
 

 

 

D7.4 Publications and updated 

SotA: State of the Art Review –

Encrypted Network Traffic Analysis 

Solutions 
 

Document: WP7-D7.4.1 

Date: 19 December 2023 
  



2 
 

WP7-D7.4.1 
D7.4 Publications and updated SotA: State of the Art Review – Encrypted Network Traffic Analysis 

Solutions 

 
 
 

Contents 
Change Log ......................................................................................................................................... 3 

Summary ............................................................................................................................................... 4 

1. Introduction ................................................................................................................................. 5 

1.1. ENTA Solutions .................................................................................................................. 6 

1.2. ENTA Solution Development Platform .............................................................................. 9 

2. SotA of Encrypted Network Application Classification Solutions ................................................ 9 

2.1. Academic Research - Encrypted Network Application Classification .............................. 10 

2.2. Industry Status ................................................................................................................. 13 

3. SotA of IoT Device Security Solutions ........................................................................................ 15 

3.1. IoT Device Discovery ........................................................................................................ 15 

3.2. IoT Anomaly and Rogue Device Detection ...................................................................... 17 

3.3. Industry Status ................................................................................................................. 20 

4. Challenges and Trends .............................................................................................................. 22 

4.1. Technological Challenges................................................................................................. 22 

4.2. Technological Trends ....................................................................................................... 23 

4.3. Business Trends ............................................................................................................... 24 

5. Conclusion ................................................................................................................................. 26 

Appendix: Network Application Activity Identification................................................................ 28 

Reference ........................................................................................................................................ 30 

Acronym/Glossary .......................................................................................................................... 36 

 

 

  



3 
 

WP7-D7.4.1 
D7.4 Publications and updated SotA: State of the Art Review – Encrypted Network Traffic Analysis 

Solutions 

 
 
 

Change Log 
 

Version Submission 

date 

Description of changes Affected 

Sections 

Initial Draft 

WP7-D7.4.0 
03-23-2023 Initial draft NA 

Updated 

Version 

WP7-D7.4.1 

12-19-2023 Updated content to reflect advances All sections 

 

  



4 
 

WP7-D7.4.1 
D7.4 Publications and updated SotA: State of the Art Review – Encrypted Network Traffic Analysis 

Solutions 

 
 
 

Summary 
 

This document reviews the State of the Art (SotA) as it pertains to the ENTA (Encrypted Network 

Traffic Analysis) project. The SotA review focuses on research and advanced technology pertaining to 

the two use cases supported in the project. The first use case focuses on encrypted network 

application classification while the second use case focuses on IoT device security, with two sub-

cases: (i) IoT device discovery and (ii) IoT anomalies and rogue devices detection.   

For each of the use cases, we present associated academic research and industry status. From the 

review, we note the following: 

• The need to deal with encrypted traffic 

• The inadequacy of existing network solutions that leverage traditional DPI (Deep Packet 

Inspection) techniques to classify encrypted network traffic and the resultant need for a 

solution 

• The maturation of academic research on encrypted network analytics 

• The extensive reliance on ML/DL based solutions which utilize information about 

device/traffic characteristics while preserving data privacy  

• The need for an encrypted network traffic analytic solution development platform to 

expedite exploration, evaluation, and deployment of innovative solutions in this domain 

• The importance of key technological challenges and industrial trends that will influence 

future solutions  
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1. Introduction 

This document describes the state of the art in the area of encrypted network traffic analysis with 

focus on solutions which utilize Machine Learning (ML) or Deep Learning (DL) techniques.  

Today, more than 80% of Internet traffic is encrypted, with seemingly unabated growth. The 

introduction of TLS 1.3 with ESNI, QUIC, and the increased use of VPN have significantly reduced 

visibility into network traffic, rendering traditional techniques for traffic analysis to be ineffective. 

This lack of visibility into encrypted traffic adversely impacts legitimate uses including for cyber 

security, security/network operations and Law enforcement. Examples include: 

• SOCs – Security Operation Centres (SOCs) are unable to detect malware and data exfiltration 

using encrypted channels, and attack surfaces resulting from rogue IoT device activity 

• IT departments – IT departments are unable to enforce security and management policy. In 

addition, provision of quality of service (QoS) is a challenge. 

• LEAs – Law enforcement agencies (LEA) find it difficult to perform forensics and track illicit 

data handling activities. Significant cost is incurred as a result. 

• Router/Switch vendors – Network routers and switches are unable to differentiate traffic 

types or applications to support Class of Service (COS). 

• Firewall vendors – next generation firewalls need to monitor and filter traffic based on the 

detected application or traffic class  

• Military Operations – Network situational awareness suffers due to limited application 

awareness  

 

The aforementioned issues motivate the ENTA project to address two specific use cases described in 

in Section 1.1 within the scope of the project timeline. The project is working to develop techniques 

and solutions to analyse encrypted traffic while preserving user privacy. The two use cases can lead 

to products/solutions with big market opportunities as described below: 

• Use case-1 – Network Application Classification – The techniques developed will result in 

complementary technologies which address gaps faced by Deep Packet Inspection (DPI). The 

ML/DL based solution will co-exist with current DPI technologies. Market reports indicate 

that the DPI market will grow to $26B by 2028 from $5.4B in 2021 with a 25% CAGR. 

• Use case-2 – IoT Device Security – The number of IoT devices has been forecast to grow to 

125B by 2030 from 46B in 2022. The ability to discover IoT devices and in particular, detect 

rogue IoT devices is of key importance as these devices represent a very broad attack surface 

for malicious threats. We note that the market for IoT device discovery and threat detection 

for encrypted traffic is a nascent one. 

Section 1.1 presents an overview of the two use cases which are the focus of the ENTA project along 

with a summary of research work in related areas. Section 1.2 describes briefly the software platform 

infrastructure that expedites the development of ML/DL based encrypted network traffic solutions. 

Once the ENTA platform is developed, it will be suitable for skilled researchers and practitioners in 
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this field to utilize the ENTA platform as the basis of research into AI-based network analytics for 

encrypted traffic. 

In the rest of document, Section 2 describes the state of the art (SotA) developments in the area of 

network application detection while Section 3 describes the SotA for IoT device discovery solutions 

with focus on discovering rogue IoT devices. Each of the above sections concludes with a discussion 

of their respective industrial trends. Before the conclusion in Section 5, this document provides a 

brief discussion of the technological challenges and trends that may affect the SotA of the surveyed 

solutions in Sections 4.1 and 4.2, respectively. Business trends are described in Section 4.3. 

 

1.1. ENTA Solutions 

The motivations for the ENTA project define the ENTA objective which is described and scoped here. 

While the ENTA platform is architected to support a wide range of use-cases which analyse 

encrypted network traffic, only two specific use cases are developed, implemented and showcased 

during the duration of the ITEA project – the number of use cases supported are constrained by the 

ENTA project duration and budget. The ENTA project will address and support research and 

development for the following two specific use-cases. 

• Encrypted Network Application Classification (Use Case-1) 

o The objective of this use case is to classify encrypted traffic applications (e.g., Netflix, 

Spotify, WhatsApp, etc) and identify their categories (e.g., video stream, audio 

stream, chat, etc). Although identifying the activities occurring in encrypted traffic 

applications. (e.g., sending/receiving money/image, watching video, listening to 

audio, etc) is a natural progression of this use case, it is not part of the current ENTA 

project. Nevertheless, a survey of this aspect is described in the appendix, 

“Appendix: Network Application Activity Identification”, for the sake of 

completeness. 

• IoT Device Security (Use Case-2) 

This use case consists of the following two subcases: 

o IoT device discovery: The objective here is to discover all IoT devices connected to a 

given network, including identifying IoT characteristics and connected non-IoT 

devices. 

o IoT anomaly and rogue devices detection: The objective here is to detect and 

identify misbehaving or unauthorized IoT devices connected to a given network – 

more specifically, those not operating in normally expected manner especially from 

the security and operational standpoints such as engaging in attacks and 

malfunctioning. 
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The following considerations are important to note before embarking on a more detailed SotA 

analysis in subsequent sections: 

• The scope of applications and IoT devices is broad and numbers in the thousands. Detailed 

exploration of solutions covering the breadth of available applications/devices is beyond the 

scope of this SotA review. This document aims not for exhaustiveness but to present key 

highlights and trends. Thus, existing survey papers will only be briefly described here. We 

note below a few survey papers of primary relevance.  

