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1 Glossary

 

AI  Artificial Intelligence 

ATP Automated Treatment Planning 
AUC Area under the ROC curve 
BPH Benign Prostatic Hyperplasia 
CBCT Cone Beam Computed Tomography
CG Central Gland 
CIU Contextual Importance and Utility 
CNN Convolutional Neural Network 
CT Computed Tomography
DCNN Deep Convolutional Neural Network 
DSA Digital Subtraction Angiography 
DSBN Domain-Specific Bulk Normalization 
DSC Dice Similarity Coefficient 
EDH Extradural Hemorrhage
FCN Fully Convolutional Network 
GDPR General Data Protection Regulation 
GGG Gleason grade groups  
GNN Graph Neural Network 
ICA Inter Cranial Arteries
ICH Acute Intracranial Hemorrhage 
LUT Look-up Table 
LUTS lower urinary tract symptoms  
MAM Minimal Ablation Margin
MR Magnetic Resonance
MRI Magnetic Resonance Imaging 
MS-Net Multisite Network 
PAE Prostate artery embolization  
PDAC Pancreatic Ductal Adenocarcinoma 
PZ Peripheral Zone
QoL Quality of Life 
SDH Subdural Hemorrhage 

TURP 
Transurethral resection of the 
prostate  

VGG Visual Geometry Group  
VOI Volume of Interest
XAI Explainable Artificial Intelligence 
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2 Introduction 

2.1 Aim of the activity 

This deliverable focusses on improving personalized treatment planning e.g. by 
segmenting the vasculature surrounding a tumor. It is an extension of deliverable 3.1 
which describes the personalized diagnosis. The personalized diagnosis is translated 
into a personalized treatment plan. The extension to the diagnostic segmentation 
could be the segmentation of blood vessel around the segmented tumor. This might 
indicate give information about the direction how the tumor should be approached 
during resection and what the optimal resection plane should be to avoid damaging 
the major blood vessels. 
 
The planning might involve the combination of different imaging modalities and/or 
scans from a different contrast phase. This can result in complex segmentation 
challenges which typically nowadays is approached with AI techniques and especially 
with deep learning approaches.  
 
Through intelligent analysis of this data, using state-of-the-art machine learning 
techniques personalized (and precise) treatment planning is possible. 
 
In this report the state of the art for the use Artificial Intelligence (AI) techniques for 
personalized treatment is reported for different use-cases of the ASSIST project, Since 
the structure and the introduction to the use case is similar to deliverable 3.1, it has 
been decided to make deliverable 3.4 an extension of deliverable 3.1. Each section is 
extended with relevant information for the personalized treatment planning for that use 
case. 
 
The following sections each discuss the use of AI techniques for a specific use-case.  
 
Section 2 discusses the use of deep-learning to segment the prostate and surrounding 
arteries which is important for prostate artery embolization which is a minimally 
invasive treatment option for prostate enlargement.  
 
Section 3 discusses the use of deep convolutional neural networks and explainable AI 
for the automated detection, segmentation and classification of intracranial 
hemorrhage.  
 
Section 4 discusses the importance of tumor segmentation in radiology images and 
the current state of the art deep-learning architectures used in automatic brain tumor 
segmentation.  
 
Section 5 discusses how deep learning is seen as the best approach to detect 
pulmonary nodules in CT images and how it might also aid in the analysis of 
pathology images of nodule biopsy samples. 
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Section 6 discusses different deep learning architectures for the segmentation of the 
liver and the pancreas as well as tumors inside these organs. 
 
Finally in Section 7 we will draw some conclusions regarding the use of AI, in 
particular deep learning, in personalized treatment planning in the clinical use-cases 
of the ASSIST project. 
 

2.2 Contributors 
 
Several authors contributed to the production of this document. Each of those authors was 
responsible for one of the clinical use-cases. 
 
Contribution Authors
Prostate Enlargement Fortearge
Intracranial Hemorrhage Innova
Brain Tumors Linkoping University
Lung diseases Philips, Thirona
Hepato Pancreato Biliary Oncology LUMC
Global editing LUMC
Reviewing Barco
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3 Prostate Enlargement 

3.1 Introduction 
Prostate enlargement, also called benign prostatic hyperplasia (BPH), is a benign 
enlargement of the prostate BPH, or the proliferation of glandular and stromal tissue in the 
transition zone of the prostate, can lead to lower urinary tract symptoms (LUTS) and bladder 
outlet obstruction. 
 
The prevalence of LUTS increases with age, and 25% of men over 70 years old have 
moderate to severe LUTS that significantly affect their Quality of Life (QoL). BPH affects 
about 105 million men globally. It usually starts after the age of 40, half of males aged 50 or 
over are affected the incidence of male-pattern baldness increases with age. 
 

 

 

Figure 1: Normal vs Enlarged Prostate  (A1, 2014) 

 
There are many different medical and surgical options available for the treatment of BPH 
with LUTS. In patients with moderate to severe LUTS who are not responsive to medical 
management, more invasive treatments may be considered. Transurethral resection of the 
prostate (TURP) and open prostatectomy (OP) are the most effective treatments for large 
prostate glands. However, these procedures have significant morbidity rates including 
retrograde ejaculation, erectile dysfunction, urethral strictures, urinary retention, blood 
transfusion requirements and incontinence in patients with existing comorbidities, increasing 
age and large prostate volume are associated with higher complication rates, which limits 
the eligibility for surgical therapies. 
 
Prostate artery embolization (PAE) is a minimally invasive treatment option that has a lower 
risk of urinary incontinence and sexual side effects. The PAE procedure involves delivering 
embolic materials to block the blood vessels supplying the hypertrophied transitional zone in 
the prostate gland. This will reduce the size of the gland and prevent it from growing further. 
In order for PAE treatment to be successful, a thorough analysis of the patient should be 
carried out before the procedure. For the procedure to be technically successful, accurate 
determination of the anatomy of the prostate arteries and adequate embolization of the 
target are required. This procedure should avoid off-target embolization of other tissues, soft 
tissues of the bladder, rectum and penis, and other critical pelvic structures. 
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When considering PAE the technique is the challenging part requiring experience in 
recognizing prostatic arteries and avoiding non target embolization. As male internal iliac 
anatomy is prone to variations so are prostatic arteries which they can vary in origins, 
number. Besides, usually during treatment, cone beam CT is required especially with less 
experienced operators/angiographers. Many different protocols exist among centers for 
workup before the procedure to recognize and plan treatment including pre-operative CT 
imaging, MR imaging or no pre-imaging at all. 
 
Studies in the field of prostate artery embolization and AI are limited in the literature. The 
important thing in PAE is the detection of the prosthesis artery, so after a study on PAE, we 
will focus on the studies on artery classification and artery identification. 
 
Gurgitano et al. investigated the effect of artificial intelligence on application areas in 
interventional radiology. In their research, they have shown what the use of artificial 
intelligence in various application areas is good for. In the Prostate Artery Embolization 
method used in the treatment of benign Prostate Hyperplasia disease, it has been shown 
that artery detection can be made from 3D CBCT images with artificial intelligence 
application (see Figure 5).  (Gurgitano, 2021) 
 

 

Figure 2: “Automatic 3D detection of prostatic arteries using Cone-Beam CT during Prostatic Arterial 
Embolization”—a CBCT identification of prostatic arteries; b Realization of 3D roadmap; c Overlap on 
fluoroscopic images”  (Gurgitano, 2021) 

They stated that virtual 3D anatomical data can be obtained using augmented reality and AI-
based CT, CBCT or MRI. It is a combination of real-world 2D visual images that create a 
virtual device trajectory superimposed on visual surface anatomy. Theoretically, they 
explained that accurate navigation can be achieved without the need for fluoroscopy.  
(Gurgitano, 2021) 

Thanks to the integrated mapping AI software, automatic landmark recognition and motion 
compensation can be activated using reference marks linked by a computer algorithm. This 
system can be applied in lesion targeting/localization, spinal/paraspinal injections, 
arthrograms, tumor ablation, bone biopsies and more recently minimally invasive surgical 
procedures.  (Gurgitano, 2021) 

