurgery are treatment options 
for hemorrhagic strokes (Clinic). 
  
Classification of ICH and distinguishing it from ischemic stroke is critical due to prompt 
appropriate treatment and mitigate neurological deficit, and mortality. In ischemic 
strokes, therapy with drugs that can break up a clot has to be given within 4.5 hours 
from when symptoms first started if given intravenously. Intravenous tissue-type 
plasminogen activator (IV-tPA) is the gold standard treatment for ischemic stroke. It 
improves outcomes in ischemic stroke but is associated with certain risks such as 
potential bleeding in the brain. Differentiating extradural hemorrhage from subdural 
(SDH) hemorrhage in the head is also important. While extradural hemorrhage is treated 
with expedient evacuation via a craniotomy, SDH has various management strategies 
depending on the size, location and extent of mass effect. 
  
Non-contrast Computed Tomography scan is usually the first imaging method used to 
assess patients with suspected ICH and distinguish ICH from ischemic stroke as it can 
be performed fast and has high sensitivity for hemorrhage. Hemorrhage and its sub-
types can be recognized on non-contrast CT since blood has slightly higher density 
(Figure 2). CT scans generate a sequence of images using X-ray beams. Depending 
on the amount of tissue X-ray absorbency, brain tissues are captured with different 
intensities. CT scans are displayed using a windowing method. Different features of the 
brain tissues can be displayed in the grayscale image by selecting different window 
parameters. In the CT scan images, the ICH regions appear as hyperdense regions with 
a relatively undefined structure (Hssayeni, 2020). However, there are difficulties in using 
CT scan to detect hemorrhages due to their similar appearance with parenchyma and 
complexity in distinguishing mass effect and edema (Mirza, 2017). Even highly trained 
experts may miss subtle life-threatening findings, and many hospitals do not have 
trained neuro-radiologists, especially at night and on weekends. 
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Figure 2 Non-contrast Computed Tomography scans for ICH sub-types. Note. Reprinted from 
(Kim, 2021)  

 
Although acute stroke is one of the most common causes of disability worldwide and 
numbers are projected to increase, timely access to modern treatments is most often 
restricted to urban populations, particularly those living in rural and remote areas. Figure 
3 illustrates the workflow for a stroke patient being transferred from a rural facility to a 
regional hospital center. At this workflow, interpretation of CT images has highest 
priority.  
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Figure 3 Clinical workflow for stroke patient care from a rural hospital to a regional center 
hospital. Note. Reprinted from “A Mobile Geo-Communication Dataset for Physiology-Aware 
DASH in Rural Ambulance Transport. Proceedings of the 8th ACM on Multimedia Systems 

Conference” (Hosseini, 2017) 

 

2.1.3 Workflow inefficiencies and bottlenecks 

 
The main challenges in ICU diagnosis and treatment are shown in Table 1. A system 
that identifies intracranial hemorrhage with high accuracy comparable to experts has a 
great potential to help reduce mortality rates and costs. The system that allows the 
medical staff in the emergency department in rural area for triaging an acute stroke 
patient who may be eligible for tissue-type plasminogen activator can not only improves 
your chances of survival but also may reduce complication. A tool for expeditious and 
accurate diagnosis of ICHs may facilitate a prompt therapeutic response and ultimately 
improved outcomes. Recent advances in deep convolutional neural networks have 
showed that the method has a great potential in automating ICH detection and 
segmentation and can assist junior radiology trainees when experts are not available. 
The automated triage system for accurate ICH detection is also desirable to reduce the 
rate of misdiagnosis. 
 
 

Table 1: (Burduja, 2020) (Patel, 2019) (Hssayeni, 2020) (Unnithan AKA, 2022) (Ye, 2019) 

Category Challenge 

Interpretation 
difficulty of non-
contrast CT 
images 

Image noise, artefacts and cerebral parenchyma with similar 
appearance and density make segmentation of ICH challenging 

Differentiating extradural (EDH) from subdural (SDH) 
haemorrhage in the head can be challenging as SDHs are more 
common and there are a few distinguishing features which are 
usually reliable 

Irregularity of the hematoma and different stages of clot formation 
may further contribute to obscure hemorrhage boundaries and 
internal heterogeneity  

Gray scale images are limited by low signal-to-noise, poor 
contrast, and a high incidence of image artifacts. A unique 
challenge is to identify tiny subtle abnormalities in a large 3D 
volume with near-perfect sensitivity 
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Lack of 
resources 

In most clinical centers, initial interpretations of head CT is usually 
provided by junior radiologists, radiology trainees, or emergency 
physicians and initial interpretations will be reviewed later by 
senior or more-experienced radiologists. Several studies have 
confirmed that discrepancies exist between the initial and final 
interpretations and some misinterpretations might even cause 
clinical consequences 

Diagnosis process relies on the availability of a subspecialty-
trained neuroradiologist, and as a result, could be time inefficient 
and even inaccurate, especially in remote areas where 
specialized care is scarce. 

Time-consuming 
decision-making 
process 

The urgency of the procedure, a complex and time-consuming 
decision-making process, an insufficient level of experience in the 
case of novice radiologists, and the fact that most emergencies 
occur at nighttime 

 

2.1.4 Outcomes and project results 

 
The project is mainly focused on the detection and classification of Intracranial 
Haemorrhages to provide fast and accurate healthcare to patients using deep learning-
based technologies with explainability.  Synthetic CT generation for epidural 
haemorrhages, PACS based inference system, deep learning-based ICH detection and 
classification algorithms and explainable AI results can be considered as the main 
deliverables, especially for the ICH use case at the end of the project. Moreover, the 
use case provides insights for each partner and increases the strength of collaboration 
within the project.  
  

2.1.4.1 Synthetic CT Images for Epidural Haemorrhage 

  
Medical imaging problems often suffer from lack of data or unbalanced datasets. To 
overcome this challenge, we conducted some experiments to generate synthetic 
epidural haemorrhage CT images using different architectures and models, including 
GANs, Diffusion Models, etc.  Accordingly, a Diffusion-based model called MedFusion 
(Müller et al. 2023) has generated the images shown in Figure 4 and had the best FID 
score of 64.3.   
 

 

Figure 4 Synthetic CT Images generated by MedFusion 
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On the other hand, several GAN models including FastGAN (Liu et al. 2020), StyleGan2-
ADA (Karras et al. 2020), StyleGan3 (Karras et al. 2021) and CycleGan (Zhu et al. 2017) 
were tested and experiments showed that the best model for our problem is StyleGan2-
ADA. This GAN-based model produced the synthetic images shown in Figure 5 and 
gave the best result with an FID score of 15.6. 
 

Figure 5 Synthetic CT Images generated by StyleGan2-ADA 

  
As a result, StyleGan2-ADA, pre-trained with the FFHQ dataset, was the best model in 
terms of performance metrics such as FID and Inception scores. Approximately 3000 
synthetic CT images containing epidural haemorrhage were generated using a transfer 
learning approach. The generated images were used in the training phase of the 
detection and classification model and improved the model performance by 3% for 
epidural haemorrhage as shown in the table below. 
 

Table 2: Comparison of ICH classification performance of the model with and without synthetic 
data in terms of AUC score in training 

  AUC Score without 
Synthetic Data 

AUC Score with 
Synthetic Data 

AUC Change (%) 

ICH 0,9797 0,9801 0,040828825 

EDH 0,9388 0,9711 3,44056242 

IPH 0,989 0,9887 -0,03033367 

IVH 0,9942 0,994 -0,020116677 

SAH  0,9729 0,9717 -0,123342584 

SDH 0,9696 0,9694 -0,020627063 

 
 

2.1.4.2 PACS-based Inference System 

  
A PACS-Integrated Inference System which is described in the Figure 6 has been 
developed to streamline the analysis of radiological images for ICH detection and 
classification. This system is designed to support three types of end-users, offering 
flexibility in how they interact with the platform—whether through PACS, RESTful API-
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client, or MQTT-client interfaces. It provides both standalone and cloud-based 
deployment options, ensuring adaptability to various healthcare environments. 
 

Figure 6 PACS-Integrated Inference System Architecture 

 

The system supports multiple protocols, including DICOM, DICOMweb (STOW, 
WADO), and HTTP, to guarantee the secure and reliable transfer of DICOM images. 
End-users can send and receive DICOM images using any of these protocols, benefiting 
from robust DICOM image storage and management capabilities. The communication 
framework is built to facilitate seamless interaction between the end-user, the PACS-
based Application Server, the Messaging Server, and the Inference (GPU) Server. To 
enhance processing efficiency, the system offers multithreading support, allowing the 
inference server to leverage multiple GPUs. 
  
This system is versatile, supporting various DICOM image modalities such as CT and 
MRI. Once the image analysis is complete, end-users are notified through multiple 
channels, and they have the option to view, download, or share the analysed images. 
The platform also offers side-by-side viewing of original and explicable DICOM series, 
enabling users to easily identify the location of brain haemorrhages. For better 
organization and searchability, analysed images can be sorted and filtered based on 
criteria such as Patient ID, Patient Name, and Study Date. Additionally, relevant 
haemorrhage information is embedded into the DICOM tags with a code string of 
classification results, enhancing the ease of access to critical data. 
  
The PACS-Integrated Inference System also offers comprehensive support for essential 
DICOM operations, including upload, storage, and deletion of images. This ensures that 
users can easily manage their DICOM files within the system, maintaining an organized 
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and accessible repository of radiological data. Whether adding new images, storing 
them securely, or removing outdated files, the system provides a streamlined process 
for all DICOM-related tasks. 
 
A key feature of the system is its flexibility in providing inference options. Users can 
choose between performing a standard analysis or opting for an analysis that includes 
explainable AI (XAI) features, all with a single button click. This dual option caters to 
varying needs, allowing for quick assessments or more detailed examinations with 
visual explanations that highlight the model's focus during the analysis. 
 

 

Figure 7 Interface for List of the Inferred Instances 

 

The system is designed with a user-friendly interface that prioritizes ease of use and 
clarity. The colourful display (in the Figure 7) and organized layout enhance the user 
experience, featuring clearly marked subtype boxes and intuitive navigation. The side-
by-side views in Figure 8 for XAI allow users to compare original and explicable DICOM 
series effortlessly, making it easier to identify and understand the location and nature of 
intracranial haemorrhages. Furthermore, the viewer in Figure 9 shows the identified 
subtype of the slice at the bottom of the image to enhance transparency and user 
experience. This thoughtful design ensures that healthcare professionals can efficiently 
interact with the system, improving their workflow and diagnostic accuracy. 
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Figure 8 Side-by-side View of Original CT Images and Explainable ICH Results 

 

 

Figure 9 Viewer of the System with Description of Inference 

 

Finally, the PACS-Integrated Inference System is designed for seamless integration 
with existing clinical workflows, making it an invaluable tool for radiologists and other 
healthcare professionals in the accurate and efficient diagnosis of ICH. 
 

2.1.4.3 Deep learning-based Explainable ICH Detection and Classification 
System 

 
A deep learning-based multi layered ICH detection and classification algorithm which 
can be seen in the Figure 10 has been developed during the project. The approach 
involves pre-processing medical CT images by combining different window sizes and 
slice positions, aiming to enhance feature importance in the dataset. The ensemble 
model developed for ICH detection and classification integrates various deep learning 
architectures, including Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN), and Gated Recurrent Units (GRU). 
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Figure 10 ICH Detection and Classification Model Architecture (Based on Wang et al. 2021) 

 
The CNN model serves as the foundational component of the ensemble framework, 
focusing on the extraction of high-level features from medical images. In this approach, 
the SE-ResNeXt101 architecture is employed, which combines the strengths of 
Squeeze-and-Excitation Networks (SENet) and ResNeXt to enhance feature 
discrimination and model efficiency. This model is designed to capture complex patterns 
in the data by processing the images through multiple layers, each layer refining the 
feature map to better represent the underlying characteristics of ICH. The extracted 
features from the CNN are not only used for initial classification but also serve as crucial 
inputs for the subsequent sequence models that further refine the predictions. 
 
