

This document is public.

Prototype P2.24
Support for Debugging in Enhanced MDT
OpenModelica Eclipse Plug-in

Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson (LIU)

December, 2012

•••

 Deliverable
 OPENPROD
 (ITEA 2)

 Page 2 of 2

OPENPROD

Summary

This deliverable provides a prototype debugger for Modelica and MetaModelica models. The debugger is
integrated in the OpenModelica MDT Eclipse plug-in. This debugger is very efficient, even for large
applications of size 150 000 lines of code. It is mainly applicable to algorithmic code, but also includes some
support for equation-based parts of models. The equation-based model debugging part is an early prototype
which has so far been tested for small models, but will be scaled up to larger applications in the near future.

Publications included in this Document

1. Adrian Pop, Martin Sjölund, Adeel Asghar, Peter Fritzson, Francesco Casella. Static and Dynamic Debugging
of Modelica Models. In Proceedings of the 9th International Modelica Conference (Modelica'2012), Munich,
Germany, Sept.3-5, 2012.

Static and Dynamic Debugging of Modelica Models
Adrian Pop1, Martin Sjölund1, Adeel Asghar1, Peter Fritzson1, Francesco Casella2

1Programming Environments Laboratory
Department of Computer and Information Science

Linköping University, Linköping, Sweden
2Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

{adrian.pop,martin.sjolund,adeel.asghar,peter.fritzson}@liu.se
casella@elet.polimi.it

Abstract
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the
drawback that programming and modeling errors are
often hard to find. In this paper we present static and
dynamic debugging methods for Modelica models and
a debugger prototype that addresses several of those
problems. The goal is an integrated debugging frame-
work that combines classical debugging techniques
with special techniques for equation-based languages
partly based on graph visualization and interaction.

To our knowledge, this is the first Modelica debug-
ger that supports both transformational and algorithmic
code debugging.

Keywords: Modelica, Debugging, Modeling and

Simulation, Transformations, Equations, Algorithmic
Code, Eclipse

1 Introduction
Advanced development of today’s complex products
requires integrated environments and equation-based
object-oriented declarative (EOO) languages such as
Modelica [8][12] for modeling and simulation. The
increased ease of use, the high abstraction, and the ex-
pressivity of such languages are very attractive proper-
ties. However, these attractive properties come with the
drawback that programming and modeling errors are
often hard to find.

To address these issues we present static (compile-
time) and dynamic (run-time) debugging methods for
Modelica models and a debugger prototype that ad-
dresses several of those problems. The goal is an inte-
grated debugging framework that combines classical
debugging techniques with special techniques for equa-
tion-based languages partly based on graph visualiza-
tion and interaction.

The static transformational debugging functionality
addresses the problem that model compilers are opti-
mized so heavily that it is hard to tell the origin of an
equation during runtime. This work proposes and im-
plements a prototype of a method that is efficient with
less than one percent overhead, yet manages to keep
track of all the transformations/operations that the
compiler performs on the model.

Modelica models often contain functions and algo-
rithm sections with algorithmic code. The fraction of
algorithmic code is increasing since Modelica, in addi-
tion to equation-based modeling, is also used for em-
bedded system control code as well as symbolic model
transformations in applications using the MetaModelica
language extension.

Our earlier work in debuggers for the algorithmic
subset of Modelica used high-level code instrumenta-
tion techniques which are portable but turned out to
have too much overhead for large applications. The
new dynamic algorithmic code debugger is the first
Modelica debugger that can operate without high-level
code instrumentation. Instead, it communicates with a
low-level C-language symbolic debugger to directly
extract information from a running executable, set and
remove breakpoints, etc. This is made possible by the
new bootstrapped OpenModelica compiler which keeps
track of a detailed mapping from the high level
Modelica code down to the generated C code compiled
to machine code.

The dynamic algorithmic code debugger is opera-
tional, supports both standard Modelica data structures
and tree/list data structures, and operates efficiently on
large applications such as the OpenModelica compiler
with more than 100 000 lines of code.

The attractive properties of high-level object-
oriented equation-based languages come with the
drawback that programming and modeling errors are
often hard to find. For example, in order to simulate
models efficiently, Modelica simulation tools perform a
a large number of symbolic manipulation in order to

reduce the complexity of models and prepare them for
efficient simulation. By removing redundancy, the gen-
eration of simulation code and the simulation itself can
be sped up significantly. The cost of this performance
gain is error-messages that are not very user-friendly
due to symbolic manipulation, renaming and reordering
of variables and equations. For example, the following
error message says nothing about the variables in-
volved or its origin:
Error solving nonlinear system 2
time = 0.002
residual[0] = 0.288956, x[0] = 1.105149
residual[1] = 17.000400, x[1] = 1.248448

It is usually hard for a typical user of the Modelica tool
to determine what symbolic manipulations have been
performed and why. If the tool only emits a binary exe-
cutable this is almost impossible. Even if the tool emits
source code in some programming language (typically
C), it is still quite hard to know what kind of equation
system you have ended up with. This makes it difficult
to understand where the model can be changed in order
to improve the speed or stability of the simulation.
Some tools allow the user to export the description of
the translated system of equations [18], but this is not
enough. After symbolic manipulation, the resulting
equations no longer need to contain the same variables
or structure as the original equations.