Chen et al. constructed a comprehensive dataset with 729 Magnetic Resonance 
Angiography scans and proposed a Graph Neural Network (GNN) method to label arteries 
by classifying the types of nodes and edges in an ascribed associative graph. Additionally, 
they developed a hierarchical improvement framework to further refine the GNN outputs to 
incorporate structural and relational information about Intra Cranial Arteries (ICA). The GNN 
developed in the application takes a graph with node and edge properties as input and 
returns a graph with additional properties for the node and edge types as output. In addition 
to its superior performance compared to the methods described in the literature, the study 
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demonstrated robustness and generalizability over a variety of challenging anatomical 
variations.  (Chen) 

Li et al proposed a two-stage vessel classification to improve the performance of existing 
automated methods for retinal image analysis. They adopted a UNet-based model, SeqNet, 
to accurately segment vessels from the background and predict vessel type. SeqNet mainly 
consists of two streams, bottom and top. Upstream is for segmentation. IterNet is adopted, 
which iteratively improves segmentation results with smaller UNets after initial segmentation. 
Adam was used as the optimizer. Two popular general datasets, DRIVE and LES-AV were 
used. It has been experimentally shown that the method achieves the most advanced 
performance on two general datasets, including SeqNet and postprocessing.  (Li, 2020) 

As a result of our research, the scarcity of studies using prostate Digital Subtraction 
Angiography (DSA) image has attracted attention. Due to the scarcity of data on our 
research topic, we will benefit from it in our own study by examining different studies that 
may be useful for our project. We hope that the following literature studies will guide us in 
our application, which will be used in the diagnosis and planned treatment of Benign 
Prostate Hyperplasia treatment to be used in the ASSIST project. 

3.2 Prostate Segmentation 
There is no evidence that prostate treatments using DSA imaging techniques can be used to 
treat Benign Prostate Hyperplasia (BPH). For this reason, we looked at the studies that were 
conducted using different imaging techniques. Below, we've listed some of the most 
important research into artificial intelligence that we think will be helpful for our own project. 
 
Liu et al. aimed to perform prostate segmentation from heterogeneous multisite MRI data. 
They developed a multisite network (MS-Net) for prostate segmentation. They proposed a 
Domain-Specific Bulk Normalization (DSBN) layer in the network backbone to minimize 
heterogeneity in images. This allowed the network to estimate statistics and feature 
normalization for each region separately. An adapted 2D Residual-UNet is adopted as the 
segmentation network backbone, providing remarkable performance in prostate 
segmentation problem. Experiments by Liu et al. show the superiority of the approach. (Liu 
Q. D., 2020) 
 
Liu et al presented a new shape-sensitive meta-learning scheme to improve model 
generalization in prostate MRI segmentation. The learning scheme is based on gradient-
based meta-learning by explicitly simulating field shift with virtual meta-training and meta-
testing during training. In this study, it is aimed to improve the meta-optimization by 
considering the shortcomings encountered when applying a segmentation model to invisible 
areas, especially the shape compactness and shape smoothness of segmentations under 
simulated area shift. In the experiment, prostate T2-weighted MRI from 6 different data 
sources with distribution shift was used. An adapted Mix-residual-UNet has been 
implemented as the segmentation backbone. Due to the large differences in slice thickness 
between different regions, 2D architecture was used. (Liu Q. D.) 
 
Gillespie et al have listed the latest technological advances in prostate segmentation and 
provided insight into the field by discussing the limitations and strengths of MR prostate 
segmentation and proposed an optimized 2D U-Net for MR prostate segmentation. 
According to research by Gillespie et al., (Gillespie) 



 
 

 <Consortium confidential> 18/11/2022 

ASSIST 

ITEA 20044 

WP3 Deliverable D3.4 

Page 11 of 49 

• Yu et al. (2017) improved this by adding residual links to the 3D segmentation network that 
helped improve prostate segmentation. It also used an aggregation process instead of 
aggregation features to the upsampling layer, transforming it into a ResNet-U-Net hybrid. 
• To improve the accuracy of prostate segmentation, Zhu et al. (2019b) suggested the use of 
a staggered U-Net. It emerged from the first mesh, segmented the entire prostate gland, and 
the segmented gland was fed into the second mesh to compartmentalize the peripheral 
region. 
• Liu et al. (2019b) proposed a network to segment prostate regions using FCN with a 
feature pyramid attention mechanism. They used a feature pyramid network and a simple 
decoder and a ResNet50 as the backbone of their network to capture features at multiple 
scales. 
 
Gillespie et al. implemented a 2D U-Net architecture using Ranger optimizer Wright (2019) 
and Mish Activation Misra (2020) to segment the prostate from MRI data. We analysed the 
capability of these minor changes in U-Net configuration and its impact on performances in 
four publicly available datasets, namely Promise 12, Prostate X, NIC ISBI 2013 and 
Decathlon Medical Dataset. Models trained on each data set and a combination of all were 
evaluated in a test set with Dice Similarity Coefficient (DSC). DSC scores obtained in 
separate test sets were calculated for each data set. It is observed that the model trained 
with all data outperforms all other models with higher DSC scores. This research provides a 
new perspective on MR prostate segmentation and, importantly, provides standardized 
experimental settings for researchers to evaluate their algorithms.  (Gillespie) 
 
Pellicer-Valero et al propose a fully automated system based on Deep Learning that takes 
prostate mpMRI from a patient with suspected prostate cancer and uses the Retina U-Net 
detection framework to locate, segment and predict the most probable Gleason grade 
groups (GGG) of prostate cancer lesions. In this study, it was developed for automatic 
segmentation of the central gland (CG) and peripheral zone (PZ), which are defined as the 
two main regions of the prostate. Uses 490 mpMRI for training/validation and 75 patients for 
testing from the ProstateX and IVO dataset. There is a data preprocessing stage, which 
consists of the first CNN where the images are entered and the second CNN which outputs 
the first CNN as the CG segmentation mask. After preprocessing the data, it was used to 
train a Retina U-Net CNN architecture that allows simultaneous detection, segmentation and 
classification of prostate cancer lesions. The Retina U-Net architecture combines the Retina 
Net detector with U-Net segmentation CNN and is specifically designed for application to 
medical images.  (Pellicer-Valero OJ, 2022) 

3.3 Artery Segmentation 
As we mentioned before, there is no BPH study using DSA imaging technique. To aid our 
study of vessel segmentation, we reviewed a vessel segmentation study using a DSA image 
of brain blood vessels. 
 
Zhang et al have presented a deep learning approach to automatically segment brain blood 
vessels in DSA. In this study, a U-net was used to detect brain blood vessels in DSA and 
tested on real DSA images.  
 
In the studies, rotation, translation and scaling were applied to the image data for 
magnification. 
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Figure 3: Structure of deep learning network  (Zhang, 2020) 

They used a 12-layer U-net structure to segment DSA images and trace brain blood vessels 
by calculating the probability that each pixel in the original image was part of a blood vessel. 
The structure of the deep learning network is shown in Figure 2. 

 

Figure 4: (a), an original DSA image. (b) manually marked ground truth. (c) Probability map given by 
deep learning network with pixel assigned to blood vessels class. (d) the final result of our approach 

after thresholding the probability map.  (Zhang, 2020) 

Figure 3(a) shows an original DSA image. The hand-marked ground reality is shown in Figure 
3(b). The segmentation result in the form of probability map given by the trained deep learning 
network is shown in Figure 3(c). From this example, it has been observed that the deep 
learning network can faithfully segment blood vessels of many different sizes, from the large 
blood vessel in the middle of the image to the small vessels near the skull. The final result is 
shown in Figure 3(d) with the threshold of the probability map set to 0.5. The result shown in 
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Figure 3(d) is significantly improved compared to Figure 3(c). Figure 4 shows the overlay of 
the segmentation result on the original image.  (Zhang, 2020) 

 

Figure 5: The segmentation result is superimposed on the original DSA image.  (Zhang, 2020) 

3.4 Artery Identification 
Identifying the artery for prostate embolization is one of the most important points in our use 
case. For this reason, we aim to research studies that define arteries and to benefit from the 
parts that may be useful in our own project. 
 
