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1 .   Introduction 

This document provides a comprehensive overview of several use case applications of the SOCFAI 

project, detailing their purposes, scopes, developments, and data management strategies. It 

systematically examines each application, from its initial conceptualization and defined objectives 

to the intricate aspects of its system architecture and functional implementation performed by 

SOCFAI partners. Furthermore, the document delves into the crucial area of data management, 

outlining the data sources, integration methods, and usage patterns specific to each use case. 

Finally, it presents the data analysis and results derived from the applications, concluding with 

insights into future works and potential enhancements. This structured approach allows for a 

thorough understanding of the design, implementation, and outcomes of diverse use case 

scenarios of the SOCFAI project. 
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2 .   Purposes and Scopes of Use Case Applications  

 

2.1   Use Case Application #1 (INOSENS) 
 

In Use Case 1, the main purpose is to perform passenger flow monitoring and passenger density 

estimation in an airport environment using LiDAR sensor technology. Due to privacy concerns, 

there are restrictions on using cameras. 2D Camera-based crowd detection methods pose certain 

challenges especially when cameras are located from the top to see people on the ground. Lidar 

sensor provides 3D point cloud data which doesn't include personal information on the contrary 

of camera or CCTV but includes location information for each individual in a certain range. 

Therefore, the plan is to provide a LiDAR-based solution for human detection to support security 

purposes such as people detection and crowd estimation. 

 

Figure. General View of Use Case 1 

 

Figure. Purposes of Use Case 1 
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2.2   Use Case Application #2 (Siemens, TAV) 

 
Use case 2 (Siemens use case) focuses on the baggage analytics and predictions to optimize the 

baggage operations in an airport setting, specifically within the baggage handling system. It 

includes a real-time dashboard to provide real-time statistics for international & national flights 

and predictions per daily, hourly and pattern of baggage counts. TAV Technologies supplies 

baggage, flight and passenger data to Siemens which is collected from İzmir Adnan Menderes 

Airport. Within this use case, the developed solution incorporates AI services for predictive 

analytics, daily, hourly, 15 minutes and flight-specific forecasting, delay prediction and an 

optimization recommendation system. The solution is developed as docker containerization, 

platform-independent architecture with SQL server for data storage.  

  

 
  

 Figure. General View of Use Case 2 (AI-Based Baggage Analytics and Optimization) 

 

2.3   Use Case Application #3 (Enverse, NETAŞ, TAV) 
Use Case 3 focuses on enhancing energy efficiency and operational intelligence at İzmir Airport 

through collaborative efforts among Enverse, NETAŞ, and TAV Technologies. 

NETAŞ will develop an IoT-based indoor air quality monitoring system to ensure optimal 

environmental conditions within the airport. Enverse will deliver real-time energy analytics, 

predictive models, and an AI-driven control system to optimize energy consumption. TAV 

Technologies supplies air quality sensor data to NETAŞ which is collected from İzmir Adnan 

Menderes Airport and all together work on dashboards. 
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Key components of this use case include: 

● Energy Consumption Forecasting – AI-based prediction of energy demand using factors 

such as passenger traffic, weather data, and SCADA inputs. 

● Real-time Energy Monitoring – A cloud-based solution for tracking energy usage. 

● HVAC Control System – A digital twin-powered optimization tool to regulate heating, 

ventilation, and air conditioning efficiently. 

A major challenge addressed in this scenario is avoiding energy overconsumption penalties by 

accurately forecasting demand. The solutions developed under Use Case 3 will be implemented 

and validated at İzmir Airport, demonstrating their effectiveness in real-world airport operations. 

 

 

Figure. Data exchange map of use-case 3 
 

2.4   Use Case Application #4 (INOSENS) 
 

In Use Case 4, the main task is to perform sentiment analysis on text-based social media posts, 

comments, and reviews. The goal is to evaluate passenger satisfaction based on what people are 

saying online about Izmir airport. The use case also involves analyzing the correlation between 

time and sentiment and identifying the change in passenger satisfaction after flight delays. 

XMedia2Analytics is the proposed framework. It provides analytics for businesses using social 

media and other online sources to help organizations with making intelligent decisions and 

meeting their goals.  
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F.gure. General View of Use Case 4 

 

2.5   Use Case Application #5  
 

In the AI powered Port Logistics Management scenario of Use Case Application #5, we implement 

the transformative solutions for intelligent container yard management and inter-terminal logistics 

flow within Port environments in terms of Use Case Application #5. This use case application 

solution employs state-of-the-art technologies such as automated scheduling, real-time tracking, 

predictive analytics, and digital twins to optimize container placement, data analysis, and shipment 

dispatching. By leveraging artificial intelligence, these systems not only improve the efficiency of 

current operations but also proactively address future demands and unexpected operational 

challenges. 

Partnerships with esteemed institutions like KAIST, INJE University and eINS S&C have been 

instrumental in integrating cutting-edge research with practical applications to overcome 

traditional constraints of distance, traffic, and operational bottlenecks. The collaboration has also 

emphasized the importance of data confidentiality and utilization control, which is crucial in a 

multi-party computation environment. 

The Port Logistics Service Platform collects and manages legacy logistics information and multiple 

types of IoT data from logistics port, warehouse and transport systems, and these are connected 

with wired and wireless communications.  As shown in the below figure, the functional framework 

to support “AI powered Intelligent Logistic Service Platform” will provide an optimized approach 

to combine these separately working functions with required operation, security, monitoring, 

management and logging functionality of port logistic data. 

In the scenario of use case 5, data trust solution in alliance with blockchain technology will allow 

various types of logistics data on the “Intelligent Logistics Service Platform” safe and reliable. And 

an AI based digital twin service solution will work on prediction and analysis in logistics processes. 
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Moreover, the inclusion of digital twin technology paves the way for sophisticated scenario 

creation and simulation-based optimization, providing a dynamic and responsive framework for 

decision-making processes. The creation and maintenance of these systems signify a monumental 

shift in Port logistics management, setting new standards for efficiency, reliability, and trust in the 

industry. 

The AI powered Port Logistics Management Platform collects and manages legacy logistics 

information and multiple types of data from Port Operation, Port Logistics, and Transportation 

Data sources connected with wired and wireless communications as shown the below figure. 

These will be in accordance with the aviation SOCFAI framework. 

 

Figure. Implementation Scope of Use Case Application #5 

 

2.11   Use Case Application #11 (TAV) 
 

Use Case #11 focuses on enhancing airport operational efficiency through the development of 

three key AI-driven solutions by TAV Technologies: (1) Flight Delay Prediction, (2) Advanced 

Resource Management System (RMS) for fixed airport assets, and (3) Advanced Ground Handling 

Suite (GHS) for mobile resources. 

● The Flight Delay Prediction module will use machine learning and rule-based methods to 

predict delays for arriving and departing flights using data from weather, city traffic, 

passengers, baggage, ADS-B signals, and real-time operations. Predictions will support all 

airport optimization systems. 

 

● The Advanced RMS will improve fixed resource allocation (e.g., gates, stands, counters) 

by incorporating real-time operational and predictive data rather than relying solely on 

flight schedules from AODB. 
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● The Advanced GHS will optimize deployment of mobile resources (e.g., staff, vehicles) 

using real-time data on flights, passengers, baggage, and personnel capabilities. It will 

include multi-KPI optimization and integration with security systems for emergency 

alerts. 

 

These developments aim to significantly improve the efficiency, accuracy, and responsiveness of 

airport operations. 

 
 

3 .   Developments of Use Case Applications 

3.1   System Architecture  

3.1.1   Use Case Application #1 (INOSENS) 

In this project, Velodyne VLP-16 is used as the LiDAR sensor. Velodyne VLP-16, commonly known 

as the “Puck,” is a compact and lightweight 3D LiDAR sensor designed for real-time environmental 

mapping. It features 16 laser channels and provides a full 360° horizontal field of view with a ±15° 

vertical field of view. The sensor generates up to 300,000 points per second, offering high-

resolution point cloud data with a typical range of up to 100 meters and a distance accuracy of ±3 

cm.  

 

Figure. Velodyne VLP-16 LiDAR Sensor 

In the system planned for Use Case 1, it is planned to transfer 3D point cloud data obtained from 

the lidar sensor located at the airport to the server, perform data pre-processing on the server, 

estimate passenger locations from a deep learning-based model and perform density analysis, and 

transfer these inferences to the platform via an API. 
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Figure. Architecture of Use Case 1 

 

LiDAR point cloud data is collected with a computer that has Linux Ubuntu 18.04 operation system 

and Robot Operating System (ROS) framework. ROS framework provides some useful tools for 

collecting, visualizing and storing point cloud data in both data collection and real-time data 

acquisition stages.  

After acquiring point cloud data, it is sent to the INOSENS server for analyzing the density of people 

in the airport. In the server, each human’s coordinates in the point cloud data is predicted with a 

point cloud based deep learning model.  

The human coordinates predicted by a deep learning model, along with the derived crowd 

density information, are transmitted to the airport system via Apache Kafka — a distributed 

event streaming platform designed for high-throughput, real-time data pipelines and 

communication between systems. 

 

3.1.2   Use Case Application #2 (Siemens) 

The overview of the high-level architecture, system components and their interactions for the 
solution addressing use-case 2 are illustrated in the following figure. The main building blocks are 
User Interface part for real-time dashboard, Data Analysis service for data processing, 
Management service, Database for storage operations, Communication service for real-time data 
communication with the SOCFAI platform and AI services for daily, hourly, pattern and flight delay 
predictions.   
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Figure. High-Level Architecture of AI-Based Baggage Analysis and Prediction Application 

A real time dashboard is developed for the user interface and interactions with the end-users. The 
real-time dashboard represents a web page including real-time statistics and predictions about 
flight and baggage. Management handles requests from Dashboard and response. Communication 
gets real-time data from the external SOCFAI platform and populates into a database. Data 
Analysis analyzes populated data in the database to serve Management requests and AI/ML 
related tasks. AI/ML performs AI and ML algorithms and methods regarding provided data. Users 
interact with Dashboard via web pages like HTTP. SOCFAI provides real-time flight and baggage 
data.  
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Figure. Whitebox Blocks View 

 
 
 
Overview of the white box blocks and their interactions are illustrated in the above figure. AI/ML 
services represent a container group consisting of specialized containers for specific tasks. 
Communication service represents a container which communicates with an external network and 
feeds a Database container. Real-time dashboard represents a container which provides a web 
page as frontend. Database represents a container for storing real-time data. Data Analysis 
represents a container analyzing data in the database. Management service represents a container 
which provides data to a web page as a backend.  
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3.1.3   Use Case Application #3 

The main purpose of Use Case 3 is to measure the air quality level in airports and transmit this 

information to other systems to ensure energy efficiency. The European Environment Agency 

provides air quality data that encompasses a range of measurements. These measurements are 

classified into distinct categories, namely "good," "fair," "moderate," "poor," "very poor," and 

"extremely poor." These classifications will serve as indicators to assess the quality of air in 

different locations and aid in understanding the current conditions of air pollution. 

The air quality index is calculated for the real time readings of sensor data received from the 

different locations in the selected pilot airport Adnan Menderes Airport (ADB). The received data 

includes the following data and the measurement values:   

● Location information: deviceName, devEui, terminal, floor, zone 

● Air Quality data: humidity, pressure, temperature, hcho, pm2.5, pm10, co2, tvoc 

●  Other: light_level, pir, crowdness, timestamp 

Based on the data collected, the air quality index is calculated and the current status of each 

location is determined. The collaborative services of IoT platform – ION, is capable of generating 

alarms depending on the status of the air quality. These alarms will also be able to trigger some 

HVAC operations beyond.  

The device descriptions are identified on Iot Platform - ION representing each sensor located in 

Adnan Menderes Airport.  

 

Until the integration between the SOCFAI platform, the real data will be transferred to ION within 

the specified periods. For the current situation, manually transferred data are used for dashboards 

and visualization. The user can select a specific location in the airport and display the current and 
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historical data measurements. 

Some examples from the dashboard design are as follows:

 
Sensor variables for location “DIŞHAT GELEN 5 NOLU BAGAJ ALIM” 

 
Current temperatures for the location in the airport 

 

3.1.4   Use Case Application #4 (INOSENS) 

 
The XMedia2Analytics framework is the proposed solution which will be integrated into the 

SOCFAI platform. The goal of this framework is to provide businesses with analytics using text-

based content from multiple online sources. Specifically, the framework will include AI-based 
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solutions for sentiment analysis of text-based content about the organization (Izmir airport) and 

data visualizations for the user to identify the correlation between time and passenger satisfaction 

and how changes in passenger satisfaction are affected by flight arrival and departure delays.  

 
 
The system consists of several components, including a dashboard for the user to view the results 

of the sentiment analysis model for each input text (comment, review, or social media post). The 

FastAPI framework will be used to develop the web service API, which can send the relevant 

information to the SOCFAI platform. The AI-based sentiment analysis model is necessary for 

predicting the sentiment. All the text-based content and relevant information collected from 

online sources will be stored in the data storage. The data collection API, as the name suggests, 

collects data (including text for sentiment analysis) from online sources.  
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3.1.5   Use Case Application #5 

1) Overall Configuration 

 
 

In the Use Case Application #5, the main service scenario on “AI enabled Port Logistics 

Management” is implemented, and it focuses on exploring innovative solutions for intelligent 

container yard management and logistics flow between terminals within the port environment. 

Particularly, in the AI powered port Logistics Management Platform, Advances in intelligent 

container yard management solutions and cross-terminal logistics flow management solutions are 

leading the way in modernizing port operations, collecting real-time data, quality control, and 

ensuring efficient logistics coordination. 
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These solutions use state-of-the-art technologies such as automatic scheduling, real-time tracking, 

predictive analytics, and digital twins to optimize container placement, data analytics, and 

shipping, as detailed in the requirements. 