• UseCase 1 - Encrypted Application Classification: 

o Papadogiannaki et al survey encrypted network analysis applications, techniques and 

countermeasures [Papadogiannaki-2021]. They first described solutions typical for 

analysis of network traffic before the introduction of encryption and surveyed 

emerging machine-learning based analytics for classifying protocol and application 

and identifying application usage of encrypted traffic. Beyond classification, the 

authors described encrypted network traffic analysis solutions for network security, 

considering intrusion and malware detection. Finally, they considered how privacy 

could still be infringed and the existing countermeasures for encrypted traffic 

analysis.   

o Rezaei and Liu present an overview of commonly available deep learning methods 

and their application for encrypted traffic classification. The overview of the 

classification problems starts with classification objective: protocols, application, 

traffic-types, websites, user actions, operating systems, browsers and others. With 

respect to data collection, they emphasize reliable labelling, available features, 

representative dataset, proper dataset pre-processing. For feature categories, they 

mention time series, header, payload data, and statistical features. For deep learning 

technique, they list multi-layer perceptron, convolutional neural networks, recurrent 

neural networks, auto-encoders, and generative adversarial networks. For DL model 

selection, they caution available input features is a major factor. Finally, they 

conclude with open problems and opportunities such as the rise of stronger 

encryption protocols, multi-label classification, middle flow classification, zero-day 

applications, transfer learning and domain adaptation, and multi-task learning. 

• UseCase 2 - IoT Device Security: 

o Shen et al survey studies on machine learning-powered encrypted network traffic 

analysis [Shen-2023]. They first describe the workflow of encrypted traffic analysis 

with machine learning tools, including traffic collection, traffic representation, 

encrypted traffic analysis method, and performance evaluation. Then they review 

existing studies in four areas: network asset identification such as IoT discovery, 

network characterization including protocol recognition, privacy leakage detection, 

and anomaly detection. Three of their areas of focus are relevant to ENTA SotA.  

o Chatterjee and Ahmed survey IoT anomaly detection methods and their applications 

[Chatterjee-2022]. Anomalies are considered to be rare events or observations that 
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represent a departure from expected behaviour. They consider the following four 

general aspects of the anomaly detection problem:  

▪ methods such as geometrical, statistical or machine learning approaches 

▪ application intent detection such as “on-going normal activities”, “disruptive 

activities”, and “outliers” 

▪ anomaly type such as for a single incidence, in a given context, or in a trend  

▪ latency – whether the detection occurs on-line or off-line. 

The survey covers a number of IoT-specific topics: 

▪ IoT sensor applications 

▪ Smart-city IoT applications 

▪ Surveillance and video IoT applications 

▪ Network traffic analysis of IoT traffic 

▪ Security applications for IoT devices and infrastructure 

▪ Security applications for IoT data transport 

o Jmila et al survey solutions for smart home IoT device classification using machine 

learning-based network traffic analysis. They analyse the approaches to assess their 

potential and limitations. They also describe a generic workflow for IoT device 

classification [Jmila-2022].   

o Liu et al survey machine learning (ML) enabling techniques for the detection and 

identification of IoT devices [Liu-2022]. The ML techniques include learning 

algorithms, feature engineering for network traffic traces and wireless signals, 

incremental learning, and abnormality detection. They survey the following aspects 

of the IoT-device identification and detection problem, without specifically focusing 

on the issues caused by encrypted network traffic: 

▪ Device type identification & Device-specific feature identification  

▪ Device identification based on unsupervised methods 

▪ Device identification based on DL-based methods such as incremental 

learning, abnormality detection, hyper parameter, and architecture search 

▪ Abnormal device detection solutions 

• This ENTA SotA focuses on the key aspects of the problems being solved such as 

classification, discovery, and identification issues of IoT devices or network applications using 

ML/DL based analysis of encrypted network traffic generated by the device or network 

applications, including associated issues of performance accuracy and speed 

• This ENTA SotA considers solutions in both the academic research and industrial market 

domains. 

• While Sections 2 and 3 present specific SotA pertaining to each of the two use-cases of 

interest, Section 4 attempts to present generalized trends and challenges which pertain to 

the general area of ENTA SotA as a whole. 
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1.2. ENTA Solution Development Platform 

As the ENTA project is developing a software platform to achieve its objectives, we now present a 

brief overview of software frameworks which can be utilized for the ENTA project. Specifically, we 

consider here the need for a tailored software frameworks that can support speedy development 

and deployment of ENTA solutions. 

Specialized software frameworks and platforms help expedite solution development, 

experimentation, and optimization. Moreover, developing ML/DL-based encrypted traffic analysis 

solutions as part of the ENTA project, will be benefit greatly from a development platform that is 

customized and reusable for that class of solutions. Below, we outline the characteristics of such a 

platform. 

Having a platform that is tailored to support network traffic analytics solutions will allow 

development of high-quality network security solutions with associated life cycle management of the 

development process. Such a platform leverages open-source components to maximum reuse and 

minimize reinventing components which already exist.    

• There are a few Open-Source Platforms which can be considered as the basis of a specialized 

platform for encrypted network traffic analytics:  

o HopsWorks (hopsworks.ai) – Initially developed at KTH University, Sweden, is now 

managed by Logical Clocks.  

o Prefect (prefect.io) and MLFlows (mlflow.org) – Supported by Databricks. In 

particular, MLFLows has momentum and a large user community is supporting it. The 

advancement of MLFlow generic platform technology is worth monitoring. 

• There are large number of commercially available generic AI platforms (e.g., Amazon 

Sagemaker, H2O from Oxdata, Databrics etc.). In general, the advancement of this area is 

also worth monitoring as well. 

We note here that [Chatterjee-2022] surveys briefly a number of frameworks for robust anomaly 

detection [Zhao-2019, Kayan-2021, Tsogbaatar-2021, An-2020], and for privacy preservation and 

security [Liu-2021, Cauteruccio-2021, Qureshi-2021]. 

2. SotA of Encrypted Network Application Classification Solutions 

As described in Section 1, network traffic classification is a key enabling technology which is required 

by network planners, network operators, security analysts and LEA (Law Enforcement Agencies) 

among others.  However, with the advent of encryption and its unabated use, existing classification 

solutions such as deep-packet inspection (DPI), are no longer adequate. In this section, we consider 

the SotA in the area of encrypted application classification (Section 2.1). We also survey some of the 

leading-edge advanced technology work as it pertains to industrial developments in this area 

(Section 2.2).  
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2.1. Academic Research - Encrypted Network Application Classification 

In this section, we present the results of a survey into leading academic research in the area of 

encrypted network traffic classification using ML-based approaches in Section 2.1.1 and DL-

approaches in Section 2.1.2.  

 

2.1.1. Academic Research – ML-based Approaches 

 
ML-based traffic classification techniques have been the focus of increasing studies by researchers in 
recent years. Among the earliest research work reported in this domain was the study by Moore et al 
in 2005, which leveraged only header information [Moore-2005].  A subsequent study of ML-based 
encrypted traffic classification was reported in 2011 [Alshammari-2011] in which the authors 
evaluated the utility of 3 different ML algorithms to detect encrypted Skype and SSH traffic using 
binary classification models. In [Alshammari-2015], a ML-based approach is proposed to distinguish 
encrypted VoIP from other traffic. In [Alan-2016], the authors evaluated three supervised machine 
methods to identify popular Android apps. In [Khatouni-2021], the authors proposed two ML-based 
frameworks to classify encrypted traffic service types. Some other ML-based solutions, which are not 
described in more details later, are [Al-Obaidy-2019, DraperGil-2016, Hajjar-2015, Khatouni-2019, 
Muehlstein-201], Taylor-2016, Taylor-2018, Wang-2015, and Zhang-2011]. 
 
Below, we present further details regarding some of the related ML-based research referenced in the 
earlier section. 
  

▪ [Moore-2005] - Moore et al carried out early research investigations into the area of 
application classification [Moore-2005]. Using a Naïve Bayes estimator, they categorize 
network traffic by application and are able to obtain 65% accuracy on per-flow classification 
using header-derived discriminators. With additional refinement, they are able to achieve 
95% accuracy which they claim to be better than the traditional classification techniques 
which yielded 50-70% accuracy. The refinements consist of using kernel density estimation 
theory and Fast Correlation-Based Filter (FCBF), a method of feature selection and 
redundancy reduction. The authors’ study was carried out on a dataset with 10 traffic 
categories (e.g., P2P) with each consisting of one or more related applications (e.g., KaZaA, 
BitTorrent, GnuTella). The study was carried out offline with no research into viability of real-
time deployment for the solution. A key benefit of their solution was that it utilized only 
header information for classification and thus, could classify traffic regardless of whether or 
not the traffic was encrypted.  

