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1 Abbreviations 

AI Artificial intelligence 
CNN Convolutional neural network 
CNNs Convolutional neural networks 
CBCT Cone beam computed tomography 
CT Computed tomography 
DICOM Digital imaging and communications in medicine 
FID Frechet inception distance 
GAN Generative adversarial network 
GDPR General data protection regulation 
ICH Intracranial hemorrhage 
IS Inception score 
MR Magnetic resonance 
MRI Magnetic resonance imaging 
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2 Executive summary  

 
This document presents state-of-the-art methods for synthetic image generation, 
focused on medical images. The document covers using GANs and diffusion models, 
as well as generating images using physics simulations. The document also covers 
different metrics that can be used for evaluating how realistic the synthetic images are, 
and briefly mentions the legal aspects related to the generation, and sharing of  
synthetic data. Finally, the document discusses how synthetic images can be used for 
different use cases (brain tumours, liver and pancreas tumours, intracranial 
hemorrhage, image guided lung interventions). 
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3 Introduction to synthetic images 

Access to large (annotated) medical image datasets is a major hurdle for training deep 
learning models in medical imaging. There is not a lack of data per se, but regulations 
such as GDPR prevents researchers or medical device companies from obtaining 
large number of images from clinical care providers. This contrasts with the computer 
vision field, where the large open ImageNet database (Deng et al., 2009) with several 
million images has been extremely important for developing new deep learning-based 
methods. There are a number of openly available medical imaging datasets, but they 
are much smaller compared to ImageNet (for example, the Human Connectome 
project (HCP) (Van essen et al., 2013) has 1,100 subjects, OpenNeuro (Poldrack et 
al., 2013) has about 25,000, UK biobank will scan 100,000). In addition to their limited 
size, openly available medical image datasets are often anonymized through defacing, 
can represent selective populations around universities, and are often curated before 
distribution to eliminate bad quality data. Furthermore, the datasets often focus on 
healthy controls, and it is more difficult to find open datasets with a large number of 
subjects (> 1000) with a specific disease. For the development of segmentation 
algorithms, it is difficult to find images with high quality annotations. This limits the 
potential applicability of any model trained on such data in clinical settings. 
 
Through the introduction of AI models such as generative adversarial networks 
(GANs) (Goodfellow, 2014), computers can nowadays generate very realistic synthetic 
images (see for example https://thispersondoesnotexist.com) by learning the high-
dimensional distribution of real images. The first synthetic images had very low 
resolution (e.g. 32 x 32 or 64 x 64 pixels), while the most recent networks can 
generate high quality images of one or several megapixels. Generating synthetic 
medical images also has the potential to solve the data availability issue for medical 
imaging. However, given that the training of GANs requires large datasets, this creates 
a catch-22 situation. This could potentially be solved by starting from a pre-trained 
GAN. Another possible solution is to train GANs, or other models, in a federated 
setting with images stored at each hospital. 
 
There are many possible applications of synthetic images in medical imaging. 
Synthetic images can make it easier to share medical data, as the synthetic images do 
not belong to a specific person. Another application is advanced data augmentation, 
allowing the creation of new images from the same distribution, as opposed to only 
modifying existing images through conventional augmentation strategies (e.g., 
rotation, translation). Finally, different types of medical images can be synthesized 
from one another, such as synthesizing a CT image from an MR image. Because this 
solely requires the collection of an MR image, this saves considerable time in the 
clinical workflow (5 – 20 minutes), and avoids the exposure of radiation to the patient.  
 
 
 
 
 
 
 
 
 
 
 

https://thispersondoesnotexist.com/
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4 Generating images through deep learning 

This section will first introduce generative adversarial networks (GANs) (Goodfellow et 
al., 2014), and then introduce diffusion models. Both have been successful in 
generating realistic synthetic images. 

4.1 GANs 

 
GANs recently gained a lot of attention in the computer vision community. Generative 

modeling is an unsupervised machine learning task that involves discovering and 

learning the patterns automatically in the input data and then trains itself to further 

generate new examples. Generative modeling can further be subdivided into two 

different models, a generator, and a discriminator. Both models are trained together and 

the clever competition between the generator and the discriminator provides a way of 

incorporating unlabeled samples into training and imposing higher-order consistency. 

Figure 1 shows the basic architecture of GAN model. The combined loss function of 

both generator (G) and the discriminator (D) can be seen in Equation 1, which shows 

the adversarial loss, where we can see that generator works to minimize the loss and 

oppositely the discriminator works to maximize the loss. Only a proper balance between 

the generator and discriminator results in high quality output. I.e., the generator should 

generate examples for which the discriminator has a hard time determining whether it 

is a ground truth example, or a synthetic example. Synthetic labels can be created by 

providing them alongside the medical images themselves, in a separate input channel.  

 
Figure 1: Basic architecture of a GAN (generative adversarial network). A GAN has a generator and a 

discriminator that respectively compete to generate better synthetic images, and to be better at 

distinguishing synthetic images from real images. 
 

 
Equation 1: Adversarial loss function, computed through minimization of the generator loss, and 

maximization of the discriminator loss. 
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GANs have proven themselves to be useful in scenarios such as data augmentation 

(Cha et al., 2019), image-to-image translation (Kang et al., 2021), domain adaptation, 

and filling in the missing data in many cases. Recently the success of GANs in natural 

imaging has gained the attention of researchers in the medical imaging community. 

GANs provide the opportunity to resolve the issue of requiring large annotated medical 

datasets by producing synthetic data which can further be used to train deep models. 

Many variants of the GAN framework have been proposed in the literature. We therefore 

take the opportunity to explain some of the commonly used GAN frameworks available 

in literature below. 

 

4.1.1 Noise-to-image GANs (creating completely new images) 

 
A general problem with GANs is that the training is very unstable, for example the mode 

collapse problem where the generator only generates a few images that fool the 

discriminator. Many papers have therefore focused on improving the training stability. 

We will here briefly present some of the most recent GAN architectures. 