These systems leverage artificial intelligence to improve the efficiency of current operations, as 
well as preemptively address future demand and unexpected operational challenges. 

Partnerships with KAIST, Inje University, and eINS S&C have been instrumental in integrating state-

of-the-art research and practical applications to overcome traditional constraints such as distance, 

transportation, and operational bottlenecks. This collaboration has also highlighted the 

importance of data confidentiality and utilization control, which is critical in multilateral computing 

environments. 

The logistics service platform collects and manages existing logistics information and various types 

of IoT data from logistics ports, warehouses, and transportation systems, and connects them by 

wired and wireless communication. As shown in the figure below, the functional framework 

supporting the 'AI-based intelligent logistics service platform' provides an optimized approach that 

combines these separate work functions with the necessary operational, security, monitoring, 

management, and logging functions of the port logistics data. 

For use case 5, data trust solutions in partnership with blockchain technology make various types 

of logistics data safe and reliable in "intelligent logistics service platforms." And digital twin service 

solutions based on AI will be used for prediction and analysis in logistics processes. 

In addition, the introduction of digital twin technologies paves the way for sophisticated scenario 

generation and simulation-based optimization, providing a dynamic and responsive framework for 

the decision-making process. The creation and maintenance of these systems represents a 

breakthrough in port logistics management, setting new standards for efficiency, reliability, and 

reliability in the industry. 

2) Partners’ Roles in the Development of Use Case Applications #5 

A. KULS 

Mid Version of Use Case Applications System Architecture are featured in the following 

capabilities. 

-   Data Pipeline System Architecture 

-   Zookeepers, Kafka, and Devezium open sources are used to build a data pipeline. 

-  initial versions of the system architecture used Java-based Zookeper to build a data pipeline. 
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Figure. Initial Version of Use Case Applications 

B. KAIST 

a) AI-based CFS/CY Management System Architecture 
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An AI-based CFS/CY (Container Freight Station / Container Yard) management architecture has 

been designed and implemented with the objective of optimizing container logistics within and 

across multiple container freight stations. This system is developed to enhance both intra- and 

inter-station operations through data-driven decision making and has been developed to support 

scenario-based analysis and operational optimization through simulation-driven approaches. 

At the core of the architecture lies an AI coordination engine, which receives real-time data 

streams from terminal facilities, transport systems, and various CFSs. Based on these inputs, two 

levels of optimization are performed: 

• Inter-Container Freight Station Optimization: Container flows between freight stations are 

controlled to prevent operational bottlenecks and distribute workloads evenly. Real-time 

decisions are made to redirect shipments to underutilized stations, thereby minimizing congestion 

and maximizing system-wide capacity utilization. 

• Intra-Container Freight Station Optimization: Within each station, container stacking and 

relocation plans are optimized using AI algorithms. By considering departure priorities, spatial 

constraints, and equipment availability, the system minimizes waiting time and reduces inefficient 

internal movements. 

The architecture has been designed to support intelligent decision-making by continuously 

analyzing operational data and logistics conditions. Optimization processes are executed in a 

distributed manner to enhance responsiveness and adaptability across various freight station 

environments. 

C.  eins S&C 

a) Digital Twin Based Optimal Dispatch System Architecture 

The Digital Twin-based optimal dispatch system is designed to provide optimal dispatch data based 
on transportation contracts registered on the port logistics platform. The system mainly consists 
of two parts: the Simulation Model and the Optimization Module. 
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D. INJE University 

Blockchain Recording Points 

● At every API request/response, a hash (timestamp + who + source + destination + actual  

● data) is recorded on the blockchain. 

● If disputes arise, API transmission logs can be compared against blockchain records for 

verification. 

● Access to blockchain nodes and monitoring UI is available for authorized members. 

● Blockchain entries enable integrity checks and serve as audit logs during disputes or 

anomalies. 

  



21 

 
 

 

Container Data Sharing between Easy Container and KAIST 
 

 
 

Data Flow Steps: 

1. [Step 1] Request to KAIST: 

 Easy Container requests information about containers scheduled for inbound 

movement to edge computing (used for optimization & AI processing). 

2. [Step 2] Response from KAIST: 

 KAIST responds with optimized stacking layout information for the inbound 

containers. 

3. [Step 1 again] Request for outbound containers: 

 Easy Container requests information about containers scheduled for outbound 

movement to edge computing. 

4. [Step 2 again] Response from KAIST: 

 KAIST provides priority layout optimization results for outbound containers. 
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Transportation Data Sharing between TMS and eINS 

 

 
 

Data Flow Steps: 

1. [Step 1] Request to eINS: 

 TMS sends data about inbound containers to edge computing nodes at eINS for 

optimization and digital twin simulation. 

2. [Step 2] Response from eINS: 

 eINS returns dispatch optimization results for inbound containers based on simulation. 

3. [Step 1 again] Request for outbound containers: 

 TMS sends data on outbound containers for digital twin-based dispatch optimization. 

4. [Step 2 again] Response from eINS: 

 eINS replies with dispatch simulation and optimization data for outbound containers. 
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3.1.11   Use Case Application #11 

 
 
3.1.11.1 Data Ingestion and Versioning 

The foundation of the pipeline begins with data ingestion. Bulk flight data is sourced from SOCFAI 

(AOCC), serving as the primary input for model training. This raw data, along with all subsequent 

transformed datasets, is meticulously managed by Data Version Control (DVC). DVC ensures that 

every iteration of the data used in experiments and training is versioned, providing crucial 

reproducibility and traceability. This allows developers to pinpoint the exact dataset configuration 

used for any given model, enabling effective debugging and model rollback if necessary. 

3.1.11.2 Model Training and Experimentation 

 The core of the model development process resides within the "Model Training" block. Here, the 

versioned data is utilized for model training and experimentation. All outputs, metrics, and 

parameters from these experiments are meticulously logged and managed by MLflow. MLflow 

serves as a centralized platform for Experiment Tracking & Versioning, allowing data scientists to 

compare different model runs, track hyperparameters, and record performance metrics 

effectively. 

3.1.11.3 Model and Metadata Storage 

 MLflow integrates seamlessly with backend storage solutions: 

● PostgreSQL acts as the Metadata DB, storing all the run metadata, parameters, and 

metrics tracked by MLflow. This relational database ensures persistent and queryable 

storage of experiment details. 
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● MinIO functions as the Model Registry and Artifact Store, where the actual trained model 

files (e.g., serialized model weights, pipelines) are stored. MinIO, being an S3-compatible 

object storage, provides a scalable and reliable repository for all model artifacts. 

3.1.11.4 Continuous Monitoring and Drift Detection 

Post-deployment, continuous monitoring is critical for maintaining model performance. 

● Kafka serves as the message broker, ingesting prediction results for tracking from the 

deployed prediction services. 

● Evidently AI is employed for monitoring data and concept drift. By analyzing the prediction 

results and potentially input features from Kafka, Evidently AI helps detect shifts in data 

distributions or model behavior that could degrade performance. 

● NannyML complements this by focusing on performance monitoring, particularly for the 

model's actual performance over time, often comparing it against baseline performance 

or detecting unseen data patterns. Both Evidently AI and NannyML are crucial for 

proactively identifying when a model needs retraining or recalibration due to changing 

real-world conditions. 

3.1.11.5 Model Deployment  

The deployment phase is orchestrated through Jenkins. 

● Jenkins acts as the CI/CD orchestration tool. When a new production model is deemed 

ready (identified through MLflow's Experiment Tracking and potentially registered in its 

Model Registry), Jenkins is triggered. 

● Jenkins then initiates the build and deployment of Docker containers (labeled as 

"Prediction Service X"). Each Docker container encapsulates a specific model, enabling 

containerized and isolated deployments. This ensures consistency across different 

environments and simplifies scaling. 

● These Prediction Service X Docker containers expose the model for inference. Incoming 

flight data from SOCFAI (AOCC) is streamed via Kafka, which is then consumed by the 

prediction services to generate real-time forecasts. 

3.1.11.6. Feedback Loop and Iteration 

The entire architecture implicitly supports a feedback loop: insights from continuous monitoring 

(Evidently AI, NannyML) can inform data scientists about the need for new experiments or model 

retraining. This iterative process, facilitated by the robust infrastructure, ensures that the AI 

models remain performant and relevant over time. 

In summary, this MLOps architecture provides a robust framework for managing the entire 

machine learning lifecycle, from data to deployment and continuous improvement, leveraging 

industry-standard tools for efficiency, reliability, and scalability. 
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3.2   Functional Implementation 

3.2.1   Use Case Application #1 (INOSENS) 

For use case 1, the Velodyne Puck sensors are installed in Adnan Menderes Airport terminal and 

they gather data from the passengers who pass through the terminal. The Velodyne sensor uses 

point cloud processing to gather visual information from the physical environment. For passenger 

density estimation, we count people in three different levels. Level 1 provides individual people 

counts. Level 2 provides a 1 to 10 ratio of occupation. Level 3 provides three categories: high, very 

high, and extremely high. We also use point cloud processing data and deep learning for passenger 

flow monitoring. 

 

Type of Requirement Description 

Integration The Lidar sensor is Velodyne VP-16. 

Integration Lidar sensors are installed in Adnan Menderes 
Airport. 

Integration The Lidar sensor should be connected to a 
computer for collecting data, which is 
necessary when using the deep learning 
model for people detection, people counting, 
and people density tracking. 

Infrastructure People detection, people counting, and 
people density tracking will be performed 
using a deep learning model. 

AI Requirements People detection will be performed on data 
from the Lidar sensors using a computer 
vision deep learning model. 

AI Requirements People counting will be performed, and it is 
dependent on the results from the people 
detection task. 

AI Requirements People density tracking will be performed, 
and it is dependent on the results from the 
people counting task. 

AI Requirements Passenger flow monitoring will be performed, 
and it is dependent on the results from the 
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people detection and the people density 
tracking tasks. 

Other Functional Requirements The data collected from the Lidar sensors will 
be stored in a local server in INOSENS or cloud 
storage server. 

Other Functional Requirements The computer vision deep learning models 
will be trained and tested using a local or 
cloud computing server. 

Other Functional Requirements There will be a system for passing on the 
people detection, people count, people 
density tracking, and people flow monitoring 
information to TAV Tech. 

 

 

3.2.2   Use Case Application #2 

In this section, the features and services which are implemented in AI-Based Baggage Analytics 

and Optimization Application are given in the following tables. 

 

Table. Software Service and Modules of Use Case #2 Application 

#  Modules & Services  Description  

1  User Interface Design  This part is regarding to the development of graphical user interface 

(GUI) modules of the application for monitoring of Real-Time Statistics 

and Prediction pages  

2  AI/ML services   These services aim to develop AI algorithms for predictions regarding 

flight and baggage data.  

3  Management service  This service is responsible for interfacing between real-time Dashboard 

and other services.  

4  Communication service  Transform raw baggage-flight data into clean data and integrate into 

database  

5  Data Analysis service  Responsible real time statistical SQL calculations over database  

6  Database   This part is responsible for data storage operations.  
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Table. Feature List and Supported Functionalities of Use Case #2 Application 
 

#  Main Features  Supported Functionalities  Description  

1  Real-time statistics page  

Deleted Bag  Removed baggage count  

Transfer Passenger Ratio  Transfer passenger count over 
total passenger with baggage  

Rejected Bag  Unauthorized baggage count  

Total Bag Weight  Total weight of delivered baggage  

Average Bag Weight  Mean weight of each delivered 
baggage  

Waiting Bag Ratio  Unprocessed baggage count over 
total baggage  

Average Bag  Mean delivered bag count of 
each passenger  

Average Process Time  Mean process time of each 
delivered baggage  

Multi Bim Ratio  Changed baggage count over 
total baggage  

Flight Base Dissimilarity  Baggage count over average 
baggage from previous flights  

Transfer Bag Ratio  Transfer baggage count over total 
baggage  

Failed Transfer Bag  Unauthorized transfer baggage 
count  

Baggage Count  Total number of delivered 
baggage  

2  Predictions page  

Minute Baggage Prediction  Expected baggage count in 
fifteen minutes  

Hourly Baggage Prediction  Expected baggage count in one 
hour  
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Daily Bagge Prediction  Expected baggage count in one 
day  
  

Flight Delay Prediction  Expected flight delay  

Mean - Standard Deviation Calculation  Average baggage count of 
previous flights – Difference 
between expected and average  

 
Real-Time Dashboard:  

  
The real-time dashboard of AI-based baggage analysis and optimization solution consists of two 
main pages: Real-Time Statistics and Predictions.   
   

● Real-Time Statistics Page: The Real-Time Statistics page features a prominent central 
time series line chart that displays the temporal distribution of baggage counts, 
allowing operators to monitor baggage flow patterns over different time periods (1 
Day, 1 Week, or 1 Month). This dynamic visualization is surrounded by eight key 
performance indicators showing critical metrics such as deleted bags, rejected bags, 
transfer bag ratio, and average process time. Below the main chart, four detailed bar 
charts provide deeper insights into multi-BIM ratio, flight-based dissimilarity, transfer 
bag ratio, and failed transfer bags across different airports.   

   

● Prediction Page: The Predictions page incorporates four sophisticated AI/ML models 
that provide baggage handling forecasts at different time intervals - minute-level, 
hourly, and daily baggage predictions, along with flight delay predictions. The end-
users can customize their view through various filters including time range, flight 
categories, arrivals, flight status, and airlines, with all visualizations updating 
dynamically based on the selected parameters.  