This work proposes and develops a combination of
static and dynamic debugging techniques to address
these problems. The static (compile-time) transforma-
tional debugging efficiently traces the symbolic trans-
formations throughout the model compilation process
and provides explanations regarding to origin of prob-
lematic code. The dynamic (run-time) debugging al-
lows interactive inspection of large executable models,
stepping through algorithmic parts of the models, set-
ting breakpoints, inspecting and modifying data struc-
tures and the execution stack.

An integrated approach is proposed where the origin
mapping provided by the static transformational de-
bugging is used by the dynamic debugger to relate run-
time errors to the original model sources. To our
knowledge no other open-source or commercial
Modelica tool currently supports static transformational
debugging or algorithmic code debugging.

The paper is structured as follows: Section 2 the
background and related work, Section 3 analyzes
sources of errors and faults, Section 4 proposes an inte-
grated static and dynamic debugging approach, Section
5 presents the static transformational debugging meth-
od and implementation, whereas Section 6 presents the
algorithmic code debugging functionality. Conclusions
and future work are given in Section 7.

2 Background and Related Work

2.1 Debugging techniques for EOO Languages

In the context of debugging declarative equation-based
object-oriented (EOO) languages such as Modelica,
both the static (compile-time) and the dynamic (run-
time) aspects have to be addressed.

The static aspect of debugging EOO languages
deals with inconsistencies in the underlying system of
equations:

1. Errors related to the transformations of the models

to an optimized flattened system of equations suit-
able for numeric solution, e.g. symbolic solutions
leading to division by a constant zero stemming
from a singular system of equations, or (very rare-
ly) errors in the symbolic transformations them-
selves.

2. Overconstrained models (too many equations) or
underconstrained models (too few equations). The
number of variables needs to be equal to the equa-
tions is required for solution.

The dynamic (run-time) aspect of debugging EOO lan-
guages addresses run-time errors that may appear due
to faults in the model:

1. model configuration: when the parameters values
and start attributes for the model simulation are in-
correct.

2. model specification: when the equations and algo-
rithm sections that specify the model behavior are
incorrect.

3. algorithmic code: when the functions called from
equations return incorrect results.

Methods for both static and dynamic (run-time) debug-
ging of EOO languages such as Modelica have been
proposed earlier [6][7]. With the new Modelica 3.0
language specification, the static overconstrained/
underconstrained debugging of Modelica presents a
rather small benefit, since all models are required to be
balanced. All models from already checked libraries
will already be balanced; only newly written models
might be unbalanced, which is particularly useful if
new models contain a significant number of unknowns.

Regarding dynamic (run-time) debugging of models
[6] proposes a semi-automated declarative debugging
solution in which the user has to provide a correct di-
agnostic specification of the model which is used to
generate assertions at runtime. Moreover, starting from
an erroneous variable value the user explores the de-
pendent equations (a slice of the program) and acts like
an “oracle” to guide the debugger in finding the error.

3 Sources of Errors and Faults
There are a number of sources of errors and faults in a
simulation system. Some errors can be recovered auto-
matically by the system, whereas others should be re-
ported and allow the users to enter debugging mode.
An error can also be a wrong value pointed out manual-
ly by a user.

Every solver employed within a simulation system
at all levels should be equipped with an error reporting
mechanism, allowing error recovery by the master
solver, or error reporting to the end-user in case of irre-
coverable error:

• the ODE solvers
• the functions computing the derivatives and the al-

gebraic functions given the states, time, and inputs
• the functions computing the initial states and the

values of parameters
• the linear equation solvers
• the nonlinear equation solvers

If some equation can be solved symbolically, without
resorting to numerical solvers, then the symbolic solu-
tion code should be equipped with diagnostics to han-
dle errors as well.

In the next section we give causes of errors that can
appear during the model simulation.

3.1 Errors in the evaluation of expressions

During the evaluation of expressions, faults may occur
due to the following causes:

• Division by zero
• Evaluation of non-integer powers with negative ar-

gument
• Functions called outside their domain (e.g.: sqrt(-1),

log(-3), asin(2)). For non built-in functions, these
errors can be triggered by assertions within the algo-
rithm, or by calls to the pre-defined ModelicaError()
function in the body of external functions.

• Errors manifesting as computed wrong value of
some variable(s), where the error is manually point-
ed out by a user or automatically detected as being
outside min/max bounds.

3.2 Assertion violations in models

During initialization or simulation, assertions inside
models can be triggered when the condition being as-
serted becomes false.

3.3 Errors in the solution of implicit algebraic
equations

During initialization or simulation of DAE systems,
implicit equations (or systems of implicit equations,
corresponding to strong components in the BLT de-
composition) must be solved. In the case of linear sys-
tems, the solver might fail because there is some error
in evaluating the coefficients of the A matrix and of the
b vector of the linear equation Ax = b, or because said
problem is singular. In the case of nonlinear equations
f(x) = 0, the solver might fail for several reasons: the
evaluation of the residual f(x) or of its Jacobian gives
errors; the Jacobian becomes singular: the solver fails
to converge after a maximum number of iterations.

3.4 Errors in the integration of the ODEs

In OpenModelica, the DAEs are brought to index-1
ODE form by symbolic and numerical transformation,
and these equations are then solved by an ODE solver,
which iteratively computes the next state given the cur-
rent state. During the computation of the next state, e.g.
by using Euler, Runge-Kutta or a BDF algorithm, er-
rors such as those reported in section 3.1, 3.2, 3.3 might
occur. Furthermore, the solver might fail because of
singularity in the ODE, as in the case of finite escape
time solutions, or of discontinuities leading to chatter-
ing.