Pu et al present a new integrative computed solution to automatically identify and 
differentiate pulmonary arteries and veins shown on lung computed tomography (CT) without 
iodinated contrast agents. They first described the central extrapulmonary arteries and veins 
using a convolutional neural network (CNN) model. They then used a computational 
differential geometry method to automatically identify tubular-like structures in the lungs with 
high density, which we believe are intrapulmonary vessels. A dataset of 120 chest CT scans 
obtained on different subjects using various protocols was used to develop, train and test the 
algorithms. CT scans without iodinated contrast agents were randomly selected by the 
Cancer Imaging Archive (TCIA) Lung Image Database Consortium (LIDC) and the Image 
Database Resource Initiative (IDRI) (LIDC-IDRI). The computer algorithm achieved a 
sensitivity of ∼98% in labelling pulmonary artery and vein branches compared with the 
results of a human expert, demonstrating the feasibility of the computerized solution for 
pulmonary artery/vein labelling. (Pu, 2022) 
The scheme developed consisted of four main components (Fig. 2): (1) defining 
extrapulmonary arteries and vessels using a U-Net architecture, (2) defining intrapulmonary 
vessels using a computational differential geometry solution, (3) skeletonizing 
intrapulmonary vessels that guide the tracing of adjacent vessel branches, and (4) tracing 
the skeletons of intrapulmonary vessels to differentiate between arteries and veins, starting 
from the extrapulmonary arteries and veins. (Pu, 2022) 
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Figure 6: Schematic flow chart to identify pulmonary arteries and veins (Pu, 2022) 

Various U-Net models have been applied and tested to segment the central extrapulmonary 
arteries and veins, including the classic U-Net, R2Unet, Attention U-Net and U-Net ++. 

Small vessels are progressively labelled as arteries or veins in the lungs, starting from the 
extrapulmonary veins. Next, the algorithm automatically segmented extrapulmonary arteries 
and veins and correlated strongly with manual segmentation by a radiologist. 

 

3.5 Treatment planning 
Benign Prostate Hyperplasia (BPH) is a non-cancerous enlargement of the prostate gland. 
Lower urinary tract symptoms (LUTS) due to benign prostatic hypertrophy (BPH) is a common 
problem affecting more than 20% of men aged 30-79 years. Its prevalence increases with age. 
About 80% of men are affected by BPH symptoms by age 70 (Naidu et al., 2021). 
 
A wide variety of medical and surgical treatment methods are available for the treatment of 
BPH. For example, Open Simple Prostatectomy, in which the prostate is completely or partially 
removed with a suprapubic or retropubic approach, Transurethral Resection of the Prostate 
(TURP), in which a resectoscope is inserted with a transurethral approach, parts of the excess 
prostate that impede urine flow are cut and suctioned, minimally invasive to enucleate prostate 
tissue that blocks urine flow. Holmium Laser Enucleation of the Prostate (HoLEP), in which a 
holmium laser is used through an endoscopic treatment and then an additional tool is used to 
cut and remove excess prostate tissue into smaller pieces (Naidu et al., 2021). 

 
Transurethral Resection of the Prostate (TURP) is accepted as the gold standard in the 
treatment of BPH-associated LUTS (Naidu et al., 2021). 
 
In recent years, Prostate Artery Embolization (PAE) has emerged as an alternative treatment 
option in the BPH treatment spectrum in cases where medical treatment and surgical options 
are to be found. In 2018, the UK's National Institute for Health and Care Excellence (NICE) 
found its safety profile and efficacy sufficient to support PAE in appropriately selected patients. 
Despite the available data, PAE has not yet been established as a standard treatment option 
for patients with LUTS/BPH. The advantages of PAE include no hospitalization, no general 
anaesthesia, avoidance of potential risks associated with surgery, and a reduced risk of sexual 
health side effects such as retrograde ejaculation or erectile dysfunction (Naidu et al., 2021) 
(Isaacson et al., 2016). 
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Within the scope of the ASSIST project, the PAE procedure will be covered in diagnosis and 
personal treatment. 

 

3.5.1 Prostate Artery Embolization (PAE) 

 
PAE is a minimally invasive procedure that blocks blood flow to the prostate, causing the gland 
to shrink. PAE is performed under local anaesthesia as an outpatient procedure [3]. 

 
PAE is being considered as an alternative therapy for LUTS due to BPH. Clinical studies are 
ongoing to evaluate the results and benefits of PAE. There is a growing body of literature and 
data presented at scientific meetings supporting PAE as a safe and effective alternative to the 
treatment of BPH when medical management fails (Review., 2022). 
Successful PAE in people with acute urinary retention secondary to BPH was first reported in 
2010 by Carnevale et al.  (Isaacson et al., 2016). 
 
In 2011, Pisco et al. published a case series evaluating the feasibility of PAE in patients with 
LUTS. PAE was technically successful in 14 of the 15 patients. There was significant IPSS 
reduction, improvement in quality of life (QoL), increase in urinary peak flow rate (Qmax), and 
decrease in prostate volume (PV). There were one major complication (bladder ischemia 
requiring surgical resection) and four clinical failures (28.6%) (Isaacson et al., 2016). 
 
Treatment of benign prostatic hyperplasia with PAE requires a trained interventional 
radiologist because of the vascular anatomy of the prostate. Initially, blood flow to the prostate 
is mapped by angiography of the iliac vessels and prostate arteries. Microcatheters are used 
for süper selective catheterization of right and left inferior vesicle arteries. Embolization of 
arteries supplying the prostate is accomplished with a microcatheter to deliver microspheres 
or PVA particles. The PAE procedure takes an average of 2 hours to apply (Review., 2022). 
Although reproducible in multiple centres, PAE is known to be a technically demanding 
procedure. Associated with the prevalence of LUTS attributed to BPH, PAE is usually 
performed in relatively elderly patients for whom atherosclerosis and comorbidities are 
common features (Carnevale et al., 2020). 

 

3.5.2 Prostate Artery Anatomy 

 
Because of the small size, anatomical complexity, and variation of prostate arteries (PAs), it 
is often difficult to identify the origins of PAs, distinguish PAs from adjacent arterial branches, 
and detect small arterial anastomoses. It is essential to have comprehensive knowledge of 
vascular anatomy and its relationship with surrounding structures in order to perform 
successful PAE without non-target embolization. Because PAE can be technically challenging 
even for experienced interventional radiologists, mastery of anatomy and high-quality pre- and 
intra-procedural imaging are important (Isaacson et al., 2016). 
 
CT, MRI, CTA, MRA, CBCT and DSA imaging techniques are generally used in PAE 
application. 
 
Although transrectal ultrasound (US) of the prostate is frequently performed when presenting 
for consultation in most patients, additional cross-sectional imaging should be obtained using 
contrast-enhanced CT or MRI. Many prefer the use of CT because of its acquisition speed, 
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spatial resolution, and ability to visualize very small arteries. Both imaging modalities are 
useful for assessing the degree of kinking, calcifications, and any stenosis in the iliac arteries 
that may complicate PAE. Finally, prostate volume (PV) can be calculated from cross-sectional 
imaging (Naidu et al., 2021). 
 
In 2016, Wang et al. A single-centre study of differentiating prostate arteries (PA) using DSA 
and cone beam computed tomography (CT) has been reported. A total of 148 patients were 
included in the study and DSA and cone beam CT were performed before embolization. The 
authors concluded that DSA combined with cone-beam CT can accurately determine the 
anastomosis of PAs and prevent complications of misymbolization and ectopic embolization 
and can be used to plan preoperative treatment (Cui et al., 2020). 
 

3.5.3 Forward to the Future 

 
Although PAE is a challenging technique, it is an effective treatment type, even if it is not the 
gold standard. In the ASSIST project, we bring a different dimension to PAE with automatic 
detection of the prostate artery and patient-specific treatment. With the ASSIST project, the 
difficult technical part of PAE will be facilitated and will benefit the physician. Within the scope 
of the project, patients will be treated more safely, get results in a shorter time and the success 
rate in treatment will be high. 
 

3.5.4 Conclusion 

Prostate artery embolization is a promising option for the treatment of lower urinary tract 
symptoms in men with benign prostatic hypertrophy. Correct patient selection and 
comprehensive assessment are critical to ensure clinical success. Many studies have 
demonstrated clinical results comparable to the current surgical gold standard, TURP. The 
use of PAE offers similar results with fewer complications and fewer side effects, while 
eliminating the need for general anaesthesia or hospitalization. Future studies comparing PAE 
with TURP and possibly other minimally invasive treatments will be critical in determining 
exactly where PAE falls in the treatment algorithm for patients suffering from BPH-associated 
LUTS (Naidu et al., 2021). 

