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Summary 

This deliverable provides a prototype debugger for Modelica and MetaModelica models. The debugger is 
integrated in the OpenModelica MDT Eclipse plug-in. This debugger is very efficient, even for large 
applications of size 150 000 lines of code. It is mainly applicable to algorithmic code, but also includes some 
support for equation-based parts of models. The equation-based model debugging part is an early prototype 
which has so far been tested for small models, but will be scaled up to larger applications in the near future. 
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Abstract 
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the 
drawback that programming and modeling errors are 
often hard to find. In this paper we present static and 
dynamic debugging methods for Modelica models and 
a debugger prototype that addresses several of those 
problems. The goal is an integrated debugging frame-
work that combines classical debugging techniques 
with special techniques for equation-based languages 
partly based on graph visualization and interaction. 

To our knowledge, this is the first Modelica debug-
ger that supports both transformational and algorithmic 
code debugging. 
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1 Introduction 
Advanced development of today’s complex products 
requires integrated environments and equation-based 
object-oriented declarative (EOO) languages such as 
Modelica [8][12] for modeling and simulation. The 
increased ease of use, the high abstraction, and the ex-
pressivity of such languages are very attractive proper-
ties. However, these attractive properties come with the 
drawback that programming and modeling errors are 
often hard to find. 

To address these issues we present static (compile-
time) and dynamic (run-time) debugging methods for 
Modelica models and a debugger prototype that ad-
dresses several of those problems. The goal is an inte-
grated debugging framework that combines classical 
debugging techniques with special techniques for equa-
tion-based languages partly based on graph visualiza-
tion and interaction. 

The static transformational debugging functionality 
addresses the problem that model compilers are opti-
mized so heavily that it is hard to tell the origin of an 
equation during runtime. This work proposes and im-
plements a prototype of a method that is efficient with 
less than one percent overhead, yet manages to keep 
track of all the transformations/operations that the 
compiler performs on the model. 

Modelica models often contain functions and algo-
rithm sections with algorithmic code. The fraction of 
algorithmic code is increasing since Modelica, in addi-
tion to equation-based modeling, is also used for em-
bedded system control code as well as symbolic model 
transformations in applications using the MetaModelica 
language extension. 

Our earlier work in debuggers for the algorithmic 
subset of Modelica used high-level code instrumenta-
tion techniques which are portable but turned out to 
have too much overhead for large applications. The 
new dynamic algorithmic code debugger is the first 
Modelica debugger that can operate without high-level 
code instrumentation. Instead, it communicates with a 
low-level C-language symbolic debugger to directly 
extract information from a running executable, set and 
remove breakpoints, etc. This is made possible by the 
new bootstrapped OpenModelica compiler which keeps 
track of a detailed mapping from the high level 
Modelica code down to the generated C code compiled 
to machine code. 

The dynamic algorithmic code debugger is opera-
tional, supports both standard Modelica data structures 
and tree/list data structures, and operates efficiently on 
large applications such as the OpenModelica compiler 
with more than 100 000 lines of code.  

The attractive properties of high-level object-
oriented equation-based languages come with the 
drawback that programming and modeling errors are 
often hard to find. For example, in order to simulate 
models efficiently, Modelica simulation tools perform a 
a large number of symbolic manipulation in order to 



reduce the complexity of models and prepare them for 
efficient simulation. By removing redundancy, the gen-
eration of simulation code and the simulation itself can 
be sped up significantly. The cost of this performance 
gain is error-messages that are not very user-friendly 
due to symbolic manipulation, renaming and reordering 
of variables and equations. For example, the following 
error message says nothing about the variables in-
volved or its origin: 
Error solving nonlinear system 2 
time = 0.002 
residual[0] = 0.288956,  x[0] = 1.105149 
residual[1] = 17.000400, x[1] = 1.248448 

It is usually hard for a typical user of the Modelica tool 
to determine what symbolic manipulations have been 
performed and why. If the tool only emits a binary exe-
cutable this is almost impossible. Even if the tool emits 
source code in some programming language (typically 
C), it is still quite hard to know what kind of equation 
system you have ended up with. This makes it difficult 
to understand where the model can be changed in order 
to improve the speed or stability of the simulation. 
Some tools allow the user to export the description of 
the translated system of equations [18], but this is not 
enough. After symbolic manipulation, the resulting 
equations no longer need to contain the same variables 
or structure as the original equations.  

This work proposes and develops a combination of 
static and dynamic debugging techniques to address 
these problems. The static (compile-time) transforma-
tional debugging efficiently traces the symbolic trans-
formations throughout the model compilation process 
and provides explanations regarding to origin of prob-
lematic code. The dynamic (run-time) debugging al-
lows interactive inspection of large executable models, 
stepping through algorithmic parts of the models, set-
ting breakpoints, inspecting and modifying data struc-
tures and the execution stack. 