Table 3 shows the performance of the model over the test dataset of 78,544 images at 
the beginning of the project in terms of performance metrics such as accuracy, area 
under the curve (AUC) and sensitivity, which are crucial for evaluating the model's 
performance in detecting ICH. 
 

Table 3 CNN-based ICH detection performance in the beginning of the project 

  Accuracy AUC Sensitivity 

ICH Detection 90% 0.92 0.92 

 
Moreover, the model uses two sets of models that aim to mimic the behaviour of expert 
radiologists, creating links between slices, playing a critical role in refining predictions 
and improving classification accuracy. The first sequence model which is shown in the 
Figure 11, takes the feature outputs from the CNN classifier as its input. This model 
applies a bidirectional-RNN with GRU to generate a refined estimate of the features, 
enhancing the overall robustness of the feature set before moving on to the next stage. 
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Figure 11 First sequence model architecture (Wang et al. 2021) 

 

The second sequence model which can be seen in the Figure 12, leverages the concept 
of stacked generalization within the ensemble framework. It uses the GRU-based RNN 
model to learn how to optimally combine predictions from multiple existing models, 
effectively synthesizing the strengths of each model to produce more accurate and 
reliable final classification outputs. 
 

 

Figure 12 Second sequence model architecture (Wang et al. 2021) 

 

In summary, the approach involves pre-processing medical images by combining 
different window sizes and slice positions to enhance feature importance. The ensemble 
model developed for ICH detection and classification integrates CNN, RNN, and GRU 
to improve detection accuracy.  
  
The classification process begins with a CNN model, specifically the SE-ResNeXt101 
architecture, used for feature extraction. The first sequence model refines these 
features using a bidirectional RNN with GRU units. These refined features, along with 
those extracted from the CNN and metadata from DICOM tags, are then passed to a 
second sequence model, which implements stacked generalization to combine 
predictions from multiple models, leading to final classification. After some experiments 
on the ensemble model, the accuracy of performance in ICH detection of has been 
increased by approximately 3% as shown in the Figure 13 below. 
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Figure 13 Comparison of model performances in terms of ICH detection accuracy 

 

The ensemble model outputs multiclass classification probabilities, providing predictions 
for different types of ICH. To enhance interpretability, an explanatory layer is included 
to visualize which areas of the image the model focuses on during the classification 
process. Training of the CNN model was conducted using the RSNA 2019 ICH 
challenge dataset. Various backbones, including SE-ResNeXt101-32x4d and 
DenseNet-121, were tested with different hyperparameters to identify the optimal 
configuration for performance. As Table 4 shows, at the end of the project we achieved 
better ICH detection and classification performance than the scores mentioned earlier. 
 

Table 4 Model performance at the end of the project 

  Accuracy AUC Sensitivity 

ICH Detection 95% 0.94 0.95 

Overall Subtype 
Classification 

92% 0.94 0.89 

 

To enhance the interpretability of the model and increase confidence in its predictions, 
we integrated the Grad-CAM (Gradient-weighted Class Activation Mapping) approach 
into the ensemble framework. Grad-CAM is an explainable AI technique that highlights 
the most relevant regions of an image that contribute to the model’s decision-making 
process. By generating visual heat maps, Grad-CAM allows us to see which parts of the 
image the model is focusing on during classification. These visualizations not only 
improve the model's explanatory power but also enable radiologists to visually assess 
the model's focus, providing a clearer understanding of the features that drive its 
predictions. After improving the model’s results, Grad-CAM was tested to ensure that 
the highlighted regions corresponded accurately to the areas of interest, thereby 
increasing the reliability and transparency of the model’s outputs. A few explainable 
output examples including different ICH subtypes can be seen in the Figure 14, 15 and 
16. 
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Figure 14 Intraventricular         Figure 15 Intraparenchymal             Figure 16 Subdural 
 
Finally, we have developed a system that detects and classifies intracranial 
haemorrhages (ICH) while providing visual explanations within the ASSIST project. This 
system seamlessly integrates with a cloud-based inference system which is mentioned 
above and developed as part of the project. The inference system is DICOM-compatible, 
scalable, and designed for easy integration. All the components of the system including 
deep learning models, algorithms, APIs etc. will join Innova's portfolio of health products 
and strengthen its power in the marketplace. 
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2.2 Brain tumours 

Owner: LiU - Anders Eklund 

2.2.1 Introduction 

A brain tumor is caused by abnormal cells that form in the brain and is an uncontrolled 
growth of cells from brain components (primary tumors) or from tumor cells in other 
areas of the body (metastases). There are hundreds of different types of primary brain 
tumors with different prognosis and treatment. All types of brain tumors can cause 
symptoms, which vary depending on which part of the brain is affected. These include 
headaches, epileptic seizures, vision problems, vomiting, and altered states of 
consciousness. More specific problems include difficulties with walking, speaking or 
sensory experiences. 
 
Aside from exposure to vinyl chloride or ionizing radiation, there are no known 
environmental factors associated with brain tumors. Mutations and deletions of tumor 
suppressor genes, such as P53, are thought to be the cause of some forms of brain 
tumor. Inherited conditions, such as Von Hippel–Lindau disease, tuberous sclerosis, 
multiple endocrine neoplasia, and neurofibromatosis type 2 carry a high risk for the 
development of brain tumors. 
 
The annual global age-standardized incidence of primary malignant brain tumors is 
~3.7 per 100,000 for males and 2.6 per 100,000 for females. Rates appear to be 
higher more developed countries (males, 5.8 and females, 4.1 per 100,000) than in 
less developed countries (males 3.0 and females 2.1 per 100,000). In the United 
States in 2015, approximately 166,039 people were living with brain or other central 
nervous system tumors. Over 2018, it was projected that there would be 23,880 new 
cases of brain tumors and 16,830 deaths in 2018 as a result, accounting for 1.4 
percent of all cancers and 2.8 percent of all cancer deaths. 
 
There are differences in the incidences of brain cancer in men and women, regardless 
of the age of those affected. Men are over represented in the incidence of malignant 
tumors, while women have a higher incidence for non-malignant tumors. There is no 
consensus within the research community for this disparity. 

 

 

Figure 4 Brain tumor disease characteristics 
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2.2.2 Clinical state of the art 

Most brain tumors are diagnosed after 
symptoms appear. In general, diagnosing 
a brain tumor usually begins with magnetic 
resonance imaging (MRI). Once MRI 
shows that there is a tumor in the brain, 
the most common way to determine the 
type of brain tumor is to look at the results 
from a sample of tissue after a biopsy or 
surgery. Brain tumors, when compared to 
tumors in other areas of the body, pose a 
challenge for diagnosis. Radioactive 
tracers that may reach tumors in other 
areas of the body are unable to reach brain 
tumors until there was a disruption of the 
blood-brain barrier (BBB) by the tumor. 
Disruption of the BBB is well imaged via 
MRI, and is therefore regarded as the main 
diagnostic indicator for malignant gliomas, 
meningiomas, and brain metastases. Other 
common imaging modalities are CT and/or 
PET-CT.                                                                                   
  
Robotic-assisted brain biopsy is becoming more common, but not considered 
standard. A robotic probe is the main tool for robot-assisted stereotactic tumor biopsy. 
It is interfaced with a computerized tomographic (CT) scanner and mounted at its end 
effector. Once the target is identified, a simple command moves the robot to a position 
pointing toward the target, which is a faster and more accurate procedure in 
comparison to the manually adjustable stereotactic frame biopsy. Appropriate 
preoperative imaging provides an anatomical roadmap to guide the biopsy needle to 
the exact target 
 
A medical team generally assesses the treatment options and presents them to the 
person affected and their family. Various types of treatment are available depending 
on tumor type and location, and may be combined to produce the best chances of 
survival 

2.2.2.1 Surgery 

The primary and most desired course of action described in medical literature is 
surgical removal (resection) via craniotomy. Minimally invasive techniques are 
becoming the dominant trend in neurosurgical oncology. The main objective of surgery 
is to remove as many tumor cells as possible, with complete removal being the best 
outcome and cytoreduction of the tumor otherwise. A Gross Total Resection occurs 
when all visible signs of the tumor are removed, and subsequent scans show no 
apparent tumor. In some cases, access to the tumor is impossible and impedes or 
prohibits surgery. 
Many meningiomas, with the exception of some tumors located at the skull base, can 
be successfully removed surgically. Most pituitary adenomas can be removed 
surgically, often using a minimally invasive approach through the nasal cavity and skull 
base (trans-nasal, trans-sphenoidal approach). Large pituitary adenomas require a 
craniotomy for their removal. Radiotherapy, including stereotactic approaches, is 
reserved for inoperable cases. 

Figure 5 Example brain MRI image 
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Robot assisted brain tumor resection is a novel filed with and is typically not used in 
clinical routine. 
 

2.2.2.2 Radiotherapy 

Radiotherapy is the most common treatment for secondary brain tumors, but also 
commonly given as post-surgery for resected tumors in order to further improve local 
tumor control. Radiotherapy treatment planning is based on CT and/or MRI images, 
where the MIR images are used to outline the tumor as well as radiosensitive organs 
at risk (OAR). Delineation of OARs may either be manually or assisted by software. 
Software based OAR delineation software can either be based on deformation of 
altases, but AI driven algorithms are becoming the norm. AI delineation of tumor is at 
the current time a research topic yet to make it into clinical practice.  
The most common type of radiation treatment is called external-beam radiation 
therapy, which typically is directed at a brain tumor in the following ways: 
 

• 3-dimensional conformal radiation therapy (3D-CRT) 
Using images from CT and MRI scans, a 3-dimensional model of the tumor and 
healthy tissue surrounding the tumor is created. This model can be used to aim 
the radiation beams directly at the tumor, sparing the healthy tissue from high 
doses of radiation therapy.  

• Intensity modulated radiation therapy (IMRT) 
IMRT is a type of 3D-CRT (see above) that can more directly target a tumor. It 
can deliver higher doses of radiation to the tumor while giving less to the 
surrounding healthy tissue. In IMRT, the radiation beams are broken up into 
smaller beams and the intensity of each of these smaller beams can be changed. 
This means that the more intense beams, or the beams giving more radiation, 
can be directed only at the tumor. Volumetric Modulated Arc Therapy (VMAT) is 
a subset of IMRT involving additional degrees of freedom in treatment delivery.
  

• Proton therapy 
Proton therapy is a type of external-beam radiation therapy that uses protons 
rather than x-rays. At high energy, protons can destroy tumor cells. Proton beam 
therapy is typically used for tumors when less radiation is needed because of 
the location. This includes tumors that have grown into nearby bone, such as 
the base of skull, and those near the optic nerve. 

• Stereotactic radiosurgery 
Stereotactic radiosurgery is the use of a single, high dose of radiation given 
directly to the tumor and not healthy tissue. It works best for a tumor that is only 
in 1 area of the brain and certain noncancerous tumors.   

 
IMRT, VMAT and Proton therapy is an optimization problem, where high tumor dose 
and low dose to surrounding OAR are conflicting objectives. Recently, AI tools aiming 
at either creating a treatment plan have emerged and have started to make their way 
into clinical routine. 