 

Progressive GAN 

Progressive growing of GANs was proposed by Karras et al. (2017) from Nvidia 

research Lab. The code that was developed was released open source at 

https://github.com/tkarras/progressive_growing_of_gans. In this framework they 

propose a training methodology for generative adversarial networks where the key idea 

is to grow both the generator and the discriminator progressively, starting from a low 

resolution and enhancing the resolution while the training progresses. This is done by 

progressively adding new layers to the network as shown in Figure 2. The generator 

and the discriminator are mirror images of each other and always grow in synchrony 

from a low resolution (4x4 pixels in the image below), to the final resolution (1024x1024 

pixels in the image below). All the existing layers in the model remain trainable while the 

newly added layers are faded in to avoid a sudden impact on already trained low 

resolution preceding layers. Progressively increasing the image resolution was noted to 

improve training stability, preventing the occurrence of mode collapse. 

   
Figure 2: The training set starts with both generator (G) and discriminator (D) with a low spatial resolution 

of 4 × 4 pixels. With the progression of training, both G and D get an incremental increase in layers 
providing higher spatial resolution respectively. On the right-hand side, six different images generated 

using Progressive growing GAN with a spatial resolution of 1024 × 1024 can be seen. 
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StyleGAN 

A Style-Based Generator was proposed by Karras et al. (2020) where the authors have 

proposed an alternative generator architecture for generative adversarial networks, 

borrowing from style transfer literature. The code was released open source at 

https://github.com/NVlabs/stylegan. Using this architecture, the model learns 

unsupervised separation of high-level attributes and stochastic variation in the 

generated images and enables intuitive, scale-specific control of the synthesis. Unlike 

the progressive GAN, the proposed architecture does not take the input latent code 

using the input layer, but takes the input from a learned constant instead as shown in 

Figure 3. One of the downsides of StyleGAN is the presence of water droplet-like 

artifacts in the synthetic images, which triggered development of StyleGAN2. 

 
Figure 3: Latent code is fed to an intermediate latent space which then controls the generator by using 

adaptive instance normalization (AdaIN) at each convolutional layer. Here it can be seen that Gaussian 

noise is added after each convolution. “A” stands for a learned affine transform, and “B” applies learned 

per-channel scaling factors to the noise input. There are 8 and 18 layers in mapping network and 

synthesis network g respectively. There is a separate 1 × 1 convolution layer at the end to allowing RGB 

images to be obtained. 

 

 

StyleGAN2 

Although the aforementioned style-based GAN architecture yields state-of-the-art 

results, Karras et. Al (2020) revisited and analyzed several artifacts and have proposed 

changes in both the training methods and the architecture of styleGAN as well. Again 

the code was released open source (https://github.com/NVlabs/stylegan2). The authors 

have redesigned the generator normalization, revisited the progressive growing, and 

focused on the generator to produce better results by providing better initial conditions. 

This adds another benefit by making it easier to invert the generator, making it possible 

for any generated image to reliably attribute to a particular network. The authors 

https://github.com/NVlabs/stylegan
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removed the normalization artifacts by pinpointing the problem to AdaIN operation which 

destroys the information found in the magnitudes of the features relative to each other 

by computing the mean and variance of individual feature maps separately. They have 

proved the hypothesis that by removing the normalization step from the generator the 

droplet affect disappears completely. Figure 4 shows the detailed and the revised 

architecture of StyleGAN and serves as the starting point of redesigned normalization.   

 
Figure 4: Fig.4 a) shows the detailed architecture of StyleGAN and StyleGAN2 where A denotes a 

learned affine transform from W that produces a style and B is a noise broadcast operation. (w) are the 

learning weights, (b) represents the bias, and (c) represents the constant input. The grey box shows that 

the style is active per box. Fig.4 b) shows the several changes made to the original architecture where 

redundant operations at the beginning are removed and the addition of Band (b) happens outside the 

active area of style and adjusts only the standard deviation per feature map. 

 
 
StyleGAN3 

Karras et. Al (2021) further investigated Stylegan2 and exposed the root cause of 

careless signal processing which was causing the aliasing problem in the generator 

network. The leakage of information into the hierarchical synthesis process was 

eliminated by interpolation of all the signals in the network to continuous. The newly 

constructed network matches the FID  (Frechet inception distance, see Section 6.1) of 

StyleGAN2, but the internal representation is dramatically different and is equivariant 

to rotation and translation even at subpixel scales. This newly developed architecture 

(Figure 5) is suitable for the creation of both images and videos. 
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Figure 5: An alias-free generator used in StyleGAN3. The main data path consists of Fourier features and 

normalization, modulated convolutions, and filtered nonlinearities.  

 

 

4.1.2 Image-to-image GANs (image translation) 

While section 4.1.1 covers GANs that can generate completely new images, this section 

covers GANs that can instead transform one image type into another (e.g. transforming 

a CT image into a MR image). Training of image-to-image GANs is typically more stable, 

as the GAN starts from an image (instead of starting from noise). For 2D images, the 

most popular architectures for image-to-image GANs are pix2pix (Isola et al. 2017) and 

CycleGAN (Zhu et al. 2017), both discussed below. While pix2pix requires paired and 

registered images, CycleGAN works for unpaired images which are not registered. 

 
Pix2pix 

A conditional GAN (cGAN) is an extension of the GAN architecture described previously 

where generated images can be controlled with specific conditions. Pix2Pix is an 

implementation of cGAN. For the training of noise-to-image GANs, the generator model 

is given input images while the discriminator model is given a random mix between 

synthetic and real examples to train. On the other hand, Pix2Pix is trained with both the 

input and the target images. Using this approach, the network learns to map the input 

to the output images by means of a specific loss function. In traditional GANs the 

generator usually calculates a loss which depends of the data while cGANs calculates 

a structured loss that focuses on a possible structure between the target image and the 

network output image. This makes the output image structurally alike to the target 

image. The discriminator still works in the traditional way and tries to classify each image 

as a real or synthetic sample.  

