
SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 1 (97)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP3

Deliverable D331a: Proposal for extension of meta-
model for error failure and propagation analysis

Due date of deliverable: 27/02/13

Actual submission date: 27/02/13

Start date of the project: 01/05/2012 Duration: 16 months

Project coordinator name: Stefan Voget

Organization name of lead contractor for this deliverable: Valeo

Editor: Florent Meurville (florent.meurville@valeo.com)

Contributors: Philippe Cuenot (Continental) ; Loic Quéran (Dassaut System) ; Andreas Baumgart
(OFFIS) ; Tilman Ochs (BMW CAR IT) ; Christoph Ainhauser (BMW CAR IT) ; Lukas Bulwahn
(BMW CAR IT)

Reviewers: All WT3.3.1 Partners

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 2 (97)

Revision chart and history log

Version Date Reason

0.9 21/02/2013 Official Version for review

0.91 25/02/2013
Integration of Valeo comments (internal review) and integration of
Annex B on HIS consideration in ErrorModel.

0.92 26/02/2013 Integration of Continental-F comments

0.93 26/02/2013 Integration of BMW CAR IT comments

0.94 27/02/2013 Update of chapter 11.2

1 27/02/2013 Ready for release

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 3 (97)

1 Table of contents

1 Table of contents .. 3

2 List of figures .. 6

3 List of tables.. 8

4 Executive Summary .. 9

5 Scope of WT 3.3.1 and structure of the document ... 10

5.1 Scope of WT 3.3.1 .. 10

5.2 Structure of the document .. 10

6 ISO26262 concepts addressed by WT3.3.1 to evaluate risk of malfunctioning behavior 11

6.1 Short Overview of ISO26262 Chapters of interest for WT3.3.1 ... 11

6.2 ISO26262 and General concept of Fault / Error / Failure for malfunctioning behavior and its
propagation ... 12

6.3 Types of Safety Analyzes recommended by ISO26262 ... 14

6.4 Considered safety analyzes in WT3.3.1 (D331b) ... 15

6.4.1 Assessment of most relevant safety analyzes methods using criterion 15

6.4.2 Final choice for D331b .. 17

7 Problematic of evaluating malfunctioning behavior in distributed developments 18

7.1 Illustration through an example .. 18

7.2 Contracts Approach in distributed developments ... 21

7.2.1 Contracts Historical background ... 21

7.2.2 Contracts basic description .. 22

7.2.3 Contracts basic elements ... 24

7.2.4 Contracts Failure Description ... 24

7.2.5 Contracts Example ... 25

7.2.6 Contracts and Loop management .. 26

7.2.7 Contracts and failure propagation mitigation with safety mechanism 26

7.2.8 Conclusions on Contracts ... 27

8 Fault and Propagation language overview and considered method in WT3.3.1 28

8.1 HiP-HOPS ... 28

8.1.1 HiP-HOPS Historical background ... 28

8.1.2 HiP-HOPS basic description ... 28

8.1.3 HiP-HOPS basic elements ... 30

8.1.4 HiP-HOPS Failure Description ... 31

8.1.5 HiP-HOPS Example ... 33

8.1.6 HiP-HOPS and loops management .. 33

8.1.7 HiP-HOPS and failure propagation mitigation with safety mechanisms................................... 35

8.1.8 HiP-HOPS and ISO26262 .. 36

8.1.9 EAST-ADL2 experiment with HiP-HOPS, limits and opportunities identified 36

8.1.10 Conclusions on HiP-HOPS ... 37

8.2 AltaRica .. 38

8.2.1 AltaRica Historical background ... 38

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 4 (97)

8.2.2 AltaRica basic description .. 38

8.2.3 AltaRica basic elements ... 39

8.2.4 AltaRica Failure Description and propagation .. 40

8.2.5 AltaRica Example ... 42

8.2.6 AltaRica and Loop management .. 43

8.2.7 AltaRica and failure propagation mitigation with safety mechanism .. 44

8.2.8 AltaRica and ISO26262 .. 45

8.2.9 AltaRica concepts versus EAST-ADLV2.1 ... 46

8.2.10 AltaRica limits ... 47

8.2.11 Conclusions on AltaRica ... 47

8.3 Orientation taken by WT3.3.1 in SAFE .. 48

8.3.1 Pros and cons analysis of HiP-HOPS and AltaRica languages ... 48

8.3.2 Language choice in WT3.3.1 .. 49

8.3.3 General requirements for a simplified SAFE language .. 49

8.3.4 Hypothesis taken in WT3.3.1 .. 50

8.3.5 Refined requirements for a simplified SAFE language... 50

9 Performing Fault/failure and error propagation based on EAST-ADL V2.1 ... 51

9.1 Current state of EAST-ADL V2.1 concerning fault/failure and error propagation 51

9.2 Analysis of Gap between EAST-ADLV2.1 ErrorModel and our needs .. 54

10 WT3.3.1 Contribution to SAFE Meta-Model ... 56

10.1 Overview ... 56

10.2 Detailed Description of Classes and Links ... 57

10.2.1 ErrorModel .. 57

10.2.2 ErrorBehavior .. 58

10.2.3 ErrorModelType .. 61

10.2.4 Malfunction ... 67

10.2.5 _instanceRef ... 72

10.3 WT3.3.1 Meta-model Description Based on an Example .. 75

11 WT3.3.1 Error model Application Rules ... 77

11.1 System Model ... 77

11.2 Error model pattern 1 – Separation of application layer and application environment..................... 79

11.2.1 Introduction ... 79

11.2.2 Modeling approach ... 79

11.2.3 Special case: horizontal error propagation prevented by application environment 81

11.2.4 Error Model as Safety Contract .. 82

11.2.5 Modeling of Separation of Application Layer and Application Environment 82

11.3 Error model pattern 2 – Separation of Hardware and Software ... 83

12 Conclusions and next steps .. 84

13 Glossary useful for D331a document ... 85

14 Abbreviations used in D331a document ... 86

15 References ... 87

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 5 (97)

[1] International Organization for Standardization: ISO 26262 Road vehicles - Functional safety. (2011)
 87

[2] Project ATESST2: ATESST2 Partners. Review of relevant Safety Analysis Techniques,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D2.1_A3.2_V1.1.pdf 87

[3] http://www.itemuk.com/assets/docs/ToolKit_Manual.pdf ... 87

[4] SPEEDS Consortium: SPEEDS Meta-model Syntax and Draft Semantics, D2.1c. (2007) 87

[5] Project CESAR: CESAR Partners. RE Language Definitions to formalize multi-criteria requirements
V2, D_SP2_R2.2_M2,
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000_PU.pdf 87

[6] SPEEDS L-1 Meta-Model, SPEEDS WP2.1 Partners, SPEEDS Project Deliverable D2.1.5, Revision
1.0.1, May 2009, http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf ... 87

[7] Hungar, H.: Compositionality with Strong Assumptions. In Proceedings of the 23
rd

 Nordic Workshop
on Programming Theory. (2011) 19–21 ... 87

[8] Damm, W., Josko, B., Peikenkamp, T.: Contract based ISO CD 26262 safety analysis. SAE
Technical Paper 2009-01-0754, 2009, doi:10.4271/2009-01-0754 (2009) .. 87

[9] University of Hull, DRIS research group. The Definitive Guide to the HiP-HOPS XML Input File
Format, HiP-HOPS XML Format.doc ... 87

[10] Yiannis Papadopoulos, Martin Walker, University of Hull “Qualitative temporal analysis: Towards a
full implementation of the Fault tree Handbook”, Control Engineering Practice, Vol.17 Issue 10, Elsevier
Editions, 2009. .. 87

[11] Project ATESST2: ATESST2 Partners. EAST-ADL update suggestions for Safety Analysis support,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D3.1_A3.2_V1.1.1.pdf 87

[12] Yiannis Papadopoulos, Ian Wolfort, Martin Walker, University of Hull “Capture and Reuse of
composable failure patterns” , International Journal of Critical Computer Based Systems, Vol 1, Nos. 1/2/3
2010 87

[13] G. Point. AltaRica: Contribution à l‟unification des methods formelles et de la Sûreté de
fonctionnement. PhD thesis, Université Bordeaux 1, 2000. ... 87