▪ [Alshammari-2011] - Continuing the trend of not considering packet content so as to be able 
to classify encrypted network traffic, Alshammari et al presented a machine learning 
approach using simple Packet Header feature sets and statistical flow feature sets without 
using the IP addresses, source/destination ports and payload information to detect 
encrypted applications in network traffic [Alshammari-2011]. Not only are they able to 
identify encrypted traffic classes with high accuracy without inspecting payload, IP addresses 
and port numbers, they are also able to identify which services run in encrypted SSH tunnels. 
The traffic categories considered are SSH and Skype, discriminating between non-SSH and 
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SSH and between non-Skype and Skype. Their studies conducted experiments using the 
AdaBoost, SBB-GP (Symbiotic Bid-based Genetic Programming), and C4.5 algorithms and 
leveraged either packet header attributes or flow attributes1. They found GP to perform 
better than the two other learning algorithm-based methods. The GP based classifier 
achieves a range of DR (Discovery Rate) values from 89% to 98% and a range of FDR (False 
Discovery Rate) values from 0.2% to 0.8%. Moreover, their solutions are able to identify 
correctly services running over SSH such as interactive login sessions (SHELL), tunnelling 
(both local and remote), SCP (secure copy), SFTP (secure file transfer) and X11 activities with 
low false positive rate. Their results also show that the classification-based system trained on 
data from one network can be employed to run on a different network without new training. 
For example, for SSH tunnel identification, a subset of University traces is used for training, 
and the rest of the University traces, public traces (AMP and MAWI) and week 1 and 3 of 
DARA99 traces are used for testing. Note that the description of these datasets can be found 
in [Alshammari-2011]. Although differentiating between SSH and non-SSH has been studied, 
differentiating the content multiplexed inside SSH or VPN tunnel is an open research 
problem.  

▪ [Alshammari-2015] - Alshammari and Nur Zincir-Heywood investigate the robustness2 of the 
model’s signatures generated by ML-based approaches – C5.0, GP, and AdaBoost – for 
distinguishing encrypted VoIP (Skype) from other traffic [Alshammari-2015]. The C5.0-based 
classification approach was found to perform the best on the data sets (University Traces, 
Italy Traces, NIMS2 Traces, NIMS3 Traces, IPv6 Traces) used. The C5.0-based classifier 
achieved a 99.6 % DR (Detection Rate) with 0.7 %FPR (False Positive Rate) when trained on 
one network but tested on another in detecting Skype traffic – a form of solution 
generalization. With respect to evasion attacks, the signatures generated by the C5.0-based 
classifier from a statistical feature set and a well-chosen training data set were shown to be 
robust and not easily evaded. The C5.0-based classifier achieved ≈91 % DR and ≈5 % FPR on 
the Original Skype flows and ≈85 % DR and ≈5 % FPR on the Altered-Skype flows. 

▪ [Alan-2016] - Alan and Kaur evaluated three existing supervised machine learning methods. 
The first method uses similarity measure (SM) based on the Jaccard’s coefficient on traffic 
bursts which are groups of contiguous incoming or outgoing packets within a TCP connection 
and are rounded to the nearest 32 bytes. The second method uses Gaussian Naïve Bayes 
(GNB) classifier on packet sizes of traffic sample with negative values indicating incoming 
packet sizes. The third method uses Multinomial Naïve Bayes (MNB) classifier using packet 
sizes as in the second method where term frequency – inverse document frequency 
transformation and normalization are applied to feature vectors. The proposed solutions 
assume the launch time traffic characteristics are available, specifically, the packet sizes of 
apps during their launch time. They first capture network trace of 86,109 app launches by 
repeatedly running 1,595 applications on 4 distinct Android devices. Using existing 
supervised learning methods on the packet sizes of the first 64 packets from the same 
device, they were able to identify popular Android apps with 88% accuracy. When the testing 

 

 

1 The flow attributes consist of protocol name, flow duration, and for both traffic flow direction, packet count, 
byte count, statistical information (min, max, mean, and std) of inter-arrival time, and statistical information of 
packet length. 
2 Here robustness means effectiveness with respect to traffic traces obtained from different 
locations/networks, time periods, and padded/morphed traffic. 
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is on unseen device (but similar operating system/vendor), the accuracy of identifying the 
apps dropped to 67%.  

▪ [Khatouni-2021] - Khatouni et al evaluated two ML-based frameworks (i.e., one-layer 
classifier and two-layer classifier), undertook feature engineering for optimal features 
selection, and explored the generality of the solutions in terms of network conditions for the 
classification of encrypted traffic service types [Khatouni-2021]. Thirteen ML algorithms 
(Random Forest, Decision Tree, Complement Naïve Bayes, Multinomial Naïve Bayes, k-
Nearest Neighbours, Bernoulli Naïve Bayes, Linear Support Vector Machine, Ridge 
Regression, Nearest Centroid, Support Vector Machine, and Linear Models with Stochastic 
Gradient Descent) were evaluated on NIMs2018, NIMS2019, and PRI2019 datasets using 
varying number of extracted service-based and network-based features. They captured and 
analyzed a large-scale dataset for 9 different services in multiple encrypted channels. Their 
proposed one-layer framework with the Random Forest model achieved the highest accuracy 
in identifying the multiple service types, e.g., VoIP, text messaging, video, and audio services, 
under analysis - without using IP addresses, Port numbers, application header fields, and DPI. 
Moreover, extensive evaluations showed high accuracy (Average F1 Score: 0.90) is achieved 
in using the minimum number of features (28 features) and reducing the overfitting effects 
of the model employed. Finally, the results showed encouraging performances in terms of an 
additional 5% training data resulting in a robust (well generalized) and portable one-layer 
model framework that can still perform accurately when tested on a new network in terms 
of location, time, and traffic volume.  

 

 

2.1.2. Academic Research – DL-based Approaches 

 
Exploiting the high feature learning/extraction capability with minimal feature engineering effort in 
Deep-Learning approaches has led to more recent DL-based research results such as the one 
reported DL in [Akbari-2021] that covers various service classes and application classes. Recognizing 
the need to obviates the need for large labelled datasets, the authors in [Rezaei-2020 and Towhid-
2022] propose their respective DL-based solutions. In [Lotfollahi-2020], the authors proposed a deep 
learning-based solution that integrates both feature extraction and classification phases into one 
system. Some other DL-based solutions, which are not described in more details later, are [Aceto-
2020, Cui-2019, Hou-2019, and Wang-2018]. 
 
Below, we present further details regarding some of the related DL-based research referenced in the 
earlier section. 
 

▪ [Lotfollahi-2020] - Lotfollahi et al propose a deep learning-based approach which integrates 
both feature extraction and classification phases into one system. Their proposed scheme, 
called “Deep Packet,” can handle two types of traffic characterization: categorizing network 
traffic into major classes (e.g., FTP and P2P) and identifying end-user applications therein 
(e.g., BitTorrent and Skype). Not only can Deep Packet identify encrypted traffic and it can 
also distinguish between VPN and non-VPN network traffic. The Deep Packet framework uses 
two deep neural network structures, namely stacked autoencoder (SAE) and convolution 
neural network (CNN) in order to classify network traffic. Their best result is achieved when 
CNN is used in Deep Packet as its classification model which achieves a recall value of 0.98 in 
application identification task and 0.94 in traffic categorization task.  



13 
 

WP7-D7.4.1 
D7.4 Publications and updated SotA: State of the Art Review – Encrypted Network Traffic Analysis 

Solutions 

 
 
 

▪ [Rezaei-2020] - Rezaei and Liu propose a semi-supervised approach (using a 1-D CNN model) 
that obviates the need for large labelled datasets [Rezaei-2020]. They first pre-train a model 
on a large unlabelled dataset where the input is the time series features of a few sampled 
packets. Then the learned weights are transferred to a new model that is re-trained on a 
small labelled dataset. They show that their semi-supervised approach achieves almost the 
same accuracy as a fully-supervised method with a large labelled dataset, although they use 
only 20 samples per class. For a dataset of 5 Google services generated from the more 
challenging QUIC protocol, their approach yields 98% accuracy. To show its efficacy, they also 
test their approach on two public datasets [Ariel-Dataset-2016, QUIC-Dataset-2018]. 
Moreover, they study three different sampling techniques and demonstrate that sampling 
packets from an arbitrary portion of a flow is sufficient for classification. 

▪ [Akbari-2021] - Recognizing the need to consider crucial domain-specific features such as 
traffic shape and timing of packets, Akbari et al developed a neural network architecture 
based on stacked Long Short-Term Memory (LSTM) layers and Convolutional Neural 
networks (CNN) [Akbari-2021]. In the peer reviewed publication, the authors claim that their 
solutions, tested on a real-world mobile traffic dataset from an ISP, achieve an average 
accuracy of 95% in service classification exclusively over HTTPS and outperform other 
methods by nearly 50% with fewer false classifications. The eight service classes utilized in 
their study were: chat, download, games, mail, search, social, streaming, and web. Their 
Deep Learning (DL) models are generalized to achieve different classification objectives 
including service-level and application-level classification as well as handle diverse encrypted 
web protocols such as HTTP/2 and QUIC. Finally, their approach achieves an overall accuracy 
of 99% on a public dataset for QUIC-based applications. A total of 19 applications were 
included in the study, with examples such as chat-Facebook, chat-Snapchat, chat-WhatsApp, 
web-Amazon, web-AppleLocalization, and web-Microsoft among others. 