 

CycleGAN 
The image-to-image translation is done by learning the mapping of input images and 
translating them to the output image where both input and output images are aligned. 
However, in many cases, the availability of paired and aligned (registered) images are 
not available. Therefore Zhu et al. presented an approach capable of learning from the 
source domain and map to the target domain in the absence of source (X) and target 
(Y) domains.  
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The goal is to learn the mapping G: X →Y in a way that the distribution of images among 
G(X) and Y is indistinguishable. This is done by using an adversarial loss. They have 
coupled it with inverse mapping F: Y → X and introduce a cycle consistency loss to 
enforce F(G(X)) ≈ X (and vice versa) to cope with the highly constrained mapping. The 
architecture of CycleGAN can be seen in Figure 6   

  
Figure 6: (a) There are two mapping functions G : X→Y and F : Y→X with their associated discriminators 

DX and DY. DX and DY encourage t and F to produce images to the corresponding domain. Furthermore, 

two cycle consistency losses have been introduced that work with the intuition that once the generated 

image is generated back to its original domain it should give back the original image from where it started. 

(b) forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ x, and (c) backward cycle-consistency loss: y → 

F(y) → G(F(y)) ≈ y 

 
A general challenge with training image-to-image GANs is that they often require more 
GPU memory, compared to training noise-to-image GANs, as several generators and 
discriminators are trained at the same time. This is generally not a big problem in 2D, 
but in 3D (described below) it becomes challenging to train 3D CycleGAN (Abramian & 
Eklund, 2019) or Vox2Vox (3D pix2pix) (Cirillo et al., 2020). It may therefore be 
necessary to instead train the 3D image-to-image GANs using sub-volumes. If the 
architecture is fully convolutional, it can then be applied to a volume of any size. 
 

4.1.3 3D aware generation of 2D images 

 
The biggest advantage of using 3D models is that they can relate to different angles of 
the same synthetic object, given that 2D models lack the representation of information 
from different angles. Until now the best 2D models have attained higher stability far 
away from natural results but still lack in 3D because they do not store 3D information 
and are unable to keep the display stable from different viewing angles.  
Recently Eric R., et al. (2022) from Nvidia and Stanford have introduced 3D aware 

GANs for the creation of better synthetic images, in their paper they have shown that 

3D GANs can produce even better synthetic images, while also being able to perform 

reconstructions (i.e. filling in the gaps of missing data). This is demonstrated by a hybrid 

approach that combines implicit and explicit representation resulting in an efficient 

approach that scales effecticely with increasing resolutions. They rely on a three-plane 

3D representation rather than a full voxel grid which is connected before a StyleGAN2 

generator mesh and finally the output of the generator is stored (Figure 7). Al neural 

renderer further decodes the saved information and sends it to a super-resolution 

module which scales the 128 by 128 pixels up to 512 by 512 pixels. Their approach not 

only produces state of the art qualitative and quantitative results for view-consistent 3D-

aware image synthesis, but at the same time can generates high quality 3D shapes of 

the synthesized scenes due to its strong 3D-structure-aware inductive bias. One of the 

prominent achievements is that EG3D can produce a matching 3D reconstruction from 

a single image resulting in 3D aware represented images.  
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Figure 7: This method is a combination of several parts: a feature generator, a mapping network, a tri-
plane 3D representation with lightweight feature decoder, a neural volume renderer, a super resolution 

module and a pose conditioned Stylegan2 discriminator with dual discrimination. Using neural rendering 
and decoupling feature generation the architecture allows Stylegan2 to generate 3D scene generalization. 

 

4.1.4 3D GANs 

 
Regarding 3D GANs, required to synthesize volumes, there is much less work 
compared to the aforementioned work on generating images using 2D GANs. There 
are several reasons for this; One reason is that 3D GANs require more GPU memory 
and processing time, for the training, compared to training 2D GANs (which are 
already computationally challenging). Another reason is that training 3D GANs 
requires a large number of 3D volumes, and large open 3D (medical) datasets are not 
as common compared to large open 2D datasets used in computer vision (e.g. 
ImageNet which contains several million images). Although the UK biobank aims to 
scan 100,000 subjects, there are very few openly available medical imaging datasets 
of this size. 
 
Regarding noise-to-image GANs, Wu et al. (2016) used a 3D GAN to generate 
synthetic objects, but the resolution was limited to 64 x 64 x 64 voxels, while the major 
challenge for all GANs is to generate high resolution images or volumes. Kwon et al. 
(2019) generated brain volumes of 64 x 64 x 64 voxels, but they appear to lack detail. 
Jung et al. (2021) used a 2D GAN to generate a sequence of slices and then used a 
combination of 2D and 3D discriminators to enforce consistency in 3D. However, no 
3D volumes are shown in the paper and the obtained resolution is not mentioned. Bu 
et al. (2021) used a 3D GAN to synthesize lung nodules, but the resulting volumes are 
limited to 32 x 32 x 32 voxels by synthesizing the lung nodules as opposed to the full 
lung volume.  
 

4.2 Ensembles of GANs 

A major difficulty in generating diverse high-resolution images is to fully capture the 
complex high-dimensional data distribution. Consider that a one-megapixel image has 
one million dimensions, while the (non-linear) subspace of real images has a much 
lower dimension. When training a deep neural network, the weights are typically 
initialized randomly. This means that training several GANs with the same architecture 
will, due to the random initialization, capture slightly different parts of the complex 
high-dimensional data distribution. Eilertsen et al. (2021) demonstrated, Figure 8, that 
training an ensemble of 2-10 GANs in general leads to better performance when using 
the synthetic images to train a classifier. The drawback of this approach is of course 
that the training time increases linearly with the number of GANs trained.  
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Figure 8: Classification performance on synthetic datasets, comparing different ensemble sizes 
and approaches. Each datapoint has been estimated from the mean of 10 separate trainings, 
and standard deviations are reported with error bars. Using an ensemble of GANs clearly leads 
to better results, compared to using a single GAN, but the performance is still considerably 
worse compared to using real images. Image from Eilertsen et al. (2021). 

4.3 Diffusion Models 

 
Ho et al. (2020) introduced the diffusion model which is a generative model that can 

produce similar synthetic data on which it is trained. Diffusion models work in a forward 

destruction of data by adding noise, and then learns to generate back realistic images 

by reversing the noise process. Once the network has learned to perform denoising, 

any random noise image can be converted to a realistic image. Diffusion models were 

introduced through text-to-image models like DALL-E and DALL-E 2, but have proven 

themselves generating images from noise. 