[14] A. Arnold, D. Bégay, and P.Crubillé. Construction and analysis of transition systems with MEC. World
Scientific Publishers, 1994. .. 87

[15] A. Rauzy: A New Methodology to Handle Boolean Models with Loops In IEEE Transactions on
Reliability. IEEE Reliability Society. Vol. 52, Num. 1, pp 96–105, 2003. ... 87

[16] T. Prosvirnova, and A. Rauzy: Système de Transitions Gardées : formalisme pivot de modélisation
pour la Sûreté de Fonctionnement. In J.F. Barbet ed., Actes du Congrès Lambda-Mu 18. Octobre, 2012. ... 87

[17] Marc BOUISSOU: Gestion de la complexité dans les etudes quantitative de sûreté de
fonctionnement de systems. Collection EDF R&D aux éditions LAVOISIER* ... 87

[18] Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F., Törngren, M.:
Modelling Support for Design of Safety-Critical Automotive Embedded Systems. In: Proceedings of
SAFECOMP (2008) .. 87

16 Acknowledgments .. 88

17 Annex A: Mapping between AltaRica and HiP-HOPS .. 89

18 Annex B: Proposal of Hardware Software Interface (HSI) consideration in ErrorModel 93

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 6 (97)

2 List of figures

Figure 1: ISO26262 General Overview [1] highlighting where safety analyzes can help 11

Figure 2: View of safety requirements refinement supported by safety analyses 11

Figure 3: Example of failures at ECU level which become faults at vehicle level 13

Figure 4: Example of a fault propagating to a hazard .. 13

Figure 5: Example of RBD for 2 capacitors with several failure modes .. 17

Figure 6: Example of Preliminary Architecture of front lighting switch system 18

Figure 7: Example of requirements allocation from OEM to suppliers in a distributed development
 .. 20

Figure 8: Example of component perimeter known by a Tier 01 in distributed development 21

Figure 9: SPEEDS Contract based specification of interface properties [4] 22

Figure 10: Virtual Integration of Heterogeneous Rich Components (HRC) [4] 23

Figure 11: Example of failure pattern ... 25

Figure 12: HiP-HOPS methods overview for Fault Tree Synthesis .. 29

Figure 13: FTA output view from HiP-HOPS toolset .. 29

Figure 14: Loop example in HiP-HOPS .. 33

Figure 15: Loop example with diagnosis in HiP-HOPS ... 34

Figure 16: Chain example with 5 links .. 34

Figure 17: HiP-HOPS example with Limp Home ... 35

Figure 18: ATESST2 HiP-HOPS versus EAST-ADLV2 mapping [11] .. 36

Figure 19: Example of equivalence between if-then-else expressions and case expression 41

Figure 20: AltaRica Code Example for our Valve ... 42

Figure 21: Example of safety mechanism modeling in Safety Designer ... 44

Figure 22: AltaRica Code Example for a safety mechanism .. 45

Figure 23: SAFE language proposal .. 49

Figure 24: EAST-ADL V2.1 Dependability Package with ErrorModelType class highlighted 51

Figure 25: EAST-ADLV2.1 ErrorModelType Content ... 52

Figure 26: EAST-ADLV2.1 ErrorBehavior Content .. 53

Figure 27: EAST-ADLV2.1 FaultFailure Content.. 53

Figure 28 : Overview of WT3.3.1 ErrorModel Package proposal ... 57

Figure 29 : WT3.3.1 ErrorBehavior proposal ... 58

Figure 30 : WT3.3.1 ErrorModelPrototype proposal ... 61

Figure 31 : WT3.3.1 ErrorModelType proposal .. 62

Figure 32 : WT3.3.1 MalfunctionPrototype proposal .. 67

Figure 33 : WT3.3.1 MalfunctionType proposal ... 68

Figure 34 : WT3.3.1 EMPFunction InstanceRef proposal .. 72

Figure 35 : WT3.3.1 EMPHwComponent InstanceRef proposal .. 72

Figure 36 : WT3.3.1 FaultFailurePropagationLink InstanceRef proposal 72

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 7 (97)

Figure 37 : WT3.3.1 MFPFunctionPort InstanceRef proposal .. 73

Figure 38 : WT3.3.1 MFPHardwarePin InstanceRef proposal.. 73

Figure 39 : Application Level Hierarchy diagram highlighting hierarchy modeling capability 75

Figure 40 : Application Level Hierarchy refinement with malfunctions added 76

Figure 41: Pattern legend for Applicability ... 77

Figure 42 : System model Representation ... 78

Figure 43 : ErrorModel corresponding to Refined System model ... 79

Figure 44 : Example of Error Model modeling Virtual Safety Mechanism 81

Figure 45 : Example of modeling of the separation between the application layer and the
application environment ... 82

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 8 (97)

3 List of tables

Table 1 : Example of recognized analyzes methods listed by ISO26262 [1] 14

Table 2 : Synthesis table of assessment of most relevant safety analyzes methods using criterion
 .. 15

Table 3 : Type of analysis methods required or recommended by ISO26262 [1] 17

Table 4 : Metrics allocation required or recommended by ISO26262 [1] .. 20

Table 5 : HiP-HOPS Valve example .. 33

Table 6 : Type of analysis methods required or recommended by ISO26262 41

Table 7 : Example of Valve Internal failure modes ... 42

Table 8 : Mapping of AltaRica versus EAST-ADLV2.1 ErrorModel .. 46

Table 9 : Pros and Cons table for HiP-HOPS and AltaRIca ... 48

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 9 (97)

4 Executive Summary

The work task 3.3.1 targets to address the fault modeling and its propagation along the complete
development lifecycle. This activity includes the definition of the necessary elements that are
needed to capture fault information and propagation concept to produce safety analyses.

Existing fault modeling language candidates such as HiP-HOPS and AltaRica have been deeply
analyzed to derive needs for the error modeling as proposed by WT3.3.1.

The starting point for error modeling is the existing modeling approach of EAST-ADLV2.1 tightly
coupled with the system model by enriching existing architectural elements with its “fault behavior”
in terms of an error model.

The Error model proposed by WT3.3.1 allows to represent the erroneous behavior of a system
element as a black box view via the means of ErrorModelTypes (only external visible faults and
failures are described) or as a white box view by allowing to a) decompose an ErrorModelType by
an arbitrary number of ErrorModelPrototypes and “wiring” the visible malfunctions (faults, failures)
between them and b) provide a language for atomic error models to relate internal faults and
external faults to theirs external failures.

In a first step, the mechanisms of error modeling shall be the basis to conduct qualitative safety
analyzes. In a second step they shall be extended to conduct quantitative safety analyzes in closed
relation with work performed by WT3.2.2.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 10 (97)

5 Scope of WT 3.3.1 and structure of the document

5.1 Scope of WT 3.3.1

Embedded in work package 3, work task 3.3.1 deals with failure and cutset analysis. The basis for
this work task is the dependability part of EAST-ADLV2.1 which is presented in chapter 9.

WT3.3.1 aims to address the fault modeling and its propagation along the complete
development lifecycle and a meta-model extension suitable for the following topics to WT4.2.3.

For the fault modeling language candidates, the needs, regarding fault information and propagation
concept to be captured in the model to perform qualitative safety analyzes, will be identified.
These artifacts are intended to be attached to each block of an architecture (fault models for
inputs, outputs and block propagation), whatever level it is (functional, logical or physical
organic or any mix of both). In addition, the same tools shall be used to compute the qualitative
safety analyses for functional and/or technical safety concept. The fault and failure context for
safety scenarios shall be extracted from safety requirement analysis and then captured using
semantics of a fault modeling language. The safety concept will be validated thanks to
propagation and analysis of these fault models. At implementation level on the hardware (HW)
side, random hardware failure of hardware design and components (failure in time rates) will
be considered. In particular, the failures relations to the upper safety concept and theirs
contributions to the overall safety analysis will be encompassing. For the hardware
architecture, the objective is to extend previous qualitative analyses and to perform quantitative
safety analyses with the final goal to work out ISO26262 metrics, such as Single Point Fault
Metric (SPFM), Latent Fault Metric (LFM) and Probabilistic Metric HW Failures.