 
 
The system's real-time monitoring capabilities and predictive analytics make it an essential tool for 
optimizing airport baggage operations and flight management. Real Time Statistics and Prediction 
pages are illustrated in the following figures respectively. 
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Figure. Real Time Statistics Page  

 
 

 
Figure. Predictions page  

 

 
AI/ML services:  
  
In this subsection, AI/ML services and algorithms which are implemented for baggage (daily, hourly 
and pattern) and delay (flight delay) predictions are explained in detail.  

  
● Daily prediction:  

   
One of the challenges in predicting daily baggage numbers is the presence of many categorical 
features alongside numerical ones. This requires preprocessing operations before feeding the data 
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into the prediction model. As the number of operations increases in machine learning models, 
time and computational power requirements also increase proportionally. Therefore, achieving 
higher accuracy with fewer operations is a critical goal for these models. The CatBoost model offers 
improvements that reduce the number of operations required for handling categorical features 
through its innovative ordered target encoding method. Unlike most models, CatBoost can directly 
use non-numerical features in both training and inference phases, utilizing automatic feature 
combination generation and built-in parameter tuning capabilities. This is one of the main reasons 
for choosing CatBoost as the prediction model for this task. CatBoost is a gradient boosting model 
based on decision trees, supporting both GPU acceleration and multiprocessing for efficient 
handling of large datasets. Trees are built sequentially, with each tree focusing on correcting the 
errors made by previous trees, while implementing ordered boosting to prevent target leakage. 
This process continues iteratively until the final tree produces the most accurate result. 
Additionally, its algorithm handles missing values better than other models while reducing 
overfitting through multiple techniques including random permutations and fine-grained 
optimization. CatBoost often requires minimal hyperparameter tuning and provides robust 
performance out of the box.  
 
These advantages of CatBoost with the highest accuracy among many machine learning and deep 
learning models makes it a prediction model for the number of daily baggage. It is also a 
lightweight model with low size. Its training time for large sizes of data is significantly short. It 
demonstrated robust performance with interpretable feature importance metrics, offering an 
optimal balance between accuracy, training speed, and generalization.  
 

● Hourly prediction:  
  

Dataset that is used for hourly model training includes one year (2023/08/24 – 2024/07/18) 
baggage (v_bag) and flight records(brs_flight) for all TAV airports. The data is transformed into 
clean data v7.2 (28 columns and 10918954 rows) by removing outliers, repetitions and performing 
morphological operations. The main features that are focused on hourly prediction are: 
FLIGHT_CODE, FLIGHT_DATE, FLIGHT_DELAY, HOUR_BEFORE_FLIGHT, FLIGHT_CLASS, 
AIRLINE_CODE, DEP_AP_CODE, ARR_AP_CODE, IS_HOLIDAY, IS_WEEKEND, YEAR_SEASON, 
DAY_PART, BAG_NUMBER. Flight ticket time (SCHEDULED_TIME) is used for FLIGHT_DATE. 
FLIGHT_DELAY is the time difference between ACTUAL_TIME and SCHEDULED_TIME in minutes. 
IS_HOLIDAY, IS_WEEKEND, YEAR_SEASON, DAY_PART features are extracted from FLIGHT_DATE. 
HOUR_BEFORE_FLIGHT is used to divide baggage records into one-hour windows so that hourly 
baggage pattern is extracted.   
  
The ideal baggage pattern of the flight should have zero flight delays with high baggage. So that 
the training data set is filtered into 3 sets: 1-low flight delay, high total baggage, 2- mid delay, mid 
baggage, high delay low baggage. If the first set has enough records (at least 25 percent of the 
total set) it is used during the training. If the first set is not enough, the second set is used. If this 
is also not enough the last set is used.  
 
Three steps of machine learning are used for hourly prediction: 1- unsupervised 
classification(mean-shift) 2- supervised classification (decision tree) 3-regression (polynomial 
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regression). The baggage patterns are transformed into FLIGHT_CLASS by using mean shift 
unsupervised classification. 60% bandwidth similarity is used during training. FLIGHT_CLASS that 
comes from unsupervised classification is used as target label at the decision tree classification. 
Two different models are used to achieve class prediction with and without FLIGHT_CODE so that 
if it is the first flight of this flight route (means a new FLIGHT_CODE) the model can still predict the 
flight class by using AIRLINE_CODE, DEP_AP_CODE, ARR_AP_CODE.  After each baggage pattern is 
classified into the flight classes the polynomial regression is used to model each baggage pattern 
as a polynomial expression.   
   

 
Figure. Hourly Baggage Prediction using Polynomial Regression Model 

 
 
For example, some TK 7509 flights have baggage patterns that is classified as Class-43 by mean-
shift are linked to that flight class by decision tree and modeled as the blue polynomial expression 
by polynomial regression and normalized to orange expression which can be used to predict the 
baggage arrival up to 12 hours before the flight.  
   
So, the basic idea for hourly baggage prediction is flight info (i.e. TK 7509, TK-ADB-SAW) and flight 
date (i.e. holiday, weekend, morning, summer) is transformed into flight class by using decision 
tree model. After that the normalized polynomial regression model of this flight class is used to 
predict baggage count that will happen in one hour.  
   
70% of the filtered data (low flight delay, high baggage as much as possible) is used for training 
and 30% of the overall set is used for testing the models. As a result, R^2: 0.94, RMSE: 8.243, MAE: 
2.598 is achieved for hourly baggage prediction of 2563 distinct flight codes, from 15 different 
airports.  
 
 

● Pattern prediction:  
  
The dataset used for baggage pattern prediction originally consisted of ~11M records with 25 
features. A multi-step filtering process was applied to narrow down the scope: first by setting 
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SYSTEM_AIRPORT = "ADB", then FLIGHT_STATUS = "DEPARTED", which resulted in 2,3M records. 
A new feature called TIME_WINDOW was generated to aggregate baggage counts in 15-minute 
intervals between BIM_CREATE_DATE and SCHEDULED_TIME, grouped by FLIGHT_CODE and 
SCHEDULED_TIME. After this aggregation, the dataset was reduced to 68K records with 15 
features. Feature types include numerical values such as TIME_MONTH, TIME_DAY, and 
WEEKDAY, and categorical variables such as SEASON, TIME_OF_DAY, and CATEGORY. The target 
variable is BAG_NUMBER. Preprocessing involved scaling of numerical features and label encoding 
for categorical variables, ensuring compatibility across all model types. Three distinct AI model 
views have been explored: Time-Series, Deep Learning, and Machine Learning.  
  
The time-series modeling approach focuses on capturing temporal trends in baggage data using 
historical patterns. Classical models such as ARIMA, SARIMA, and Prophet were implemented 
alongside neural time-series models like LSTM (Long Short-Term Memory). These models were 
trained using sequences of time-ordered data, taking into account seasonal, weekly, and hourly 
fluctuations. Feature engineering remained consistent across views to allow fair model evaluation. 
Based on performance benchmarks—including accuracy and forecasting stability, LSTM emerged 
as the most reliable model for this context. Its ability to model long-term dependencies and adapt 
to sequential dynamics made it ideal for predicting short-term baggage flow in high-traffic 
environments.  
  
In the deep learning perspective, three model architectures were explored: Convolutional Neural 
Networks (CNN), Deep Neural Networks (DNN), and a hybrid CNN+DNN architecture. The DNN 
model, applied on the cleaned and engineered dataset, demonstrated superior performance. The 
final DNN architecture was able to learn from both linear and non-linear interactions among the 
15-minute interval data, offering high flexibility in adapting to operational variations.  
  
The machine learning approach tested a wide variety of regression algorithms including Random 
Forest, Gradient Boosting, LightGBM, AdaBoost, Bayesian Ridge, and Elastic Net, among others. All 
models used the same dataset version and feature transformations to ensure consistent 
evaluation. Through hyperparameter tuning and cross-validation, Random Forest Regressor was 
identified as the most effective model. It demonstrated robust performance with interpretable 
feature importance metrics, offering an optimal balance between accuracy, training speed, and 
generalization.  
  
  

● Flight delay prediction:  
 
Flight delay prediction presents unique challenges due to its complex feature landscape, 
combining diverse data types including temporal, meteorological, operational, and categorical 
variables. This multifaceted nature of flight data necessitates sophisticated preprocessing and 
feature engineering approaches to capture intricate relationships between variables effectively. 
The challenge lies not only in handling this diverse feature set but also in developing models that 
can process large-scale aviation data efficiently while maintaining high prediction accuracy. Our 
comprehensive analysis evaluated seven distinct machine learning approaches, including tree-
based ensembles, deep neural networks, and instance-based learning methods.  
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XGBoost's architecture proves especially suitable for flight delay prediction through its advanced 
handling of both numerical and categorical features, coupled with its ability to capture complex 
interactions through gradient boosting. The model's tree-based structure naturally accommodates 
the hierarchical nature of aviation data, while its regularization techniques help prevent overfitting 
- a common challenge when dealing with highly variable flight delays. Our implementation 
achieved a test R² Score of 0.5375 with the integration of the novel dissimilarity ratio, representing 
a significant improvement over traditional approach.  
   
LightGBM emerged as another powerful contender, demonstrating exceptional balance between 
performance and generalization. With a test R² Score of 0.5126, it showed a particular strength in 
maintaining stable performance across different operational conditions. The model's efficiency in 
handling large-scale datasets and robust performance with minimal parameter tuning makes it an 
excellent choice for production environments where reliability is crucial.  
   
Traditional tree-based ensembles, including Random Forest and Gradient Boosting, showed 
consistent but more moderate performance improvements. Random Forest achieved a test R² 
Score of 0.4461, while Gradient Boosting reached 0.4434, both demonstrating reliable prediction 
capabilities with better interpretability compared to more complex models. AdaBoost, while 
showing modest improvements with the dissimilarity ratio integration, achieved a test R² Score of 
0.3149, highlighting its utility in specific operational contexts.  
   
The Deep Neural Network implementation, despite its sophisticated architecture, achieved a test 
R² Score of 0.2742, revealing limitations in handling structured aviation data compared to tree-
based approaches. The K-Nearest Neighbors model, with a test R² Score of 0.1774, demonstrated 
the challenges of instance-based learning in the complex domain of flight delay prediction.  
   
The models' effectiveness is further enhanced by their ability to handle missing values - a common 
occurrence in flight data - and their robust feature importance calculation capabilities, which 
provide valuable insights into delay factors. The parallel processing capabilities and optimization 
techniques, particularly in XGBoost and LightGBM, make them suitable for real-time applications 
in airport operations, where quick and accurate predictions are essential. These models 
demonstrated exceptional performance in capturing both seasonal patterns and unexpected delay 
factors, while maintaining computational efficiency during both training and inference phases.  
   
These comprehensive results, combined with the models' ability to process large-scale aviation 
datasets efficiently and provide interpretable results, establish a robust framework for flight delay 
prediction. The success in balancing accuracy with computational efficiency, coupled with the 
ability to handle the complex, multi-dimensional nature of flight data, makes these approaches 
particularly valuable for practical applications in aviation operations management.  
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3.2.3   Use Case Application #3 
 

The Use Case 3 - IoT Portal requirements are: 

Type of Requirement Requirement 

UX/UI 

Data Visualization: All sensor data should be visualized on IoT platform 

and accessible from web in a user-friendly fashion. Visualizations 

should reflect data fusion and advanced data analytics outcome. 

UX/UI 

Detail Visibility: Sensor Data details (json, xml content details) should 

be visible to IoT operators for real time control and troubleshooting 

purposes 

UX/UI 

Custom Dashboard Creation: End-users or customer should create 

customized dashboards on IoT platform serving to different use-cases. 

Integration 

IoT Protocol Support: Industry standard IoT protocols should be 

supported on IoT platform. Initially MQTT and HTTP should be 

supported. COAP support should be a nice to have feature. 

Integration 

E2E Security: Sensors and GWs should communicate with IoT platform 

in a secure way. For HTTP protocols, HTTPS should be supported. For 

MQTT, TLS v1.2 should be supported. 

Integration 

3rd Party Data Storage System Integration: The data processed at IoT 

platform should be transmitted to different types of DBs (BigQuery, 

Maria10, MSSQL, mongo, etc..). RabbitMQ or Apache Nifi like solutions 

should be implemented on IoT platform. 

Functional Rule and Event Based Triggering: The system should be able to send 

out notification to other system when a pre-defined certain threshold is 

exceeded on the incoming data. The notification might be through SMS, 

E-mail or webhook methods 

Functional Device Management: All data sources (sensors, Gateways or other 3rd 

party system) should be configured on IoT platform. The configuration 

should include at least QoS level, IP/non-IP connection type, IP address, 

Definition 

Functional Multi-Tenancy: IoT platform should support different customers, use-

cases on the same system isolated from each other. 

Functional 3rd Party Application Support: IoT platform should allow 3rd party 

service deployment through dockerized micro-services 
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Functional Data Analytics: Incoming data should be pre-processed to make it 

ready for advanced data analytics through additional scripts or 

applications deployed on top of existing microservices 

Infrastructure Cloud and On-Prem Support: The system should serve from both Cloud 

based systems (like Azure, AWS or private clouds) and on-premise. 

Infrastructure Scalability: The system should be scaled up based on the number of 

request and triggered APIs 

Infrastructure Docker Based Cluster Architecture: IoT platform services should be 

dockerized and orchestrated by Kubernetes. All services should be 

deployed as microservices. 

Non-Functional Creation of Different Domains: Different domains should be created to 

handle different use-case or different types of sensors/GWs 

Non-Functional Data Traffic Optimization: IoT platform should schedule device updates 

or data transmission times to avoid traffic congestion on the network. 

 
 

3.2.4   Use Case Application #4 (INOSENS) 
 

Required Features and Services for Framework 

The goal of the XMedia2Analytics framework is to enable the implementation of the following 

features and services.  

UX/UI Functional Requirements 

Type of Requirement Description 

UX/UI 
 

For each social media post, the sentiment 
analysis model returns a prediction. 