 
Prostate artery embolization for BPH is now widely recognised and evolving treatment 
alternative. Identifying all prostatic arteries with possible accessories and variant anatomy is 
essential in appropriate individualized therapy. Individualized treatment will increase technical 
and clinical success rates and reduce complication rates. Thus, it will help to achieve complete 
and effective treatment in BPH (Richardson et al., 2020), (Isaacson et al., 2018). 
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4 Intracranial hemorrhage 

4.1 Introduction 
Intracranial hemorrhage refers to any bleeding within the intracranial vault, including the brain 
parenchyma and surrounding meningeal spaces (Caceres & Goldstein, 2012). Acute 
intracranial hemorrhage (ICH) is a potentially life-threatening condition that requires fast and 
accurate detection because of its frequently rapid progression during the first several hours.  
 
Intracranial hemorrhage (ICH), a subtype of stroke, can be classified into five sub-types 
according to bleeding location: Intraventricular (IVH), Intraparenchymal (IPH), Subarachnoid 
(SAH), Epidural (EDH) and Subdural (SDH). The ICH that occurs within the brain tissue is 
called Intracerebral Hemorrhage (Figure 7). Although ICH are less frequent than ischemic 
stroke, it presents higher mortality rate. The degrees of severity and interventions vary with 
bleeding types (Ye et al., 2019). 
 

 

Figure 7: Sub-types of stroke and hemorrhagic stroke 

 
Classification of ICH and distinguishing it from ischemic stroke is critical due to prompt 
appropriate treatment and mitigate neurological deficit, and mortality. In ischemic strokes, 
therapy with drugs that can break up a clot has to be given within 4.5 hours from when 
symptoms first started if given intravenously. Intravenous tissue-type plasminogen activator 
(IV-tPA) is the gold standard treatment for ischemic stroke. It improves outcomes in ischemic 
stroke but is associated with certain risks such as potential bleeding in the brain. Differentiating 
extradural hemorrhage from subdural (SDH) hemorrhage in the head is also important. While 
extradural hemorrhage is treated with expedient evacuation via a craniotomy, SDH has 
various management strategies depending on the size, location and extent of mass effect. 
 

4.2 ICH Diagnosis 
 
Non-contrast Computed Tomography (CT) scan is usually the first imaging method used to 
assess patients with suspected ICH and distinguish ICH from ischemic stroke as it can be 
performed fast and has high sensitivity for hemorrhage. Hemorrhage and its sub-types can be 
recognized on non-contrast CT since blood has slightly higher density (Figure 8). CT scans 
generate a sequence of images using X-ray beams. Depending on the amount of tissue X-ray 
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absorbency, brain tissues are captured with different intensities. CT scans are displayed using 
a windowing method. Different features of the brain tissues can be displayed in the grayscale 
image by selecting different window parameters. In the CT scan images, the ICH regions 
appear as hyperdense regions with a relatively undefined structure (Hssayeni et al., 2020). 
However, there are difficulties in using CT scan to detect hemorrhages due to their similar 
appearance with the parenchyma and complexity in distinguishing mass effect and edema 
(Mirza & Gokhale, 2017). Even highly trained experts may miss subtle life-threatening findings 
and many hospitals do not have trained neuro-radiologists, especially at night and on 
weekend. 
 
 

 

Figure 8: Non-contrast Computed Tomography scans for ICH sub-types. Note. Reprinted from “Clinical 
usefulness of deep learning-based automated segmentation in intracranial hemorrhage”, 29(5), pp.881-
895 

 
Interpretation of non-contrast CT images is difficult due to the following challenges: 

- Image noise, artefacts and cerebral parenchyma with similar appearance and density 
make segmentation of ICH challenging 

- Differentiating extradural (EDH) from subdural (SDH) hemorrhage in the head can be 
challenging as SDHs are more common and there are a few distinguishing features 
which are usually reliable 

- Gray scale images are limited by low signal-to-noise, poor contrast, and a high 
incidence of image artifacts. A unique challenge is to identify tiny subtle abnormalities 
in a large 3D volume with near-perfect sensitivity 
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4.3 Deep Neural Networks in ICH detection and classification 
 
Recent advances in deep convolutional neural networks (DCNN) have showed that the 
method has a great potential in automating ICH detection and segmentation and can assist 
junior radiology trainees when experts are not available. DCNNs with their capability of self-
learning of nonlinear image filters and the self-extraction of relevant features are superior to 
methods that demand complicated engineering feature including skull stripping, image 
registration, and feature extraction from voxel intensity and local moment information 
(Muschelli et al., 2017; Ye et al., 2019). 
 
Lee et al. (2018) proposed a high-performance system for the detection and classification of 
ICH system from small and imbalanced data using ImageNet pretrained DCNNs of VGG167, 
ResNet-508, Inception-v39 and Inception-ResNet-v210. The system achieved a performance 
similar to that of expert radiologists (sensitivity of 98% and specificity of 95%). A method based 
on 3D joint convolutional and recurrent neural networks was able to accurately detect ICH and 
its subtypes (> 0.8 AUC across all subtypes) with fast speed (< 30s), suggesting its potential 
for assisting radiologists and physicians in their clinical diagnosis workflow (Ye et al., 2019). 
Kuo et al. (2019) demonstrated that a fully convolutional network trained with 4,396 head CT 
scans could detect ICH with high accuracy (> 0.99 AUC). Cho et al. (2019) reported 80.19% 
precision and 82.15% recall with their cascade deep learning model constructed using two 
convolutional neural networks (CNNs) and dual fully convolutional networks (FCNs). Nemcek, 
Jakubicek and Chmelik (2020) developed CNN based classifiers with a designed cascade 
parallel architecture that enables localization and classification of ICHs with average Jaccard 
coefficient of 53.7%. 
 

4.4 Explainable AI in ICH diagnosis 
 
In most clinical centers, initial interpretations of head CT is usually provided by junior 
radiologists, radiology trainees, or emergency physicians and initial interpretations will be 
reviewed later by senior or more-experienced radiologists. Several studies have confirmed 
that discrepancies exist between the initial and final interpretations and some 
misinterpretations might even cause clinical consequences. Diagnosis process relies on the 
availability of a subspecialty-trained neuroradiologist, and as a result, could be time inefficient 
and even inaccurate, especially in remote areas where specialized care is scarce (Patel et al., 
2019; Burduja, Ionescu, & Verga, 2020; Unnithan & Mehta, 2022; Ye et al., 2019; Hssayeni et 
al., 2020). Visualizing the model decision and increasing interpretability is especially helpful 
for users with insufficient experience with ICH. However, there are a few studies in literature 
that aims to enhance interpretability of ICH detection models. Lee et al. (2018) used an 
attention map and prediction basis retrieved from training data. Alis et al. (2022) implemented 
a modified version of Gradient-based class activation maps, a well-established saliency map 
generating method. 
 
Explainable AI (XAI) aims to shift the traditional black-box approach to a white-box one for 
greater transparency, interpretability, and explainability. Medical diagnosis and treatment 
selection are responsible for human life and healthcare professionals need to be confident 
enough to treat a patient as instructed by a black-box model. From perspective of healthcare 
providers “omitting explainability in clinical decision support systems poses a threat to core 
ethical values in medicine and may have detrimental consequences for individual and public 
health” (Amann et al, 2020). XAI is critical not only for clinicians but also for patients and for 
any stakeholder in healthcare. Regulations like the European General Data Protection 
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Regulation (GDPR) are making it harder for the use of black-box models in healthcare as 
retraceability of the decisions is now a requirement. Explainability is the key to safe, ethical, 
fair, and trust-able use of AI and a key enabler for its deployment in the real world. 
 
There is often a perceived trade-off between the performance of a model and its ability to 
produce explainable predictions (Antoniadi et al, 2021).  Prediction accuracy is usually the first 
requirement of AI systems in medicine and currently AI models in healthcare are often 
developed with only predictive performance. Therefore, the majority of the medical XAI 
literature is devoted to explaining the previously developed model. 
 