At implementation level on the software (SW) side, failure mode and propagation from the fault
modeling language will extend AUTOSAR templates. Relation to the upper safety concept and
theirs contributions to analysis will be encompassing. Such failure information will be either
captured manually or defined from a tool, as the feasibility study of extraction of Matlab
Simulink behavioral model. Additionally, quantification of occurrence of the software failure
mode will be investigated according to hardware element

Such work will be fertilized by preliminary work performed in the ATESST2 and SPEEDS
projects, but also from aeronautic experience regarding the use of Altarica language, with
possible use of a subset of it. The final outcomes of this task are an extension of the re levant
meta-model to support the failure semantic (this document), and a tool specification for the
failure analysis (see D331b document).

5.2 Structure of the document

In a first step, the ISO26262 concepts addressed by WT3.3.1 to evaluate risk of malfunctioning
behavior will be explained, including the selection of most relevant safety analyses methods for
D331b.

In a second step, the problematic of evaluating malfunctioning behavior in distributed
developments mixing OEM, Tier 01 and Tier 02 will be highlighted, and a contract approach will be
proposed.

In a third step, HiP-HOPS and AltaRica will be analyzed, and the orientation taken in WT3.3.1 will
be justified with some requirements for a simplified SAFE language.

Finally, in a fourth step, the gap between EAST-ADLV2.1 meta-model and previous analysis steps
will be documented and an extension of the meta-model will be proposed with application rules.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 11 (97)

6 ISO26262 concepts addressed by WT3.3.1 to evaluate risk of malfunctioning behavior

6.1 Short Overview of ISO26262 Chapters of interest for WT3.3.1

During the development of a safety critical E/E product, ISO26262 requires or recommends,
depending on the criticality of the product to be developed, to perform a certain number of
activities, dealing with risk assessment, of which belong safety analyses. The goal of safety
analyses is to help evaluating in advanced the potential risks of malfunctioning behavior and find
adequate safety measure to eradicate or mitigate their effects. ISO26262 chapters, where the
evaluation of potential risks using safety analyses is useful, are illustrated hereafter:

Figure 1: ISO26262 General Overview [1] highlighting where safety analyzes can help

Safety analysis are used to support the concept and development design phase activities during
which safety requirements, derived from safety goals, are refined up to HW/SW requirements as
illustrated hereafter:

Figure 2: View of safety requirements refinement supported by safety analyses
 during the concept and development design phases

Functional analysis at

Vehicle level

HW/SW

HW/SW safety reqs.

Refining of

Safety reqs.

System design &

Architecture

Functional Safety concept

Refining of

Safety reqs.

Refining of

Safety reqs.

Component design &

Architecture

Technical Safety concept

Safety Goals

Functional Safety

Requirements

Technical Safety

Requirements

HW/SW Safety

Requirements

HA&RA System Safety

Analyses

Component

Safety Analyses

HW/SW

Safety Analyses

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 12 (97)

6.2 ISO26262 and General concept of Fault / Error / Failure for malfunctioning behavior
and its propagation

ISO26262 (see [1]) defines fault / error / failure concepts for malfunctioning behavior, their
interaction and their propagation through different architecture hierarchy levels up to vehicle level:

 A fault is an abnormal condition that can cause an element or an item to fail.

 An error is defined as the deviation between a computed, observed or measured value or
condition from theoretically correct value or condition.

 A failure is the termination of the ability of an element, to perform a function as required.

 A malfunctioning behavior is a failure or unintended behavior of an item with respect to
its design intent.

Therefore an error can be caused by a fault (abnormal condition), and lead to a failure which can
be a malfunctioning behavior if appearing at item level.

Faults and failures can be of different types: systematic or random.

 Systematic faults or failures are manifested in a deterministic way. They can only be
eliminated by a change of the design or the manufacturing process and cannot be
quantified.

 Random fault or failures only concern HW elements. They occur unpredictably during the
lifetime due to physical causes and follow a probability distribution that allows us to predict
Random HW failure rates.

SW faults and failures are always systematic. If you find a scenario that causes a failure, it leads
each time to the same failure. In this case, only a design change can eliminate the systematic fault
that causes the failure.

HW faults and failures can be either systematic or random.

 Systematic HW: If, as an example, an Electronic Control Unit (ECU) is not protected
enough against EMC produced by an external neighbor cable from the system, it always
leads to the same failure of the ECU. Only a design change to improve EMC protection
would eliminate the systematic faults and failures.

 Random HW: if, as an example, an abnormal oxidation occurs randomly on an HW part
belonging to an Electronic Control Unit (ECU), it might lead to a loss of electrical connection
and therefore lead to a failure of the ECU.

Note: When systematic and HW random faults and failures are mixed in a same safety analysis,
so to be able to produce quantitative evaluation, it is needed to quantify systematic faults and
failures to not produce erroneous probability calculations.

As an example, if a systematic fault/failure is contributing to an AND Gate in a Fault Tree Analysis,
its probability of occurrence should be set to 1 to avoid erroneous probability calculation at AND
Gate level.

As another example, if a systematic fault/failure is contributing to an OR Gate in a Fault Tree
Analysis, its probability of occurrence should be set to 0 to avoid erroneous probability calculation
at OR Gate level.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 13 (97)

Hazard = potential source of harm

A failure at one architectural level (e.g. ECU level) can become a fault at an upper architectural
level (e.g. item level) as shown hereafter.

Figure 3: Example of failures at ECU level which become faults at vehicle level

The fault can propagate in the system to produce an hazard at item level, which can become an
hazardous event at vehicle level when combined with particular operational situation, and so
potentially lead to an accident with harm.

Figure 4: Example of a fault propagating to a hazard

It
e
m

 A
rc

h
it

e
c
tu

re
 l

e
v
e
l

Systematic
SW

Systematic

 HW

Fault Error Failure Fault Error Failure

Engine control unit
stop operation
intermittently

 Ignition coil
not supplied by
intermittence

Engine control unit
intermits operation
when wiper is
switched on

Random

 HW

Ignition interrupted
by Intermittence

Engine bucks

E
n

g
in

e
 C

o
n

tr
o

l
U

n
it

 l
e

v
e

l

Programming Error
at loop termination
condition.

Oxidation

Insufficient EMC
immunity of engine
control unit with respect
to the wiper cable EMC
susceptibility

Unwanted endless
Loop (leads to
Watchdog reset)

Engine control unit
stop operation
intermittently

Loss of electrical
connection

Ignition coil
not supplied by
intermittence

Program sequence
In engine control unit
is disturbed

Engine control unit
intermits operation
when wiper is
switched on

Fault Error Failure Fault Error Failure

Systematic
SW

Random

 HW

Systematic

 HW

Error

Propagation

Vehicle level

Fault

ECU Level

Item Level

People interacting
with the system

Level

Failure

Hazardous
Event

Harm
Operational

situation

Accident

Hazard
Malfunctioning
behavior

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 14 (97)

6.3 Types of Safety Analyzes recommended by ISO26262

Through the different concept and development phases from the safety lifecycle, ISO26262
recommends or requires, depending on the criticality of the items or elements to be developed, to
perform safety analyses.

The objective of safety analyses is to support the derivation of safety requirements from the safety
goals, and to validate and verify their effectiveness and completeness.

Safety analyses help to identify the effect of faults and failures on the functions, behavior and
design of items or elements. They also provide information on conditions and causes that could
lead to the violation of a safety goal (top-level safety requirement) or a safety requirement. In such
a case, additional actions or safety measures shall be determined to eradicate or mitigate the
effect of faults and failures.

The fault and failures considered in safety analyses can be either random or systematic, and either
internal or external to the items or elements to be developed.

Safety analyses are either inductive or deductive.

 Inductive analysis methods are bottom-up methods that start from known causes
and forecast unknown effects. Inductive methods are required by ISO26262 for
ASIL A to ASIL D safety goals.

 Deductive analysis methods are top-down methods that start from known effects
and seek unknown causes. Deductive methods are required by ISO26262 for ASIL
C and ASIL D safety goals and only recommended for ASIL B safety goals.

Safety analyses are qualitative or quantitative:

 Qualitative analyses can be first appropriate and sufficient in most cases to identify
failures and when it is not needed to predict the frequency of failure e.g. systematic
failures.

