
Security: Public

Version: 3.0

Date: April 6, 2010

Number of pages: 128

Do-it-Yourself Smart Experiences

ITEA 2 project 08005

SotA report Smart Space DIY application
creation and interaction design
D4.1

Editor:

Juan R. Velasco and Mario Vega – Universidad de Alcalá

Contributors:

Zhenzhen Zhao – Institut TELECOM SudParis (ITS)

Dries De Roeck & Christof van Nimwegen – Centre for User Experience Research, K.U.Leuven (CUO)

A. Outtagarts & B. Boidart – Alcatel-Lucent Bell Labs France.

Yan Tang – VUB STARLab

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 2/128

History

Version Date Person, Partner Comment

0.1.0 13.10.2009 Mario Vega – Universidad de
Alcalá

Creation of the document

0.1.1 19.10.2009 Johan Plomp - VTT Various comments and additions to the
TOC

0.1.2 19.10.2009 Mario Vega - UAH Added interest on topics Comes from 0.1.1
VTT

0.1.3 30.10.2009 Juncal Alonso-ESI-Tecnalia Added i nterest on topics

0.1.4 9.11.2009 Sergio Rodriguez – Robotiker-
Tecnalia

Added interest on topics

0.1.5 16.11.2009 Zhenzhen ZHAO – Institut Telecom A dd interest & comment /reorganize TOC

0.1.6 18.11.2009 Dries De Roeck – CUO Added interes t

0.1.7 18.11.2009 Bertrand Boidart - ALBLF Additions to the TOC

0.1.8 19.11.2009 Johan Plomp - VTT Added interest

0.2.0 20.11.2009 Mario Vega – Universidad de
Alcalá

Reorganize document

0.2.1 26.11.2009 Leire Bastida,Marisa Escalante,
Juncal Alonso-ESI-Tecnalia

Added content

0.2.2 01.12.2009 Sergio Rodriguez – Robotiker-
Tecnalia

Added content

0.2.4 04.12.2009 Bertrand Boidart – ALBLF Added con tent

0.2.5 08.12.2009 Abdelkader Outtagarts - ALBLF Adde d content (in 3.4.2)

0.3.0 10.12.2009 Mario Vega Barbas – Universidad
de Alcalá

Convergence to 0.2.x documents & added
content

0.3.1 18.12.2009 Sergio Rodriguez – Robotiker-
Tecnalia

Added content

0.3.2 18.12.2009 Karen Torben Nielsen, An Jacobs,
Wendy Van den Broeck, Jo
Pierson

Added content

0.3.3 28.12.2009 J. F. Rodelgo, ATOS Added content

0.3.4 06.01.2010 Yan Tang, VUB STARLab Added conten t

0.3.5 10.1.2010 J. Kela, Finwe Added content

0.3.6 12.1.2010 Minh Phan, Neotiq Added content

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 3/128

0.4.1 14.1.2010 A. Outtagarts & B. Boidart –
ALBLF.

Added content and update of 3.4.2

0.5 15.1.2010 Mario Vega – UAH Added content and m erge

0.5.1 15.1.2010 Johan Plomp - VTT Added content

0.5.2 15.1.2010 Mario Vega – UAH Added content

0.5.3 17.1.2010 Dries De Roeck – KULCUO Added conte nt, TOC update

0.6 18.1.2010 Mario Vega – UAH Edited final viersio n

2.1 05.04.2010 Stijn Mostinckx – VUB SOFT Added sho rt description of AmbientTalk

3.0 06.04.2010 Mario Vega – UAH Edited final viersi on

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 4/128

The DiYSE Project
The Do-it-Yourself Smart Experiences project (DiYSE) aims at enabling ordinary
people to easily create, setup and control applications in their smart living
environments as well as in the public Internet-of-Things space, allowing them to
leverage aware services and smart objects for obtaining highly personalised, social,
interactive, flowing experiences at home and in the city.

www.dyse.org

The three State of the Art Deliverables.
The DiYSE project has three State of the Art (SOTA) Documents covering the
different tools, techniques, methods and environments that may be used to provide a
DiYSE platform. These documents present the same pool of elements from different
points of view. Due to this SOTA partition, it will be needed to link some of the
sections from one of the documents to other sections on some of the other two
documents. This is really important in Section 3 of the D1.1 and D4.1 that will try to
present the same topics from the requirements and the interfaces point of view: web
technologies, mobile technologies, platforms, devices, etc…

In WP1 (Use cases and requirements), deliverable D1.1 will focus on which
requirements will be covered by web technologies, mobile technologies, system
platforms and toolsets, i.e. how the users will access the smart experiences by using
these systems.

This document will present the SOTA of current applications, systems platforms and
business models relating to DiYSE. This includes Ambient Experience applications,
features of toolsets and the business models and ecosystems that are working at this
moment in similar proposals.

The document also includes a PEST (Political, Economical, Social, Technological)
analysis. It is important to know why people are motivated to produce and share
services, devices, etc.

In WP2 (Interaction with the environment), deliverable D2.1 will focus on the State of
the art of:

• electronic devices that can retrieve data from the users’ environment and
produce physical outputs,

• algorithms to extract information from them (such as identification or location)
and the functionalities those devices can provide in DiYSE,

• networking technologies to interconnect them.

In particular, D2.1 will put a special emphasis on the following kinds of devices:

• existing ready-made devices available in the market,

• networks of tiny battery-powered programmable wireless sensors,

• open hardware platforms used by DiY hobbyists.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 5/128

In WP4 (Interactive Experience Creation), deliverable D4.1 analyses similar elements
to D1.1, but from the user/developer point of view: how the users will use the
elements of the DiYSE ecosystem.

The review of existing application creation approaches will identify technologies that
may be supportive for the envisioned creation of applications and services in smart
spaces. It is expected that lessons learnt from methods empowering users in the
world wide web to contribute content or even applications to communities may
provide a good base. Also the issue of actually do-it-yourself versus do-it-together (or
have the community do it for you) and crowdsourcing will be addressed. The
document reviews how to create interactive experiences.

Abstract of this deliverable
SoA of user interface models, devices and toolsets, that may be used to provide rich
and interactive experiences from a do-it-yourself point of view. In this way, the
document analyses the SoA on interfaces for service creation tools, and discuss
about the kind of user that may create new services by using these tools. On the
other hand, the document reviews the different kind of interfaces that may be used at
this moment to use services in different devices, both fixed and mobile.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 6/128

TABLE OF CONTENTS

1 INTRODUCTION .. 9

2 USER INTERFACE MODES (KIND OF INTERFACE)10

2.1 Classic GUI and WIMP interfaces10

2.2 Mobile interfaces.................................. ...10

2.3 Multimodal10

2.3.1 Biometric ..10

2.3.2 Gesture interaction ...17

2.3.3 Mobile device gesture recognition ..29

2.3.4 Voice interaction ...31

2.3.5 Gaze...33

2.4 Multi-device interaction33

2.5 Tactile interaction and augmented reality37

2.5.1 Tactile interaction ...37

2.5.2 Augmented reality (UAH)..37

3 TOOLSETS..40

3.1 Introduction40

3.1.1 What is a toolkit? ..40

3.1.2 Why use a toolkit? ..40

3.1.3 How does a toolkit work?..41

3.2 Mobile devices42

3.2.1 Entire platform ..42

3.2.2 OS platform ..44

3.3 Hardware platform50

3.3.1 Arduino ...50

3.3.2 Beagle board ..51

3.3.3 DIY Robots: Tux Droid, Lego Mindstroms ..51

3.4 Software platform.................................. ..52

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 7/128

3.4.1 Mashups...52

3.4.2 Video editing tools ..64

3.4.3 Other ..74

4 INTERACTION AND USER INTERFACE MODELING TECHNIQUES.91

4.1 UI modeling techniques............................. ...91

4.1.1 Teresa ..94

4.1.2 UIML...96

4.1.3 UsiXML...97

4.2 GUI modeling....................................... ..100

4.2.1 XUL ..101

4.3 Abstract UI.. ...102

4.3.1 Qualities of an abstract UI representation language.................................102

4.3.2 Principle abstract UI representation languages available103

4.4 User modeling104

4.4.1 Challenges ...104

4.4.2 State of the art ..105

4.5 Task modeling...................................... ...106

4.6 Semantics in interaction modeling.................. ..107

4.7 Multimedia documents modeling108

5 FLEXIBLE ENVIRONMENT FOR INTERFACE CREATION........110

5.1 Rich interactive experiences in smart environments110

5.1.1 Qualities of a rich interactive experience ..110

5.2 Examples of flexible smart environments111

5.3 Platform architecture for multimedia documents adap tation112

5.3.1 Server architecture oriented ...112

5.3.2 Client architecture oriented...113

5.3.3 Proxy architecture oriented...113

6 COOPERATIVE COMMUNITIES FOR SOFTWARE AND SERVICES
CREATION..114

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 8/128

6.1 Examples of (physical) environments that stimulate user creativity114

6.1.1 Tinkering & Pottering ..114

6.1.2 Physical environments..114

6.1.3 Virtual environments...114

7 DISCUSSION...116

8 REFERENCES ..118

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 9/128

1 Introduction

As technology advances and becomes more pervasive, the DiY (Do-it-Yourself)
paradigm that emerged on the furniture & home decoration market in the 70’s is now
experiencing a second birth in the digital realm. Continuing from the prosumer
paradigm, where people are allowed not only to surf a network obtaining content and
information, but also (co-)create such elements themselves, the user-centred
participation is increasing beyond the Web 2.0 as we know it.

The ITEA2 DiY Smart Experiences (DiYSE) project focus its effort to enable people
to take control of their ever smarter surroundings, both at home and outdoor,
evolving towards mass creativity in an open Internet-of-Things world.

It is clear that there is a lot of technologies already available allowing people to
create and combine connected devices and services, but it is notable that most of the
people involved must have a deep technical background. However when thinking
about DiY, it is the ‘everyday user’ that should be enabled and involved in an intuitive
and simple way. The interaction design between human and environment is a key
factor in two different ways:

On one hand, services and devices have to be created, so it is important to
determine which kind of development environment will be used. This document
covers different kind of environment, and discuss about the skills needed to become
a service/device creator.

On the other hand, created services should be used by non-experienced users. This
document covers the user interfaces that are available at this moment in different
devices that may be used to access these services.

The structure of the document is as follows: Section 2 analyses several kind of
interfaces, from classic and tactile GUIs to multimodal interfaces (biometric or voice
commanded). This section covers multidevice interaction and augmented reality too.
Section 3 is related to D1.1 section 3 but from the user/developer point of view: how
the users will use the elements of the DiYSE ecosystem (mobile devices and
hardware/software platforms). Section 4 talks about modelling from several points of
view: interfaces, users, devices and tasks. Section 5 is related interface creation:
tools and experiences, mainly in adaptive interfaces. Section 6 presents how
cooperative communities are working at this moment to provide new software and
services, with special focus on those aspects that may be adopted into a do-it-
yourself environment and methodology. The final section will provide a starting point
for discussion on these topics.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 10/128

2 User interface modes (kind of interface)

2.1 Classic GUI and WIMP interfaces
A GUI, or Graphical User Interface, is what at the moment of writing is ‘the’ way most
people use to use computer systems. The GUI allows people to interact with a
computer system withouth having to type in complex commands with a keyboard.
First versions of the GUI were developed by Xerox PARC, the creators of the
legendary ‘sketchpad’ appliation by Ivan Sutherland.

When research related to the GUI continued, the “WIMP” paradigmn emerged.
WIMP, windows – icons – menu’s – pointing device, is the paradigmn to which most
mainstream computing applications are designed. Typical to a WIMP style interface
are conventionalised icons or representations of reality, which have grown into
standards over the years [185] .

Looking towards the future, a lot of research is being done into post-WIMP interfaces.
This is happening because WIMP/GUI interfaces are often argued as being not
‘natural’ since they make too much abstraction of the real world [186] . Therefore it is
important to look towards emerging interface modalities like NUI (natural user
interfaces) and XUI (organic user interfaces) to bridge this gap between the real
world and the digital world [187] .

2.2 Mobile interfaces
Mobile interface is the way that a mobil device permits to users interact with features
and functionalities that it offers. The basic mobile interface are explained next:

• Touch screen: Screen that permits to insert data information and orders
through a direct touch over the screen [99] .

• Multitouch screen: That interface represents an evolution of touch screens.
Multi-touch allows the user to interact with the device by placing two or more
fingers directly onto the surface of the screen [101] . The Multi-touch screen is
a concept that is registered by Apple Inc [100]

• Keyboard QWERTY or a tipical pc keyboard adapted like mobile interface

• Video Cam

• Audio

• Memory Slots

• Other bottons such as direct access and trackball

• Communication interface such as Wi-Fi or Bluetooth

2.3 Multimodal
2.3.1 Biometric

In this chapter, we are exploring the different kind of user interfaces existing at the
present time. The interfaces are one of the main parts of a DiY system. In this
deliverable, we are dealing with Smart Spaces, so in this case not only is important

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 11/128

the user interface, but it is also important recognize the user. This is because if the
Smart Space can recognize an individual, it is possible to change the user interface
to provide a better experience to the user. In this situation, the biometrics is the first
step in the user interaction process.

Biometrics is automated methods of recognizing a person, and is based on a
physiological or behavioural characteristic [116] . Those characteristics must
satisfy several requirements, which are:

• Universality : All the people, who are going to use the biometric interaction
system, must have that biometric characteristic.

• Distinctiveness : The proposed characteristic must be different between two
persons, so it is possible to differentiate those persons with the characteristic.

• Permanence : Over a period of time, the proposed characteristic must be
sufficiently invariant.

• Collectability : It must be possible to measure the biometric characteristic.

In a real biometric system, those requirements are not enough. This is because there
are other issues to take into account. Some of these issues are [117] :

• Performance: This issue refers to the achievable recognition accuracy and
speed, resources required to achieve the desired recognition accuracy and
speed, as well as the operational and environmental factors that affect the
accuracy and speed.

• Acceptability: In the real applications, the culture constrains determine if one
biometric characteristic is acceptable by the people or not. So it is important to
consider the region where the biometric system is going to operate.

• Circumvention: which reflects how easily the system can be fooled using
fraudulent.

The biometrics is used to identify a person. For this reason, the architecture of a
biometric system has two modules. The first one is the enrolment module, which is
responsible of the acquisition and store the user information. This module is the one
that gives the base information in the future access of the user. The second module
is the identification module. It is responsible of detect if a user is an accepted user or
not.

The previous architecture is common to all biometric systems. Those systems also
have three common physical components that are:

• Sensor : This is the device, which captures the biometric characteristics. The
sensors must be adequate to each characteristic that is going to be measured.

• Repository : It is the database where the biometric information of each user is
stored. It must be protected in a secure physical area, and must be encrypted
and digitally signed.

• Algorithms : These are one of the most important components of the system.
This is because the algorithms have to extract the biometric characteristics
from the sensor information, and also, they are used to compare the users and
finally determine the identification of the user.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 12/128

As the first definition says, the biometrics is based on physiological and behavioural
characteristics of the human beings. As it is possible to see, there are a lot of
characteristics, but not all of them meet the previous mentioned requirements. So,
with the different kind of biometric characteristics, is possible to define the following
types of biometric modalities separated in physiological modalities and behavioural
modalities:

• Physiological

o Iris

o Fingerprint

o Hand geometry

o Face

o Voice

o Retina

o DNA

o Odor

o Ear Shape

• Behavioral

o Signature

o Keystroke

o Voice

o Gait

All of the previous modalities meet the biometric requirements, but not all those types
are frequently used. In the following sections we are going to describe the different
modalities of biometrics, separated in common biometric modalities and other
biometric modalities [118] , which can be used as the previous step of the user
interaction task [117] .

2.3.1.1 Common biometric modalities

2.3.1.1.1 Face

Since the 1960s, machine vision researchers have been developing automated
methods for recognizing individuals via their facial characteristics. Despite the
volumes of research, there are no agreed-upon methods for automated face
recognition as there are for fingerprints.

Face recognition is a non-intrusive method, and facial images are probably the most
common biometric characteristic used by humans to make a personal recognition.
Multiple approaches have been developed for several years using low-resolution 2D
images. Recent work in high-resolution 2D and 3D shows the potential to greatly
improve face recognition accuracy. In all the cases, the system has to extract
appropriate characteristics from the facial image in order to perform identification.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 13/128

There are two major approaches to automated face recognition [120] :

• Analytic : In this case, geometrical models are used in order to identify faces.
More specifically, discrete local (geometrical) features are extracted for
retrieving and identifying faces. The location of the facial features is selected
where are less susceptible to alteration such as eye sockets, cheekbones,
sides of mouth. The position of these features, with respect to one another,
determines the overall location of the face. Standard statistical pattern
recognition techniques such as Hidden Markov Models may be applied on
these measurements. Other approaches include active contour models
(Snakes), wavelets, and knowledge- or rule-based techniques such as facial
action coding system (FACS).

• Holistic : These methods are not based in face specific characteristics. These
methods use “templates” or mathematical models to perform a global
recognition of the face, not only local features. So in this case, a feature vector
is used to represent the entire face. This approach includes Principal
Component Analysis (eigenfaces), Artificial Neural Networks, linear
discriminants and optical flow.

These systems also have difficulty in recognizing a face from images captured from
two drastically different views and under different illumination conditions. In addition,
it is questionable whether the face itself, without any contextual information, is a
sufficient basis for recognizing a person from a large number of identities with an
extremely high level of confidence[117] .

2.3.1.1.2 Fingerprint

Fingerprints have an uneven surface of ridges and valleys that form a unique pattern
for each individual, and its formed during the first seven months of fetal development.

Figure 1. Fingerprint [115]

The fingerprint modality uses local features of the fingerprint to identify persons.
Those features are called “minutiae”, and the characteristics that are search are:
type, orientation, spatial frequency, curvature and position.

Nowadays, this modality is one of the most used (a lot of laptops have a sensor to
identify the user) because the sensors that it requires are the cheaper ones.
However, one problem with the current fingerprint recognition systems is that they
require a large amount of computational resources, especially when operating in the

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 14/128

identification mode. Finally, fingerprints of a small fraction of the population may be
unsuitable for automatic identification because of genetic factors, aging,
environmental, or occupational reasons (e.g., manual workers may have a large
number of cuts and bruises on their fingerprints that keep changing).

2.3.1.1.3 Iris

The iris is the colored part of an individual’s eye. The iris modality is based on visible
features inside the iris, i.e. rings, furrows, freckles or the corona. The iris is
essentially formed between 8 months of age and 2 years, and remains stable through
life, so it meets the stability characteristic. The complex iris texture carries very
distinctive information useful for personal recognition (each iris has 266 unique spots
vs. 13-60 for other biometrics).

Figure 2. Iris recognition [118]

Each iris is distinctive and, like fingerprints, even the irises of identical twins are
different. It is extremely difficult to surgically tamper the texture of the iris. Further, it
is rather easy to detect artificial irises (e.g., designer contact lenses).

To obtain a good image of the iris, identification systems typically illuminate the iris
with near infrared light, which can be observed by most cameras yet is not detectable
by, nor can it cause injury to, humans. A common mistake is that iris recognition
shines a laser on the eye to “scan” it.

2.3.1.1.4 Hand geometry

In this modality several morphological parameters of the hand are studied. Those
parameters can be: width, height, finger length or distance between fingers. The
technique is very simple, relatively easy to use, and inexpensive.

Figure 3. Hand geometry recognition process [118]

Although the basic hand geometric of one individual seems to be consistent through
the time, some environmental factors (weather or user skin) can change this
geometry, and it also may not be invariant during the growth period of children. In

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 15/128

addition, the hand shape and dimensions are not suitable for individual identification,
because the differences between persons are very small.

2.3.1.2 Other biometric modalities

2.3.1.2.1 Gait

The aim of this modality is to identify an individual using a single camera located far
from the user, detecting the way the user walks. As in face recognition, this technique
is one that humans intuitively use to recognize someone.

Gait is a complex spatio-temporal biometrics, and it is based in the behaviour of the
user. This behaviour may not remain invariant over the time (due to fluctuations in
the body weight or other bio-physical problems).

Gait is easily simulated and it is not very distinctive, but is sufficiently discriminatory
to allow verification in some low-security applications like a Smart Space.

2.3.1.2.2 Voice

The voice recognition is quite different from the speech recognition. While the speech
recognition identifies the words that the user is “telling”, the voice recognition
identifies the user that is talking. The voice is a combination of physiological and
behavioural biometrics. This is because the voice is influenced by the physical
structure of an individual’s vocal tract and the behavioural characteristics of this
individual. These physiological characteristics of human speech are invariant for an
individual, but the behavioural part of the speech of a person changes over time due
to age, medical conditions, emotional state, etc.

Figure 4. Voice signature [115]

The voice modality is one of the most popular recognition systems, but it is less
accurate due to the dependence of the text used in the verification and in the
environmental noise. Because of that, it may not be appropriate for large-scale
identification, but in a smart environment application can be perfectly used.

2.3.1.2.3 Signature dynamics

This technique is based in the dynamics of a signature, not in what the signature
looks like. When the user is signing, it measures the speed and pressure that are
characteristic of the individual. Although signatures require contact with the writing
instrument and an effort on the part of the user.

This method is based in the behaviour of the user, so it is potentially falsificable. It
also changes over a period of time influenced by physical and emotional conditions.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 16/128

Because of that, this modality can’t be used in an application with high security
requirements.

2.3.1.2.4 Keystroke

This biometric modality proposes to identify a person using the keystroke dynamics.
This method supposes those dynamics characteristics in a person, so it is possible to
identify it. The problem of this technique is that it is based in the behaviour of the
user, so it is potentially emulable, and it is also easily monitored.

2.3.1.2.5 Retina

The retina is a light sensitive tissue lining the inner surface of the eye, composed by
multiple blood vessels. The structure of the blood vessels in the retina is supposed to
be a characteristic of each individual and each eye. It is the most secure modality,
because it is complicated to change it or replicate that structure. The main problem of
this technique is that it not only involves cooperation of the subject, but it requires a
conscious effort on the part of the user.

Figure 5. Retina image [119]

2.3.1.2.6 Thermogram

This modality is based on the measure of how heat is radiated by a human body.
This radiation pattern is characteristic of an individual and it is possible to be
captured using an infrared camera. The advantage of this technique is that it is not
an invasive modality because it doesn’t require contact, but the image acquisition is
challenging in uncontrolled environments, where heat-emanating surfaces are
present.

2.3.1.2.7 DNA (Deoxyribo Nucleic Acid)

There are no doubts that this modality can identify definitely a person. It is the most
powerful modality in the biometrics field, but it is the most difficult one to implement.
This is because nowadays it is impossible to develop a DNA based system that
works in real-time, and convenient for the users. There is also a problem related to
the easiness of steal a piece of DNA (for example from the user hair).

Odor: Each object exudes a characteristical odor, and particularly, the odor emitted
by a human body is distinctive to a particular individual. So it is possible to identify
persons using its odor, but it is not clear if the invariance in the body odor could be
detected despite deodorant smells, and varying chemical composition of the
surrounding environment.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 17/128

2.3.2 Gesture interaction

The gestures are the most natural action to interact between human beings. Because
of this fact, the gesture interaction enables humans to interact with the computers
more naturally than using classical WIMP interfaces.

The gestures can broadly be classified in the following types [18] :

1. Hand and arm gestures: those are the most general gestures in all cultures.
Examples of this gesture interaction can be: recognition of hand poses, sign
languages, and entertainment applications (allowing children to play and
interact in virtual environments).