▪ [Towhid-2022] - As in [Rezaei-2020], Towhid and Shariar propose a self-supervised approach 
(using ResNet34) that can achieve high accuracy on encrypted network traffic classification 
with a few labelled data [Towhid-2022]. Their method consists of two stages, a pre-training 
stage to learn with unlabelled data and a fine-tuning stage to piggyback on the weights 
obtained from the pre-training stage to learn with limited number of labelled data. Their 
proposed solution evaluated on three publicly available datasets3 not only achieves high 
accuracy on encrypted traffic but also has the ability to apply the acquired knowledge on a 
different dataset. In their experiments, their method outperforms the state-of-the-art 
baseline methods by 3% in terms of accuracy even with a much lower volume of labelled 
data 

 . 

2.2. Industry Status 

Traditional DPI tools work well on unencrypted network traffic. These tools are used to provide 

application visibility needed to enable various network services such as traffic management, policy 

enforcement, QoE (Quality of Experience) assurance, and network security management. With the 

rise of encrypted network traffic, existing providers of application visibility solutions are now 

 

 

3 QUIC, Orange’20 and ISCX VPN-NonVPN datasets are available from [Rezaei-2020], [Akbari-2021] and [Draper-
Gil-2016], respectively. 
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enhancing or complementing their traditional DPI solutions to handle adequately encrypted network 

traffic. Next, we describe how three companies are addressing the application visibility problem due 

to encrypted network traffic.  

• [ENEA] - [ENEA] has been using DPI as a method of filtering data that locates, identifies, and 

classifies the most relevant datasets to support accurate analyses. Their DPI solution has 

been enhanced to focus on measuring data that can produce actionable responses in real-

time to help generate the metadata needed to feed ML and AI algorithms [ENEA-1]. More 

specifically, in [ENEA-2], [ENEA] acknowledges that “Traffic classification has also been critical 

to enforcing policy, optimizing traffic flows, meeting quality of service targets, and 

generating revenue through differentiated service offerings.” With the rise of encryption, the 

need to combine machine learning and advanced analytics in network traffic analysis 

solutions such as that of DPI becomes more urgent.  

• [Sandvine] - [Sandvine] is aware of how encryption can impact DPI services in needing to 

shifting the focus from exposing hard visible data to inferring data with a certain degree of 

uncertainty [Sandvine-1]. So, the ability to recognize encrypted applications, services and 

traffic is becoming an urgent necessity. [Sandvine] has been doing research and development 

on using behavioural correlation to reliably link together flows from different protocols and 

services for identifying mashup applications. Using supervised machine learning models 

pretrained in-house and validated for accuracy, [Sandvine] develop proprietary models and 

techniques that are built upon 150 flow parameters. From [Sandvine-2], we note that 

“Employing these techniques, Sandvine is able not only to broadly classify encrypted traffic 

into categories (e.g., Web Browsing, Video Streaming, VoIP, etc.) but also to accurately 

classify unique applications within categories (e.g., Facebook vs. Instagram, WhatsApp vs. 

Lime, Netflix vs. YouTube) – even when the traffic is encrypted and ESNI is in use.” More 

information is described in [Sandvine-3].  

• [Rhode & Schwarz Ipoque] - R&S®PACE 2 and R&S®vPACE are two deep packet inspection 

(DPI) solutions developed by Ipoque that deliver real-time application visibility. These 

solutions feature techniques for traffic classification utilize behavioral, statistical and 

heuristic analyses as well as machine learning (ML) and deep learning (DL). They also come 

with encrypted traffic intelligence (ETI) and boast advanced features such as first-packet 

classification, NAT detection or custom service classification that enables implementing one’s 

own DPI signatures by using easy, pre-defined criteria to smoothly extend network visibility 

on-the-fly [Rhode & Schwarz Ipoque-1]. [Rhode &Schwarz Ipoque] indicated that ETI 

leverages over 1000 ML and DL features, including statistical, time series, and packet-level 

features, and the ability to automatically identify and incorporate new features, a form of 

incremental learning [Rhode & Schwarz Ipoque-2]. More information related to the [Rhode & 

Schwarz Ipoque] solutions can be found in [Rhode & Schwarz Ipoque-2, Rhode & Schwarz 

Ipoque-3]. 
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3. SotA of IoT Device Security Solutions 

To secure IoT networks, operators need the ability to discover their IoT assets and be aware of 

anomalous activities transpiring in their network. Moreover, being able to pre-emptively identify 

rogue IoT devices will ensure secure IoT network operation. In this context, we consider the SotA of 

IoT security from the discovery (Section 3.1), anomaly detection (Section 3.2), and rogue device 

identification (Section 3.2) point of view. In addition to studying SotA for the academic domain, we 

review relevant industrial solutions (Section 3.3).  

3.1. IoT Device Discovery  

In this section, for a given set of IoT devices operating in a network, we highlight solutions that 

enable quick and accurate discovery of IoT devices by examining encrypted network traffic. The 

subsection below describes the state-of-the-art from the academic research domain (Section 3.1.1) 

while SotA in industrial solutions is presented in Section 3.3. 

3.1.1. Academic Research 

One of the early research studies to detect and classify IoT devices was reported by [Sivanathan-

2019]. Their ML based approach achieves 99% identification accuracy for 28 unique IoT devices, 17 of 

which use encryption (TLS/SSL) for communication, with a small dataset of only 50,378 labelled 

instances. Meidan et al also reported achieving 96% to 99% IoT device type identification depending 

on various test setup [Meidan-2018]. Later studies with different datasets seem to achieve lower 

accuracies (96% for [Pashamokhari-2021] and 91% for [Zahid-2022]). Although not always explicitly 

stated, all these research studies address IoT discovery in the context of encrypted IoT network 

communication. Further details for each research study are described next. 

• [Meidan-2018] - Meidan et al apply Random Forest to identify IoT device types. Their dataset 

included network traffic data from 17 distinct IoT devices, representing nine types of IoT 

devices from which only eight types are used for training. The devices not of the type used in 

training are correctly detected as unknown in 96% of the test cases and those that belong to 

the types used in the training are correctly detected in 99% of the cases. The authors listed 

the top 10 features found to be important for their solution, although they did not list all the 

features used. These top 10 features are mainly TCP packet time-to-live statistical 

characteristics. This explains why better accuracy is achieved as more consecutive sessions of 

traffic data are analysed. 

• [Sivanathan-2019] - Sivanathan et al consider an IoT network supporting 28 different IoT 

devices consisting of cameras, lights, plugs, motion sensors, appliances, and health-monitors 

[Sivanathan-2019]. After extracting the underlying IoT network traffic characteristics based 

on the statistical attributes of activity cycles, port numbers, signalling patterns, and cipher 

suites, they develop a multi-stage machine learning-based classification algorithm that 

identifies specific IoT devices with over 99% accuracy based on their network activity. More 

specifically, the 8 key attributes utilized as the basis of features to build the ML models 

include flow volume, flow duration, average flow rate, device sleep time, server port 

numbers, DNS queries, NTP queries and cipher suites. Their solution consists of two stages. 

The first stage, called Stage-0, consists of multiple Naïve Bayes Multinomial classifiers, each 
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of which takes input a bag of non-overlapping, nominal, and possibly multi-valued network 

attributes. Specifically, their work identifies respectively 356, 421, and 54 unique words for 

domain names, remote port numbers, and cipher suite strings, forming three bag types. 

Furthermore, they combine all corresponding words for non-IoT devices under a column 

named “others”. The output of each such classifier is a tentative tuple, [Class for the bag, 

Confidence for the bag]. The second stage, called Stage-1, is a Random Forest classifier which 

takes as input all outputs of all the Naïve Bayes Multinomial classifier and other network 

attributes such as flow volume, flow duration, flow rate, sleep time, DNS interval, and NTP 

interval. The output of Stage-1 is the device identity with a confidence level. The authors 

collected a total of 50,378 labelled instances captured from different IoT and non-IoT devices 

generating traffic from either triggered user interactions or autonomously generated 

activities. The captured instances are randomly split with 70% utilized for training and 30% 

utilized for testing. The proposed solution achieved a detection accuracy of 99.88%, with a 

minimal value of RRSE (Root Relative Squared Error) of 5.06 %. 

• [Ou-2019] - Ou-2019] utilizes the diversity of client-side TLS negotiation time to detect client 

IoT devices, differentiating between IoT and non-IoT devices. Their evaluation shows that the 

HTTPS server deployed with their solution, IoTClientDetector, performing ECDHE RSA TLS 

negotiation with 4096-bit RSA key length can precisely detect client-side IoT devices with 

true positive rate of around 95% and false positive rate of only 7.8%. The devices included in 

their study were: Raspberry Pi 3B, Raspberry Pi Zero W, MacBook Pro, and a home-built PC 

with Windows 10 operating system. The number of obtained non-IoT samples ranges from 

61 to 81 and that of IoT samples ranges from 19 to 21 for various encryption modes (RSA 

2048, ECDHE 2048, RSA 3072, ECDHE 3072, RSA 4096, and ECDHE 4096). Their solution uses 

the mean value and standard deviation of 𝑅𝑘 to design rules for detection, where 𝑅𝑘  is 

obtained as 𝑅𝑘 = 𝑅 − 𝑅𝑏, where R is the roundtrip time between ServerHelloDone message 

and ClientKeyExchange message, and 𝑅𝑏 is the roundtrip time between the SYNACK message 

and ACK message. 

