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Summary 

This deliverable (P2.23 PU) includes two public prototypes on Modelica-based model-driven optimization 
listed below and appended to this document.  
 
It also includes a public prototype on efficient optimization with heavy goal functions such as long-running 
simulations. 
  
The first paper describes a tool integrated in OpenModelica provides optimization for parameter studies, 
including pareto front. 
 
The second paper addresses dynamic optimization and uses collocation or multiple shooting to directly 
optimize the trajectory. One of the first parallel multi-core designs and implementations of these methods in a 
Modelica context is described and applied to several application models, on multi-core computers with up to 
16 processors. 
 
The companion deliverable in the T2.23 task is the P2.23b confidential prototype developed by SKF which 
focuses on efficient optimization with heavy goal functions including long-running simulations. 
 
 

1. Optimization with Heavy Goal Functions 

The goal function is produced by long-running simulations, e.g. in SKF Bearing simulations. A single evaluation 
of the goal function might take many hours up to several days. Derivatives of the goal function are not available. 
 
There is a class of algorithms that can be used in this case, called model-building algorithms. Such algorithms 
build a model from the information returned by the few calls of the goal function. The model can be constructed by 
response surfaces, polynomials, or radial base functions. The model-building algorithm updates the model and its 
trust region (the region in hyperspace it applies to) in each step of the algorithm. 
 
A well-known researcher in this area, Powell, developed such an algorithm in 2002 called UOBYQA, in Fortran. 
However, the implementation was hard to understand and extend. 
 
A more modern re-implementation of most of UOBYQA in C/C++ called CONDOR was developed by other 
people 2005. This version was extended to handle constraints of three kinds: boundaries, linear, and nonlinear. The 
source code of CONDOR was available. 
 
However, extension of CONDOR turned out to be difficult for the following reasons: 

 Lack of use of object oriented programming techniques 
 Own special-purpose implementations of everything: vectors/matrices, QR-factorization… 
 No unit tests and extremely limited documentation 

 
The following considerations wore done before starting the work on our improved implementation: 

 More use of the C++ language for better abstraction and modularity. 
 Boost for multithreading to be able to use parallelism. 
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 The Armadillo linear algebra library (uses LAPACK). 
 Gtest för testing. 

 
It turned out that one of us (Per Magnus Olsson) have now re-implemented most parts of CONDOR, including: 

 Model building part 
 Optimization algorithms 

 
The improvements and extensions of CONDOR are the following: 

 More modular architecture 
 Parallellization at several levels, including (1) several starting points in parallel for the search with 

(different) parameters, and (2) parallel evaluation of the goal function at different points. 
 Change of trust region through coordinate system change 
 Documentation and test cases 

 
The new CONDOR prototype is operational and can use parallelism on multi-core architectures. It is planned to be 
further extended and applied to industrial applications. 
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Abstract

One of the main goals when modeling a physical system is to optimize its design or configuration. Currently
existing platforms are often dependent on commercial software or are based on in-house and special-purpose
development tools. These two alternatives present disadvantages that limit sharing and reusability. The same
assessment has partly motivated the origin of the Modelica language itself. In this paper, a new optimization
platform called OMOptim is presented. Intrinsically linked with OpenModelica, this platform is mainly
aimed at facilitating optimization algorithm development, as well as application use together with models. A
first version is already available and three test cases of which one using respectively Dymola and two using
OpenModelica are presented. Future developments and design considerations of OMOptim but also of related
OpenModelica computation functions are also discussed.

Keywords: Optimization, model-based, parameter, genetic algorithm, Modelica, modeling, simulation

1. Introduction

Model-based product development is an approach
where a computer-based model of the product is built
and refined before the actual production, to reduce
costs, increase quality, and shorten time-to-market.
Optimization is often used to improve product qual-
ity or design. Several types of optimizations can be
used with these goals in mind. This can either con-
cerns parameter or configuration optimization (e.g.
which selection of the best components or connec-
tion paths to use in a defined process). Some de-
sign tasks also need a dynamic optimization to bench-
mark different configurations. For the user but also
for the developer of such algorithms, two main issues
can be noticed. The first issue concerns the devel-
opment platform itself. The developers can either
use a commercial plat-form (e.g. MatLab connected
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with a external simulator) or develop their own en-
vironment. The disadvantages of the first option are
mainly the proprietary aspects of such tools which
makes it harder to modify and extend, and also the
involved license fees. The latter solution needs more
development time and reduce exchange opportunity
with other teams. Another important issue of model-
based optimization lies in the computation time. Op-
timization applications often requires a large number
of iterations and thus, a long time to give interest-
ing results. This paper presents an initiative to limit
these two main issues by developing an open-source
optimization platform for OpenModelica (OMOptim)
involving generation of efficient source code for multi-
core computer architectures for increasing simulation
performance.

1.1. Structure of the Paper

This paper first presents the context and moti-
vation of the OMOptim development. A general re-
view of optimization methods is then presented. The
next sections successively describe the first version
of OMOptim, an example of an application already

8th International Modelica Conference, 2011



implemented and some concluding words about the
intended future of this platform.