4 Integrated Debugging Approach
In this section we propose an integrated debugging
method combining information from a static analysis of
the model with dynamic debugging at run-time.

4.1 Integrated Static-Dynamic Debug Method

This method partly follows the approach proposed in
[6][7] and further elaborated in [3]. However, our ap-
proach does not require the user to write diagnostic
specifications of models. Also, the approach we present
here can also handle the debugging of algorithmic code
using classic debugging techniques.

An overview of this debugging strategy is presented
in Figure 1. In short, our run-time debugging method is
based on the integration of the following:

1. Dependency graph visualization and interaction.
2. Presentation of simulation results and modeling

code.
3. Mapping of errors to model code positions.
4. Execution-based debugging of algorithmic code.

A possible debugging session might be as follows.

During the simulation phase, the user discovers an error
in the plotted results, or an irrecoverable error is trig-
gered by the run-time simulation code. In the former
case, the user marks either the entire plot of the variable
that presents the error or parts of it and starts the de-
bugging framework. The debugger presents an (IDG)
interactive dependency graph with respect to the varia-
ble with the wrong value or the expression where the
fault occurred. The dependency edges in IDG are com-
puted using the transformation tracing that is described
in Section 5. The nodes in the graph consist of all the
equations, functions, parameter value definitions, and
inputs that were used to calculate the wrong variable
value, starting from the known values of states, pa-
rameters and time.

The variable with the erroneous value (or which
cannot be computed at all) is displayed in a special
node which is the root of the graph. The IDG contains
two types of edges:

1. Calculation dependency edges: the directed edges
labeled by variables or parameters which are inputs

(used for calculations in this equation) or outputs
(calculated from this equation) from/to the equa-
tion displayed in the node.

2. Origin edges: the undirected edges that tie the
equation node to the actual model which this equa-
tion belongs to.

The user interacts with the dependency graph in several
ways:

• Displaying simulation results through selection of
the variables (or parameters) names (edge labels).
The plot of a variable is shown in a popup window.
In this way the user can quickly see if the plotted
variable has erroneous values.

• Displaying model code by following origin edges.
• Invoking the algorithmic code debugging subsystem

when the user suspects that the result of a variable
calculated in an equation which contains a function
call is wrong, but the equation seems to be correct.

Using these interactive dependency graph facilities the
user can follow the error from its manifestation to its
origin. Note that in most cases of irrecoverable errors

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Interactive Dependency Graph
These equations contributed to the result

Code viewer
Show which model or function
the equation node belongs to

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

class Resistor
extends TwoPin;
parameter Real

equation
R * I = v;

end Resistor

Follow if error
is in an equation

Simulation Results
These are the intermediate simulation
results that contributed to the result

Follow if error
is in a function

Algorithmic Code Debugging
Normal execution point debugging of

functions

Build graph

Error Discovered
What now?

Where is the equation or code that
generated this error?

Figure 1. Integrated debugging approach overview.

arising when trying to compute a variable, the root
cause of the error does not lie in the equation itself be-
ing wrong, but rather in some of the values of previous-
ly computed variables appearing in it being wrong, e.g.,
because of erroneous initialization or parameterization.

The proposed debugging method can also start from
multiple variables with wrong values with the premise
that the error might be at the confluence of several de-
pendency graphs.

Note that the debugger can handle both data de-
pendency edges (e.g. which variables influence the cur-
rent variable of interest), and origin edges (edges point-
ing from the generated executable simulation code to
the original equations/parts of equations contributing to
this code). Both are computed by the transformational
debugger mentioned in Section 5.

5 Static Transformational Debugging
Transformational debugging is a static compile-time
technique since it does not need run-time execution of a
model. The method keeps track of symbolic transfor-
mations, can explain and display applied transfor-
mations, and compute dependence edges between the
original model and the generated executable code.

5.1 Common Operations on Continuous Equa-
tion Systems

In order to create a debugger adapted for debugging the
symbolic transformations performed on equation sys-
tems, its requirements should be stated. There are many
symbolic operations that may be performed on equation
systems. The following descriptions of operations also
include a rationale for each of them, since it is not al-
ways apparent why perform certain operations are per-
formed. There are of course many more operations that
can be performed than the ones listed below, which are
however deemed most important, and which the de-
bugger for models translated by the OpenModelica
Compiler [11] should be able to handle.

5.1.1 Variable aliasing

An optimization that is very common in Modelica
compilers is variable aliasing. This is due to the con-
nection semantics of the Modelica language. For exam-
ple, if a and b are connectors with the effort-variable v
and flow-variable i, a connection (2) will generate alias
equations (3) and (4).
connect(a, b) (2)
a.v = b.v (3)
a.i + b.i = 0 ⇒ b.i = -a.i (4)

In a result-file, this alias relation can be stored instead
of a duplicate trajectory, saving both space and compu-
tation time. In the equation system, b.v may be substi-
tuted by a.v and b.i by -a.v, which may lead to fur-
ther optimizations of the equations.