2. Head and face gestures: some examples of those gestures are: nodding or
shaking of head; direction of eye gaze; raising the eyebrows; opening the
mouth to speak; winking; flaring the nostrils; and express emotions.

3. Body gestures: this gesture interaction involves the full body motion. Some
examples of the usage of this interaction are: tracking movements of two
people interacting outdoors; analyzing movements of a dancer for matching
music and graphics; and recognizing human gaits for medical rehabilitation
and athletic training.

The technologies used in the gesture interaction try to determine what kind of
movements the humans are doing and interpret them in order to perform some
action. In general, the gesture interaction systems can be divided into two main
components:

1. Features extraction : This is the first step to perform in a gesture interaction
system. This task target is to obtain the information from the human performed
gesture and extract characteristics about the position of the body and body’s
parts.

2. Gesture recognition: After the parameters are computed and the features
are extracted, the system must decide if the user is performing a meaningful
gesture. In order to know if the gestures are valid, they need to be classified
and interpreted. This interpretation generally is based on model and based on
some grammar rules that reflect the internal syntax of gestural commands.
The grammar may also encode the interaction of gestures with other
communication modes such as speech, gaze, or facial expressions.

Some of the gesture interaction techniques have another component which is the
tracking of the features [20] . After the features extraction, the position and possibly
other attributes of the body must be tracked from frame to frame. This is done to
distinguish a moving part of the body from the background and other moving objects,
and to extract motion information for recognition of dynamic gestures.

In the following sections it is described the both of the main gesture interaction
components.

2.3.2.1 Features Extraction

The first task whch needs a gesture interaction system is the features extraction. The
aim of this component is to obtain information from the human body, like the position,

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 18/128

configuration (angles and rotations), and movement (velocities). With that is possible
to extract characteristics which can infer the gesture made by the human.

In order to determine all these aspects, the human body needs to be sensed. This
can be done either by using sensing devices attached to the user or using computer
vision techniques. The sensing devices may be magnetic field trackers, instrumented
(data) gloves, and body suits. Each sensing technology varies along several
dimensions, including accuracy, resolution, latency, range of motion, user comfort,
and cost [18] . Glove-based gestural interfaces typically require the user to wear a
device and carry a load of cables connecting the device to a computer. This hinders
the ease and naturalness of the user’s interaction with the computer.

Figure 6. Glove based gestural interface Source: Vr ealities

In the other hand, vision-based techniques can solve those problems, but those need
to deal with other problems related to occlusion of parts of the user’s body or
illumination variances.

As a comparative example of those two techniques of features detection is hand
movement detection. While tracking devices can detect fast and subtle movements,
even if the user is moving, a vision-based system will at best get a general sense of
the type of motion. Again, vision-based devices can handle properties such as
texture and colour for analyzing a gesture, while tracking devices cannot.

In the following sections, it is described those two areas of research, giving special
attention to the vision-based techniques, because with those techniques is possible
to perform the most natural human computer gesture interaction.

2.3.2.1.1 Sensors based features extraction

These systems use sensors that are attached to the human body in order to get
information about its movements. The sensors that are more commonly used are the
accelerometers . These sensors turn acceleration (either lineal, angular or both) into
an output signal that can be processed.

Huiyu Zhou revises the commercial systems based upon accelerometers, in the
market there is a wide variety of such accelerators [38] . The price of these

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 19/128

equipments ranges from 1,200€ for an accelerometer with its reception equipment, to
56,000€ for a complete body monitorization equipment.

Figure 7. Accelerometer based gestural globe Source : AnthroTronix

One of the disadvantages of this method is that it is necessary to place complex
equipment upon the person who is going to be monitored. Its advantages are that it
does not suffer from occlusions, unlike the rest of the methods, and it always
provides the position of all the points of interest of the human body.

2.3.2.1.2 Vision-based features extraction

As the introduction show, in human-human communication gestures are often
performed using a variety of body parts (e.g., arms, eyebrows, legs, entire body,
etc.). However, most researchers in computer vision use the term gesture interaction
to refer exclusively to hand/arm gestures [19] . Because of that, the following
sections, only concern to hand/arm gestures and body gestures also.

There is a first subdivision inside the vision-based features extraction techniques.
Inside this division exist the techniques which use markers and those without
markers.

The first approach to the problem of extracting the human body features are the
systems based upon the use of markers. These small visual markers are placed
upon the body that is going to be the object of the follow-up in order to capture the
data.

Figure 8. Marker (red and green) based gestural in terface Source: MIT Media Lab

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 20/128

As the human body is a highly articulate structure, these markers are constantly
coming in and out from the occlusion areas. This is the reason for what the use of
these small markers is more easy and fast to detect the features of the body. There
are numerous commercial equipments, such as VICON, CODA, ReActor2, ELITE
Biomech… Some of these devices are able to provide a modelling of the human
body even in 1 ms.

While markers can be accurate, they place restrictions on clothing and require
calibration, so they are not desirable in many applications.

Another approach to the problem is based upon the use of one or several cameras
but without the markers in the human body. In these systems, the human gesture
must be inferred from the images obtained through these cameras.

This approach makes it possible to establish a model of the human body, making up
for the information loss provoked by the occlusion of several characteristics of the
human body itself. This technique is still being developed and it still must face
several unsolved problems. Besides, it must be said that the processing that a non
marker-based vision system must carry out is more costly (in time) than the
processing carried out by a marker or accelerometer-based system, but most of the
existing systems in this field operate in real time.

As well as, there are no commercial systems based upon this follow-up technology.
We will focus, mainly, upon this type of systems, because are the most natural
interaction Systems between humans and computers (or smart devices).

Inside this field, there are two main approaches to extract features from the human
body. Those approaches are differentiated by whether the system is based on an
abstract model of the body or on knowledge of the appearance of the body in the
image [20] :

• Model based approach: This approach uses previous knowledge about the
structure of the human body and their cinematic and dynamic model. Those
models are matched to the results of the pre-processing to determine the state
of the tracked part. The model can be more or less elaborate, from a 3D
model with 27 degrees of freedom (DOF) to a simple contour model of the
hand. In addition to the model, how features in the image corresponding to the
real body are produced, is required. This measurement model is needed in
order to determine the state of the body model from the appearance of the
body in the image. Continuously fitting the model to the body in the video
frames is a process of tracking the complete state of the hand not just its
position. This process is consequently called state based tracking. If the model
contains a sufficient number of internal degrees of freedom, recognition of
static gestures can be reduced to inspection of the state.

• Appearance based approach: The feature extraction is based on a
representation learned from a large number of training images. As no explicit
model exists, the degrees of freedom will not have to be specifically modelled.
When only the appearance is known, differentiating between gestures is not
as straight forward as with the model based approach, so this features

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 21/128

extraction will involve some statistical classifier. One example of this approach
is the use of information about the colour, texture or the movement of the
object; without trying to approach it to a previously established model.

It also, there exists other classification which divides the feature extraction in an
another two approaches:

• 2D approach : this research field is focused on the detection and extraction of
features of the body in one plane. Such approach tries to obtain a follow-up of
the human movement in a single plain, without extracting a model in three
dimensions of the movement.

• 3D approach : this field is focused on the extraction of features in the three
coordinates.

In the following, it is going to describe more specifically the previous areas (and
some research in those areas), starting by the model-based approach, continuing
with the appearance based approach and finally describing the 3D approach.

2.3.2.1.2.1 Model based approach

In order to make up for the occlusions among the different parts of the human body,
we can use our a priori knowledge about the human body, its proportions, its form,
the turning capacity of the different joints… This is, more or less, the same behaviour
that the human brain, because it can interpret images in movement using a
previously learnt model, deducing the characteristics that might be hidden behind the
image.

Wren et Al present a system (the pFinder) that models the human body by means of
blobs [21] . Blob is a term that refers to a modelling that is not based upon defined
contours, instead, each element (each blob) is defined by a Gaussian probability
distribution g(x,y,U,V,W |average, covariance).

Figure 9. System presented by Wren et Al, based upo n colour forms (Blobs) and statistic

models.

The system recognizes the background of the image in order to extract the human
body information. This background recognition and extraction it isn’t trivial because
the light changes, the occlusion of part of the background with objects (or with the
human body). In order to avoid these problems, the Wren et Al. model each pixel in
the background by means of a Gaussian distribution, using colour data. Through a
distance check they obtain the points of the surface that have been hidden by a

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 22/128

person or by an object and those that belong to the background are applied an
adjustment of the statistical model so that they are not affected by small illumination
variations or changes in the background, calculating their new average and variance.

As it is said, the human body is modelled by blobs. In each frame, the system
evaluates the data of the previous frame and it tries to obtain the new average
measures and the covariance matrix for each of the blobs that make up the human
body, which results in a set of superposed blobs in the region occupied by the human
body.

In order to model the human body it is necessary to locate the head and the hands
using a shape analysis. Once they are located, a blob is created upon them; and
another two blobs are created, and corresponds with the human clothes.

Other authors, such as Niyogi and Andelson [22] propose to use contours (called
snakes) to extract the human silhouettes. Those snakes can be deformed in time and
space, so it can be adapted to a human body. The next figure shows how the snakes
can model the gait of a human:

Figure 10. Modelling the walking movement proposed by Niyogi and Adelson.

The apply of snakes is possible when the system detects the presence of a human.
For this purpose, the authors based the detection on the figures created by a person
when he is walking. This phenomenon can be observed in the next image:

Figure 11. Trace left by several persons walking fo r some time

Another approach model based upon examples is the one proposed by A. Mohan et
al. [24] , which uses hierarchic classifiers based upon SVM (Support Vector
Machines).

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 23/128

The system is structured with four distinct example-based detectors that are trained
to separately find the four components of the human body: the head, legs, left arm,
and right arm. After ensuring that these components are present in the proper
geometric configuration, a second example-based classifier combines the results of
the component detectors to classify a pattern as either a “person” or a “nonperson”.

Figure 12. Body detector proposed by A. Mohan et a l.

The algorithm is also more robust than the full-body person detection method in that
it is capable of locating partially occluded views of people and people whose body
parts have little contrast with the background.

Other authors propose to use neural networks in order to model out persons. Thus,
they locate a human figure using deformable contours and then they extract a feature
vector which is similar to a radial signature for several angles. By means of this
feature vector and also using numerous training models it is possible to train a
neuronal network that will be able to differentiate human silhouettes from those
silhouettes that are not human and to obtain the position of the person.

A simpler approach, based upon the extraction of the contours and on their
subsequent skeletisation, is the proposal that models out the points that are more
distant from the centre of the silhouette.

2.3.2.1.2.2 Appareance based approach

The appearance-based approaches have used methods such as the Gaussian
modelling, colour segmentation, Kalman filter, movement detection according to
differences, active contours and analysis of the data from different cameras.

Many of these are used as initial segmentation methods in other types of approaches
that are more advanced, or as low-level processing methods that offer additional
information or support in the segmentation of a human body.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 24/128

As the previous paragraph says, the segmentation of a human body in movement
has been approached in many different ways. Thus, several authors model the
background using Gaussian models, others study the variation of an image in space
and time, another approach is based upon the study of the optical flow of
stereoscopic images and then it tries to model the position of the human body using
elements with the same velocity field. Methods based in temporal derivative, contour
filters, can also be used in combination with other methods in order to facilitate the
segmentation of the contours

In [26] proposes an stochastic human segmentation based on a static camera. In that
work the authors created two models for each person. First one is based upon the
colour of the person, and the second one is a presence model, based upon the
probability that a person may appear in a particular place in the image. With this
system, the authors were able to detect of multiple persons using a single camera.

Figure 13. Segmentation of several persons proposed in [26]

Other authors propose the use of skin colour detection and segmentation. With this, it
is possible to detect the position of the hands or head only using these models. One
of the problems of colour segmentation is its variation due to the illumination
changes, both in time and space (due to the movement of the person towards darker
areas).

There is a lot of research in order to solve these problems. For example, [23]
propose the use of SVM in order to adapt the colour model to the real scenario.
Initially, given a gesture video sequence, a generic skin model is applied to the first
couple of frames to automatically collect the training data. Then, an SVM classifier

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 25/128

based on active learning is used to identify the skin pixels. Finally, the results are
improved by incorporating region segmentation.

Other appearance-based approaches are proposed. For example, Chen et al. [25]
propose a new approach to the hand gesture recognition with the combination of
statistical and syntactic analyses. The fundamental idea is to divide the recognition
problem into two levels according to the hierarchical property of hand gestures.

Figure 14. Hand detector proposed in [CHEN]

The lower level of the approach implements the posture detection with a statistical
method based on Haar-like features and the AdaBoost learning algorithm. With this
method, a group of hand postures can be detected in real time with high recognition
accuracy.

Finally, in [27] propose a fast method for hand positioning and tracking. It combines
KLT features and a learned foreground colour distribution to facilitate 2D position
tracking from a monocular view.

Figure 15. Hand tracker proposed in [27]

The tracker's benefits lie in its speed, its robustness against background noise, and
its ability to track objects that undergo arbitrary rotations and vast and rapid
deformations.

2.3.2.1.2.3 3D approach

The different ways to model out a human body in three dimensions are based upon
the following models:

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 26/128

• Cinematic models : these models take into account not only the joints, but
also their position and velocity as well as the limitations of the angles that they
can form.

• Dynamic models : evolution of the previous models that take into account the
forces and the movements exerted upon the body in order to predict any
possible changes in their condition.

• Volumetric models: These models are based upon the modelling of the
human body using sets of ellipsoids or sets of ellipsoidal cylinders

• Stick Figures : Representation of the human model based upon an articulate
skeleton.

N. Jojic presents a system that makes it possible to detect the position of a 3D
human model using two stereoscopic cameras through a disparity map [29] .

Figure 16. 3D human model by [29]

This map gives us an idea of the dispersion of the pixels of similar features in the two
stereoscopic images. This way, it is possible to calculate the depth coordinate (Z) for
each zone of the image. Using Gaussian models formed by the coordinates X,Y,Z
and using information about the colour of each part of the body, they can foresee the
configuration of the three dimensional model that has formed the image. This way,
they prevent occlusions from happening, as this 3D Gaussian model would associate
them to the hidden parts of the image.

H. Sidenbladh et Al, propose a method to obtain a three-dimensional model of the
human body using a monocular image [30] .

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 27/128

Figure 17. 3D human arm tracking in [30]

Thus, they propose a three-dimensional model that is projected by a camera model
(pinhole) upon the silhouette that is going to be modelled and then, using an
appearance model based upon the response of the member that is going to be
modelled to several filters, finds the maximum probability model that adjusts to the
aforementioned silhouette.

A cinematic approach based upon the skeleton is the one by C. Theobalt et Al. [31] .
Their system proposes the use of several synchronized cameras that make it
possible to extract a silhouette of the person. This silhouette is initially segmented by
using the “Generalized Voronoi Diagram decomposition”, which divides the silhouette
into different regions. Once the system performs this division, it calculates the colour
model, which will change from frame to frame, for the areas of hands and feet.
Besides, with the information obtained from the silhouettes of different cameras, it
provides a model based upon voxels (3D pixels), which is the frame in which the
human model can be placed. Then, an offline module adjusts the model.

A similar approach is used by I. Mikic et Al [32] who use voxels too, in order to define
the frame that contains the model of the body. The difference lies in the fact that they
use a more complete modelling of the human body, based upon ellipsoids. Besides,
the calculation of the longitudes of the model (size of arms, legs,…) is carried out
automatically in the initial frames.

Apart from the information of the silhouette of the image, C. Theobalt [33] puts
forward an additional approach using the optical flow on top of the silhouettes in
order to carry out an analysis of the voxels.

2.3.2.2 Gesture Recognition

The recognition of the gesture is the final stage of a gesture interaction system.
There are two kinds of gestures that can be detected: a) static gesture (pose) and b)
dynamic gesture.

A static gesture is produced when the user adopts a certain pose. In this scenario,
the gesture recognition can be address by template matching, standard pattern
recognition techniques or neural networks.

When the user doesn’t adopt a certain pose, but it moves a part of it’s body, a
dynamic gesture is done. In this case, the detection of the gesture involves the use

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 28/128

of other kind of tool such as Hidden Markov Models (HMM), Particle Filtering and
Finite State Machines (FSM).

In [34] a HMM is proposed for various types of hand gesture recognition. A gesture
spotting is proposed for the pre-processing stage of the gesture recognition. The
gesture spotting algorithm divides the trajectory into real and meaningless segments.
To construct a feature database, this approach uses a combined and weighted
location, angle and velocity feature codes, and employs a k-means clustering
algorithm for the HMM codebook. In the pre-processing stage it also uses two
different procedures for hand localization and hand tracking. The hand location
procedure detects hand candidate regions on the basis of skin-colour and motion.
The hand tracking algorithm finds the centroids of the moving hand regions, connects
them, and produces a hand trajectory.

In [35] a gesture recognition based on HMM is proposed.

Figure 18. Example of a gesture detection [35]

The system consists of four modules: a real time hand tracking and extraction,
feature extraction, hidden Markov model (HMM) training, and gesture recognition.
First, the system applies a real-time hand tracking and extraction algorithm to trace
the moving hand and extract the hand region. Then, it uses the Fourier descriptor
(FD) to characterize spatial features and the motion analysis to characterize the
temporal features. The spatial and temporal features of the input image sequence
are combined as the feature vector. After having extracted the feature vectors, the
system applies HMMs to recognize the input gesture. The gesture to be recognized
is separately scored against different HMMs and the model with the highest score
indicates the corresponding gesture.

The authors of [36] model the gesture as an ordered sequence of states in a spatio-
temporal configuration space using a FSM approach. They propose the detection of
a limited set of dynamic hand gestures. This involves extracting the temporal
signature of the hand motion from the performed gesture. The concept of motion
energy is used to estimate the dominant motion from an image sequence. To achieve
the desired result, they introduce the concept of modelling the dynamic hand gesture
using a finite state machine. The temporal signature is subsequently analyzed by the
finite state machine to interpret automatically the performed gesture.

In [37] the authors propose a state based approach to gesture learning and
recognition.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 29/128

Figure 19. States of “infinity-figure” gesture [37]

Using Spatial Clustering and Temporal alignment, each gesture is defined to be an
ordered sequence of states in spatial-temporal space. The 2D image positions of the
centres of the head and both hands of the user are used as features; these are
located by a colour based tracking method. From training data of a given gesture, the
system first learns the spatial information and then groups the data into segments
that are automatically aligned temporally. The temporal information is further
integrated to build a Finite State Machine (FSM) recognizer. Each gesture has a FSM
corresponding to it.

2.3.3 Mobile device gesture recognition

The source of innovations in mobile device user interfaces lies in combinations of
input and output technologies that match the user’s needs. In the mobile context,
movement sensing - and haptic feedback as its counterpart - offers a new dimension
to multimodal interactions. There are use cases where traditional interaction
modalities are insufficient, for example when the device is placed in a pocket or a
holster or if the user is wearing gloves. In these situations, the user cannot press or
see buttons to interact with the device. Instead, small motion gestures can be used
as a limited, but convenient, control modality. The movement of the device can be
captured with a 3-axis accelerometer, and the resulting acceleration signal can be
used to detect the movement patterns for controlling the device.

One of the main questions in the application of movement-based interface is how to
distinguish gesture movements the user performs from those movements that are
produced by various other activities while carrying and using the device. Reliability
can be argued to be the most important challenge in developing a mobile device
gesture interface.

In acceleration sensor-based gesture recognition, gestures are detected either from
continuous stream or from discrete segments of sensor data. In detection from
discrete segments, gesture start and end are marked explicitly, e.g. with a button,
instead of a continuous flow of device movements. From the usability perspective,
interaction without explicit marking is preferred in general, since it requires less
attention from the user. However, continuous data streaming and execution of the
gesture detection algorithm requires continuous data processing, which normally
consumes battery.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 30/128

The development in digital acceleration sensor technology enables the integration of
programmable interrupt-based solutions that can operate with low current
consumption. Such sensors generate interrupts when acceleration on a spatial axis is
over or below a set threshold level. Hence movement detection algorithms, initiated
by an exceeded threshold, can be implemented as event-based instead of
continuously processing a stream of data. The processing load at the mobile device
side is similarly reduced since the operating system is woken up less frequently. This
development opens up new possibilities for practical application of the technology in
mass products such as mobile phones.

Specifically, acceleration sensors have been applied in user-trainable and pre-trained
machine learning-based gesture recognition systems [151] [152] . There are a lot of
studies in the literature on gesture recognition from discrete segments [153] [154] .
Free-form gesture recognition yet has a limitation, it requires an explicit marking of
the gesture, e.g. with a button or a still part at the beginning and/or end of the
gesture. In addition, gesture duration has to be longer to increase the recognition
accuracy. Hence the interaction requires more user effort, and gesturing can be
socially obtrusive. However, despite the possible obtrusiveness when applied in
public places, free-form gestures also have a wide range of potential uses in other
settings, such as games, home electronics control, etc., where the social acceptance
does not limit the use of the modality. The social aspect, distinctively important in the
mobile usage context, has been addressed, e.g., in [155] [156] [157] . It can be
extrapolated based on the literature that, when performed with a mobile device such
as a phone, smaller gestures are considered socially more acceptable than large
[155] . Examples of possibly useful small-scale gestures include shaking the device,
e.g. [158] , and swinging it from side to side [159] . However, both of these interaction
methods can be considered quite noticeable regardless of scale. Shaking also raises
a question, how many repetitions of the shake movement are required until a shake
is recognised.

Simple accelerometer-based tilting control has been discussed in the literature in
many studies during the years, e.g. [160] , but also recently, e.g. combining tilt and
vibrotactile feedback [161] , scrolling, switching between landscape and portrait
display orientations [162] . Tilting is another potentially unobtrusive, and very simple
to implement, movement-based interaction modality to be applied in carefully
selected use cases in mobile computing.

A minimalist extreme in hand gestures is tapping the mobile device, first introduced in
[155] . Tapping requires only a small scale of device movement and can be
performed by finger or palm. The technological benefit is that tapping can be
relatively straightforwardly captured with a 3D accelerometer, since the resulting
movement pattern has a distinguishable sharp spike form. The detection problem can
be narrowed down by applying a small, predefined fixed set of movement patterns:
tap events. The unique usability benefit of the tap interaction is that it is discreet and
can be used if the mobile device is located in a pocket or a backpack, since explicit
marking is not needed. Furthermore, the user is not required to hold the device or
see the keyboard to interact. A good example of a use case where tapping is useful
can be found from the Nokia 5500 phone [163] : when a text message arrives, the
user has thirty seconds to tap the phone twice and the message will be read for the

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 31/128

user aloud. It is useful when the phone is in pocket or on belt, or the user is wearing
gloves; the message can be read eyes-free without first taking the phone into the
hand and opening the keypad lock. Furthermore, tapping can be used as an
additional modality. For instance, phone music player commands such as play next
or previous song can be controlled by tapping to either side of the phone, which is
convenient when the device is worn on a belt or in a pocket. Again, the user does not
have to take the phone, open keypad lock, and press a button to perform the control
action.

2.3.4 Voice interaction

The voice interaction is the modality of human-computer interaction where the user
gives commands to the computer using it’s own voice. In this modality, an automated
speech recognition is needed in order to detect the user command (or commands).

Specifically, Automatic Speech Recognition (ASR) is a part of Artificial Intelligence
whose aim is to facilitate spoken communication between human beings and
computers. Speech recognition is a technology that makes it possible to transform,
automatically, an utterance taken from natural speech into a text that may
correspond with it as faithfully as possible. It makes it possible for the system that is
provided with it to "understand" or interpret the contents of an utterance regardless of
the voice of the speaker.