• [Pan-2021] - [Pan-2021] proposes a One-Class Time Series Meta-Learner called DeepNetPrint 

that learns the network behavioural fingerprint of IoT devices to identify the presence of IoT 

activity based on limited availability of network activity traces. Their system utilized an 

autoencoder and One Class Time Series Prototypical Network components. The model was 

trained using network traces with traffic from 12 IoT devices and evaluated with network 

traces of 23 IoT devices (11 of which were withheld and considered unknown IoT devices). In 

their study, they found that DeepNetPrint was able to identify all 23 IoT devices with 

accuracy of 81%. Only the following description is provided on the feature set used: “we only 

extracted the ‘Information’ field containing the high-level information of the network 

packets that would represent ‘conversational dialogues’ originating from the IoT devices to 

train the model and infer the devices’ network behavioral fingerprints identification later.” 

• [Pashamokhtari-2021] - Pashamokhtari et al leverage the results of the analysis of IPFIX 

telemetry records, which are flow-based data typically collected from the edge of ISP 

networks [Pashamokhtari-2021]. They analysed three million records emitted, over a period 

of three months, from a residential testbed with 26 IoT devices, from which 28 flow-level 
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features are extracted to characterize the network behaviour of these devices. The class of 

devices included examples such as smart-camera, speaker, door phone and TV to lightbulb, 

sensor and vacuum cleaner. The features capture data of basic nature such as packet counts, 

byte count and inter-arrival times using their statistical characteristics such as average value 

and standard deviation. Moreover, the flow direction, is another feature which is utilized. 

The authors employ a multi-class ML model leveraging random forest to identify the IoT 

device types in home networks based on the extracted features from their post-NAT IPFIX 

records. They utilized 10-fold cross-validation to develop more robust ML models, which 

resulted in model accuracy of 96% accuracy across all classes. As an additional endeavour 

unrelated to device discovery, a trust metric is proposed to understand the temporal 

behaviour of IoT devices – detecting steady/transient functional decline. 

• [Zahid-2022] - Zahid et al propose using Hierarchical Deep Neural Network (HDNN) to 

distinguish IoT devices from non-IoT devices based on observed network traffic, achieving an 

accuracy of 91% [Zahid-2022]. They further classify IoT devices into one of the following six 

categories: controllers and hubs, cameras, switches and triggers, healthcare devices, 

electronics, and router, achieving an accuracy of 91.33%. In their testbed, they have 28 IoT 

and non-IoT devices communicating with one another and collect the network traffic trace 

for a period of 6 months for their dataset and consider a total of 936,893 samples from the 

PCAP files for performance evaluation.  

Using recursive feature elimination (RFE), they identify 20 features deemed to be most 

important and optimal. These features have similar characteristics to those of 

[Pashamokhtari-2021] but also include MAC address and port numbers, which may be 

biased. Their architecture consists of two DNN networks: the first one oversees identifying 

whether the device is an IoT device, and the second oversees identifying the class that the 

detected device belongs to. In Table 6 of [Zahid-2022], they claim their proposed solution 

surpasses some models that have achieved good results such as those of Random Forest that 

achieved 82.34% for IoT vs non-IoT device identification4, Decision Tree Classifier that 

achieved 79.88% for IoT vs non-IoT device identification5, and CNN-LSTM that achieved 

74.5% for IoT category identification as noted in [Bai-2018]. 

 

3.2. IoT Anomaly and Rogue Device Detection 

This section presents the SotA research in the area of IoT Device rogue and anomaly detection. The 

solutions allow us to determine correctly and quickly whether one or more IoT devices are acting 

anomalously and/or whether a rogue IoT device has unsanctioned behaviour on a network - this 

determination is made by applying AI to learn the traffic characteristics of encrypted network traffic 

 

 

4 Zahid et al did not describe how or where they obtained the results. 
5 ditto 
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for the device. The next subsection describes the state-of-the-art in the academic domain (Section 

3.2.1). SotA in Industrial solutions are discussed in Section 3.3.  

3.2.1. Academic Research 

Tsogbaatar et al show that IoT anomalies can be detected in order to carry out intelligent flow 

management in SDN networks. Their optimal solution handles the dataset imbalance and achieves a 

99% detection rate for the tested datasets [Tsogbaatar-2021]. Ullah and Mahmoud use a feed-

forward neural network to detect anomalous activity in IoT devices, achieving an average accuracy of 

97% on the evaluated datasets [Ullah-2022]. Vishwakarma et al demonstrate their solution in real-

time on a testbed achieving a detection accuracy ranging from 70% to 97% depending on the 

datasets tested.  Non-IoT devices can also be detected as rogue as in [Ou-2019] which described a 

non-ML-based solution. Another aspect of rogue identification is identifying the presence of 

unknown IoT devices based on their inferred network behaviours as considered in [Pan-2021]. Yet 

another aspect is identifying rogue IoT devices directly as in [Hamza-2019] using ML-methods. 

Although not explicitly stated, all research studies address IoT anomaly detection in the context of 

encrypted IoT network communication. 

More details for each of the above referenced research studies are described next. 

• [Hamza-2019] - Leveraging defined MUD (Manufacturer User Description) behavioural 

profiles, Hamza et al develop machine learning methods for an SDN-based system to identify 

rogue IoT devices participating in volumetric attacks such as DoS, reflective TCP/UDP/ICMP 

flooding, and ARP spoofing. As usual, traffic flows are analysed and 20 features are utilized. 

The features include examples such as total, mean, and standard-deviation of packet/byte 

count over sliding windows of 2-3- and 4-minutes.  The solution detects anomalous patterns 

of supposedly MUD-compliant network activity via coarse-grained (device-level which is flow 

direction agnostic) and fine-grained (flow-level which is aware of traffic as having bi-

directional flows) SDN telemetry for each IoT device. More specifically, the anomaly 

detection utilizes the following steps: 1) feature reduction using Principal Component 

Analysis (PCA); 2) clustering using X-means; and 3) outlier detection using boundary 

detection and Markov Chain. The solution achieved an accuracy of 89.7% when attempting 

to detect attacks across all IoT devices. The two datasets and system used in the study are 

publicly available upon request. The datasets consist of raw packet traces and derived flow 

counters for data representing both benign and attack traffic generated by 10 IoT devices 

and collected over a period of one month.  

•  [Tsogbaatar-2021] - Tsogbaatar et al present a deep ensemble learning model-based 

framework (DeL-IoT) for IoT anomaly detection in SDN controllers to manage traffic flows in 

SDN switches and IoT devices [Tsogbaatar-2021]. In addition to packet and flow level traffic 

instances that pass through SDN switches, system metrics of deployed devices and 

applications are also examined and considered as part of the anomaly detection. In this 

solution, the SDN controller has a learning module, a detection module, and a flow 

management module. Features are represented using an auto-encoder and deep feature 

representation by a non-linear transformation, which are then fed to the learning model 
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consisting of a stacked auto-encoder. The detection module is a Probabilistic Neural Network 

(PNN) represented as a Kernel Discriminant Analysis (KDA), a generalization of Linear 

Discriminant Analysis (LDA), to find the linear combination of features that separate classes. 

Their solutions are thus of the form of DAE-EPNN (Deep Autoencoder Ensemble Probabilistic 

Neural Networks) or SAE-EPNN (Stacked Autoencoder Ensemble Probabilistic Neural 

Networks). They appear to utilize a limited set of raw flow parameters6 that include duration, 

protocol, source IP address, destination IP address, source Port, destination Port, packets, 

bytes, tos, and idle_age. Although SDN system metrics are also used for anomaly detection, 

they are not explicitly listed. The flow management module is for the flow control and 

management at the SDN switch based on the rules of actions as modified in part due to the 

detected anomalies. Using LSTM, the authors of [Tsogbaatar-2021] also provides IoT device 

status forecasting, marking each IoT device as either legitimate or anomalous at some 

specified time point. They use data obtained from the testbed, with datasets including 1% to 

9% attack instances for data imbalance scenarios. They also utilize the N-BaIoT dataset used 

in [Meidan-2018]. DeL-IoT achieves a detection rate of 99.8% and 99.9% for their testbed and 

benchmark datasets, respectively. Moreover, DeL-IoT handles well 1% imbalanced datasets, 

i.e., datasets with only 1% of attack instances, for both single and multi-class anomalies with 

𝐹1 and 𝑀𝐶𝐶 (Matthews Correlation Coefficient) measures of around 2-3% better than a 

single model, PNN. 