UX/UI 
 

On the dashboard, there is a list containing 
each social media post, date and time it was 
posted, language, and predicted sentiment. 

UX/UI 
 

On the dashboard, there is a line graph 
showing the number of negative posts, 
positive posts, and total posts per day. This 
can also be done for another time period 
(such as month). Line graph can show the past 
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X number of days (or weeks or months). 

UX/UI 
 

Underneath the previous line graph is another 
line graph that uses information from AODB. 
It plots the number of delayed flights per day. 
This can also be done for hours. Line graph 
can show the past X number of days and it 
can show the upcoming 24 hours. 

UX/UI 
 

The user is able to modify each sentiment if 
the model detected the wrong sentiment. 

 
Integration and Infrastructure Requirements 
 

Type of Requirement Description 

Integration Data is collected from social media platforms 
such as Twitter. 

Integration The web application will use AODB data to 
show information on the frontend of the 
sentiment analysis platform. 

Infrastructure UI dashboard will display social media 
information, predictions, and analytics to the 
user. 

Infrastructure Web service API will display information on 
the frontend. 

Infrastructure Data collection API will retrieve the social 
media posts and other similar text such as 
comments and reviews. 

Infrastructure The sentiment analysis model will use deep 
learning to classify the social media posts. 

 
AI and Other Functional Requirements 
 

Type of Requirement Description 

AI Sentiment analysis will be performed on text-
based social media posts using an NLP deep 
learning model.  
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AI Language detection will be performed using 
an advanced deep learning model.  

Other The social media posts will be stored in a local 
or cloud storage server. 

Other The sentiment analysis deep learning models 
will be trained and tested using a local or 
cloud computing server. 

Other The UI dashboard must have a login and 
logout authentication system. 

 

Real-Time Dashboard 

The dashboard is projected to have three different tabs. They will show the results of the 

sentiment analysis model on our data as well as visualizations involving these results.  

Prediction of Sentiment Analysis Results  

A page that shows the results of the sentiment analysis results in the form of an interactive table. 

Includes text, predicted sentiment, date and time, detected language. Also includes a feature that 

will allow the user to change the sentiment if the predicted sentiment is wrong.  

Visualization of DateTime vs. Sentiment and Language  

Data visualizations that show the correlation between DateTime and predicted sentiments and the 

correlation between DateTime and language appear in this page. Y-axis represents the number of 

comments per time period with a given prediction (for sentiment or language), X-axis shows the 

time period (such as day, week, or month), and the color-coded lines represent each sentiment or 

language.  

Correlation between Changes in Sentiment and Delays  

This page shows the recent flight delays in the form of a table and a data visualization indicating 

the changes in sentiment corresponding to recent delays.  

Data Collection Features 

Uploading Datasets 

Inosens already has a relatively small dataset which contains data extracted from various online 

sources. The user of the platform might also want to upload existing data. Thus, this application 
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will also require an option to upload existing data into the system. The user should then be able 

to view the results in the dashboard, including sentiment analysis prediction results and the 

relevant data visualizations.  

Batch Processing  

Because the data will be mainly extracted from online sources, we should constantly be uploading 

data from the designated sources. This can be done in batch processing or stream processing. For 

practical purposes, batch processing seems to be the preferable option.  

 

3.2.5   Use Case Application #5 

1) Implementation of CFS/CY Port Logistics Data Platform (KULS) 

a) port logistics data platform Architecture 

 

b) The CFS/CY management system that collects and manages port logistics information is as 

follows. 
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The CFS/CY management system that collects and manages port logistics information is as 

follows. 

- Register and manage container import/export orders 

- Manage container loading/ unloading/transfer processing details. 

- Web and mobile device-based environments 

- Management of container import/export performance, 

Container real-time inventory management, 

 
Web device-based environments 
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mobile device-based environments 
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b) Transportation data platform Architecture 

 
The following systems collect and manage port logistics transport data. 

- Register and manage import and export container shipping orders. 

- Manage container import/export shipping details. 

- Manage container transport vehicle information. 

- Manage real-time transport status information for containers. 

- Manage container import and export performance. 

- Web and mobile device-based environments 
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mobile device-based environments 

 

 



44 

 
 

 

    

 

 



45 

 
 

 

 2) Implementation of CFS/CY Optimization (KAIST) 

a) Inter-Container Freight Station Optimization 

     

To optimize the flow of containers between multiple container freight stations (CFSs), a decision-

support module has been developed. This module enables dynamic selection of the most 

suitable CFS based on operational data collected from each station. 

In the proposed framework, container stacking status, container awaiting status, and available 

capacity are monitored in real time across all candidate stations. For each newly arriving 

container, the expected number of relocations and the anticipated movement time (ex. future 

retrieval time) are estimated for each CFS. 

Based on these criteria, a station is selected that minimizes total expected operational cost. The 

selection algorithm has been designed to reduce yard congestion, avoid inefficient distribution, 

and maximize system-wide throughput. 
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To validate the effectiveness of inter-station optimization, container stacking scenarios were 

simulated across multiple container freight stations (CFSs). For each target container, the 

expected operational cost—composed of immediate relocation and future retrieval actions—was 

evaluated based on current stacking configurations. 

The container yard visualizations illustrate how different container positions and priority levels 

influence potential relocation paths. Containers are color-coded according to their expected 

departure date, providing an intuitive view of stacking priority. 

Additionally, detailed logs were generated for selected containers across multiple CFSs, providing 

information such as optimal placement suggestions, the estimated number of both immediate 

and future relocations, and the final cost associated with each placement option. 

By comparing these results across stations, the system was able to identify the CFS that offered 

the lowest total handling cost for each container. In several cases, cost savings were achieved by 

diverting containers to less congested yards, validating the core premise of dynamic inter-CFS 

optimization. 

 

b) Intra-Container Freight Station Optimization 

 

For intra-station optimization, a container stacking and relocation planning module has been 

implemented. This module determines the optimal placement of containers within each CFS in 

order to reduce internal inefficiencies. 
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The problem is formulated as a Markov Decision Process (MDP), where the state includes 

container positions, retrieval priorities, and equipment availability. A reinforcement learning 

approach has been employed using the Proximal Policy Optimization (PPO) algorithm. 

By learning optimal placement strategies based on synthetic and historical data, the system has 

been shown to reduce the number of unnecessary relocations and minimize average container 

retrieval time. The learned policy assigns high-priority containers to more accessible positions, 

while low-priority ones are placed in deeper stacks, thus improving both space utilization and 

handling efficiency. 

 

To further validate the effectiveness of intra-station optimization, a policy-based simulation was 

conducted using a pre-trained reinforcement learning agent. The model was trained using the 

Proximal Policy Optimization (PPO) algorithm and deployed to evaluate container placement 

strategies under predefined yard configurations. 

The simulation environment was configured with the number of stacks, maximum stack height, 

the number of stacked containers, and the number of scheduled containers. For example, in the 

illustrated scenario, 7 stacks were defined with a maximum height of 5 tiers, 14 containers were 

initially placed, and 1 container was scheduled for insertion. 

At each decision point, the current yard state was assessed, and an action was selected based on 

the learned policy. The action corresponds to the stack index where the incoming container 

should be placed. This decision is made to minimize both immediate and future relocation costs. 

The log captures the sequential process in which the model interprets the current state of the 

container yard, determines the optimal placement action by referencing its learned policy within 

a discrete action space, and subsequently updates the yard configuration based on the selected 

action. 
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This process demonstrates the agent's ability to generalize learned placement strategies across 

diverse yard states, while adhering to operational constraints such as stack height limits and 

spatial distribution. 

3) Implementation of Digital Twin Simulation Platform (eins S&C) 

 

 

·         The Simulation Model is modeled based on the actual port logistics transportation 

system and derives the simulated operation results for each truck according to the input 

schedule list. 

·          The Optimization Module retrieves the transportation contract data for the target 

optimization date from the platform, explores various dispatch combinations using that 

data, and evaluates each combination's operation result through the simulation model. 
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·         The Simulation Model part is designed and developed based on the Digital Twin 

Simulation platform using BAS (Big Data, AI, Simulation) technologies. In particular, 

for this project, a DEVS-based model was used to model dynamic systems, where 

Truck, Container Yard(CFS, and Terminal) objects send and receive events as time 

progresses to simulate the system. The platform is developed in C++, which 

ensures fast simulation speed. 

·         The Optimization Module mainly uses the Python programming language to 

implement search and evaluation algorithms. Currently, the module generates an 

initial solution using the Greedy algorithm and performs search and evaluation 

using the SA (Simulated Annealing) algorithm. The algorithms are continuously 

being modified and tuned to achieve better results through ongoing testing 
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4) Implementation of Data Trust Provisioning Module and Blockchain Capability (INJE Univ.) 

 
 

Description: This system represents an initial architecture designed to securely collect 

and process logistics data. Data from eINS and KAIST is encrypted and stored in an off-

chain database, while the hash of the data is recorded on a private blockchain to 

ensure integrity. The Blind Computation Module performs secure computations on the 

data, and the optimized results are shared back with the participating institutions. 

Real-world logistics information is connected through an oracle, and the final 

optimized data is distributed to each peer node. The entire architecture is designed to 

enhance security, preserve data integrity, and support efficient logistics operations. 
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Description: This system is designed for private node-based data sharing and 

authentication management. First, when a user sends a registration request, the 

system stores the registration information and responds accordingly. After 

administrator approval, the node is issued a certificate, which is stored in the system—

allowing it to officially join the network. During the initial login, the system validates 

the node and its certificate, then stores the certificate for future use. For regular 

logins, the system again verifies the node and certificate before granting access. The 

overall sequence establishes the foundation for secure data sharing and trust among 

participating nodes. 
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Description: This system is a demo version of the first-stage private member 

management page, designed to enable secure registration, verification, and data 

sharing of blockchain nodes. The process begins with the registration page, where a 

user submits node-related information such as email and company phone number. 

These registration requests are listed on the "Node Registration Requests" admin 

page, where an administrator can either approve or reject them. Once approved, the 

node appears on the "Approved Node List" page, which displays key information such 

as node status and registration date. After approval, users can access the system via 

the Sign-in page. Only verified nodes are granted access to the secure data sharing 

environment. This entire flow ensures a secure, authenticated process for onboarding 

and managing private nodes in the network. 
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Description: These screens are part of a first-stage demo version of the data 

management interface designed for a private blockchain system. The first screen 

allows each node to view a list of their own uploaded JSON data, including file names 

and upload times, along with the ability to submit that data for blockchain processing. 

The second screen is for administrators to monitor the full list of uploaded JSON data 

across all nodes. It displays which block number each file is recorded under, associated 

transaction information, verification results, and status. This demo interface allows 

both users and administrators to intuitively track the data upload and verification 

status, providing a basic but functional test environment for blockchain-based data 

integrity tracking. 

 
 

3.2.11   Use Case Application #11 

3.2.11.1. Real-time Flight Status and ATAD Prediction 

The primary functional objective is to provide highly accurate, near real-time predictions for the 

Actual Time of Arrival at Destination (ATAD) for flights arriving at İzmir Adnan Menderes Airport 

(ADB). 

● Data Ingestion: The system continuously ingests high-frequency ADS-B positional data 

for specific flights and routes (currently 115 routes, 6,965 flights for ADB) sourced from 

Flightradar24 (FR24). This data is complemented by scheduled flight information from 

the Flight Management System (FMS). 

● Data Transformation: Raw ADS-B data undergoes immediate preprocessing, including 

parsing timestamped location information and calculating time-to-arrival metrics. 

● Machine Learning Prediction: A GPU-accelerated Random Forest model, trained on 

historical ADS-B and FMS data, is utilized to predict ATAD. This model is served via 

containerized prediction services (Docker) which consume incoming flight data streams 

from Kafka. The model is optimized for low latency, enabling near real-time predictions 

with a low Mean Absolute Error (MAE) of approximately 109 seconds. 

● Outlier Handling: To maintain the integrity of ATAD predictions for "normal" flight 

operations, the system employs a rule-based mechanism to identify and filter out 

anomalous flight behaviors such as holding patterns (in-air) or holding positions (on-

ground) from the training data. These specific scenarios, driven by ATC directives or 

ground operations, are handled by distinct operational logic rather than the core 

predictive model. 
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3.2.11.2 Comprehensive Flight Operational State Detection 

Beyond ATAD prediction, the system provides real-time situational awareness by identifying 

critical flight operational states. This functionality is primarily driven by a robust Rule-Based 

System, leveraging various data points to make contextual determinations. 

● Departure Status Monitoring: The system monitors and infers: 

○ Estimated Airport Arrival Status: Based on distance-based calculations relative 

to the estimated time of departure. 

○ ADS-B Transmitter Activation: Verifying if the pilot has activated the ADS-B 

transmitter at the scheduled or estimated departure time. 

○ On-Time Performance: Determining if the flight departed on schedule or 

quantifying any associated delays. 

● Destination Validation: The system can verify whether an aircraft's movement is indeed 

destined for the specific airport under observation, preventing misidentification of 

transiting aircraft. 

● Congestion-Based Holding Detection: For arriving aircraft, the system attempts to detect 

instances of in-air holding patterns, which are often indicative of airport congestion or 
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adverse weather during approach. This provides early indicators of potential arrival 

delays not directly captured by ATAD. 

● Cost Optimization: This rule-based approach, integrated with the predictive model, 

enables cost optimization by strategically limiting the acquisition of high-frequency ADS-

B data only to critical points or segments, rather than continuous full-flight acquisition. 

 

3.2.11.3. Flight Services Time Prediction 

This functional area focuses on optimizing ground handling operations by predicting the precise 

timing of various airport services. 