2.2.2.3 Chemotherapy 

Although chemotherapy may improve overall survival in patients with the most 
malignant primary brain tumors, it does so in only about 20 percent of patients. 
Chemotherapy is often used in young children instead of radiation, as radiation may 
have negative effects on the developing brain. The decision to prescribe this treatment 
is based on a patient's overall health, type of tumor, and extent of cancer. The toxicity 
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and many side effects of the drugs, and the uncertain outcome of chemotherapy in 
brain tumors puts this treatment further down the line of treatment options with surgery 
and radiation therapy preferred. Additionally, the BBB can prevent some drugs from 
reaching the cancerous cells. 
 

2.2.3 Workflow inefficiencies and bottlenecks 

• Imaging (both MRI and CT) are subjected to noise and artifacts. AI-based 
 reconstruction algorithms have shown promising results, yielding images of 
higher quality from which diagnosis can be improved. [Diagnosis] 

• Since prognosis is heavily linked to tumor progress, the largest benefit to patient 
outcome would be earlier diagnosis. It is plausible that AI models could play a 
role here. Research is ongoing in this field. [Diagnosis/Image interpretation] 

• To further develop the tools for robot-assisted brain surgery, highly realistic 
models of the human brain are required — just as animal models of disease are 
needed to study treatments in patients. Deceased donors are often used to study 
human anatomy. But in this case, technological development must utilize a 
model of the brain that begins to bleed when you touch it, has cerebrospinal fluid 
and allows the conduction of current so that we can stimulate the brain model. 
[Robotics/Surgery] 

• For  radiotherapy, multimodal imaging is required, where MRI is used for 
 delineation and CT for treatment planning. This poses a bottle neck as 
patients' needs to be imaged twice. Image fusion is also required, which adds 
an additional step. An MRI only workflow, where synthetic CT are generated 
from MRI and used as a drop-in replacement for CT have begun to become 
clinically accepted. [Treatment planning/Image fusion] 

• The treatment planning process of external beam radiotherapy is time- 
 and resource intensive. AI methods have been proven to yield equal results 
to manual delineation and planning with none or limited manual interaction. 
[Treatment planning]   

 

2.2.4 Outcomes and project results 

 
The project has focused on synthetic CT generation, automatic segmentation of 
tumour and organs at risk, and automatic generation of treatment plans from 
segmentations, to save time in treatment planning. Another focus has been deep 
learning for diffusion MRI, for super resolution (Abramian et al., 2023) and for faster 
analysis of diffusion weighted images that can be informative to fully understand the 
tumour border (Boito and Özarslan, 2023). All of these applications use deep learning, 
and a general challenge with deep learning in medical imaging is how to create a large 
training set. The project has therefore focused on synthetic images (synthetic patients) 
and federated learning as two ways to make it easier to train deep learning models 
with large datasets. 
 
Automatic segmentation 
 
Spectronic is a well-established actor in the field of medical imaging with large 
engagement in both clinical studies and academic scientific work. In the brain use 
case project we have developed an AI model that performs high quality segmentations 
of organs at risk in MR images of both brain and head-neck anatomies. The models 
are developed specifically for radiotherapy planning, where they can both improve and 
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facilitate the manual steps of identifying and delineating structures that are sensitive to 
excess irradiation. The developed model has been incorporated in a new product that 
can be deployed in clinic through the SAINT platform. The AI models and the clinical 
integration are currently undergoing testing and evaluation together with our clinical 
research partners. The initial results show that the models perform well on par with 
manually created delineations, see Figure X and Table X. 
 

 

Figure 6 Example image of AI model structure segmentations in brain radiotherapy planning. 

 
 
Preliminary Dice values of AI model segmentation on 35 patients, compared to manual 
segmentations. 
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Synthetic brain tumour images 
For synthetic image generation, LiU and Eigenvision have demonstrated that GANs 
(generative adversarial networks) and diffusion models can synthesize realistic brain 
tumour images and the corresponding annotation of different parts of the tumour. See 
Figure 5 for examples of real and synthetic brain tumour images. We have also 
demonstrated that these synthetic images can be used to train segmentation networks 
with acceptable performance. See Figure 6 for obtained Dice scores when training 
segmentation networks with real or synthetic images, and testing them on real images. 
Dice is a metric that measures how good a segmentation is, compared to manual 
segmentation by a doctor, with a maximum value of 1. For further details of the results, 
see (Akbar et al., 2024). This means that sharing synthetic medical images is a viable 
option to sharing real images, which can lead to the development of better 
segmentation networks. For this purpose, we have also investigated to which degree 
GANs and diffusion models memorize the training images, to avoid sharing real 
images from the training set. We found that diffusion models are more likely to 
memorize the training images (Akbar et al., 2023), and that researchers therefore 
should be careful when using diffusion models for sharing of synthetic medical images. 
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Figure 7 Synthetic 5-channel images obtained when training generative models using the open 
BraTS 2021 dataset. Each row shows a generative model, except for the top row which shows 

a real example, and each column shows a different MR sequence. 
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Figure 8. Obtained Dice scores when training a segmentation network with real (orig) 
and synthetic images, and testing on real images. 
 
Federated learning for segmentation of tumour and organs at risk 
 
For federated learning, we have demonstrated that it is possible to train a 
segmentation network (that segments the brain tumour as well as organs at risk) with 
data from different cities, without sending the data around, see Figure 7 for the main 
idea of federated learning.  
 

 
Figure 9. The main principle of federated learning. Instead of storing all data on one 
computer, a computer at each hospital stores the local data from that hospital. A 
global model is then trained through real-time communication of the model between 
each hospital and a combiner/global server (the cloud in this image), thereby using all 
the data. 
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The federated trainings were performed using the frameworks FEDn by Scaleout 
Systems (Ekmefjord et al. 2022) and iFusion by Inovia AI (based on Nvidia FLARE). A 
3D U-Net was used, which takes four MR volumes as input (T1w, T1w contrast, T2w 
FLAIR, T2w contrast), see Figure 8, and returns segmentations of GTV, CTV and 
brain stem. Prior to federated trainings, data were preprocessed to result in volumes of 
256 x 256 x 140 voxels, with 1 x 1 x 2 mm resolution. The trainings were performed 
using 25 subjects in Linköping (exported from Region Östergötland’s oncology clinic's 

radiotherapy department), and 32 in Lund (exported from the radiation therapy clinic at 
Skåne University Hospital, about 400 km apart). 20% of the data were used for 
validation at each site. 
 

 
Figure 10. Federated segmentation of tumor and risk organs was performed using a 
U-Net, which takes several MR volumes (left) as input and returns segmentation maps 
(right). The U-Net travelled around Sweden during the federated trainings, while the 
data stayed at each hospital. 
 
Table 1 shows the validation performance after federated trainings between Linköping 
and Lund, showing that the global (federated) model performs better than the local 
models. Trainings have also been performed with 3 Swedish cities (Linköping, Lund, 
Umeå University), and with 10 clients in a simulation. 
  

Table 1. Comparison of local and federated models for segmentation (Dice scores), 
showing that the federated model performs better. 
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Federated learning for dose prediction 
 
For federated learning, we have also demonstrated that it is possible to train a dose 
prediction network (that predicts the radiation dose to apply in every part of the brain, 
from all segmentations) with data from different sources, without sending the data 
around. The federated trainings were performed using the framework iFusion by Inovia 
AI (based on Nvidia FLARE). A 3D U-Net was used, provided by RaySearch, which 
takes nine binary segmentations as input (CTV, PTV, left optic nerve, right optic nerve, 
chiasm, brainstem, left eye, right eye, body outline) and returns the dose in each voxel 
(using a regression loss function). The setup is similar to Figure 8, but the inputs are 
instead the binary segmentations and the output is the dose volume (with values 
between 0 and 1). Prior to federated trainings, data were pre-processed to result in 
volumes of 75 x 75 x 75 voxels, with 3 x 3 x 3 mm resolution. The trainings were 
performed using 10 subjects in Linköping (exported from the radiotherapy clinic, as for 
segmentation), and 133 subjects from the open GLIS-RT dataset (Shusharina et al., 
2021). 20% of the data were used for validation. Federated trainings will also be 
performed between Linköping and Lund with local data from each city. 
 
Figures 9 – 10 show that the federated model results in a lower validation error 
compared to the local models. Training the dose prediction model with only GLIS-RT 
data resulted in a validation error of 0.84. Training with only Linköping data resulted in 
a validation error of 4.41, due to a much smaller dataset. The federated model 
resulted in a validation error of 0.77 and 2.00 respectively, thereby performing better 
for both sites. 
 
 
 
 
 

 
  

Figure 11. Training the dose prediction model with only Linköping data, resulting in a 
validation error of 4.41. 
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Figure 12. Training the dose prediction model through federated learning, resulting in 
validation errors of 0.77 and 2.00, which is smaller compared to the local models. 

 
Integration of federated models in clinical software 
 
To demonstrate that the models trained through federated learning can be used in 
clinical software, the federated segmentation model was integrated with Spectronic’s 
SAINT (Spectronic Artificial INtelligence Technology) software system, which is a 
framework for transferring data between imaging modalities and applications that 
process the images. Figure 11 illustrates how DICOM images are sent from an MRI 
machine to the SAINT server, where the medical imaging app processes the data. The 
output from the app is then transmitted to a treatment planning system (TPS) for 
further processing. 
 

 

Figure 13. Schematic of the data flow to and from the SAINT software system. 

With the final brain use case demonstrator we have shown that we can install a third-

party application that runs a brain tumor segmentation algorithm on the SAINT 

software system. The app is downloaded and installed through a SAINT “app store” 

which is a web service that the SAINT server connects to. This service also allows 

new upgrades to be downloaded to the SAINT server in a clinical setting. In the 

demonstrator 1208 MRI images are sent over a network to SAINT, which receives the 

DICOM images and relays them to the segmentation app. The app generates an 

RTSTRUCT file (structures for radiotherapy) as seen in Figure 12. Finally, the SAINT 

software system takes the RTSTRUCT file and sends it to a TPS. Table 1 shows the 

execution time of the process. These segmentations are then used in RaySearch’s 

RayStation software for dose prediction. 
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Figure 14. Generated RTSTRUCT overlaid on the original MR images. 

 

  Time (s) 

DICOM transmission 80 

Image processing 190 

Total execution time 270 

Table 1. Execution times for the segmentation demonstrator. 

 

Deep learning methods for diffusion MRI 
  
We have developed advanced diffusion MRI methods that make use of MRI acquisitions 
featuring general gradient waveforms for investigating microstructural information not 
available via traditional methods. To this end, we introduced the methods called Q-
space trajectory imaging with positivity constraints (QTI+) (Herberthson et al., 2021) and 
diffusivity-limited q-space trajectory imaging (QTI±) (Boito et al., 2023) demonstrating 
that enforcing relevant mathematical constraints during parameter estimation improves 
the estimates even when the number of diffusion-weighted volumes is small. The latter 
allows for shorter scan times making the technique suitable for clinical studies. However, 
constrained optimization requires computationally-intensive fitting routines leading to 
long computation times. Thus, we have explored the possibility of employing deep 
learning to speed up the QTI parameter estimation, while retaining strict positivity 
constraints. The developed neural network and the results obtained from a tumor patient 
(Boito and Özarslan, 2023) are illustrated in Figure XYZ. The results closely resemble 
those produced employing state-of-the-art routines, while providing smoother maps and 
about two orders of magnitude faster estimations.  
  