An integrated approach is proposed where the origin 
mapping provided by the static transformational de-
bugging is used by the dynamic debugger to relate run-
time errors to the original model sources. To our 
knowledge no other open-source or commercial 
Modelica tool currently supports static transformational 
debugging or algorithmic code debugging.  

The paper is structured as follows: Section 2 the 
background and related work, Section 3 analyzes 
sources of errors and faults, Section 4 proposes an inte-
grated static and dynamic debugging approach, Section 
5 presents the static transformational debugging meth-
od and implementation, whereas Section 6 presents the 
algorithmic code debugging functionality. Conclusions 
and future work are given in Section 7. 

2 Background and Related Work 

2.1 Debugging techniques for EOO Languages 

In the context of debugging declarative equation-based 
object-oriented (EOO) languages such as Modelica, 
both the static (compile-time) and the dynamic (run-
time) aspects have to be addressed. 

The static aspect of debugging EOO languages 
deals with inconsistencies in the underlying system of 
equations: 

 
1. Errors related to the transformations of the models 

to an optimized flattened system of equations suit-
able for numeric solution, e.g. symbolic solutions 
leading to division by a constant zero stemming 
from a singular system of equations, or (very rare-
ly) errors in the symbolic transformations them-
selves. 

2. Overconstrained models (too many equations) or 
underconstrained models (too few equations). The 
number of variables needs to be equal to the equa-
tions is required for solution.  

The dynamic (run-time) aspect of debugging EOO lan-
guages addresses run-time errors that may appear due 
to faults in the model: 

1. model configuration: when the parameters values 
and start attributes for the model simulation are in-
correct. 

2. model specification: when the equations and algo-
rithm sections that specify the model behavior are 
incorrect. 

3. algorithmic code: when the functions called from 
equations return incorrect results. 

Methods for both static and dynamic (run-time) debug-
ging of EOO languages such as Modelica have been 
proposed earlier [6][7]. With the new Modelica 3.0 
language specification, the static overconstrained/ 
underconstrained debugging of Modelica presents a 
rather small benefit, since all models are required to be 
balanced. All models from already checked libraries 
will already be balanced; only newly written models 
might be unbalanced, which is particularly useful if 
new models contain a significant number of unknowns. 

Regarding dynamic (run-time) debugging of models 
[6] proposes a semi-automated declarative debugging 
solution in which the user has to provide a correct di-
agnostic specification of the model which is used to 
generate assertions at runtime. Moreover, starting from 
an erroneous variable value the user explores the de-
pendent equations (a slice of the program) and acts like 
an “oracle” to guide the debugger in finding the error. 



3 Sources of Errors and Faults 
There are a number of sources of errors and faults in a 
simulation system. Some errors can be recovered auto-
matically by the system, whereas others should be re-
ported and allow the users to enter debugging mode. 
An error can also be a wrong value pointed out manual-
ly by a user. 

Every solver employed within a simulation system 
at all levels should be equipped with an error reporting 
mechanism, allowing error recovery by the master 
solver, or error reporting to the end-user in case of irre-
coverable error: 

• the ODE solvers 
• the functions computing the derivatives and the al-

gebraic functions given the states, time, and inputs 
• the functions computing the initial states and the 

values of parameters 
• the linear equation solvers 
• the nonlinear equation solvers 

If some equation can be solved symbolically, without 
resorting to numerical solvers, then the symbolic solu-
tion code should be equipped with diagnostics to han-
dle errors as well.  

In the next section we give causes of errors that can 
appear during the model simulation. 

3.1 Errors in the evaluation of expressions 

During the evaluation of expressions, faults may occur 
due to the following causes: 

• Division by zero 
• Evaluation of non-integer powers with negative ar-

gument 
• Functions called outside their domain (e.g.: sqrt(-1), 

log(-3), asin(2)). For non built-in functions, these 
errors can be triggered by assertions within the algo-
rithm, or by calls to the pre-defined ModelicaError() 
function in the body of external functions. 

• Errors manifesting as computed wrong value of 
some variable(s), where the error is manually point-
ed out by a user or automatically detected as being 
outside min/max bounds. 

3.2 Assertion violations in models 

During initialization or simulation, assertions inside 
models can be triggered when the condition being as-
serted becomes false. 