The problem that the ASR system puts forward is that it is necessary to bring
together a set of information from different sources of knowledge (acoustics,
phonetics, lexicon, syntax, semantics and pragmatics), with unavoidable ambiguities,
uncertainties and errors in order to obtain an acceptable interpretation of the acoustic
message received.

The most basic classification that can be carried out with regards to speech
recognition systems is the following one:

• Discrete recognition systems. In the case of these systems it is necessary
for users to make a pause between one word and the next. This way, it is
easier for the system to recognise the words.

• Continuous recognition systems . In which users can speak in a completely
natural way without having to worry about introducing pauses. There are other
divisions in order to classify these systems. We may distinguish between
those systems that require a previous training in order to adapt to the voice of
the user and those systems that are independent from the user; or systems
that can only recognise commands and fixed phrases in grammar-based
systems.

In the Speech Recognition area, there are several ways to recognize the person, and
in the following sections we are going to describe the most successful techniques.

2.3.4.1 Comparing Templates or Patterns by using a programming
technique called Dynamic Time Warping (DTW)

It consists in comparing the pattern that must be recognised (initially) with a series of
templates or patterns that represent the units that must be recognised. The template
is just a set of acoustic features that have been organised in time (sequence of

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 32/128

parameter vector or indexes of a centroid or codebook library), and the comparison
of patterns includes a temporal, non-linear alignment as well as the measure of the
distance. This technique, which is used to solve continual speech recognition
problems, isolated and even independent of the speaker, to a certain extent, is
known as DTW (Dynamic Time Warping).

2.3.4.2 Hidden Models of Markov (HMM)

The stochastic modelling of the speech signal solves the problem of the template
alignment technique, providing the best results so far, both in the case of isolated
speech recognition and in the case of continuous speech recognition and as far as
the independence of the speaker is concerned.

This type of approach to the problem lies behind the philosophy of pattern
comparison but it differs from it in the form in which the patterns are obtained, in the
type of pattern, in the measurement of the distance and in the way the temporal
alignment is used by applying the latter. At present, we use an non-linear alignment
algorhytm (Dynamic Programming) known as Viterbi algorhytm, which is able to
“align” the input vector sequence or the indexes of a codebook with the set of
stochastic patterns (HMM) represented by the words in a dictionary, in the form of the
probability of that sequence to be observed (generated) by the different Hidden
Models of Markov.

2.3.4.3 Neural Networks (NN)

Neural networks are parallel information processing structures, formed by numerous
simple nodes connected with each other through weights and grouped in different
layers, from which the input and the output layer must be distinguished. Given their
intrinsically non-linear nature, their classification capacity and, mainly, their capacity
to learn a particular task using observation-objective pairs without carrying out any
type of supposition about the underlying model, they have become one of the most
attractive tools in order to solve the problem of speech recognition.

Nowadays, the results attained can be compared to those obtained through other
classic methods such as the HMM. Yet, they have different problems or nuisances,
such as: neither the layer structure, nor the necessary number of nodes for each
problem are known a priori; it takes too much time to train them is on occasions and
there is a possibility for them to remain "stuck" in local minimum rates of the cost
functions used during the training of the network.

Besides, the speech signal requires methods with bidimensional processing capacity,
in space and time; and the neural networks on themselves are only provided with
space processing capacity. This makes it necessary to combine the Dynamic
Programming techniques and the HMM with these networks, which makes it possible
to model the time variable, making it possible to carry out not only very adequate
classifications of the input that enters the network, but also the segmentation of the
input signal. Yet, other solutions incorporating some type of memory to the networks
have been proposed, but this makes it difficult, to a great extent, to carry out an
analysis of these networks given their non-linear character.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 33/128

2.3.5 Gaze

Gaze is defined as the direction to which the eyes are pointing in space and it is used
as indicator of user attention and also as a user interaction system. In eye tracking
systems, computer vision techniques are used to find the eyes in the image and then
determine the gaze.

The eye trackers are divided in two main groups: wearable and non-wearable
systems. The wearable systems, are often more intrusive than the non-wearables,
but the accuracy is higher than those. On the other side, non-wearable eye trackers
(or remote trackers) had restrictions related to the users’ movements. It also has
problems with the speed of head motion, so there is a risk of frequent track losses.
Moreover a remote eye tracker is not suitable (in general) for non-desktop situations
such as example interaction in “ubiquitous computing” scenarios.

There are several issues in developing eye-tracking systems: intrusiveness, speed,
robustness, and accuracy. The type of hardware and algorithms necessary, however,
depend highly on the level of analysis desired and the application of this analysis.

There is a lot of research in this field. One of the research lines is focused on
improving the accuracy of the eye tracking systems in non-wearable trackers. For
example, Wang et al. propose using a high-resolution image to improve overall
accuracy [121] . Other line of research is in the automotive area. One example of
research in this area is the one developed by [122] . In that work, the authors
proposed to monitor driver visual attention using a single, non-wearable camera,
which was placed on a car’s dashboard. Other research lines are centered in the
user interaction with a system. In this case, we can mention the use of gaze as a
pointer [124] and the use of gaze in affective interfaces, using the eye information for
infer it’s cognitive state [123] .

2.4 Multi-device interaction
While the development of interfaces is most often still based on the one device - one
user idea, our typical environment is already providing an abundance of devices with
associated interfaces. Developers of mobile services were the first to notice this.
Typical services were adapted from web-sites providing similar services. Taking the
constraints of mobile devices into account – screen size, lack of proper keyboard, no
mouse, restricted computational power and power consumption issues – was not as
easy as just downscaling the graphical interface. Adding to that the complexity of
managing a dynamic service provided to the web and a plethora of mobile devices,
each with their own peculiarities, made the task sheer impossible. Current
environments add even an extra dimension by providing “affordances” – devices and
components in the environment that offer interaction capabilities.

We can distinguish three ways to define multi-device interaction, which partly
overlap:

1. The interaction with a service through a variety of clients (terminal devices),
each with different user interface capabilities. Interaction typically takes place
through one device at the time. The main challenges are related to catering for

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 34/128

this variety of client capabilities (including modalities) and properly
implementing session transfer between devices.

2. The interaction with a service through multiple devices simultaneously, using
the interaction capabilities of provided by the devices best suitable for the task
at hand. The devices are typically operated by one user, who uses for
example the graphical display of one device, while inputting text via another.
The main challenges involved in this concept are the selection of the most
suitable interaction devices around the user, the presentation of a
comprehensive UI through these devices using their interaction capabilities,
and splitting the interaction and event flows between the devices involved.

3. Interaction with a service by one or multiple users using (possibly, but not
necessarily similar) multiple personal devices to interact with the service
simultaneously. A typical example of such interaction occurs in gaming, or any
other situation where people are cooperating watching a common screen or
view. A special case arises, when one person uses several devices
simultaneously to accomplish a task (e.g. exchange data). The main
challenges here are related to managing multiple users and their interaction
(e.g. multiple cursors).

To capture all of these three viewpoints, we might define multi-device interaction as:

Multi-device interaction is the concept where one o r more users utilise the
interaction capabilities of a variety of devices (s imultaneously or
consecutively) to improve the use experience of an interactive service.

A common challenge to all three views is that the supporting architecture must be
able to cope with a variety of modalities, abstract the user interface, communicate
interaction capabilities and cater for ad-hoc splitting and adaptation of the UI for the
devices at hand.

Ad 1) When HTML was first conceived, it was intended as a flexible means to
present textual information augmented with links, pictures, etc. Scaling to the actual
screen or window size was taken care of by the viewing client browser. In search for
more attractive and better controllable views, designers started to use enhancements
like frames and features like tables in different ways then originally intended. Also
different technologies running via plug-ins, e.g. Java or Flash, were used for this
purpose. While producing more attractive web pages and UI’s, the scalability
originally offered by HTML was lost. For most computer applications, all having
approximately a same sized screen, this sacrifice seems justified, but it backfired at
the advent of mobile technologies. When internet services were provided on these
mobile devices, with limited computational and graphical abilities and slow data
connections, the typical web page would not scale down anymore. Special HTML-
style solutions were defined for the mobile devices, like cHTML and WML (WAP),
basically simplified HTML, but achieved only limited success. It proved to be
particularly difficult for the service providers to maintain traditional web services and
mobile services – often different versions for different devices – and provide

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 35/128

consistent content for all of the services. Also session transfer from one device to
another was cumbersome.

Solving the issue of managing web and mobile services was approached in two
different ways; 1) Automatic conversion of the original web services for viewing in
mobile devices and 2) Modelling services on an abstract level and generating
presentations for various clients from this common source. The first approach yielded
usually very poor usability, as navigating through frames and tables required
knowledge of the web page structure and embedded media scaled poorly or not at all
(e.g. clickable images). The second did not catch on very well either, in spite of
efforts by Paterno on task modelling, RedWhale (XIML), the UsiXML and UIML
consortia and various tool builders (see also chapter 4). Eventually it seems that
mobile phones have matured to view the web pages in their original form, just
panning the view over the page to accommodate for the limited screen size. The
Opera browser is a good example of this effort to adjust web pages for mobile
browsing.

In addition to catering for mobile devices, some effort was also put in extending web
browsing to voice interfaces. VoiceXML allowed for the easy definition of voice driven
services. Additionally various browsers added “read aloud” or voice control to their
browsers. This was a great help for disabled users, but only of limited use for the
average use. Phone-based services were limited to implementations of ticket
reservation of e-mail access and were not used as an alternative to web browsing.

Ad 2) This definition is closely related to some aspects of multimodal interaction.
Whereas multimodality is referring to the use of various modalities, either to be
understood as human senses and faculties or as I/O channels of a computer, multi-
device interaction refers to the use of various devices for this purpose. Clearly these
devices implement such I/O channels and people use their senses and faculties to
perform the interaction.

Historically multi-device interaction can be traced back to the early days of personal
computing, when the WIMP (Windows, Icons, Menus, Pointers) paradigm developed.
The computer consisted (consists) of a computing part, a display and a mouse. The
latter two are dedicated I/O devices and we could thus speak about multi-device
interaction. Although in the current understanding of multi-device interaction we
emphasise the ad-hoc nature of the coupling of the devices and the wider use of the
device’s UI capabilities beyond their initial (device-specific) purpose, we can utilise
much from the pioneering work in this early stage. For example the use of an UIMS
(User Interface Management System) was proposed already in the 1980’s, it catered
for a variety of user interface technologies. The advent of WIMP has since limited UI
devices to the well-known mice-like devices and displays.

An essential part of combining devices’ UI capabilities is advertising these abilities for
inclusion in the multi-device interaction. Various standards have arisen, mostly
tackling the connection of UI devices to a computer (USB-HID) or the description of
graphical rendering capabilities for hand-held devices (CC/PP – UAProf).

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 36/128

Combining the devices to cooperate to form the user interface used for interaction
can either be done automatically or by user intervention. Automatic combination
requires intelligence to decide which devices to involve depending on user
preferences, context information, device capabilities, etc. Manual combination needs
action from the user, either by selecting the devices from a presented list or by
means of physical browsing techniques (see next section).

When the devices provide capabilities beyond the usual WIMP paradigm, multimodal
challenges need to be faced, like synchronising multimodal input. An example is the
intuitive combination of pointing actions with speech, like first done in the Put That
There prototype by Bolt et al.

Ad 3) Multi-user environments raise new challenges altogether. The problem of
several people working on a task mediated by computers has been worked on for a
long time, for example in CSCW – Computer Supported Cooperative Work. The
research is often focussing on support for local and remote cooperation involving e.g.
shared displays, digital whiteboards, video conferencing, telepresence, instant
messaging, wikis, blogs, etc. More recent phenomena involve “communities” in this
process like in crowd sourcing, open source development and social media. This
research provides input to our multi-device research through its evaluation of the use
of common displays, telepresence and multiple users working on the same
documents.

Another background for this type of multi-device interaction is found from gaming.
Multi-player games using a joint screen or a virtual world for interaction abound both
at home and on the internet. The “devices” used for these games are often game
controllers or the WIMP devices connected to the PC, and the games have been
specifically designed for these controllers. The challenge for our multi-device
paradigm is to implement similar control behaviour using the UIs of devices originally
intended for other purposes. In case of gaming, reaction speed might be a serious
challenge.

The special case, where one user uses several devices to accomplish a task,
technically doesn’t differ much from the multi-user case. A typical task is to transfer
data from one device to another. The user will assume the role of provider and
consumer alternately, seen by the system as two distinct users.

The prototypes to be developed in the DIYSE project will often need to address
issues related to multi-device interaction, even if they are not always recognised as
such. The challenge of the DIYSE project is to find generalised means to facilitate
multi-device interaction, such as:

• Basic ad-hoc connectivity between the devices

• User interface resource capability description, publishing and management

• Interaction modelling

• User and context modelling and sensing

• Device coupling

• Smart adaptation, input fusion and output mapping algorithms

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 37/128

• Multi-user support

2.5 Tactile interaction and augmented reality
2.5.1 Tactile interaction

In a world which is becoming more pervasive, tactile interacation and interfaces will
play an important role. Tactile interaction can be interpreted in many ways, but the
major commonality between all interpreations is the fact that people get some kind of
tactile feedback from a system. This can be very ‘passive’ feedback, like a certain
surface texture on an object or can be ‘active’ when a system gives a certain type of
haptic feedback through vibriation elements. [188]

Using tactile or tangible interactions, creating the link between the digital world and
the real world gets a whole new meaning. [189] A lot of user interface development is
moving away from the traditional GUI and WIMP paradigms in order to search for
ways to incorporate computing systems in people’s lives in a more “humane” or
“natural way”.

2.5.2 Augmented reality (UAH)

The Augmented Reality (AR) is a term for a live direct or indirect view of a physical
real-world environment. An augmented reality system generates a composite view for
the user [85] . It is a combination of the real scene viewed by the user and a virtual
scene generated by the computer that augments the scene with additional
information. In this way, with the help of advanced AR technology [80] , the
information about the surrounding real world of the users become interactive and
digitally usable. The future of AR is related to the technology evolution and its
developed costs.

Some authors think this kind of reality is a part of a virtuality continuum, in other
words, the mixture of classes of objects presented in any particular display situation,
where real environments are shown at one end of the continuum, and virtual
environments at the opposite extremum [79] .

Figure 20. Simplified representation of a "virtuali ty continuum" [79]

A typical augmented reality system is made up the following components:
• Monitor display where it shows the result of real world and virtual

information.
• Camera lens that takes the real information.
• Software to process real data and transform them into

augmented reality.

• Markers such as GPS, paper symbols or other technologies that
put the system in the correct position.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 38/128

2.5.2.1 Application domains

Augmented Reality offers countless new chances for interaction that are present in
many and various domains, such as architecture, education, art, medicine, design,
robotics, military training, virtual communities or entertainment.

2.5.2.1.1 Entertainment

The entertainment domain brings together a lot of final users, so it is understandable
that all video-game companies are interesting in AR since it can provide many new
possibilities for the way play. For example, "Can You See Me Now?" [68] By Blast
Theory is an on-line video game of chase through the streets where players start in
random locations of a city, carrying a laptop and are connected to a GPS receiver.
ARQuake Project [70] is other video-game example that moves the original Quake to
outside. And a lot of initiatives in this sense are available on the www [69] .

2.5.2.1.2 Support to complex tasks

Complex tasks can be simplified by addition of virtual information on the visual field.
Hence, some tasks such as repair and assembly, surgery, etc, can take advantage of
the possibilities that AR offers. An clearly example of this application can be see in
the BMW laboratories, where the mechanic employs RA devices on car repairs [71] .

2.5.2.1.3 Mixed technology

AR is easy to combine with other technologies such as QR codes that are being
apply on publicity environments [72] [74] , and it is integrated with a lot of system
platforms like software applications [73] [75] .

2.5.2.1.4 Future applications

The future of AR is related to the technology evolution and its developed costs. In
this way, AR can be evoluted to holographic displays [76] , holodecks [77] , or virtual
GPS [78] .

2.5.2.2 Toolset and communities

• ARToolKit is a Cross-platform Library for the creation of augmented reality
applications [81] .

Figure 21. The ARToolKit tracking works (extracted from [82])

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 39/128

• ATOMIC Authoring Tool is a Cross-platform Authoring Tool software, for
Augmented Reality Applications, which is a Front end for the ARToolKit
library. Was developed for non-programmers, to create small and simple,
Augmented Reality applications, released under the GNU GPL License [83] .

Figure 22. How Work ATOMIC (extracted from [84])

• PTAM (Parallel Tracking and Mapping) is a camera tracking system for
augmented reality [87]

• ISMAR (International Symposium on Mixed and Augmented Reality) is the
premier international meeting place for the Mixed and Augmented Reality
research community [86] .

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 40/128

3 Toolsets

3.1 Introduction
3.1.1 What is a toolkit?

The term ‘toolkit’ is used to refer to a broad concept with a multitude of possible
applications. However, given the current frame of DIY and users, we will focus here
on the specifically relevant concept of user toolkits .

A user toolkit is ‘a set of user-friendly design tools that allow trial-and-error
experimentation processes and deliver immediate simulated feedback on the
outcome of design ideas’ [126] . User toolkits are designed for ‘do it yourself’: with
their basic product and building blocks for further personalisation, they invite the user
to create the ‘perfectly fit’ product himself.

 The toolkit concept is based on the idea to divide product development into
sub-tasks, which need either information from customers or manufacturers. This ‘task
division’ enables companies to address a wide range of consumers, and to avoid
product failures, as customers can adapt the product to their own needs [127] [131] .

“The architecture of the humble pizza illustrates how this can be done. In the case
of the pizza, many aspects of the design, such as the design of the dough and the
sauce, have been made standard, and user choice has been restricted to a single
task only – design of toppings. In other words, all need-related information that is
unique to a given user has been linked to the toppings-design task only.”[131] .

Franke and Schreier [127] discern two different toolkit approaches: first, the high-
end toolkit , which offers a large ‘solution space’ to users; and second, the low-end
toolkit , which offers little ‘design freedom’. The authors note that ‘not all users need
radically new solutions’ (2002). However, users can implement little functional
improvements themselves, thus harvesting the social benefits of individualization and
the psychological benefits of being the creator[127] .

Within the ICT sector, the concept of toolkits emerges in the 1980s, within the field of
custom integrated circuit (IC) design and production.

3.1.2 Why use a toolkit?

For companies, it is interesting to be able to design products and services in such
manner that users can contribute to them. Companies thus no longer need to
anticipate all user needs, but can instead facilitate user-development through the
means of a ‘toolkit’ approach. With the toolkit, companies can adhere to the
heterogeneous needs of a wide range of customers [125] [128] . In other words,
users get a chance to ‘serve themselves’ [128] .

 This approach is successful in open source software, where skilled users can
adapt the ‘code base’, and in the gaming business, where a toolkit can range from a
‘level’ to a ‘character builder’ [129] . The companies’ role thus shift from a creator to
an ‘enabler for users to develop new products and services themselves’ [125] .

“The basic idea behind toolkits is to allow individual customers to modify standard
products to their individual needs. Hence, the underlying assumption is that these

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 41/128

needs are highly heterogeneous (leaving many customers dissatisfied with
standardized products).” [129] .

As ‘customers will need tomorrow what leading-edge customers desire today’ [130] ,
it is interesting for companies to see which creative and innovative solutions from
such lead users could be relevant for other users as well. There is nevertheless a risk
that the user-generated solutions could come in conflict with the corporate branding
strategies and/or intended image [128] .

Winning over consumers creates an opening to gather them into communities. This
could attract users, at least those willing to be a part of it, and willing to contribute
free time and effort, driven through the urge to gain status and/or resolve problems
[125] . Dodgson et al [125] conclude that ‘firms able to harness these collective
efforts will gain competitive advantage.’

 Therefore, it could be valuable for companies to implement the toolkit concept,
even if the market share that could exploit the full potential is rather small [128] . The
toolkit could nevertheless function as: ‘a crèche for interested but inexperienced
users who could evolve into leading-edge users over time’ [129] .

 [131] is convinced that this toolkit-approach will be taken up in most markets
dealing with heterogeneous consumer needs. This uptake could be illustrated with
examples of online mass customisation toolkits from corporations such as Dell (PCs),
Mini Cooper (cars), Nike (sneakers) or IKEA (kitchens) [126] . There are also
examples on the business-to-business (B2B) market (e.g. custom food products from
Nestle Food Services) [127] .

Also for end-users, who get to chance to customize a product to their wishes, the
toolkit can be beneficial. [128] state (based on their research on the toolkit approach
of the open source software Apache) that users who adjusted the standard product
showed a higher satisfaction level than those who did not. Even non-innovative users
can profit from this toolkit-approach to improve the product for themselves. The
toolkit enables them to adopt solutions from skilled users. This of course requires les
skills and efforts than having to develop a solution on their own.

3.1.3 How does a toolkit work?

A good toolkit consists of five elements, which make sure that users have the
information they need to carry out their adjusting tasks effectively. The added design
costs should be less than added benefits.

The five basic functions of an effective toolkit [131] are enabling users to complete
trail-and-error learning cycles; offering users a ‘solution space’ that covers the users
design needs; enabling users to use them with their habitual design language and
skills; containing libraries of common used modules; and ensuring that the custom
products and services created can be produced on the manufacturers equipment.

We elaborate on each of those functions:

A) Toolkit enables users to complete trial-and-error learning cycles

The first characteristic relates to ‘learning by doing’, and addresses the ‘trail-and-
error’ process of creating something that fits one’s needs, until the moment it is used

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 42/128

and it becomes clear that it does not quite fit the purpose in mind. This uncovers the
real needs, from where the process can restart [131] .

B) Toolkit offers users a ‘solution space’ that covers the users design needs

Economical production of custom products and services is only achievable

when a custom design falls within the pre-existing capability and degrees of freedom
built into a given manufacturer’s production system. This is called the "solution
space" offered by that system. A solution space may vary from very large to small,
and if the output of a toolkit is tied to a particular production system, the design
freedom that a toolkit can offer a user will be accordingly large or small [131] .

C) Toolkit can be used with users’ habitual design language and skills

The third characteristic relates to the ‘user-friendliness’, on which the effectiveness
and the success of the toolkit depend. Users should not need to engage in a lot of
additional training to be able to use it, as the toolkit should enable users to draw on
their existing skills and their habitual design language [131] . Ideal would be a code
base open to a wide range of programming languages in the ‘high-end’ toolkits, and a
‘drag-and-drop’ interface in the ‘low-end’ toolkits. This will be appealing to a broad
audience.

D) Toolkit contains libraries of common used modules

Custom designs are seldom novel in all their parts. Therefore, libraries of

standard modules that will frequently be useful elements in custom designs are a
valuable part of a toolkit for user innovation. Provision of such standard modules
enables users to focus their creative work on those aspects of the design that are
truly novel [131] .

E) Toolkit ensures that the customized products and services can be produced
on the manufacturers equipment

Finally, the “language” of a toolkit for user innovation must be convertible

into the “language” of the intended production system at the conclusion of the user
design work. If this is not so, then the entire purpose of the toolkit is lost – because a
manufacturer essentially has to do the design over again [131] .