● Service-Specific Predictions: Utilizing historical FMS data, the system develops and 

deploys models to predict the start and end times for a wide array of flight services. 

These services include, but are not limited to: 

○ Boarding 

○ Bridge Connection/Disconnection 

○ Baggage Carousel Activation/Deactivation 

○ Check-in Operations 

○ Chute Operations 

○ Counter Availability 

○ Ground Electricity Connection/Disconnection 

○ Gate Occupancy 

○ In-Block 

○ Off-Block 

● Resource Optimization: By providing accurate start and end time predictions for each 

service, the system enables more efficient allocation of ground staff, equipment, and 

gate resources, ultimately minimizing aircraft turnaround times and improving overall 

airport operational efficiency. 

 

3.2.11.4. Robust MLOps Enablement 

The underlying MLOps architecture ensures the continuous, reliable, and scalable operation of all 

predictive and rule-based functionalities. 
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● Data Versioning (DVC): All datasets, from raw input to preprocessed features, are 

versioned using DVC. This guarantees data reproducibility for every model training run 

and facilitates seamless rollback to previous data states if required. 

● Experiment Tracking (MLflow): MLflow is central to managing the model development 

lifecycle. It tracks every experiment run, recording parameters, metrics, and model 

artifacts, enabling systematic comparison and selection of optimal models. 

● Model Registry (MLflow & MinIO): Trained models are registered in MLflow's Model 

Registry, with the actual model binaries stored in MinIO. This provides a centralized, 

versioned repository for all production-ready models. 

● Automated Deployment (Jenkins & Docker): Jenkins orchestrates the automated 

deployment of models. Upon approval, Jenkins builds and deploys new or updated 

models as Docker containers (Prediction Service X), ensuring consistent and scalable 

inference environments. 

● Continuous Monitoring (Evidently AI & NannyML): Post-deployment, the system 

continuously monitors model performance and data integrity. Evidently AI detects data 

drift and concept drift within the live prediction data (streamed via Kafka), while 

NannyML focuses on performance monitoring, identifying any degradation in model 

accuracy. This proactive monitoring ensures the models remain relevant and effective in 

dynamic operational environments. 

● Metadata Management (PostgreSQL): A PostgreSQL database serves as the backend for 

MLflow, storing all experiment metadata, model versioning information, and 

performance logs, providing a persistent and queryable record of the entire MLOps 

process. 

This integrated functional implementation provides a powerful toolset for optimizing airport 

operations, enhancing prediction accuracy, and ensuring the long-term reliability and 

adaptability of machine learning solutions. 

 

3.2.11.5. Analysis Results of RMS Optimization Engine 

Our analysis on the Resource Management System (RMS) optimization engine examines how the 

engine performs across different task-resource assignment scenarios, focusing on runtime, 

optimality gap (MIPGap), and the number of planned versus unplanned tasks. The study compares 

twelve instances by varying the number of resources (41, 50, 71), the number of tasks (2871 and 

5734), and the time allowed for optimization (120s and 1200s) (as seen below). 
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For smaller instances (2871 tasks), results show that increasing the number of resources 

consistently improves task planning and reduces MIPGap. For example, with 120 seconds, raising 

resources from 41 to 71 increased planned tasks from 2721 to 2867 and reduced MIPGap from 

0.00411 to 0.00013. Extending the runtime to 1200 seconds offered only marginal gains, indicating 

that small problems reach near-optimal solutions quickly. 

Larger instances (5734 tasks), however, show more complex behavior. While more resources 

generally help, the solver sometimes underperforms under tight time constraints. Notably, with 

71 resources and only 120 seconds, performance dropped sharply—only 1787 tasks were planned, 

far less than with 50 resources (3645 tasks). This suggests that a high number of resources 

increases model complexity, requiring more time to exploit effectively. When the time limit was 

extended to 1200 seconds, this same configuration (71 resources) achieved the best results, 

planning 5115 tasks with a low MIPGap of 0.01059. The difference between shorter and longer 

runtimes are shown in the following figures. 
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Figure. Task assignment results for 5734 tasks, 71 resources, 120s runtime 

 

 

The results demonstrate that the optimization engine is highly effective at solving small to 

moderately sized assignment problems within a short time frame, delivering near-optimal 

solutions with very low MIP gaps. For larger-scale problems, however, the engine’s performance 

becomes more sensitive to the interplay between runtime and the number of available resources. 

While increasing either parameter generally improves outcomes, their effectiveness is not 

independent: more resources require more computational time to be fully utilized. Moreover, 

certain configurations (e.g., high resource count with tight runtime) may paradoxically lead to 

degraded performance due to solver overhead and limited convergence. This analysis highlights 

the importance of careful parameter tuning based on problem scale and supports the 

development of adaptive strategies that allocate solver resources dynamically in response to 

instance characteristics.  
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4 .   Data Management 

4.1   Use Case Application #1 (INOSENS) 

4.1.1 Data Sources:  

LiDAR sensors operating in any environment provide point cloud data of the environment. This 

point cloud data includes three-dimensional coordinate information (x, y, z) and density 

(magnitude of signal reflection power) for each point. Azimuth/vertical angle and distance 

information for each point can also be obtained indirectly from three-dimensional coordinate 

data. 

Table. Structure of LiDAR Point Cloud Data 

Column Name Description 

Point ID Unique identifier for each point (sequential 
number) 

X X coordinate of the point (in meters) 

Y Y coordinate of the point 

Z Z coordinate of the point 

adjustedtime Adjusted timestamp when the point was 
captured 

azimuth Horizontal angle of the laser beam (in 
degrees) 
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distance_m Distance from the sensor to the point (in 
meters) 

intensity Reflectivity or strength of the returned laser 
signal 

laser_id ID of the laser that captured the point (e.g., 
0–15 for 16-beam LiDAR) 

timestamp Timestamp when the point was recorded 

vertical_angle  Vertical angle of the laser beam (in degrees) 

 

As a preliminary step, an initial data collection study was carried out at Gebze Technical University. 

During this phase, the Robot Operating System (ROS) framework was utilized to establish the 

connection between the computer and the Velodyne VLP-16 LiDAR sensor, and to explore 

methods for data acquisition and recording.  

 

Figure. Data Collection Study in Gebze Technical University 
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Subsequently, the main data collection effort took place at Adnan Menderes Airport, specifically 

in the X-ray checkpoint area where passengers hand over their luggage and undergo security 

screening. Approximately 4 to 5 hours of LiDAR point cloud data were collected in this 

environment.  

 

Figure. Data Collection Study in Adnan Menderes Airport 

 

4.2   Use Case Application #2 

4.2.1 Data Sources:  

Two different datasets regarding flight and baggage information are analyzed in this use case. The 

datasets are collected from ADB airport and have been shared in this publication in an anonymized 

form. The authors do not have permission to share data. Initially, the data is collected for a one 

month period. Details about the dataset are described in the following paragraphs with 

emphasizing major properties:  

● Flight Dataset: This dataset contains a substantial amount of data, with around 30K 

rows, related to flight operations over a month. This dataset includes detailed 

information about flight properties, aircraft features, arrival and departure times, 

airport codes, flight status, and various timestamps. The large volume of data 

enables extensive analysis of flight performance, on-time operations, and 

airport/airline efficiency. It can support decision-making processes, identify trends, 
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and detect anomalies in the complex world of flight management.   

  

● Baggage Dataset: This comprehensive dataset contains detailed information about 

baggage handling and tracking within an airport or airline system. With 

approximately 11M rows, it provides a complete record of baggage events, statuses, 

arrival details, security-related information, passenger profiles, and timestamps for 

various handling stages throughout the entire month. The scale of this dataset allows 

for in-depth analysis of baggage management processes, identification of trends and 

patterns, and optimization of operational efficiency across the entire baggage 

handling system.  

Major features regarding flight and baggage dataset are summarized in the following table with 

feature name and feature description pair details. These features are mainly interpreted in the 

upcoming sections.  

Table. Major features of dataset 

Feature Name  Feature Description 

ACTUAL_TIME  Actual time of flight  

BAG_NUMBER  Number of baggage in a single baggage record  

BAGGAGE_EVENT  Information about baggage operation itself 

BAGGAGE_STATUS_ALL  Status of baggage  

BIM_CREATE_DATE  First timestamp when baggage is entered to the system  

BIM_ID  ID of a baggage record  

CATEGORY  Identifies flight type (Domestic, International)  

ESTIMATED_TIME  Estimated time of flight  

FLIGHT_CODE  Combination of Airline Code and Flight Number  

FLIGHT_STATUS  Status of flight  

ID  Flight ID (also connection with Flight Dataset)  

SCHEDULED_TIME  Scheduled time of flight  

SYSTEM_AIRPORT  Identify airport from the point of flight direction view   

 



64 

 
 

 

4.3   Use Case Application #3 

4.3.1 Data Sources 
Use Case 3 relies on multiple data streams to enable intelligent air quality monitoring, energy 

consumption analysis, and automated HVAC control at Adnan Menderes Airport (İzmir). The 

primary data sources include: 

1. IoT Air Quality Sensor Data (NETAŞ) 

● Real-time environmental measurements collected from distributed IoT sensors across the 

airport, including: 

■ Temperature (°C) 

■ Relative Humidity (%) 

■ Particulate Matter (PM2.5 & PM10) (µg/m³) 

■ Carbon Dioxide (CO₂) Levels (ppm) 

● Air Quality Index (AQI) – A computed metric aggregating sensor data to assess overall air 

quality. 

● Sensor metadata (location, timestamp, device health status). 

2. Energy Consumption Data (SOCFAI Platform) 

● Historical and real-time energy usage from airport systems (HVAC, lighting, etc.). 

● SCADA system logs providing granular energy demand patterns. 

● Peak load and penalty thresholds from electricity providers to optimize consumption. 

3. Passenger & Flight Data (TAV Technologies / SOCFAI Platform) 

● Flight schedules & delays (for occupancy prediction). 

● Passenger traffic analytics (real-time and forecasted footfall). 

4. External Contextual Data 

● Weather forecasts (temperature, humidity, wind speed) for predictive adjustments. 

● Electricity pricing & demand-response signals (for cost-efficient energy use). 

4.3.2 Data Integration & Usage 
Air quality and passenger data will be cross-analyzed with energy consumption trends to identify 

inefficiencies. 

AI models will process these datasets to: 

● Predict HVAC demand based on occupancy and air quality. 

● Trigger automated ventilation adjustments when thresholds are breached. 

● Optimize energy use while maintaining passenger comfort. 

This multi-source data framework ensures real-time responsiveness, energy savings, and 

improved indoor air quality across the airport. 
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4.4   Use Case Application #4 (INOSENS) 

In this use case, the text-based content will be gathered from online sources. This includes social 

media posts, comments, and reviews about the organization (Izmir airport). As a result, the data 

will include text as well as relevant information including the date and time on which it was posted. 

Also, AI models will be used to detect information about the posts, specifically, the language of 

the post (e.g. Turkish) and the predicted sentiment. This information will be stored into the system.  

Data Collected from Online Sources 

Text The text extracted about the organization 
from an online source. It could be a social 
media post, a comment, or a review.  

DateTime The date and time on which the user or 
passenger posted the relevant text.  

Author An ID or username identifying the author of 
the text.  

Information Acquired via AI Models 

Sentiment The predicted sentiment of the text.  

Language The language of the text, as predicted by an 
AI model.  

 

4.5   Use Case Application #5 

For the data management of the CFS/CY Port Logistics operation, the following procedures are 

formalized and applied to all modules in the AI powered Logistics Management Platform . 

- Data Sources: Description of the data sources used by the application. 

①       Port logistics data collection and processing. 

②       Port logistics transport data collection and processing. 

③       Logistics data needed to optimize AI-based container deployment. 



66 

 
 

 

④       Transportation data needed to optimize shuttle transport with digital twin 

simulation. 

⑤       Secure data sharing using private blockchain for logistics optimization. 

⑥       Data Standardization Column Definition Form. 

- Data Model (if applicable): Overview of the data structure and relationships. 

- Data Processing Pipelines (if applicable): Description of how data is processed and 

transformed within the application. 
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1) Data Collection and Flow 

 

①   Kafka System Configuration Chart 

Sqlserver -> debezium -> debezium source connect -> kafka topic -> kafka sink connect 

 -> sink database 

②      Data conversion: Converting data to a single-message conversion (SMT), such as 

NewRecordState, in Kafka Sync Connect settingsKafka System Configuration Chart 

③      Data exchange of digital twin-based optimal dispatch system services. 
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·       The Digital Twin-based optimal dispatch system service plans to exchange data with the 

platform through a data pipeline. Currently, to complete the pipeline development, we are 

actively communicating with the leading organization to finalize the data pipeline. 

·       To facilitate this, we have completed the database (DB) design based on data 

standardization in advance and conducted application tests by integrating sample data into 

the system. Once the pipeline is completed, we plan to finalize the integration between the 

platform and the optimal dispatch system service. 

①    Data exchange of AI-based CFS/CY management services 

 

 

·         For container placement management, data are collected from CFS management 

systems and field equipment used by on-site operators. Information such as container 

identifiers, block and bay positions, tier levels, and planned in/out times is retrieved from 

both web-based and mobile interfaces. These raw data are processed through an adaptor 

layer and mapped to a unified structure that includes container yard status, placement 

priority, and mislocation tracking. Supporting metadata such as warehouse and block 

information is linked through reference tables, and dynamic work logs are recorded for 

historical analysis. 
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·         For container routing management, data related to container distribution and yard 

capacity across freight stations are collected from CFS systems and transport management 

systems. Each container is assigned a destination yard based on standardized fields such as 

current yard status, container count, and destination yard assignment. All collected data are 

integrated through the adaptor layer and transformed into a consistent format that supports 

decision-making for inter-station operations. 