3.3 Errors in the solution of implicit algebraic 
equations 

During initialization or simulation of DAE systems, 
implicit equations (or systems of implicit equations, 
corresponding to strong components in the BLT de-
composition) must be solved. In the case of linear sys-
tems, the solver might fail because there is some error 
in evaluating the coefficients of the A matrix and of the 
b vector of the linear equation Ax = b, or because said 
problem is singular. In the case of nonlinear equations 
f(x) = 0, the solver might fail for several reasons: the 
evaluation of the residual f(x) or of its Jacobian gives 
errors; the Jacobian becomes singular: the solver fails 
to converge after a maximum number of iterations. 

3.4 Errors in the integration of the ODEs 

In OpenModelica, the DAEs are brought to index-1 
ODE form by symbolic and numerical transformation, 
and these equations are then solved by an ODE solver, 
which iteratively computes the next state given the cur-
rent state. During the computation of the next state, e.g. 
by using Euler, Runge-Kutta or a BDF algorithm, er-
rors such as those reported in section 3.1, 3.2, 3.3 might 
occur. Furthermore, the solver might fail because of 
singularity in the ODE, as in the case of finite escape 
time solutions, or of discontinuities leading to chatter-
ing. 

4 Integrated Debugging Approach 
In this section we propose an integrated debugging 
method combining information from a static analysis of 
the model with dynamic debugging at run-time. 

4.1 Integrated Static-Dynamic Debug Method 

This method partly follows the approach proposed in 
[6][7] and further elaborated in [3]. However, our ap-
proach does not require the user to write diagnostic 
specifications of models. Also, the approach we present 
here can also handle the debugging of algorithmic code 
using classic debugging techniques.  

An overview of this debugging strategy is presented 
in Figure 1. In short, our run-time debugging method is 
based on the integration of the following: 

1. Dependency graph visualization and interaction. 
2. Presentation of simulation results and modeling 

code. 
3. Mapping of errors to model code positions. 
4. Execution-based debugging of algorithmic code. 

A possible debugging session might be as follows. 



During the simulation phase, the user discovers an error 
in the plotted results, or an irrecoverable error is trig-
gered by the run-time simulation code. In the former 
case, the user marks either the entire plot of the variable 
that presents the error or parts of it and starts the de-
bugging framework. The debugger presents an (IDG) 
interactive dependency graph with respect to the varia-
ble with the wrong value or the expression where the 
fault occurred. The dependency edges in IDG are com-
puted using the transformation tracing that is described 
in Section 5. The nodes in the graph consist of all the 
equations, functions, parameter value definitions, and 
inputs that were used to calculate the wrong variable 
value, starting from the known values of states, pa-
rameters and time. 

The variable with the erroneous value (or which 
cannot be computed at all) is displayed in a special 
node which is the root of the graph. The IDG contains 
two types of edges: 

1. Calculation dependency edges: the directed edges 
labeled by variables or parameters which are inputs 

(used for calculations in this equation) or outputs 
(calculated from this equation) from/to the equa-
tion displayed in the node.  

2. Origin edges: the undirected edges that tie the 
equation node to the actual model which this equa-
tion belongs to. 

The user interacts with the dependency graph in several 
ways:  

• Displaying simulation results through selection of 
the variables (or parameters) names (edge labels). 
The plot of a variable is shown in a popup window. 
In this way the user can quickly see if the plotted 
variable has erroneous values.  

• Displaying model code by following origin edges. 
• Invoking the algorithmic code debugging subsystem 

when the user suspects that the result of a variable 
calculated in an equation which contains a function 
call is wrong, but the equation seems to be correct. 

Using these interactive dependency graph facilities the 
user can follow the error from its manifestation to its 
origin. Note that in most cases of irrecoverable errors 
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Figure 1. Integrated debugging approach overview. 

 



arising when trying to compute a variable, the root 
cause of the error does not lie in the equation itself be-
ing wrong, but rather in some of the values of previous-
ly computed variables appearing in it being wrong, e.g., 
because of erroneous initialization or parameterization.  

The proposed debugging method can also start from 
multiple variables with wrong values with the premise 
that the error might be at the confluence of several de-
pendency graphs. 

Note that the debugger can handle both data de-
pendency edges (e.g. which variables influence the cur-
rent variable of interest), and origin edges (edges point-
ing from the generated executable simulation code to 
the original equations/parts of equations contributing to 
this code). Both are computed by the transformational 
debugger mentioned in Section 5. 

5 Static Transformational Debugging 
Transformational debugging is a static compile-time 
technique since it does not need run-time execution of a 
model. The method keeps track of symbolic transfor-
mations, can explain and display applied transfor-
mations, and compute dependence edges between the 
original model and the generated executable code. 