3.2 Mobile devices
3.2.1 Entire platform

3.2.1.1 Apple Apple iPhone

The iPhone is a smart phone designed and marketed by Apple Inc. oriented to
Internet and multimedia experience. iPhone comprises device, OS and a collection of
software applications, and it combines a Smartphone, communications interfaces
and hardware human interfaces in a small space. The iPhone runs over an operating
system know as iPhone OS, based on Mac OS X, that includes Core Animation
software and Open GL API components, which is responsible for the interface motion
Graphics. iPhone OS user interface is based on the concept of direct manipulation
using multitouch screen and sensors such as accelerometer.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 43/128

iPhone supports Apple applications, as well as from third-party development through
the SDK that Apple provides to developers. These software development kit is free
only for University enviroments, and needs a Mac OS X computer and the Apple’s
suite of development tools Xcode, that provide support for project management, code
editing, building executables, source-level debugging, source-code repository
Management and performance tuning.

SDK is broken down into the following framework sets:

- Cocoa Touch. Includes multi-touch events and controls, accelerometer,
localization an camera support.

- Media. Open AL, Open GL, audio/video/image controlls, Core Animation and
Quartz

- Core Services. Networking, Core Location, Threads and embebed SQLite
BBDD.

- OS X Kernel. Supports TCP/IP, sockets, file system, security and Power
Management.

Figure 23. iPhone SDK structure.

The focus of application development is the Xcode application. Xcode is an
integrated development environment (IDE) that manages all of the information
associated with application, including the source files, build settings, and rules
needed to put all of the pieces together.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 44/128

Figure 24. Xcode Interface.

Xcode comes with an advanced text editor, documentation and research assistant.
When we build an application in Xcode, we have a choice of building it for iPhone
simulator or for a device. The simulator provides a local environment for testing
applications to make sure they behave essentially the way you want. After you are
satisfied with your application’s basic behaviour, you can tell Xcode to build it and run
it on an iPhone or iPod touch connected to your computer. Running on a device
provides the ultimate test environment, and Xcode lets you attach the built-in
debugger to the code running on the device. Two important tools that Xcode provides
are Interface Builder , to assemble your application’s user interface visually, and
Instruments , to analyze the performance of your iPhone applications while running
in the simulator or on a device.

3.2.2 OS platform

3.2.2.1 Symbian S60

Symbian is an operating system designed for Mobile devices and smartphones
developed by Symbian Ltd. In 2008, Nokia acquired Symbian Ltd. This operating
system includes libraries, an user interface, and a development environment with
common tools for creating open source applications.

The most of aplications can be download from Symbian Horizont and it can be
developed in many languages, such as JavaME, Flash Lite, Python, Ruby, .NET,
Symbian C++ and some web technologies. Each language needs a different
development tool and not all of these tools are open licensed.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 45/128

3.2.2.1.1 C++ Developers

For C++ developers is necessary to have ADT and SDK packages. ADT
(Application Development Toolkit) 1.0 is used with the SDK and contains all the
tools necessary for application development. The Carbide.c++ IDE is the principle
tool used for C++ development and is built on the Eclipse tool framework. Carbide
plug-ins includes build, debug, static analysis, dynamic analysis, and a variety of
other specialized tools and utilities. Carbide.c++ supports Symbian Build System v1
and v2 (Raptor). Carbide.c++ allows the developer to edit, build, and debug
application on the emulator and on phone targets. The ADT also includes Carbide.ui
Theme Edition. Carbide.ui allows the developer to create themes for devices and
provides access to the more than 1,000 customizable theme elements in the UI.

Application Development SDK- (from Nokia). The Application Development SDK
available is the Edition SDK from Nokia This will change with future Application
Development SDKs, but until the Symbian Foundation creates its own SDK, the S60
5th Edition SDK from Nokia is being used as the SDK for Symbian^1. This SDK
enables application development in Symbian C++, Open C/C++, Java and Web
technologies. The SDK includes the all key resources needed for application
development (documentation, API reference, examples, and an emulator), and is
used with the Application Development Toolkit (ADT) for IDE support.

3.2.2.1.2 Java developers

Symbian Foundation does not have the full Java package for the time being because
of licensing issues, only platform APIs and stub implementations for them are
provided. The full implementation is available directly from Nokia for those S60
licensees that have relevant licenses from the appropriate 3rd party Java technology
vendors

3.2.2.1.3 Flash Lite developers

Adobe supplies the industry-standard Flash Professional CS4 authoring tool for use
in creating Flash/Flash Lite content, allowing designers to prepare anything from
simple animations through to complex multi-component ActionScript-driven
applications

3.2.2.1.4 Web technologies

Web Runtime consists of several components that allow installation and execution of
Widgets. Widgets are essentially applications written in HTML/JavaScript/CSS, with
JavaScript based access to some device APIs. Widgets execute inside the web
browser and are very similar to web/AJAX applications we see on the web.

Widget development is supported by an growing set of plugins for major development
environments such as Eclipse-based Aptana Studio, Microsoft Visual Studio and
Adobe Dreamweaver.

3.2.2.1.5 Python developers

Python applications ("scripts") are simply text files containing code written in the
Python programming language. The scripts can be written in any text editor and can
be run either from within the Python Interactive Shell application on a device or the
emulator, or as standalone applications on mobile device. The development

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 46/128

environment consists of the Python reference documentation, the Application
packager for making your scripts into stand-alone applications and the phone SIS
files. Both are provided for Windows and Linux/Mac

3.2.2.1.6 Ruby developers

Ruby is a dynamic programming language with a complex but expressive grammar
and a core class library with a rich and powerful API. Symbian Ruby brings the Ruby
programming language to the Symbian platform under the terms of the Ruby GPL
License. It is a port of the official Ruby code base and should run most of the existing
Ruby scripts. Symbian Ruby source code is hosted at the official Ruby central
repository, so it is always in synch with the latest Ruby Core releases.

3.2.2.1.7 .NET developers

The .NET Compact Framework is a subset of the full .NET platform designed by
Microsoft for mobile applications on Windows Mobile”Red Five Labs” provides Net60,
the .NET Compact Framework on Symbian. Microsoft originally designed and
developed the .NET platform with support for multiple languages and operating
systems. Red Five Labs implemented the Common Language Infrastructure
(commonly referred to as .NET) on the Symbian platform with support for C++, Java
and .Net.

3.2.2.2 Maemo

Maemo is a software platform that is mostly based on open source code and strong
mobile devices such as the Nokia N900 or the Nokia N810 Internet Tablet. The
Maemo platform is the core stack for this kind of devices and it has been developed
by Nokia in collaboration with many open source projects such as the Linux kernel,
Debian, GNOME, and many more. The Maemo platform offers a set of development
tools that allows developers or non-technical users (Maemo SDK) [49] to create
applications on top of this platform. Furthermore, exist an open community
developing software [50] around its that has over 20000 members that contribute to
several hundreds projects in the Maemo Garage (place for working on various
software projects related to the Maemo platform) [51] .

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 47/128

Figure 25. Maemo Garage Repository

The Maemo SDK will only install and run on a Linux operating system like Debian or
Ubuntu. By means of a VMWare image, it's possible to provide a working Linux
environment where install and run this sandboxed [52] . This means that the
development process is very similar to a normal desktop GNU/Linux, so the
developer is isolated for the kink of embedded development, such as cross-
compiling, that are handled transparently by the packet Scratchbox [54] .

The user interface architecture of Maemo is based on GNOME framework, especially
the GTK+ widget set [53] . The Maemo platform provide to end user many
components such as the GStreamer multimedia framework, the GConf configuration
management, and the XML library, that allow to extend GTK+/GNOME technologies
by providing extensions for a mobile desktop. Hildon [55] is the framework that
provides several libraries to interface with the desktop environment UI elements and
services.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 48/128

Figure 26. Maemo screenshot

Currently C is the only official programming language for maemo, but through the
maemo community, unofficial support exist for several other languages, such as
Ruby on Rails, Java, etc. Besides, Maemo provides support for the Eclipse
development environment and others integrated development environments.

3.2.2.3 Google Android

Android is a software stack for mobile devices that includes an operating system
based on the Linux kernel, middleware and key applications that is developed by
Open Handset Alliance, integrated by Google, HTC, Motorola, Intel, Nvidia and other
companies. The Android SDK [56] provides the tools and APIs necessary to begin
developing applications on the Android platform using the Java programming
language.

At the moment, there are a lot of devices that run Google’s Android, such as mobile
device and Internet Tables device. This reference shows a list of hardware devices
[58] .

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 49/128

Figure 27. Android desktop example

From the developer view, Google Android offers a complete software development kit
that includes a variety of custom tools to develop mobile applications on this platform
[59] . In particular, the Android Development Tools plug-in adds powerful extensions
to the Eclipse IDE [60] , and the Android Emulator [61] , that provides a QEMU-based
device-emulation tool for design, debug, and test the developed applications.
Furthermore, Android SDK includes a variety of other tools for debugging, packaging,
and installing your applications on the emulator and device. All application are
developed on Java programming language, but it includes a set of C/C++ libraries
used by various components of the Android system such as a System C library,
FreeType for bitmap and vector font rendering, and some Media Libraries.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 50/128

Figure 28. Android and Eclipse integration

The recommended way to develop an Android application is to use Eclipse with the
ADT plug-in, but it is possible develop applications in another IDE, such as IntelliJ, or
in a basic editor, such as Emacs [62] .

Finally, Android platform has a developers community with forums, mailing list and
IRC channels [63] . Furthermore, developers could access to documents that explain
the signing, versioning and publish application process [64] .

3.3 Hardware platform
3.3.1 Arduino

Arduino is an open-source electronics prototyping platform based on flexible, easy-
to-use hardware and software [98] .

The Arduino software consists of a development environment (IDE) and core
libraries distributed under GNU General Public License and Creative Commons
License. The IDE is written in Java and core libraries are written in C and C++.
Arduino boards can be programmed using Arduino language or straight C/C+.
Arduino language is a set of C and C++ functions that can be called from code.

Arduino community provides simple programas about basic Arduino behaviour.
http://arduino.cc/en/Tutorial/HomePage. These basic examples controls:

• Digital and Analog I/O: turn on and off LEDs, read pushbuttons, play speakers,
MIDI interfaces, analog sensors...

• Sensors: accelerometers, knock detection devices, ultrasonic object detection.

• Display control: matrix of LEDs and Liquid Cristal Displays.

• EEPROM control: clear, read and stores values in an EEPROM.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 51/128

• Motors: Stepper Motor control and servos.

• Communications between Arduino board and PC: send data to the computer
in order to process them and receive orders through keyboard, mouse or
process running on computer.

Figure 29. Arduino development enviroment.

3.3.2 Beagle board

This toolset has been covered in D1.1, including user aspects.

3.3.3 DIY Robots: Tux Droid, Lego Mindstroms

DIY robots are new concepts of toys that are construct by user self. This toolset
includes a lot of sensors that permit to detect events and interact with environment.
Furthermore, these toolset offer an easy programmable interface.

3.3.3.1 TUX Droid

In case of Tux Droid, this SDK allows it to announce events by gestures and by
ALSA driven sound [102] [103] . The events are detected by specific gadgets, which
are handled by the Tux Gadget Manager that is included in the tuxsetup package and
is an easy to use graphical interface to access Tux functions [104] . At this reference
[105] , it possible to find an OpenSource developers community dedicated to create
smart-companion features for PC-controlled robots.

3.3.3.2 LEGO-MINDSTROM NXT [106]

Since the NXT version, Lego releases the device firmware as OpenSource [107] and
provided several developer kits oriented to information on host USB drivers,

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 52/128

executable file format and bytecode reference (SDK); documentation and schematics
for the NXT brick and sensors (HDK); and documents about the protocols used for
Bluetooth communications (BDK).

The programming software that is provided by NXT version is NTX-G [108] . In older
version like RCX, this SDK was based on the GUI Robolab. In both case, LabView
develops them and there are two different programming interfaces, depends the kind
of kit (educational or other) used. Also, this toolset allows use third-party languages
such as Java, Ruby on Rails, C/C++, etc [109] .

Exists a strong community of developers and final users that offer designs,
programming techniques and other ideas associated with Lego Mindstorms [110] .
Lego also encourages sharing and peering by making software code available for
downloading and by holding various contests and events.

3.4 Software platform
3.4.1 Mashups

3.4.1.1 WSMX Engine

From a user/developer point of view there are several tools to make easier work with
WSMX[132] . Nowadays is as important make a potential technology as supply tools
to work with them, like:

- Task management

• GUI (HTTP): The WSMX Management Console is available at
http://localhost:8080/ (port as specified in the configuration). It contains
general information about the running WSMX instance and facilitates
basic administration tasks.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 53/128

Figure 30. WSMX Management Console (GUI/HTTP)

• TUI (SSH): A Terminal User Interface (TUI) for the basic administration
tasks as depicted in above figure is available via SSH using ssh
root@localhost –p 8090

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 54/128

Figure 31. WSMX Management Console (TUI/SSH)

- Monitoring tools

• WSMX Monitor: WSMX Monitor is a graphical tool (plugins) for
monitoring the state of each of the WSMX components within the
WSMX system, along with the system itself, for the Web Service
Modeling Toolkit (WSMT).

Figure 32. WSMX Monitor

- Tools related to WSMX

• WSMT Web Services Modeling Toolkit [133]

WSMT is an Integrated Development Environment (IDE) and has been created for
the rapid creation and deployment of the tools as plugins for Semantic Web Service.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 55/128

WSMT has three main areas in design-time: “WSML editors”, “WSML Discovery
view, Cache view, and WSML-Reasoner”, and “Mapping editor and Munit”; and has
one area in run-time: “SEE perspective: Interfacing with semantic Execution
Environment external systems”. This perspective include features a servers view to
connect to a WSMX instance for viewing and modifying stored WSML artifacts; and a
SOAP Message view to send messages to the WSMX EntryPoints web service and
view the results.

Figure 33. The SEE Perspective

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 56/128

Figure 34. WSMX Data Mediation Mapping Tool - Sugge stion

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 57/128

Figure 35. WSMX Management - Invoke MBean Operation

• WSMO Studio [134] .

WSMO Studio is an Eclipse-based tool for Semantic Web Services modelling based
on WSMO. On of their functionality is providing front-end for ontology / service / goal
repositories by a WSMX Adapter (is an Eclipse plug-in integrated with WSMO Studio,
which is accessible through the WSMX Management perspective).

Figure 36. Adding a new WSMX Server

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 58/128

Figure 37. Adding an Adapter Framework

Adapter Framework View: This UI component provides functionality for: Viewing
deployed adapters, Deploying a new adapter, Un-deploying an adapte, Testing an
adapter.

Figure 38. Deployed adapters

WSMX Server View: This component provides functionality for: Viewing deployed
components, Viewing the properties of a component, Invoking operations on
deployed components, Accessing the WSMX Management Console.

Figure 39. Viewing deployed components

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 59/128

Figure 40. Component properties

Figure 41. WSMX Management Console

- Development customizable components

• The WSMX Integration API is a collection of libraries required for the
integration of loosely coupled components with the main WSMX
system. Components must implement interfaces from the provided
infomodel to make this integration possible.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 60/128

Figure 42. WSMX Integration API

3.4.1.2 Lotus Mashups

This toolset has been covered in D1.1, including user aspects.

3.4.1.3 Yahoo! Pipes

Yahoo! Pipes is a free online service from Yahoo! that provides a graphical user
interface for building data mashups that aggregate web feeds, web pages, and other
services, creating Web-based apps from various sources, and publishing those apps
[97] .

From user point of view, Yahoo! Pipes provide a visual editor that allows, by dragging
pre-configured modules onto a canvas and wiring them together, run your own web
projects, or publish and share your own web services without ever having to write a
line of code [96] . The Pipes editor is a JavaScript authoring tool that lets you create
and edit Pipes in an intuitive visual interface. The editor consists of the following
three panes:

• The Library pane on the left hand side lists available modules and saved
Pipes.

• The Canvas pane in the centre is the main work area for assembling
Pipes.

• The Debugger is a resizable pane at the bottom, which lets you inspect
Pipe output at various stages in your Pipe.

It possible to create and edit Pipes by moving modules onto the Canvas from the
Library pane and wiring them together with your mouse.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 61/128

Figure 43. Yahoo! Pipes Visual Editor.

3.4.1.4 SOA DIY cartography Tools

This toolset has been covered in D1.1, including user aspects.

3.4.1.5 Microsoft Popfly

As it happened with the Google Mashup editor, Popfly was a webapp that enabled
users to create mashups. A user could join data coming from different sources and
together with a visualization tool create their own web service. In August 2009, the
service was taken down.

3.4.1.6 Intel Mashmakes and MARGMASH

This toolset has been covered in D1.1, including user aspects.

3.4.1.7 MARMITE

This toolset has been covered in D1.1, including user aspects.

3.4.1.8 EZWEB

This toolset has been covered in D1.1, including user aspects.

3.4.1.9 OPUSE SCE

This toolset has been covered in D1.1, including user aspects.

3.4.1.10 Apple Automator

This toolset has been covered in D1.1, including user aspects.

3.4.1.11 Facebook

Facebook is the most widely used social network worldwide at present. It is a website
where users build their own profile, keep in contact and get real-time information
about their friends, networks or events. What distinguishes Facebook from other

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 62/128

competitors is the concept of platform. Facebook exposes an API1 that allows the
development of applications to be used on the site. This API provides explicit access
to core features, such as profiles, photos, events or friends of the users. Likewise by
the usage of the Facebook Markup Language (FBML), developers can customize the
looks of their app. These applications put together by a user become a true mashup.
In fact the user interface (mashup) is refined by the user as they see fit.

Furthermore, Facebook also provides another set of APIs, known as Facebook
Connect 2, that allow 3rd party applications outside Facebook itself to access the
user data, friends, photos, and more. As a result it brings the Mashup outside
Facebook website and into the 3rd party website.

3.4.1.12 HyperCard

This toolset has been covered in D1.1, including user aspects.

3.4.1.13 OpenKapow

Openkapow [15] is an open service platform, where both experimented developers
and non skilled users can build their own services (called robots) and run them from
openkapow.com. These robots accesses web sites and allows to use data,
functionality and even the user interface of other web sites in an graphical way [16] .

From the user perspective, OpenKapow is a visual development environment which
offers a friendly user-interface for non-technical users to create applications called
robots. A robot in openkapow is a small program that automates what a person can
do in a browser. This includes navigating web sites by clicking on links and
submitting forms, extracting data from a site, etc. Robots are created in the
development environment RoboMaker without any programming and robots are then
hosted and run on openkapow’s servers. The behavior of a robot can be affected by
input values (for example the username and password to use to log in to a password
protected site) and the robot produces an output (for example the current rate of a
specific stock).

RoboMaker is the visual development environment used to create robots. In
RoboMaker a robot is created by putting together steps and configuring those steps.
This is done using a point-and-click interface that includes a browser view that allows
the user to see the page the robot interacts within the same way as if it was in a
normal browser such as Internet Explorer or Firefox. As shown in next picture:

1 http://wiki.developers.facebook.com/index.php/API
2 http://developers.facebook.com/connect.php

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 63/128

Figure 44. Visual development interface

There are 3 different types of openkapow robots that you can create, RSS/Atom feed
robots, and REST robots which are used as base for mashups development. A REST
robot is a robot that is run as a REST [17] service, this is a web service that is
available from a normal URL. The robot then outputs the result of its work in for
example XML, HTML or JSON. REST robots are normally used to create an API-like
interaction with a web site and the REST robots are usually called from within a
program (written in for example PHP, Ruby on Rails, C# or Java).

The creation of these REST robots is completely guided by means of a wizard, so
non-professional users can use the development environment with-out having
technical skills.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 64/128

Figure 45. RoboMaker Wizard

All the actions to be performed by the robot are showed in a list when “right-clicking”
in any of the source content page elements (see Figure 46).

Figure 46. Actions to be performed by the robot

Once the robot is complete, it can be published in the Web and hosted in the
OpenKapow Servers.

3.4.2 Video editing tools

In this section, we’ll describe different tools for video editing. Two types of tools will
be presented: PC-based Video editing tools and Web 2.0 video editing tools.

3.4.2.1 PC-based Video editing tools

Cinelerra [39] is addressed to two types of moviegoers: producers who create new
content and revisit it for further refinement, and consumers who want to acquire the
content and watch it. Cinelerra has many features such as composition, resolution
processing, (Figure 47). Cinelerra is not intended for consumers.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 65/128

Figure 47. Cinelerra screenshot [39]

Kdenlive [40] is a modern filmmakers which allow to mix different kinds of media,
including video, audio and images. Kdenlive is built upon Kdenlive video engine and
multimedia framework and ffmpeg frameworks, which provide features to mix virtually
any kind of media. The main features of Kdenlive are:

• Mix different media without prior import:

o Any Video, audio or image files supported by Kdenlive

o Custom profiles including resolutions, frame rates, PAR and DAR

• Support for a wide range of codecs and formats:

o Mpeg2, mp4 and h264 video.

o Mp2, mp3 and ac3 audio.

o Lossless video (SNOW lossless codec, etc ...).

o Free video (Ogg vorbis, etc ...).

The Figure 48 shows the main window of HCI of Kdenlive. Kdenlive should be used
by video amateurs as well as advanced users.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 66/128

Figure 48. Kdenlive main window [40]

Blender [41] is the free open source 3D authoring tool, available for all major
operating systems under the GNU license. Blender provides large component of
modelling, texturing, lighting, animation and video post-processing functionality in
one package (Figure 49). The Key Features of Blender are:

• Fully integrated creation suite. Blender offers tools for the creation of 3D
content, including modeling, uv-mapping, texturing, rigging, skinning,
animation, particle and other simulation, scripting, rendering, compositing,
post-production, and game creation;

• Cross platform, with OpenGL uniform GUI on all platforms, ready to use for all
versions of Windows (98, NT, 2000, XP), Linux, OS X, FreeBSD, Irix, Sun and
numerous other operating systems;

• High quality 3D architecture enabling fast and efficient creation work-flow;

• User community support by forums for questions, answers, and critique at
http://BlenderArtists.org and news services at http://BlenderNation.com;

• Small executable size, easy distribution.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 67/128

Figure 49. Blender HCI [41]

PiTiVi [42] is an opensource video editor written in Python for the high-level logic and
user interfaces (Figure 50). PiTiVi allows fast development time and an easy
extension of component through native python plug-ins.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 68/128

Figure 50. Main window of PiTiVi [42]

Kino [45] is a non-linear DV editor for GNU/Linux (Figure 51). With Kino, we can load
multiple video clips, cut and paste portions of video/audio, and save it to an edit
decision list (SMIL XML format). Kino can export the composite movie in a number of
formats: DV over IEEE 1394, Raw DV, DV AVI, still frames, WAV, MP3, Ogg Vorbis,
MPEG-1, MPEG-2, and MPEG-4.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 69/128

Figure 51. Kino video editing user interface [45]

Avidemux [43] is a free open-source program designed for multi-purpose video
editing and processing. Avidemux provide a user interface (Figure 52) and script to
edit videos. The scripting engine used by Avidemux is SpiderMonkey, and it is an
ECMAScript/JavaScript engine.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 70/128

Figure 52. Avidemux HCI video editing [43]

Jahshaka [44] is an open source, free, video editing software and special effects,
post-production in real time (Figure 53). It works by modules (animation, titling,
keying, tracking, paint, calibration, etc..) And is open source and free under GNU
GPL. Jahshaka makes possible to import image files (JPG, PNG, GIF, TIFF) and 3D
(3ds, Obj) and animate the whole (movement in 3D space, changes shape, size,
opacity).