• [Ullah-2022] - Using a feed-forward neural network (FFNN), Ullah and Mahmoud design and 

develop a system for detecting anomalous activity in IoT devices with a model that uses 

three types of features: two basic features (protocol and destination port), 11 flow features, 

and control flag features. The flow features include flow duration, flow bytes/sec, flow inter-

arrival mean/standard deviation as well as sub-flow associated information.  The 12 control 

flag features are extracted from TCP packets, including examples such as forward/backward 

PSH flags, FIN flags, RST flags, and ECE flags. To discern the effectiveness of the trained 

model, they utilize several datasets to evaluate the ability to identify intrusions and devices 

that have been compromised. Using all the three types of features, they obtained an average 

multiclass classification accuracy of 98.66% for all their evaluated datasets (99.86% for BoT-

IoT, 93.52% for IoT network intrusion, 99.92 for MQTT-IoT-IDS2020, 99.99 for MQTTset, 

99.37 for IoT-23, and 99.28 for IoT-DS2 datasets). They consider both binary classification 

(normal or attack category) and multiclass classification (normal and different attack 

categories). These five datasets, accessible at [Ullah-2021], contain traffic representing a 

total of 18 different types of attacks. This data set includes data from various botnets, where 

the proposed model can identify the anomaly in various botnets datasets.  

• [Vishwakarma-2022] - Vishwakarma et al propose a Deep Neural Network-based intrusion 

detection system (DIDS) to detect IoT network attacks in real-time [Vishwakarma-2022]. 

 

 

6 The parameters such as packets, bytes, tos, and idle_age are listed in Algorithm 1 of their paper but are not 
defined. Moreover, how these parameters are used to derive features is also not described. 
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Their system's pre-processing stage removes bias features and standardizes the input data. 

Its trained deep neural network stage detects malicious packets and its final stage, attack 

identification, identifies packets as either benign or malicious. NF-UQ-NIDS, one of their 

datasets with 20 different types of networking attacks, is a combination of their other four 

datasets: NF-UNSWNB15, NF-BoTIoT, NF-ToNIoT, and NF-CSE CICIDS2018 datasets, all of 

which are converted to a uniform NetFlow format. The combined dataset contains 

11,994,893 entries, 9,595,914 of which are used for training and 2,398,979 for testing. The 

selected features do not rely on packet payload content. They include source port, 

destination port, protocol, TCP flags, Layer 7 protocol, in byte count, out byte count, in 

packet count, out packet count.  The authors do not mention the number of IoT devices and 

their types. They compare DIDS to the study presented by [Sarhan-2020] as they also used 

the same dataset with ensemble algorithms such as Random Forest, Extra Tree, and 

AdaBoost. In Binary class classification, DIDs achieves the highest accuracy in NF-CSE CIC 

IDS2018, which is 99.21%. Moreover, in multiclass classification, DIDS achieves the highest 

accuracy in all the mentioned five datasets, NF-BoT-IoT (83.82%), NF-ToN-IoT (69.53%), NF-

CSE CIC IDS2018 (97.21%), NF-UNSW NB15 (97.48%), and NF-UQ NIDS (93.02%). Although 

real-time intrusion detection was demonstrated on a testbed, the authors did not provide 

any quantitative performance metrics. 

 

3.3. Industry Status 

The ultimate of goal of the industrial solutions for IoT device security is to ensure that the IoT devices 

used are legitimate, functioning normally, and not engaged in any malicious activities. Minimizing the 

threat vector posed by IoT devices requires visibility into those devices including the ability to 

discover them, identify their characteristics and evaluate their behaviours. In this section, we identify 

and describe six companies providing solutions in this market segment. Most of them do not provide 

easily accessible and detailed description of their respective solutions and techniques used – none at 

all, if any, on the discussion of their solutions when IoT devices communicate with encrypted 

protocols. 

• [Fortinet] - Fortinet is a cyber security company that also provides IoT device security 

solutions. Their Collector agents described in [Fortinet-1] can periodically probe all its nearby 

neighbouring devices to continuously perform discovery to identify newly connected non-

workstation devices in the system, such as printers, cameras, media devices and so on. Their 

“Inventory Auto Grouping” option enables user to group discovered devices by device type. 

For example, cameras, network devices, media devices, printers and so on. Basically, Fortinet 

acknowledges that with the rise of IoT deployment, advanced network security solutions are 

needed to help network operators to identify every user and device that connects to the 

network and grant or limit network access appropriately [Fortinet-2]. Note that no detailed 

description of the above IoT device security solutions is available. 

• [Palo Alto Networks] - Palo Alto networks is yet another cybersecurity company that also 

provides IoT device security solution. Their solution uses machine learning techniques to 

detect vulnerabilities and assess risk based on network traffic behaviours of IoT devices and 
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dynamically updated threat feeds [Palo Alto Networks-1]. Vulnerability is considered 

potential when it applies to a specific device type, model, and version number and one or 

more devices match the specified device type but their model and/or version number are 

unknown [Palo Alto Networks-2]. Additional information about their solution is available in 

[Palo Alto Networks-3].  

More specifically, Palo Alto Networks offers Zinbox IoT Guardian which performs device 

discovery, identification, classification, and grouping.  From [Palo Alto Networks-4], it “is an 

internet of things (IoT) security offering that automates the orchestration of the IoT lifecycle 

to provide security, management, and optimization of all assets. Zingbox IoT Guardian uses a 

unique, IoT personality-based approach to secure and manage IoT devices throughout their 

entire lifecycles, from discovery through retirement. It allows customers to automate threat 

detection and response for their IT and IoT infrastructures from a single system.”  

• [Armis+Check Point] - Armis and Check Point provide visibility and security for managed and 

unmanaged IoT devices. Without the use of agents or additional hardware, the Armis 

platform uses the existing network infrastructure to discover and identify every device in any 

environment—enterprise, medical, industrial, and more. The platform analyses device 

behaviour to identify risks and threats and provides continuous device risk assessments. 

Armis discovers devices on and off the network, continuously analyses endpoint behaviour to 

identify risks and attacks, and protects critical information and systems by identifying 

suspicious or malicious devices and quarantining them [Armis+Check Point-1]. 

• [Axonius] - From [IoTforAll], Axonius provides a centralized IoT visibility and cybersecurity 

platform. Using its “… networking capabilities help monitor industrial controls, mobile 

devices, cloud systems, including remote and on-premises endpoints. A single device can be 

used to discover the security coverage gaps of one million devices and 50,000 users.”.  Note 

that no detailed description of their solutions is publicly available. 

• [Forescout eyeSight] - From [IoTforAll], “Forescout eyeSight can discover, classify, and assess 

a variety of endpoints, including laptops, mobile devices, virtual computers, storage networks, 

operational technology (OT) systems, and IoT gadgets. It is a powerful, agentless IoT visibility 

solution that continuously monitors every IP-connected device on a network. Forescout 

eyeSight has auto-classification capabilities, for it is the world’s largest data lake of 

crowdsourced device intelligence. This data lake offers support for 600 versions of OS, 10,000 

device types, including 5,700 vendors and models.”  More information about eyesight is 

available in [Forescout eyesight-1, Forescout eyesight-2]. 

• [Securolytics] - From [IoTforAll], “The Securolytics IoT Security platform is a suite of products 

that helps you secure your internet-connected devices. The suite comprises IoT security, IoT 

discovery, and IoT control products. Securolytics automates the device discovery capability 

and identification without requiring agents on endpoints, helping lower the total cost of 

ownership across organizations.“ More information can be found in [Securolytics-1, 

Securolytics-2]. 
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4. Challenges and Trends 

Although we consider two different aspects of security solutions, one with respect to network 

applications and the other IoT devices, we found that their ML/DL-based solutions share common 

challenges and trends, and a few specific ones.  

Section 4.1  considers the challenges facing current SotA ENTA solutions and Section 4.2 the future 

trends that may affect them, while Section 4.3  considers the business trends. 

4.1. Technological Challenges 

In this section common challenges or issues are listed first, followed by those affecting specific use 

cases. 

The list of common challenges or issues affecting all, if not most, of the current solutions for the two 

use cases to be demonstrated in the ENTA project are as follows: 

• Lack of standardized datasets: Although some datasets are made publicly available, most of 

them are kept private due to privacy concerns. This hinders comparative study and 

evaluation. 

• Lack of a development support infrastructure:  The lack of specialized platforms for the 

ML/DL-based network analytics causes a lot of wasted and duplicate effort, with diversion of 

focus from model solution development.  

• Lack of generalizability: The proposed solutions seldom work well with unknown data or 

data from different network environments.  The models often do not handle changes in 

communication protocols, specific networks infrastructures, user behaviours, or a 

combination of thereof.  

• Invariant Features: There is a lack of strategy for selecting invariant features suitable for the 

dynamically changing problem space. 

• Changing network traffic characteristics: The premise of ENTA is that network traffic 

characteristics can uniquely identify applications and IoT devices. However, what happens 

when the underlying network traffic characteristics behaviour changes? There is a need to 

monitor and handle changes in network characteristics due hardware and software updates. 

• Unseen applications: There is a need to adapt solutions dynamically to dynamically changing 

data characteristics and unknown/unseen applications or security issues. 