 

4.11   Use Case Application #11 

In all our projects, the Flight Management System (FMS) served as the core dataset, providing 

fundamental flight information. For each specific project, we actively sought out and integrated 

additional variables that could significantly enhance predictive accuracy and model relevance. 

For the Flight Delay Prediction project, a crucial addition was the METAR (Meteorological 

Aerodrome Report) data. These reports, issued by meteorological observation offices at airports, 

provide critical atmospheric conditions for aviation. Published at 30-minute intervals for airlines, 

METAR data allowed us to extract detailed runway weather conditions at or very close to the 

aircraft's landing time. This was particularly vital, as adverse weather events are identified by 

EUROCONTROL as major contributors to flight delays. Consequently, specific variables derived 

from these METAR reports, directly linked to common weather-induced delays, were integrated 

into our modeling phase. This enriched dataset was instrumental in building a more 

comprehensive and accurate delay prediction model. 
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For the ADS-B Milestone project, we strategically acquired a comprehensive dataset of ADS-B 

transmissions specifically for İzmir Adnan Menderes Airport (ADB). This dataset encompasses 

115 distinct routes and a total of 6,965 flights. The high-frequency positional data obtained from 

these ADS-B transmissions, captured from the moment an aircraft commences movement, 

proved instrumental. This rich detail allowed us to achieve Actual Time of Arrival at Destination 

(ATAD) predictions with a remarkably low margin of error, significantly enhancing the precision 

of our short-term forecasts.   

 

For the Flight Services project, our focus was on optimizing ground operations by predicting the 

precise start and end times for each specific task associated with a flight. Leveraging data from 

the FMS (Flight Management System), we developed models that provide granular estimations 

for various services. This includes everything from boarding and baggage handling to security and 

aircraft pushback, ensuring more efficient resource allocation and smoother turnarounds at the 

gate. 
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5 .   Data Analysis and Results (Specific to the Use Case Applications) 
 

5.1 Use case #1 (INOSENS) 
 

5.1.1 Data Labeling 

Following the data collection, the human point clouds within the recorded LiDAR data were 

manually annotated. In total, around 100 point cloud samples were labeled and prepared for 

model training. 

 

 

Figure. Data Labeling of LiDAR Point Cloud Data Collected in Adnan Menderes Airport  

 

5.1.2 Model Training and Testing 

Following the annotation process, model development was carried out for 3D human detection. 

In this phase, several model architectures such as PV-RCNN and SECOND were trained and 

evaluated. The performance of each model was compared using the Average Precision (AP) score 

— a common evaluation metric in object detection that reflects the area under the precision-recall 

curve, providing a measure of both detection accuracy and consistency. These initial models 
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yielded very low performance on the airport lidar dataset. Subsequently, transfer learning was 

applied to the VoxelNeXt model, which had been previously trained on the nuScenes dataset. The 

model was fine-tuned using the labeled LiDAR point cloud data collected from the airport, and the 

following results were obtained. 

 

 

Figure. Architecture of VoxelNeXt Model 

(Source Paper: https://arxiv.org/pdf/1711.06396) 

 

VoxelNeXt, specialized version of VoxelNet architecture and a state-of-the-art 3D object 

detection model, utilizes sparse voxel-based feature encoding and a center-based detection head 

to efficiently detect objects in LiDAR point cloud data. It builds upon voxel-based architectures 

like VoxelNet and SECOND-Net, introducing improved kernel designs and a simplified pipeline for 

better generalization and computational efficiency. In this study, VoxelNeXt was fine-tuned using 

transfer learning on a custom airport dataset consisting of 100 labeled LiDAR point clouds. The 

dataset was collected within an airport environment to enable human detection, crowd flow 

monitoring, and density estimation. 

Table. Evaluation Scores of VoxelNeXt After Training Phase 

Metric Type AP Score (%) 

BBox (Bounding Box) 95.77 

BEV (Bird’s Eye View) 81.95 
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3D 78.92 

 

The fine-tuned VoxelNeXt model demonstrated strong performance in detecting pedestrians 

within the airport LiDAR data. The 2D bounding box accuracy (BBox AP) reached 95.77%, indicating 

that the model was highly capable of localizing pedestrians in image space. The Bird’s Eye View  

(BEV) AP scored 81.95%, showing that spatial placement from a top-down perspective was also 

reliable. The 3D detection AP, which reflects full object localization in three-dimensional space, 

reached 78.92%, suggesting a solid performance in estimating object size, position, and depth. To 

improve model performance, future work will focus on continued data annotation efforts and 

increasing the number of labeled samples. 

 

 

Figure. An Example of Trained VoxelNeXt Model’s 3D Box Predictions on a Test Point Cloud 

 

5.2 Use case #2 (Siemens)  

5.2.1 Data Preprocessing: 

The raw data is transformed into clean data via several preprocessing steps. These steps are 

divided into three major parts as data pre-processing, outlier analysis and repetition check. Data 

preprocessing operations are done through data simplification and data compression. For each 

baggage data, feature column occupancy rate is calculated. The columns with occupancy rates 

below 100% are identified. The columns with empty cells are joined to achieve 100% occupancy.  
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■ ATD (Actual Time of Departure) and ATA (Actual Time of Arrival) are combined into 

ACTUAL_TIME; STD (Scheduled Time of Departure) and STA (Scheduled Time of Arrival) 

are combined into SCHEDULED_TIME; ETD (Estimated Time of Departure) and ETA 

(Estimated Time of Arrival) are combined into ESTIMATED_TIME regarding arrival or 

departure flight. 

  

■ SEAT_NUMBER, SECURITY_NUMBER, SEQUENCE_NUMBER, FILE_NAME is combined 

into PASSENGER_ID. i.e. 04B-33-33 

 

■ BAG_NUMBER with empty cell is filled with the expected average bag number 

 

■ The rest of the columns with the empty cell are excluded.  

 

After completing the pre-processing steps, the following data analysis is conducted to help with 

the rest of the preprocessing steps. For each flight code with departure status, hourly baggage 

arrival pattern before flight time is extracted in the following table. For example, flight code 1 is 

repeated 13 times for the one month period and 100 baggage has arrived when there is more than 

1 hour and less than 2 hours before flight time.  

Table: Hourly Baggage Arrival Pattern per Flight Code.  

Flight Code  Total Baggage Count  Flight Count  Hourly Flight Pattern (1 Hour, 2 Hours, 3 Hours, ...)  

1  308  13  [0,100,0, …]  

2  2656  22  [0,2,867, …]  

3  5325  23  [0,27,33, …]  

  

For each flight code, average baggage arrival versus time before flight is plotted as in the following 

figure. Each different color represents a distinct flight code. Excessive baggage count is observed 

as 1750. Also, it is found that there can be baggage arrivals even 12 hours before the flight. In this 

initial representation before the data cleaning and preprocessing steps, there are many outliers 

regarding the arrival pattern of baggage records in the following figure. Many baggage records 

seem processed before too early hours than flight time.  



75 

 
 

 

 

Figure. Hourly Baggage Arrival Pattern per Flight Code (Initial) 

 

Outlier baggage records are excluded based on rules such as empty PASSENGER_ID, 

BIM_CREATE_DATE > ACTUAL_TIME and earlier time stamps do not exist in a predetermined date 

range. Repetition records are eliminated based on evaluating cases of BIM_CREATE_DATE, 

BIM_ID, FILE_NAME, ID, STATUS_INDICATOR and PASSENGER_ID feature relations. After pre-

processing, hourly baggage arrival patterns for each flight code are again visualized in the following 

figure. Furthermore, it can be seen that the arrival pattern of baggage records is distributed in a 

reasonable way. The following figure indicates the most activity concentrated in the few hours 

leading up to the flight. Finally, the dimensionality reduction is obtained like from (858K, 82) to 

(685K, 23) after data cleaning, feature selection and merge operations.  

 

 

 Figure. Hourly Baggage Arrival Pattern per Flight Code (Final)  
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5.2.2 Data Storage: 

The data can be classified as structured or unstructured. Structured data fits neatly into tables, 

while unstructured data cannot be easily mapped. The traditional Relational Database 

Management Systems (RDBMS) excel at handling structured data, but struggle with large volumes 

of structured or unstructured data. To address this, NoSQL databases have emerged as a more 

scalable, flexible, and distributed solution capable of efficiently managing both structured and 

unstructured big data. These advantages make NoSQL systems preferable for big data projects 

compared to the traditional RDBMS technologies.   

This study area deals with big data regarding millions of flights and baggage data with future 

projection. Additionally, it requires it to be expanded with real-time updates. Thousands of new 

rows will be added daily from the airport system with each flight, and new columns may be added 

as well. This will result in a high volume of data and transactions. Given these requirements, a 

NoSQL data management system is the most suitable solution for this big data study.  

There are many NoSQL database technologies used in the software field. After the research and 

requirement analysis process, it is decided that Cassandra has been chosen as the best option for 

this study. It is a wide-column store database, which is a type of NoSQL database that can be used 

for relational types of big data. Cassandra is an open-source database that can be distributed 

across multiple machines. It also provides a scalable, maintainable system with high performance 

and fault tolerance.   

 

● Daily Baggage Prediction:  

  
Throughout the project's lifecycle, the dataset has evolved significantly through continuous data 

contributions from TAV Technology. With each dataset update, both machine learning and deep 

learning models undergo retraining and testing to evaluate potential improvements in accuracy. 

This iterative process involves training models from scratch when the dataset size increases, 

allowing us to identify any shifts in model performance and accuracy patterns. Analysis of the 

second-largest dataset (v7) revealed that the Random Forest model achieved the highest accuracy. 

During feature engineering with this dataset, we discovered that while some features had a 

significant positive impact on model accuracy, others showed negative effects.  

 

The following table provides detailed results showing the impact of both selected and excluded 

features on model performance. However, when testing with the latest and largest dataset (v8), 

the model performance hierarchy changed. The CatBoost model surpassed the Random Forest 

model, achieving a lower Mean Absolute Error (MAE). As a result, CatBoost is currently 

implemented as the primary model for daily baggage prediction in the project.  
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 Table. Results of feature selection in the clean dataset v7  

Selected Features  
Mean Absolute Error 

(MAE)  
Excluded Features  

is_holiday, is_weekend, hour_of_day, day_of_week, day_of_month, 

month, season  
159.11  

flight_code, dep_ap_code, arr_ap_code, 

category  

flight_code, is_holiday, is_weekend, hour_of_day, day_of_week, 

day_of_month, month, season  
18.57  dep_ap_code, arr_ap_code, category  

category, dep_ap_code, arr_ap_code, is_holiday, is_weekend, 

hour_of_day, day_of_week, day_of_month, month, season  
25.97  flight_code  

flight_code, category, is_holiday, is_weekend, hour_of_day, 

day_of_week, day_of_month, month, season  
17.92  dep_ap_code, arr_ap_code  

flight_code, category, dep_ap_code, arr_ap_code, is_holiday, 

is_weekend, hour_of_day, day_of_week, day_of_month, month, 

season  

17.55    

flight_code, category, dep_ap_code, arr_ap_code, is_weekend, 

hour_of_day, day_of_week, day_of_month, month, season  
17.49  is_holiday  

flight_code, category, dep_ap_code, arr_ap_code, hour_of_day, 

day_of_week, day_of_month, month, season  
17.51  is_holiday, is_weekend  

flight_code, category, dep_ap_code, arr_ap_code, is_holiday, 

hour_of_day, day_of_week, day_of_month, month, season  
17.54  is_weekend  

flight_code, category, dep_ap_code, arr_ap_code, day_of_week, 

day_of_month, month, season  
19.37  is_holiday, is_weekend, hour_of_day  

flight_code, category, dep_ap_code, arr_ap_code, hour_of_day, 

day_of_month, month, season  
17.98  is_holiday, is_weekend, day_of_week  

flight_code, category, dep_ap_code, arr_ap_code, hour_of_day, 

day_of_week, month, season  
96.19  is_holiday, is_weekend, day_of_month  

flight_code, category, dep_ap_code, arr_ap_code, hour_of_day, 

day_of_week, day_of_month, season  
21.00  is_holiday, is_weekend, month  

flight_code, category, dep_ap_code, arr_ap_code, hour_of_day, 

day_of_week, day_of_month, month  
17.62  is_holiday, is_weekend, season  
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Table. AI model comparison for the latest and the largest clean dataset v8  

AI Model Mean Absolute Error (MAE)  

Random Forest  17.51  

XG-Boost  17.85  

Light-GBM  17.06  

CatBoost  16.81  

CNN-LSTM Hybrid Model  24.75  

   

  

● Pattern prediction:  
In this analysis, we evaluated two versions of the clean dataset (v7 and v8) using various machine 

learning, deep learning, and time-series approaches. The performance assessment incorporated 

multiple evaluation metrics, including Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), and R² scores. Summary of the results are displayed in the 

following table. Based on the Validation Mean MAE and Test MAE scores, the ExtraTreeRegressor 

demonstrated superior performance. However, its significant model size of 1.2GB presents a 

practical limitation. The BaggingRegressor emerged as the second-best performer with a MAE 

score of 0.020, while both Deep Neural Networks (DNN) and Random Forest algorithms also 

showed promising results. Support Vector Machine (SVM) exhibited the poorest performance, 

notably due to its negative R² score, indicating its inadequacy for this task.    