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 71/128

Figure 53. Jahshaka video editor user interface [44]

3.4.2.2 Web 2.0 video editing tools

Cuts [46] provide online interface to upload your own video, or grab one from
YouTube for example, add some pre-recorded sound clips. The creations can be
shared with friends (Figure 54).

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 72/128

Figure 54. Cuts online video editor main window [46]

JayCut [47] mixer allows you to make creative masterpieces, or mixes for short, out
of your video clips and photos. The created video can be exported in facebook or
myspace. JayCut supports more to over a hundred input formats and allow exporting
to a cell phone just as easily as to video sites, blogs and Social Networks (Figure 55).
The key features of JayCut are:

• Multiple Upload: Allows users to upload multiple files with one click

• Easy editing: Trim, remix and combine videos and photos within minutes

• Collaborative Editing: Let other user remix and continue your work

• Export to any format: Export mixes to over a hundred input formats incl. cell
phones

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 73/128

•
Figure 55. JayCut online HCI video editing [47]

MovieMasher [48] is a set of Adobe Flash™ applets that provide front-end tools for
common video editing tasks. The major functions found in movie masher are: trim,
composite and time shift video, mix and fade multiple audio tracks, add effects,
transitions and titling (Figure 56Error! Reference source not found.). The
MovieMasher Applet can integrated in PHP server and source code is provided
under Mozilla Public License 1.1

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 74/128

Figure 56 - MovieMasher Applet video editing online HCI [48]

3.4.3 Other

3.4.3.1 ITEA-Amigo

This toolset has been covered in D1.1, including user aspects.

3.4.3.2 AmbientTalk

AmbientTalk [191] is a scripting language which embodies the ambient-oriented
programming paradigm [192] which is described in D1.1. While it is targeted at
programmers, rather than end-users and professional amateurs, the language is
designed to provide straightforward abstractions that allow programmers to intuitively
deal with the volatile connections and lack of infrastructure that characterise mobile
ad hoc networks.

AmbientTalk is a dynamically typed, object-oriented scripting language to develop
applications for mobile ad hoc networks. Due to the particular requirements of this
setting, AmbientTalk provides dedicated abstractions, which are not readily available
in other contemporary programming languages.

- Event-driven: AmbientTalk has built-in support for actor-based concurrency:
AmbientTalk applications consist of one or more actors (each encapsulating a
suite of objects), which communicate with one another in an asynchronous
and event-driven way. There are no threads, no locks, no deadlocks and no
data-level race conditions.

- Distributed: AmbientTalk provides built-in language constructs to enable
objects to dynamically discover one another in a mobile ad hoc network.
Communication between objects hosted on different devices is necessarily
asynchronous and is implicitly buffered to guard against transient
disconnections,

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 75/128

- Embedded: AmbientTalk applications run on top of a Java Virtual Machine,
and can reuse class libraries and applications developed in Java. Hence,
AmbientTalk can be used as a scripting language to describe the distributed
behavior of Java applications.

The AmbientTalk interpreter is freely available as an open-source project [193] At
present, tool support for the development of AmbientTalk applications is provided in
the form of Eclipse and TextMate plugins (to develop and run AmbientTalk
applications) and integration with the Causeway message-oriented distributed
debugger [194]

Due to the fact that AmbientTalk is embedded in Java, AmbientTalk programs can
only be run on devices which provide a suitable Java Virtual Machine (JVM). Three
JVM profiles are currently supported:

- J2SE (1.4 and higher): Java 2 Standard Edition: this profile is designed to
provide a JVM for desktop and laptop computers.

- J2ME CDC (1.1 and higher): Java 2 Micro Edition Connected Device
Configuration: this profile is designed to provide a JVM designed and
optimized for limited devices. The CDC profile targets high-end smart-phones
and supports reflection and tcp/ip sockets.

- Android (version 1.5 and higher): The Android platform is described in section
3.2.2.3 of this document. Its software stack provides Java on mobile phones
and Internet Tablets.

3.4.3.3 SOA4ALL Platform

SOA4All Studio is the web-based user front-end. It allows the creation, provisioning,
consumption and analysis of services published in the SOA4All delivery platform. It
consists of three different components:

- Provisioning Platform, it enables the annotation of both REST and WSDL
services, through MicroWSMO and WSMO-Lite annotations respectively.

o Process Editor, is a component of the Provisioning platform, that allow
users to create, modify, share and annotate executable process
models, based on a light-weight process modeling language (LPML).
This language is a subset of both BPEL and BPM, and aims at hiding
away most of the service composition complexity, still providing enough
expressive power to create useful compositions.

- Consumption Platform, serve as an interface for users to discover and invoke
services that fulfill their will. It takes into account the user profile and context to
offer a better composition.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 76/128

- Analysis Platform makes use of the data gathered by the monitoring system to
extract meaningful information.

Figure 57. SOA4All Composer

3.4.3.4 Ontology Engineering Tools

In DIY-SE, there are three main Ontology Engineering (OE) tools – the Developing
Ontology Grounded Methodologies and Applications (DOGMA) Studio Workbench
/Collibra Studio Workbench, the Ontology-based Data Matching Tool Set, and the
Semantic Decision Table Tool Set.

3.4.3.4.1 DOGMA Workbench/Collibra Studio

Collibra is a spin-off company of VUB STARLab. Collibra Studio3 is a tool suite that
enables IT professionals and business analysts to work together to re-conciliate and
apply the semantics of existing information sources. Collibra Studio allows the
creation of business semantics models that provide unambiguous definitions,
identifications and mappings towards existing data sources in a way that is both
simple and powerful.

Collibra Studio offers a user-friendly environment in which end users can provide
facts and fact types in natural language. The software then creates rich semantic
models automatically. This approach enables any stakeholder to easily capture the
meaning and relationships of the relevant concepts. These Business Semantics can
be easily exported to various formats such as CSV4, XML5, UML6, RDF7 and OWL8.

3
 http://www.collibra.com/trial

4
comma-separated values

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 77/128

The Collibra Studio is designed and built based on the DOGMA Workbench, which is
a collection of OE tools that supports DOGMA-based technologies, methods and
tools.

An important aspect in the Meaning Evolution Support Systems (DOGMA-MESS)
methodology is the community dynamics (De Leenheer and Debruyne, 2008), as
illustrated in Figure 59, is characterized by Nonaka’s four modes of knowledge
conversion: socialization, externalization, combination, and internalization [136] .

At the heart of the community dynamics is the Ontology Server, that bridges the
semiotic gap between the community system parts. There are three types of
knowledge workers: the knowledge engineer, the core domain expert (CDE), and the
domain expert (DE). As we will show, in DOGMA-MESS, the involved ontology
evolution processes (community grounding, rendering, alignment, and commitment)
are inherently driven by the social knowledge conversion modes.

1. Community Grounding: In this phase, shared conceptions of the world under
discussion that emerged from socialization are analyzed by the CDE. With the
assistance of the KE, he identifies the key conceptual patterns that are
relevant to be further externalized to the ontology. It results in a generalized
upper common ontology (UCO) which represents the conceptualizations that
are common to and accepted by the community.

2. Perspective Rendering: All participating stakeholders’ DEs render their
perspective on the UCO, by specializing the conceptual patterns, resulting in a
set of diverging stakeholder perspectives (SPs). Doing so, ontology evolution
is grounded (bottom-up) in the community, starting with the variety of
terminologies found in the community itself. This allows DEs to syntactically
and semantically nuance their intensions in a more natural manner using their
own vocabulary. In order to impose UCO reuse, different types of perspective
reuse policies can be formalized, including articulation, specialization, and
application. A reuse policy is formalized by a set of applicable operations on a
perspective [137] .

3. Perspective Unification: In the lower common ontology (LCO), a new proposal
for the next version of the common ontology is produced, combining relevant
material from the UCO and various stakeholder perspectives. Basically, there

5 Extensible Markup Language (XML) is developed by W3C (http://www.w3.org/XML/)

6 Unified Modeling Language (UML) is a standardized general-purpose modeling language in the field of software
engineering. The standard is managed, and was created by, the Object Management Group (OMG,
http://www.omg.org/).
7 The Resource Description Framework (RDF) is one of World Wide Web Consortium (W3C) specifications
originally designed as a metadata data model. It provides interoperability between applications that exchange
machine-understandable information on the Web. (http://www.w3.org/TR/PR-rdf-syntax/)

8
 The Web Ontology Language (OWL) is a family of knowledge representation languages for soring ontologies,

and is defined by the World Wide Web Consortium. Its semantics is based on Description Logic. It is intended to
provide a language that can be used to describe the classes and relations between them that are inherent in Web
documents and applications. (http://www.w3.org/TR/owl-guide/)

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 78/128

is only a very simple rule: all (selected) definitions need to be full
specializations of the conceptual patterns in the UCO. This, however, is overly
simplified. In the ontology evolution process, despite reuse policies, the
constructivist paradigm should allow to override the reuse policies, and hence
new definitions to be created that are not (complete) specializations, but
represent new insights for the CDE in preparing new evolution rounds, for
example. This makes the alignment process far from trivial. This process is
conducted collaboratively by all involved DEs, the CDE, and the KE.

4. Perspective Version Commitment: The part of the LCO that is aligned by the
community forms the legitimate UCO for the next version of the common
ontology. All participating organizations finally internalize and commit their
instance bases to the new version.

Figure 59. DOGMA-MESS ontology evolution spiral mod el [135]

In all phases, the views of all stakeholders are considered. This fourfold collaborative
ontology evolution process is iteratively applied until an optimal balance of

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 79/128

differences and commonalities between organizational and common perspectives are
reached that meets the communication goals.

A normal use scenario starts with semantic reconciliation, when the wizard starts, it
will first ask for the context. Users can use standard browsing functionality to find the
right context. In the example shown in Figure 60, the user has chosen to use a
context with the name "Wine delivery", which is identified by its URI:
"http://en.wikipedia.org/wiki/Wine". The context selected here will serve as a sort of
reference for any fact types in the concept pattern.

Figure 60. Define your context with Collibra Studio

After the context is defined, the end user can introduce new concepts in the
NormTree editor and browse the ontology with the outline wizard (Figure 61).

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 80/128

Figure 61. Introduce new concepts and browse ontolo gy with Collibra Studio

The problem in OE is not on what ontologies are, but how they become operationally
relevant and sustainable over longer periods of time, and how proper methodology
and tool support can be provided. DOGMA-MESS, extending the fact oriented and
layered ontology framework DOGMA, is a collaborative ontology evolution
methodology that supports stakeholders in iteratively interpreting and modeling their
common ontologies in their own terminology and context, and feeding back these
results to the owning community. Comparing to other ontology editors, such as
Protégé9, the Collibra Studio is supported and can be easily extended with a set of
DOGMA-MESS modules: Version Manager, Community Manager, and Perspective
Manager.

3.4.3.4.2 ODMF Tool Set

In ontology engineering (OE), there exist many ontology matching approaches, e.g.,
algorithms and (open) tools. Some EU projects, such as Knowledge Web (KW10) and
OpenKnowledge11, have investigated a lot of efforts on ontology matching/integration
algorithms and tools. For example, KW has produced 318 papers on ontology
matching/integration algorithms and tools. An example of an ontology matching
algorithm is Genetic Algorithm based Ontology Matching (GAON, [138]). Without
doubt, ontology matching is an important hot topic in Ontology Engineering (OE).

However, the ontology-based data matching framework (ODMF) is not about
ontology matching or ontology integration. Instead, it is to study ontology-based data
matching and ontology-based data schema matching.

9 http://protege.stanford.edu/
10

 http://knowledgeweb.semanticweb.org/
11

 http://www.openknowledgeproject.org/

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 81/128

The problem of ontology-based data matching is not the problem of ontology
matching. The goal of the latter is to solve the problem of semantic inconsistency
while integrating/merging more than two ontologies. The goal of the former (also the
scope of ODMF) is to find the similarities between two data sets, each of which
corresponds to (or can be annotated with) one part in the ontology. There is only one
ontology in the particular problem.

There exist some data matching algorithms, as it has been always a hot topic in the
data base community. Studies on ontology-based data matching or ontology-based
data schema matching are few and limited. For instance, Topical Ontology for
Directories’ Editing (TODE [139]) treats ontology as a hierarchical tree, which
contains only is-a relationship [140] do not specify domains of ontologies.

Any kinds of ontologies from different domains and contexts can be used with their
approach. It is convenient and general on the one hand, but raises problems of
ambiguity on the other hand. We intend to have a framework by taking all the
possible parameters, functionalities, and semantic reasoning power brought from OE.

ODMF is designed and built based on a survey, take the most suitable algorithms,
tackle their limitations such as mentioned above and design and implement a generic
matching framework as such. Classical methods, such as using linguistic methods for
concept searching, using WordNet [141] as the external dictionary and applying
Graph Matching principles, will be included in our method. This innovative
combination will be different from the effort of others.

The ODMF is a collection of different matching algorithms and strategies. A matching
strategy is a combination or composition of different algorithms. Each strategy
contains at least one algorithm. Figure 62 shows the design of ODMF, which
contains the following components: (1) term base, (2) domain ontology, (3)
application ontology, (4) matching module, (5) interpreter module, and (6)
comparison module.

a. The term base contains the (multilingual) terminological information
useful to describe or interpret domain concept descriptions.

b. The domain ontology contains the concepts, concept properties, and
concept relations relevant for the domain.

c. The application ontology contains the ontological constraints that map
information in the knowledge resource to the domain ontology.

d. The matching module provides an interface for the matching of two
data elements. Different matching strategies, e.g. string, lexical, and
graph, are supported by this module. Via the ODMF interface different
matching implementations may be activated.

e. The interpreter module makes use of the term base, the domain
ontology, the application ontology, and the matching module to interpret
application data. Given two character strings Context and Object that
denote (a) a concept in the domain ontology, and (b) an instance in the
application ontology for that context, the interpreter will return the object
ids that fit the specified objects. Conversely, the interpreter module can

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 82/128

translate a given object id into the combination of a Context and Object
character string. During the translation, the interpreter module will take
into account the specified language id. If the language id refers to
English, then the Context and Object character string will be (and
considered to be) in English.

f. The comparison module makes use of the term base, the domain
ontology, the application ontology, and the matching module to
compare two data objects. Given two sets of object ids and a strategy
id, the comparison module will return a similarity score for the data
objects based on domain information and using the selected strategy,
i.e. matching implementation.

Figure 62. Design of ODMF

The ODMF tool set contains many tools, among which three are possibly useful for
DIY-SE.

• ODMF Multilingual WordNet Editor (MWE), which is used to manage the
knowledge base of the ODMF. In particular, we use it for managing the upper
common ontology and terminology. It is not restricted to any particular
domains. Currently it contains over 120,000 concepts.

• Competence Ontology Client Application (COCA), which is also used to
manage the knowledge base of the ODMF. In particular, it allows different
organizations to manage the lower common ontology. It is the implementation
of three methodologies. They are DOGMA methodology [142] , DOGMA-
MESS methodology [143] and PAD-ON methodology [144] .

• ODMatcher (Prolix Ontology-based Data Matching Tool), which is a tool to
evaluate different matching strategies and algorithms in the ODMF. The end
users of ODMatcher are knowledge engineers, e.g. ontology engineers.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 83/128

Before explaining the software tools we will first explain how and why the terminology
and ontologies are stored in several databases.

We divided the information resources into a) an upper ontology, b) a lower ontology,
and c) an organisational ontology. The upper ontology contains terminological and
ontological information based upon WordNet [141] . These general concepts may be
used to semantically annotate competences in the lower ontology. To manage the
upper ontology we developed the Multilingual WordNet Editor (MWE).

The MWE software tool (see Figure 63) allows linguists (such as, terminologists,
translators and lexicographers) to manage an ontologically structured terminological
database. The structure of the terminological database is a Categorization
Framework [146] . The MWE makes use of the Categorization Framework API [145]
to manage the terminological and ontological information. As a basis for the
terminological information we imported WordNet 2.1 information.

Figure 63. Managing terminology in the Multilingual WordNet Editor (MWE)

Figure 63 illustrates that a regular expression in combination with a language can be
used to filter a list of terms. A term refers to a specific meaning (synset in WordNet).
In the example, the term “head nurse” is selected. The term between brackets is the
meta category for the meaning. As meta category the first hypernym was taken when
converting the terminology from WordNet. If no hypernym existed, the linguistic
category of the word (adjective, adverb, noun, and verb) was taken as a meta
category. The meta category helps to disambiguate terms from the filtered list.

The Competence Ontology Client Application (COCA) has been used to allow
organizations to manage a shared ontology for competency-based Human Resource
Management (HRM). The two main concepts in the HRM domain are competences

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 84/128

and qualifications. Other concepts are competence level, context, competency, and
qualification level.

Figure 64 illustrates for example how a qualification may be added in the ontology.
For a qualification it is possible to manage the (multilingual) terminology, classify the
qualification with context categories, add properties with extra information about the
qualification, and to specify required initial competencies and provided end
competencies.

Figure 64. Managing qualifications for the HRM Onto logy with COCA

The COCA is also used to semantically annotate competences. The main purpose of
developing COCA was after all to allow us to evaluate different ways of semantically
annotating data. Figure 65 illustrates for example how the competence “Be able to do
internal escalations” may be annotated using concepts from the upper ontology. To
facilitate this process, the application analyses the title and description of the
competence via tokenization and lemmatization. The set of identified lemmas is then
used to retrieve possible concepts from the upper ontology. The user can then simply
select the suggested concepts that best describe the competence.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 85/128

Figure 65. Semantically annotating data with the CO CA

The COCA provides four means of semantically annotating data: a) using terms for
concepts from the upper ontology, b) using free key concepts aided by a linguistic
pattern, c) using lexons (elementary facts), and d) using semantic relations between
instances.

Some examples of semantic annotations for each of these techniques to annotate
the competence “Be able to do internal escalations” are as follows:

a) may be annotated with the following concepts:

• able: have the skills and qualifications to do things well

• able: having inherent physical or mental ability or capacity

• do: carry out or perform an action

• escalation: an increase to counteract a perceived discrepancy

• internal: occurring within an institution or community

b) may be annotated with actions, instruments, locations, manners, objects,
persons, times:

• action: do

• object: internal escalation

c) may be annotated with lexons:

• Agent, is able to do, is ability of, Internal escalation

d) may have the following semantic relations:

• is moderately similar to “Internal escalations done on time”

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 86/128

Although the scope and application domain concerning ontologies in DIY-SE are still
not yet defined, it is possible to reuse the both the ontology creation methodologies
and the semantic annotation methods from COCA.

The ODMatcher makes use of the information in the upper ontology, the lower
ontology, and the organisational ontology. The organisational ontology contains
information specific for an organisation e.g. instances of functions, persons, and
tasks. The software tool allows us to manage the organisational ontology and to
evaluate the different algorithms within the ODMF.

The main purpose of the ODMatcher is however to compare different data elements
associated with competencies. It is possible to compare two sets of data elements
with each other. In HRM domain, a data element may be a competence, a
competency, a function, a person, a task, and a qualification. In DIY-SE, it can be a
tool, an application component and a smart item. By pressing the Analyse button the
similarity scores of two elements will be calculated (Figure 66 and Figure 67).

Figure 66. Comparing two data items with the ODMatc her

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 87/128

Figure 67. Matching results using different algorit hms in the ODMatcher

3.4.3.4.3 Semantic Decision Table Tool Set

Researchers have been investigating the study of decision tables for more than fifty
years. As an important tool to support Information System Management, decision
tables have many outstanding advantages, i.e. they are easily learned, readable and
understandable by non-technical people. Seeing the advantages, the interest of
decision tables has been rising steadily. However, often the definition of concepts,
variables and hidden (or meta-) decision rules that underlie remain implicit. When
decision tables get larger, ambiguities, content inconsistencies and conceptual
reasoning difficulties arise. The situation gets naturally worse when a group of
decision makers need to build decision tables in a collaborative environment. Thus,
the concept of Semantic Decision Table (SDT [150] [148]) is proposed.

SDT provides a means to capture and examine decision makers’ concepts, as well
as a tool for refining their knowledge and facilitating knowledge sharing in a scalable
manner. An SDT is the result of annotating a (set of) decision table(s) (or any well
structured decision resources) with (domain) ontologies. It is modelled based on the
framework of Developing Ontology-Grounded Methods and Applications (DOGMA).
We have designed a methodology to assist a decision group to create SDTs [150] .
With regard to the technical issues of SDT, Semantic Decision Rule Language

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 88/128

(SDRule-L/SDRule-ML [149]) and Decision Commitment Language (DECOL) are
designed and implemented to model, store, reason and publish SDT rules.

SDT tool set developed in Java is a collection of software modules corresponding to
different functionalities that supports the SDT engineering cycle. It runs in the Dogma
Studio Workbench.

Figure 68. design of SDT tool set

Figure 68 shows the design of the SDT tool set. Figure 69 is the screenshot. On the
top, it shows an SDT in the form of a decision table. In the view of “domain ontology”,
the ontology is visualized as a tree. The middle view shows SDT analysis methods,
each of which corresponds to a particular task. For instance, a user can check
whether the SDT is complete or not by clicking “completeness”.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 89/128

Figure 69. screenshot of SDT tool set

SDT has many advantages comparing to other decision support tools. As it is, first of
all, a decision table, therefore, it contains all the advantages as a decision table.

Comparing to IF-THEN-ELSE statement, SDT can organize rules in a more compact
manner. In addition, nested and dirty style of if-then-else and switch-case code is
normally not recommended in software programming. SDT can associate many
independent conditions with several actions in an elegant way.

Comparing to flowcharts, there are much more advantages that an SDT can bring,
such as

• Clear enumeration of all operations performed

• Clear identification of the sequence of operations

• Easily learned

• Easy to construct, modify, and read

• Effective means of communication between people in and out of the data
processing field; i.e., not limited to computer applications

• Concise and compact form of definition and description suitable for use in
analysis, programming, and documentation

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 90/128

• Can be used to document applications involving complex interactions of
variables

• When applied to computer systems, decision tables foster better use of
subroutines, promote efficiency of computer runtime, and provide a
complete data check for debugging

• Directly adapted and possibly converted directly to computer operations
through symbolic logic and computer programs

There is a mathematical equivalence between a decision table and a decision tree.
Comparing to a decision tree, the SDT in tabular format is much more compact than
the equivalent decision tree. Although many academic researchers like to use
decision trees more than decision tables, spread-sheets are more welcome by non-
technical business people.

In addition, the approach to SDT supports a business community to create shared
business rules and shared decision tables, which can be further “shared” by
machines. As Semantic Web, Semantic Decision Tables show the advantages of
semantic technologies, such as enhancing the interoperability between the software
agents.

In DIY-SE, SDT can be used to store business rules (a kind of ontological
commitments in OE) that make use of domain ontologies. For instance concerning
the searching component, we can model rules like “if all the string matching
algorithms failed, then use graph matching algorithm A” using SDT. Or, “if Yahoo
pipes are available, then search component set A and B”,

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 91/128

4 Interaction and user interface modeling
techniques

Interaction and user interface modelling techniques were originally developed to
assist interface designers and software engineers in the implementation of user
interfaces. The models raise the level of abstraction and allow the user interface
designers to focus on the interaction issues instead of on the implementation details.
The objective was to achieve products with less errors and better usability.

Modelling user interfaces at a high abstraction level has the additional advantage that
the designers may discuss with end-users about the design before the actual
implementation. This will only be possible if the model is at a sufficiently high
abstraction level using domain-specific terms. Various tools also supported these
discussions by generating mock-up interfaces from the models, that could be tested
by the end-users. This is a great support for the User Centred Design approach and
gives a better hands-on feeling than e.g. paper-based UI tests with end-users.