• Lack of very large-scale datasets of the order of 100 or more application and IoT classes: 

This hinders the opportunity and ability to develop and experiment solutions of such scale.  

• Need for good real-time solutions: Inspecting fewer packets per flow, though would be 

faster, cannot guarantee to deliver expected real-time performance. 

• Safeguarding privacy: There is a need to handle encrypted data without compromising 

privacy. 



23 
 

WP7-D7.4.1 
D7.4 Publications and updated SotA: State of the Art Review – Encrypted Network Traffic Analysis 

Solutions 

 
 
 

• Handling Countermeasures: There is a need to handle countermeasures such as leak 

protection for privacy purpose which render network traffic less differentiable. 

• Lack of explain-ability of proposed solutions: Most solutions work for their chosen datasets 

and fixed test environment. There are inadequate available explanations of how and why 

they work. 

Challenges which specifically affect application classification are related to the coverage of solutions 

in the following aspects:  

• Number of applications 

• Type of applications 

• Version of application 

• Diversity of network architectures and technologies 

• Demographic specific factors 

• Application and network characteristics that change over time 

 

For the IoT use case, solutions have to contend with the following challenges: 

• Different IoT device types 

• Different IoT devices 

• New and unknown IoT device types and devices 

• Number of IoT devices 

 

4.2. Technological Trends 

We briefly list and discuss technological trends that may affect future ENTA solutions. Some changes 

in technology are immediate but most of the technology changes occur over a long period of time. 

These technology changes can be considered in following areas: 

• Enabling more effective solutions for the 2 use-cases: Application detection and IoT rogue 

device and anomaly detection: 

o Advances based on evolving ML/DL techniques – early solutions were ML based but 

more research efforts have focused on Deep Learning in recent years. Recently, 

Graph Neural Networks have also been utilized [Shen-2021, Wu-2022]. 

o Since the basis of the approach is based on traffic characteristics, advances in new 

feature to represent characteristics can impact solutions. For example, in recent 

years, representing an encrypted network traffic byte stream as an image has 

contributed to effective detection of applications [Shapira-2021, Pathmaperuma-

2022]. 

o Advances in model development – incremental training and upgrading of models are 

being reported by researchers, this requires new model creation/update whenever 

changes in traffic characteristics affecting the original model performance are 

detected [John-2020]. 
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• Increase in complexity for training Datasets: 

o The proliferation of applications utilizing different encryption methods – TLS 1.3 with 

ESNI, QUIC, VPN etc [Papadogiannaki-2021]. 

o The proliferation of integrated applications e.g., WhatsApp can be used for text chat, 

voice chat and video chat and image exchanges. 

o Number and type of available IoT devices are increasing significantly for different 

domains - home, enterprise, industrial, wearables, medical etc. Each type of device 

has unique characteristics.  

• Making target solutions ineffective with advancement of new technologies 

o The rise of quantum communication and computing [Norbert-2021]. 

o The rise of active countermeasures against encrypted traffic analytics e.g., 

techniques adopted in Darknet [Papadogiannaki-2021]. 

o IETF work of preserving privacy technologies, (Recent Trends on Privacy-Preserving 

Technologies under Standardization at the IETF). Some of the examples are DNS over 

TLS and DNS over QUIC [Dikshit-2023]. 

 

4.3. Business Trends 

According to [IoTWorldToday], the key threats set to emerge in 2023 include the increased 

importance of AI for both offensive and defensive security. This year was expected to be a record-

breaking year for cyber security breach notifications, not only because of the sophistication of threat 

actors – but also due to larger changes in the world: global unrest, supply chain instability, and 

soaring inflation. These factors will impact an organization’s ability to mitigate, remediate, or prevent 

cyber threats. The report also indicates that Ransomware will “flourish,” with this form of malware 

representing the most prolific and costly kinds seen in recent years. 

Below we summarize our analysis of the business trends reviewed as part of this SotA study:  

• Application UseCase - At present, Deep Packet Inspection (DPI) technology remains the 

dominant approach for application detection.  There is currently no commercial solution 

which successfully carries out encrypted application discovery and classification. Vendors 

such as R&S have an advanced solution but rely mostly on DPI techniques with reliance on 

work-arounds to address the gap. They have some initial efforts in applying AI to the 

problem of encrypted application detection. Sandvine has a partial solution for encrypted 

traffic analysis that's used in the LEA domain.  
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• IoT UseCase - The market for encrypted IoT device discovery and rogue device detection 

remains a nascent one and vendors are beginning to work on solutions. Palo Alto has 

commercialized an IoT device discovery solution. However, this solution is not intended to 

discovery encrypted IoT devices as it relies on various information sent in the clear in order 

to carry out its discovery. 

• ENTA Platform - while there exist a number of general-purpose AI platforms there are still no 

special purpose AI platforms which focus on AI-based encrypted network traffic analytics. It 

is this gap that the ENTA platform seeks to fill. While this ENTA project will develop and show 

case 2 encrypted network traffic analysis use cases on the ENTA platform, the platform is 

designed to support rapid and fast paced development of additional use cases.  
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5. Conclusion 

This document conducted a survey, assessment and analysis of the State of the Art (SotA) in a 

specific area of interest pertaining to the ENTA project. In particular, the document focuses on SotA 

developments in the area of encrypted network traffic classification and analysis. At the outset, the 

study conducted a brief examination and analysis of suitable open-source platforms as the basis of a 

specialized platform for encrypted network traffic analytics. As the scope of the current ENTA project 

focuses on two specific use-cases, we subsequently evaluated SotA in academia and industry as it 

relates to these use-cases: (i) encrypted network application classification (ii) IoT device security with 

two sub-cases: (a) IoT device discovery (b) IoT anomaly and rogue device detection. We concluded 

the study with an analysis of technological challenges/trends and business trends in related areas. 

As a result of the SotA study, we arrive at a number of findings, summarized as follows: 

• The challenge of handling encrypted traffic continues to loom large with over 90% of 

network traffic being encrypted today. As the deployment scope and strength of encrypted 

solutions continue to increase, the challenge of developing visibility solutions becomes ever 

more pressing.   

• The key technological challenges and industrial trends presented and analysed in this study 

will influence the development of future encrypted network analytic solutions. 

• Existing network analytic solutions that leverage traditional DPI (Deep Packet Inspection) 

techniques remain inadequate to handle encrypted network traffic. Workarounds that had 

been developed to handle encrypted traffic are beginning to reach their capability limit and 

new solutions are required.  

• Existing industrial solutions for network traffic analysis can continue to be utilized along with 

whatever workarounds have been developed. However, they require specific complementary 

solutions to address encrypted traffic. A number of technology vendors in this industry 

segment are in the early stages of carrying out research and development towards a 

solution.  

• AI-based solutions (ML/DL) remain one of the most promising avenues to provide requisite 

visibility into encrypted network traffic for the use-cases of the ENTA project as well as other 

future use-cases.  Such solutions preserve the privacy of network content.  

• In recent years, there has been a significant increase in the academic research carried out 

into using AI-based approaches for encrypted network traffic analytics. This research has 

proven the early viability of machine-learning (ML) approaches in controlled test 

environments. More recently, deep learning (DL) solutions have been the subject of research 

in this domain to develop more robust solutions.  

• AI-based research in this domain now needs to focus on maturation of proposed solutions to 

address a number of specific hurdles which remain before the research can be more broadly 

adapted for use in industry solutions: (i) development of generalized ML/DL models which 

can operate correctly in diverse network environments – to date, validation of research 
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results were primarily undertaken with data collected from the same network as the training 

data (ii) development of AI models which can operate correctly at high speed for deployment 

in network device data planes – 100Gbps and higher (iii)  development of solutions which can 

operate correctly across the broad range of encryption protocols including TLS, QUIC and 

VPN-based protocols among others (iv) ability to generate correct prediction results when 

presented with unseen types of encrypted traffic – traffic types that were not included in the 

model training.  

• Acceleration in maturity of AI-based solutions in different domains is assisted by the 

existence of collaborative work in the form of open-source libraries, tools, datasets and 

models. These tools, datasets and models are tailored towards solving a specific problem. A 

strong example can be observed in the image processing and object detection domain.  The 

domain of encrypted network traffic analytics would benefit immensely from a common 

platform which will accelerate development of high-quality solutions. This gap, the ENTA 

project seeks to fill.  
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Appendix: Network Application Activity Identification 

 

In this section, for a given set of network applications operating in a network, we highlight solutions 

that allows us to infer correctly and quickly the application-level activity from encrypted network 

traffic describing the state-of-the-art solutions in the academic research domain. 