5.1 Common Operations on Continuous Equa-
tion Systems 

In order to create a debugger adapted for debugging the 
symbolic transformations performed on equation sys-
tems, its requirements should be stated. There are many 
symbolic operations that may be performed on equation 
systems. The following descriptions of operations also 
include a rationale for each of them, since it is not al-
ways apparent why perform certain operations are per-
formed. There are of course many more operations that 
can be performed than the ones listed below, which are 
however deemed most important, and which the de-
bugger for models translated by the OpenModelica 
Compiler [11] should be able to handle. 

5.1.1 Variable aliasing 

An optimization that is very common in Modelica 
compilers is variable aliasing. This is due to the con-
nection semantics of the Modelica language. For exam-
ple, if a and b are connectors with the effort-variable v 
and flow-variable i, a connection (2) will generate alias 
equations (3) and (4). 
connect(a, b)  (2) 
a.v = b.v     (3) 
a.i + b.i = 0 ⇒ b.i = -a.i  (4) 

In a result-file, this alias relation can be stored instead 
of a duplicate trajectory, saving both space and compu-
tation time. In the equation system, b.v may be substi-
tuted by a.v and b.i by -a.v, which may lead to fur-
ther optimizations of the equations. 

5.1.2 Known variables 

Known variables are similar to alias variables in that 
you may perform variable substitutions on the rest of 
the equation system if you find such an occurrence. For 
example, (5) and (6) can be combined into (7). In the 
result-file, you no longer need to store a value for each 
time step; once is enough for known variables (which 
have values that can be computed statically at compile-
time), parameters and constants. 
a = 4.0   (5) 
b = 4.0 – a + c    (6) 
b = 4.0 – 4.0 + c    (7) 

5.1.3 Equation Solving 

If the tool has determined that x needs to be solved for 
in (8), we need to symbolically solve the equation, pro-
ducing a simple equation with x on one side as in (9). 
Solving for x is not always straightforward, and it is not 
always possible to invert user-defined functions such as 
(10). Since x is present in the call arguments and the 
function cannot be inverted or inlined, it is not possible 
to solve the equation symbolically, so it is necessary to 
resort to a numerical non-linear solver during runtime. 
15.0 = 3.0*(x + y)   (8) 
x = 15.0/3.0 - y    (9) 
0 = f(3*x)    (10) 

5.1.4 Expression Simplification 

Expression simplification is a symbolic operation that 
does not change the meaning of the expression, while 
making it faster to calculate. It is related to many dif-
ferent optimization techniques such as constant folding. 
The order in which arguments are evaluated may be 
changed (11). Constant subexpressions are evaluated 
during compile-time (12). Non-constant subexpressions 
may be rewritten (13) and functions may be evaluated 
fewer times than in the original expression (14). It is 
also possible to use special knowledge about an expres-
sion in order to make it run faster (15) and (16). 

and(a,false,b) ⇒ false               (11) 
4.0 – 4.0 + c ⇒ c                    (12) 
max(a,b,7.5,a,15.0) ⇒ max(a,b,15,0)  (13) 
f(x) + f(x) + f(x) ⇒ 3*f(x)          (14) 
if cond then a else a ⇒ a            (15) 
if cond then false else true ⇒ cond  (16) 



5.1.5 Equation System Simplification 

It is of course also possible to solve some equation sys-
tems statically. For example a linear system of equa-
tions with constant coefficients (17) can be solved us-
ing one step of symbolic Gaussian elimination (18), 
generating two separate equations that can be solved 
individually after causalization (19). A simple linear 
equation system as (17) may also be solved numerically 
using e.g. LAPACK [1] routines. 
[1, 2; 2, 1] * [x; y] = [4; 5]        (17) 
[1, 2; 0,-3] * [x; y] = [4; -3]       (18) 
x = 2; y = 1;                         (19) 

5.1.6 Differentiation 

Symbolic differentiation [16] is used for many purpos-
es. It is used to expand known derivatives (20) or as 
one operation in index reduction. Jacobian matrices 
have many applications, e.g. to speed up simulation 
runtime [14]. The matrix is often computed using au-
tomatic differentiation [14][16] which combines sym-
bolic differentiation with other techniques to achieve 
fast computation. 

der(t^2, t) = 2*t                   (20) 

5.1.7 Index reduction 

In order to solve DAE’s numerically, discretization 
techniques and methods to numerically compute de-
rivatives are used (often referred to as solvers). Certain 
DAE’s need to be differentiated symbolically to enable 
a stable numeric solution. The differential index of a 
general DAE system is the minimum number of times 
that certain equations in the system need to be differen-
tiated to reduce the system to a set of ODEs, which can 
then be solved by the usual ODE solvers, Chapter 18 in 
[8]. While there are techniques to solve DAE’s of high-
er index than 1, most of them require index-1 DAE’s 
(no second derivatives). This makes it more convenient 
to reformulate the problem using index reduction algo-
rithms, Chapter 18 in [8]. One such technique uses 
dummy derivatives [15]; this is the algorithm currently 
used in the OpenModelica Compiler. 