Ideally a properly modelled interface would be converted into target-code by a press
of the button. In practice most tools do generate code for the user interface, but
additional models and often a significant amount of software engineer effort is still
needed to produce the final application.

Modelling was found to be advantageous also when designing for multi-platform
applications. While software development kits facilitated programming for multiple
platforms by implementing standardised widgets and UI libraries, modelling would
even allow for more flexibility. For example at the advent of mobile services, various
approaches were deployed to model on-line services so that web-based and mobile
(e.g- wap-based) services could be automatically generated and maintained.

Researchers have also been working on modelling methods that would allow other
modalities to be deployed without too much effort or fore-knowledge from the
interaction designer. Thus an on-line service could be mapped to voice-interaction for
the visually impaired.

Besides the actual user interface, also the service itself including the content it
provides may benefit from proper modelling. A service can provide personalised
features when the user’s interests and way of use are properly modelled. Content
rendering can be improved by a model of the target platform or device.

While most of these modelling techniques should not be visible to the end-user,
many will be deployed by professionals and/or internally in the system. Therefore this
chapter intends to provide an overview of modelling techniques relevant for
interaction and user interface modelling. This will include the visual tools often
provided for these modelling techniques, the format of the models that may also be
used internally in the system, and a brief description of the techniques themselves
and how the various models depend on each other.

4.1 UI modeling techniques
The design of user interfaces was initially often left to software engineers, who would
build the interfaces with the technologies at hand. Out of best practices gradually the

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 92/128

WIMP paradigm (Windows, Icons, Menues, Pointer) developed and libraries of
widgets became available to facilitate the development of (graphical) user interfaces.
Software development kits (SDK’s) provide support for the widget based UI
contruction and often feature visual editors to construct the UI’s. Software
development was enhanced with modeling techniques utilizing process diagrams,
finite state machines, object models etc. eventually united in the UML modeling
language and tools. While UML is widely accepted and used, similar attempts for
user interface modeling have not yielded such support.

Various UI modeling techniques have been proposed. The first attempts were done
related to the development of User Interface Management Systems in the early
1980’s [177] Early modelling focused on graphical user interfaces (GUI’s), later
approaches have tried to facilitate modeling UIs for multi-channel (i.e. mostly GUI’s
with various viewport dimensions), multi-modal, personalized and context aware use.

Szekely and others have determined the typical steps taken by designers of GUI’s
that should be supported by the modeling methodologies [177] :

• Determine the presentation units

• Determine the navigation between presentation units

• Determine the AIO’s (Abstract Interaction Object) for each presentation unit

• Map AIO’s into concrete interaction objects

• Determine the window layout

Most current modeling methodologies follow a similar, but extended approach.
Paterno has strongly supported task-based modeling with his Teresa tool. Here the
starting point are not the presentation units, but the tasks at hand and the objects
that need to be manipulated. After the proper modelling of tasks and objects, the
remaining steps resemble those of Szekely including the generation of an abstract
user interface, concrete UI and implementation. The need for personalized and
adaptive user interfaces has introduced also other models that can be used during
the design process. Most notably the user model, device model and context model.
Figure 70 provides an overview of the models used in the design process. The figure
and model description have been adapted from the Nomadic Media project
deliverables12.

12 http://www.hitech-projects.com/euprojects/nomadic-media/

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 93/128

User model

Presentation model

Implementation

Task model Domain model

Device model

Abstract

Concrete

Dialogue model

Abstract UI model

Context model

Figure 70. Models used for UI design

The task model will generally include a description of the goals to be achieved and
the tasks that must be performed in order to achieve that goal. A description of the
task sequence, optional and parallel tasks is often also included.

The domain model captures the concepts relevant for the domain of the application.
In its most concrete form, this may take the shape of a class hierarchy, with the
classes representing domain items.

The abstract UI model is a collection of abstract interaction objects (AIOs) that
represent for example the need to obtain information from the user (input) or convey
information to the user (output), or an aggregation of other AIOs. The abstract UI
cannot be rendered on a device, but needs to be converted to a concrete user
interface, with concrete interface objects (CIOs) first.

The presentation model is the concrete user interface as rendered on a device. The
UI consists of concrete interface objects (CIOs) most often represented by widgets.
The presentation model describes how the CIOs are rendered and thus contains
information on the layout strategy, the look-and-feel, the voice type, etc. Sometimes
the concrete interaction objects are separated from the presentation model into a
concrete UI model that can still be adapted to the final rendering device. This final
adaptation can be done for example by style-sheets. The final implementation in a
specific target language is no longer a model, but follows from the presentation
model.

The dialogue model may be part of the abstract or presentation model, but is
sometimes also defined separately. It captures the flow that input is expected or
information is presented to the user. This is particularly important for speech-driven
UI’s, but a properly designed dialogue can also improve traditional UI’s that are
composed of several views.

The user model, device model and context model capture features of the user, the
rendering device and the user/device context, respectively. None of the models is a
part of the actual user interface definition, but they significantly affect the generation
of a concrete user interface from the abstract models. Design decisions and
automatic generation rules are based on these considerations.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 94/128

Below a short summary of the most relevant modeling methodologies and tools
available.

4.1.1 Teresa

Teresa is a methodology and tool developed by Paterno et al at the HCI Group of
ISTI-C.N.R. since the 90’s 13 . Its starting point is a task model called
ConcurTaskTrees. Recent developments have also included mapping of multimodal
UI and the newest version is called Multimodal Teresa.

Figure 71. MULTIMODAL TERESA, a transformation-base d environment, supporting
multimodal interfaces

Multimodal Teresa is intended to provide a complete semi-automatic environment
supporting a number of transformations useful for designers to build and analyse
their design at different abstraction levels and consequently generate the user
interface for a specific type of platform.

The Teresa approach starts from the CTT task model. It generates presentation sets
and transitions from the model, and these combined with the tasks are used to
generate an abstract user interface description. From there on, target-specific
attributes are added and culminate in the final user interface. The process of UI
definition according to Teresa is presented in Figure 72. Here CTT are the concurrent
task tree definitions, the AUI is the Abstract user interface, the CUI are concrete user
interfaces for desktop or mobile use, which are finally implemented in the target

13 http://giove.isti.cnr.it/tools/TERESA/index.html

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 95/128

specific language.(XHTML in this example). This process picture is taken from early
research, but the process has remained the same.

UI Desktop
(XHTML)

UI Mobile
(XHTML MP)

CUI Desktop
(XML)

CUI Mobile
(XML)

AUI
(XML)

CTT TM + PS&T
(XML)

CTT TM
(XML)

CTT PS&T
(XML)

…….

Figure 72: Teresa design process

The abstract user interface elements are taken from a set of specified elements and
constructs listed in Figure 73.

Figure 73. Teresa Abstract UI model elements

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 96/128

More information about Teresa can be obtained from the web site13 and the
publications made on the methodology and tool, most notably Paterno’s book [175]
and a recent journal paper [176] .

4.1.2 UIML

The User Interface Markup Language [179] is a meta-language for providing a
representation of a UI that can be mapped to existing languages such as Java or
HTML. UIML acts as a framework for defining your own user interface vocabularies
that are made up of interface parts (placeholders for user defined UI elements),
properties (of UI elements), and events. The goal of UIML is to “develop a
specification for an abstract meta-language that can provide a canonical XML
representation of any user interface (UI)” [178] UIML was first developed by the
Harmonia company (starting 1997)[180] and later enhanced in cooperation with the
Human-Computer Interaction center at Virginia Tech. The standardisation of the
language has been taken over by the OASIS technical committee (OASIS User
Interface Markup Language TC).The current version is 3.0, while a draft of 4.0 is
available..

4.1.2.1 Methodology and coverage

UIML is a meta-language and therefore only provides a structure to embed the UI
models. Actual implementations need the specification of a vocabulary, that contains
the details of the target format. The model used by UIML resembles that of a typical
widget model for graphical user interfaces, although it allows for further extension.
The amount of detail in the UI description very much depends on the vocabulary and
the parameters that developers will specify in their applications. Typical examples
from Harmonia include very target-specific language constructs, and therefore
include e.g. device specific graphics or VoiceXML constructs. Also several device-
independent vocabularies have been developed [181] .

The UIML approach depends on a renderer, that is capable of rendering the UIML
description either to a known UI language or directly as e.g. a Java UI. Renderers for
various target languages have been constructed in research projects and are
available for e.g. C++, HTML, Java, .NET, Symbian, QT, Visual Basic, VoiceXML and
WML.

4.1.2.2 Presentation and structure

A typical UIML document will consist of sections containing a UI structure, UI style,
and a UI behavior. The structure section of the document defines the composition of
UI parts, where each part provides a name of a UI element (as defined in a
vocabulary). The style section is then written to provide the properties of each of the
declared UI elements along with a description of the mapping (using a peers tag) of
the UI parts to concrete components (such as Java widgets or HTML constructs), as
well as style attributes such as Fonts. A peers definition can contain a collection of
different mappings to different target components. Each mapping is indicated by
using a presentation tag. Finally, a behavior tag can be used to provide rules for
communicating with a host application at runtime.

Tools

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 97/128

There are various rendering tools available for UIML, but no proper design
environment. UIML’s philosophy is not to function as a design language per-se, but
as a mediator between environments. As such it should be regarded mostly as an
exchange format, and less as a design methodology (although some research has
taken this approach as well).

4.1.3 UsiXML

UsiXML (which stands for USer Interface eXtensible Markup Language) is a XML-
compliant markup language that describes the UI for multiple contexts of use such as
Character User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory User
Interfaces, and Multimodal User Interfaces. In other words, interactive applications
with different types of interaction techniques, modalities of use, and computing
platforms can be described in a way that preserves the design independently from
peculiar characteristics of physical computing platform[182] .

UsiXML was developed by Limbourg, Vanderdonckt et al in the Cameleon project
and followups [183] The initiative follows a similar design philosophy as Paterno’s
Teresa. It provides models for domain concepts and tasks, abstract user interfaces,
concrete user interfaces, context information, resources, and transformations.
UsiXML has been supported by a large range of tools. GrafiXML is a graphical tool
for designing graphical user interfaces for various platforms that stores its design in
UsiXML, see Figure 74 for an example. The VisiXML is a similar tool built on the
Microsoft Visio environment. ScetchiXML utilises a scetch board for designing a
rough interface, which can then be refined with other tools.

. .

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 98/128

Figure 74. The GrafiXML tool for UsiXML editing and UI design

The IdealXML environment supports building user interfaces using patterns and
helps to create abstract user interfaces from task models (Figure 76). The
transformation process can also be assisted by tools like KnowUI, which incorporate
the designer’s knowledge, TransformiXML, a generic transform tool using formal
graph mapping algorithms.

Code can be generated by means of plug-ins for the environments, for example to
Java, or XHTML. The UI’s can be rendered also by means of RenderXML. Various
interpreters also help to render UsiXML on e.g. SVG, Flash or Tcl-Tk, or even into a
haptic environment.

Several projects are exploiting UsiXML beyond the originally intended scope. There
are technologies for using it in 3D environments, for spitting the interfaces across
different platforms and for designing UI’s for work processes, to mention a few. Work
on rendering the UsiXML interfaces onto multimodal platforms has also been done
(MultimodalXML). Figure 75 gives a good overview of the typical model
transformations used in UsiXML, in this example for multimodal rendering. Tools for
verifying the UsiXML models and checking for proper implementation of usability
rules also exist.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 99/128

UsiXML is supported by many tools, as shown. It supports the methodology of
designing user interfaces starting from task and domain models, via abstract and
concrete UI’s, but is flexible enough to also support different design paths.

UsiXML is being proposed for standardisation. For this purpose, the W3C model-
based user interfaces incubator group charter was formed. Parts of UsiXML may be
used for these standardisation efforts. This W3C action initiates and pursues efforts
of defining a common UIDL. The mission of the Model-based User Interfaces
Incubator Group, part of the Incubator Activity, is to evaluate research on model-
based user interface design as a framework for authoring Web applications and with
a view to proposing work on related standards.

Figure 75. UsiXML model transformations for multimo dal interfaces

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 100/128

Figure 76. Example of the IdealXML environment with models at three levels of a UI

4.2 GUI modeling
Modelling of graphical user interfaces may be part of an SDK, which typically
provides visual tools for modeling a GUI by means of adding widgets to panels and
windows. Sometimes also support for the flow of dialogs (e.g. for mobile UI) is
provided. As an overview of these tools is provided elsewhere, we will not address
them here.

Modelling GUI’s at a higher level of abstraction is particularly useful when the
features of the final interface are not completely known. The flexibility envisioned by
HTML, which can be used with a great variety of viewport dimensions, is a good
example of this (we refer to the original basic HTML without the extensive use of
frames, tables and clickable graphics used nowadays). Perhaps this is the reason,
that user interfaces have been implemented in web-sites, first using forms, later
XForms, Flash, Java applets, etc.

An interesting example of GUI modeling is the XUL format developed by Mozilla.
Also the concrete user interface models of the various UI modeling techniques
described in the previous section provide good examples.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 101/128

4.2.1 XUL

The eXtensible User interface Language (XUL) [184] is an XML based language
developed by Mozilla for describing window layout. The goal of XUL (and indeed
Mozilla’s general strategy) is to build cross-platform applications such as web
browsers that can easily be deployed to several PC operating systems. The look and
feel of UI elements are separated by programming logic and presentation. The
presentational aspects consist of a stylesheet and a collection of images to form a
“skin”. This enables application developers to work independently of UI developers.

A XUL UI consists of a set of structured interface elements (windows, menubar,
button etc.) along with a predefined list of attributes. In order to make these elements
interactive however, a separate scripting language is required.

XUL relies on multiple existing web standards and web technologies, including CSS,
JavaScript, and DOM. Such reliance makes XUL relatively easy to learn for people
with a background in web-programming and design. XUL has no formal specification
and does not inter-operate with non-Gecko implementations. However, it uses an
open source implementation of Gecko, tri-licensed under the GPL, LGPL, and MPL.
XUL provides a portable definition for common widgets, allowing them to move easily
to any platform on which Mozilla applications run.

4.2.1.1 XUL documents

Programmers typically define a XUL interface as three discrete sets of components:

• content: the XUL document(s), whose elements define the layout of the user
interface

• skin: the CSS and image files, which define the appearance of an application

• locale: the files containing user-visible strings for easy software localization

4.2.1.2 XUL elements

XUL defines a wide range of elements, which roughly belong to the following types:

• top-level elements, such as window, page, dialog, wizard, etc.

• widgets, like label, button, text box, list box, combo box, radio button, check
box, tree, menu, toolbar, group box, tab box, colorpicker, spacer, splitter, etc.

• box model, e.g., box, grid, stack, deck, etc.

• events and scripts, for instance: script, command, key, broadcaster, observer,
etc.

• data source, e.g., template, rule, etc.

• others, e.g., overlay (analogous to SSI, but client-side and more powerful, with
higher performance), iframe, browser, editor, etc.

One can use elements from other applications of XML within XUL documents, such
as XHTML, SVG, and MathML.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 102/128

While XUL serves primarily for constructing Mozilla applications and their extensions,
it may also feature in web applications transferred over HTTP.14

4.3 Abstract UI
The need to get access to information anytime, anywhere, from different kinds of
devices is no more restricted to a few privileged groups of people. This need has
become very common in everyday life of general Internet users. Laptops, personal
digital assistants (PDAs) and cell phones are the prototypical examples of personal
access devices. Each device has its own particularity in terms of input (keyboard,
handwriting recognition, speech) and output capabilities (size of screens). Because
of this diversity, more than often, service providers need to develop user interface for
each kind of device individually. It requires a lot of effort and resources specialized in
application development of each device in order to make the provided service
available on multiple devices.

Abstract User Interface refers to the abstract representation of user interface (by
mean of an abstract UI representation language). This abstract representation does
not assume any particular modality (visual, aural, tactile, etc) or form of delivery to
the user. It should ideally provide all of the service-specific information necessary to
build a user interface for any user. Given a sufficiently expressive abstract
representation of a service, user interfaces for multiple contexts could be developed
quickly, using support tools. They could even be generated entirely automatically.
Abstract representations do not capture all of the information that a human designer
would use in creating a high quality user interface, so generated user interfaces
based on such representations would typically be less polished.

An abstract UI model is a definition of a user interface at a high level, which does not
contain any implementational details. In a typical UI modeling environment, the
abstract UI will result from the task model and the domain model and provide an
intermediate step towards the concrete user interface. An abstract UI is composed of
abstract interaction objects (aio’s), which define the purpose of the interactor, but
leave the decision of the implementing widget to the next step. Ideally an abstract UI
could be translated to any user interface implementation and modality. Depending on
the purpose of the modeling system, the level or abstraction can be very high, or
already contain some hints (e.g. structure) of the implementation.

4.3.1 Qualities of an abstract UI representation la nguage

An abstract representation of UI should meet the following requirements:

• Applicable to any target: Potential targets include physical devices such
as home and office appliances or public information kiosks and vending
machines; virtual services such as airline reservations, currency
exchange, online shopping and directory services; and software
applications such as email, spreadsheets and games.

14 This description of XUL is partly taken from Wikipedia

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 103/128

• Applicable to any delivery context (delivery context is the combination
of user, environment and device): The abstract representation should
take care of user’s expertise, age, culture, health, and language. It
should also take into account the physical device’s physical form and
input/ output capabilities.

• Simple, extensible, flexible and personalizable.

Provide a means to personalize the UI is vital for the usability of an abstract UI
representation language. It should be flexible and simple enough to allow making
personalized UI for different groups of user and devices.

4.3.2 Principle abstract UI representation language s available

Main UI representation languages available at the time of the writing of this document
are the following [164] :

• User Interface Markup Language (UIML)

• Extensible Interface Markup Language (XIML)

• XForms

• Alternative Interface Access Protocol (AIAP)

• AUI in the Teresa environment

• AUI part of UsiXML

Here it should be noticed that UIML needs a vocabulary to act as abstract UI, as it
provides only a meta-structure for the interface. XIML is a closed initiative by
RedWhale. Xforms are mainly intended for use in web environments, and therefore
contain a rather application specific interface definition.

The elements of a typical AUI can be shown in a class hierarchy, Figure 77 shows an
example of the UsiXML AUI classes.

Figure 77. Class hierarchy of the UsiXML AUI elemen ts

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 104/128

4.4 User modeling
A user profile is a (structured) data record, containing user-related information
including identifiers, characteristics, abilities, needs and interests, preferences, traits
and previous behavior in contexts that are relevant to predicting and influencing
future behavior [1] .

User profile can be described as a set of data representing the most relevant
features of the user. This user profile can be exploited to provide relevant,
personalized and context-sensitive information delivery, helping to provide
personalized access to resources and services and also to identify people with
related interests.

User profiles can be classified as following:

• Static, means it contains information that rarely or never changes.

• Dynamic, refers to the data that changes frequently.

• Explicit, means that the information is obtained explicitly, using online
registration forms and questionnaires resulting in static user profiles

• Implicit, refers that the information is obtained by recording the
navigational behaviour and or the preferences of each user.

4.4.1 Challenges

The main challenge is to present the information that users want in a way that makes
sense to them. In traditional approaches for user profiling, the user has to explicitly
create the profile, and manually keep it up to date. However, getting personalized
information “anytime, anywhere and anyhow” is not an easy task. The user profiles
should be evolved naturally with ongoing changes in user behaviour and preferences
patterns.

The main obstacles to user profiling can be split in organizational and user obstacles.

At organizational level:

• User has an important role in the way the business process is designed
and implemented. If this is not contemplated in the business strategy
and processes, a redesign will be necessary, implying costs.

• Responsibility : It is important to define who is responsible for what,
especially when more than one organization make use of the same
user profiles. Issues such as who will keep the user profile up-to-date or
who is entitled to make changes are relevant aspects to be solved.

• Legal obstacles : Some political regulations govern the legal conditions
for public organizations engaging in user profiling. These regulations
are different from the market regulation guiding the private sector.

At user level:

• Access : users need to have access to communication and information
technologies in order to be able to use their user profile

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 105/128

• Acceptance : user has to accept the use of user profiling. For doing so,
it is very important the trust, control and privacy issues.

4.4.2 State of the art

The use of profiles for personalization is not new, but current initiatives and tools rely
on an explicit, manually entered user profile; so these use profiles go out of date very
quickly and lack relevance.

• The main drawbacks user profiling is facing are:

• How to mine accurate user profiles from observed behaviour?

• How to deal with the changing nature of user interests?

• How distinguish between long term and medium term interests?

The current available standards for user profiling are the following:

• vCard specification from the Internet Mail Consortium is a means of
Personal Data Interchange (PDI) [2] , which automates the traditional
business card. It can be used to store mandatory directory information
(name, addresses, telephone…), geographic and time zone information,
and also graphics and multimedia. The vCard specification has multiple
language support and is transport and operating system independent
(based on RFC 2425 and RFC 2426).

• IMS Learner Information Package (LIP) specification [3] offers a data
model describing the user characteristics required for the general
purpose of recording and managing learning related history, goals and
accomplishments; engaging the user in a learning experience;
discovering learning opportunities for user.

• IEEE Public and Private Information (PAPI) Specification [4] represents
student records and its development is moving towards harmonisation
with IMS. It specifies data interchange formats, facilitating
communication between cooperating systems. User records are divided
into personal information and performance information and these are
maintained separately. A key feature of this standard is the logical
division, separate security, and separate administration of several types
of learner information.

• Global TV-Anytime Specification: The TV-Anytime Forum [5] is an
association of organisations that seeks to develop specifications to
enable audio-visual and other services based on mass-market high
volume digital storage in consumer platforms. The TV-Anytime
Metadata specification employs metadata to describe content, user
preferences, consumption habits, for targeting a specific audience.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 106/128

An overview of methods for building a user profile can be found in [6] . User
modelling issues and guidelines are also presented in [7] , concentrating on
modelling of user knowledge, plans, and preferences in a domain. It focuses on
stereotype (as opposed to individual) profiles.

In summary, both academia [8] and enterprises [9] have experimented with user
profiles for personalization. [10] and [11] allow to create implicit user profiles by
looking over the shoulder of a user performing their usual tasks (including email,
document management or web browsing. User does not have the obligation to
manually create a profile, so data collection is easier and the risk of ‘data entry
fatigue’, or inaccurate profiling, is reduced. [12] and [13] are works focused on
collecting terms from visited web pages rather than tags applied by a user.

As we have mentioned, dynamic user profiles are those, which update as the user
task is changed. [12] also presents such an approach using a hierarchical
organization of users’ interests. [14] uses a more graph-like representation. In both
works an artificial change of task context is employed.

4.5 Task modeling
The highest abstraction level used for designing user interfaces is the task level. A
task could be described as an elementary step that the user or the system is
performing during the planned interaction. Therefore tasks are easy to comprehend
and task models can also be discussed with non-designers.

The best known task model is the Concurrent Task Trees notation developed by
Paternó et al. According to Paternó: “CTT is a notation aiming at supporting
engineering approaches to task modelling”. CTT contains a set of operators that
allow rich definitions of tasks and their relations. The tasks, with the aid of CTTE and
TERESA tools, can be presented as graphical task trees, which present the relations
between tasks with arcs and graphical notations. An example task tree is presented
in Figure 78.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 107/128

Figure 78. A partial CTT model

To date, CTT seems to be the richest and most widely recognised task modelling
technique. The notation is also used in UsiXML.