5.1.2 Known variables

Known variables are similar to alias variables in that
you may perform variable substitutions on the rest of
the equation system if you find such an occurrence. For
example, (5) and (6) can be combined into (7). In the
result-file, you no longer need to store a value for each
time step; once is enough for known variables (which
have values that can be computed statically at compile-
time), parameters and constants.
a = 4.0 (5)
b = 4.0 – a + c (6)
b = 4.0 – 4.0 + c (7)

5.1.3 Equation Solving

If the tool has determined that x needs to be solved for
in (8), we need to symbolically solve the equation, pro-
ducing a simple equation with x on one side as in (9).
Solving for x is not always straightforward, and it is not
always possible to invert user-defined functions such as
(10). Since x is present in the call arguments and the
function cannot be inverted or inlined, it is not possible
to solve the equation symbolically, so it is necessary to
resort to a numerical non-linear solver during runtime.
15.0 = 3.0*(x + y) (8)
x = 15.0/3.0 - y (9)
0 = f(3*x) (10)

5.1.4 Expression Simplification

Expression simplification is a symbolic operation that
does not change the meaning of the expression, while
making it faster to calculate. It is related to many dif-
ferent optimization techniques such as constant folding.
The order in which arguments are evaluated may be
changed (11). Constant subexpressions are evaluated
during compile-time (12). Non-constant subexpressions
may be rewritten (13) and functions may be evaluated
fewer times than in the original expression (14). It is
also possible to use special knowledge about an expres-
sion in order to make it run faster (15) and (16).

and(a,false,b) ⇒ false (11)
4.0 – 4.0 + c ⇒ c (12)
max(a,b,7.5,a,15.0) ⇒ max(a,b,15,0) (13)
f(x) + f(x) + f(x) ⇒ 3*f(x) (14)
if cond then a else a ⇒ a (15)
if cond then false else true ⇒ cond (16)

5.1.5 Equation System Simplification

It is of course also possible to solve some equation sys-
tems statically. For example a linear system of equa-
tions with constant coefficients (17) can be solved us-
ing one step of symbolic Gaussian elimination (18),
generating two separate equations that can be solved
individually after causalization (19). A simple linear
equation system as (17) may also be solved numerically
using e.g. LAPACK [1] routines.
[1, 2; 2, 1] * [x; y] = [4; 5] (17)
[1, 2; 0,-3] * [x; y] = [4; -3] (18)
x = 2; y = 1; (19)

5.1.6 Differentiation

Symbolic differentiation [16] is used for many purpos-
es. It is used to expand known derivatives (20) or as
one operation in index reduction. Jacobian matrices
have many applications, e.g. to speed up simulation
runtime [14]. The matrix is often computed using au-
tomatic differentiation [14][16] which combines sym-
bolic differentiation with other techniques to achieve
fast computation.

der(t^2, t) = 2*t (20)

5.1.7 Index reduction

In order to solve DAE’s numerically, discretization
techniques and methods to numerically compute de-
rivatives are used (often referred to as solvers). Certain
DAE’s need to be differentiated symbolically to enable
a stable numeric solution. The differential index of a
general DAE system is the minimum number of times
that certain equations in the system need to be differen-
tiated to reduce the system to a set of ODEs, which can
then be solved by the usual ODE solvers, Chapter 18 in
[8]. While there are techniques to solve DAE’s of high-
er index than 1, most of them require index-1 DAE’s
(no second derivatives). This makes it more convenient
to reformulate the problem using index reduction algo-
rithms, Chapter 18 in [8]. One such technique uses
dummy derivatives [15]; this is the algorithm currently
used in the OpenModelica Compiler.

5.1.8 Function inlining

Writing functions to do common operations is a great
way to reduce the burden of maintaining code. When a
function call is inlined (21), it can be treated as a macro
expansion (22) and may increase the number of sym-
bolical manipulations that can be perform on an expres-
sion such as (23).
2*f(x, y)/pi (21)
2*pi*((sin(x+y)+cos(x+y-y)/pi (22)
2*(sin(x+y) + cos(x)) (23)

5.2 Debugging

The choice of techniques for implementation of a de-
bugger depends on where and for what it is intended to
be used. Translation and optimization of large applica-
tion models can be very time-consuming. Thus it would
be good if the approach has such a low overhead that it
can be enabled by default. It would also be good if er-
ror messages from the runtime could use the debug in-
formation from the translation and optimization stages
to give more understandable and informative messages
to the user.

A technique that is commonly used for debugging is
tracing. The simplest way of implementing tracing is to
print a message to the terminal or file in order to log the
operations that you perform. The problem here is that if
an operation is rolled back, the log-file will still contain
the operation that was rolled back. The data also need
to be post-processed if the operations should be
grouped by equation.

A more elegant technique is to treat operations as
metadata on equations, variables or equation systems.
Other metadata that should already be propagated from
source code to runtime include the name of the compo-
nent that an equation is part of, which line and column
that the equation originates from, and more. Whenever
an operation is performed, the operation kind and in-
put/output is stored inside the equation as a list of oper-
ations. If the structure used to store equations is persis-
tent this also works if the tool needs to roll back execu-
tion to an earlier state.

The cost of adding this meta data is a constant
runtime factor from storing a new head in the list. The
memory cost depends a lot on the compiler itself. If
garbage collection or reference counting is used, the
only cost is a small amount to describe the operation
(typically an integer and some pointers to the expres-
sions involved in the operation).