 Quantitative analyses extend qualitative safety analyses, in a second step, only
when random hardware failures must be predicted as well as the hardware
architectural metrics and the evaluation of safety goal violation due to random
hardware failures. Quantitative analyses are not required to be applied to
systematic failures e.g. software failures.

ISO26262 does not require a specific analysis method but list recognized methods as follows:

Qualitative analysis methods include: Quantitative analysis methods include:

 Qualitative FMEA1 (inductive)

 Qualitative FTA2 (deductive)

 HAZOP3(mixed between inductive and deductive)

 Qualitative ETA4 (inductive)

 Ishikawa

 Quantitative FMEA1 (inductive)

 Quantitative FTA2 (deductive)

 Quantitative ETA4 (inductive)

 Markov models(inductive)

 Reliability Block Diagrams(deductive)

1
FMEA : Failure Mode Effect Analysis

2
FTA : Fault Tree Analysis

3
HAZOP : HAZard and OPerability analysis

4
ETA : Event Tree Analysis

Table 1 : Example of recognized analyzes methods listed by ISO26262 [1]

Additionally, the safety analyses might also contribute to the identification of new functional or non-
functional hazards not previously considered during hazard analysis and risk assessment.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 15 (97)

6.4 Considered safety analyzes in WT3.3.1 (D331b)

As explained in chapter 5.1, the scope of WT3.3.1 is a first step to define the concepts needed for
fault/failure propagation, documented in the D331a deliverable. In a second step, it is to define a
tool specification for most relevant safety analysis methods that will permit to visualize and analyze
the results from the fault/failure propagation (D331b deliverable).

Nevertheless to be coherent with fault/failure propagation, it was decided to select the most
relevant safety analysis methods during first step and give the results in D331a deliverable.

6.4.1 Assessment of most relevant safety analyzes methods using criterion

The different methods were assessed using different criterion as shown in the table hereafter:

YES, NO criterion when answer is sure
Maybe : theoretically possible but never seen
Limited : when it is not fully capable

Inductive methods Deductive methods

FME(D)A ETA Markov FTA RBD

Capability to address ISO26262 requirements concerning qualitative / quantitative safety analyzes.
Does this method allow performing
qualitative and quantitative analyzes?

YES
Qualitative FMEA

Quantitative FMEDA
YES YES YES YES

Can this method be performed at different
architectural levels? YES YES

YES theoretically

but very complex at
low level

YES YES

Can this method address systematic failure? YES
FMEA

YES YES YES but

Low interest
YES but

Low interest
Can this method address random failure? YES YES YES YES YES
Can this method be used to calculate
architectural metrics (SPFM & LPFM)?

YES
FMEDA

Maybe
but not direct

Maybe but not

direct

Maybe
but not direct

Maybe
but not direct

Can this method be used to estimate the
residual risks of safety goal violation

Yes Failure Class at

part level or estimation
from FMEDA

Maybe but not

direct

Maybe possible

but not direct

YES
PMHF

Maybe
but not direct :PMHF

Does this method support analysis of
dependent failure?

YES YES YES YES YES

Automation capabilities
Does this method allow mapping with
architecture? NO NO NO

State machine

Limited
Possible but
restrictions

Limited (no direct

mapping when
representing failures)

Can local analyses be generated from
models? YES

Maybe but not

direct because of
success?

Maybe If state

machine behavior
defined in blocks

YES YES

Can this method be transformed into another
method without loss of information?

YES
ETA but only for failure
not success, FTA for

cutset 1

Limited (only

failure not success)
FMEA, FTA with

cutset 1 only

NO
Only input for other

methods

YES
FMEA for cutset 1,

RBD

YES
FMEA for cutset 1, FTA

Can global analysis be build from local
analysis? YES

Maybe but
not direct

NO
Make no cense

YES
Transfert gates

YES

Can this method be coupled with another
analysis?

YES
FTA, RBD event

YES
FTA, RBD, Markov

YES
FTA, RBD; ETA

YES
FMEA, ETA events

YES
FMEA, ETA events

Post-processing capabilities for results
Can this method allow identifying Single
Point Fault?

YES YES YES YES YES

Can this method allow identifying Safety
Mechanism covering a single point Fault?

YES
FMEDA

YES
Safety Mechanism is

a barrier

YES
Safe state transition

YES
AND Gate

YES
Adding of parallel

element

Can this method allow identifying Latent
Fault?

YES
FMEDA

Maybe but not

direct
YES

Safety Mechanism
failure state

YES
but not direct

YES
but not direct

Does this method allow understanding and
visualizing cut-sets?

YES
Only cutset 1

YES
Only cutset 1

NO cutset

computation YES YES

Does this method allow understanding and
visualizing failure sequence?

YES YES YES YES Maybe but not

direct
Can this method be configurable to analyze
and display multiple failure analysis? NO NO YES

YES
Cutset analysis and

display

YES
Cutset analysis and

display

Does this method help indentifying path
analysis, from Failure mode to end effect,
and respective involved elements?

Limited
For identification of
involved elements

Limited
For identification of
involved elements

Limited
For identification of
involved elements

YES YES

Table 2 : Synthesis table of assessment of most relevant safety analyzes methods using criterion

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 16 (97)

The goal here was clearly not to fully describe all the safety analysis methods, because there are
well known and already described in [2] and [3] , but to investigate which are the most relevant for
the tool specification D331b.

The considered analysis methods in D331b shall permit, first to answer most of ISO26262
requirements concerning qualitative and quantitative analyzes, then to allow semi-automation to
help users to generate safety analyzes. It shall finally offer good post-processing capabilities to
analyze results and identify weaknesses.

 HAZOP and Ishikawa technique are more qualitative methods for daily life and will not be
considered in the tool specification D331b. They are very limited to address ISO26262
requirements concerning safety analyzes and are not very compatible with tooling.

 Failure Mode and Effect Analysis (FMEA) is an example of inductive technique, as it starts from
known causes and explore possible consequences. FMEA is a well known and accepted
technique in the automotive industry. FMEA Analyses in ISO26262 are generally conducted in
two steps:

1. Qualitative analysis during which failure modes and their effects are analyzed.

2. Quantitative analysis, when dealing with HW random faults, called FME(D)A (Failure Mode
Effect and Diagnostic Analysis). FME(D)A permits to calculate the architectural metrics (Single
Point Fault Metrics and Latent Fault Metrics) by introducing safety mechanisms with their
diagnostic coverage (detection rate of the fault) stopping or mitigating the fault propagation as
proposed in the ISO26262 Part 5 Annex E [1].

Therefore, even if full automation is maybe not reachable, FME(D)A is a serious candidate for
the tool specification D331b.

 Event Tree Analysis (ETA) is a second example of inductive technique for identifying and
evaluating the sequence of events in a potential accident scenario (failure and success)
following the occurrence of an initiating event. This analysis technique is known in the
automotive industry but not a current practice as compared with FMEA. It can be used
potentially to study a specific event and to demonstrate and visualize the effectiveness of a
safety mechanism (seen as barrier). It can permit to quantify results but would not permit to
calculate the architectural metrics directly. Moreover the automation capabilities seem reduced.

Therefore the interest is limited and do not present additional value compared to FME(D)A. It is
not a good candidate for the tool specification D331b.

 Markov modeling is a third inductive technique suitable when the dynamic behavior of the
system is needed to be studied. It can also be used to model complex interactions within the
system when failure of a component can influence behavior of other components. In these two
cases, traditional techniques such as FMEA, ETA, RBD or FTA are not relevant.

Nevertheless Markov analysis technique does not permit to address all qualitative and
quantitative analyses required by ISO26262. It has limited automation capabilities and requires
high skills for users for results post-processing. Other kinds of methods will be anyway needed
and for all these reasons, and therefore it will not be addressed in the tool specification D331b.

 Fault Tree Analysis (FTA) is a deductive analysis technique that starts from known effects and
explore possible causes (sometime described as “Top Down” approach). FTA is generally
qualitative in a first step, and then quantified in a second step. FTA is composed of events and
logical event connectors (OR-gates, AND-gates, etc…).

Possible results from the analysis are the listing and visualization of all combination of events
(cutset) with their importance factor leading to the top event failure and the probability that this
critical top event will occurs during a specified time interval (when dealing with HW random
faults).