2. Requirements

The Center for Energy and Processes of Mines Pa-
risTech school is involved in the CERES project [1]
concerning industrial processes optimization. In this
project, the best process technologies and heat recov-
ery topology should be chosen simultaneously with
mini-mum costs and environmental impacts. PELAB
on the other hand is involved in the SSF Proviking
EDOp project [2], concerning dynamic optimization
for large industrial optimization problems, targeting
both para-metric as well as dynamic optimization.
This paper aims at building a bridge between these
two projects with a common open source optimiza-
tion platform. Thus, it should be ergonomic and ef-
ficient enough to use but also allow development of
algorithms in the environment. A first version of this
tool called OMOp-tim has been developed and is de-
scribed below. Besides this goal, one critical issue
will be the simulation (and thus) optimization time.
Therefore, optimization algorithms but also the simu-
lation tool efficiency should be very high. This paper
briefly presents current and intended developments
which go in this direction.

3. Optimization

This project aims at solving several different opti-
mization problems, and in order to do this efficiently,
a number of different solution techniques are required.
Optimization problems can be classified according to
several criteria e.g. existence of constraints, the na-
ture of variables,and the nature of equations involved.
A large number of optimization algorithms have been
developed over the last decades to solve these differ-
ent problems. One can roughly divide them in two
families: gradient based methods and meta-heuristics
algorithms.

3.1. Gradient based methods

The gradient based family contains numerical lin-
ear and non linear programming methods. These
algorithms require substantial gradient information
and are often used to improve a solution near a start-
ing point. Applied on simple models, they offer an
efficient way to find global optimum. However, many

engineering optimization problems are highly non-
linear and present several optima. Such problems
create numerical difficulties (like discontinuities) for
this family algorithms and result can depend on ini-
tial point defined by the user.

3.2. Meta-heuristic algorithms

Meta-heuristic algorithms present a common char-
acteristic: they combine rules and randomness to imi-
tate natural phenomena. Within such methods, deriva-
tive computation is unnecessary. Most developed meth-
ods are evolutionary algorithms and genetic algorithms
which are based on biological evolution formulation
[3] but also tabu search, which reproduces animal
behavior [4]. Simulated annealing is another meta-
heuristic method based on physical annealing process
[5].

3.2.1. Genetic algorithms and evolution strategies

A genetic algorithm (GA) is based on natural evo-
lution and reproduces its main operations: reproduc-
tion, crossover and mutation. The initial theory has
been proposed by Holland [6] and Goldberg [3] among
others. An individual is represented by a genome
which contains values of decisive parameters. For
each individual, fitness values are calculated; these
fitness values correspond to the objectives we want
to minimize or maximize. A population is initially
created by assigning random values to decisive pa-
rameters for each individual. New generations are
created by combination of parents and innovation is
introduced by mutation step. At each generation, a
selection operation is followed which keep only the
best individuals according to the fixed objectives but
also following diversity parameters. Evolution strate-
gies mainly differ from Genetic algorithms (GAs)in
parameters coding: while GAs use binary coding and
operations, evolution strategies use real coded param-
eters [7]. By extension, evolution strategies are of-
ten called genetic algorithms. These methods have
largely been applied to estimate parameter values
which minimize one or several objectives. It is in-
deed independent of problem type and can be ap-
plied to constrained or unconstrained problems, can
have discrete or continuous variables, can follow one
or several objectives and can be applied to linear or
non-linear problems. Evolution strategies and more
generally meta-heuristic algorithms present several
advantages. First, they can be applied to complex
engineering problems. They also do not need any



particular initialization point and are therefore in-
dependent of it. Finally, they tend to escape local
optimum problems (e.g. with highly discontinuous
problems). However, for linear and simple non-linear
problems, linear or non-linear programming methods
are much more suited and efficient (especially because
of specific formulation and gradient information).

4. OMOptim 0.9

4.1. Goals

OMOptim intends to be a platform where differ-
ent families of optimization algorithms can be imple-
mented and linked with the OpenModelica simulator
but also with other tools e.g. using FMI (Functional
Mock-up Interface) [8]. Figure 1 illustrates its high-
level design concept.

Figure 1: Top-level conceptual view of the OMOptim model-
based optimization tool in OpenModelica.

4.2. Implementation

A first version of OMOptim including a graph-
ical user interface has been developed in C++ and
already tested on several use-cases (cf. Section 5).
This version uses the OpenModelica API to read and
eventually modify the model through the Corba com-
munication protocol [9].

This version can only run meta-heuristic optimiza-
tion methods since at this time, it does not have ac-
cess to information about derivatives, even though
OpenModelica can produce such information. As pre-
viously stated, only input variables specification and
output variables reading are needed for such meth-
ods. Specifying input variables and reading results

is done using input and output text files. To im-
plement meta-heuristic algorithms, an efficient and
adapted framework has been used (ParadisEO library
[10]). OMOptim already includes several genetic al-
gorithms, e.g. NSGA2, SPEA2 [11] or self-adaptative
versions [12].

4.3. User interface

At the same time, a GUI has been developed al-
lowing graphical selection of optimization variables,
parameters and objectives (Figure 2) but also reading
results.

Model structure Model Variables
Optimized parameters

Optimized Objectives

Figure 2: Parameters and objectives selection in the OMOptim
optimization problem definition.