Table. Performance Evaluation of AI Models  

Case  Dataset  Model  Validation Mean MSE  Validation Mean RMSE  Validation Mean MAE  Validation Mean R2  Test MSE  Test RMSE  Test MAE  Test R2  

1  v_bag_clean_v7  DNN  0,001  0,033  0,022  0,382  0,001  0,032  0,022  0,440  

2  v_bag_clean_v8  DNN  0,001  0,035  0,024  0,406  0,001  0,034  0,024  0,428  

3  v_bag_clean_v8  RandomForest  0,001  0,031  0,022  0,519  0,001  0,031  0,022  0,519  

4  v_bag_clean_v8  Gradient Boosting  0,001  0,034  0,025  0,416  0,001  0,035  0,025  0,411  

5  v_bag_clean_v8  ExtraTreeRegressor  0,001  0,028  0,019  0,597  0,001  0,028  0,019  0,607  

6  v_bag_clean_v8  DecisionTree  0,001  0,033  0,023  0,472  0,001  0,033  0,023  0,476  

7  v_bag_clean_v8  LinearRegression  0,002  0,044  0,033  0,046  0,002  0,044  0,033  0,051  

8  v_bag_clean_v8  SVM  0,004  0,065  0,058  -1,094  0,004  0,065  0,058  -1,056  

9  v_bag_clean_v8  HuberRegressor  0,002  0,045  0,032  0,006  0,002  0,045  0,032  0,008  

10  v_bag_clean_v8  PassiveAggressiveRegressor  0,004  0,063  0,056  -0,981  0,004  0,063  0,055  -0,922  

11  v_bag_clean_v8  QuantileRegressor  0,002  0,046  0,032  -0,077  0,002  0,047  0,033  -0,077  

12  v_bag_clean_v8  SGDRegressor  0,002  0,044  0,033  0,043  0,002  0,044  0,033  0,042  

13  v_bag_clean_v8  PoissonRegressor  0,002  0,045  0,034  0,034  0,002  0,045  0,034  0,002  

14  v_bag_clean_v8  ElasticNet  0,002  0,045  0,034  0,000  0,002  0,045  0,034  0,000  

15  v_bag_clean_v8  Ridge  0,002  0,044  0,033  0,045  0,002  0,044  0,033  0,049  

16  v_bag_clean_v8  Lasso  0,002  0,045  0,034  0,000  0,002  0,045  0,034  0,000  
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17  v_bag_clean_v8  BaggingRegressor  0,001  0,029  0,020  0,578  0,001  0,029  0,020  0,590  

18  v_bag_clean_v8  AdaBoostRegressor  0,002  0,049  0,041  -0,215  0,004  0,066  0,057  -1,099  

19  v_bag_clean_v8  ExtraTreeRegressor  0,001  0,032  0,023  0,477  0,001  0,033  0,023  0,472  

20  v_bag_clean_v8  LSTM  0,003  0,050  0,035  0,126  0,001  0,037  0,027  0,195  

21  v_bag_clean_v8  LSTM  0,003  0,050  0,035  0,137  0,001  0,034  0,024  0,319  

22  v_bag_clean_v8  LSTM  0,003  0,050  0,035  0,125  0,001  0,033  0,023  0,364  

23  v_bag_clean_v8  LSTM  0,002  0,045  0,031  0,296  0,001  0,033  0,023  0,356  

24  v_bag_clean_v8  LSTM  0,002  0,048  0,034  0,189  0,001  0,033  0,023  0,366  

25  v_bag_clean_v8  LSTM  0,002  0,045  0,032  0,295  0,001  0,033  0,023  0,348  

26  v_bag_clean_v8  DLinear  0,284  N/A  N/A  N/A  0,216  N/A  0,212  N/A  

  

SHAP (SHapley Additive exPlanations) values are a way to explain the output of any machine 

learning model. It uses a game theoretic approach that measures each player's contribution to the 

final outcome. In machine learning, each feature is assigned an important value representing its 

contribution to the model's output. This approach is applied to the RandomForest model and the 

result is displayed in Figure9. The most influential feature is TIME_HOUR, which shows a wide 

distribution of SHAP values, implying a strong effect on the prediction, especially for lower and 

higher hours of the day. TIME_MINUTE, DAY_OF_YEAR, and TIME_OF_DAY also show significant 

influence, suggesting that minute-level and seasonal timing factors contribute meaningfully to the 

model’s decision. Other features like BUSY_PERIOD, CATEGORY, and WEEKDAY have more modest 

yet non-negligible impacts. Features like IS_HOLIDAY and QUARTER appear to contribute the least, 

as their SHAP values are tightly clustered near zero. Overall, the model seems highly sensitive to 

fine-grained temporal attributes, which aligns with scenarios requiring precise time-based 

predictions.  

 

 Figure. SHAP Analysis of RandomForest Model  
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The following chart illustrates the distribution of airport baggage data by flight category. Most 

baggage records, accounting for 56.4%, are associated with international flights, while domestic 

flights make up 43.5% of the observations. Negligible 0.0639% of the data falls under the "EMPTY" 

category, indicating either missing or unclassified entries. Overall, the data shows a slightly higher 

volume of baggage activity linked to international travel, with minimal data quality issues in the 

CATEGORY field.  

 

 Figure. Distribution of Flight Category  

That chart presents the distribution of baggage records based on the flight status across all 

observations. The majority of the data, by a substantial margin, corresponds to the DEPARTED 

status, with approximately 8.6 million entries, indicating that most baggage records are linked to 

flights that have already left. ARRIVED flights follow with a significantly smaller count, around 1.7 

million, while OPEN flights account for just under 700,000 records. The statuses ENROUTE, 

CANCELED, and CLOSED represent only a negligible fraction of the dataset. This distribution 

suggests that the dataset primarily captures baggage activity tied to completed departures, which 

is valuable for analyzing operational throughput and historical performance.  

          

                Figure. Distribution of Flight Status               Figure. Distribution of Flight System Airport   
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This last chart shows the distribution of baggage records across different system airports. The 

highest bag counts are observed for three airports—ADB, ESB, and SAW—each with over 2 million 

observations, indicating that these are the primary hubs in the dataset. Other airports such as BJV, 

GZP, ECN, and SKP also show considerable activity, ranging from several hundred thousand to just 

under a million records. The remaining airports have significantly lower counts, with many showing 

only minimal baggage activity.  

  

● Flight Delay Prediction:   
  

XGBoost demonstrates the best performance with the lowest Mean Absolute Error (MAE) of 7.622, 

followed closely by LightGBM with an MAE of 7.8514. These two-gradient boosting-based 

algorithms significantly outperform the other models in the comparison. Random Forest and 

Gradient Boosting show similar performance levels, with MAE scores of 8.4194 and 8.4234 

respectively, placing them in the middle range of our comparison. However, they're notably less 

accurate than XGBoost and LightGBM. The poorest performing models are AdaBoost and DNN, 

with considerably higher MAE scores of 10.1882 and 10.31 respectively. This indicates that these 

models have, on average, larger prediction errors compared to the other approaches.   

  

If we prioritize MAE as our primary evaluation metric, the clear recommendation would be to use 

XGBoost for this problem, as it shows approximately 2.9% better performance than LightGBM and 

about 26% better performance than the worst-performing model (DNN). The superior 

performance of XGBoost is also supported by its better scores across other metrics (MSE, RMSE, 

and R²), suggesting it provides the most reliable and accurate predictions overall.  

 

Table. Model Comparison  

Model  Test MAE  Test MSE  Test RMSE  Test R²  

XGBoost  7,622  112,1498  10,5901  0,5375  

LightGBM  7,8514  118,188  10,8714  0,5126  

Random Forest  8,4194  134,2991  11,5887  0,4461  

Gradient Boosting  8,4234  134,9552  11,617  0,4434  

AdaBoost  10,1882  166,121  12,8888  0,3149  

DNN  10,31  258,11  16,07  0,2742  
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5.4 Use case #4 (INOSENS)  
For the data analysis component of our study, experiments were performed on data from two 

sources. The first is a set of comments the Inosens team obtained from TAV Technologies about 

Izmir Airport, and the second is Ekşi Sözlük (a popular Turkish-language website where users 

discuss a variety of topics). The first set of data visualizations shows the number of comments 

posted in a given language in each month within a specific timeline. The second set of data 

visualizations shows the number of comments for each predicted sentiment in each month within 

the same timeline for each set of comments.  

First, the language of each comment was predicted using an open source RoBERTa-based model.  

 
Figure. Detected language for each of the comments from TAV Technologies 

 
Figure. All comments from Ekşi Sözlük are in Turkish, as detected by the model 

 
Then the sentiment of each comment was predicted using an open source BERT-based model. The 

model was specifically trained on Turkish text, so in this study, the model was only implemented 

on the Turkish comments.  
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Figure. Detected sentiment for each of the comments from TAV Technologies 

 
Figure. Detected sentiment for each of the comments from Ekşi Sözlük 

 
 
 

5.5 Use case Application #5 (Korean Consortium) 

-         AI-based CFS/CY Management Data Analysis and Results 

● To develop container relocation planning technology for AI-based CFS/CY management 
system, container placement information and schedule information within the CFS/CY 
were utilized. Each container data consists of a unique container ID, placement 
information consisting of bay, row, and tier, and retrieval schedule information. 
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● In order to evaluate the performance of the container relocation planning model, a 
simulation environment was configured with the following six different container yard 
placement configurations. 

 

● The target state was set to a state where no more container rehandling was required, and 
the number of container rehandlings required to reach the target state was set as an 
evaluation index, and the average performance was measured by executing 1,000 
episodes for each environment. 

●  Performance evaluations were conducted on the baseline model, which performs optimal 
placement by considering only the current status without considering scheduled incoming 
containers, and the proposed (developed) model, which performs optimal placement by 
considering the information on the scheduled incoming containers together. 

● The experimental results confirmed that the optimal placement state could be reached 
with fewer containers rehandlings in all environment settings when the information on 
containers scheduled to be brought in was utilized together. 

 

● As a result of analyzing the performance difference according to the number of scheduled 
incoming containers, it can be confirmed that the performance advantage of developed 
model becomes more evident as the number of scheduled incoming containers, which 
shows that the developed model is effective for long-term optimization that takes into 
account future situations. 
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-         Digital Twin-Based Optimized Dispatch Data Analysis and Results 

● To develop and enhance the Digital Twin-based optimal dispatch system, actual dispatch 
operation records from previous periods were obtained. The acquired dispatch data was 
input into the developed simulation model to generate simulation results, which were 
then compared and analyzed with the simulation results of the dispatch data generated 
by the optimization module. 

● During this process, data preprocessing was performed to address inconsistencies 
between the recorded data and the standardized DB schema. Additionally, unreliable data 
was identified and cleansed. 

● When the optimal dispatch system is activated, it records various data, providing valuable 
business insights and allowing for monitoring of optimization results. For example, when 
the optimization module runs, it goes through several optimization stages driven by the 
algorithm. By recording the objective index (total operation time of all trucks) at each 
stage, it becomes possible to analyze and compare the optimization results for each stage. 

● The graph above shows an example of the optimization module test results obtained by 
using both the Greedy algorithm and the SA algorithm. By comparing the total operation 
time of the simulated dispatch schedule with the total operation time of each optimization 
algorithm, it is possible to evaluate the performance of the optimization module. Based 
on these results, performance improvements can be achieved through parameter tuning 
of the algorithm or by setting a target completion time. 
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● Currently, it is expected that using the optimal dispatch system will exceed the target 
improvement rate of 10% in total operation time of trucks. Further research is ongoing to 
continuously enhance performance. This improvement is expected to reduce congestion 
in port logistics and decrease both operation time and costs. 

-         Digital Twin-Based Optimized Dispatch Data Analysis and Results 

 
 

● To develop and enhance the Digital Twin-based optimal dispatch system, actual dispatch 
operation records from previous periods were obtained. The acquired dispatch data was 
input into the developed simulation model to generate simulation results, which were 
then compared and analyzed with the simulation results of the dispatch data generated 
by the optimization module. 

● During this process, data preprocessing was performed to address inconsistencies 
between the recorded data and the standardized DB schema. Additionally, unreliable data 
was identified and cleansed. 
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● When the optimal dispatch system is activated, it records various data, providing valuable 
business insights and allowing for monitoring of optimization results. For example, when 
the optimization module runs, it goes through several optimization stages driven by the 
algorithm. By recording the objective index (total operation time of all trucks) at each 
stage, it becomes possible to analyze and compare the optimization results for each stage. 

● The graph above shows an example of the optimization module test results obtained by 
using both the Greedy algorithm and the SA algorithm. By comparing the total operation 
time of the simulated dispatch schedule with the total operation time of each optimization 
algorithm, it is possible to evaluate the performance of the optimization module. Based 
on these results, performance improvements can be achieved through parameter tuning 
of the algorithm or by setting a target completion time. 

● Currently, it is expected that using the optimal dispatch system will exceed the target 
improvement rate of 10% in total operation time of trucks. Further research is ongoing to 
continuously enhance performance. This improvement is expected to reduce congestion 
in port logistics and decrease both operation time and costs. 

 

5.11 Use case Application #11 (TAV) 

5.11.1 Data Preprocessing 

Raw ADS-B positional data, sourced from Flightradar24 (FR24), underwent a series of meticulous 
preprocessing steps. Each flight's ADS-B trajectory, encompassing timestamped location 
information, was transformed to enable the prediction of Actual Time of Arrival at Destination 
(ATAD). For every data point within a flight's trajectory, the time remaining until arrival was 
calculated. Additionally, comprehensive flight-specific information, such as scheduled times and 
aircraft details, was extracted from the Flight Management System (FMS) and integrated with the 
ADS-B data. 
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A critical aspect of our preprocessing involved the identification and removal of anomalous flight 
behaviors, such as holding patterns (aircraft circling in the air) and holding positions (aircraft 
waiting on the ground). These outlier scenarios were excluded from the training dataset. The 
rationale behind this exclusion is that such events are typically governed by real-time Air Traffic 
Control (ATC) directives and airport ground operations, making them more amenable to a rule-
based approach rather than being accurately predicted by a generalized machine learning model 
trained on typical flight behavior. 