5.3 Bookkeeping of Operations

5.3.1 Variable Substitution

The elimination of variable aliasing and variables with
known values (constants) is considered as the same
operation that can be done in a single phase. It can be
performed as a fixed-point algorithm where substitu-
tions are collected which record if any change was
made (stop if no substitution is performed or no new
substitution can be collected). For each alias or known
variable, merge the operations stored in the simple
equation x = y before removing it from the equation
system. For each successful substitution, record it in the
list of operations for the equation.

The history of the variable a in the equation system
(24) could be represented as a more detailed version
(25) instead of the shorter (26) depending on the order
in which the substitutions were performed.
a = b; b = -c; c = 4.5 (24)
a = b ⇒ a = -c ⇒ a = -4:5 (25)
a = b ⇒ a = -4.5 (26)

In equation systems that originate from a Modelica
model it is preferable to see a substitution as a single
operation rather than a longer chain of operations
(chains of 50 cascading substitutions are not unheard of
and makes it hard to get an overview of the operations
performed on the equation, even though sometimes all
the steps are necessary to understand the reason for the
final substitution).

It is also possible to collect sets of aliases and select
a single variable (doing everything in one operation) in
order to make substitutions more efficient. However,
alias elimination may still cascade due to simplification
rules (27), which means that you need a work-around
for substitutions performed in a non-optimal order.

a = b - c + d ⇒ a = b - b + d
⇒ a = d (27)

Thus, we compare the previous operation with the new
one and if we detect a link in the chain, we store this
relation. When displaying the operations of an equation
system, it is then possible to expand and collapse the
chain depending on the user’s needs.

5.3.2 Equation Solving

Some equations are only valid for a certain range of
input. When solving an equation like (28), you assert
that the divisor is non-zero and eliminate it in order to
solve for x. We record a list of the assertions made (and
their sources for traceability). An assertion may be re-
moved if we later determine that it always holds or if it
overlaps with another assertion (29).

x/y = 1 ⇒ x = y (y != 0) (28)
y!=0, 4.0 < y < 8.0 ⇒ 4.0 < y < 8.0 (29)

5.3.3 Expression Simplification

Tracking changes to an expression is easy if you have a
working fixed-point algorithm for expression simplifi-
cation (record a simplification operation if the simplifi-
cation algorithm says that the expression changed).
However, if the simplification algorithm oscillates (as
in 30) it is hard to use it as a fixed-point algorithm.

2*x ⇒ x*2 ⇒ 2*x ⇒ ... (30)

The simple solution is to use an algorithm that is fixed
point, or conservative (reporting no change made when

performing changes that may cause oscillating behav-
ior). Finding where this behavior occurs is not hard for
a compiler developer (simply print an error message
after 10 iterations). If it is hard to detect if a change has
actually occurred (due to changing data representation
to use more advanced techniques), one may need to
compare the input and output expression in order to
determine if the operation should be recorded. While
comparing large expressions may be expensive, it is
often possible to let the simplification routine keep
track of any changes at a smaller cost.

5.3.4 Equation System Simplification

It is possible to store these operations as pointers to a
shared and more global operation or as many individual
copies of the same operation. It is preferable to store
this as a single global operation (see Figure 2) since the
only cost is only some indirection when reading the
data. It is also recommended to store reverse pointers
(or indices) from the global operation back to each in-
dividual operation as well, so that reverse lookup can
be performed at a low cost.

Figure 2. Sharing Results of Linear System Evaluation.

As the tool we are using performs only limited simpli-
fication of these strongly connected components, we
are currently limited to only recording evaluation of
constant linear systems. As more of these optimizations
are added to the compiler, they will also need to be
traced and support added for them in the debugger.

5.3.5 Differentiation

Whenever we perform symbolic differentiation in an
expression, e.g. to expand known derivatives (31), we
record this operation in the equation. OpenModelica
currently does not eliminate this state variable as in
(32), but if it did the operation would also be recorded.

der(x) = der(time) ⇒ der(x) = 1.0 (31)
der(x) = 1.0 ⇒
 x = time + (xstart-timestart) (32)

5.3.6 Index reduction

For the index reduction algorithm, any performed sub-
stitution is recorded, source information is added to the
newly introduced dummy derivative variable, and the

operations are performed on the affected equations. As
an example for the dummy derivatives algorithm, this
includes differentiation of the Cartesian coordinates
(x; y) of a pendulum with length L (33) into (34) and
(35). After the index reduction is complete, further op-
timizations such as variable substitution (37), are per-
formed to reduce the complexity of the complete sys-
tem.
x^2 + y^2 = L^2 (33)
der(x^2 + y^2) ⇒ 2*(der(x)*x + der(y)*y)
 (34)
der(L^2) ⇒ 0 (35)
2*(der(x)*x + der(y)*y) ⇒ 2*(u*x + v*y)
 (36)

5.3.7 Function inlining

Since inlining functions may cause a new function call
to be added to the expression, functions are inlined un-
til a fixed point is reached (with a maximum depth to
avoid problems with recursive functions). Expressions
are also simplified in order to reduce the size of the
final expression. When inlining calls in an equation
have been completed, this is recorded as an inline oper-
ation with the expression before and after.