5. Test cases

Three test cases are presented here. The first uses
Dymola as a simulation tool on an industrial applica-
tion, but still uses OpenModelica to access the model
structure. The second shows a small example applica-
tion with OpenModelica. The third uses OpenMod-
elica on an industrial application and an optimiza-
tion module which is currently executed separately,
but will be integrated with OpenModelica. As previ-
ously stated, meta-heuristic algorithms can interact
with simulation tool using only input and output files.
Thus, it is possible to interact with most simulation
tools. However, in the future, all OMOptim algo-
rithms may not be compatible with other simulators
than OpenModelica (cf. section 6)



5.1. Heat-pump application using Dymola for simu-
lation

A first application has been done which concerns
a multi heat-pump system in a food industrial process
[13]. This system consists of three heat-pumps used
to heat-up solutions of the process. These three heat-
pumps are connected to a heat-recovery stream. The
model integrates dynamic items e.g. hot water tank
emptying and filling during simulation (cf. Figure 3).

Figure 3: Modelica model of an industrial process being opti-
mized.

The optimization consists in finding optimal flow
repartitioning of the heat-recovery stream but also
optimal powers of these heat-pumps, including the
possibility to disable one or several heat-pumps. Two
objectives are considered in this optimization: de-
creasing operational cost and investment cost. An
auto-adaptive genetic algorithm has been developed
for this study in OMOptim [13][12]. This genetic al-
gorithm includes standard deviation of each genome
parameter in the genome itself of the genetic algo-
rithm. Therefore, the variation amplitude between
each generation is itself submitted to modification
and selection.

OMOptim allows the user to obtain several op-
timal configurations according to the two objectives
fol-lowed i.e. investment and operating cost. More-
over, a sensitivity analysis has been performed to an-
alyze the impact of CO2 carbon tax on optimum con-
figurations (Figure 4).
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Figure 4: Investment and operation costs for optimal config-
urations (horizontal bars correspond to carbon tax variation
sensitivity).

5.2. A Linear actuator application using OpenMod-
elica

The model here consists of a linear actuator with
a spring damped stopping [14, p. 583]. The model
configuration is presented on Figure 5.

Figure 5: Linear actuator model

A reference response is generated considering a
first order system. This response is defined by a first
order ODE : 0.2 ∗ ẏref (t) + yref (t) = 0.05. The opti-
mization consists in making the resulting linear actu-
ator behavior be as close as possible to this reference
response. To achieve this, the damping parameters
d1 and d2 of both spring dampers are considered as
free variables to be determined by the optimization
algorithm. The objective function corresponds to the
integral of square deviation along simulation time T :
f(d) =

∫ T
0 (y(t) − yref (t))2 dt.

With obtained parameters (d1 = 4.90 and d2 =



19.88), the behavior suits the reference response well
(cf. Figure 6). These results were obtained in less
than five minutes on a standard Intel Core2 Duo @
2.53 GHz.
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Figure 6: Model and reference responses after optimization of
damper parameters

5.3. A dynamic optimization using an external SQP
module

This third test case concerns a power plant regula-
tion. It is only described very briefly here - a more de-
tailed presentation is planned in a future paper. This
application has been run using an external Sequential
Quadratic Programming (SQP) optimization module.

In power plants, the main steam temperature con-
trol regulates the spray (attemperator) flow rate. Pre-
cise modeling of super heater dynamics and improv-
ing the quality of control of the superheated steam
temperature is essential to improve the efficiency of
the Boiler. In addition to this, the physical con-
straints of the turbine blades are also met using this
control strategy. This control methodology is based
on an adaptive prediction of the steam temperature
trends. The architecture of the newly developed con-
trol system is similar to that of conventional boiler
but the temperature feedback is given from the model
instead of a sensor as shown in Figure 7.

A simple heat exchanger model is adapted to model
the first stage of super heater regarding steam tem-
perature, steam flow and flue gas temperature as mea-
surements. This resulted into a set of algebraic differ-
ential equations which captured the behavior of the
super heater along with the attemperator.

A SQP optimizer is used to calculate the spray
flow, driven by an objective function to find the least

Figure 7: Advanced steam temperature control strategy for
power plant

square error between the predicted and set point of
steam temperature for a defined control horizon. Dy-
namic constraints are considered for spray and metal
temperatures to consider the metal strains.

The first results are promising. However, this
function is a separate module that is not yet inte-
grated with the available version of OMOptim. This
integration is planned in the near future.

6. Future work

6.1. OMOptim Structure Evolution

OMOptim intends to become an attractive frame-
work to develop and execute optimization algorithms
for Modelica users. To achieve this, its structure
should be flexible enough to address the needs of
many different kinds of optimization. The structure
should also provide an efficient and ergonomic way to
develop special-purpose algorithms including sharing
and usage. Like a Modelica library, it would be per-
tinent and useful to list available optimization algo-
rithms in libraries sharable within the Modelica com-
munity. Moreover, the structure should be able to
support the combination of several algorithms work-
ing together. It should for example be used to apply a
meta-heuristic optimization function with an objec-
tive function computed from another function (e.g.
the objective could itself be the result of a sensitivity
analysis). In some cases, it should also be possible to
create new algorithms by graphically connecting ex-
isting optimization modules like in component-based
modeling.



6.2. Hybrid Optimization

Meta-heuristic optimization algorithms can be cou-
pled with local search functions [15]. This combina-
tion intends to combine advantages of both families.
Meta-heuristics allow spreading populations over a
large domain and thus limit the risk of obtaining a
local optimum solution. Local search functions can
lead to a faster convergence and to more precise re-
sults (e.g. [16] or [17]).