5.11.2 Rule Based System 

Beyond the primary objective of ATAD prediction, this project also aimed to optimize data 

acquisition costs. Instead of continuously purchasing high-volume ADS-B data for an entire flight 

duration, our strategy focuses on acquiring data only at key points where it is most critical. While 

ATAD prediction is feasible from a limited number of data points, accurately identifying various 

operational states of a flight is another key expectation. 

To address these requirements, a Rule-Based System was developed and integrated alongside the 

AI model. This system is designed to provide real-time situational awareness by performing crucial 

state checks. These states include: 

● Estimated Airport Arrival Status: Assessment of the aircraft's estimated arrival time at 

the destination airport, calculated using distance-based methods relative to its estimated 

time of departure. 

● ADS-B Transmitter Activation: Verification of whether the pilot has activated the ADS-B 

radio transmitter at the estimated time of departure. 

● On-Time Performance: Determination of whether the flight commenced on schedule or 

experienced a delay, quantifying the extent of any delay. 

● Destination Check: Confirmation of whether the aircraft's movement is indeed destined 

for our specific airport. 

● In-Flight Holding Detection: Identification of instances where aircraft are observed 

holding in the air due to airport congestion during the approach or landing phase. 

This hybrid approach, combining predictive modeling with rule-based logic, allows for both 

accurate forecasting and precise operational monitoring, contributing to a more comprehensive 

and cost-effective solution. 

5.11.3 Modelling 

A robust machine learning model was developed to predict ATAD based on the aircraft's real-time 

position. Following extensive preprocessing and data transformation, the resulting voluminous 

dataset necessitated an efficient modeling approach. The Random Forest algorithm, implemented 



89 

 
 

 

using the rapids-cuML library, a GPU-accelerated machine learning framework, demonstrated 

superior performance in our evaluations. 

Model training and evaluation were performed using a 5-fold cross-validation strategy to ensure 

robust and generalizable performance across diverse flight conditions. Subsequent 

hyperparameter optimization, efficiently conducted using the Optuna framework, further refined 

the Random Forest model. This optimized model achieved a Mean Absolute Error (MAE) of 

approximately 109 seconds on the test set. 

Model Train Score (MAE) Test Score 

(MAE) 

XGBoost 6.705160 5.800887 

Catboost 6.028014 5.914732 

Random Forest 3.564341 3.612258 

Random Forest 

Tuned 

2.412423 2.229232 

An in-depth analysis of the model's predictive accuracy, correlated with the aircraft's proximity to 

the destination airport, revealed a comparatively higher error margin during the descent phase. 

This increased error is primarily attributed to the complex and highly dynamic maneuvers aircraft 

undertake in response to prevailing air traffic conditions near the airport, including varying queue 

lengths for landing. These variables are inherently challenging to predict with high precision. 

Feature importance analysis of the final model underscored the significance of variables such as 

the aircraft's distance to both the departure and arrival airports, and its angular position relative 

to them, highlighting their crucial role in accurate prediction. 

In conclusion, this ADS-B-based short-term delay prediction framework provides near real-time 
forecasts, significantly complementing existing long-term predictive models used for strategic 
resource allocation and maintenance scheduling. Its primary contribution lies in facilitating the 
dynamic optimization of critical airport operations, such as gate assignments and ground handling 
coordination, and enhancing overall air traffic flow management. 
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6.  Conclusion and Future Works 

6.1 Use Case Application #1 (INOSENS): 
This work in this use case presents a preliminary investigation into the use of LiDAR sensors for 

intelligent monitoring applications in airport environments, with a focus on Passenger Flow 

Management, Passenger Density Estimation, and People Counting. A series of point cloud 

recordings were captured using a LiDAR sensor installed in a terminal area to observe and analyze 

the movement patterns of individuals. Due to the labor-intensive nature of manual annotation, 

only a small portion of the collected data—specifically 100 point cloud frames—was labeled. These 

labeled samples were structured in KITTI format, which allowed for compatibility with existing 3D 

object detection frameworks. 

To evaluate the feasibility and effectiveness of using state-of-the-art deep learning models in this 

context, transfer learning was performed on a pre-trained VoxelNeXt model. The training process 

was conducted using the labeled subset, and visual evaluation methods were employed to 

examine the model’s performance in detecting pedestrians within the 3D space. Despite the 

limited size of the dataset, the initial results demonstrated the potential of applying such models 

to real-world airport monitoring scenarios. 

In future work, the primary objective will be to increase the size of the labeled dataset by 

annotating a significantly larger portion of the collected LiDAR data. This is expected to improve 

the model’s accuracy and robustness, particularly in dense and dynamic environments. Final 

installation of the LiDAR sensor is planned at Adnan Menderes Airport. At the sensor's finalized 

location, a continuous data collection process is scheduled over a period of days. This new dataset 

will then be manually labeled and used for retraining the model, which is expected to mark the 

final stage of development before deployment. 

Additionally, deployment of the trained model in a real-time pipeline will be a key focus. To achieve 

this, optimized methods for real-time data acquisition from the LiDAR sensor will be developed, 

allowing for immediate inference on incoming point clouds. The final goal is to create an end-to-

end system capable of delivering real-time estimations of passenger flow and density to the 

airport’s operational platforms. This will be accomplished through Kafka-based integration, where 

model predictions are streamed in a structured and scalable format suitable for downstream 

consumption. Through these efforts, the study aims to contribute to the development of 

intelligent infrastructure solutions that enhance the efficiency and safety of airport operations. 

 

6.2 Use Case Application #2 (Siemens): 
Maintaining baggage requests of passengers in an airport may have direct or indirect effect on 

other operations such as ground services, flight etc. In the use case #2 application, temporal 

pattern analysis of baggage operations is investigated to determine if there is a correlation for 

flight delays in a holistic perspective. Several pre-processing and cleaning strategies are applied on 

the given dataset while also considering the cross selection between the baggage and flight 
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features. The results reveal two major findings. Firstly, creating multiple baggage records per 

passenger has a negative impact on the related departed flight operation. Secondly, the increase 

in the pattern dissimilarity ratio for the baggage arrival correlates with the flight delay possibility.   

Various machine learning and deep learning models were evaluated for daily baggage prediction 

using datasets of different sizes. The analysis revealed that Random Forest performed optimally 

with smaller datasets, while CatBoost achieved superior performance when tested on the largest 

dataset. Through comprehensive feature engineering and selection processes, the optimal set of 

features was identified to enhance the prediction accuracy.  

Concerning pattern prediction, the machine learning models—particularly ensemble methods 

such as Tree Regressor and Bagging Regressor—demonstrate superior performance compared to 

deep learning and traditional time-series models. Among these, tree-based algorithms like 

Random Forest and Decision Tree consistently yield more accurate and robust results. Their ability 

to effectively handle nonlinear relationships, mixed data types, and outliers makes them especially 

well-suited for complex predictive tasks involving structured data. In future, we would like to 

improve results by the new candidate features to be involved from flight data.  

There may be missing features that are affecting baggage arrival but those are not supplied by TAV 

systems due to limitations and complexity. For example, if there is a planned flight delay and 

passengers are informed about it then the baggage arrival will shift towards the new flight date or 

if a flight is used as transfer to another flight by most of the passengers, then the baggage arrival 

of the first flight will greatly rise. Because of unpredicted scenarios like these, the baggage arrival 

pattern may stretch, shrink or amplify. Adaptive prediction is the future work that the arrived 

baggage up to current time will be used as an adaptive feature to predict the non regular pattern 

changes mentioned above. So that the baggage arrival classification and regression will not be 

performed only by flight parameters but the baggage itself up to prediction time.  

 

6.4 Use Case Application #4 (INOSENS) 
Sentiment analysis of passengers is an effective strategy for identifying passenger satisfaction, the 

same way it can help identify customer satisfaction in other scenarios. Passengers are often likely 

to broadcast their candid opinions, and effectively their levels of satisfaction, on online sources. 

This includes social media, forum websites, and other platforms for reviewing businesses.  

This use case leverages sentiment analysis to identify overall passenger satisfaction within any 

given time frame. A major emphasis of this proposed application is to enable the user to analyze 

whether there is a correlation between time and sentiment as well as volume of posts, comments, 

and reviews. The data analysis component of this study showed that there was a higher volume of 

posts and a disproportionately high volume of negative posts during the summer months. That 

corresponds to when people are more likely to travel.  

Another major emphasis of this use case is to identify whether there is a change in satisfaction 
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after flight delays. Although this feature has not yet been implemented, sentiment analysis of 

online text-based content is no doubt a highly effective method for identifying passengers’ 

satisfaction levels related to flight arrival and departure delays.  

  

6.5 Use case Application #5 (Korean Consortium)  
 

1) Implementation of CFS/CY Port Logistics Data Platform (KULS) 

-         Summary of the development progress and key findings of the use case application are as 

follows. 

●  Data pipeline construction is underway utilizing new technologies such as Kraft, Kafka, 

and Devezium open source. 

● In the middle version, we configured the Java-based Zookeper mode to Kafka-based 

KRaft mode to improve performance and reflect the latest technologies. This 

eliminated Zookeper dependencies, simplified installation, configuration, and 

maintenance, and improved Kafka's performance and reliability. We also leveraged 

cache memory to improve UI speed and data processing speed for KafkaStreams and 

Kafka Connect. 

● Mobile device-based mobile apps are being developed to collect vehicle location 

control and transportation status data. 

-         Future works are described. 

● New technologies such as Kraft, Kafka, and Devezium open source build data pipelines. 
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2) Implementation of CFS/CY Optimization (KAIST) 

-         Summary of the development progress and key findings of the use case application. 

●  A mid-version of the AI-based CFS/CY management system has been designed and 

implemented. 

●  For intra-CFS optimization, a reinforcement learning model based on the Proximal 

Policy Optimization (PPO) algorithm was applied to determine efficient container 

stacking and relocation strategies, which were validated through simulation. 

● Experiments conducted under various yard configurations confirmed a reduction in 

unnecessary relocations and improved accessibility for high-priority containers. 

● Initial development for inter-CFS optimization has been completed, including the 

design of evaluation metrics, cost models, and visualization components. 

● Standardized data pipelines have been constructed to collect and process operational 

information to support both optimization modules. 

-        Future works are described. 

●  Scenario-based simulations will be conducted to evaluate the performance of the inter-

CFS optimization module under varying yard congestion and capacity conditions. 

● Quantitative analysis will be performed to validate the effectiveness of dynamic CFS 

selection strategies based on expected relocation costs and operational efficiency. 

● Further refinement of the decision-support logic and simulation fidelity is planned to 

enhance real-time applicability. 

● Additional efforts will focus on optimizing the deployment environment to support 

future integration with the logistics platform. 

 

3) Implementation of Digital Twin Simulation Platform (eins S&C) 

-         Summary on Twin and Simulation  
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● This system is expected not only to reduce congestion in port logistics transportation 

but also to actively support platform users' decision-making during the dispatch 

planning stage, significantly reducing work time. 

-         Future works 

● The Digital Twin-based optimal dispatch system has currently been completed up to 

the Early Prototype stage. Ongoing research is being conducted to further enhance the 

accuracy and performance of the optimization module. Additionally, we are 

continuously collaborating to complete the data pipeline and are conducting research 

to provide additional business insights to users through the optimal dispatch system 

service. 

● We plan to improve fidelity by receiving congestion data required for 

loading/unloading operations at CFS and terminals and enhancing the simulation 

model. 

● In the event that a specific transportation contract requires urgent handling, we will 

explore ways to reflect this in the system to derive a new optimal dispatch plan. 

● We are in discussions to enable Kuls to develop the UI for the optimal dispatch system, 

which will be mounted on the platform in the future. Once this task is completed, we 

will proceed with the integration and testing of the platform and the system. 

 

6.11 Use case Application #11 (TAV)  

The complexity and intricate interrelations of airport operations highlight the importance of each 

activity happening accurately and on time. All processes, from an aircraft's landing to its 
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preparation for the next flight, directly influence one another on both the airside and landside. 

This operational integrity is clearly demonstrated when any delay in an incoming aircraft directly 

impacts numerous subsequent processes, such as bridge operations, chute deployment, 

boarding, and carousel baggage retrieval. Therefore, accurately predicting all these processes 

with a high degree of precision is crucial for enhancing passenger satisfaction and optimizing 

resource allocation. 

Extensive data analysis and business discussions revealed that flight information frequently 

changes for various reasons leading up to the aircraft's departure. Our FDP (Flight Departure 

Prediction) model, trained on data obtained during the flight planning stage, proved insufficient 

in achieving the desired accuracy levels due to these uncertainties. To address this deficiency, 

the ADS-B (Automatic Dependent Surveillance-Broadcast) Milestone project was initiated, aiming 

to provide more accurate and sensitive predictions closer to the actual flight time. Initial results 

indicate that the ADS-B model can predict delays with an error margin of just 2 minutes. We aim 

to measure the true success of this system, which is not yet live, by comparing its predictions 

with those from the FDP project made a month prior. This comparison will concretely 

demonstrate the new model's contribution to operational efficiency. 

In another significant project, alongside developing models to predict when various flight 

services (including boarding, bridge, carousel, check-in, chute, counter, electricity, gate, inblock, 

and offblock) will begin and how long they will last relative to an aircraft's arrival or departure, 

we've also commenced MLOps (Machine Learning Operations) architectural work. This 

integration involves the implementation of tools such as MLflow for experiment tracking and 

model management, MinIO for scalable object storage, and NannyML for data drift detection. 

This will ensure the sustainability, easy updateability, and scalability of the developed models. 

Consequently, this will enable the models to adapt quickly to evolving operational needs and 

generate more reliable predictions. Ultimately, these projects will significantly contribute to 

more effective management of airport operations, minimizing delays, and improving the overall 

passenger experience. 

 