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 17 (97)

FTA is a well known and accepted technique in the automotive industry. It can be used to
address most of the ISO26262 requirements concerning safety analyzes, and can offer good
post-treatment capabilities. Therefore, even if FTA generation seems difficult to be fully
automated, FTA method is a serious candidate for the tool specification D331b.

 Reliability Block Diagram (RBD) is another kind of deductive analysis technique known in
automotive but not a current practice. RBD performs the system reliability and availability
analyses on large and complex systems using block diagrams to show network relationships.
The structure of the reliability block diagram defines the logical interaction of failures, within a
system, that are required to sustain system operation (success oriented).

A lot of people have the preconceived idea that Reliability Block Diagrams always map with the
physical arrangement of components in the system but it is not true. In certain cases when
elements can have several failure modes, it is not true as illustrated below:

C1 and C2 are two capacitors in serial in an electrical circuit

Capacitors have each two failure modes : Open Circuit / Short Circuit

Representation of Capacitors Open Circuit

Output will be lost if either one of the
capacitors goes open circuit

Representation of Capacitors Short Circuit

Output will be lost if both capacitors
goes short circuit

Figure 5: Example of RBD for 2 capacitors with several failure modes

To evaluate an RBD diagram there must be only one failure mode represented for each
element. For elements with more than one failure mode, separate RBD diagrams must be
drawn, one for each failure mode to avoid dependency problems. As in our systems, there is
always more than one failure mode per element, the direct mapping between physical
architecture and RBD will be unusual.

Therefore the interest in Reliability Block Diagram is limited and do not present additional value
compared to Fault Tree Analysis. It is not a good candidate for the tool specification D331b.

6.4.2 Final choice for D331b

The ISO26262 (see [1]) required that inductive methods have to be used whatever the criticality
(ASIL A to ASIL D) and deductive methods for ASIL C and ASIL D as shown in the table hereafter:

 ASIL A ASIL B ASIL C ASIL D

Inductive
methods

Required Required Required Required

Deductive
methods

Nothing required
or recommended

Recommended Required Required

Table 3 : Type of analysis methods required or recommended by ISO26262 [1]

Therefore for critical systems, we need to select at least one inductive method and one deductive
method. Considering the results from chapter 6.4.1, for the tool specification D331b, as best
comprise, the methods proposed will be derived from FME(D)A for inductive technique and FTA
for deductive technique.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 18 (97)

7 Problematic of evaluating malfunctioning behavior in distributed developments

7.1 Illustration through an example

As illustrated in Figure 3 and Figure 4 from chapter 6.2, a lot of people think that when we
analyzed a fault in a system, we always investigate if this fault can potentially violates a safety
goal. In a simplified system such as described in ISO26262 Part 5 Annex E [1] made of a single
ECU with sensors and actuators, this is possible, but in reality systems are often made of several
ECUs, and therefore investigations are much more complex.

Moreover, most of the time, there is one system responsible (e.g. OEM), and the different ECUs
are developed by different Tier 01 suppliers. Tier 01 suppliers themselves can buy SW or HW
development from a Tier 02 supplier. It is a so called distributed development. In this context, the
propagation of a fault in a HW element developed by a Tier 02 up to the violation of a safety goal is
not so obvious.

To illustrate the problematic of distributed development, let us take the example of a system whose
desired function should consist in switching ON/OFF the front lights (low beams) of a car. If
someone is driving by night in a dark area (operational situation) and the front lights are spuriously
lost (malfunctioning behavior leading to hazard), it can be easily understood that it become an
hazardous event (ASIL B) for the driver, the other occupants of the car and potentially also people
outside of the car. From the hazard analysis and risk assessment, safety goal corresponding to
this hazardous event will be defined as our top level safety requirement. As this stage, the system
is considered as a “block” box (we do not know how the desired function will be realized).

Then the system responsible will defined first a functional architecture (not shown here) which will
quickly lead to a preliminary architecture as shown hereafter that can realize the functional
architecture. Of course, there is not only one unique technical solution to realize the functional
architecture and therefore variants are possible.

Figure 6: Example of Preliminary Architecture of front lighting switch system

In this example, the driver can activate a switch (ring) on a lever and set ON/OFF the front lights
(low beams). The corresponding electrical information is acquired by the Top Column Module ECU
which then elaborates a Command that is sent on the CAN Bus. The Body Control Management
ECU receives the Command from the CAN Bus and executes it.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 19 (97)

Based on a preliminary architecture as defined in Figure 6, the system responsible will have to
identify, using relevant safety analyzes, the different malfunctions on the output of the components
of its system that could propagate within the system and could violate the safety goal.

 A malfunction of the output of the switch (e.g. erroneous value: OFF instead of ON) will be
propagated to the Top Column Module ECU that will send an OFF value on the CAN Bus. Then
the Body Control Management ECU will receive the erroneous value and will switch OFF the
front lights. The initial switch malfunction will finally propagate without safety mechanism and
lead to the violation of the safety goal.

 In the same manner, a malfunction of the output of the Top Column Module ECU (e.g.
unexpected OFF command sent on the CAN bus) will be received by the Body Control
Management ECU that will switch OFF the front lights. The initial malfunction will finally
propagate without safety mechanism and lead to the violation of the safety goal.

 In the same manner, a malfunction of the output of the Body Control Management ECU (e.g.
unexpected OFF command execution) will switch OFF the front lights. The initial malfunction will
finally propagate without safety mechanism and lead to the violation of the safety goal.

 And also if both front light modules could have malfunction at the same time, it will lead to a loss
of front lights and will lead to the violation of the safety goal without safety mechanism.

In this simple example, a safety mechanism can be implemented in the Top Column Module ECU
to detect a switch malfunction. It will be translated into one functional safety requirement:
TCM-FSR_001: TCM shall send a light parameter “Invalid” on the CAN bus in case of malfunction
detection of lighting switch acquisition: ASIL B

And also to be sure that it does not lead to a loss of light, another functional safety requirement is
needed for the Body Control Management ECU.
BCM_FSR_001 : When ignition switch is ON, BCM shall switch light ON if it receives a light
parameter “Invalid” on the CAN bus : ASIL B

Loss of
front

lights

OFF Command
sent on CAN Bus

Switch OFF of
Front lights

Erroneous value
OFF instead of ON

Loss of
front
lights

Unexpected OFF
Command sent on

CAN Bus

Switch OFF of
Front lights

Loss of
front

lights

Unexpected Switch
OFF of Front lights

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 20 (97)

That means that finally a loss of front lights in our system could mainly be due to a malfunction of
the output of the Top Column Module ECU that could spuriously send an OFF command on the
CAN Bus OR due to a malfunction of the output of the Body Management Control ECU that could
spuriously switch OFF the front lights OR simultaneous malfunction of both Front lights.

As the criticality of the safety goal violated in this example is ASIL B, ISO26262 recommends only
some metrics targets as shown in the Table hereafter:

 ASIL A ASIL B ASIL C ASIL D

Single Point Fault
Metric (SPFM)

Nothing required
or recommended

≥ 90%
Recommended

≥ 97%
Required

≥ 99%
Required

Latent Fault Metric
(LFM)

Nothing required
or recommended

≥ 60%
Recommended

≥ 80%
Recommended

≥ 90%
Required

Residual risk
Metric

Nothing required
or recommended

< 10
-7

 / h
Recommended

< 10
-7

 / h
Required

< 10
-8

 / h
Required

Table 4 : Metrics allocation required or recommended by ISO26262 [1]

And if the system responsible (most of the time the OEM) decides to not perform the system
development itself, but uses developments distributed to several suppliers (Tier 01). In this
situation, it would be necessary to define the different interfaces between elements of the systems,
as well as the critical malfunctions with associated allocated metrics.