5.4 Presentation of Operations

Until now the focus has been on collecting operations
as data structured in the equation system. What is it
possible to do with this information? During the trans-
lation phase, it can be used directly to present infor-
mation to the user. Assuming that the data is well struc-
tured, it is possible to store it in a static database (e.g.
SQL) or simply as structured data (e.g. XML). That
way the data can be accessed by various applications
and presented in different ways according to the user
needs for all of them. The current OpenModelica proto-
type only outputs text at present; in the future this in-
formation will be presented in the origin edge intro-
duced in Section4.

The number of operations stored for each equation
varies widely. The reason is that when a known varia-
ble x is replaced with, e.g., the number 0.0, one may
start removing subexpressions. One then ends up with a
chain of operations that loops over variable substitu-
tions and expression simplification. The number of op-
erations performed may scale with the total number of
variables in the equation system if the the number of
iterations that the optimizer may take is not limited
[17]. This makes some synthetic models very hard to
debug. The example model in Listing 1 performs 1 + 2
+ … + N substitutions and simplifications in order to
deduce that a[1] = a[2] = … = a[n].

Listing 1. Alias Model with Poor Scaling
model AliasClass_N
 constant Integer N=60;
 Real a[N];
equation
 der(a[1]) = 1.0;
 a[2] = a[1];
 for i in 3:N loop
 a[i] = i*a[i-1]-sum(a[j]
 for j in 1:i-1);
 end for;
end AliasClass_N;

Using a real-world example, the Engine1a model from
the Modelica MultiBody library, [12], the majority of
equations have less than 10 operations (Figure 3),
which is a manageable number to go through if one
needs to debug a model and to find out which equations
are problematic.

Figure 3. The number of symbolic operations performed

on equations in the Engine1a model.

5.5 Runtime supported by static information

In order to produce better error messages during
runtime, it is beneficial to be able to trace the source of
the problem. The toy example in Listing 2 is used to
show the information that the augmented runtime can
display when an error occurs. The user should be pre-
sented with an error message from the solver (linear,
nonlinear, ODE or algebraic does not matter). Here, the
displayed error comes from the algebraic part of the
solver. It clearly shows that log(0.0) is not defined and
the source of the error in the concrete syntax (the
Modelica code that the user may influence) as well as
the name of the component (which may be used as a
link by a graphical editor to quickly switch view to the
diagram view of this component). The symbolic trans-
formations performed on the equation are also dis-
played, which can help debug the model better.

Listing 2. Runtime Error
Error: At t=0.5, block1.u = 0.0 is not in
the domain of log (>0)
Source equation: [Math.mo :2490:9-2490:33]
y = log(u)
Source component: block1 (MyModel
Modelica.Blocks.Math.Log)
Flattened equation: block1.y = log(
block1.u)
Manipulated equation: y = log(u)
<Operations>
variable substitution: log(block1.u) =
log(u)
<Depending on equations (from BLT)>
u <:link>

Currently we are working on extending the information
we collect during the static analysis to build the Interac-
tive Dependency Graph from Figure 1, Section 4.

6 Dynamic Debugging

6.1 Using the Algorithmic Code Debugger

The debugger part for algorithmic Modelica code is
implemented within the OpenModelica environment as
a debug plugin for the Modelica Development Tooling
(MDT) which is a Modelica programming perspective
for Eclipse. The Eclipse-based user interface of the new
efficient debugger is depicted in Figure 4.

Figure 4. The debug view of the new efficient algorithmic

code debugger within the MDT Eclipse plugin.

The algorithmic code debugger provides the following
general functionalities:

• Adding/Removing breakpoints.
• Step Over – moves to the next line, skipping the

function calls.
• Step In – steps into the called function.
• Step Return – completes the execution of the func-

tion and comes back to the point from where the
function is called.

• Suspend – interrupts the running program.
• Resume – continues the execution from the most re-

cent breakpoint.
• Terminate – stops the debugging session.

It is much faster and provides several stepping options
compared to the old dynamic debugger because the old
debugger was based on high-level source code instru-
mentation which made the code grow by a factor of the
number of variables. The debug view primarily consists
of two main views:

• Stack Frames View
• Variables View

The stack frame view, shown in Figure 5, shows a list
of frames that indicates how the flow had moved from
one function to another or from one file to another.
This allows backtracing of the code.

Figure 5. The stack frame view of the debugger.

Figure 6. The variable view of the new debugger.

It is possible to select the previous frame in the stack
and inspect the values of the variables in that frame.

However, it is not allowed to select any of the previous
frames and start debugging from there.

Each frame is shown as <function_name at
file_name:line_number>.

The Variables view (Figure 6) shows the list of var-
iables at a certain point in the program. It contains four
columns:
• Name – the variable name.
• Declared Type – the Modelica type of the variable.
• Value – the variable value.
• Actual Type – the mapped C type.

By preserving the stack frames and the variables it is
possible to keep track of the variables values. If the
value of any variable is changed while stepping then
that variable will be highlighted yellow (the standard
Eclipse way of showing the change).

6.2 Dynamic Debugger Implementation

In order to keep track of Modelica source code posi-
tions, the Modelica source-code line numbers are in-
serted into the transformed C source-code. This infor-
mation is used by the Gnu Compiler GCC to create the
debugging symbols that can be read by the Gnu debug-
ger GDB [10].

Through the bootstrapped OpenModelica Compiler
[4] the line number information is propagated all the
way from the high level Modelica representation to the
low level intermediate representation and the generated
code.