In addition, we have focused on mapping the fiber orientation distribution function 
(fODF), which is employed in mapping the white matter fiber tracts through a procedure 
referred to as tractography. Having a wiring diagram of the brain allows us to identify 
the most important connections, which could aid in surgical planning. However, the MRI 
voxel size is orders of magnitudes larger than the diameter of axons which introduces 
significant challenges in obtaining reliable connectivity information. Thus, we developed 
and assessed a deep learning method for increasing the spatial resolution of the field 
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of fODFs. Our results exhibited superior recovery of information at high-resolution 
compared to traditional interpolation methods. The fODFs reconstructed were found to 
be more accurate than that can be obtained via high-resolution scans that suffer from 
low signal-to-noise ratio. In Figure PQR, we show the upsampled generalized 
anisotropy maps as well as exemplary tractography results obtained through our super-
resolution method.  
  
  

 

 
Fig. 15: (a) The neural network employed in training. A MultiLayer Perceptron (MLP) with 
three hidden layers is used to compress the input signal into the 28 parameters of the q-space 
trajectory imaging (QTI) model, from which the predicted dMRI signal is reconstructed to 
compute the loss.  
(b) Results on one of the tumor datasets. The top row displays the standard clinical images 
including the Gd-enhanced T1-weighted map, T1-weighted image without contrast agent, T2-
weighted image, and T2-weighted fluid attenuated inversion recovery maps. The bottom part 
shows the QTI-derived maps for the constrained nonlinear least squares (NLLS(dc)) method, 
followed by the constrained machine learning technique we developed (ML(dc) and ML*(dc)) 
in the last two rows.  
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Figure 16: (a) The low-resolution and super-resolution fODF maps in a given ROI within a 
crossing fiber region obtained from the Human Connectome Project data. (b) Black arrows: 
correct tracts obtained from both methods. Green arrows: correct tracts obtained from DSR 
only. Red arrows: correct tracts obtained from high resolution acquisition only. Blue: false 
tracts obtained from only the high-resolution acquisition. 
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2.3 Lung Cancer 

Owner: Philips – William van der Sterren 

2.3.1 Introduction 

Lung cancer is a common disease, with an incidence of 2.1M worldwide (2018). 
Worse, lung cancer is the leading cause of cancer death (18.4%, 1.7M, 2018 (IARC, 
2018)). In addition to primary lung cancer, the lungs are also the second most frequent 
location of metastatic disease, with colorectal carcinoma, renal cell carcinoma and 
breast cancer most often metastasizing in the lungs (Society, 2019). 
 

 

Figure 8 Lung cancer originates from the cells in the lungs  (Mayo, 2022) 

 
A common intervention for a suspicious lung nodule is a biopsy to determine, and if 
necessary, stage lung cancer; tissue is obtained from the lung nodule either via the 
airways (using a bronchoscope), percutaneously (using a needle) or surgically. In the 
USA in 2006, some 75,000 bronchoscopic lung biopsies were performed, and 12,000 
surgical lung biopsies. 
 
In case lung cancer is confirmed, and depending on the lung cancer progression 
(stage), therapy will either be focused on curing the patient, or on improving quality-of-
life for the patient. Several treatments are available, including surgery, systemic 
(chemo) therapy, radiation treatment, thermal ablation and immunotherapy. 
In general, there is a trend to more minimal invasive therapy. 
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2.3.2 Clinical state of the art 

The journey of a lung cancer patient typically involves detection of symptoms / 
suspicious nodules, a biopsy procedure to confirm malignancy and stage the cancer, 
treatment planning, one or more treatments, and monitoring of the patient. 
 
Patients may report with symptoms at their GP. Alternatively, patients may be invited 
to a lung screening because of their risk profile (heavy smoking, exposure to dust), 
and be flagged as having a suspicious lung nodule on a lung screening CT. In some 
cases, patients are flagged as having a suspicious nodule as an incidental finding on 
an ordinary thorax CT. 
 
Typically, for a suspicious nodule larger than 10mm, a biopsy is planned to obtain 
tissue for pathology.  
 

 

Figure 9 Poster informing the public about the benefits of lung cancer screening (Prevention, 
2017) 

Endobronchial biopsies are the preferred way to obtain tissue. It is challenging to 
reliably obtain samples from from lung nodules when these are peripheral and small  
(<20 mm), with diagnostic yield around 50% when solely using bronchoscope and 2D 
mobile C-arm. The alternative is to percutaneously obtain tissue using a long needle, 
guided by a CBCT or CT; this procedure has a higher risk of complications. 
A low diagnostic yield from biopsies is problematic because of the uncertainty and 
discomfort for the patient, and because delays in treatment increase mortality 
(mortality increases with 1% / week).  
Advanced endobronchial navigations systems (EBN), 3D CBCT imaging, and robotics 
are currently being adopted to increase diagnostic yield. 
Also ‘rapid on-site evaluation’ (ROSE), an intra-procedural quick microscopic 
inspection of the tissue sample can improve diagnostic yield, by providing feedback to 
the pulmonologists that the sample was insufficient or taken from normal lung 
parenchyma instead of the suspicious nodule. This ROSE, however, cannot be used 
for diagnosis.  
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Figure 10 Endobronchial navigation assisted 
with 3D imaging 

 

Figure 11 Endobronchial navigation assisted 
with robotics 

 
After the biopsy, the sample tissue from the nodule, perhaps together with additional 
samples from the lymph nodes, are analysed by a pathologist. The pathology report is 
input for diagnosis and staging of the nodule. 
The suspicious nodule might be diagnosed to be benign, for example, just an 
inflammation. Or it might be diagnosed as cancer. Lymph node samples help staging 
the nodule: the nodule might be small, isolated and early stage, corresponding to a 
good outlook for curative treatment. Or the nodule might be large, spread out also into 
the lymph nodes and late stage, in which curative treatment might not be realistic, but 
palliative treatment can help lengthen survival and improve quality of life. 
 
Various treatments are available, including surgical resection, chemotherapy, radiation 
therapy, and thermal ablation, the latter two being less invasive.  
 
Thoracic surgery or surgical resection will aim to take away that part of the lung 
containing the cancer nodule, including sufficient margin (which is healthy tissue 
immediately surrounding the nodule, more likely to also include cancer cells).  
Surgical resection is becoming less invasive, transitioning from open surgery requiring 
lengthy recovery, towards key-hole surgery using an endoscope, with or without 
robotics. In addition, there is a trend to preserve more of the lung and resect less, 
going from resection of a complete left or right lung to resection of a single lung lobes 
and to solely resecting a single lung lobe segment, provided the nodule is nicely 
located in a single segment.  
 
Thermal ablation of the nodule is an established procedure when performed using 
ablation needles by the interventional radiologists. One or more needles are 
introduced via the skin (percutaneous) in or near the cancer nodule. Next, ablation is 
performed for five to ten minutes, heating or freezing the tissue in the surroundings of 
the needle tips in order to damage the cancer cells. Over the next days and weeks, 
the cancer nodule disappears, leaving only scar tissue in the lung.  
The downside of using needles for ablation is the occurrence of pneumothorax (a 
minor complication). 
Device vendors currently are trialing variants of these ablation device in the shape of 
flexible catheters which can be introduced via the airways by the interventional 
pulmonologist. These devices create the ability to treat the lesion in the same 
procedure as the biopsy, reducing waiting time and stress for patients. 
 
Treatment follow-up typically is done using 3D imaging, CT and/or PET. During follow-
up, it is key to study the progression of the nodule, which ideally reduces in size. 
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Image processing is key to help the radiologist register and overlay images from 
multiple sessions in order to assess the progression. 

2.3.3 Workflow inefficiencies and bottlenecks 

The main workflow inefficiencies and bottlenecks consist of: 

• The increasing inflow of lung screening scans and corresponding biopsies of 
small peripheral nodules, both increasing the number and complexity of biopsy 
procedures 

• Moving towards ‘less invasive treatment’ for lung cancer, reducing recovery 
time, burden and support needs required for patients 

 
In order to cope with increasing inflow of lung screening scans, radiologists need help 
processing and diagnosing more scans.  
Image processing software and computer assisted diagnosis play an important role in 
processing more chest CTs, for screening or incidental, without massively increasing 
the workload for the radiologists who is to read the CT scans. Suspicious nodules can 
be flagged automatically, as can CT scans who lack suspicious nodules. 
 

 

Figure 12 Traditional bronchoscopic lung biopsy with 2D fluoroscopy 

To cope with the increasing number of smaller, more peripheral, biopsies, 
interventional pulmonologists need assistance to increase the diagnostic yield (the 
ability to obtain a diagnostic tissue sample) while reducing procedure time.  
 
These smaller peripheral nodules are often not ‘fluoro-visible’ (that is, they cannot be 
seen in 2D fluoroscopy X-ray imaging), are beyond the reach and vision of the 
bronchoscope, and may be in parts of the lung which are hard to reach (upper 
segments) or in parts of the lung which move a lot with breathing (lower segments, just 
above the diaphragm).  
Without additional means to see the lesion, the biopsy device, and their relative 
positions, pulmonologists struggle to successfully obtain tissue from the suspicious 
nodule.  
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Advanced endobronchial navigations systems (EBN) track the biopsy device, and 
provide real-time feedback on the device position during navigation, using a pre-
operative CT scan as reference. Use of EBN alone is associated with a modest 
increase in DY (from 50% to 70%). However, EBN systems are unable to see the 
lesion, and suffer when the patient’s lungs are deformed differently on the table during 
the biopsy than on the CT couch during pre-op CT imaging. 
 
Three-dimensional cone-beam CT imaging systems are able to show the biopsy 
device and lesion and their relative positions in the lung. The lesion position may be 
overlaid on live fluoroscopy as a target (augmented fluoroscopy). Use of CBCT is 
associated with large increase in DY (to up to 90%).  
The use of cone beam CT systems does present a significant learning curve for 
pulmonologists, though.  
 
Endo-bronchial robotics support the pulmonologist with navigation and steerability, 
making it easier to navigate the catheter into hard-to-reach peripheral areas of the 
lung. Use of robotics alone is associated with a modest increase in DY (from 50% to 
70%). Like EBN, robotics systems also are unable to see the lesion, and suffer from 
CT-to-body divergence. 
 
 
In order to adopt ‘less invasive treatments’, more accurate anatomical information and 
planning and guidance software are required.  
To enable these smaller resections, more accurate information about the lung 
(fissures, vasculature) needs to be made available during the surgery. This requires 
both improved (AI-based) segmentation algorithms to extract detailed anatomic 
information from pre-op images. And a translation of the anatomic information to 
patient on the table during the intervention, where the lung might be collapsed and 
flipped. 
 

 

Figure 13 MW ablation via an endobronchial catheter (device in clinical trial) 

 
To enable adoption of novel endobronchial ablation devices, interventional 
pulmonologist need planning and guidance software to help them identify the ablation 
positions offering sufficient coverage of the lesion and margin, both on pre-op CT and 
on in-op CBCT. 
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2.3.4 Outcomes and project results 

The project has focused on improving the workflow and guidance in peripheral lung 
biopsies, and on improving automatic analysis of lung images in order to enable less-
invasive treatments. 
 
The improvements of the peripheral lung biopsy workflow have been realized in the 
form of a Philips investigational device which has been deployed and is being 
evaluated as part of a Philips sponsored clinical trial (still ongoing).  
 
The improvements in automated analysis of the lung have been realized as a large 
part as new and improved functions as part of the LungQ 3.0 software, with CE and 
FDA clearance, announced May 2024. 
 
The next sections provide more detail on both improvements.  
 
Improvements of the peripheral lung biopsy workflow 
Philips developed an investigational device of navigation software for lung biopsies. 
This investigational device was created for evaluation in a Philips sponsored clinical 
trial together with the RadboudUMC Nijmegen pulmonology team of prof. dr. Erik van 
der Heijden. 
 