5.1.8 Function inlining 

Writing functions to do common operations is a great 
way to reduce the burden of maintaining code. When a 
function call is inlined (21), it can be treated as a macro 
expansion (22) and may increase the number of sym-
bolical manipulations that can be perform on an expres-
sion such as (23). 
2*f(x, y)/pi                         (21) 
2*pi*((sin(x+y)+cos(x+y-y)/pi        (22) 
2*(sin(x+y) + cos(x))                (23) 

5.2 Debugging 

The choice of techniques for implementation of a de-
bugger depends on where and for what it is intended to 
be used. Translation and optimization of large applica-
tion models can be very time-consuming. Thus it would 
be good if the approach has such a low overhead that it 
can be enabled by default. It would also be good if er-
ror messages from the runtime could use the debug in-
formation from the translation and optimization stages 
to give more understandable and informative messages 
to the user. 

A technique that is commonly used for debugging is 
tracing. The simplest way of implementing tracing is to 
print a message to the terminal or file in order to log the 
operations that you perform. The problem here is that if 
an operation is rolled back, the log-file will still contain 
the operation that was rolled back. The data also need 
to be post-processed if the operations should be 
grouped by equation.  

A more elegant technique is to treat operations as 
metadata on equations, variables or equation systems. 
Other metadata that should already be propagated from 
source code to runtime include the name of the compo-
nent that an equation is part of, which line and column 
that the equation originates from, and more. Whenever 
an operation is performed, the operation kind and in-
put/output is stored inside the equation as a list of oper-
ations. If the structure used to store equations is persis-
tent this also works if the tool needs to roll back execu-
tion to an earlier state. 

The cost of adding this meta data is a constant 
runtime factor from storing a new head in the list. The 
memory cost depends a lot on the compiler itself. If 
garbage collection or reference counting is used, the 
only cost is a small amount to describe the operation 
(typically an integer and some pointers to the expres-
sions involved in the operation). 

5.3 Bookkeeping of Operations 

5.3.1 Variable Substitution 

The elimination of variable aliasing and variables with 
known values (constants) is considered as the same 
operation that can be done in a single phase. It can be 
performed as a fixed-point algorithm where substitu-
tions are collected which record if any change was 
made (stop if no substitution is performed or no new 
substitution can be collected). For each alias or known 
variable, merge the operations stored in the simple 
equation x = y before removing it from the equation 
system. For each successful substitution, record it in the 
list of operations for the equation. 



The history of the variable a in the equation system 
(24) could be represented as a more detailed version 
(25) instead of the shorter (26) depending on the order 
in which the substitutions were performed.  
a = b; b = -c; c = 4.5                (24) 
a = b ⇒ a = -c ⇒ a = -4:5            (25) 
a = b ⇒ a = -4.5                      (26) 

In equation systems that originate from a Modelica 
model it is preferable to see a substitution as a single 
operation rather than a longer chain of operations 
(chains of 50 cascading substitutions are not unheard of 
and makes it hard to get an overview of the operations 
performed on the equation, even though sometimes all 
the steps are necessary to understand the reason for the 
final substitution). 

It is also possible to collect sets of aliases and select 
a single variable (doing everything in one operation) in 
order to make substitutions more efficient. However, 
alias elimination may still cascade due to simplification 
rules (27), which means that you need a work-around 
for substitutions performed in a non-optimal order. 

a = b - c + d ⇒ a = b - b + d  
⇒ a = d  (27) 

Thus, we compare the previous operation with the new 
one and if we detect a link in the chain, we store this 
relation. When displaying the operations of an equation 
system, it is then possible to expand and collapse the 
chain depending on the user’s needs. 

5.3.2 Equation Solving 

Some equations are only valid for a certain range of 
input. When solving an equation like (28), you assert 
that the divisor is non-zero and eliminate it in order to 
solve for x. We record a list of the assertions made (and 
their sources for traceability). An assertion may be re-
moved if we later determine that it always holds or if it 
overlaps with another assertion (29). 

x/y = 1 ⇒ x = y (y != 0)             (28) 
y!=0, 4.0 < y < 8.0 ⇒ 4.0 < y < 8.0  (29) 

5.3.3 Expression Simplification 

Tracking changes to an expression is easy if you have a 
working fixed-point algorithm for expression simplifi-
cation (record a simplification operation if the simplifi-
cation algorithm says that the expression changed). 
However, if the simplification algorithm oscillates (as 
in 30) it is hard to use it as a fixed-point algorithm. 