Malfunction of output of the Top Column
Module ECU to control :

TCM-F002-MF001 : Unexpected sending of
OFF parameter on CAN Bus : ASIL B
With max. 5e-8 /h as residual risk : SPFM =
90% ; LFM = 60%
Could be also a functional safety
requirement

Malfunction of output of the Body control
Management ECU to control :

TCM-F002-MF001 : Unexpected switch OFF
of both front lights : ASIL B
With max. 5e-8 /h as residual risk : SPFM =
90% ; LFM = 60%
Could be also a functional safety
requirement

Reliability
targets : 1e-6/h
for each front
light

TCM Supplier : Valeo BCM Supplier : Continental
Front Light

supplier : Other

Figure 7: Example of requirements allocation from OEM to suppliers in a distributed development

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 21 (97)

Therefore, when as in the example, the Top Column Module ECU supplier receives the working
specification from the OEM, it will have to implement safety mechanisms in its product. These
safety mechanisms shall stop or mitigate the propagation of SW and HW faults/failures leading to
specified malfunctions outside of its component perimeter as shown hereafter:

Figure 8: Example of component perimeter known by a Tier 01 in distributed development

And at this level, we will never investigate if it leads to a violation of a safety goal because the
system behavior is under OEM responsibility and is not fully known by the supplier (Tier 01).

Of course, when safety analyzes are performed inside the component to be developed and when
new malfunctions propagating outside are discovered, the system responsible shall be immediately
informed in order to analyze impact at higher level.

To manage such scenario, a generic contract-based approach is proposed in chapter 7.2 in order
to improve the formalism of expected behavior in distributed developments.

7.2 Contracts Approach in distributed developments

Contract-based design is a methodology that allows compositional reasoning. The methodology
can be applied for different viewpoints like functional and/or dysfunctional behavior. It allows formal
specification and analysis of component characteristics for safety-related systems. Component
specifications given by contracts explicitly distinguish between promised behavioral characteristics
which are guaranteed as long as behavior assumed for the component context hold. Assumptions
and promises of contracts can be formally described e.g. by using a pattern-based specification
language. These patterns allow the specification of safety-requirements which guarantee safety-
concepts for components under the assumption that specific combinations of defined failures do
not occur. Combination of contracts can be analyzed for a set of sub-components in a virtual
integration test on implying contracts of a parent component composed by these sub-components.

7.2.1 Contracts Historical background

Many of the concepts for contract-based component design are results of the SPEEDS project
(Speculative and Exploratory Design in Systems Engineering, EU, 6th Framework) [4], and draw
on classic research on compositionality as well as more recent ones. Further activities regarding
contract-based requirements engineering using a formal pattern-based requirements specification
language (RSL) were performed within the project CESAR (Cost-Efficient methods and processes
for SAfety Relevant embedded systems, ARTEMIS JU) [5].

Unexpected sending of OFF

parameter on CAN Bus

Malfunction to control:

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 22 (97)

7.2.2 Contracts basic description

Contract based modeling was developed in order to meet the requirements of cooperative
systems. The idea is simple; a system is described by a component as depicted in Figure 9. This
component is decomposed into sub-components as parts of the component which define the
elements of the system. Each component part is a system element that is responsible
to provide a number of well-defined services. However, in order to do so they need to rely on the
activity of other partners (i.e. they have assumptions on the behavior of the environment in which
they are embedded). In turn they provide guarantees to other partners about their own behavior.
Contract based specification methods address these issues by distinguishing what a component
relies on and what it delivers. This kind of specification is especially useful when no actual
implementation exits, for example during early development phases when only requirements and
their relations are known, and can be used to establish the preliminary architecture. Due to locality
properties of the contracts it is possible to evaluate the impact of the overall architecture layout on
the different system requirements.

Having a complete and well-defined description of the interface of a component enhances the
development of large systems by providing means that improve scalability, compositionality and
abstraction. Re-use of components and design patterns, developing libraries of design components
and better support for using COTS (Components Off The Shelf) are use-cases that benefit from
this approach. Existing designs can be easily changed in order to adapt for new requirements or to
support product family development.

Figure 9: SPEEDS Contract based specification of interface properties [4]

Furthermore contract based modeling provides the necessary infrastructure for efficient
compositional analyses, thus avoiding many of the complexity problems otherwise associated with
large models. Evaluating the impact of different design choices and alternative implementations of
a component helps in avoiding unnecessary cycles in the design process. Compatibility of
components can already be tested during the early design phases.

Contract based modeling can be started early in the design process and supports an incremental
design evolution with gradual improvements going from abstract models towards more and more
refined ones. It enables the specification of well defined interface between components so that:

 each component (possibly collections of components) is associated with a contract that
specifies the interface the component uses to interact with the environment

 contracts consists of a number of assumption-commitments pairs

 the implementation of each component can be verified on its own, formal verification
techniques can be used to validate that the component fulfils its contract

Contract

Part1:
Environment

Part2:

System

Environment

System

System Boundary

Contract
(System View)

Part1:
Assumption

Part2:
Promise

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 23 (97)

 compositional analysis of system-level properties can be based entirely on the contracts
of the individual components, so that issues of complexity and heterogeneity that arise
from detailed implementation can be avoided

 functional aspects of the system as well as non-functional properties, such as safety
and reliability, can be addressed.

In the SPEEDS methodology [4] a virtual integration test composes the contracts and then
verifies whether this assembly is consistent with the contracts of their parent component. This
is the fundamental building block underlying the compositional analysis that ensure that the
decomposition step was correct, in the sense that the defined sub-components will work
together and satisfy the requirements of their parent component.

Figure 10: Virtual Integration of Heterogeneous Rich Components (HRC) [4]

Based on contracts, in particular two kinds of analyses are part of the virtual integration:

 Compatibility Analysis: This analysis verifies whether the assumptions and
promises of interconnected respectively neighboring components are compatible
with each other.

 Entailment Analysis: This kind of analysis, also known as dominance check,
composes the contracts of a set of interconnected components and then verifies
whether this assembly is consistent with the contracts of their parent component.

In the case of entailment, one can say that the contracts of the sub-components imply the
contracts of their parent component. Both analyses together enable the developer to ensure that
the decomposition step was correct, in the sense that the defined sub-components will work
together and satisfy the requirements of their parent component, provided that the sub-
components satisfy their own contracts. After the incremental verification and validation step, all
derived sub-components are sufficiently characterized and can be designed independently. The
developer now has the alternatives to iterate the decomposition step again, implement the sub-
components or select an existing implementation from a library. The developer must ensure that
any implementation that is provided, either newly developed or selected from a library, satisfies the
sub-component„s contracts.

Contracts for
C2

Contracts S2:
 Assumption:
 …….
 Promise:
 ….

C2

Contracts for
C4

Contracts S4:
 Assumption:
 …….
 Promise:
 ….

C2

Contracts for
SYS

Contracts S0:
 Assumption:
 …….
 Promise:
 ….

C2

Contracts for
C3

Contracts S3:
 Assumption:
 …….
 Promise:
 ….

C2

Contracts for
C1

Contracts S1:
 Assumption:
 …….
 Promise:
 ….

C2

Tool Tx – System SYS

Component
C1

Component
C4

Component
C3

Component
C2

 SYS

Dominance Check :

 (S1  S2  S3  S4) < S0

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 24 (97)

7.2.3 Contracts basic elements

The following chapter will give an overview of the basic elements considered by contract-based
component design. Contracts are specifications for components with promised characteristics for
an assumed context of that component

Contract
A contract is a component-specification in terms of promised component characteristics, which
must hold provided that assumed characteristics of the component‟s environment are fulfilled.
Such a contract-based specification therefore distinguishes between assumptions on the usage
context of a component and promised characteristics for the specified usage context. This is the
basic principle of contract-based design approach in the SPEEDS project and of the HRC meta-
model specification [6]. Contracts have two kinds of assertions, namely assumption and
promises. These assertions can be described informally or in a formal way e.g. by using a pattern-
based requirement specification language (RSL).

Promise
The promise describes guaranteed functional and non-functional characteristics in a contract-
based specification. The promise of a contract, assigned to a component, has to hold provided that
the assumptions are satisfied. If an assumption is not fulfilled then the promise does not
necessarily hold.

Assumption
An assumption describes the assumed design environment for a contract-based specification.
Assumptions characterize the allowed usage context for a component as well as specific use
cases within the allowed usage. If a component is used accordingly to its assumptions, it will
guarantee the behavior specified by the promise.

Component
A Component is a reusable architectural element. It defines a set of interfaces which are
addressed by the contracts assigned to the component. If a component is considered as a black-
box then only its interfaces and its contracts are known. Otherwise a component can be
decomposed into a composition of sub-components. Each sub-component can have its own
contracts. In a clean architecture design the combination of contracts assigned to the sub-
components implies the contracts of the parent component.