Early on in the design, the role of the pre-op CT scan and of a detailed airway tree 
extracted from the scan was identified. In cooperation with Thirona, Thirona’s 
automatic airway segmentation algorithm was tuned for lung biopsy planning, and 
integrated in Philips navigation software. 
 
In the clinical trial of the navigation software, an interim evaluation was performed after 
the first 13 procedures, identifying successful improvements as well as limitations: 
- Successful features 

o Airway segmentation on CT, and availability of the airway tree when 
navigating on CBCT 

o Catheter detection 
o Low dose confirmation scans 

- Limitations 
o Mismatch between actual tasks and task structure in the navigation 

software 
o CT- CBCT registration 

 
The second iteration of the investigational device has been developed to address the 
limitations.  
In the paragraphs below, we explain the improvements realized in by comparing the 
prior imaging workflow in these lung biopsy procedures, and the new imaging workflow 
as enabled by the investigational device. 
 
Improvements of the peripheral lung biopsy workflow – prior workflow 
The prior workflow for lung biopsies had already adopted 3D intra-procedural imaging 
for ‘tool-in-lesion’ confirmation, but heavily relied on manual inspection and 
interpretation of 3D scans to plan navigation and of mental mapping of that navigation 
information.  
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This is illustrated in Figure 14: ahead to the biopsy procedure, the interventional 
pulmonologist inspects the most recent high resolution CT volume, ‘manually’ 
scanning for airway paths that are near and leading towards the nodule. The 
pulmonologist memorizes the turns to make with a bronchoscope and biopsy catheter 
to arrive near the nodule. 
Early in the biopsy procedure, the interventional pulmonologist acquires a CBCT 
volume of the patient. This volume will clearly depict the target nodule to be biopsied, 
and the pulmonologist will mark this target. After marking the target, this target can be 
projected on top of the live fluoroscopy images for all C-arm angles. 
The interventional pulmonologist will navigate the bronchoscope and catheter near the 
nodule using fluoroscopy with the nodule being displayed on the overlay, mentally 
combining this with the memorized airway tree and navigation plan. To either confirm 
that the catheter is in the nodule, or to determine adjustments (moving the catheter 
forward, backward, or into another airway), an CBCT volumes is acquired and 
inspected. Any navigation corrections resulting from that inspection are again 
memorized and used to bring the biopsy catheter closer to the target nodule.  
This navigation is both time consuming and more error prone because the airways are 
not visible on X-ray fluoroscopy. 
Finally, when the catheter is in the nodule, biopsies are performed under fluoroscopy. 
 

 

Figure 14 Illustration of the prior imaging workflow for peripheral lung biopsy 

 
 
Improvements of the peripheral lung biopsy workflow – current workflow 
In the proposed current workflow, as being evaluated in the clinical trial, the pre-
procedural CT scan is analysed to segment the airway tree, by means of Thirona’s 
airway segmentation algorithm. As soon as the interventional pulmonologist indicates 
the target nodule, the planning software will propose paths through the segmented 
airway trees that run close and towards the target lesion. This provides the 
interventional pulmonologist a visualization of potential airway paths to the nodule, 
and fly-through virtual bronchoscopy views to prepare for the procedure. The ability to 
prepare the procedure in the physician’s office instead of in the exam room enables 
more efficient use of the exam room. 
 
 



 
 

 <Public> 15/09/2024 

ASSIST 

ITEA 20044 

WP7 Deliverable D7.3 

Page 38 of 63 

 

 
 
Early in the procedure, a 3D CBCT scan is acquired. The planning software supports 
registration of the pre-op CT scan to the CBCT scan, such that the nodule, airway tree 
and chosen paths are transferred to the CBCT scan. This information is now available 
for viewing, editing and for overlay on X-ray fluoroscopy, assisting the interventional 
pulmonologist with navigation, where now the chosen path through the airway tree 
and bifurcations along this path are being shown as an overlay on X-ray fluoroscopy. 
The planning software also supports the pulmonologist with confirmation scans in two 
ways: 
- Biopsy catheters are detected, and the tip to nodule distance is indicated 

automatically, reducing the need for the pulmonologist to perform manual image 
analysis and 3D measurements; 

- Low dose 3D confirmation acquisitions that reduce X-ray dose by being tuned to 
just highlight the biopsy device, with the lesion being registered from the prior 
normal dose CBCT scan. The aim is to lower the threshold to acquire 3D 
confirmation scans, as these scans clearly answer whether the tool is in the lesion.  

Together, these improvements aid the interventional pulmonologist in successfully 
taking biopsies of the challenging small peripheral nodules, and make these 
procedures accessible to a larger group of interventional pulmonologists. 
 
Improvements of the peripheral lung biopsy workflow – airway tree 
segmentation 
Philips cooperated with Thirona to incorporate Thirona’s airway tree segmentation 
algorithm in Philips planning and navigation software for interventional pulmonology 
procedures. Thirona tuned their airway tree segmentation algorithm towards the 
specific needs of endobronchial biopsy procedures, where airway tree bifurcations are 
more important than airway segment length. 
 
During the midpoint evaluation in the clinical trial, the performance of the airway tree 
segmentation was rated as follows: 
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Figure 15 Performance of the airway segmentation on CT scans was found to always 
identify airways into the nodule (if there was one), to and to segment the smallest airways 
within 2cm of the pleura in nearly 50% of the cases. 

 
Improvements of the peripheral lung biopsy workflow – catheter detection 
The Philips planner’s ability to segment the biopsy catheter proved popular, as it 
enables automatic 3D distance measurements towards the nodule, and serves are 
reference point of the prior catheter position on the overlay during X-ray fluoroscopy. 
The pulmonologist often took the effort to insert an X-ray opaque biopsy tool in the 
X-ray transparent hollow Medtronic Edge catheter with the purpose of enabling 
automatic segmentation.  
 

 

Figure 16 Feedback on biopsy catheter detection 

 

Improvements of the peripheral lung biopsy workflow – low dose confirmation 
scans 
Philips implemented novel type of low dose 3D confirmation scans where dose is 
reduced such that solely the biopsy catheter and major anatomical structures remain 
visible. When combined with a prior normal dose CBCT, 3D confirmation is facilitated 
at a fraction of the patient dose of a normal CBCT. 
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These low dose 3D confirmation scans did lead to the same decision (to reposition the 
catheter or to start biopsies) as a normal CBCT with the exception of very faint 
suspicious nodules (‘ground glass opacity’ (GGO) nodules). 
 
The potential reduction in patient dose amounts to 39%. 

 

Figure 17 Extrapolated patient dose reduction when using the low dose (‘FluoroSweep’) 
confirmation scans instead of normal, 50% collimated, CBCTs 

 

The improvements described above assist in dealing with an increase in peripheral 
biopsies, by making the required technology and data more accessible to the 
interventional pulmonologist. 
 
 
Improvements in automated analysis of the lung 
Automatic and advanced lung image analysis is key for current and future 
bronchoscopic and surgical applications. A successful bronchoscopic peripheral lung 
biopsy or treatment procedure relies on robust hardware and software components. 
This enables treating physicians to access crucial information and reduce the cognitive 
load of 2D to 3D translation. For bronchoscopic interventions, Thirona mainly focused 
on AI-based airway segmentation and vascular segmentation algorithms. 
 
In addition, after malignancy confirmation by biopsy, resection of the cancerous tissue 
is a surgical intervention for treating lung cancer. Segmentectomy is becoming an 
important surgical option for treating early-stage lung cancer. It removes the 
cancerous lung segment while preserving more healthy lung tissue compared to a 
lobectomy. Planning of a segmentectomy requires advanced anatomical information 
as compared to traditional surgical options. For this application, Thirona mainly 
focused on the identification of the anatomical segmental airway and parenchymal 
boundaries; and the identification of the pulmonary arteries and veins. Because of the 
high patient-to-patient anatomical variability, AI-based algorithms are a crucial 
component for successful planning of the procedure 
 
Improved made to the algorithms have been included as part of the Thirona’s LungQ 
3.0.0 software release, which was CE and FDA cleared. 
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The performance of the following innovations were improved: 
 
Improvements in airway segmentation and segmental airway labeling 
A reliable and robust airways segmentation is a basis for many procedures. The 
algorithm needs to be highly specific while keeping a good sensitivity. The 
performance of the automatic airway segmentation in LungQ 3.0.0 was further 
improved compared to prior version of LungQ. The improvements successfully 
outperformed the prior version, both in sensitivity in peripheral regions as in 
robustness in difficult cases. (Note that the an earlier improved version was used in 
the Philips investigational device described above.) Segmental airway labelling 
additional helps to lower cognitive load as it provide anatomical meaning to an 
otherwise binary airway tree. Using advanced AI-based technology, the target 
of >90% accuracy was achieved and deployed in LungQ v3.0.0. The algorithm 
showed to have a very high accuracy in normal cases (e.g. with complete anatomical 
airways and little anatomical airway variation), but also showed high performance in 
more difficult cases e.g. with lobectomy or abnormal airway anatomy.  
 
 
Improvements in automatic pulmonary segment segmentation  
Identification of the pulmonary segmental boundaries is a difficult challenge since, 
opposite to the lobar boundaries, no physical boundary is visible on CT. Nevertheless, 
identification of this segmental border is a key driver to decide whether a surgical 
resection can be limited to a less invasive and lung sparing single segment resection. 
An automated segment segmentation algorithm was successfully developed and 
deployed in LungQ version 3.0.0, showing a performance close to the human 
reference.  
 

 

Figure 18 Automatically segmented pulmonary Segments (in color) in relation to malignant 
lesion. 
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Improvements in automatic Pulmonary artery and vein segmentation 
Segmentation of the pulmonary vessel tree in arteries and veins has a range of 
applications. The current focus is on assisting trans-parenchymal path generation 
during bronchoscopic interventions and supporting surgical segmentectomy.  
 