To achieve hybrid optimization implementation,
a stronger link with OpenModelica should be built.
In particular, gradient information should be commu-
nicated to optimization methods. The first develop-
ments in this direction are currently under way.

6.3. Dynamic optimization

Dynamic optimization requires modifying model
parameters while performing the simulation. This
functionality assumes the development an interface
between OpenModelica and OMOptim while the for-
mer is computing. First trials have been done in
this direction, using the new online interactive sim-
ulation facility of OpenModelica. More specifically,
integration of a Sequential Quadratic Programming
optimizer within OMOptim is planned in the near
future (cf. section 5.3).

6.4. Parallelization for Efficient Computation

Applying parallelism and parallel compilation tech-
niques at many levels of the problem, from prob-
lem formulation to inlining the solver and software
pipelining, is being addressed in this project [18]. The
constraints of the optimization problem can often be
handled in parallel. In this case large system mod-
els can be restructured to smaller sub-system mod-
els. The PELAB research group at Linkping Uni-
versity has a long tradition of handling the compila-
tion process in parallel, optimizing it, and adapting it
for multi-core architectures. Some recent encourag-
ing results[19] about using GPU architectures instead
of CPU caused PELAB to invest in a two-teraflop
(peak) Nvidia Fermi GPU that will be used in this
project. Another step is to extend the support of ef-
ficient event-handling in parallelized code in order to
also handle hybrid models.

6.5. Optimization Performance Profiling and Debug-
ging

One current disadvantage of using high-level equa-
tion based languages [14] as well as other high-level

simulation tools is the poor support for performance
profiling and debugging. This will be even more pro-
nounced when an engineer wants to trace the rea-
son to why an optimization is too slow or has failed.
There exists a substantial expertise at PELAB re-
garding debugging and traceability technology in in-
tegrated environments. We are planning to use this
as a basis for a profiling feature in the optimization
platform that is needed for tracing the causes of prob-
lems bottle-necks in the model.

7. RelatedWork

7.1. jModelica

The current Modelica language does not include
formulating optimizations problems. However, a lan-
guage extension called Optimica [20] has been devel-
oped by JModelica (www.jmodelica.org). JModelica
offers an efficient platform for dynamic optimization
and works in close collaboration with the model since
it has an integrated Modelica compiler.

7.2. Dymola optimization library

The Dymola commercial tool from Dassault Sys-
tems [21], Dymola has its own optimization library,
containing genetic algorithms. Another product from
Dassault Systems is Isight [22] that supports process
flow optimization with genetic algorithms. The main
disadvantage of these two products is their closeness.

7.3. Meta-heuristic algorithms

Several tools may link meta-heuristic optimiza-
tion methods to different simulators. One can cite
OptiY [23], modeFrontier [24], Isight [22], or GenOpt
[25]. They propose a rich list of implemented algo-
rithms and can be used with nearly all simulators
(all these tools interact with simulation software us-
ing input file modification and output file reading).
Excepting GenOpt, all these softwares are commer-
cial.

7.4. What should OMOptim offer

OMOptim aims to offer OpenModelica users an
extension opening new opportunities. Especially, it
intends to be a shared and open platform where scien-
tists could develop optimization algorithms and apply
them to Modelica models.

OpenModelica has been chosen for its opening
and its substantial development rhythm. Also, Open-
Modelica supports symbolic differentiation which al-
lows robust and advanced numerical methods, very



useful in optimization problems. This could be espe-
cially useful for the development of hybrid algorithms
(cf. section 6.2).

Parallelism is also an intended development direc-
tion. Applying parallelism and parallel compilation
techniques at many levels of the problem, from heuris-
tic simulation repartition to inlining the solver and
software pipelining, is being addressed in this project.
For example, population based meta-heuristic opti-
mization methods present high parallel scalability.

Concerning dynamic optimization or components/
connections that change during simulations, the Mod-
elica language doesn’t yet support structural dynamism,
i.e. changes in the causality during simulations. How-
ever, with a little relaxation of this requirement the
environments would be much flexible and better suited
for optimization tasks [26].
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Abstract 

Nonlinear model predictive control (NMPC) has be-

come increasingly important for today’s control engi-

neers during the last decade. In order to apply NMPC a 

nonlinear optimal control problem (NOCP) must be 

solved which in general needs high computational ef-

fort. 

State-of-the-art solution algorithms are based on 

multiple shooting or collocation algorithms, which are 

required to solve the underlying dynamic model formu-

lation. This paper describes a general discretization 

scheme applied to the dynamic model description 

which can be further concretized to reproduce the mul-

tiple shooting or collocation approach. Furthermore, 

this approach can be refined to represent a total colloca-

tion method in order to solve the underlying NOCP 

much more efficiently. Further speedup of optimization 

has been achieved by parallelizing the calculation of 

model specific parts (e.g. constraints, Jacobians, etc.) 

and is presented in the coming sections. 

The corresponding discretized optimization problem 

has been solved by the interior optimizer Ipopt. The 

proposed parallelized algorithms have been tested on 

different applications. As industrial relevant application 

an optimal control of a Diesel-Electric power train has 

been investigated. The modeling and problem descrip-

tion has been done in Optimica and Modelica. The 

simulation has been performed using OpenModelica. 

Speedup curves for parallel execution are presented. 