4.6 Semantics in interaction modeling
Semantic Web services, designed to be easily composed software powered
resources for use in applications, provide simple interfaces to functionality that can
be very useful for human users. Ontologies are use to explicitly formalize the
properties and structure of contextual information to guarantee common semantic
understanding among different architectural components.

The applicability of ontologies for context modeling and facilitating application
reasoning has been well researched [111] [112] . Specifically, the OWL-DL (Web
Ontology Language- Description Logics) formalism, rooted in the decidable fragment
of first-order logic, provides a powerful platform for a formal and machine-
processible structure to context information collated from diverse sources [113] .

With an ontology-based context model providing a common, formalized structure, a
number of interconnected components are required to provide a generic mechanism
for context querying and reasoning.

Upper level ontologies and domain ontologies comprise many occurrences of a
variety of ontology design patterns (OPs) [114] . These ontologies are generally large
and densely axiomatized. Therefore, the development of dedicated application
programming interfaces (APIs) instead of generic solutions like RDF or OWL APIs
eases the adoption of such ontologies.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 108/128

4.7 Multimedia documents modeling
The multimedia documents modeling is used for many applications and services
using a variety of media like multimedia authoring, indexation, retrieval…

A model of multimedia document is a model of document which serves to describe
different aspects for a multimedia document including logical, spatial, hypertext
structures and temporal dimension.

The description of a media corresponds to elementary and\or composed concepts.

The elementary concepts or the "low level" correspond to independent descriptive
fields. For example, the areas of dominant colors, the histogram of images, the
author’s name of the media...

The composed concepts correspond to the relationship between descriptive fields.
The value of these fields can be specified or not. The nature of the relations
("consists of ", “belongs in ", “is the son of ") can be also specified or not.

There are a significant number of standard models of multimedia document such as
HTML, HyTime [165] , MHEG-5 [166] and SMIL [167] as well as no standard models
as OCPN [171] , CMIF / CMIFed [168] , Madeus [169] , ZYX [170]

There are also other models for specific applications as “A Synchronization Model for
Hypermedia Documents Navigation” [172] and “The LimSee3 Multimedia Authoring
Model” [173]

These various models were detailed in the multimedia literature as MHEG ISO
Standard [166] and “A Comparison of Multimedia Document Models” publication
[174] .

Hereafter, a comparison of main multimedia document models Figure 79 from [174]

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 109/128

Figure 79: Comparison of main multimedia document m odels

Several languages are created to describe multimedia documents:

The group W3C: XHTML, SMIL, SVG,

The group MPEG: MPEG 4 BIFS, MPEG 4 Laser,

Other group: Adobe Flash.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 110/128

5 Flexible environment for interface creation

5.1 Rich interactive experiences in smart environme nts
The evolution of HCI to environments that are able to adapt themselves to the user
needs and to provide customized interfaces to the services available at each moment
(smart environment) is represented by RIE (Rich Interactive Experience). From user's
point of view, this interaction is converted in an Interactive Experience when the
space is adapted by the context [88] and user's preferences to let the users to
perform monotonous tasks in an easier way. In other words, users don't limit their
actions to carry out some tasks, but they are able to change their environment to suit
their preferences and access the available services.

A smart environment system is based on a set of devices, which gather information
about the environment (sensors), and a set of devices able to actuate over the
environment to change its conditions (effectors). At this point, the user-system
interface acquires a high importance because it provides a certain degree of
interactivity that the smart space will employ to adapt the environment. The
preferences of a given user may be unknown to the system; for example, when it is
the first time a user enters a given space. Even if the user preferences are known,
they may change over time, or they may be affected momentarily by facts unknown
to the system. Sooner or later the user will need something different than what the
system thinks she needs, and there must be a way for the user to express that to the
system. Furthermore, the system may needs communicate with the user.

Rich interface represents a communication way, between users and environments,
more expressive for the final users that allow communicating essential information
only. The usability concept is present in the correct design of this kind of UI (user
interface) because it is a feature that determines the help offered by the environment
to users to complete some task, so helped to understand best the smart space.

5.1.1 Qualities of a rich interactive experience

The defining qualities of a rich interactive experience are elusive, but it possible to
identified four essential features (extracted from [89]):

1. Seamless. Interactive software produces a seamless user experience when it
provides immediate responses and smooth transitions between tools, modes,
states, displays, and other focal points within the application.

2. Focused. A focused experience has a purpose that is clearly defined at the
outset and continuously reinforced.

3. Connected. Connected applications will transparently locate and exchange
information with a variety of data sources and communication devices to
shield users from the complexity of having to manage the connections
themselves.

4. Aware. Applications seem to be aware of what the user is trying to do when
they recognize the current operating context (location, goals, tasks,
applications) and use this information to transparently facilitate user and task
needs.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 111/128

5.2 Examples of flexible smart environments
One of the key features of smart spaces is their ability to adapt themselves to the
preferences, desires and needs of their inhabitants. To achieve this ability, smart
spaces must be able to acquire knowledge about the inhabitants and their
surroundings. The information upon which this knowledge is built is called context
[88] .

Existing systems cover different domains such as tourist guides, indoor information
system and smart environments. Focussing in smart environments, there are
systems that adapt depending of context information or user needs [95] :

• i-Room focuses on human computer interaction (HCI) in a single interactive
meeting room [90]

• Gaia defines Active Spaces as physical spaces coordinated by a responsive
context-based infrastructure [91] . This infrastructure is made available to
service applications by means of an operating system (Gaia OS), which
provides context and event management services to running programs. As a
future work, the Gaia team plan to federate Gaia Services to aggregate
different active spaces.

• Cooltown uses the technologies behind the Web to provide pervasive nomadic
computing in urban environments [92] . In Cooltown, interest places and
resources are tagged with URLs or other identifiers that can be retrieved by
users’ personal devices by means of bar codes, RFIDs or IR transceivers.
URLs may be used to access the different services related to their associated
points of interest, and other identifiers (such as ISBN codes) may be resolved
to URLs which link to the services related to the identified item. Resources are
grouped in places, and for each defined place there is a place manager, which
maintains directories of resources, acting both as a resolver for looking up
resources in that place from their identifier and as a Web server providing
information about resources.

• The Galaxy Service Model is intended to provide a hierarchical service
structure for a Smart Space Laboratory [93] . Galaxy uses a set of smart
devices, which are called u-Textures and Smart Furnitures. These devices
may be aggregated to form a Smart Space Laboratory. The Galaxy Service
Model allows exporting services provided by the different smart devices to
create applications, which can be composed into other applications, resulting
in a multi-layered service composition. Service discovery is performed
hierarchically.

• COBRA takes advantage of multi-agent systems to develop context-aware
applications [94] . It is based on a broker-centric architecture used to provide
runtime support for context awareness in an Intelligent Meeting Room. In
COBRA, the environment is divided in domains, and there is a broker for each
domain, which is an autonomous agent that manages and controls the context
model of the specific domain. Though COBRA brokers are intended mainly for
context sharing, its centralized approach to management in each domain and
the possibility of sharing context between domains through context federation
is closely related to the approach we have taken in this work to develop our
hierarchical architecture for smart spaces.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 112/128

5.3 Platform architecture for multimedia documents
adaptation

In case of multimedia document creation, we can distinguish three main types of
multimedia adaptation architecture. Hereafter, a brief description of every principle of
architecture used in multimedia adaptation.

Figure 80. Client / Server model

5.3.1 Server architecture oriented

This architecture is a part of the 2 third party product architectural model
Client/Server represented at Figure 80.

This architecture gives the responsibility to the server to:

• Discover the capacities of the customer and the available network constraints

• Decide the best strategy of adaptation

It can consist in 2 types of adaptation:

• (Offline) static Adaptation: the server stores several versions of the same
multimedia document for the users needs.

• Dynamic Adaptation (One the Fly): the server takes charge dynamically of the
adaptation at the user request.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 113/128

5.3.2 Client architecture oriented

This architecture is a part of the 2 third party product architectural model
Client/Server represented at Figure 80. The client terminal is responsible for the
content adaptation depending of software / hardware capacity.

• We can quote the example based on the technique of adaptation built around
the target platform: the use of style sheets such as XSLT to transform
documents.

5.3.3 Proxy architecture oriented

This architecture is a part of the Client / Proxy / Server model represented at
Figure 81. In this approach, a proxy is installed between the client and the server;
this proxy dedicated for example to estimate the network bandwidth or to have an
access to the user profile.

This architecture brings an added value by avoiding the charge of consumer specific
tasks of resources for the client and the server.

Figure 81. Client / Proxy /Server model

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 114/128

6 Cooperative communities for software and
services creation

6.1 Examples of (physical) environments that stimul ate
user creativity

The aim of this section is to provide several entry points of virtual/physical/mental
environments in which DiY related activities can be catalysed.

6.1.1 Tinkering & Pottering

In a DiY related setting, pottering & tinkering are often very important mental
processes that drive the design of the things people are creating. In most cases,
pottering happens unconscious [190] . A good example of this is when someone is
working on an electronics project suddenly discovers something else, his/her
attention gets drawn away from the original project and unconsciously starts working
in something else. It are often the activities that someone switches to whilst
‘pottering’ where the real interest or passion of someone can be found. Pottering is
closely related to procrastination, although the difference is that pottering is still an
acivity that might eventually enhance the original attention focus wheras
procrastination operates on delaying tasks in a more conscious way.

6.1.2 Physical environments

• Fablab (http://fab.cba.mit.edu/)

A fablab is a physical space in which people of any background can work, create or
learn about creating objects. In a fablab people get access to machinery like 3D
printers, laser cutters and vynil cutters to create their own projects. Typically fablabs
also organise workshops around a certain topic to stimulate people’s creativity.

• Hackerspace (http://hackerspaces.org)

Much like a fablab, a hackerspace is phsical location where people gather to work
and learn about creative projects. The main difference from a fablab is that a
hackerspace specifically works around technology related projects. This means that
actual materialisation of objects is not as central as it is in a fablab.

6.1.3 Virtual environments

• Virtual worlds

A well know example of a virtual world which is second life. Second life kicked off in
2003 and provides a virtual 3D platform in which people can come together to chat
and socialize but also to create virtually together. Over the years people have
manipulated the platform in such a way to construct games, host virtual meetings,
meet new people, etc.

• Makers online community

Within the DiY world, many people are communication through blogs and forums.
The most well known are the MAKE: blog and the Instructables forum/website. Based

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 115/128

on these virtual ‘hangouts’ a new subcommunity emerged called “makers”. Makers
are people that post instructions & photos of everything they have created
themselves. Based on these postings, online conversations & discussions emerge
which lead to sharing of methods and new project ideas.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 116/128

7 Discussion

User interfaces have evolved from text and cryptic commands to Graphic User
Interfaces really fast. Of course, nowadays nobody may imagine that a new service is
going to be based on a text-interface. In the same way, future services will not be
based only on Graphic Interfaces as the ones we are using now, but in more
powerful and user adapted ones. These kinds of new interfaces are emerging at this
moment and start to be part of our life in mobile phones, video games and movies.

As one of the main ideas for proposed services is that they should be user adapted, it
is needed to know who is accessing the service. In this way, user identification and
user location is a precondition for our work. One of the approaches to identify users
may be the use of the interface itself, to apply any combination of biometric
mechanisms to know who is there: face recognition, fingerprints, iris or body
geometry may be used for this purpose. In fact, if we use some interfaces for gesture
interaction, this identification may be done by guessing the user by the use of the
device or the user dimensions; if we use a voice commanded interface, the voice
itself may be used to identify the user; etc.

Previous paragraph has shown some interfaces that are not used as shown very
frequently at this moment, but the technology exists. And there are some massive
video games that use some of them, like the wii mote.

On the other hand, we use to interact with servers or devices by using a single
interface (in fact, at least two interfaces: one for input and one for output). While this
is not completely true (we use to have at least a couple of input devices: keyboard
and mouse or similar), it is mainly true for output devices. But when a new service is
designed for multiple users, multiple output interfaces will be needed, and not all of
them will be identical. For instance, a service may be provided by a personal
computer for some of the users, a TV set for some others and mobile phones for a
third group. And even a single user may have several output interfaces, like a TV set
to follow Formula 1 races and a personal computer to obtain live timing data from
cars.

As a rising technology, augmented reality is being adopted by many services that
allow users to watch the real world with some added elements which provide an
added value. Augmented reality, as a concept, is present from the early 90’s, but the
technology has been unable to offer a good solution for it until recent dates.

Considering the devices that may be used to obtain services, mobile devices (like
iphone, net computers, etc.) have allowed the user to be connected to Internet
everywhere. If users are connected, they may access any service provided by the
network.

From the service provider point of view, some platforms, like arduino, allow users to
create electronic devices with very little electronic knowledge, than may sense the
environment and capture useful data. In the same way, anyone may build a robot by
using the Lego Mindstorms platform. All of them may be connected to Internet, so
they may be part of any user created service. The other element we need to create a
service is a software platform that allows users to create these services in an easy
way. Some of the existing platforms need some programming knowledge, but some

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 117/128

others provide a graphic programming language to create new services by
connecting legacy services, and some data providers. A good example of this
technology is Yahoo pipes.

Communities for software creation exist for long time. The Linux world is, probably,
the best-known paradigm. If you need a new driver for your graphic card you may
create it by your self or you may cooperate with other programmers to do it and allow
other people to use it. This paradigm may be adapted to the do-it-yourself developing
environment, where service prosumers may create new services by adding new
value with very little effort. Just a new small piece of hardware or software, mixed
with other services or parts of them, will provide a new service to the community.

At this moment it is not possible to know how the user interaction and application
creation is going to be into the do-it-yourself environment. The panorama of devices,
interfaces and service platforms is huge enough to difficult this process. But it is a
true benefit rather than a problem: the more possible platforms, devices and kinds of
interface, the more probability that any user may find his or her best way to create
the service they need, and the more probability that any other user will adapt that
proposed service to a new device, interface or need: The do-it-yourself ecosystem
has started.

8 References

[1] van der Geest, T.M., van Dijk, J.A.G.M., Pieterson, W.J. : “Alter Ego: State of the art on user
profiling. An overview of the most relevant organisational and behavioural aspects regarding User
Profiling”, Telematica Instituut, Enschede, 2005.

[2] Internet Mail Consortium Personal Data Interchange, available at http://www.imc.org/pdi/

[3] IMS Learner Information Package specification, available at
http://www.imsglobal.org/profiles/index.cfm

[4] IEEE Public and Private Information Draft 8 specification, available at
http://www.edutool.com/papi

[5] Getting Education Systems Talking Across Leading-edge Technologies (GESTALT) project Web
site: http://www.fdgroup.com/gestalt/.

[6] Rich, E.: “Users are individuals: individualizing user models”, International Journal of Man-
machine Studies 18(3), 199—214, 1983.

[7] Kobsa, A.: User Modelling: Recent work, prospects and hazards, Adaptive User Interfaces:
Principles and Practices (Schneider-Hufschmidt, T. Khme, U. Malinowski, eds. 1993.

[8] Gauch, S., Speretta, M., Chandamouli, A., Micarelli, A.: “User Profiles for Personalized
Information Access”, The Adaptive Web, Springer LCNS 4321, pp. 54-89, 2007.

[9] [Karat, C. M., Brodie, C., Karat, J., Vergo, J., Alpert, S. R.: “Personalizing the user experience”,
IBM Systems Journal, 42(4), 2003.

[10] Goecks, J. and Shavlik, J.: “Learning users’ interests by unobtrusively observing their normal
behaviour”, in Proceedings of the 5th international Conference on Intelligent User interfaces, New
Orleans, January 09 – 12 2000.

[11] [Middleton, S. E., De Roure, D. C., & Shadbolt, N. R.: “Capturing knowledge of user preferences:
ontologies in recommender systems”, in Proceedings of the 1st international Conference on
Knowledge Capture, October 22 - 23, 2001.

[12] Godoy, D., & Amandi, A.: “User Profiling for Web Page Filtering”, IEEE Internet Computing 9 (4),
pp- 56-64, 2005.

[13] Kim, H., Chan, P. K.: “Learning implicit user interest hierarchy for context in personalization”,
Applied Intelligence, 28-2, pp. 153-166, 2008.

[14] Nanas, N., Uren, V., de Roeck, A.: “Exploiting Term Dependencies for Multi-Topic Information
Filtering with a Single User Profile”, lecture Notes in Computer Science, 3025, pp. 400- 409, 2004.

[15] OpenKapow, Consulted on January, 11th 2010. [http://openkapow.com/]

[16] D1.1- SoA of applications, type of users, business models, and UCD . DiYSE Project

[17] Wikipedia: RST, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/Representational_State_Transfer]

[18] S. Mitra and T. Acharya. “Gesture Recongition: A Survey” IEEE TransactionsOn Systems, Man,
and Cybernetics-Part C: Applications and reviews, Vol. 37, No.3, May 2007.

[19] Jaimes, A. and Sebe, N. 2007. Multimodal human-computer interaction: A survey. Comput. Vis.
Image Underst. 108, 1-2 (Oct. 2007), 116-134.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 119/128

[20] T.B. Moeslund, L. Norgaard, A brief overview of hand gestures used in wearable human
computer interfaces, Tech. rep., Aalborg University, Denmark, 2002.

[21] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, "Pfinder: real-time tracking of the human body,"
Automatic Face and Gesture Recognition, IEEE International Conference on, pp. 51, Second IEEE
International Conference on Automatic Face and Gesture Recognition (FG '96), 1996.

[22] S.A. Niyogi and E.H. Adelson, “Analysing and recognizing walking figures in XYT” IEEE
conference on Computer Vision and Pattern Recognition 1994

[23] Han, J., Awad, G., Sutherland, A., and Wu, H. 2006. Automatic Skin Segmentation for Gesture
Recognition Combining Region and Support Vector Machine Active Learning. In Proceedings of
the 7th international Conference on Automatic Face and Gesture Recognition (April 10 - 12, 2006).
FGR. IEEE Computer Society, Washington, DC, 237-242.

[24] Mohan, A., Papageorgiou, C., and Poggio, T. 2001. Example-Based Object Detection in Images
by Components. IEEE Trans. Pattern Anal. Mach. Intell. 23, 4 (Apr. 2001), 349-361.

[25] Qing Chen Georganas, N.D. Petriu, E.M. , “Hand Gesture Recognition Using Haar-Like
Features and a Stochastic Context-Free Grammar”, IEEE Transactions on Instrumentation and
Measurement, 2008

[26] T. Zhao R. Nevatia, “Stochastic Human Segmentation from a Static Camera”. EEE Workshop on
Motion and Video Computing, p. 9, 2002

[27] Mathias Kölsch, Matthew Turk, "Fast 2D Hand Tracking with Flocks of Features and Multi-Cue
Integration," cvprw, vol. 10, pp.158, 2004 Conference on Computer Vision and Pattern Recognition
Workshop (CVPRW'04) Volume 10, 2004

[28] Ahn, Y., Kim, M., Park, Y., Choi, K., Park, W., Seo, H., and Jung, K. 2009. Implementation of 3D
gesture recognition system based on neural network. In Proceedings of the 9th WSEAS
international Conference on Applied informatics and Communications (Moscow, Russia, August 20
- 22, 2009). N. E. Mastorakis, M. Demiralp, V. Mladenov, and Z. Bojkovic, Eds. Recent Advances
In Computer Engineering. World Scientific and Engineering Academy and Society (WSEAS),
Stevens Point, Wisconsin, 84-87.

[29] N. Jojic et Al, “Tracking Self-Occluding Articulated Objects in Dense Disparity Maps”.IEEE
International Conference on Computer Vision, Corfu, Greece, September 1999.

[30] H. Sidenbladh et Al. “Stochastic Tracking of 3D Human Figures Using 2D Image Motion”
European Conference on Computer Vision, D. Vernon (Ed.), Springer Verlag, LNCS 1843, Dublin,
Ireland, pp. 702-718 June 2000.

[31] Theobalt et Al. “Combining 2D Feature Tracking and Volume Reconstruction for Online Video-
Based Human Motion Capture”, Proc. IEEE Pacific Graphics 2002), Beijing, China.

[32] Mikic et Al. “Human Body Model Acquisition ant Tracking Using Voxel Data” International Journal
of Computer Vision 2003.

[33] C. Theobalt et Al. “Enhancing Silhouette-based Human Motion Capture with 3D Motion Fields”

[34] Ho-Sub Yoon, Jung Soh, Younglae J. Bae, Hyun Seung Yang, Hand gesture recognition using
combined features of location, angle and velocity, Pattern Recognition, Volume 34, Issue 7, 2001,
Pages 1491-1501, ISSN 0031-3203.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 120/128

[35] Feng-Sheng Chen, Chih-Ming Fu, Chung-Lin Huang, Hand gesture recognition using a real-time
tracking method and hidden Markov models, Image and Vision Computing, Volume 21, Issue 8, 1
August 2003, Pages 745-758, ISSN 0262-8856

[36] M. Yeasin, S. Chaudhuri, Visual understanding of dynamic hand gestures, Pattern Recognition,
Volume 33, Issue 11, November 2000, Pages 1805-1817, ISSN 0031-3203, DOI: 10.1016/S0031-
3203(99)00175-2.

[37] Hong, P., Huang, T. S., and Turk, M. 2000. Gesture Modeling and Recognition Using Finite State
Machines. In Proceedings of the Fourth IEEE international Conference on Automatic Face and
Gesture Recognition 2000 (March 26 - 30, 2000). FG. IEEE Computer Society, Washington, DC,
410.

[38] H. Zhou, H. Hu, A survey—human movement tracking and stroke rehabilitation, Tech. rep., CSM-
420, Department of Computer Science, University of Essex, UK, 2004.