2*x ⇒ x*2 ⇒ 2*x ⇒ ...  (30) 

The simple solution is to use an algorithm that is fixed 
point, or conservative (reporting no change made when 

performing changes that may cause oscillating behav-
ior). Finding where this behavior occurs is not hard for 
a compiler developer (simply print an error message 
after 10 iterations). If it is hard to detect if a change has 
actually occurred (due to changing data representation 
to use more advanced techniques), one may need to 
compare the input and output expression in order to 
determine if the operation should be recorded. While 
comparing large expressions may be expensive, it is 
often possible to let the simplification routine keep 
track of any changes at a smaller cost. 

5.3.4 Equation System Simplification 

It is possible to store these operations as pointers to a 
shared and more global operation or as many individual 
copies of the same operation. It is preferable to store 
this as a single global operation (see Figure 2) since the 
only cost is only some indirection when reading the 
data. It is also recommended to store reverse pointers 
(or indices) from the global operation back to each in-
dividual operation as well, so that reverse lookup can 
be performed at a low cost. 

 
Figure 2. Sharing Results of Linear System Evaluation. 

As the tool we are using performs only limited simpli-
fication of these strongly connected components, we 
are currently limited to only recording evaluation of 
constant linear systems. As more of these optimizations 
are added to the compiler, they will also need to be 
traced and support added for them in the debugger. 

5.3.5 Differentiation 

Whenever we perform symbolic differentiation in an 
expression, e.g. to expand known derivatives (31), we 
record this operation in the equation. OpenModelica 
currently does not eliminate this state variable as in 
(32), but if it did the operation would also be recorded. 

der(x) = der(time) ⇒ der(x) = 1.0   (31) 
der(x) = 1.0 ⇒  
  x = time + (xstart-timestart)        (32) 

5.3.6 Index reduction 

For the index reduction algorithm, any performed sub-
stitution is recorded, source information is added to the 
newly introduced dummy derivative variable, and the 



operations are performed on the affected equations. As 
an example for the dummy derivatives algorithm, this 
includes differentiation of the Cartesian coordinates 
(x; y) of a pendulum with length L (33) into (34) and 
(35). After the index reduction is complete, further op-
timizations such as variable substitution (37), are per-
formed to reduce the complexity of the complete sys-
tem. 
x^2 + y^2 = L^2                       (33) 
der(x^2 + y^2) ⇒ 2*(der(x)*x + der(y)*y)  
                                      (34) 
der(L^2) ⇒ 0                          (35) 
2*(der(x)*x + der(y)*y) ⇒ 2*(u*x + v*y) 
                                      (36) 

5.3.7 Function inlining 

Since inlining functions may cause a new function call 
to be added to the expression, functions are inlined un-
til a fixed point is reached (with a maximum depth to 
avoid problems with recursive functions). Expressions 
are also simplified in order to reduce the size of the 
final expression. When inlining calls in an equation 
have been completed, this is recorded as an inline oper-
ation with the expression before and after. 

5.4 Presentation of Operations 

Until now the focus has been on collecting operations 
as data structured in the equation system. What is it 
possible to do with this information? During the trans-
lation phase, it can be used directly to present infor-
mation to the user. Assuming that the data is well struc-
tured, it is possible to store it in a static database (e.g. 
SQL) or simply as structured data (e.g. XML). That 
way the data can be accessed by various applications 
and presented in different ways according to the user 
needs for all of them. The current OpenModelica proto-
type only outputs text at present; in the future this in-
formation will be presented in the origin edge intro-
duced in Section4.  

The number of operations stored for each equation 
varies widely. The reason is that when a known varia-
ble x is replaced with, e.g., the number 0.0, one may 
start removing subexpressions. One then ends up with a 
chain of operations that loops over variable substitu-
tions and expression simplification. The number of op-
erations performed may scale with the total number of 
variables in the equation system if the the number of 
iterations that the optimizer may take is not limited 
[17]. This makes some synthetic models very hard to 
debug. The example model in Listing 1 performs 1 + 2 
+ … + N substitutions and simplifications in order to 
deduce that a[1] = a[2] = … = a[n]. 

 

Listing 1. Alias Model with Poor Scaling 
model AliasClass_N 
  constant Integer N=60; 
  Real a[N]; 
equation 
  der(a[1]) = 1.0; 
  a[2] = a[1]; 
  for i in 3:N loop 
    a[i] = i*a[i-1]-sum(a[j]  
           for j in 1:i-1); 
  end for; 
end AliasClass_N; 

Using a real-world example, the Engine1a model from 
the Modelica MultiBody library, [12], the majority of 
equations have less than 10 operations (Figure 3), 
which is a manageable number to go through if one 
needs to debug a model and to find out which equations 
are problematic. 