7.2.4 Contracts Failure Description

Pattern-based Safety Contracts are a means to define fault containment properties for a system's
safety concept. The patterns describe how failures are contained and evaluate the impact on the
top-level safety requirements. This kind of analysis can be done very early in the design process
using abstract representation of the component and will be used to derive additional safety
requirements. With the pattern presented in this chapter it is possible to create a specification of
the containment or propagation of faults.

The main concepts used for this pattern are failure-condition and a combination of failure-
conditions in an expression. With these concepts it is possible to describe faults and failures as
failure-conditions and combinations thereof that are assumed or guaranteed not to occur. The
pattern can be used to describe the combinations of faults in an assumption and combinations of
failures or malfunctions in a promise of a safety-contract. As long as the specified assumption
holds the non-occurrence of the specified failure is guaranteed for the system. Yet, the
combination of fault occurrences that is assumed not to occur is a violation of the assumption. If
the assumption is violated then non-occurrence of the failure cannot be guaranteed by the system.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 25 (97)

The following attributes are used in the pattern:

 Failure-Condition

 Degradation modes

o A mode expression consists of a mode variable, a mode name and a relational
operator(“= =“, “!=“)

o Example: DM==normal, DM != detected

 Expression, Expression Sets

o An expression is either a failure-condition or a mode expression

o An expression set is a set of expressions

o Example: {fail1, fail2, fail3 during dm=normal}

 perm()

o If this operator is applied to an expression, the expression holds for all future states
of the path

Pattern

S1:

none of {<expr-set1>, …, <expr-setn>} occur

This pattern is used to describe the traces that are accepted / not accepted. Any trace that

contains all elements of one expr-set is not accepted by the pattern.

Example Pattern:

 none of {{f1,f2}, {f3,f4}} occur

Figure 11: Example of failure pattern

7.2.5 Contracts Example

A contract is typically a requirement with a specific structure with an assumption and a promise.
The concept of contracts makes assumptions about context explicit, which allows assigning
responsibilities in the development processes. Typically contracts are derived from top-level
system requirements that may be captured in external requirements management tools like e. g.
DOORS. Keeping those requirements separate from an architecture model may be required by the
certification processes.

An example safety contract is the following:

Assumption: none of {{f1,f2}, {f3,f4}} occur

Guarantee: none of {{f0}} occur

The safety pattern, used in the assumption and guarantee, describes scenarios that are
characterized by sets of failure-conditions, which are not allowed to occur. Informally the above
contract specifies the required fault containment properties, it states that any combination of
failures that do not involve (f1 AND f2) OR (f2 AND f3) will never lead to a situation where failure-
condition f0 can occur.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 26 (97)

7.2.6 Contracts and Loop management

A typical issue in system design is the management of control loops. The output of one component
is an input of a component that is connected upstream. A failure resulting from the loop behavior
(e.g. oscillation) is not detected locally by the components. The combination of the component
behaviors connected in the loop leads to failure of the system to which the components are
composed. This issue will later be shown for HiP-HOPS (see chapter 8.1.6) and for Altarica (see
chapter 8.2.6). Contract-based specifications have semantics defining allowed traces of a system‟s
behavior. According to Hungar [7] the trace semantics permits to directly relate behaviors and
specifications: If all traces of the behavior of a component adhere to its specification, the
component is correct. A system‟s implementation that consists of a composition of sub-
components connected in a loop can have a behavior with traces that are allowed by a contract-
based system specification. If the traces are allowed, then the implementation with the sub-
components connected in a loop entails the system contract and is correct from the system‟s point
of view. Whether the actual behavior of a system adheres to the specification is subject to an
analysis.

7.2.7 Contracts and failure propagation mitigation with safety mechanism

The pattern-based safety-contract approach allows specifying a safety concept in terms of failure
modes, failure rates, their propagation, and the usage of counter measures expressed in
assumptions and promises. This method allows verifying decomposition and integration of safety
concepts. The safety concept can be seen as requirements on safety that do not want to force a
special implementation but requires a defined behavior regarding failure propagation. Typical
requirements are the non-existence of a single-point-of-failure. In particular the safety-modes used
for stating temporal properties between patterns do not have a direct relation to the
implementation.

A safety specification can already include partial details about countermeasures like voting or
validity checks to realize required fault containment. Expressing such elements is in particular
important for verifying if the solution that has been created by a supplier still fits into the overall
safety concept. Countermeasures can be seen as a gateway between functional behavior and
safety argumentation.

When a safety specification is formalized it is important to distinguish between the assumptions
under which a safety concept has to hold and the promise what a component – that later will
implement this specification – shall do to keep the system safe. This principle enables the supplier
to build a system without having to communicate with the integrator on an informally ambiguous
way. E.g. a failure rate for failure modes on a component can only be met by an implementation if
there is knowledge about the failure rates of propagated failure modes on the input Ports of the
component. Same applies for argumentations not taking failure rates into account: The non
existence of a failure mode on a port can only be shown under the assumption that only a known
number of faults can occur at the same time.

In order to express the relationships between the failure modes and the counter measures, thus
implementing a technical safety concept, formalism is needed that allows the statement of the
assumptions as well as the promises in a semantically well defined and unambiguous way. For a
pattern-based specification of safety-requirements only few patterns are needed to define error
propagation and counter measure functionality.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 27 (97)

There are two main scenarios where completeness and consistency of a safety specification needs
to be checked:

 On the one hand if the OEM refines a system to distribute the sub-parts to one or more
suppliers. In this case is important to prove that the refinement still satisfies the upper level
safety goals.

 On the other hand a supplier can offer a solution (that could also have different
assumptions as actually needed in the development process) that refines the OEMs view
on the system. In this case it is important to prove that this externally developed component
fit into the already existing component structure and the top-level safety goals are still
satisfied.

7.2.8 Conclusions on Contracts

Contracts can be used to specify and analyze all kinds of safety-requirements required by the
ISO26262 in a formalized way [8]. The contract methodology allows the specification and analysis
of formal safety-requirements including failure propagation and mitigation with safety mechanism.
Safety-contracts can be used to define combinations of faults for which the occurrence of a failure
shall be excluded.

The correct implementation of a system‟s safety contracts, dealing with faults or failures to be
excluded, is subject to a safety analysis. Contract-based methods like entailment or compatibility
analysis can be applied. Another possibility is to perform safety analyses generated by fault and
propagation languages such as HiP-HOPS and AltaRica as seen in chapter 8.

The approach proposed in the SAFE extension for fault and failure propagation in chapter 10, will
be to extend EAST-ADL to perform such contract mind description, and to define failure
requirement for failure propagation language as implemented in D331b next document released.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 28 (97)

8 Fault and Propagation language overview and considered method in WT3.3.1

The following chapters will describe an overview of the two most interesting model based and
safety analysis based methods as state of the art. Both of them provide a fault and propagation
language.

8.1 HiP-HOPS

“HiP-HOPS” as Hierarchically Performed Hazard Origin & Propagation Studies, is a safety analysis
methodology that allows automating generation of fault trees for fault tree analysis (FTA) and for
failure mode and effect representation (FMEA) constructed from system topological models
annotated with respective component failure data.

8.1.1 HiP-HOPS Historical background

The “Distributed, Reliable and Intelligent Systems” research group from the University of Hull in
United Kingdom has been intensively developing novel techniques and tools supporting the quality
and dependability analysis, optimization and improve testing of highly critical system in various
industries such as avionic, nuclear plan and process industries.

Since the last decades, the DRIS [9] team builds important contributions to HiP-HOPS techniques,
with definition of novel algorithms for bottom up dependability analysis via automatic synthesis of
Fault Trees and Failure Models and Effects Analyses (FMEAs). They also defined a method for
temporal logic that enables assessment of the effects of sequences of faults in Fault Tree Analysis
(FTA) called Pandora [10]. HiP-HOPS methodology can be applied on any type of system design,
modeled as a topology of any type of component composed to build a system. HiP-HOPS defines
semantic to capture the annotation of appropriate failure description of component and their local
effects, and computed propagation of the failure in the system based on the relation defined in the
topology of the system. Then it allows automatic generation of common safety analysis like Fault
Tree Analysis and Failure Modes and Effects Analysis (FMEA). Different HiP-HOPS prototypes
have been implemented in tools like Matlab Simulink and SimulationX by ITI GmbH.