[39] Cinelerra, Consulted on January, 11th 2010. [http://cinelerra.org/]

[40] Kdenlive, Consulted on January, 11th 2010. [http://kdenlive.org/]

[41] Blender, Consulted on January, 11th 2010. [http://www.blender.org/]

[42] Pitivi, Consulted on January, 11th 2010. [http://www.pitivi.org/]

[43] Avidemux, Consulted on January, 11th 2010. [http://www.avidemux.org/]

[44] Jahshaka, Consulted on January, 11th 2010. [http://jahshaka.org/]

[45] Kino, Consulted on January, 11th 2010. [http://kinodv.org/]

[46] Rifftrax, Consulted on January, 11th 2010. [http://www.rifftrax.com/cuts]

[47] Jaycut, Consulted on January, 11th 2010. [http://jaycut.com/]

[48] Moviemasher, Consulted on January, 11th 2010. [http://www.moviemasher.com/]

[49] Maemo, Consulted on January, 11th 2010. [http://maemo.org/]

[50] Maemo Community, Consulted on January, 11th 2010. [http://maemo.org/community/]

[51] Maemo Garage, Consulted on January, 11th 2010. [https://garage.maemo.org/]

[52] Maemo VMware, Consulted on January, 11th 2010. [http://maemovmware.garage.maemo.org/]

[53] Maemo Dev. Doc., Consulted on January, 11th 2010.
[http://maemo.org/development/documentation/Quick%20Start%20Guide/]

[54] Scratchbox, Consulted on January, 11th 2010. [http://www.scratchbox.org/]

[55] Hildon, Consulted on January, 11th 2010. [http://live.gnome.org/Hildon/]

[56] Android SDK, Consulted on January, 11th 2010. [http://developer.android.com/sdk/index.html]

[57] Wikipedia: Android, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/Android_google#Features]

[58] Wikipedia: Android Devices, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/List_of_Android_devices]

[59] Android Dev. Tools, Consulted on January, 11th 2010.
[http://developer.android.com/guide/developing/tools/index.html]

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 121/128

[60] Android Dev. Tools (adt), Consulted on January, 11th 2010.
[http://developer.android.com/guide/developing/tools/adt.html]

[61] Android Dev. Tools (emulator), Consulted on January, 11th 2010.
[http://developer.android.com/guide/developing/tools/emulator.html]

[62] Android Dev. Tools (other IDEs), Consulted on January, 11th 2010.
[http://developer.android.com/guide/developing/other-ide.html]

[63] Android Dev. Community, Consulted on January, 11th 2010.
[http://developer.android.com/community/index.html]

[64] Android Dev. Publisihing, Consulted on January, 11th 2010.
[http://developer.android.com/guide/publishing/app-signing.html]

[65] Wikipedia: AR, Consulted on January, 11th 2010. [http://en.wikipedia.org/wiki/Augmented_reality]

[66] Vered AR, Consulted on January, 11th 2010.
[http://vered.rose.utoronto.ca/people/paul_dir/IEICE94/ieice.html]

[67] SE AR, Consulted on January, 11th 2010.
[http://www.se.rit.edu/~jrv/research/ar/introduction.html]

[68] Blasttheory, Consulted on January, 11th 2010. [http://www.blasttheory.co.uk/bt/work_cysmn.html]

[69] Youtube: ARLatGT, Consulted on January, 11th 2010. [http://www.youtube.com/user/AELatGT]

[70] ARquake, Consulted on January, 11th 2010. [http://wearables.unisa.edu.au/arquake/]

[71] Youtube: BMW AR, Consulted on January, 11th 2010.
[http://www.youtube.com/watch?v=P9KPJlA5yds]

[72] FIAT AR, Consulted on January, 11th 2010. [http://www.fiat500masterpiece.com/site/video.html]

[73] Layar, Consulted on January, 11th 2010. [http://layar.com/]

[74] Qrcodes AR, Consulted on January, 11th 2010. [http://2d-code.co.uk/qr-code-augmented-reality/

[75] Wikitude, Consulted on January, 11th 2010. [http://www.wikitude.org/]

[76] Alec Jeong, “Hologram Science Projects”, 2006. http://www.holokits.com/a-
hologram_science_project.htm]

[77] Wikipedia: Holodeck, Consulted on January, 11th 2010. [http://en.wikipedia.org/wiki/Holodeck]

[78] Youtube: ATV, Consulted on January, 11th 2010.
[http://www.youtube.com/watch?v=AqlwZK9e5UI&feature=player_embedded]

[79] James, R. Vallino, “Interactive Augmented Reality”, 1998.
http://www.se.rit.edu/~jrv/publications/VallinoThesis.pdf]

[80] Paul Milgram and Fumio Kishino, “A taxonomy of mixed reality visual displays”, IEICE
Transactions on Information Systems, Vol E77-D, No.12 December 1994.
http://vered.rose.utoronto.ca/people/paul_dir/IEICE94/ieice.html]

[81] Wikipedia: ARToolkit, Consulted on January, 11th 2010. [http://en.wikipedia.org/wiki/ARToolKit]

[82] ARToolkit homepage, Consulted on January, 11th 2010.
[http://www.hitl.washington.edu/artoolkit/documentation/userarwork.htm]

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 122/128

[83] ATOMIC_Authoring_Tool definition, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/ATOMIC_Authoring_Tool]

[84] ATOMIC_Authoring_Tool homepage, Consulted on January, 11th 2010.
http://www.sologicolibre.org/projects/atomic/en/index.php?page=Documentation]

[85] Wikipedia: Augmented Reality definition, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/Augmented_reality]

[86] International Symposium on Mixed and Augmented Reality, Consulted on January, 11th 2010.
[http://www.ismar09.org/]

[87] PTAM homepage, Consulted on January, 11th 2010. [http://www.robots.ox.ac.uk/~gk/PTAM/]

[88] Chen, G., Kotz, D.: A survey for context-aware mobile computing research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth College (2001).
http://www.cs.dartmouth.edu/reports/TR2000-381.pdf

[89] Kevin Mullete. The Essence of Effective Rich Internet Applications . Macromedia Experience
Design Team. November 2003.http://www.uiresourcecenter.com/rich-internet-
applications/whitepapers/TheEssenceOfEffectiveRichInternetApplications.pdf

[90] Johanson, B., Fox, A., Winograd, T.: The interactive workspaces project: Experiences with
ubiquitous computing rooms. IEEE Pervasive Computing (2002) 67–74.

[91] Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt, K.: Gaia: A
middleware infrastructure to enable active spaces. IEEE Pervasive Computing (2002) 74–83

[92] Kindberg, T., Barton, J.: A web-based nomadic computing system. Computer Networks 35 (2001)
443–456.

[93] Yura, J., Nakazawa, J., Tokuda, H.: Galaxy ds: Directory service for service composition based
on smart space structure. In: Proceedings of the 19th International Conference on Advanced
Information Networking and Applications (AINA’05). (2005).

[94] Chen, H.: An Intelligent Broker Architecture for Pervasive Context-Aware Systems". PhD thesis,
University of Maryland, Baltimore County (2004).

[95] Marsá, I. M.: SETH: A Hierarchical, Agent-based Architecture for Smart Spaces, Universidad de
Alcala (2006).

[96] Yahoo! Pipes official page, Consulted on January, 11th 2010. [http://pipes.yahoo.com/pipes/]

[97] Wikipedia: Yahoo! Pipes, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/Yahoo!_Pipes]

[98] Arduino Home page, Consulted on January, 11th 2010.
[http://www.arduino.cc/en/Guide/Introduction]

[99] Wikipedia: Touch Screen, Consulted on January, 11th 2010. [http://en.wikipedia.org/wiki/Touch-
screen]

[100] Apple Inc. Multi-Touch screen, Consulted on January, 11th 2010.
[http://www.apple.com/iphone/iphone-3gs/high-technology.html]

[101] Wikipedia: Multi-Touch, Consulted on January, 11th 2010. [http://en.wikipedia.org/wiki/Multi-
touch]

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 123/128

[102] Wikipedia: TuxDroid, Consulted on January, 11th 2010. [http://en.wikipedia.org/wiki/Tux_Droid]

[103] Tux Doc., Consulted on January, 11th 2010.
[http://www.tuxisalive.com/documentation/tutorial/tux-api-documentation]

[104] Tux Gadget Management, Consulted on January, 11th 2010.
[http://www.tuxisalive.com/documentation/how-to/tux-gadget-manager/view]

[105] Tux Main Page, Consulted on January, 11th 2010.
[http://wiki.tuxisalive.com/index.php/Main_Page]

[106] Mindstorms Main Page, Consulted on January, 11th 2010. [http://mindstorms.lego.com/en-
us/default.aspx]

[107] Mindstorms, Consulted on January, 11th 2010.
[http://www.dmoz.org/Kids_and_Teens/Sports_and_Hobbies/Toys/Lego/Mindstorms//]

[108] Wikipedia: Mindstorms, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/Lego_Mindstorms_NXT]

[109] Wikipedia: Mindstorms Programming Languages, Consulted on January, 11th 2010.
[http://en.wikipedia.org/wiki/Lego_Mindstorms#Programming_languages_2]

[110] Mindstorms Community, Consulted on January, 11th 2010. [http://mindstorms.lego.com/en-
us/community/default.aspx]

[111] T. Strang and C. Linnhoff. "A context modelling in 1st Int'l Workshop on Advanced Context
Modelling, Reasoning and Management, 2004, pp. 34-41.

[112] Y. Zhiwen, Z. Xingshe, Z. Daqing, C. Chung-Yau, W. Xiaohang and M. Ji "Supporting Context-
Aware Media Recommendations for Smart phones. IEEE Pervasive Computing, vol. 5 pp. 68-75,
2006.

[113] Suparna De and Klaus Moessner. Ontology-based Context Inference and Query for Mobile
Devices.

[114] A. Gangemi, “Ontology Design Patterns for Semantic Web Content,” in Proc. of ISWC 2005,
Galway, Ireland, November 6-10, 2005, ser. LNCS, vol. 3729. Springer, 2005, pp. 262–276.

[115] Department of Defense of the United States, Biometrics Task Force

[116] The Biometric Consortium website: www.biometics.org

[117] A. K. Jain, A. Ross, S. Prabhakar, An Introduction to Biometric Recognition, IEEE Transactions
on Circuits and Systems for Video Technology, Special Issue on Imageand Video-Based
Biometrics 14 (1) (2004) 4–20.

[118] “Biometrics Foundation Documents”. National Science and Technology Council, Committee on
Technology, Committee on Homeland and National Security, Subcomittee on biometrics. USA.

[119] Wikipedia: Retina, Consulted on January, 11th 2010.
[http://en.wikipedia.org/w/index.php?title=Retina&oldid=330176559]

[120] Mitra, S. & Acharya, T. (2007). Gesture Recognition: A Survey, IEEE Tran. on Systems, Man, and
Cybernetics, Part C, Vol. 37, No. 3, 311-324.

[121] [WANG] J.-G. Wang, E. Sung, and R. Venkateswarlu, “Eye gaze estimation from a single image
of one eye,” ICCV, pp. 136-143, 2003.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 124/128

[122] [SMITH] P. Smith, M. Shah, and N.d.V. Lobo, “Determining driver visual zttention with one
camera,” IEEE Trans. on Intelligent Transportation Systems, 4(4), 2003.

[123] HEIS] R. Heishman, Z. Duric, and H. Wechsler, “Using eye region biometrics to reveal affective
and cognitive states,” CVPR Workshop on Face Processing in Video, 2004.

[124] [SIB] L.E. Sibert and R.J.K. Jacob, “Evaluation of eye gaze interaction,” Conf. Human-Factors in
Computing Syst., pp. 281-288, 2000.

[125] Dodson, S. (2008). Forward: A Tale of Two Cities The Internet of Things: A Critique of Ambient
Technology and the All-Seeing Network of RFID. Amsterdam: Institute of Network Cultures.

[126] Franke, N., Keinz, P., & Schreier, M. (2008). Complementing Mass Customization Toolkits with
User Communities: How Peer Input Improves Customer Self-Design. Journal of Product Innovation
Management, 25(6), 546-559.

[127] Franke, N., & Schreier, M. (2002). Entrepreneurial Opportunities with Toolkits for User Innovation
and Design. International Journal on Media Management, 4(4), 225 - 234.

[128] Franke, N., & von Hippel, E. (2003). Satisfying Heterogeneous User Needs via Innovation
Toolkits: The Case of Apache Security Software. Research Policy, 32(7), 1199-1215.

[129] Prügl, R., & Schreier, M. (2006). Learning From Leading-Edge Customers at The Sims: Opening
Up the Innovation Process Using Toolkits. R&D Management, 36(3), 237-250.

[130] Thomke, S., & von Hippel, E. (2002). Customers as Innovators: A New Way to Create Value.
Harvard Business Review, 80(4), 74-81.

[131] Von Hippel, E. (2001). User Toolkits for Innovation. Journal of Product Innovation Management,
18(4), 247-257.

[132] WSMX Main Page, Consulted on January, 11th 2010. [http://www.wsmx.org/]

[133] WSMO org., Consulted on January, 11th 2010. [www.wsmo.org]

[134] WSMO studio, Consulted on January, 11th 2010. [http://www.wsmostudio.org/]

[135] Pieter De Leenheer, Christophe Debruyne: DOGMA-MESS: A Tool for Fact-Oriented
Collaborative Ontology Evolution. OTM Workshops 2008: 797-806

[136] Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies Create
the Dynamics of Innovation. Oxford University Press, Oxford (1995)

[137] De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in ontology
engineering: a formal approach. LNCS Journal on Data Semantics 8, 26–56 (2007)

[138] J. Wang, Z. Ding, C. Jiang: GAOM: Genetic Algorithm based Ontology Matching In
Proceedings of APSCC, 2006

[139] Stamou, s., and Ntoulas, A. (2009): Search personalization through query and page topical
analysis, journal of User modeling and User-Adapted Interaction, Springer Netherlands, ISSN
0924-1868, Volume 19, Number 1-2/Feb. 2009

[140] Das, S., Chong, E. I., Eadon, G., and Srinivasan, J. (2004): Supporting ontology based semantic
matching in RDBMS, in RDBMS. Proc. Of 30th VLDB Conference

[141] Fellbaum, C. (1999): WordNet: an electronic lexical database, Massachusetts Institute of
Technology, ISBN 0-262-06197

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 125/128

[142] Spyns, P., Tang, Y. & Meersman, R. (2008), An ontology engineering methodology for DOGMA,
Journal of Applied Ontology, Volume 3, Issue 1-2, p.13-39

[143] De Moor, A., De Leenheer, P., and Meersman (2006), DOGMA-MESS: A Meaning Evolution
Support System for Interorganizational Ontology Engineering, in proc. Of 14th International
Conference on Conceptual Structures (ICCS 2006), Volume 4068, Aalborg, Denmark, p.189-203

[144] Tang, Y., De Baer, P., Zhao, G., and Meersman, R. (2009): On Constructing, Grouping and Using
Topical Ontology for Semantic Matching, the 5th international IFIP workshop on Semantic Web
and Web Semantics (SWWS’09), proc. Of On the Move to Meaningful Internet Systems: OTM
2009 Workshops, Springer, LNCS 5872, ISBN -978-3-642-05289-7, pp 816-825, Vilamoura,
Portugal, Nov. 1 ~ Nov. 6, 2009

[145] De Baer, P., Kerremans, K., and Temmerman, R. (2008): Constructing Ontology-underpinned
Terminological Resources, A Categorization Framework API, Proceedings of the 8th International
Conference on Terminology and Knowledge Engineering, Copenhagen

[146] De Baer, P., Kerremans, K., and Temmerman, R. (2006): Facilitating Ontology (Re)use by Means
of a Categorization Framework. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful
Internet Systems 2006. Proceedings of the AWeSOMe workshop, pp. 126-135.

[147] Yan Tang and Robert Meersman, Use Semantic Decision Tables to Improve Meaning Evolution
Support Systems, special issue of the Inderscience International Journal of Autonomous and
Adaptive Communications Systems (IJAACS), in, Frode Eika Sandnes, Yan Zhang et. al., (eds.)
ISSN (Online): 1754-8640, ISSN (Print): 1754-8632,

[148] Tang, Y. (2009): On Semantic Decision Tables, PhD dissertation, VUB STARLab

[149] Yan Tang and Robert Meersman, SDRule Markup Language: Towards Modeling and
Interchanging Ontological Commitments for Semantic Decision Making, Handbook of Research on
Emerging Rule-Based Languages and Technologies: Open Solutions and Approaches, IGI
Publishing, ISBN: 1-60566-402-2, USA, 2009

[150] Yan Tang and Robert Meersman, Towards Building Semantic Decision Tables with Domain
Ontologies, in book "Challenges in Information Technology Management", Man-Chung Chan,
Ronnie Cheung & James N K Liu (eds), ISBN 978-981-281-906-2, 981-281-906-1, World
Scientific, 2008

[151] Kallio, S., Kela, J., Korpipää, P. & Mäntyjärvi, J. (2006). User independent gesture interaction for
small handheld devices. Special Issue on Intelligent Mobile and Embedded Systems of IJPRAI,
20(4), pp. 505-524.

[152] Kela, J., Korpipää, P., Mäntyjärvi, J., Kallio, S., Savino, G., Jozzo, L. & Di Marca, S. (2006).
Accelerometer based gesture control for a design environment. Personal and Ubiquitous
Computing, Online First Springer, pp. 1-15.

[153] Mäntyjärvi, J., Kela, J., Korpipää, P. & Kallio, S. (2004). Enabling fast and effortless customization
in accelerometer based gesture interaction. In Proc. International Conference on Mobile and
Ubiquitous Multimedia (MUM), ACM, pp. 25–31.

[154] Feldman, A., Tapia, E.M., Sadi, S., Maes, P. & Schmandt, C. (2005). ReachMedia: on-the-move
interaction with everyday objects, In Proc. IEEE International Symposium on Wearable Computers
(ISWC’05), pp. 52-59.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 126/128

[155] Linjama, J. & Kaaresoja, T. (2004). Novel, minimalist haptic gesture interaction for mobile
devices, In Proc. NordiCHI2004, ACM Press., pp. 457-458.

[156] Rekimoto, J. (2001). GestureWrist and GesturePad: Unobtrusive wearable interaction devices, In
Proc. Fifth International Symposium on Wearable Computers (ISWC), pp. 21-27.

[157] Ronkainen, S., Häkkilä, J., Kaleva, S., Colley, A. & Linjama, J. (2007). Tap Input as an
Embedded Interaction Method for Mobile Devices. In Proc. Tangible and Embedded Interaction, In
Press.

[158] Levin, G. & Yarin, P. (1999). Bringing sketching tools to keychain computers with an acceleration-
based interface, In Proc. CHI 98, ACM, New York, pp. 268-269.

[159] Sawada, H., Uta, S. & Hashimoto, S. (1999). Gesture recognition for human-friendly interface in
designer - consumer cooperate design system. In Proc. IEEE International Workshop on Robot
and Human Interaction, Pisa, Italy, pp. 400-405.

[160] Rekimoto, J. (1996). Tilting operations for small screen interfaces. In Proc. 9th Annual ACM
Symposium on User Interface Software and Technology, pp. 167-168.

[161] Oakley, I., Ängeslevä, J., Hughes, S. & O'Modhrain, S. (2004). Tilt and Feel: Scrolling with
Vibrotactile Display. In Proc. Eurohaptics, pp. 316-323.

[162] Hinckley, K., Pierce, J., Horvitz, E. & Sinclair, M. (2005). Foreground and background interaction
with sensor-enhanced mobile devices. ACM Transactions on Computer-Human Interaction
(TOCHI), 12(1), pp. 31-52.

[163] Nokia Corporation. 5500 phone. (2006)., Consulted on January, 11th 2010.
[http://europe.nokia.com/link?cid=EDITORIAL_8657]

[164] Shari Trewin, Gottfried Zimmermann and Gregg Vanderheiden: Abstract User Interface
Representations:How Well do they Support Universal Access.

[165] Charles Goldfarb, “HyTime: A standard for structured hypermedia interchange”. IEEE computer
magazine, vol. 24, iss. 8 (Aug. 1991), pp. 81–84

[166] MHEG ISO Standard, Consulted on January, 11th 2010. [http://www.mheg.org]

[167] P. Hoschka, S. Bugaj, D. Bulterman, et al. Synchronized Multimedia Integration Language - W3C
Working Draft 2-February-98. W3C, URL: http://www.w3.org/TR/1998/WD-smil-0202, Februar
1998

[168] Guido van Rossum and al, “CMIFed: A Presentation Environment for Portable Hypermedia
Documents”, ACM Multimedia '93, Anaheim, Aug '93, 183 - 188.

[169] Nabil Layaïda, “Madeus: Système d'édition et de présentation de documents structurés
multimédia ”, Thèse, Université Joseph Fourier, juin 1997.

[170] Susanne Boll and Wolfgang Klas, “ZYX- A Semantic Model For Multimedia Documents and
Presentations”, Proceedings of the 8th IFIP Conference on Data Semantics (DS-8), Rotorua, New
Zeeland, 5-8 January 1999.

[171] Thomas D. C. Little and Arif Ghafoor:, “Synchronization and Storage Models for Multimedia
Objects”, IEEE Journal on Selected Areas of Communications, vol. 8, no. 3, pp. 413-427, April
1990.

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 127/128

[172] Augusto Celentano and Ombretta Gaggi, “A Synchronization Model for Hypermedia Documents
Navigation”, ACM Symposium on Applied Computing 2000

[173] Romain Deltour and Cecile Roisin, “The LimSee3 Multimedia Authoring Model”, ACM Symposium
on Document Engineering, 10-13 October 2006, Amsterdam, The Netherlands, pp. 173-175

[174] Susanne Boll, Wolfgang Klas, Utz Westermann, “A Comparison of Multimedia Document Models
Concerning Advanced Requirements”, Technical Report, 1999. Available from:
http://www.cs.univie.ac.at/publication.php?pid=254

[175] Paternò, Fabio, “Model-based design and evaluation of interactive applications”, Springer, 1999,
208 p.

[176] Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G. and Sansone, S., (2008) “Authoring pervasive
multimodal user interfaces”, Int. Journal on Web Engineering and Technology, Vol. 4, No. 2, pp.
235-261

[177] Szekely, Pedro, “Retrospective and Challenges for Model-Based Interface Development”, 2nd
International Workshop on Computer-Aided Design of User Interfaces, Namur: Namur University
Press.

[178] Oasis-open: Committees, Consulted on January, 11th 2010. [http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=uiml]

[179] UIML Home page, Consulted on January, 11th 2010. [http://www.uiml.org

[180] Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E. 1999. UIML:
an appliance-independent XML user interface language. Computer Networks 31, 11-16 (May.
1999), 1695-1708. DOI= http://dx.doi.org/10.1016/S1389-1286(99)00044-4

[181] Plomp, Johan; Mayora-Ibarra, Oscar, “A Generic widget vocabulary for the generation of
graphical and speech-driven user interfaces”, International Journal of Speech
Technology (2002) No: 5, 39 – 47

[182] USI XML Home page, Consulted on January, 11th 2010. [http://www.usixml.org]

[183] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V., “USIXML: A
Language Supporting Multi-path Development of User Interfaces”, in Engineering Human
Computer Interaction and Interactive Systems, LNCS 3425, Springer, 2005, pp. 200-220.

[184] XUL Home page, Consulted on January, 11th 2010. [http://developer.mozilla.org/xul]

[185] Wikibooks “Evolution of Operating Systems Designs”,
http://en.wikibooks.org/wiki/Evolution_of_Operating_Systems_Designs

[186] Buxton B., (2007), “Sketching User Experiences”, Morgan Kaufmann, 448pp

[187] Saffer D., (2008), “Designing Gestural Interfaces”, O’Reilly Media, 268pp

[188] Iwata H., “Haptic inerfaces” in The Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications, CRC press, p229-246

[189] Ishii I., “Tangible User Interfaces” in The Human-Computer Interaction Handbook: Fundamentals,
Evolving Technologies and Emerging Applications, CRC press, p469-489

[190] A.S. Taylor, S.P. Wyche, J.Kaye., (2008), “Pottering by design” in Proceedings of the 5th Nordic
conference on Human-computer interaction

D4.1 SotA report Smart Space DIY application creation and interaction design V3.0

© DiYSE Consortium 128/128

[191] T. Van Cutsem, S. Mostinckx, E. Gonzalez Boix, J. Dedecker, and W. De Meuter. “AmbientTalk:
Object-oriented event-driven programming in mobile ad hoc networks”. In Proceedings of the 26th
International Conference of the Chilean Computer Science Society (SCCC 2007), November 2007,
Iquique, Chile.

[192] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, and W. De Meuter. “Ambient-oriented
programming in Ambienttalk”. In Proceedings of the 20th European Conference on Object-
oriented Programming (ECOOP 2006), volume 4067 of Lecture Notes in Computer Science, pages
230–254. Springer, 2006.

[193] AmbientTalk Source Code project, consulted on March 31st 2010.
[http://code.google.com/p/ambienttalk/]

[194] T. Stanley, T. Close, M.S. Miller, (2009) “Causeway: A message-oriented distributed debugger”,
HPL-2009-78. [http://www.hpl.hp.com/techreports/2009/HPL-2009-78.html].