 

Keywords: Modelica, Optimica, optimization, mul-

tiple shooting, collocation, parallel, simulation 

1 Introduction 

This paper presents efficient parallel implementations 

and measurement results of solution methods for non-

linear optimal control problems (NOCP) relevant for 

nonlinear model predictive control (NMPC) applica-

tions.  

NMPC as well as NOCP have become increasingly 

important for industrial applications during the last 

decade [3], [4]. State-of-the-art solution algorithms [4] 

are based on multiple shooting or collocation algo-

rithms, which are needed to solve the underlying dy-

namic model formulation. This paper concentrates on 

parallelizing these time-consuming algorithms, which 

finally lead to a very fast solution of the underlying 

NOCP. Moreover, a general discretization scheme ap-

plied to the dynamic model description is introduced, 

which can be further concretized to reproduce the 

common multiple shooting or collocation approach [7] 

and can also be refined to represent total collocation 

methods [4] in order to solve the underlying NOCP 

much more efficiently. The modeling and problem de-

scription is done in Modelica [2] extended with optimi-

zation goal functions and constraints specified as in 

Optimica [15]. The simulation is performed using 

OpenModelica [1]. Speedup curves for parallel execu-

tion are presented for application examples.  

Section 2 describes the underlying mathematical 

problem formulation including the objective function 

and constraints to the state and control variables. The 

general discretization scheme applied is discussed in 

Section 3. This approach can be further refined to rep-

resent multiple shooting or collocation algorithms for 

the solution process, which is described in Section 4. 
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In section 5 the general discretization scheme is fur-

ther developed towards total collocation methods.  

Industrial relevant Modelica applications are pre-

sented in Section 6. Parallel execution of the constraint 

equations of the NOCP is performed in Section 7. The 

results show reasonable speedups of the optimization 

time when it comes to time consuming calculation of 

the model equations. The necessary implementations 

are partly realized in the OpenModelica Compiler, 

which is described in Section 8. The paper concludes 

with a summary of the achieved results. 

2 The Nonlinear Optimal Control 

Problem (NOCP) 

The numerical solution of NOCP is performed by solv-

ing the following problem formulation [7][8]: 
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where  ( )           ( )      are the state and 

control variables, respectively. The receding time hori-

zon is given by the interval  [     ]. The constraints 

(2.2), (2.3), (2.4) and (2.5) describe the initial condi-

tions, the nonlinear dynamic model description based 

on differential algebraic equations (DAEs, Modelica), 

the path constraints  ( ( ( )  ( )  )    ) and the 

terminal constraints. 

Support for time-optimal control and corresponding 

terminal constraints is work-in-progress and are not yet 

provided by the current implementation. 

2.1 Boundary Value Problems 

The objective function (2.1), that needs to be mini-

mized, includes conditions at the boundary time point 

    stated by the function  ( (  )) as well as condi-

tions taking into account the whole time horizon stated 

by ∫  ( ( )  ( )  )
  
  

  . 

 

Figure 1. Different trajectories achieved by varying control 
variables. Only one trajectory fulfills the terminal constraint (red 

dot).  

The function  ( (  )) describes conditions that 

should be fulfilled at the final time point similar to the 

terminal constraint (2.5). Since  ( (  )) is part of the 

objective function  ( ( )  ( )  ) the applied optimiza-

tion methods may not find a solution that fulfills the 

corresponding terminal constraints, but should be very 

close to it. The trajectories are influenced by changing 

the control variables. Different trajectories using differ-

ent control variables are visualized in Figure 1. 

On the other hand, different trajectories could fulfill 

the same terminal constraints. Taking into account the 

whole time horizon by minimizing the second part 

∫  ( ( )  ( )  )
  
  

   of the objective function will 

lead to the selection of the optimal trajectory. This be-

havior is visualized in Figure 2. 

 

Figure 2. Different trajectories that fulfill the terminal constraint.  

3 General Discretization Scheme 

In order to apply a general discretization scheme the 

NOCP formulation is rewritten to a general form which 

later can be used to derive the different possible numer-

ical algorithms e.g. multiple shooting, multiple or total 

collocation algorithm, etc. [6]. Equations (2.2) and 

(2.3) can be rewritten as follows: 

 ( )     ∫ ( ( )  ( )  )    

 

  

 (3.1) 



When discretizing the time horizon  [     ] into a finite 

number of intervals  [     ]   [       ]  (e.g. equidis-

tant partitioning:                        
     

 
) integral in  (3.1) can be reformulated to 

∫ ( ( )  ( )  )   

 

  

 ∑∫  ( ( )  ( )  )   

    

  

   

   

  

(3.2) 

Each integral  

∫  ( ( )  ( )  )   

    

  

 (3.3) 

on a subinterval can now be treated independently, if 

additional constraints are added to the NOCP formula-

tion to force the calculation of an overall continuous 

solution. Therefore, locally the problem reduces to a 

boundary value problem [5] stated by  

  

  (    )     ∫  (  ( )  ( )  )   

    

  

 (3.4) 

where   ( )   ( ) for   [       ] ,          . 