 
Figure 3. The number of symbolic operations performed 

on equations in the Engine1a model. 

5.5 Runtime supported by static information 

In order to produce better error messages during 
runtime, it is beneficial to be able to trace the source of 
the problem. The toy example in Listing 2 is used to 
show the information that the augmented runtime can 
display when an error occurs. The user should be pre-
sented with an error message from the solver (linear, 
nonlinear, ODE or algebraic does not matter). Here, the 
displayed error comes from the algebraic part of the 
solver. It clearly shows that log(0.0) is not defined and 
the source of the error in the concrete syntax (the 
Modelica code that the user may influence) as well as 
the name of the component (which may be used as a 
link by a graphical editor to quickly switch view to the 
diagram view of this component). The symbolic trans-
formations performed on the equation are also dis-
played, which can help debug the model better. 

 



Listing 2. Runtime Error 
Error: At t=0.5, block1.u = 0.0 is not in 
the domain of log (>0) 
Source equation: [Math.mo :2490:9-2490:33] 
y = log(u) 
Source component: block1 (MyModel 
Modelica.Blocks.Math.Log) 
Flattened equation: block1.y = log( 
block1.u) 
Manipulated equation: y = log(u) 
<Operations> 
variable substitution: log(block1.u ) = 
log(u) 
<Depending on equations (from BLT)> 
u <:link> 

Currently we are working on extending the information 
we collect during the static analysis to build the Interac-
tive Dependency Graph from Figure 1, Section 4.  

6 Dynamic Debugging 

6.1 Using the Algorithmic Code Debugger 

The debugger part for algorithmic Modelica code is 
implemented within the OpenModelica environment as 
a debug plugin for the Modelica Development Tooling 
(MDT) which is a Modelica programming perspective 
for Eclipse. The Eclipse-based user interface of the new 
efficient debugger is depicted in Figure 4. 

 
Figure 4. The debug view of the new efficient algorithmic 

code debugger within the MDT Eclipse plugin. 

The algorithmic code debugger provides the following 
general functionalities: 

• Adding/Removing breakpoints. 
• Step Over – moves to the next line, skipping the 

function calls. 
• Step In – steps into the called function. 
• Step Return – completes the execution of the func-

tion and comes back to the point from where the 
function is called. 

• Suspend – interrupts the running program. 
• Resume – continues the execution from the most re-

cent breakpoint. 
• Terminate – stops the debugging session. 

It is much faster and provides several stepping options 
compared to the old dynamic debugger because the old 
debugger was based on high-level source code instru-
mentation which made the code grow by a factor of the 
number of variables. The debug view primarily consists 
of two main views: 

• Stack Frames View 
• Variables View 

The stack frame view, shown in Figure 5, shows a list 
of frames that indicates how the flow had moved from 
one function to another or from one file to another. 
This allows backtracing of the code. 

 
Figure 5. The stack frame view of the debugger. 

 
Figure 6. The variable view of the new debugger. 

It is possible to select the previous frame in the stack 
and inspect the values of the variables in that frame. 



However, it is not allowed to select any of the previous 
frames and start debugging from there. 

Each frame is shown as <function_name at 
file_name:line_number>. 

The Variables view (Figure 6) shows the list of var-
iables at a certain point in the program. It contains four 
columns: 
• Name – the variable name. 
• Declared Type – the Modelica type of the variable. 
• Value – the variable value. 
• Actual Type – the mapped C type. 

By preserving the stack frames and the variables it is 
possible to keep track of the variables values. If the 
value of any variable is changed while stepping then 
that variable will be highlighted yellow (the standard 
Eclipse way of showing the change). 

6.2 Dynamic Debugger Implementation 

In order to keep track of Modelica source code posi-
tions, the Modelica source-code line numbers are in-
serted into the transformed C source-code. This infor-
mation is used by the Gnu Compiler GCC to create the 
debugging symbols that can be read by the Gnu debug-
ger GDB [10]. 

Through the bootstrapped OpenModelica Compiler 
[4] the line number information is propagated all the 
way from the high level Modelica representation to the 
low level intermediate representation and the generated 
code. 

This approach was developed for the symbolic 
model transformation debugger described in [5] and is 
also used in this debugger. 

 
Figure 7. Dynamic debugger flow of control. 

Consider the Modelica code shown in Figure 8: 

 
Figure 8. Modelica Code. 