XAI has a great potential to increase trust and lead to the adoption of deep learning methods 
in medical imaging where explanation is defined as a set of domain features such as pixels of 
an image that contribute to the output decision of the model. Standard attribution-based 
methods and architecture or domain specific techniques are two types of broadly used 
approaches to explain the results of DNNs in medical imaging (Singh, Sengupta, & 
Lakshminarayanan, 2020).  
 
The goal of an attribution method is to determine the contribution of an input feature to the 
target neuron which is usually the output neuron of the correct class for a classification 
problem. The arrangement of the attributions of all the input features in the shape of the input 
sample forms heatmaps known as the attribution maps. The attribution methods can be 
applied on a black box convolutional neural network (CNN) without any modification to the 
underlying architecture making them a convenient yet powerful Explainable AI (XAI) tool. 
 
Importance scores, decision rules, decision trees, dependency plots are the most common 
types of explanation families that enable information content can easily understandable by 
end users. Importance scores (aka saliency heatmaps) are perhaps the most common type of 
explanation families. For instance, Lundberg and Lee proposed SHAP (SHapley Additive 
exPlanations), a unified framework for generating post-hoc local explanations in the form of 
additive feature attribution. Local Interpretable Model-Agnostic Explanation (LIME) is another 
well-validated, model-agnostic local XAI approach that can provide an explanation for a 
complex deep learning model in the neighborhood of an instance. LIME method can explain 
each individual prediction by investigating contribution of each pixel (Yang, Ye, & Xia, 2022). 
Gradient weighted class activation mapping produces activation maps using the gradients of 
the target concept as it flows to the final convolutional layer but can only be applied to CNNs 
(Singh, Sengupta, & Lakshminarayanan, 2020). 
 
Contextual Importance and Utility (CIU), which does not build any intermediate interpretable 
model like LIME, make it possible explain results of any AI system with any level of abstraction 
using semantics that are independent of the internal mechanism of AI system and can provide 
more expressive and flexible explanations than LIME and Shapley values (Främling et al, 
2021). The use of CIU for image recognition and importance scores are also promising. 
 
Performance of these explainable methods vary in terms of their time needed for generating 
explanations. LIME and SHAP need around 11 and 10 seconds per image respectively. In 
comparison to SHAP and IME, the running time of CIU method is about 8.5 seconds per image 
(Knapič, Malhi, Saluja, & Främling, 2021). 
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4.5 Treatment planning 

Early diagnosis of ICH is critical for deciding on the need and approach for emergent 
treatment. Distinguishing ICH from ischemic stroke is critical due to prompt appropriate 
treatment and mitigate neurological deficit, and mortality. In ischemic strokes, therapy with 
drugs that can break up a clot has to be given within 4.5 hours from when symptoms first 
started if given intravenously. Intravenous tissue-type plasminogen activator (IV-tPA) is the 
gold standard treatment for ischemic stroke. It improves outcomes in ischemic stroke but is 
associated with certain risks such as potential bleeding in the brain (Cho et al., 2019; Kuo et 
al., 2019; Wang et al., 2021) 

After ICH is diagnosed, patients should be triaged according to level of consciousness, using 
tools such as the Glasgow Coma Scale (GCS) or other similar scale.  Screening for airway 
protection and impending respiratory failure, blood pressure assessment and management 
should occur during the initial evaluation of patients with ICH. The patient's blood pressure 
history and particular ICH subtype determine how blood pressure control is performed 
(Freeman & Aguilar, 2012). 

Specialized management of each ICH subtype depends on correct diagnosis. Rapid diagnosis 
and evacuation are important for a good outcome for particular subtypes.  ICU subtype 
management strategies are summarized in Table 1. 

 

Table 1: ICU Subtype Management 

ICH Subtype Disease Management 

EDH Delay of operative intervention worsens outcomes. 

EDH greater than 30 cm3 should be surgically evacuated 
regardless of the patient’s GCS score 

Comatose patients with acute EDH (GCS<9) with anisocoria 
should undergo surgical evacuation as soon as possible 

Non-operable patients require serial CT scanning and close 
neurologic observation in a neurosurgical center. 

SDH Delay of operative intervention worsens outcomes. 

Other important complications such as seizures should be 
considered, especially those in nonconvulsive form, which 
may occur in up to 20% of patients with acute SDH 

IPH Patients should be admitted to an ICU for monitoring and 
management of airway, respiratory function, and blood 
pressure; avoidance of fever; and careful glucose and 
electrolyte regulation. 

No benefit of surgical treatment in supratentorial IPH but 
several newer surgical methods are being reported 
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ICH Subtype Disease Management 

Specific management issues: 

- Treatment of hypertension 

- Hematoma volume and growth 

- Perihematoma edema 

SAH Patients should undergo a CT angiogram or diagnostic 
cerebral angiogram to identify the aneurysm as soon as 
possible. 

Once the location of the aneurysm is identified, the 
configuration and the aneurysm’s dome-to-neck ratio and 
other factors dictate treatment with either endovascular 
coiling with platinum coils or craniotomy with base clipping 
of the aneurysm. 

Once the aneurysm is secure, post–aneurysmal SAH 
management is typically predicated on maintaining 
euvolemia (or normal fluid balance state) and permissive 
hypertension to allow adequate cerebral perfusion. 

IVH Standard treatment for IVH with acute obstructive 
hydrocephalus includes placement of a cerebrospinal fluid 
drain via external ventriculostomy. 

- Raising the head of bed 

- Optimizing cerebral perfusion pressure (via an 
intracranial pressure monitor) 

- Osmotherapy as needed 

Abbreviations: EDH, Epidural; SDH, Subdural; IPH, Intraparenchymal; SAH, Subarachnoid; IVH, 
Intraventricular. Data from “Intracranial Hemorrhage: Diagnosis and Management,” by Freeman, W. D., 
& Aguilar, M. I., 2012, Neurologic Clinics, 30(1), 211–240. https://doi.org/10.1016/j.ncl.2011.09.002 
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5 Brain tumors 

5.1 Introduction 
Brain tumors compose about 2% of the cancer incidences, affect some 300,000 subjects 
globally each year (Leece et al., 2017), with a low survival rate and a high morbidity for the 
patients. Though not being the most prevalent cancer type, brain tumors are prone to 
complicated and challenging treatment procedures that are often a combination of surgery, 
radiotherapy and chemotherapy, where treatment planning and follow up of the treatment is 
highly dependent on radiology images. The best treatment for a specific patient depends on 
if there is one tumor or many small metastases, and the size and location of each tumor or 
metastasis. Furthermore, the size of the tumor is required to calculate how much radiation to 
apply to kill the cancer cells. MRI is normally used to obtain this information, and to plan the 
treatment, as MRI provides very good contrast between soft tissue types (and different MR 
sequences provide slightly different information / contrast). It is also necessary to segment 
important risk organs (e.g. the optic nerve) which should not be damaged by the radiation, 
see Figure 9. The treatment plan, i.e. how much radiation to apply to different parts of the 
brain, can be generated manually, through mathematical optimization or through machine 
learning. 

 

Figure 9 Illustration of brain tumor (red, to be killed by radiation) and risk organs (yellow, which should 
receive as little radiation as possible). GTV = gross tumor volume, CTV = clinical target volume (CTV). 

Deep learning can reduce the treatment planning time substantially, by performing automatic 
segmentation of tumor(s) and risk organs (instead of doing manual time-consuming segmentations). 

Image from an open dataset in the cancer imaging archive (see references). 
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5.2 Automatic segmentation 
 
To segment tumor(s) and risk organ(s) is currently often performed manually or semi-
automatically by a neuro radiologist, medical physicist or radiation oncologist. Manual 
segmentations can be very time consuming, e.g. 10 – 60 minutes per patient, especially for 
many metastases and risk organs. Automatic brain tumor segmentation using deep learning 
is a very active area of research, as a trained network can perform the segmentation in 10 – 
30 seconds. The annual BraTS (brain tumor segmentation) challenge (Menze et al., 2014, 
Baid et al., 2021) provides a large training dataset (2020: 369 subjects) as well as separate 
validation and test datasets (2020: about 100 subjects each), which has been very important 
for development in this field. See Figure 10 for an example of the MR images available in 
BraTS, for each subject there are also tumor annotations. The segmentation can be 
performed using a single MR modality (e.g. a T1-weighted image, T1W) or by 
simultaneously showing several types of MR images to a multi-channel CNN (e.g. T1W, 
T1W with gadolinium contrast, T2W, FLAIR).  
 