  

More specifically, the diffusion model is a latent variable model that uses a fixed Markov 

chain to map the latent space. Noise is gradually added to the data and once the 

approximate posterior with the same dimensionality as the input image is achieved then 

the model learns the reverse process, where an image earlier transformed to a pure 

Gaussian noise is converted back to new data as seen in Figure 9. 

  

 
Figure 9: Diffusion Model where X0 is the original image (x1,...,xT) are the latent variables with the same 

dimensionality as X0 

 

Over recent years, research in diffusion models has exploded and is producing state-

of-the-art image quality. It is of great benefit that diffusion models do not require 

adversarial training and have added the benefits of scalability and parallelizability 

increasing training efficiency. In general, diffusion models are faster to train than GANs, 

but suffer from longer inference times since generating a synthetic image requires an 

iterative process.  



 
 

Anders Eklund Public 13/11/2022 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.2 

Page 17 of 40 

 

 

4.4 Training networks with synthetic images 

Access to large annotated datasets is one of the major challenges in deep learning, 
especially for medical applications. Generating synthetic data using GANs, both 
images and annotations, can be a way to alleviate this data demand. There are 
several scenarios where GANs can be used to generate helpful training data. The 
most straightforward of which being training a GAN on the already available dataset, 
to then generate more samples that can be added to the training set. In this scenario 
the usage of the GAN can be viewed as an advanced form of data augmentation. 
Other scenarios where GANs can be useful include domain adaptation, privacy 
preserving data sharing and inclusion of prior knowledge into the training data. 
 

4.4.1 GANs for data augmentation 

Data augmentation is a commonly used technique during network training and can be 
viewed as a way to expand the dataset, e.g. by means of translation, rotation or 
intensity scaling. A downside of standard data augmentation is that it requires domain 
knowledge to perform well, to for example guarantee that the augmented images still 
represent anatomically correct structures. Using GANs for data augmentation removes 
this requirement and can hence be a good alternative for data augmentation. In short, 
a GAN is trained on the already existing training set and is then used to generate new 
training samples, with annotations, that are added to the training dataset. For 
classification, two examples where this has been done successfully are by Maayan et 
al. for liver lesion classification and by Li et al. for blood cell image classification. For 
image segmentation, Neff et al. managed to improve performance for lung 
segmentation in chest radiographs by using a GAN for data augmentation, see Figure 
10. Kossen et al. did the same thing for brain vessel segmentation in TOF-MRA 
images showing a slight increase in performance when adding synthetic data 
compared to using conventional augmentation (Dice score from 0.879 to 0.887). 
 

 
Figure 10: Training setup using GANs for data augmentation from “Generative adversarial networks to 

synthetically augment data for deep learning-based image segmentation.” by Neff et al. 
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4.4.2 GANs for domain adaptation 

Domain adaptation aims to train a model that performs well on samples from a target 
domain that is significantly different from samples from the source domain where 
labels are available. An example using GANs for domain adaptation was done by 
Sandfort et al. (2019) where a CycleGAN was used to transform contrast CT images 
into non-contrast CT images. The synthetic non-contrast CT images were then added 
to the training set, together with the annotations previously only available for contrast 
CT images. Training using the extended dataset improved performance for kidney, 
liver and spleen segmentation in non-contrast CT images. A similar approach was 
used by Dou et al. but instead of actually creating synthetic images, Dou et al. used an 
adversarial training setup to align intermediate features during training of a cardiac 
segmentation network. A discriminator was trained to predict if the features were from 
a CT or an MR image, the segmentation network was then trained to produce 
intermediate features that confused the discriminator. This enabled the segmentation 
network to perform well on CT images although labels were only available on MRI 
images. 
 

4.4.3 Other applications 

To deal with the difficulty of sharing medical data due to privacy reasons, Yoon et al. 
(2020) proposed to train a GAN that, given a data sample and a noise vector, 
produces a new data sample. The GAN is specifically trained to produce samples that 
are hard to identify to enable sharing of the synthetic dataset while still preserving the 
privacy of patients in the original dataset. Amirrajab et al. (2020) proposes to use a 
human phantom and a GAN to generate labelled cardiac MR images. The human 
phantom captures new anatomical variations not present in the original dataset, and 
adding the synthetically created samples improved segmentation performance for the 
trained network. 
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5 Synthetic images in different use cases 

There are generally two ways GANs can be used for medical imaging. First is the 
generative aspect where GANs are used to explore and discover the underlying 
structure of training data and learns to generate realistic synthetic images. The second 
focuses on the discriminative aspect where the discriminator can be used to regularize 
or detect abnormalities in the provided data (Yi et al. 2019) (not further discussed in this 
document). Figure 11 from Yi et al. provides examples of GAN related applications, with 
examples (a), (b), (c), (d), (e), (f) that focus on the generative aspect while example (g) 
exploits the discriminative aspect. 
 

 
Figure 11: Example applications using GANs. (a) Left side shows the noise contaminated low dose CT 

and the right side shows the denoised CT that well preserved the low contrast regions in the liver (Yi and 
Babyn, 2018). (b) Left side shows the MR image and right side shows the synthesized corresponding CT. 

Bone structures were well delineated in the generated CT image (Wolterink et al., 2017a). (c) The 
generated retinal fundus image have the exact vessel structures as depicted in the left vessel map (Costa 
et al., 2017b). (d) Randomly generated skin lesion from random noise (a mixture of malignant and benign) 
(Yi et al., 2018). (e) An organ (lung and heart) segmentation example on adult chest X-ray. The shapes of 

lung and heart are regulated by adversarial loss (Dai et al., 2017b). (f) The third column shows the 
domain adapted brain lesion segmentation result on SWI sequence without training with the 

corresponding manual annotation (Kamnitsas et al., 2017). (g) Abnormality detection of optical coherence 
tomography images of the retina (Schlegl et al., 2017). 