It yields    (  )     and continuity is forced by addi-

tional constraints    (    )       added to the NOCP 

formulation, which finally leads locally to a boundary 

value problem. Each sub-problem (3.4) can be solved 

independently and in parallel, if multiple shoot-

ing/collocation is applied. By varying the control varia-

ble  ( )  in each sub-interval the solution of (3.4) can 

be influenced in order to fulfill the overall continuity 

constraints. In the current approach it is assumed that 

 ( )     is constant for each subinterval [       ]   

4 Multiple Shooting or Collocation 

Different numerical methods are available to solve 

equation (3.4). The first approach presented within this 

paper is the reformulation of (3.4) to an ordinary differ-

ential equation 

 ̇ ( )   (  ( )     ) (4.1) 

with the initial condition   (  )    . 
In order to solve equation (4.1) an appropriate (e.g. 

explicit/implicit) integration algorithm can be applied 

that is already available in OpenModelica. A schematic 

view of the algorithmic dependencies is presented in 

Figure 3.  

Alternatively, equation (3.4) or (4.1) can locally be 

solved using collocation methods, which also can be 

interpreted as numerical treatment of integration. De-

tailed descriptions of the multiple shooting algorithm 

using local collocation can be found in [7]. The solu-

tion process for equation (3.4) in each subinterval can 

be performed in parallel. The necessary calculation 

time depends certainly on the chosen integration meth-

od. In case of an explicit integration algorithm, e.g. 

Runge-Kutta based, more intermediate integration steps 

might be necessary for certain accuracy than using an 

implicit integration method, e.g. local collocation 

methods. On the other hand, explicit integration meth-

ods just perform at each intermediate step an evaluation 

of the model equations, whereas implicit methods in 

general need to solve a system of non-linear equations, 

which might also be time consuming. Nevertheless, 

when the underlying system of ordinary differential 

equations is stiff, implicit methods need to be applied. 

 
Figure 3. Schematic view of the algorithmic dependencies. 

Although, equation (3.4) can be solved in parallel a lot 

of time is used for finding exact solutions to a locally 

defined problem, which might not be relevant for the 

over-all problem stated by the (NOCP) formulation 

(2.1)-(2.5). Therefore, the solution process for the 

NOCP still needs a lot of computation time. The next 

section describes methods to overcome this deficiency 

by adding the locally derived residual equations (based 

on locally applied collocation methods) to the over-all 

NOCP formulation. 

5 Total Collocation 

Applying collocation methods for solving equation 

(3.4) locally leads in general to a system of non-linear 

equations for each sub-interval. The solution process of 

these equations might be time consuming and with re-

spect to the NOCP not efficient. If the corresponding 

non-linear equations are added to the NOCP formula-

tion and corresponding optimization algorithms have 

access to the intermediate points used by the local col-

location method a more efficient solution process can 

be formulated [4]. This section presents two different 

collocation methods. 
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Based on the common Lagrangian polynomial 

   ( ) for interpolation purposes, following abbrevia-

tions are introduced for           and         :  
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where         are the supporting points within the 

reference interval [   ]. Further abbreviations are de-

fined by                              (    ), 

and        (            ). 

 
Figure 4. Schematic view of the algorithmic dependencies. 

The first variant is dealing with the approximation of 

the states which leads to the following formulas: 

                 ∑    

 

   

      

                         ∑     

 

   

      

(5.1) 

In case of     this approach reduces to the implicit 

Euler formula with approximation order 1. 

The second variant is dealing with the approximation 

of the derivatives of the states and leads to the for-

mulas: 

                   ∑∫    

 

   

      

     ∑    

 

   

      

(5.2) 

In case of     this approach reduces to an implicit 

Runge-Kutta formula (trapezoidal rule) with approxi-

mation order 2. 

The discretized NOCP using total collocation and 

corresponding Gaussian quadrature formula for the 

integral part of the goal function is finally described by: 
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subject to 

 (            )   

 (    )    

 (              )   
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for        ,        . For variant 1 the support-

ing points        , and weights        are given 

based on Radau formulas.               

 (            )               are the additional resid-

ual equations from (5.1). For variant 1 the supporting 

points        , and weights        are given 

based on Lobatto formulas.  (            )       

      are the additional residual equations from (5.2). 

6 Modelica Applications 

To investigate the performance of the proposed optimi-

zation algorithm, industrial relevant optimal control 

problems are solved and corresponding results are pre-

sented in this section.  

6.1 Batch Reactor 

We begin by considering a simple model from the 

chemical reactor described in [7] to maximize the yield 

of   ( ) by manipulation the reaction temperature  ( ), 
with the following problem formulation:   
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Figure 5. Trajectories of state and control variables 

6.2 Optimal control of Diesel-Electric power-

train 

The Diesel-electric model based on [10] is presented in 

Appendix A. This concept is modeled according to a 

nonlinear mean value engine model (MVEM) contain-

ing four states and three control inputs while the gener-

ator model is simplified by considering constant effi-

ciency and maximum power over the entire speed 

range.  

In a Diesel-electric powertrain the operating point 

of the Diesel engine can be freely chosen which would 

potentially decrease fuel consumption. Moreover, the 

electric machine has better torque characteristics. These 

are the main reasons making the Diesel-electric power-

train concept interesting for further studies. 

To investigate the fuel optimal transients of the 

powertrain from idling condition to a certain power 

level while the accelerator pedal position is interpreted 

as a power level request, the following optimal control 

problem is solved: 

states    (
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and boundary conditions are: 

at     (

  
  
  
  

)                          

at     (

 ̇ 
 ̇ 
 ̇ 
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)   , (

  
  
  
  

)                  

and              . 