 

 

Figure 19 Segmentation of the pulmonary vessel tree in arteries (blue) and veins (red) 

Algorithm improvements in the segmentation of pulmonary arteries and veins have 
resulted in crisper segmentations, fewer artery-vein false positives, and less over-
segmentation of the vessel tree. These updates were deployed in LungQ v3.0.0. 

 
v1.0.0 

 
v2.0.0 

Figure 20 Improvements in algorithm v2.0 (LungQ v3.0.0) for the segmentation of pulmonary 
arteries and veins: crisper segmentations, fewer artery-vein false positives, and less over-
segmentation  

 
In summary, Thirona realized: 

▪ High performing automatic airway segmentation and segmental airway labeling 
▪ High performing automatic segmentation of the pulmonary segmental 

boundaries 
▪ High performing automatic pulmonary artery-vein segmentation 

 
The availability of more accurate analysis of lung CT scans as achieved by Thirona 
aids in adoption of less invasive treatments. 
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2.4 Hepato Pancreato Billiary oncology (HPB) 

Owner: LUMC – Jouke Dijkstra 

2.4.1 Introduction 

Pancreatic cancer is 4th leading cause of cancer death in the United States. 
Prognosis is very poor with median survival of < 6 month in advanced cases. Upon 
diagnosis, the disease is associated with a 5-year survival rate ~10%. Surgical 
resection is the only curative option with an associated 5-year survival rate of up to 20-
30% depending on the tumor size. However, discriminating between malignant and 
benign tissue can be challenging, especially after neoadjuvant treatment due to 
therapy induced fibrosis (TIF). In the same anatomical region cholangiocarcinomas 
arising from the epithelial lining of the biliary tree, are more rarely seen, they account 
for around 2% of all malignancies. They belong to a cluster of highly heterogeneous 
biliary malignant tumors that can arise at any point of the biliary tree. 
Cholangiocarcinomas are categorized according to anatomical location as intrahepatic 
(iCCA), perihilar (pCCA), or distal (dCCA). pCCA and dCCA can also be collectively 
referred to as ‘extrahepatic’ (eCCA). Prognosis, like in pancreatic cancer is very poor, 
due to silent presentation with advanced disease. Median survival was 10 months 
unrelated of stage of disease and  with a 1-year and 5-year survival rate of 46% and 
11%, respectively. As well as in pancreatic cancer complete surgical resection is the 
only possible curative option. Hence, the related anatomical location and 
morphological composition of extrahepatic cholangiocarcinomas (eCCA) and 
pancreatic (head) cancer, this is an interesting field of research for fluoresce guided 
surgery with tumor targeted fluorophores.  
Currently, enhancing contrast of structures using near-infrared (NIR) fluorescence is a 
technique under development. It can provide accurate and real-time visualization of 
tumors during surgery. Fluorescent agents are intravenously administered and 
specifically bind to malignant cells or tumor-associated tissue, such as neoangiogenic 
vessels or stroma, and emit light in the invisible, near-infrared spectrum (i.e. 700-900 
nm). Using a dedicated fluorescence imaging system, contrast of tumors relative to 
their background can be improved, which allows real-time image-guided surgery and 
improve complete resection rates. cRGD-ZW800-1 is a fluorescent contrast agent that 
specifically binds to integrins associated with neo-angiogenesis. It is a cyclic 
pentapeptide (cRGD) conjugated to the 800 nm NIR fluorophore ZW800-1. The cyclic 
3-amino acid sequence (RGD) is clinically a well-known peptide that binds to various 
integrins (αvβ1, αVβ3, αvβ5, αvβ6, αvβ8, α5β1, α8β1 and αIIbβ3), mostly associated 
with neo-angiogenesis. Tumors larger than 1-2 mm depend on the formation of new 
blood vessels to acquire sufficient amounts of oxygen and nutrients. Some of these 
integrins are overexpressed on malignant cells and in tumor stroma, such as in breast, 
colorectal, pancreas and lung cancer. cRGD-ZW800-1 has successfully been used in 
colorectal cancer patients, identifying colorectal cancer during oncologic resection. 
Other RGD based molecules have been investigated in various phase I and phase II 
imaging studies using PET and SPECT and in a phase III study as an anticancer 
therapy (cilengitide). Recently, our group has initiated a phase II clinical trial 
investigating the application of a cRGD targeted PET tracer (18F-Fluciclatide) in the 
response monitoring of pancreatic cancer. 
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Figure 21 (Siegel, 2021) 

 

2.4.2 Clinical state of the art 

The diagnostic workup for PDAC typically consists of a combination of CT for staging 
and endoscopic ultrasound with fine needle aspiration (EUS-FNA) or biopsy or 
endoscopic retrograde cholangiopancreatography (ERCP) to obtain histological 
confirmation of disease. Recently, magnetic resonance imaging (MRI) has gained 
ground for the primary evaluation of local disease stage and vascular encasement by 
tumor tissue, as well as the characterization of distant metastases, especially in the 
peritoneal cavity and liver. The role of 18F-FDG positron emission tomography (PET) 
combined with computed tomography (PET/CT) in the workup of pancreatic cancer 
remains controversial. The National Comprehensive Cancer Network (NCCN) 
consensus guideline states that FDG-PET/CT may be used per institutional 
preference; although, it is not a substitute for high-quality contrast-enhanced CT (ce-
CT). The European Society for Medical Oncology (ESMO) states likewise and says 
the role of PET/CT should be further clarified. The individual treatment plan is based 
on various clinical and radiological parameters, including tumor stage, the presence of 
metastatic disease, the extent of tumor invasion into major blood vessels, and the 
patient’s physical condition. 
Determination of resectability of a pancreatic tumor with clear surgical margins is 
crucial, as only complete surgical resection of the tumor can provide curative-intent 
treatment. Constantly developing surgical techniques (e.g., robot-assisted surgery) 
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and the clinical introduction of (neo)adjuvant therapy have significantly improved 
patient outcomes in the past decade, resulting in a 30–40% five-year OS after 
complete (R0) tumor resection, compared to 17.4% in 2011. The incomplete surgical 
resection rates (R1 or up) vary enormously in the available literature, between 20 and 
70% of all pancreatic resections for malignant disease show positive surgical margins, 
which dramatically increase the rate of local and early recurrence of pancreatic 
cancer. Aiming to increase the number of patients eligible for curative-intent resection 
and to further optimize surgical outcome, the combination of neoadjuvant induction 
therapy and adjuvant treatment has been under clinical investigation in the past years. 
There are currently two combinations recommended as first-line (neo)adjuvant 
treatment regimens by the NCCN and ESMO: (modified) FOLFIRINOX (Folic acid, 5-
Fluoruracil, Irinotecan, and Oxaliplatin) or gemcitabine plus nab-paclitaxel, the last is 
often combined with radiation therapy. Since individual patient health status and 
morbidity highly influence the ability to receive (neo)adjuvant treatment, most well-
considered multidisciplinary recommendations for duration and intensity of treatment 
are made within these standardized regimens or ongoing clinical trials for individual 
patients. 
Focusing on neoadjuvant therapy (NT), the most clinical benefit could be gained within 
the borderline resectable and locally advanced patients; however, a standardized role 
in primary resectable disease should also be considered. NT aims to slow disease 
progression, decrease tumor volume and local extensiveness, as well as eradication 
of potentially ‘occult’ micrometastases. NT, on one side, provides an extended time-
window to detect rapid progressive disease, thereby potentially avoiding futile 
surgeries. On the other side, it provides a way to increase the eligibility for curative-
intent resection, raise the percentage of radical resections (R0) and improve the 
surgical outcome. The advantages of NT are underlined by the results of the recently 
published PREOPANC-1 trial. This trial compared clinical outcome and survival data 
of postoperative patients with resectable and borderline resectable disease who had 
received neoadjuvant or adjuvant therapy. Results showed improved survival and 
higher complete surgical resection (R0) rates in the neoadjuvant therapy arm, with a 
30% increase in R0 resections (71% vs. 40%) and a 2-month prolonged median 
survival (16 vs. 14 months) [18]. More recently, the recruitment of patients for its 
successor, the PREOPANC-II trial (NTR7292) was completed. In this trial neoadjuvant 
treatment with FOLFIRINOX was compared to neoadjuvant Gemcitabine-
Radiotherapy followed by adjuvant Gemcitabine in patients with (borderline) 
resectable disease. 
To date, accurate assessment of response to (neo)adjuvant treatment remains 
challenging, which is a crucial step in re-staging and determination of resectability. 
Currently, treatment response is monitored with CT-imaging, which is evaluated by 
radiologists using the internationally standardized RECIST 1.1 criteria. These criteria 
focus on a percentual change in tumor dimensions (longest diameter), which are used 
to determine therapy response: a complete response (CR), partial response (PR), 
progressive disease (PD), or stable disease (SD). Although the role of this approach 
for assessment of response is limited, besides overestimation of tumor size on CT, the 
change in tumor attenuation is of limited value in the prediction of resectability, due to 
the inability to differentiate treatment-related necrosis, therapy-induced fibrosis (TIF), 
and tumor-associated pancreatitis (TAP) from residual vital tumor tissue in the 
pancreas. Cassinotto et al. concluded ce-CT lacks the sensitivity and performance for 
accurately monitoring treatment response, showing that the diagnostic performance of 
ce-CT to predict resectability decreased after neoadjuvant treatment (58% vs. 83%). 
Ferrone et al. showed similar results, stating that ce-CT after FOLFIRINOX treatment 
no longer adequately predicts resectability of the tumor. These results underline the 
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need for improved imaging methods for assessment of therapy response, since this is 
pivotal for accurate (re)staging and determination of tumor resectability. In addition to 
conventional CT-imaging, molecular-based FDG-PET/CT-imaging has been evaluated 
for monitoring of (neo)adjuvant treatment response in various malignancies, including 
PDAC. Despite some favorable results, the main disadvantage of FDG-based 
PET/CT-imaging of pancreatic tissue is the increased uptake seen in TAP, 
complicating adequate differentiation between the remaining tumor and adjacent 
benign tissue. Molecular-targeted tumor imaging has the potential to overcome these 
challenges by selectively targeting tumor biomarkers overexpressed on or in close 
proximity to PDAC cells, resulting in high tumor-specific signals with minimal 
background accumulation in surrounding normal tissue. 
Following induction treatment and restaging, the next vital steps for curative intent 
resection are: intraoperative visualization and delineation of the tumor to its anatomical 
demarcations and relations with vital structures, identification of suspect tumor-
containing lymph nodes, as well as assessment of the surgical margins for residual 
vital tumor. However, the complex and heterogeneous tumor characteristics of PDAC 
with its extensive desmoplastic reaction and locoregional changes resulting from NT 
as well as its retroperitoneally anatomical location make this very challenging. Near-
infrared fluorescence (NIRF) imaging, also called fluorescence-guided surgery (FGS), 
a novel technique, can offer a solution by providing real-time intraoperative guidance 
by enhancing visual contrast for localization of the tumor and discrimination between 
malignant and benign tissue. FGS uses a fluorescent dye conjugated to a molecular 
tracer designed to bind specific molecular features on (tumor)-target cells (i.e., tumor 
tissue, tumor stroma, etc.). Aiding a surgeon with a tool that enhances intraoperative 
surgical navigation to detect tumor, lymph node, and metastatic deposits in real-time, 
might eventually result in fewer incomplete surgical resections (R1) and improve 
surgical outcome and OS in the near future. 
Multiple molecular targets, or biomarkers, expressed by PDAC, have been identified in 
previous studies. These biomarkers form the basis for tumor-targeted nuclear and 
fluorescence imaging in various malignancies, including PDAC. Molecular imaging of 
oncological targets has been of particular interest in the past decade: multiple 
(pre)clinical trials have shown promising results for PDAC-targeted PET/CT and NIR-
imaging, for diagnostic as well as therapeutic purposes. 
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Figure 22 (van Dam, 2021) 

 

2.4.3 Workflow inefficiencies and bottlenecks 

• Quality of the scans for tumor delineation: 
o As described previously both CT and MR imaging have limited value in 

assessing vascular involvement. Therefore patients are incorrectly 
deemed irresectable; 

• Accuracy of assessment of distant and nodal metastases for treatment 
planning: 

o MR imaging is more sensitive for the detection of liver metastases, 
however, CT imaging has shown to be superior to MR imaging in the 
detection of nodal metastases; 

• The complexity of correct restaging after neoadjuvant chemotherapy which is 
important for selection of optimal treatment option: 

o Differentiation between fibrosis and malignant tissue is challenging after 
neoadjuvant chemotherapy; 

• Interpretation of 2-dimensional scans remains challenging, especially in 
determining the circular involvement of the vital blood vessels surrounding the 
pancreas, i.e. mesenteric superior vein, mesenteric superior artery, celiac 
artery and the portal vein: 

o Creating VR or AR 3D models of preoperative imaging may lead to 
more accurate planning and surgery; 

• Co-registration of preoperative imaging with intraoperative ultrasonography: 
o Due to breathing and subsequent deformation of the organ this remains 

challenging; 
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• The challenge of determining known lesions in follow-up images, for monitoring 
purposes: 

o Early tumor recurrence may be hard to identify on current anatomical 
imaging modalities such as CT and MR imaging. Therefore, combining 
several imaging techniques could increase sensitivity and specificity for 
the detection of residual disease and early recurrence; 

• The limitations of RECIST tumor evaluation: 
o CT and MR imaging have several limitations, therefore the addition of 

PET-CT may be of significant value to more accurately assess tumor’s 
response to neoadjuvant chemotherapy. 