 

5.1 Brain tumour segmentation 

Brain tumours compose about 2% of the cancer incidences, affecting some 300,000 
subjects globally each year (Leece et al., 2017), with a low survival rate and a high 
morbidity for the patients. Though not being the most prevalent cancer type, brain 
tumours are prone to complicated and challenging treatment procedures that are often 
a combination of surgery, radiotherapy and chemotherapy, where treatment planning 
and follow up of the treatment is highly dependent on radiology images. The best 
treatment for a specific patient depends on the amount of tumours (e.g. one large 
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tumour, or many small metastases), and their size and location. Furthermore, the size 
of the tumour is important in calculating the radiotherapy dosage required to kill the 
cancer cells. MRI is normally used to obtain this information, and to plan the treatment, 
as MRI provides excellent contrast between soft tissue types, and different MR 
sequences can be used to expose different information or contrast. A CT scan is 
normally required to compute the dose fall-off. The CT image can with a GAN (such as 
CycleGAN) be generated from the MR image, but it will not be further discussed here. 
It is also necessary to segment important organs-at-risk (e.g. the optic nerve) which 
should not be damaged by the radiation, see Figure 12. The treatment plan, i.e. how 
much radiation to apply to different parts of the brain, can be generated manually, 
through mathematical optimization or through machine learning. 
 

 
Figure 12: Illustration of brain tumour (red, to be targeted by radiation) and organs-at-
risk (yellow, which should receive as little radiation as possible). GTV = gross tumour 
volume, CTV = clinical target volume (CTV). Deep learning can reduce the treatment 
planning time substantially, by performing automatic segmentation of tumour(s) and 
organs-at-risk (instead of the time consuming nature of creating segmentations 
manually). Image from an open dataset in the cancer imaging archive (see 
references). 
 
Segmentation of the tumour(s) and organs-at-risk is currently often performed 
manually or semi-automatically by a neuro-radiologist, medical physicist, radiation 
oncologist or RTT (radiotherapy technician). Manual segmentations can be very time 
consuming, typically requiring between 10 – 60 minutes per patient, especially for 
cases containing many metastases and organs-at-risk. It is therefore desirable to use 
deep learning for automatic segmentation, but collecting and annotating brain images 
from a large number of subjects is time consuming and costly. To train image 
segmentation networks using synthetic images, it is necessary to synthesize images 
and annotations at the same time. This is more challenging compared to just 
generating new images. There are basically two approaches that can be used to 
achieve this. The first approach is to first use a noise-to-image GAN to generate 
synthetic label images, and to then use an image-to-image GAN to generate MR brain 
images from the label image. The second approach is to generate the brain image and 
the label image at the same time, using a single noise-to-image GAN.  
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The BraTS 2020 dataset, containing data from 369 tumour patients, can be used for 

training GANs to produce synthetic brain tumour images and annotations. This data has 

four MR modalities (T1, T1 contrast, T2, T2 FLAIR), and we can consider the ground 

truth annotation for the tumour to be the fifth modality. The data comes in NIFTI 

volumes, which for 2D GANs can be further separated into slices. The original size of 

the extracted slice is 240 x 240 which is zero-padded to 256 x 256. This was done 

because GANs typically require the input dimensionality of an image to be a power of 

2. 

 

Figure 13 shows the first approach mentioned previously, where two GANs together 
generate the annotations and the corresponding MR image (Foroozandeh & Eklund, 
2020). Adding synthetic images gave a small improvement to the segmentation 
accuracy, while only using synthetic images resulted in much worse performance 
compared to using real images. Figure 14 shows the second approach (Nijhawan, 
2021) where a single GAN is trained to generate MR images and annotations as 
separate channels in a single image. This approach seems to work better, but a direct 
comparison is required to draw any conclusion. 
 

 
Figure 13. Generating tumour annotations and the corresponding MR image using a 

two-step procedure. First, synthetic annotations are generated with a noise-to-image 

GAN (left image). Second, a corresponding MR image is generated using an image-to-

image GAN. Note that the annotations cover the full brain (automatically obtained from 

the function FAST in the FSL software), as it will be too difficult for a GAN to generate 

a full brain MR image from only the tumour annotation. 
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Figure 14. Generating 4 MR images and brain tumour annotations at the same time, 

using a single noise-to-image GAN to generate 5 channel images. 

5.2 Liver + pancreatic tumours 

Liver and pancreatic cancer are respectively the third and fourth leading causes of 
cancer death world-wide. Pancreatic cancer is projected to become the second 
leading cause of cancer death within a decade. Algorithms that facilitate the automatic 
segmentation of the liver, pancreas and tumour tissues in commonly used imaging 
modalities, e.g. CT and MRI, are important steps towards the early diagnosis of 
tumours in the liver and pancreas. Early and accurate detection allows for a complete 
resection of the tumour while sparing surrounding healthy tissues, resulting in 
increased chances of survival after the disease, in addition to an improved quality of 
life. Currently, the best results for liver, pancreas and tumour segmentations are all 
obtained using deep-learning techniques.  
 
However, the development of high-quality deep-learning algorithms requires large and 
varied datasets for training and development. Novel algorithm developments are 
therefore hampered by the lack of available data. It is important to note that neural 
networks should ideally be trained using multi-center, multi-scanner data, to ensure 
algorithms work sufficiently well on data from various institutions and scanners. 
Although medical care providers commonly have lots of clinical data at their disposal, 
this data is often unlabelled (missing segmentations of the tumour and 
liver/pancreatic) and are frequently obtained using a single scanner. Additionally, strict 
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patient privacy regulations often prevent sharing of this data with other clinical care 
providers or medical device manufacturers.  
 
To assist in the initial training and development of segmentation algorithms, a number 
of publicly available datasets can be found online. This data is often released for 
segmentation challenges, that are organized to incentivize researchers and medical 
device manufacturers to develop and publish high quality segmentation algorithms. 
Publicly available datasets for the liver and pancreas include: 

 The Medical Decathlon dataset (https://medicaldecathlon.com/), including 281 
3D CT images of the pancreas, accompanied by pancreas (green) and 
pancreatic tumour (yellow) segmentations. 

 
The Medical Decathlon dataset also includes liver CT data for 131 (different) 
cases, including liver and liver tumour segmentations. 

 The Pancreas-CT dataset of the Cancer Imaging Archive 
(https://wiki.cancerimagingarchive.net/), which includes 80 3D CT scans of the 
pancreas. Pancreas segmentations are available, but no pancreatic tumours 
were present in the scanned patients. 