The constraints are originated from components’ limi-

tations and the functions    are described in the appen-

dix [10]. 

 
Figure 6. Trajectories of control variables 

In this work, we try to find the fuel optimal control 

and state trajectories in a certain time interval  [     ]. 
For simplicity, only diesel operating condition is as-

sumed which means (         ). 

 
Figure 7. Trajectories of state variables 



The dynamic system is solved after it is discretized 

into subintervals. Figure 6 and Figure 7 show the ob-

tained control and state trajectories. As it is expected, 

the fuel optimal results happen when engine is acceler-

ated only near the end of the time interval (        ) 
to meet the end constraints while minimizing the fuel 

consumption. 

In section 7 it is shown how the parallel execution 

increases the performance of the optimization process.  

7 Parallel Execution and Perfor-

mance Measurements 

We have performed measurements for the different 

algorithms (multiple shooting/collocation and total col-

location with variant 1 and 2) applied to the above de-

scribed applications. The C/C++ source code has been 

compiled by gcc version 4.6.3 (GCC) with OpenMP 

support. The measurements are done on an Intel Core 

i7 CPU 870 with 8 cores @ 2.93 GH (4 real cores and 4 

virtual cores). 

The corresponding optimization problem is solved 

by the interior point optimizer Ipopt [16]. Figure 8 

shows the different functions and derivative infor-

mation that need to be provided to Ipopt for the solu-

tion process. In the current implementation the Hessian 

matrix of the corresponding Lagrangian formulation is 

calculated numerically by Ipopt. The other information 

(see Figure 8) is provided numerically by external rou-

tines. When calculating the Jacobian and Hessian ma-

trices the treatment of the sparsity patterns, is important 

for the performance of the multiple shooting and total 

collocation methods [9]. This has been realized for the 

Jacobian matrix calculation. 

 
Figure 8. Schematic view of the required components of Ipopt 

The multiple shooting algorithm uses an explicit 

Runge-Kutta formula of order 3 as well as 3 steps with-

in each interval. The multiple collocation method uses 

3 intermediate interval points based on Radau formulas. 

The total collocation uses variant dependent intermedi-

ate interval points as described in section 5. The tests 

have been performed using 128 intervals when dealing 

with sparse matrix representation. The user defined 

functions (see blue boxes of Figure 8) have been paral-

lelized. 

7.1 Batch Reactor 

The speedups obtained and the computation times for 

the batch reactor are shown in Table 1 and Figure 9. 

 

 multiple shooting multiple collocation 

threads Ipopt jac_g Ipopt jac_g 

1 1,5742s 28,93ms 18,47s 343,3ms 

2 1,0164s 16,77ms 10,25s 188,3ms 

4 0,6691s 9,37ms 5,825s 104,7ms 

8 0,6539s 8,52ms 5,055s 89,57ms 
Table 1. Computation times for the Jacobian of the constraints and 
the over-all optimization using multiple shooting/collocation method 

for the batch reactor 

 

 
Figure 9. Speedups and computation times of the whole 

optimization process 

Table 1 shows that multiple collocation is much more 

expensive than the multiple shooting. Reason for this is 

the computational time needed to solve non-linear sys-

tems coming from the implicit discretization. There-

fore, by parallelizing the user defined functions a better 

speedup (Figure 9) for the whole optimization can be 

performed for the multiple shooting method, whereas 

the speedup for the user defined function (e.g. Figure 

10) is comparable. 

 

 
Figure 10. Speedups and computation times for the Jacobian of the 
constraints 

Ipopt 

constraints 

Jacobian 

object 
function 

gradient 

Hessian of the 
Lagrangian 



7.2 Diesel Model 

The solution process for the diesel model using multi-

ple shooting and multiple collocation is quite time con-

suming (see Table 2 and Table 3). Especially, the mul-

tiple collocation algorithm was only performed with 32 

intervals in order to reduce execution time to an ac-

ceptable level. Although, parallelization of the user 

defined function leads to a great speed up, the overall 

performance of the multiple shooting or collocation 

method is still poor. The total collocation variants are 

superior with respect to the over-all performance as can 

be seen in Table 3.  

 

 multiple shooting multiple collocation 

threads Ipopt jac_g Ipopt jac_g 

1 1518,4s 1,8196s 368,07s 2,6007s 

2 917,17s 0,9671s 196,04s 1,3832s 

4 608,29s 0,5286s 108,33s 0,7625s 

8 508,71s 0,3861s 87,027s 0,6110s 
Table 2. Computation times for the Jacobian of the constraints and 

the over-all optimization using multiple shooting/collocation method 

for the diesel model 

 

 total collocation 1 total collocation 2 

threads Ipopt jac_g Ipopt jac_g 

1 15,40s 8,215ms 14,07s 9,947ms 

2 11,49s 4,356ms 10,10s 5,281ms 

4 10,19s 2,553ms 8,342s 2,987ms 

8 9,452s 1,713ms 7,897s 1,965ms 
Table 3. Computation times for the Jacobian of the constraints and 
the over-all optimization using total collocation method for the 

diesel model 

The speed-up regarding the user-defined function is 

comparable to the multiple shooting or collocation 

methods (see Figure 12). The speed-up of the whole 

optimization process is not optimal due to the serial 

computation and dense treatment of the Hessian matrix 

calculated internally by Ipopt (see Figure 11). 