This approach was developed for the symbolic
model transformation debugger described in [5] and is
also used in this debugger.

Figure 7. Dynamic debugger flow of control.

Consider the Modelica code shown in Figure 8:

Figure 8. Modelica Code.

The OpenModelica Compiler compiles this HelloWorld
function into the C source-code depicted in Figure 9.

Figure 9. Generated C source-code.

The generated code contains blocks which represent the
Modelica code lines. The blocks are mentioned as
comments in the following format /*#modelicaLine
[modelica_source_file:line_number_info]*/.

This information is now used to generate debug
symbols that are recognized by GDB. The generated C
source-code is used by a small Perl script to create an-
other version of the same source-code with different
line number blocks, see Figure 10.

Figure 10. Converted C source-code.

The converted C source-code contains a line number
mapping between the generated C source-code and the
actual Modelica source-code in the GDB specific for-
mat. Examine the lines starting with #line in Figure 10.

The executable is created from the converted C
source-code and is debugged from the Eclipse-based

Modelica debugger which converts Modelica-related
commands to low-level GDB commands at the C code
level.

The Eclipse interface allows adding/removing
breakpoints. The breakpoints are created by sending the
<-break-insert filename:linenumber> command to
GDB. At the moment only line number based break-
points are supported. Other alternatives to set the
breakpoints are; <-break-insert function>, <–break-
insert filename:function>.

These program execution commands are asynchro-
nous because they do not send back any acknowledge-
ment. However, GDB raises signals;
• as a response to those asynchronous commands.
• for notifying program state.

The debugger uses the following signals to perform
specific actions:
• breakpoint-hit – raised when a breakpoint is

reached.
• end-stepping-range – raised when a step into or step

over operations are finished.
• function-finished – raised when a step return opera-

tion is finished.

These signals are utilized by the debugger to extract the
line number information and highlight the line in the
source-code editor. They are also used as notifications
for the debugger to start the routines to fetch the new
values of the variables.

The suspend functionality which interrupts the run-
ning program is implemented in the following way. On
Windows GDB interrupts do not work. Therefore a
small program BreakProcess is written to allow inter-
rupts on Windows. The debugger calls BreakProcess
by passing it the process ID of the debugged program.
BreakProcess then sends the SIGTRAP signal to the
debugged program so that it will be interrupted. Inter-
rupts on Linux and MAC are working by default.

The algorithmic code debugger is operational and
works without performance degradation on large algo-
rithmic Modelica/MetaModelica applications such as
the OpenModelica compiler, with more than 100 000
lines of code.

The algorithmic code debugging framework graph-
ical user interface is developed in Eclipse as a plugin
that is integrated into the existing OpenModelica
Modelica Development Tooling (MDT). The tracking
of line number information and the runtime part of the
debugging framework is implemented as part of the
OpenModelica compiler and its simulation runtime.

The algorithmic code debugger currently supports
the standard Modelica data types including arrays and
records as well as all the additional MetaModelica data

types such as ragged arrays, lists, and tree data types. It
supports algorithmic code debugging of both simula-
tion code and MetaModelica code.

Furthermore, in order to make the debugging practi-
cal (as a function could be evaluated in a time step sev-
eral hundred times) the debugger supports conditional
breakpoints based on the time variable and/or hit count.

The algorithmic code debugger can be invoked from
the model evaluation browser and it breaks at the exe-
cution of the selected function to allow the user to de-
bug its execution.

7 Conclusions and Future Work
We have presented static and dynamic debugging
methods to bridge the gap between the high abstraction
level of equation-based object-oriented models com-
pared to generated executable code. Moreover, an
overview of typical sources of errors and possibilities
for automatic error handling in the solver hierarchy has
been presented.

Regarding static transformational debugging, a pro-
totype design and implementation for tracing symbolic
transformations and operations has been made in the
OpenModelica Compiler. It is very efficient with an
overhead of the order of 0.01%.

Regarding dynamic algorithmic code debugging,
this part of the debugger is in operation and is being
regularly used to debug very large applications such as
the OpenModelica compiler with more than 100 000
lines of code. The user experience is very positive. It
has been possible to quickly find bugs which previous-
ly were very difficult and time consuming to locate.
The debugger is very quick and efficient even on very
large applications, without noticeable delays compared
to normal execution.

A design for an integrated static-dynamic debugging
has been presented, where the dependency and origin
information computed by the transformational debug-
ger is used to map low-level executable code positions
back to the original equations. Realizing the integrated
design is work-in-progress and not yet completed.

To our knowledge, this is the first debugger for
Modelica that has both static transformational symbolic
debugging and dynamic algorithmic debugging.

8 Acknowledgements
This work has been supported by the Swedish Strategic
Research Foundation in the EDOp and HIPo projects
and Vinnova in the RTSIM and ITEA2 OPENPROD
projects. The Open Source Modelica Consortium sup-
ports the OpenModelica work.

References
[1] Adrian Pop and Peter Fritzson (2005). A Portable

Debugger for Algorithmic Modelica Code. In Pro-
ceedings of the 4th International Modelica Confer-
ence, Hamburg, Germany.

[2] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir
Jagudin, and David Akhvlediani (2006).
OpenModelica Development Environment with
Eclipse Integration for Browsing, Modeling, and De-
bugging. In Proc of the Modelica'2006, Vienna, Aus-
tria.