 The AMOS 2022 grand challenge dataset (https://amos22.grand-
challenge.org/), providing 200 CT scans and 40 MRI scans with annotation of 
15 different organs (including the liver and pancreas). No associated tumours 
were segmented or present in the scanned patients. 

 
Despite the availability of this data, the total number of scans (~600 of the pancreas, 
~370 of the liver) is still small compared to the number of examples that can be found 
on ImageNet for natural objects. In addition, it should be noted that only the Medical 
Decathlon dataset provides associated tumour segmentations, thereby limited the 
amount of training data for liver and pancreatic tumour segmentation.  
 
In an attempt to artificially increase the amount of training data available, we have 
therefore used these datasets for the training of GANs, allowing the creation of 
synthetic CT scans and associated labels. Initial experiments were run using 2 of the 
aforementioned GAN architectures, including 'Progressive Growing of GANs 
(PGGAN)' and 'StyleGAN2'. Results are summarized in the table below: 
 
 
 
 
 
 
 
 
 

https://medicaldecathlon.com/
https://wiki.cancerimagingarchive.net/
https://amos22.grand-challenge.org/
https://amos22.grand-challenge.org/
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Architecture Synthesized image Description 

PGGAN 

 

The CT image itself looks 
realistic. The shape of the 
pancreas segmentation 
looks correct, but it 
situated at an incorrect 
position. The tumour 
segmentation is too small, 
and does not correspond 
to any hypo-intensities of 
the synthetic CT scan.  
Some artifacts, indicated 
by the red circles, can be 
noted. 

PGGAN 

 

See above, the exact 
same conclusions can be 
drawn. 

StyleGAN2 

 

Both the synthetic CT 
scan and synthesized 
pancreas and pancreatic 
tumour labels look 
realistic.  
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StyleGAN2 
 

 

Although the tumour is 
rather large, the synthetic 
CT scan and pancreas 
look realistic. 

StyleGAN2 
 

 

Although the synthesized 
CT scan looks correct, the 
shape of the pancreas is 
unrealistic, and the 
tumour is situated outside 
of the pancreas.   

 

The examples above illustrate that the PGGAN and StyleGAN2 architectures are 

capable of producing realistic synthetic CT images. Although mistakes are made 

occasionally, the pancreas segmentations generally look realistic. The tumour 

segmentations were harder to synthesize, with sometimes producing rather unrealistic 

results. The outcome of these experiments is in line with the amount of training data 

that was used for training of the GAN networks; The input datasets provided many CT 

slices, fewer but still a decent number of slices containing pancreas segmentations, 

and far fewer slices with tumour segmentations (only present in a single dataset).   

 

Now that realistic examples can be generated, the next steps include the manual 
selection of large number of realistic synthetic CT scans and pancreas/pancreatic 
tumour segmentations. This synthetic data will be included as an additional 
augmentation strategy to be used in segmentation networks that aim to segment the 
pancreas and pancreatic tumours from CT scans. The effect of providing varying 
amounts of synthetic data on the resulting output will be investigated. 
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5.3 Intracranial hemorrhage 

 
Intracranial hemorrhage refers to any bleeding within the intracranial vault, including the 
brain parenchyma and surrounding meningeal spaces (Caceres & Goldstein, 2012). 
Acute intracranial hemorrhage (ICH) is a potentially life-threatening condition that 
requires fast and accurate detection because of its frequently rapid progression during 
the first several hours.  Intracranial hemorrhage (ICH), a subtype of stroke, can be 
classified into five sub-types according to bleeding location: Intraventricular (IVH), 
Intraparenchymal (IPH), Subarachnoid (SAH), Epidural (EDH) and Subdural (SDH). The 
ICH that occurs within the brain tissue is called Intracerebral Hemorrhage (Figure 15). 
Although ICH is less frequent than ischemic stroke, it presents a higher mortality rate. 
The degrees of severity and interventions vary with bleeding types (Ye et al., 2019). 
Classification of ICH and distinguishing it from ischemic stroke is critical due to prompt 
appropriate treatment and mitigate neurological deficit, and mortality.  
  
   

  
Figure 15: Sub-types of stroke and hemorrhagic stroke.  

   
   
Recent advances in deep convolutional neural networks (CNNs) have shown that the 
their potential in automating ICH detection and segmentation, and has proven that they 
can assist junior radiology trainees when experts are not available. Due to their 
capability of self-learning of nonlinear image filters and self-extraction of relevant 
features, CNNs have proven to be superior to methods that demand complicated 
engineering feature including skull stripping, image registration, and feature extraction 
from voxel intensity and local moment information (Muschelli et al., 2017; Ye et al., 
2019).   
   
There are a number of publicly available datasets that can be used for training for CNNs 
(Wang et al., 2021). This data is often released for classification challenges. Publicly 
available datasets containing intracranial haemorrhage scans are listed below:  
 

 The Radiological Society of North America (RSNA) Intracranial Hemorrhage 
Detection Challenge dataset consists of over one million images from 25272 
examinations, which provides the largest multi-institutional and multinational 
dataset for the study of acute ICH detection and subtype classification (Figure 
16).  
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 The PhysioNet-ICH dataset includes a total of 75 participants (36 with ICH and 
39 normal controls) with a total of 2814 slices (318 with bleeding and 2496 
normal images). The number of CT scans (slices) for each subtype is 5(24) 
IVHs, 16(73) IPHs, 7(18) SAHs, 21(173) EDHs, and 4(56) SDHs.  

   

 The CQ500 dataset, collected from multiple radiology centers in New Delhi, 
India, consists of a total of 491 CT scans. The 205 ICH scans contain all five 
subtypes, including 28 IVHs, 134 IPHs, 60 SAHs, 13 EDHs, and 53 SDHs.   

   
   
In these datasets, however, the distribution of each ICH subtype is highly unbalanced. 
EDH incidence is higher among adolescents and young adults because with the 
increase of age, the dura mater becomes more adherent to the overlying bone. For 
example in the RSNA dataset, only 1.5% of all CT scans contain EDH, which is 
consistent with everyday clinical observations. Collecting enough data for these rare 
ICH subtypes are challenging and models tend to overfit if trained using limited data.  
  

 
Figure 16: RSNA intracranial hemorrhage detection challenge dataset. 