 

 
Figure 11. Speedups and computation times of the whole 
optimization process 

 
Figure 12. Speedups and computation times for the Jacobian of the 

constraints 

8 Integration with OpenModelica 

Support for specifying optimization goal functions and 

constraints together with Modelica models has now 

been implemented in OpenModelica. Such integrated 

models can now be exported via XML to tools such as 

CasADi [12] which can act as a frontend to ACADO 

[13]. 

In the current OpenModelica prototype all aspects 

of the tool chain are not yet completely implemented. 

For example, we are currently using numerically de-

rived Gradients, Jacobians and Hessians since the au-

tomatic differentiation machinery in OpenModelica has 

not yet been extended to operate on the optimization 

problem goal function. 

However, the prototype is complete enough to do 

the measurements of the included model applications 

on a parallel platform to obtain the speedup curves for 

parallel execution on 1-8 cores. 

The OpenModelica compiler has been extended to 

export Modelica Models to XML based on an extended 

version of the FMI XML schema from [14]. The XML 

export, in addition to the standard Modelica syntax, 

supports the Optimica extensions from Jmodelica [15]. 

Theses extensions allow users to formulate dynamic 

optimization problems to be solved by a numerical al-

gorithm. The extensions include several constructs in-

cluding a new specialized class optimization, a con-

straint section, etc. See the batch reactor example be-

low as well as the Optimica manual for complete in-

formation. 

optimization BatchReactor 

           (objective = -x2(finalTime), 

            startTime = 0, finalTime =1) 

  Real x1(start=1,fixed=true,min=0,max=1); 

  Real x2(start=0,fixed=true,min=0,max=1); 

  input Real u(free=true, min=0, max=5); 

equation 

  der(x1) = -(u+u^2/2)*x1; 

  der(x2) = u*x1; 

end BatchReactor; 



The XML generated for flattened Optimica Models can 

be imported into other non-Modelica Optimization 

tools like ACADO. 

Currently the OpenModelica compiler does not yet 

use the optimization problem formulation internally as 

input to automatic differentiation. The Modelica plus 

Optimica model description is flattened, some common 

compilation phases are applied e.g. syntax, semantics 

and type checking, simplification, constant evaluation 

etc. and then the complete flat model is exported to 

XML. 

9 Conclusions 

In this paper parallelized implementations of several 

different algorithms for solving NOCP have been pre-

sented. The well-known multiple shooting or colloca-

tion as well as total collocation methods are derived 

using a general discretization scheme. Total collocation 

methods have proofed at least in the current implemen-

tation and for the tested applications to be superior to 

the other algorithms. 

The corresponding discretized optimization problem 

has been solved by the interior optimizer Ipopt. Further 

speedup of the optimization process for all described 

algorithms have been achieved by parallelizing the cal-

culation of model specific parts (e.g. constraints, Jaco-

bians, etc.). So far the evaluation of derivatives have 

been done numerically. This will be further improved 

using the already available symbolic differentiation 

capabilities of OpenModelica [11]. Finally, this work 

will be continued by applying the proposed algorithms 

on more industrial relevant applications together with a 

thorough testing on advanced parallel hardware archi-

tectures. 
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Figure 13. Diesel Engine Model 
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Model Constants 

Symbol Description Value Unit 

     Ambient pressure 1.011e5 Pa 

     Ambient temperature 298.46 K 

    Specific heat capacity of air, constant pressure 1011 J/(kg.K) 

    Specific heat capacity of air, constant volume 724 J/(kg.K) 

   Specific heat capacity ratio of air 1.3964 - 

   Gas constant, air 287 J/(kg.K) 

    Specific heat capacity of exhaust gas, constant pressure 1332 J/(kg.K) 

   Specific heat capacity ratio of exhaust gas 1.2734 - 

   Gas constant, exhaust gas 286 J/(kg.K) 

     Specific heat capacity ratio of cylinder gas 1.35004 - 

    Intake manifold temperature 300,6186 K 

    Pressure in exhaust system 1.011e5 Pa 

(   )    Stoichiometric oxygen-fuel ratio 14.54 - 

    Diesel heating value 42.9e6 J/kg 

 

Model Parameters 

Symbol Description Value Unit 

     Number of cylinders 6 - 

   Engine displacement 0.0127    

   Compression ratio 17.3 - 

        Inertia of the engine-generator 3.5      

    Volume of intake system 0.0218    

   Compressor radius 0.04 M 

     Max. compressor head parameter 1.5927 - 

 ̇           Max. corrected compressor mass flow 1.2734 - 

   Compressor efficiency 286 J/(kg.K) 

     Volumetric efficiency 1.35004 - 

       Combustion chamber efficiency 0.6774 - 

     Friction efficiency 1.011e5 Pa 

     Friction efficiency 14.54 - 

     Friction efficiency 42.9e6 J/kg 

    Non-ideal Seliger cycle compensation 1.054 - 

    Ratio of fuel burnt during constant volume 0.4046 - 

    Volume of exhaust manifold 0.0199    

    Turbocharger inertia 1.9662 e-4      

      Turbocharger friction 2.4358 e-5          

       Effective turbine area 9.8938 e-4    

   Turbine efficiency 0.7278 - 

      Wastegate parameter 0.6679 - 

      Wastegate parameter 5.3039 - 

        Effective wastegate area 8.8357 e-4    

 