[3] Adrian Pop, David Akhvlediani, and Peter Fritzson
(2007). Towards Run-time Debugging of Equation-
based Object-oriented Languages. In Proceedings of
the 48th Scandinavian Conference on Simulation and
Modeling (SIMS’2007), see http://www.scan-
sims.org, http://www.ep.liu.se. Göteborg, Sweden.

[4] Martin Sjölund, Peter Fritzson, and Adrian Pop
(2011a). Bootstrapping a Modelica Compiler aiming
at Modelica 4. In Proceedings of the 8th Internation-
al Modelica Conference (Modelica'2011), Dresden,
Germany.

[5] Martin Sjölund and Peter Fritzson (2011b). Debug-
ging Symbolic Transformations in Equation Sys-
tems. In Proceedings of the 4th International Work-
shop on Equation-Based Object-Oriented Modeling
Languages and Tools, (EOOLT'2011), Zürich, Swit-
zerland.

[6] Peter Bunus and Peter Fritzson (2003). Semi-
Automatic Fault Localization and Behavior Verifica-
tion for Physical System Simulation Models. In Pro-
ceedings of the 18th IEEE International Conference
on Automated Software Engineering, Montreal,
Canada.

[7] Peter Bunus (2004). Debugging Techniques for
Equation-Based Languages. PhD Thesis. Depart-
ment of Computer and Information Science, Linkö-
ping University.

[8] Peter Fritzson (2004). Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-IEEE Press.

[9] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David

Broman (2005). The OpenModelica Modeling, Sim-
ulation, and Software Development Environment. In
Simulation News Europe, 44/45.

[10] Richard Stallman, Roland Pesch, Stan Shebs, et al.
(2011). Debugging with GDB. Free Software Foun-
dation. [online] Available at: <
http://unix.lsa.umich.edu/HPC201/refs/gdb.pdf>
[Accessed 30 October 2011].

[11] Open Source Modelica Consortium. OpenModelica
System Documentation Version 1.8.1, April 2012.
http://www.openmodelica.org

[12] Modelica Association. The Modelica Language
Specification Version 3.2, March 24th 2010.
http://www.modelica.org. Modelica Association.
Modelica Standard Library 3.1. Aug. 2009.
http://www.modelica.org.

[13] Uri Ascher and Linda Petzold. Computer Methods
for Ordinary Differential Equations and Differential-
Algebraic Equations. Society for Industrial and Ap-
plied Mathematics, 1998.

[14] Willi Braun, Lennart Ochel, and Bernhard Bach-
mann. Symbolically derived Jacobians using auto-
matic differentiation - enhancement of the
OpenModelica compiler. In Modelica’2011.

[15] Sven Erik Mattsson and Gustaf Söderlind. Index
reduction in differential algebraic equations using
dummy derivatives. Siam Journal on Scientific
Computing, 14:677--692, May 1993.

[16] Conal Elliott. Beautiful differentiation. In Interna-
tional Conference on Functional Programming
(ICFP), 2009.

[17] Jens Frenkel, Christian Schubert, Günter Kunze,
Peter Fritzson, and Adrian Pop. Towards a bench-
mark suite for Modelica compilers: Large models. In
Modelica’ 2011.

[18] Roberto Parrotto, Johan Åkesson, and Francesco
Casella. An XML representation of DAE systems
obtained from continuous-time Modelica models. In
Proceedings of the 3rd International Workshop on
Equation-Based Object-Oriented Modeling Lan-
guages and Tools, pages 91--98. Linköping Universi-
ty Electronic Press, October 2010.

http://www.scan-sims.org/�
http://www.scan-sims.org/�
http://www.ep.liu.se/�
http://unix.lsa.umich.edu/HPC201/refs/gdb.pdf�
http://ww.ida.liu.se/projects/OpenModelica�
http://www.modelica.org/�
http://www.modelica.org/�

	2012-09-Pop-Sjolund-Asghar-Fritzson-Casella-Modelica2012-Integrated-Model-Debugging.pdf
	1 Introduction
	2 Background and Related Work
	2.1 Debugging techniques for EOO Languages

	3 Sources of Errors and Faults
	3.1 Errors in the evaluation of expressions
	3.2 Assertion violations in models
	3.3 Errors in the solution of implicit algebraic equations
	3.4 Errors in the integration of the ODEs

	4 Integrated Debugging Approach
	4.1 Integrated Static-Dynamic Debug Method

	5 Static Transformational Debugging
	5.1 Common Operations on Continuous Equation Systems
	5.1.1 Variable aliasing
	5.1.2 Known variables
	5.1.3 Equation Solving
	5.1.4 Expression Simplification
	5.1.5 Equation System Simplification
	5.1.6 Differentiation
	5.1.7 Index reduction
	5.1.8 Function inlining

	5.2 Debugging
	5.3 Bookkeeping of Operations
	5.3.1 Variable Substitution
	5.3.2 Equation Solving
	5.3.3 Expression Simplification
	5.3.4 Equation System Simplification
	5.3.5 Differentiation
	5.3.6 Index reduction
	5.3.7 Function inlining

	5.4 Presentation of Operations
	5.5 Runtime supported by static information

	6 Dynamic Debugging
	6.1 Using the Algorithmic Code Debugger
	6.2 Dynamic Debugger Implementation

	7 Conclusions and Future Work
	8 Acknowledgements