 

Standard image transformation techniques are traditional techniques to overcome 
unbalanced training data problem but generative methods that can extract synthetic 
images from entire dataset have been applied to enhance segmentation performance 
of CNNs. Karki, M., Cho, J. and Ko, S. (2020) examined data augmentation with 
synthetic images and segmentation label masks that are extracted by a lesion-
conditional GAN for a haemorrhagic segmentation network and demonstrated that 
performance of segmentation models trained with smaller sizes of data benefited more 
from addition of synthetic data. Ganeshkumar M et al. (2022) proposed a novel data 
augmentation method to solve the problem of class imbalance in the ICH dataset using 
CycleGAN which improved the ICH identification performance significantly. The 
proposed method achieved a macro average F1-score of 0.91 and a specificity of 0.99 
and a sensitivity of 0.80 in the ICH identification task and as a segmentation tool and 
achieved a dice score of 0.32 and a mean Intersection Over Union (IOU) of 0.22 for all 
the five ICH sub-types.  
   
In an attempt to solve the issue of class imbalance present in the ICH training dataset, 
we used FastGAN and StyleGAN2-ADA approaches to generate synthetic epidural 
images. ADA is an adaptive discriminator augmentation mechanism that significantly 
stabilizes training in limited data regimes. 2019 RSNA Challenge and PhysioNet-ICH 
dataset epidural haemorrhage images were used as our model training data. The 
training data includes 3145 images with epidural haemorrhage at 512x512 resolution. 
The pre-trained Flickr-Faces-HQ model was used as starting model of transfer learning. 
Example results from methods are illustrated in Figure 17.  
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Figure 17: (a) Synthetic image generated with FastGAN   (b) Synthetic image 

generated with StyleGan2-ADA  
 

5.4 Image guided lung interventions 

 
Several biopsy and treatment procedures in lung involve image guidance. Especially 
peripherally in the lung, beyond the reach of the bronchoscope’s camera. There, 2D X-
ray (fluoroscopy) and, for the more challenging cases, 3D X-ray imaging is used. 
Although X-ray enables visibility of anatomy and devices deep in the lung, it exposes 
the patient to radiation.  Especially for 3D X-ray imaging, it is essential to find the right 
balance between radiation dosage to staff and patient, against the ability to confidently 
see devices and anatomical structures. In addition, the ability of software algorithms to 
detect devices and anatomy in 3D volumes with high consistency. 
 
The process of developing and optimizing 3D acquisition protocols (dose (kV/mA), 
rotation time, frame rate, X-ray filters, reconstruction parameters, etc.) ideally is 
performed without exposing patients to unnecessary radiation. Several other options 
are available, include performing 3D scans of phantoms, of animal studies, and 
synthetic data generation. 
 
The contribution of phantoms is limited, as they lack the subtle structures and motion 
which the human body has. Animal studies are cumbersome to arrange, a burden for 
the animals, and present unfamiliar anatomy to clinical users. Synthetic data 
generation from clinical scans can be a viable option, especially when studying lower 
dose protocols and protocols involving C-arm rotations with less accuracy (for 
example, when using smaller or lower cost C-arm geometries and motorization). This 
is because a good understanding of the X-ray physics and acquisition steps enables 
the downgrading or approximation of existing clinical data to match the imperfections 
and signal loss associated with lower dose and less accurate motion. The benefit of 
using a physics-based approach is that large data sets are not required, and that the 
image quality can be determined based on physics. The downside is a limited ability to 



 
 

Anders Eklund Public 13/11/2022 

ASSIST 

ITEA 20044 

WP2 Deliverable D2.2 

Page 29 of 40 

 

model higher dose scans, and the continued legal limitation of sharing the clinical 
data. 
 

5.4.1 Generation of Synthetic 3D CBCTs based on Clinical CBCT Data   

To generate a synthetic 3D CBCT volume from a clinical CBCT dataset, we 
manipulate the 2D images corresponding to the 3D acquisition, and the corresponding 
meta-data such as the positions of the C-arm, X-ray tube and detector, and 
information about the amount of X-ray emitted to acquire the 2D image. These 2D 
images then are input to a new 3D reconstruction, often also using different 
reconstruction parameters, see Figure 18. 
 

 

Figure 18: Steps to generate synthetic 3D CBCT volume. 

 
For example, physics indicates that a reduction of X-ray can be emulated by adding 
Poisson noise to acquired images. A reduced frame rate and a smaller detector size 
can be emulated by respectively dropping images from the dataset, or cropping the 
images. Non-reproducible motion artefacts can be emulated by perturbing the X-ray 
source and X-ray detector positions and rotations as they are input into the 
reconstructor. The absence of certain meta data can emulated by running 
reconstructor steps with different inputs. 
The synthetic volume can then be assessed (or processed) and results can be 
compared against the ground truth, see Figure 19 for some examples. 
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Figure 19. Example of synthetic data representing how a low X-ray dose short CBCT 
rotation was generated in order to analyse the impact of such a 3D scan on ’device-in-
lesion confirmation’. Both lesion and device remain visible and enable a device-in-
lesion assessment, with the device clearly adjacent to the lesion. 

   
Synthetic 3D CBCT volumes are being used to evaluate and optimize alternative X-ray 
protocols and X-ray system geometries. Synthetic 3D volumes are also used to test 
the robustness of algorithms processing 3D CBCT volumes. 
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6  Quality metrics for synthetic medical images  

There is currently no consensus on how to evaluate the quality and diversity of 
synthetic images, since synthetic images generation is a rather new research field. A 
straightforward approach is  the training of different networks using the synthetic 
images, and to then test the trained networks on real images, but this can take a very 
long time (especially when trying many different hyper parameters).  
 