The OpenModelica Compiler compiles this HelloWorld 
function into the C source-code depicted in Figure 9. 

 
Figure 9. Generated C source-code. 

The generated code contains blocks which represent the 
Modelica code lines. The blocks are mentioned as 
comments in the following format /*#modelicaLine 
[modelica_source_file:line_number_info]*/. 

This information is now used to generate debug 
symbols that are recognized by GDB. The generated C 
source-code is used by a small Perl script to create an-
other version of the same source-code with different 
line number blocks, see Figure 10. 

 
Figure 10. Converted C source-code. 

The converted C source-code contains a line number 
mapping between the generated C source-code and the 
actual Modelica source-code in the GDB specific for-
mat. Examine the lines starting with #line in Figure 10. 

The executable is created from the converted C 
source-code and is debugged from the Eclipse-based 



Modelica debugger which converts Modelica-related  
commands to low-level GDB commands at the C code 
level. 

The Eclipse interface allows adding/removing 
breakpoints. The breakpoints are created by sending the 
<-break-insert filename:linenumber> command to 
GDB. At the moment only line number based break-
points are supported. Other alternatives to set the 
breakpoints are; <-break-insert function>, <–break-
insert filename:function>. 

These program execution commands are asynchro-
nous because they do not send back any acknowledge-
ment. However, GDB raises signals; 
• as a response to those asynchronous commands. 
• for notifying program state. 

The debugger uses the following signals to perform 
specific actions: 
• breakpoint-hit – raised when a breakpoint is 

reached. 
• end-stepping-range – raised when a step into or step 

over operations are finished. 
• function-finished – raised when a step return opera-

tion is finished. 

These signals are utilized by the debugger to extract the 
line number information and highlight the line in the 
source-code editor. They are also used as notifications 
for the debugger to start the routines to fetch the new 
values of the variables. 

The suspend functionality which interrupts the run-
ning program is implemented in the following way. On 
Windows GDB interrupts do not work. Therefore a 
small program BreakProcess is written to allow inter-
rupts on Windows. The debugger calls BreakProcess 
by passing it the process ID of the debugged program. 
BreakProcess then sends the SIGTRAP signal to the 
debugged program so that it will be interrupted. Inter-
rupts on Linux and MAC are working by default. 

The algorithmic code debugger is operational and 
works without performance degradation on large algo-
rithmic Modelica/MetaModelica applications such as 
the OpenModelica compiler, with more than 100 000 
lines of code. 

The algorithmic code debugging framework graph-
ical user interface is developed in Eclipse as a plugin 
that is integrated into the existing OpenModelica 
Modelica Development Tooling (MDT). The tracking 
of line number information and the runtime part of the 
debugging framework is implemented as part of the 
OpenModelica compiler and its simulation runtime. 

The algorithmic code debugger currently supports 
the standard Modelica data types including arrays and 
records as well as all the additional MetaModelica data 

types such as ragged arrays, lists, and tree data types. It 
supports algorithmic code debugging of both simula-
tion code and MetaModelica code. 

Furthermore, in order to make the debugging practi-
cal (as a function could be evaluated in a time step sev-
eral hundred times) the debugger supports conditional 
breakpoints based on the time variable and/or hit count.  

The algorithmic code debugger can be invoked from 
the model evaluation browser and it breaks at the exe-
cution of the selected function to allow the user to de-
bug its execution. 

7 Conclusions and Future Work 
We have presented static and dynamic debugging 
methods to bridge the gap between the high abstraction 
level of equation-based object-oriented models com-
pared to generated executable code. Moreover, an 
overview of typical sources of errors and possibilities 
for automatic error handling in the solver hierarchy has 
been presented. 

Regarding static transformational debugging, a pro-
totype design and implementation for tracing symbolic 
transformations and operations has been made in the 
OpenModelica Compiler. It is very efficient with an 
overhead of the order of 0.01%. 

Regarding dynamic algorithmic code debugging, 
this part of the debugger is in operation and is being 
regularly used to debug very large applications such as 
the OpenModelica compiler with more than 100 000 
lines of code. The user experience is very positive. It 
has been possible to quickly find bugs which previous-
ly were very difficult and time consuming to locate. 
The debugger is very quick and efficient even on very 
large applications, without noticeable delays compared 
to normal execution. 

A design for an integrated static-dynamic debugging 
has been presented, where the dependency and origin 
information computed by the transformational debug-
ger is used to map low-level executable code positions 
back to the original equations. Realizing the integrated 
design is work-in-progress and not yet completed. 

To our knowledge, this is the first debugger for 
Modelica that has both static transformational symbolic 
debugging and dynamic algorithmic debugging. 
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