 

Figure 10 .MR images of glioblastoma multiforme taken from the BraTS dataset (Menze et al., 2014). 
Images taken with (from left): T1W, T1W Gd contrast, T2W and T2 FLAIR. 

Virtually all participants in the BraTS challenge use some 2D or 3D variant of the popular U-
Net architecture (Ronneberger et al., 2015). Isensee et al. (2018) demonstrated that a well-
trained U-net with minor modifications (e.g., region based training and a combination of loss 
functions) together with additional training data produces very competitive results indicating 
that a well-constructed and performed training process is at least as important as focusing 
on novel architectural modifications when it comes to segmentation. Myronenko (2018) 
employed a 3D encoder-decoder architecture based on multiple ResNet-like blocks. As a 
novelty, the network is split into two decoding branches at the encoder endpoint output, 
where one of the branches is a regular decoder that produces the three tumor segmentation 
maps, and the other a variational decoder that reconstructs the input volume. This variational 
decoder branch serves as regularization for the shared encoder and is only active during 
training (see Figure 11). 
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Figure 11 The encoder-decoder architecture employed in Myronenko (2018). The top decoder branch 
produces the tumor segmentation maps, while the bottom one reconstructs the input volume (mainly 

acting as regularization, to force the encoder to be good at several tasks). 

 
More recently, segmentation architectures that include some kind of adversarial loss function 
(from generative adversarial networks, GANs) have become more popular (e.g. Cirillo et al., 
2020), to punish segmentation maps that do not look realistic.  
 
The main clinical challenge is to integrate different segmentation networks into the clinical 
workflow, as many clinics still use manual or semi-automatic segmentation. Another 
challenge is that a network trained on images from one MR scanner will not perform as well 
on images from another scanner, commonly called domain shift.  
 

5.3 Radiotherapy treatment planning 
Radiotherapy treatment planning is the process of determining how to irradiate a patient, 
given the information of the tumor (including stage, size and position) as well as the adjacent 
segmented organs at risk. The decision on the prescribed dose and fractionation scheme is 
made by an oncologist or radiologist. This decision is made based on acquired MRI images 
as well as other sources of information such as biopsy samples.  

5.3.1 MRI only radiotherapy 

Apart from segmentation a physical density map is required to perform treatment planning. 
Historically, this has come in the form of a CT scan. A number of research papers address 
the issue of image translation from MRI to synthetic CT. This technique enables an MRI only 
workflow, meaning that only one image acquisition is required. A recent literature review on 
the topic was conducted by Boulanger et al.                  
Two main classes of DL methods for generating synthetic CT (sCT) from MRI exist; 
generator-only and generative adversarial network (GAN). 
 

A generator-only method can be described as a mapping function that translates the input MR 
image to the sCT estimation. While training the model, typically a voxel-wise loss function is 
minimized. The loss function is based on similarity metrics between the predicted sCT and the 
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corresponding real CT. An Illustration of generator-only model is shown in figure 3 (fix 
reference). Generator only architectures are commonly based on convolution encoder-
decoder networks, such as deep embedding CNN, Embedded Net, fully convolutional 
network, U-Net, ResNet and DenseNet.  

 

Figure 
12. Schematic illustration of the generator-only deep learning method for generating synthetic CT 

images 

In the GAN approach, two separate neural networks are trained, one being the generator and 
the other the discriminator. The objective of the generator is to produce images that are 
realistic enough such that the discriminator cannot determine if the image is synthetic or real. 
In this manner the networks can during the training phase be considered competing against 
each other. This can be described as a data-driven regularisation approach ensuring that the 
inferred results approaches ground truth. 
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Figure 
13. Schematic illustration of the generative adversarial network deep learning method for generating 

synthetic CT images 

 

5.3.2 Published results 

Numerous studies of DL methods for sCT generation from MR images have been published 
in recent years. In general the agreement between sCT and ground truth (CT) is good 
across all metrics. 

5.3.3 Clinical routine 

MRI only workflow based on DL-algorithms generating sCTs is mature enough that 
commercial solutions have arrived and been adopted in clinical practice. Lerner et al reports 
on a clinical validation of such a commercial solution for brain radiotherapy. Average 
absorbed dose differences between CT and sCT were found to be below 0.2%. 

5.3.4 AI based radiotherapy treatment planning 

The remaining step in the radiotherapy treatment planning procedure is the process of 
deciding of how to best achieve the prescribed dose to the target while avoiding irradiation of 
the nearby segmented organs at risk more than necessary. This process is time consuming 
while also requiring a high level of expertise. 
 
Automated treatment planning (ATP) has the potential to overcome the challenges of 
manual treatment planning by generating consistent high quality treatment plans in a time 
efficient manner, thus enhancing treatment standardization and improving the efficiency of 
the clinical workflow. ATP has evolved from simple template-based, atlas-based automation 
execution to machine learning, and deep learning-based DVHs or dose distribution 
prediction, to direct plan parameters generation. 
 
Commercial solutions for automated treatment planning have emerged. Lo et al evaluates 
one such solution in the context of hippocampal avoidance whole brain radiotherapy. In this 
study, manual as well as automated treatment planning is conducted. It was found that both 
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methods were able to fulfil the protocol requirements. The automatically generated treatment 
plans were able to achieve lower dose to the organs at risk in general as well as the dose 
sensitive hippocampi (Lo et al., 2022). 
 
Further viability of automated whole-brain radiotherapy was demonstrated by Han et al., in 
which a deep learning model was developed and clinically deployed. The results suggest 
that the predicted fields were consistent with clinically used fields and the predicted plans 
were dosimetrically comparable (Han et al., 2021).  
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6 Lung diseases 

6.1 Introduction  
 
Lung diseases cover lung cancer, and airway and pleural diseases. 
 
Lung cancer is the leading cause of cancer death. Several countries have introduced lung 
cancer screening programs in order to detect lung cancer earlier, improving the probability 
for curative treatment for patients.  
The lung cancer screening involves a low-dose CT scan of the chest (‘lung screening CT’), 
which is to be checked for presence of suspicious lung nodules. 
 

 
 
The increased volume of lung screening CTs represents an additional workload for the 
radiologist. Automation and AI are considered to help off-load the radiologist and reduce 
‘missed nodules’ in the lung screening CTs. 
 
Deep learning AI is seen as the best approach to detect nodules (Setio et al. 2017). 
Products with DL based lung nodule detection already are available commercially, for 
example (Veye Lung Nodules, 2021). 
 
Once a suspicious nodule has been detected, typically a biopsy is scheduled to obtain tissue 
from the nodule for pathology. AI is also being considered to assist in analysis of the 
pathology images, with early research results being promising but adoption expected to take 
some time (Sakamoto et al., 2020). 
 
In the next sections, we will give an overview of deep-learning AI approaches for nodule 
detection in lung screening CTs. 
 
 



 
 

 <Consortium confidential> 18/11/2022 

ASSIST 

ITEA 20044 

WP3 Deliverable D3.4 

Page 35 of 49 

6.2 Pulmonary Nodule Detection in CT 
 
From 2017 onwards, deep learning approaches using convolutional networks are the highest 
scoring networks in ‘pulmonary nodule detection’ competitions. In Setio et al, the DL winner 
achieved sensitivity 95%, less than 1% false positives. Best solutions detecting nodules 
which were missed by expert readers annotating the original data set (Setio et al. 2017) 
 
Riquelme analyses various DL approaches for nodule detection in CT. Among the various 
approaches, 3D convolutional neural networks architectures demonstrated their usefulness, 
as most of the best-performing methods used them (Riquelme 2020). Specifically, densely 
connected networks with wide residual networks along with U-Net architecture obtained 
interesting results. Although 2D approaches are computationally less expensive, three-
dimensional kernels detect more details about the nodules which inherently are a three-
dimensional structure.  
 
Some approaches divided the work into two stages: nodule candidate detection, and false-
positive reduction, whereas others tackle the problem in a single network. Also for individual 
stages, 3D CNN approaches seem superior (although use of different datasets makes 
comparison difficult).  
 