 

2.4.4 Outcomes and project results 

 
The partners of HPB use case have mainly focused on the automatic segmentation 
and fusion of different medical image modalities to create 3D anatomical models to be 
able to 1) improve planning of surgical liver resection, 2) improve diagnostic 
interpretation of scans, 3) be able to detect early pancreatic tumor recurrence, 4) 
assess the vascular involvement of pancreatic tumors, 5) improve the planning and 
placement of liver ablation needles. The developed methods of each partner are 
combined and implemented for the resection of pancreatic tumors and the resection or 
ablation of liver tumors.  
 
The bullet points mentioned in 2.4.3 concerning the quality of the scans (1); accuracy 
of assessment of distant and nodal metastases for treatment planning (2): 
interpretation of 2-dimensional scans (4); and the challenge of determining known 
lesions in follow-up images, for monitoring purposes (6) are mainly covered in an 
application which has been developed during the ASSIST project. The application can 
perform organ segmentation, blood vessel segmentation and tumor segmentation. 
Different modalities can be used as input (CT and MRI) and modalities can be 
combined with each other; different scan from the same time point, but also scan from 
different time points to combine information. The output from this software is used to 
create 3D models which can be combined with AR and VR. Currently the LUMC, 
submitted the software for approval to use the software in-house use for clinical 
patients.  
Next also the co-registration of preoperative imaging with intraoperative 
ultrasonography (5) has been investigated. 
 
The correct restaging after neoadjuvant chemotherapy (3) could not be worked on due 
to the absence of ground truth data. Fusing the data from histology with CT/MR data 
was too challenging due to the very deformable nature of this tumor tissue. Also the    
RECIST tumor evaluation could not be done due to the absence of PET data. No 
suitable PET tracer was available for this task. 
 
 
Deep learning segmentation 
A robust approach in multimodality fusion is to isolate the organ of interest such as the 
liver and pancreas. This could be achieved by manual tracing but deep learning 
models were developed for the automatic delineation of both organs. 
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Quantib and the LUMC jointly created a deep learning model for the automatic 
segmentation of the liver using federated learning. The liver is automatically delineated 

in a scan with contrast in the arterial tree and a scan with contrast in both the hepatic 
and portal venous trees to create a region-of-interest. An automatic co-registration 
algorithm uses these regions to automatically fuse the models of the vascular trees 
into one 3D model used to plan surgical liver resection. This model shows the distance 
between the tumor demarcations with respect to the vascular trees. A novel deep 
learning model was designed for the automatic detection of a vascular tree in the liver 
(Figure 23). 
 
Similarly, deep learning models were developed to automatically delineate the 
pancreas in CT data and on MR imaging sequences using a continuous learning 
pipeline. The model improved its detection with each iteration (Table 1). 

Table 1: Improvements in the continuous learning model for pancreas segmentation. 

Continuous learning Batch 1 Batch 2 Batch 3 

Model 0 0.810 0.729 0.710 

Model 0 pre-trained 0.822 0.783 0.716 

Model 1 - 0.86 0.848 

Model 2 - - 0.882 
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Figure 23: (a) Comparison of different methods for vascular tree detection. (b) 
Different iterations in the tree detection process using a diffusion model. 
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The final model was used again to delineate the pancreas in 3D in MR data and fuse a 
CT scan with the MR scan of the same patient for a combined visualization of tumor 
location and delineation (Figure 24). 

 
The same fusion approach can be used to combine baseline and follow-up MR scans 
for easier identification of early tumor recurrence. 
 
Vascular involvement 
The multimodality fusion of the preoperative scans improves interpretation but more 
detailed measurements could be obtained from a 3D model. The automatic pancreas 
delineations are used to create 3D surface models of the target organs such as the 
liver, pancreas but also the vascular structures. These models are used to quantify the 
circular involvement of blood vessels surrounding the pancreas (Figure 25). These 
quantifications are crucial for determining the resectability of a pancreas tumor as 
described in the guidelines from the Dutch Pancreatic Cancer Group. 
Experiments were conducted to measure the effects of using a stereoscopic medical 
display from Barco to support surgical resection planning. There were no significant 
differences between using a monoscopic and stereoscopic view of the 3D model but 
there was a strong preference of the surgeons for using the stereoscopic view. 

Figure 24: Image fusion of a MR scan (top row) and a CT scan (bottom row) in which 
an overlay (cyan) of the pancreas is projected on top of the other modality. 
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Liver ablation 
The treatment of primary and secondary liver metastases can be performed by a 
thermal ablation procedure in which a needle is inserted to heat and destruct tumor 
tissue. The planning and placement of a needle requires a lot of experience to avoid 
nearby vascular structures. A virtual environment was made by Lifelike in which the 
3D surface models of the liver, vascular structures and other relevant anatomical 
structures an integrated in order to simulate a needle placement procedure. 
Additionally, the needle planning software from the LUMC provided the actual final 
needle locations for the three target tumors (Figure 27). 
This virtual environment was extended with a haptic feedback device from the 
University of Twente to create a more realistic experience when guiding the needle 
into the target tumor. The haptic device simulates the puncture of skin, liver 
parenchyma and tumor to approximate the real procedure. 
 
Unlike in a static virtual simulation, breathing motion could prevent accurate insertion 
and placement of an ablation needle. A deep learning motion model was trained to 
capture the movements of the chest of a patient and correct for the location of 
insertion. Furthermore, ultrasound image navigation is used to verify if the needle has 
reached the target tumor. These images can be simulated using the respiratory motion 
model and used as surrogate signal to accurately predict the current location of the 
liver (Figure 26). 
 
 

Figure 25: 3D model of the vascular involvement of a pancreas (transparent cyan) tumor (red). 
The distance between the tumor and vasculature is color-coded on the vessel. Green: >4 cm, 
yellow: 3-4 cm, and orange: 0-3 cm. 
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a) b) c) 

Figure 26: Needle placement is image guided by a) ultrasound images in which a b) liver 
mask has to be detected. A deep learning model is also able to predict this liver mask c) 
from a personalized breathing motion model. 

Figure 27: A virtual environment to simulate three needle placements to treat 
three tumors (yellow). With the vascular structures (blue and pink) within the 
liver (brown). 
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2.5 Prostate enlargement 

Owner: Fortearge – Serdar Sultanoglu / Mustafa Kemal 

2.5.1 Introduction 

Prostate enlargement, also called Benign prostatic hyperplasia (BPH), is a 
noncancerous increase in size of the prostate gland. (BPH), proliferation of the 
glandular and stromal tissue in the transition zone of the prostate, results in lower 
urinary tract symptoms (LUTS) and bladder outlet obstruction.  

 

Figure 28 Normal vs Enlarged Prostate (A1, 2014) 

The prevalence increases with age and 25% of men older than 70 years old have 
moderate to severe LUTS that effect their quality of life (QoL). About 105 million men 
are affected by BPH globally. It typically begins after the age of 40. Half of males age 
50 and over are affected. After the age of 80 about 90% of males are affected.  
 
A wide variety of medical and surgical options are available for the management of 
BPH with LUTS. In patients with moderate to severe LUTS refractory to medical 
management more invasive treatments are considered. Transurethral resection of the 
prostate (TURP) and open prostatectomy (OP) are the gold standard treatment 
methods for prostate glands of 30-80 cm3 and ≥ 80 cm3 respectively. However, these 
procedures have considerable morbidity rates including retrograde ejaculation, erectile 
dysfunction, urethral stricture, urinary retention, transfusion requirement and 
incontinence. Also in patients with existing comorbidities, increasing age and large 
prostate volume the complication rates are higher and hence the eligibility for surgical 
therapies are limited.  
The primary goal of BPH treatment is to prevent or reverse urinary complications by 
improving LUTS. 
Medical and surgical options are available; however, these procedures have 
considerable morbidity rates. Prostate artery embolization (PAE) has emerged as a 
minimal invasive treatment method which has a lower risk of urinary incontinence and 
sexual side effects. 
The PAE procedure involves intra-arterial delivery of embolic materials to block the 
blood vessels supplying the hypertrophied transitional zone in the prostate gland. 
In order for the PAE treatment to be successful, an in-depth analysis of the patient 
should be made before the procedure. In order for the procedure to be technically 
successful, accurate determination of the anatomy of the prostate arteries and 
adequate embolization of the target are required. This procedure should avoid non-
target embolization (NTE) to other tissues, soft tissue of the bladder and rectum and 
penis, and other critical structures in the pelvis. 
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2.5.2 Clinical state of the art 

Lifestyle changes and behavioural interventions are used to treat BPH in patients with 
mild symptoms. When the treatment does not work, medical means are used. Medical 
treatments that can be used to treat Alpha-blockers, 5-alpha reductase inhibitors, 
anticholinergics, and phosphodiesterase inhibitors include pills, injections, or patches. 
Many patients with BPH also have other health problems that make their LUTS worse. 
Some patients experience a series of serious adverse events, including irreversible 
sexual dysfunction, mood changes, and neurological and cognitive complaints that 
persist despite drug discontinuation. There are some limits to how much compliance 
people have with medical treatment, with 10% to 30% of people meeting treatment 
goals after one year. 25% of patients do not respond to medical treatment, especially 
those with major glands at baseline. Some medical treatments have little effect, 
making patients turn to surgery as their only recourse. This can be problematic 
because surgery is often less effective and can lead to bad side effects. (Gabr, 2021) 
 
Surgical treatments that have developed over time include steam thermotherapy, 
prostate urethral lift, prostate ablative treatments (for example, monopolar 
transurethral resection of the prostate [M-turp], bipolar transurethral resection of the 

prostate [B-turp], transurethral electrovaporisation of the prostate [Tuvp], 
photoselective evaporation of the prostate) [Pvp], Holmium laser laser simple 
prostatectomy plus enucleation of the prostate [Holep] and thulium laser enucleation 
of the prostate [Thulep]). Surgical treatments have limitations, such as the need for 
general anaesthesia, foley catheterization, and a high rate of postoperative sexual 
dysfunction. There is variability in the success rates of surgical treatments for prostate 
cancer, depending on the size of the prostate gland. (Gabr, 2021) 
A wide variety of medical and surgical options are available for the management of 
BPH with LUTS. In patients with moderate to severe LUTS refractory to medical 
management more invasive treatments are considered. Transurethral resection of the 
prostate (TURP) and open prostatectomy (OP) are the gold standard treatment 
methods for prostate glands of 30-80 cm3 and ≥ 80 cm3 respectively. However, these 
procedures have considerable morbidity rates including retrograde ejaculation, erectile 
dysfunction, urethral stricture, urinary retention, transfusion requirement and 
incontinence. Also in patients with existing comorbidities, increasing age and large 
prostate volume the complication rates are higher and hence the eligibility for surgical 
therapies are limited. 
Prostate artery embolization (PAE) has emerged as a minimal invasive treatment 
method for the management of LUTS attributed to BPH. Although in the literature 
many data consisting of retrospective cohorts and few prospective studies exist, PAE 
has still not found its place in urological guidelines. FDA at the US recently approved 
PAE as an alternative treatment for LUTS related to BPH. 
When considering PAE the technique is the challenging part requiring experience in 
recognizing prostatic arteries and avoiding non target embolization. As male internal 
iliac anatomy is prone to variations so are prostatic arteries which they can vary in 
origins, number. Besides, usually during treatment, cone beam CT is required 
especially with less experienced operators/angiographers. Many different protocols 
exist among centers for workup before the procedure to recognize and plan treatment 
including pre-operative CT imaging, MR imaging or no pre-imaging at all. 
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Figure 29 Variations in prostatic arteries 

Pre-treatment non-contrast CT usually contributes little to the evaluation of prostate 
gland ultrasound or MRI. However, some clinicians wish to obtain a preprocedural 
computed tomography angiogram (CTA) to assess the extent of iliofemoral 
atherosclerosis and prostate artery anatomy to plan treatment. The reason is the data 
obtained that this technique will reduce the procedure time. 