6.1 Quality of synthetic images from a mathematical 
perspective 

 
Evaluation metrics for images generated using GANs, or other AI models, can be 
categorized into quantitative and qualitative metrics. It is difficult to obtain the perfect 
measure, but a small comparison to find the best model can be performed using these 
measures. Borji (2019) mentions in his paper the desired properties which an efficient 
evaluation measure should have. The qualitative measures include that a generative 
model can generate high fidelity and diverse samples, can handle controllable sampling, 
has well-defined bounds, is sensitive to image distortions and transformations, must 
have low computational complexity, and finally must agree with human perceptual 
judgments. While qualitative models help to inspect and tune models they still suffer 
from various problems. To overcome these problems different quantitative measures 
can be used. In the paper by Borji (2019) a total of 24 quantitative measures are 
presented, which can be used to quantify the quality of the synthetic images. Some of 
the measures discussed are “model agnostic” where the generator is used as a black 
box and does not require the density estimation from the model. On the other hand, 
there are some measures like average log-likelihood which have a requirement of 
estimation of the probability distribution from the samples. 
 
For 2D images, several quantitative measures have been introduced. Salimans et al. 

(2016), introduced inception score (IS) which involves using a pre-trained deep learning 

neural network model for image classification to classify the generated images. Further 

the probability of images belonging to each class is predicted and then summarized into 

the inception score, where it takes into account the image quality and diversity. Heusel, 

et al. (2017) introduced another metric called Fréchet inception distance (FID) to assess 

the quality of the images generated by generative model like GANs. Unlike (IS) that 

evaluates only the distribution of generated images, (FID) compares the distribution of 

generated images with the distribution of real images on which the generator was 

trained. (FID) is considered as a standard measuring metric for generative models.  

 

Both (IS) and (FID) are based on using 2D CNNs pre-trained on ImageNet, therefore 

these metrics are not as useful for medical images or volume data, since ImageNet does 

not contain medical images or volumes and since there are very few pre-trained 3D 

CNNs. For medical images, a better approach would be to pre-train CNNs on different 

openly available medical datasets. 
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6.2 Quality of synthetic images for treatment planning 

In radiation therapy treatment planning a dose calculation engine computes the 3D 
spatial dose distribution in the patient resulting from the optimized irradiation on the 
patient. The distribution of dose is highly dependent on the radiodensity of the 
irradiated tissue, quantified using a a Hounsfield scale. The Hounsfield units are 
obtained from a linear transformation of the measured attenuation coefficients of the 
CT. Thus, to use synthetic image data for treatment planning, the Hounsfield units of 
the synthetic images must be accurate, allowing the resulting dose distribution to be 
calculated correctly. 
 
If the synthetic images are generated from another image of the patient, e.g., a 
synthetic CT is generated from a daily CBCT or MR, the quality of the synthetic image 
can be evaluated by comparing the dose distribution on the synthetic CT with the dose 
distribution on the original CT. This caveat of this test is that it assumes the presence 
of an original CT, which is registered to the synthetic CT have been registered. Ideally, 
the CT should also have been acquired the same day to minimize anatomical 
differences between the images, but it should be noted that certain anatomical 
differences (e.g. filling of the rectum or bladder), can occur in a smaller timescale, 
hampering this experiment. 
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7 Legal aspects of synthetic images 

The capacity of AI to create convincing and representative synthetic data is a novel 
phenomenon that is likely to have a large societal, legal and scientific impact. Because 
this type of technology was only developed in the second half of the 2010s, there are 
limited legal and ethical reflections with regard to AI generated synthetic data. Here we 
focus on three important legal and ethical aspects of the use of synthetic data in a 
research context. 
 
(1) Synthetic data as a means of anonymization. Currently the use and re-use of 
personal data (such as medical images) is in Europe constrained by the requirements 
from data protection law, notably GDPR 2016/679. Currently, many anonymization 
techniques entail that the utility of the data is diminished. Creating anonymous 
synthetic datasets (Jordon et al. 2018, Xie et al. 2018) that have the same utility as the 
original personal data would have a major beneficial impact on data sharing and re-
use in research. However, whether synthetic data really can be qualified as 
anonymous in terms of data protection is a complex question that needs closer 
investigation (Bellovin et al. 2019). While synthetization overall seems to be an 
effective method in creating anonymous data, synthetic datasets can contain 
accidental Doppelgängers that happen to be very similar to examples from the original 
training set. There is currently no consensus regarding how different two medical 
images need to be for this purpose. From this perspective, it is safer to share synthetic 
images that have been compared to the training set, as opposed to sharing a trained 
AI model that can accidentally generate examples that are close to the original training 
examples. It should be mentioned that there are GANs who can be specifically trained 
to preserve privacy. 
 
(2) Ethics for data sharing. If a dataset containing medical images is going to be 
shared openly, the participants normally need to provide consent prior to data 
collection. It is not clear if consent is required if synthetic images are shared, since the 
synthetic images do not belong to a specific person, even though their medical data 
was used to train the models that generate the synthetic images. As long as the 
synthetic medical images cannot be connected or traced to the participants (see 
previous paragraph), it can be argued that consent is not required. Larson et al. (2020) 
argue that clinical data should be treated as a form of public good, to be used for the 
benefit of future patients, and further argue that consent is not required before 
collected data are used for secondary purposes when obtaining such consent is 
prohibitively costly or burdensome (e.g. contacting 10,000 persons). How ethical 
review committees in different countries look at this question can only be determined 
by applying for ethical approval to share synthetic images. It should however be noted 
that ethical committees do not normally consider the legal aspects or consequences of 
a project. 
 
(3) Intellectual property (IP) and synthetic data: who has intellectual ownership over 
the data? Intellectual property law builds on the idea that human authors, inventors, 
and database creators should be granted IP rights that will act as an economic 
incentive for intellectual labour and investments. A second important assumption is 
that creativity and inventiveness is a purely human capacity. AI-generated synthetic 
data have challenged this assumption and raised the question if AI could be an author 
in term of copyright law (Craig and Kerr, 2019) or an inventor in terms of patent law. 
Are synthetic medical images protected by copyright law, patent law or database 
rights? Or do synthetic images fall outside the scope of IP protection? Which role the 
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creation of synthetic data will fulfil in the economics of research is highly dependent on 
how such creation is qualified in terms of IP.  
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8 Conclusion 

 
In this document we have presented state-of-the-art methods for creating synthetic 
images (from noise of from other images), and how this can be applied to some of our 
use cases. Furthermore, we have briefly mentioned how synthetic images can be seen 
from a legal perspective. While synthetic images are promising, there are still many 
aspects that require further research. 
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