6.3 Digital pathology image analysis for lung adenocarcinoma 
 
Microscopic examination of tissue slides is an essential step in cancer diagnosis. 
Hematoxylin and eosin (H&E) stained whole slide imaging (WSI) of tissue slides has become 
a routine clinical procedure, in which high resolution pathology images are captured and 
analysed. The limited capacity of pathology image analysis is a bottleneck in digital 
pathology. 
 
Deep learning has started showing great potential in pathology image analysis task such as 
tumor region identification, prognosis prediction, tumor microenvironment characterization, 
and metastasis detection (see Table 1 below). The application of deep learning is still in the 
research phase.  
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Table 2  A summary of deep learning models for lung cancer pathology image analysis from Wang et 
al. 2019 

 
 
 
Results from simple tasks, such as tumor detection and histology subtype classification are 
generally satisfactory, with an AUC around 0.9, whereas the results of more challenging 
tasks, including mutation and transcription status prediction, are less satisfactory with AUC 
ranging from 0.6 to 0.8. 
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6.4 Treatment planning 
For both clinically available and novel bronchoscopic and surgical interventions, there is a 
rising need for patient specific pre-treatment planning. A common factor in many of these 
therapies is that a specific parenchymal region or specific airway needs to be targeted for 
treatment or biopsy, while the anatomy and disease distribution between patients varies 
tremendously. As the type of intervention become more sophisticated and enable to target 
smaller treatment areas, AI-based algorithms play a crucial role in extracting patient specific 
information to target the area that is the most diseased or is most suitable for an 
intervention. 
 
 
In current clinical practice, bronchoscopic lung volume reduction treatments in COPD, such 
as endobronchial valves and coils, already make use of quantitative assessment of 
emphysema distribution and pulmonary fissure completeness to ensure a correct lobar 
target (e.g. Koster et al. 2016). The backbone of these quantitative assessments are AI-
based algorithms that identify the patient specific anatomy and disease distribution on a 
lobar level. 
Novel bronchoscopic and surgical interventions aim to go beyond lobar targeting and 
therefore require even more sophisticated AI-based analysis to provide the personalized 
information needed for an informed treatment decision.  
 
Two recent examples of upcoming treatments that require a specialized AI-based targeting: 
  

1. Identification of segmental boundaries for segmentectomy for lung cancer (Sadeghi et al. 
2021)  

2. Identification of segmental overlap with the pulmonary fissure gap for compound 
disposition (Ing et al. 2022).  

 
In the first example, providing patient specific segmental boundaries enable the thoracic 
surgeons to remove a single segment with a cancer instead of an entire lobe, resulting in 
lung tissue sparing surgery. Without the precise information of the AI-based segmental 
boundaries, identification of a segment would be very difficult and not feasible in clinical 
routine.  
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Figure 12 AI generated report of fissural defects (A), with colour coded graphical representation of 
the mapped segments (B), and fissure mapping, with red indicating fissure deficiencies and green 
indicating intact fissues [Ing et al., 2022]  

 
The second example relates to a patient population with collateral ventilation between the 
lobes, which excludes them from being treated with endobronchial valves. By identifying the 
segment or sub-segment that covers a fissure gap, the identified target can be treated with a 
compound to close the fissure gap. With fissure gap closed, patient become eligible for valve 
treatment. 
 
These novel AI-based algorithm are increasingly being used to explore new interventions. 
However, performance of these algorithms in difficult patient populations may currently be 
insufficient for fully automated uncontrolled large scale clinical use. To achieve this goal, 
several algorithmic development steps are still required to ensure the needed quality in 
clinical routine. 
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7 Hepato Pancreato Biliary Oncology 

7.1 Introduction 
 
Hepato Pancreato Biliary Oncology deals with malignant or cancerous tumors originating in 
the liver, pancreas, bile-ducts and gallbladder are some of the leading causes of cancer 
related deaths world-wide. 
 
Liver cancer is the third leading cause of cancer death world-wide and pancreatic cancer is 
the fourth leading cause of cancer death in men and women and is projected to be the 
second leading cause within a decade. Early detection and complete removal of the tumor 
while saving as much as possible healthy tissue is important for the survival outcome and 
improved quality of life of the patient.  
 
For the early diagnosis of HPB related cancers, CT and MR scans are the primary source of 
information and therefore automatic segmentation of tumors in CT or MR scans is of vital 
importance. As with most (medical) segmentation challenges nowadays deep-learning AI 
techniques offer the best results.  
 
In the next sections, we will give an overview of what are currently the best deep-learning AI 
approaches for the segmentation of HPB related organs and the tumors therein. 
 
 

7.2 Liver & Tumor Segmentation 
 
 
In 2021, a study of Fernandez et al by Maastricht University and ASSIST partner Quantib, 
funded by the ITEA3 IMPACT project (project, nr. 17021)  assessed five deep-learning 
architectures for liver and liver tumor segmentation. These models were 2D-UNet, 3D-UNet, 
Hybrid-UNet, residual encoder 3D-UNet and 3D-UNet with a different normalization of the 
convolutions.  
 
The models were evaluated on the Liver Tumor Segmentation (LiTS) challenge which was 
organized in conjunction with the IEEE International Symposium on Biomedical Imaging 3 
(ISBI) 2017 and MICCAI 2017 conferences but is still on going. The LiTS 2017 dataset 
contains 201 CT scans (131 for training, 70 for testing) from 7 different hospitals and 
research institutions (Bilic et al, 2019). 
 
In the study the CT scans were first pre-processed by resampling them to a 1 mm3 isotropic 
pixel spacing and making sure all scans have the liver in the same position inside a fixed (in 
X and Y directions) size bounding box. 
 
The models were then trained using 5-fold cross-validation. 
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Figure 13 2D-UNet and Hybrid-UNet  architectures. The annotations indicate the output of the data. 
Source: Fernandez et al. 2021 

 
The 2D-UNet uses two convolutional layers are followed by one MaxPooling 
layer in each of the five levels, where the output of every convolution is normalized with 
batch normalization and ReLU activation function. Zero-padding is used in the convolutions 
and the kernel size and pooling size are 3 x 3 and 2 x 2, 
respectively.  For the 3D-Unet the 2-dimensional operations are replaced with 3-dimensional 
ones. 
 
They also tested a hybrid architecture as displayed above. This model, is UNet variation 
handles 3D data in the encoder and 2D data in the decoder. Thus, the model uses features 
from multiple slices to predict a single slice (the center slice). It uses a pooling size of 1 × 2 × 
2 in every level and additional convolutions in the skip connections to reduce the z 
dimension from the encoder to the decoder.  
 
Based on the 3D-UNet they also examined two additional variations. One model with 
residual connections from the beginning to the end of each level in the encoder and the 
other model where the convolutions where normalized differently.  
 
As can be seen below, the 3D-UNet offered the best performance with the highest average 
dice score and the smallest deviation. 
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Figure 14 Dice score of the different scans from the main architectures. Source: Ferrnandez et al. 
2021 

 
The authors also further investigated adding different types of enhancements to the 3D-UNet 
architecture, namely attention methods, test-time inference and model ensemble, and TP/FP 
classification.  
 
Attention methods try to mitigate the weakness of CNN architectures to capture global 
dependencies due to the locality of convolutional operations the authors further investigated 
adding two different types of self-attention modules, attention gates and additive self-
attention, to the 3D-UNet architecture (see below). 
 

 

Figure 15 3D-UNet architecture enhanced with gated attention (left) or additive self-attention (right). 
Source: Fernandez et al. 2021 
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Test time inference is the procedure of applying augmentation during inference time where 
the input data is transformed before feeding the network. The inverse transformation is 
applied to the prediction in order to have the same properties 
as the input data. This process can be repeated using different transformations and the 
results averaged along with the prediction of the original image. Alternatively, model 
ensembling uses multiple models trained with different random seeds resulting in different 
versions of the same model. The outputs of the models are then averaged to produce a 
single result. 
  
TP/FP classification uses a second model to classify whether the segmentation of the first 
model, e.g. a tumor, is segmented correctly (true positive or TP) or incorrectly (false positive 
or FP). It works by cropping a bounding box around a segmented “tumor” feeding it into a 
classifier network. 
 