Pre-treatment computed tomography angiography is an imaging technique that can 
help identify prostate arteries and help plan prostate-artery embolization (PAE). The 
specificity of artery identification may decrease by 59% because of imaging 
protocols/parameters. A higher sensitivity to the magnetic resonance-inflationary pulse 
was found. (Carnevale FC, 2020) To identify the vascular patterns, an arterial CT 
angiography scan could be performed (2 mL/sec, with 4-6 seconds delay). Careful 
analysis of proximal cone-beam computed tomography (CBCT) datasets can identify 
arteries feeding the gland and other nontarget vessels. Segmentation of the pelvic and 
prostate vasculature and arteries of interest, both gland feeders and nontarget 
vessels, allows creating a 3D model that can be used for advanced guidance. 
(Carnevale FC, 2020)To identify the vascular patterns, an arterial CT angiography 
scan could be performed (2 mL/sec, with 4-6 seconds delay).  

Other most common tool in cone-beam CT angiography which is obtained during the 
DSA for PAE. So, the patient is already on the table for PAE and CBCT is used as a 
complimentary imaging tool to identify the prostatic artery or other non-target branches 
Careful analysis of proximal cone-beam computed tomography (CBCT) datasets can 
identify arteries feeding the gland and other nontarget vessels.  

Segmentation of the pelvic and prostate vasculature and arteries of interest, both 
gland feeders and nontarget vessels, allows creating a 3D model that can be used for 
advanced guidance. (Carnevale FC, 2020) 
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Figure 30 A 3D reconstruction model of the left internal iliac artery branches was automatically 
segmented. The prostate artery and catheterization path are highlighted in green. (Carnevale 

FC, 2020) 

Virtual 3D anatomical data can be obtained using augmented reality and AI-based CT, 
CBCT or MRI. This is the fusion of real-world 2D visual images, creating a virtual 
device trajectory superimposed on the visual surface anatomy. Theoretically, accurate 
navigation can be achieved without the need for fluoroscopy. (Gurgitano M, 2021) 

Thanks to the integrated matching AI software, automatic landmark recognition and 
motion compensation can be enabled using reference markers linked by a computer 
algorithm. This system can be applied in lesion targeting/localization, spinal/paraspinal 
injections, arthrograms, tumour ablation, bone biopsies and more recently minimally 
invasive surgical procedures. (Gurgitano M, 2021) 

2.5.3 Workflow inefficiencies and bottlenecks 

 

• Complexity of the technique 
o When considering PAE, the challenging part in this technique requires 

experience in recognizing prostatic arteries and avoiding non target 
embolization. As male internal iliac anatomy is prone to variations so 
are prostatic arteries which they can vary in origins, number.  

o Non-target embolization is a potential drawback of the procedure. 

• Need for expensive medical devices 
o Pretreatment CTA is more accessible  
o Usually during treatment, cone beam CT is required especially with less 

experienced operators/angiographers. Although not every IR has it with 
angio units, it is becoming a must have tool with DSA in the last 10 
years. 

• Longer operation time 
o The shorter the operation time, the higher the patient satisfaction. 

During the procedure, the physician's time to find the target artery 
increases the operation time. 
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• Excess radiation exposure 
o Since automatic artery identification cannot be performed in the current 

situation, the patient is examined with more imaging techniques. 

• The clinician should combine many data before the procedure 
o While making a diagnosis, many tests applied to the patient should be 

combined and understood by the clinician. This is a difficult procedure 
for the clinician. If the clinician is given the fusion of all image data, it 
becomes easier for the clinician to diagnose and plan treatment. 

• Late diagnosis 
o The clinician's difficulty in combining many data affects the time to 

diagnosis. Early diagnosis is extremely important in terms of planning 
the treatment process of the patient. 

• Experienced physician requirement 
o Prostatic Artery Embolization is a difficult process, so it is not possible 

for all clinicians to perform it. Due to the difficulties mentioned in the 
previous articles before and after the treatment, experienced doctors 
are expected to perform the treatment. 

 

2.5.4 Outcomes and project results 

The Vascular Navigation Assistant System (V-NAS) has been designed to transform 
prostate artery embolization (PAE) into a more accurate, efficient, and accessible 
procedure. Through real-time image processing, V-NAS minimizes radiation exposure 
and contrast agent use while enhancing procedural precision, ultimately improving 
outcomes for patients with benign prostatic hyperplasia (BPH). 
 
General Objectives and Goals 
The primary objective of this project is to improve the safety and effectiveness of PAE, 
a minimally invasive treatment for BPH. V-NAS aims to assist physicians in navigating 
the complex vascular anatomy required for embolizing the prostatic artery by providing 
real-time guidance. This system minimizes the need for repeated imaging attempts 
and reduces patient exposure to both radiation and contrast agents, improving 
procedural efficiency and accuracy. 
 
Through the development of V-NAS, the project seeks to: 

• Improve the precision of PAE by helping physicians quickly and accurately 
identify the prostatic artery. 

• Reduce the use of contrast agents and limit radiation exposure, benefiting 
patients who may have kidney issues or are at risk of radiation-induced 
complications. 

• Shorten procedural times, making PAE more accessible to less experienced 
interventional radiologists and improving patient outcomes by reducing the 
invasiveness of treatment. 

 
Developed Methods and Solutions 
V-NAS operates by processing angiographic images in real time, analyzing each 
contrast injection to offer the physician two critical types of guidance: 
 

1. Optimal Projection Angles: By recommending the best imaging angles, the 
system helps avoid vessel overlap, ensuring that vascular structures are 
clearly visible. This reduces the likelihood of error and the need for repeated 
imaging attempts. 
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2. Targeted Contrast Agent Administration: V-NAS suggests the ideal injection 
points for contrast agents, minimizing the amount required while still ensuring 
high-quality imaging. This is especially beneficial for patients with renal 
impairments. 
 

 

Figure 31 Internal and external iliac arteries identified before and after V-NAS guidance during 
PAE 

 
The system assists physicians in navigating key anatomical landmarks during PAE, 
from the femoral artery through the internal iliac artery to the prostatic artery. This real-
time guidance reduces the guesswork involved in the procedure, leading to faster, 
safer outcomes. 
 
Technological and Scientific Contributions 
V-NAS provides several technological and scientific advancements that significantly 
enhance PAE procedures: 
 

• Real-Time Feedback: The system processes angiographic images in real 
time, delivering actionable insights that allow physicians to adjust their 
approach dynamically throughout the procedure. This real-time analysis 
minimizes errors and improves procedural outcomes. 

• Reduced Radiation and Contrast Exposure: By reducing the number of 
repeated imaging attempts and optimizing contrast agent usage, V-NAS helps 
to significantly lower radiation exposure for both patients and medical staff. The 
targeted administration of contrast agents also reduces the risk of adverse 
reactions, benefiting patients with contrast sensitivities. 

• Enhanced Anatomical Visualization: V-NAS recommends projection angles 
that prevent vessel overlap, making it easier for physicians to accurately 
identify the prostatic artery and surrounding structures. This contributes to a 
higher success rate in embolization procedures and reduces complications like 
non-target embolization. 
 

Applications and Results 
Preliminary results from clinical trials demonstrate that V-NAS improves the efficiency 
and safety of PAE procedures in several ways: 
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• Reduced Procedure Time: By providing real-time guidance on contrast 
injection and imaging angles, V-NAS has been shown to reduce procedural 
time by up to 30%. This shorter procedure duration improves patient comfort 
and reduces the strain on medical teams. 

• Minimized Use of Contrast Agents: With its targeted recommendations for 
contrast administration, V-NAS decreases the overall use of contrast agents, 
improving safety, particularly in patients with kidney problems or those at risk 
for contrast-induced complications. 

• Increased Procedural Accuracy: The system helps physicians accurately 
identify the prostatic artery and avoid vessel overlap, which in turn reduces the 
likelihood of complications and improves overall outcomes. 

• Wider Physician Adoption: V-NAS makes PAE more accessible to a broader 
range of physicians, particularly those with less experience, by offering 
detailed, step-by-step guidance through complex vascular structures. 
 

Limitations and Challenges: 
While V-NAS has demonstrated significant potential, several challenges remain: 
 

• Compatibility with Imaging Systems: The system must be tested and 
calibrated to work with a wide variety of imaging systems used in different 
clinical environments. Ensuring seamless integration with existing angiographic 
equipment is crucial to its widespread adoption. 

• Dependence on Image Quality: The accuracy of V-NAS recommendations is 
dependent on the quality of the angiographic images it analyzes. Poor image 
resolution or patient movement during the procedure may affect the system’s 
ability to provide accurate guidance. 

• Real-Time Performance: The system’s ability to process images and deliver 
feedback in real time is computationally demanding. Ensuring that V-NAS 
maintains high performance even in extended or complex procedures is 
essential to its success. 

• Training and Implementation: Successful adoption of V-NAS requires proper 
training for physicians and staff. Integration into existing clinical workflows may 
be challenging, particularly in facilities with limited resources or less experience 
in advanced imaging technologies. 
 

Future Work and Development Areas 
The development of V-NAS will continue to focus on overcoming these limitations 
while expanding its capabilities: 
 

• Wider Integration and Compatibility: Future work will aim to enhance the 
system's compatibility with a broader range of imaging systems and clinical 
workflows, ensuring that it can be used across diverse healthcare settings. 

• Optimization of Real-Time Performance: Efforts will focus on refining the 
system’s real-time processing capabilities, improving both speed and accuracy 
to ensure consistent performance in complex procedures. 

• Application to Other Procedures: The core technologies behind V-NAS can 
be adapted to other vascular procedures, such as uterine artery embolization, 
peripheral artery interventions, and cardiac catheterization. Expanding its utility 
to these fields will increase its value in interventional radiology. 

• Artificial Intelligence and Explainability: Future iterations of V-NAS may 
include advanced explainability features, using explainable AI (XAI) techniques 
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to provide greater transparency in the system’s decision-making process. This 
will allow physicians to better understand and trust the system’s 
recommendations. 

• Clinical Validation and Expansion: Wider clinical trials in diverse healthcare 
environments will be conducted to validate the effectiveness of V-NAS in 
reducing procedural times, minimizing radiation exposure, and improving 
patient outcomes. These trials will be crucial for securing regulatory approvals 
and ensuring the system’s broader adoption in clinical practice. 
 

By continuously refining and expanding V-NAS, the project aims to set a new standard 
in the safe and effective performance of minimally invasive procedures, not just in 
PAE, but across a variety of vascular interventions. 
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3 Conclusions 

This document gives an overview of the clinical disease areas addressed in the 
ASSIST project and describes the updated State of the Art for the clinical procedures 
targeting these diseases. Generally, complexity in diagnosis and treatment steps is 
recognized as a common challenge and has been addressed in the project in all use 
cases. 
 
Automated image segmentation, enabled by Deep Learning, has delivered valuable 
workflow improvements in terms of higher accuracy, less manual actions, and shorter 
procedure time, in all clinical use cases.  
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