Different kinds of applications provide different kinds of services and thus, they support different 

kinds of activities. Here, we consider a few non-exhaustive examples of identifying specific activities 

occurring within particular applications. The first example, presented in [Aiolli-2019], describes 

identifying user fund transfer activities on smart-phone-based Bitcoin wallet apps. The second 

example, described in [Liu-2019], focuses on identifying human behaviours transmitted in encrypted 

video. The last example is a solution described in [Pathmaperuma-2022] for identifying a total of 92 

transpiring activities in 8 applications such as posting various media types, providing different types 

of comments, and watching different types of media. For their respective datasets, all the studies 

indicate that they achieve accuracy over 90%. More details for each research study are described 

next: 

• [Aiolli-2019] - Considering applications of the same type (smartphone-based Bitcoin wallet 

apps) and same functionality (sending, receiving, and trading Bitcoin), Aiolli et al used 

machine learning techniques such as SVM (Support Vector Machines) and RF (Random 

Forest) to analyse encrypted network traffic for those applications and their associated 

activities. They used statistical features extracted from a sequence of directional packet sizes 

represented by a sequence of signed integer numbers whose signs are determined by the 

packet flow direction. The nine types of cryptocurrency applications investigated are: 

BTC.com, Bitcoin Wallet (Android and iOS), Coinbase, Mycelium, BitPay, Blockchain, Bread, 

and Copay. The activities considered for these apps are: Open App, Receive Bitcoin, and Send 

Bitcoin, although many more actions may be available. Their experimental results achieve 

nearly 95% accuracy in user activity identification for 9 Bitcoin wallet applications, four of 

which are Android-based with the rest being iOS-based. 

• [Liu-2019] - Liu et al investigated six typical machine learning algorithms to identify an 

individual user’s daily living behaviours from live video. Behaviour activity that was detected 

included examples such as watching TV, reading books, styling hair, opening or closing a 

door, sweeping the ground, getting dressed, drinking and moving around. The authors 

determined and validated features required to build the requisite model. The features 

included statistical properties computed from traffic rate change (TRC), gain coefficients in 

the frequency domain obtained from DFT (Discrete Fourier Transform) of traffic segment, 

among others [Liu-2019]. The machine learning algorithms investigated include: Naïve Bayes, 

Logistic Regression, K-Nearest Neighbour, Decision Tree, Gradient Boosting Decision Tree, 

and Random Forest. Their experimental results show that the user’s behaviour captured in 

encrypted video traffic can be identified with 94% accuracy.  
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• [Pathmaperuma-2022] - Considering unknown applications and fine grained in-application 

activity detection with minimal data, Pathmaperuma et al proposed a Convolutional Neural 

Network (CNN) in a framework that uses a time window-based approach to split the activity 

occurring within an encrypted traffic flow into segments. Their technique considers packet 

size and time related information.  In their solution, these segments are constituted into 

matrices that serve as input to the CNN model, enabling it to learn to differentiate previously 

trained (known) and previously untrained (unknown) in-application activities. These in-

application activities are then identified via as many such segments as needed. Their 

approach is able to filter unknown traffic with an average accuracy of 88% and a classification 

accuracy of 92% once the unknown traffic has been filtered out. The authors claim that their 

solution yields good results with as little as 0.2s of data exchange for an application. The 

eight applications considered are Facebook, Instagram, Gmail, Messenger, Skype, Viber, 

WhatsApp, and YouTube. A total of 92 activities are identified within the 8 applications with 

the number of distinct activities per application ranging from 5 in Gmail to 22 in Facebook. 
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Acronym/Glossary 

Acronym Meaning 

ARP Address Resolution Protocol 

BoT 
A software application that runs automated tasks (scripts) over the Internet, usually with the intent 
to imitate human activity on the Internet, such as messaging, on a large scale. 
[https://en.wikipedia.org/wiki/Internet_bot] 

C4.5 
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. 
[https://en.wikipedia.org/wiki/C4.5_algorithm]  

CAGR Compounded Annual Growth Rate 

CNN Convolutional Neural Network 

CIC Canadian Institute for Cybersecurity 

CSE Communications Security Establishment 

DAE-
EPNN 

Deep AutoEncoder-EnsembleProbabilistic Neural Networks 

DeL-IoT Deep ensemble Learning model-based framework for IoT anomaly detection 

DIDS Deep Neural Network-based Intrusion Detection System 

DFT Discrete Fourier Transform 

DNS Domain Name System 

DPI Deep Packet Inspection 

DR Detection Rate 

desIP Destination IP 

desPort Destination Port 

DoS Denial of Servic 

ECE ECN-Echo, used to echo back the congestion indication 

ECN Explicit Congestion Notification 

ENTA Encrypted Network Traffic Analysis 

ESNI Encrypted Server Name Indication 

ETI Encrypted Traffic Intelligence 

𝐹1 Score 
It is the harmonic mean of a system’s precision and recall values, calculated as follows: 

2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

FCBF Fast Correlation-Based Filter 

FDR False Detection Rate 

FIN 

A message that triggers a graceful connection termination between a client and a server 

[https://www.baeldung.com/cs/tcp-fin-vs-
rst#:~:text=FIN%3A%20a%20message%20that%20triggers,a%20client%20and%20a%20server]. 

FFNN Feed Forward Neural Network 

FPR False Positive Rate 

GP Genetic Programming 

HDNN Hierarchical Deep Neural Network 

HTTPS Hypertext Transfer Protocol Secure 
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ICMP Internet Control Message Protocol 

IioT Industrial IoT 

iOS iPhone Operating System 

IoT Internet of Things 

IP Internet Protocol 

IPFIX IP Flow Information eXport 

ISP Internet Service Provider 

IT Information Technology 

KDA Kernel Discriminant Analysis 

LDA Linear Discriminant Analysis 

LEA Law Enforcement Agency 

LSTM Long Short-Term Memory 

MAC Media Access Control 

MCC 

Matthews Correlation Coefficient 

It measures the quality of a classification, showing the correlation agreement between the 
observed values and the predicted values. Its equation is as follows: 

𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃_𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁_𝐹𝑁)
, where  

• TP: True Positive 

• TN: True Negative 

• FP: False Positive 

• FN: False Negative 

MQTT 
Message Queuing Telemetry Transport, an OASIS standard messaging protocol for the Internet of 
Things (IoT) [https://mqtt.org/]. 

ML/DL Machine Learning/Deep Learning 

MUD Manufacturer Usage Description 

N-BaIoT Network-Based Approach for IoT 

NAT Network Address Translation 

NF Netflow 

NTP Network Timing Protocol 

OT Operational Technology 

P2P Peer-to-Peer 

PCA Principal Component Analysis 

PCAP Packet Capture 

PNN Probabilistic Neural Nework 

PSH 
Push flags for instructing the operating system to send or receive data immediately, respectively at 
the source or receiver 

QoE Quality of Experience 

QUIC 
QUIC is a new multiplexed transport built on top of UDP. HTTP/3 is designed to take advantage of 
QUIC's features, including lack of Head-Of-Line blocking between streams 
[https://www.chromium.org/quic/].  

RF Random Forest 
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RFC Request for Comments 

RFE Recursive Feature Elimination 

RRSE Root Relative Square Error 

RSA 
RivestShamirAdleman is a public-key cryptosytem that is widely used for secure data transmission. 
[https://en.wikipedia.org/wiki/RSA_(cryptosystem)]   

RST 

A message that aborts the connection (forceful termination) between a client and a server 

[https://www.baeldung.com/cs/tcp-fin-vs-
rst#:~:text=FIN%3A%20a%20message%20that%20triggers,a%20client%20and%20a%20server]. 

SAE-
EPNN 

Stacked AutoEncoder-Ensemble Probabilistic Neural Networks 

SBB-GP Symbiotic Bid-based GP 

SCP Secure Copy 

ScrIP Source IP 

ScrPort Source Port 

SDN Software-Defined Network 

SFTP Secure File Transfer Protocol 

SOC Security Operations Center 

SotA State-of-the-Art 

SSH Secure Shell 

SSL Secure Sockets Layer 

SVM Support Vector Machine 

TCP Transport Control Protocol 

TLS Transmission Layer Security 

TON-IoT IoT/IIoT datasets collected from Telemetry data, Operating systems data and Network data. 

tos Type of Service 

TRC Traffic Rate Change 

Trust 
Metric 

From [Pashamokhtari-2021], the intuition behind the trust metric is to check the number of 
expected flows from a device with the number of flows that are indeed classified as that of the 
device type during the monitoring period.  

The raw measure of trust is computed as: 𝑇𝐿 =
𝑁𝑜,𝐿

𝑁𝑒,𝐿×𝐷𝑒,𝐿
,  

where 𝑁𝑜,𝐿 is the number of observed flows predicted as class 𝐿; while 𝑁𝑒,𝐿 is expected number of 

record of class 𝐿 and 𝐷𝑒,𝐿 is the expected rate of discarded records during training.  

The normalized trust is defined as: 𝑇𝑛𝑜𝑟𝑚,𝐿 = 𝑒𝑥𝑝 (−
(𝑇𝐿−1)

2

2𝜎𝑇𝐿
2 ),  

where 𝜎𝑇𝐿
2  is the standard-deviation of 𝑇𝐿 computed during the training phase. 

UDP User Datagram Protocol 

VPN Virtual Private Network 

 

 