 

Figure 16 TP/FP classifier architecture. source: Fernandez et al. 2021 

 

Table 3 Performance of 3D-UNets with different enhancements. Source: Fernandez et al. 2021 
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As can be seen in the table above the authors concluded that a 3D-UNet with model 
ensemble achieved the best outcome and that averaging multiple models can reduce the 
errors produced by those models.  
 

7.3 Pancreas & Tumor Segmentation 
 
Diagnosis of pancreatic ductal adenocarcinoma (PDAC) diagnosis remains challenging 
because it can be difficult to differentiate them from benign lesions based on imaging 
features alone. Computed Tomography (CT) is currently the tool of choice for pre-operative 
diagnosis and follow-up.  
 
In order to compare approaches it is important to have performance results from publically 
available datasets. For pancreas and pancreatic tumor segmentation, there are currently  
two publically available datasets available. The medical segmentation decathlon dataset 
containing 281 patients (Antonelli et al. 2021)   and The Cancer Imaging Archive (TCIA) 
Pancreas-CT dataset (Roth et al. 2016) containing 82 patients. Below, we will briefly discuss 
two approaches, which were tested, on these datasets. 
 
In Liu et al (Liu et al. 2020) a modified Visual Geometry Group (VGG) network (Simonyan 
and Zisserman 2015) trained on data from 220 patients from the National Taiwan University 
Hospital image archive to classify 2D patches of the pancreas into cancerous or non-
cancerous. 
The model consisted of three convolutional blocks where each block consisted of two 
convolutional layers followed by rectified linear unit as the activation function and finally a 
max-polling layer. In the last convolutional block a flatten node was added at the end as well. 
Finally, at the end of the CNN model three fully connected (dense) layers were added. For 
the loss function, weighted binary cross-entropy was chosen to account for the imbalance in 
the number of malignant and benign patches. Patients were classified as having cancer 
based on the proportion of cancerous patches. 
 
On the combined publically available datasets this deep-learning approach achieved a 
sensitivity of 0.790, specificity of 0.976, accuracy of 0.832, balanced accuracy of 0.883 and 
area under the ROC curve of 0.920, all with a 95% confidence interval. 
 
In Alves et al (2022) a fully automatic deep-learning based framework for pancreatic ductal 
adenocarcinoma (PDAC) detection is described which produces tumor likelihood heat maps 
as well as provides segmentation of several surrounding anatomical structures such as the 
pancreatic duct, common bile duct, veins and arteries. 
 
The framework was trained on 119 pathology-proven PDAC datasets and 123 non-PDAC 
datasets from the Radboud University Medical Center, Nijmegen.  
 
The framework consists of self-configuring 3D nnU-Net’s (Isensee et al. 2021) used to 
segment the pancreas and other anatomical structures. Three nnU-Net’s were trained for 
PDAC detection and localization. The first (nnUnet_T) only segmented the tumor(s), the 
second (nnUnet-TP) segmented both tumor and pancreas and the third (nnUnet_MS) 
segmented the tumor, pancreas and surrounding anatomical structures. 
 
The first step of the framework is to down sample the CT images and to create a low-
resolution pancreas segmentation network to obtain a course segmentation, which is used to 
automatically extract the region of interest (ROI). Next, each of the PDAC detection nnU-
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Net’s outputs a voxel-level tumor likelihood map and in the case of nnUnet_TP and 
nnUnet_MS also result in more detailed pancreas segmentation which can be used to 
reduce false positives by masking the tumor likelihood map. 
 
The framework was tested on the combined publically available datasets as well. It achieved 
an area under the ROC curves of 0.872, 0.914 and 0.909 for the 3 networks (nnUnet_T, 
nnUnet_TP and nnUnet_MS) respectively. For tumors less than 2cm in size this was 0.831, 
0867 and 0.876. 
 
 

7.4 Treatment planning 

7.4.1  Liver 

Liver tumors can be treated either through ablation, which is a minimally invasive needle-
based approach, where a needle is brought in through the skin (percutaneously), such that 
the needle tip is in the tumor. These approaches are often image-guided, using ultrasound or 
CT to visualize the target anatomy. Examples of these approaches are radiofrequency ablation 
(RFA), microwave ablation (MWA), cryoablation, and percutaneous ethanol injection (PEI). In 
the first two approaches, radiofrequency is used to locally heat the tumor, whereas in 
cryoablation, cooling is used to destroy the tumor, and in PEI, ethanol is injected to kill the 
tumor.  

Before ablation can take place the patient usually has a multiple CT scans with different 
phases with regard to contrast to segment the vascular trees of the liver (arterial, venous and 
late venous). Next, the liver and tumor are delineated using Deep Learning. The information 
from the tumor and vascular trees is then combined by registering the different CT scans to 
each other.  

Since ablation is not always possible due to the number, type, location or size of the tumor 
the alternative approach is liver resection in which one or more functional independent liver 
segments are removed. In order to plan this type of operation an optimal resection plane 
needs to be determined based on the location of the tumor(s) and the vasculature trees 
(arterial, portal and hepatic). 
 
During surgery augmented reality can be used to guide the surgeon by displaying the 
planned resection plane with respect to the liver. In order to improve the workflow it’s 
important to have a dedicated dashboard integrating and showing the relevant information at 
each stage of the procedure. 
 

In the ITEA3 IMPACT project (project, nr. 17021) the LUMC developed an application named 
deLIVERed (de Leiden Interactive Visualization En Registration editor) to determine ablative 
margins immediately after the ablation (intraprocedural). delivered combines Elastix15,16 with 
advanced software segmentation and visualization modules using MeVisLab 
(www.mevislab.de) and allows the use of landmarks within the volume of interest (VOI) for 
rigid an optimal registration. 

The software works as follows: First, on the preprocedural image, a liver segmentation is 
automatically made using a Deep learning model. Similarly, an initial segmentation can be 
made for the tumor after which an interventional radiologist corrects this delineation on each 



 
 

 <Consortium confidential> 18/11/2022 

ASSIST 

ITEA 20044 

WP3 Deliverable D3.4 

Page 46 of 49 

axial slice. These contours are then used to generate 3D volumes of the both the liver and 
tumor tissue. 

Next, an initial registration is applied by 
placing the segment liver from the 
postprocedural image on the same 
location with the same orientation on top of 
preprocedural image (6 degrees of 
freedom). If needed, manual corrections 
can be made and multiple landmarks can 
be placed on bifurcating blood vessels or 
liver characteristics to improve the initial 
registration.  

Then, an automatic voxel-intensity based 
rigid registration is performed. The initial 
registered liver segmentation is used as a 
mask. The mask serves as a VOI for the 
registration, thus only performing 
registration on the liver instead of other 
organs or structures. 

After registration, the liver is segmented 
again on the postprocedural image without 
the ablation zone (further called ablation 
segmentation). A surface mesh is 
produced on the tumor segmentation and 
the ablation segmentation. A distance 
(colour-) map and a lookup table (LUT) are 
created with the distance between the 
tumor and ablation zone.  

 

The colour map and LUT can then be exported and visualized in ParaView. With ParaView, 
the Minimal Ablation Margin (MAM) was defined. An overview of the deLIVERed registration 
and calculation workflow in version 0.8 is presented in figures 16 and 17. 
 

Figure 16. Overview of the deLIVERed (v0.8) 
software workflow.
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Figure 17 General Overview of the steps required to integrate 3D liver models in a Multimodal Image-
Guided Robotic Liver Surgery Cockpit. Source: Bijlstra et al 2022. 

7.4.2 Pancreas 

To the best of our knowledge there currently is no specific pancreatic tumor resection 
planning tool using AI available at the time of writing this report.  
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8 Conclusions 

The previous sections have given an overview of how AI can be used in the clinical use 
cases of the ASSIST-project. From these descriptions it is clear that although there has been 
quite some research reported in literature, there are still challenges remaining for the 
ASSIST-project, which will be further investigated in work packages 2 and 3.  
 
Although the clinical use cases differ a lot in terms of disease areas and organs involved, the 
common denominator in the use of AI in the clinical use-cases seems to be the use of deep 
learning neural networks both in 2D and 3D for medical image segmentation.   
 
At the time of this writing there don’t seem to be a lot of commercial software solutions for 
the clinical use-cases available but for pulmonary nodule detection in CT there is at least 
one commercial product namely Veye Lung Nodules by Aidence. 
 
 
 
 
 
 
 
 
 
 