HiP-HOPS was adopted by automotive research consortium of European project (ATESST,
ATESST2, MAENAD), as error modeling extension integrated into the EAST-ADL standard (as the
architecture description language for design of vehicle control systems).

In 2011, the HiP-HOPS software tool was commercially launched by ITI GmbH, a CAE software
house and the author of the SimulationX tool, now integrating HiP-HOPS perspective and toolset.
In addition, HiP-HOPS licenses have already been sold to large engineering companies which
include Toyota, Honeywell, FEV automotive and ALL4TEC.

8.1.2 HiP-HOPS basic description

HiP-HOPS technique [11] is a safety analysis methodology based on compositional failure
analysis, where the system failure models are constructed from component failure models using a
process of composition. The component are modeled according to a dedicated HiP-HOPS failure
semantic to represent component output deviation according internal failure and input deviation
defined as logical Boolean equation (see next chapter Failure Description for large details) in order
to represent the behavior of negative view (also called dysfunctional) of component (in opposition
to the positive view representing the normal functional behavior).

The failure behavior of each component is composed according to the component hierarchy and
topology organization of the system. The failure propagation between components is then
generated in order to automate and simplify standard safety analysis techniques, as depicted in
Figure 12. This concept is today applied into the HiP-HOPS toolbox in order to build automatically
Fault Tree Analysis and Failure Modes and Effects Analysis (FMEA).

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 29 (97)

Figure 12: HiP-HOPS methods overview for Fault Tree Synthesis

The basic modeling of the HiP-HOPS tool is independent of any tool implementation. It has been
defined according to an XML description in order to interact with the HiP-HOPS engine synthesis.
The principle of HiP-HOPS synthesis is to work backward from system‟s outputs (or the hazard‟s
definition) with combination of miniature component fault trees. A typical miniature component
fault tree would be the representation of the internal relation defining the component failure
behavior. The top elements are its outputs deviation, the inputs deviation and internal failures
represent the leaf nodes. The intermediate node would represent relationship of the various
elements defined from the Boolean logic expression of the component failure (as failure data). It is
equivalent to the manual capture of a fault tree of a component.

The synthesis algorithm is working backwards through the model from system output, and then
combining the miniature fault trees from components, and propagating the input/output relationship
recursively within the trees relation. This could end to an error as a missing or incorrect relationship
in failure class called dangling deviation situations. Information is available to highlight dangling
situations and warn users about possible contradictions. This synthesis is performed using a
mixture of classical logical reduction techniques, with application of logical rules to reduce complex
expressions, and improved by application of more techniques, as the use of Binary Decision
Diagrams (BDDs), to break down the fault trees into a simpler form.

In addition, both qualitative (as logical view and cut-set analysis) and quantitative (numerical-
probabilistic based on unavailability formula capturing failure rate or repair rate of basic events)
analyses are carried out from the fault trees. FMEAs are then built from extraction of cut-sets of
first order that are rearranged. All results are displayed in HTML format as shown hereafter:

Figure 13: FTA output view from HiP-HOPS toolset

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 30 (97)

8.1.3 HiP-HOPS basic elements

The following chapter will give an overview of the basic elements managed by HiP-HOPS. Due to
copyright and Intellectual property (IP) protection, it will not describe the exact XML format as
language definition interpreted by the HiP-HOPS tool. This chapter will explain the concept
element useful to be controlled in relation to an architecture language or to a failure language
modeling. In addition the concept below has been used from ATESST project to perform
transformation from EAST-ADLV2 elements to HiP-HOPS XML format for safety analysis.

Model:
It is the top level of the hierarchy encapsulating all elements for the analysis of an XML file.

Hazard:
It describes the top level failure of the system; it can be a list of hazards. It includes the failure logic
of the hazard link to at least one output deviation of a component (see Failure description for more
details on the syntax).

System:
It is a hierarchy of elements representing the system to analyze. It is composed of components and
lines representing connection between components for failure propagation. Note that a system can
be composed of systems.

Component:
It is the elementary artifact of the system hierarchy. Components include a list of ports for
component communication that are referenced by lines for definition of propagation of outputs
deviation. In addition Components include a reference to the field Implementation describing the
definition of the expression of failure component behavior.

Lines:
This element represents the propagation link of the fault via the component port. It is composed by
a list of connections being referenced by the component port. Optionally the connection can be
directed to causal and non-causal relations. Furthermore a Line representing the connection can
include a dedicated failure expression representing failure propagation on the line with the same
semantic as Boolean expression for output deviation. Notice that this failure logic expression do
not have explicit basic event, as intrinsic Lines failures, but failure relation between ports
connected by the line.

Failure Data:
It represents the failure behavior of an implementation of a component. It is composed of basic
events representing the intrinsic component failure behavior, of output deviation embedding the
logic expression for the fault propagation through the output port of one component, and of
exported propagation representing direct failure propagation, as for example used for hardware
to software propagation (see description hereafter).

Basic Event:
This element represents intrinsic component failure behavior as systematic fault or random fault
with possible quantified value for hardware failure rate. They are identified below in the failure
expression as “Internal Failure” (see failure description chapter 8.1.4).

Output deviation:
It describes the logical failure of a component as Boolean logic expression that link cause as basic
event and/or input deviation to the fault propagated through the output port of the component
defined as a failure expression (see failure description chapter 8.1.4 for semantic description). It
may include a tag to indicate, as an example for hazard, that the output failure is the top level
failure.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 31 (97)

Exported Propagation:
It describes the logical failure for any element (such as allocation for example) as Boolean logic
expression defines with the same semantic of output deviation.

Furthermore, the syntax offers more concepts than listed above, as for example the concept of
perspective capable to connect different view of system such as hardware and software, joined
with a concept of allocation for multiple perspective and CCF for common cause of failure. A
concept of implementation of component allows defining several implementations for component
failure behavior and a field Optimization parameter permits to control an optimizer engine.
Thanks to these advanced features and especially implementation and optimization concept, an
optimizer is available in the solver to allow system exploration and ASIL decomposition based on
alternative failure behavior [11].

8.1.4 HiP-HOPS Failure Description

The failure logic expression is built with the following syntax:

- Output Deviation = Internal Failures AND/OR Input Deviations

- Operator XOR & NOT are provisioned but not yet supported in the expression.

- Operand support also

- A jump to an output deviation of a component in the hierarchy of the system
defined by LocalGoto(output deviation). Possible jump out a system are possible
with GlobalGoto. These two operands shall carefully be used as they induce
inconsistency in propagation and may lead to HiP-HOPS engine error.

- Line failure propagation represented as FromAllocation(propagation), where
propagation is the name defined in the exported propagation field.

This component failure shall be expressed as a set of expressions from the above syntax,
capturing the deviation of each outputs deviation of a component. The input and output deviations
are defined into different failure classes:

 Omission failure means failure to provide the data, abbreviated as O

 Commission failure for unexpected delivery of the data, abbreviated as C

 Value data corrupted for design malfunction abbreviated as V, LV for low value and HV for
high value

 Timing failure of design as T with no temporal indication but simple tag, E for early and L for
Late

 Potentially any other classes that may be defined in XML using the correct schema.

The syntax for the definition of input and output deviation is <Failure Class> - <Port name>, where
Port name is the name of a port defined in the component. Finally the port can support parameter
that can be addressed via the port name as - <Port name> - <Parameter> (O_out1-param1 =
O_in1_param1).

The HiP-HOPS propagator pattern requires one expression per failure class with a minimum
expression defined below

 O-out1 = O-in; C-out1 = C-in; V-out1 = V-in

A proposal of expansion to describe complex functions has been proposed in [12] with the concept
of General Failure Expression that can be introduced in HiP-HOPS. This concept can be
generalized for any improvement on the top of the HiP-HOPS XML format in order to bring a large
context of extension of the failure expression and facilitate the definition of the failure propagation.

The proposed General Failure Expression helps to abstract the above description with more
generic expression of the component failure behavior. The concept of vector and operation has
been introduced to support this extension.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 32 (97)

The vector denominated FC represents all possible Failure Classes in the system model.
Similar to it, all input and output ports, as well as parameters of a given port, can be generalized as
respectively IP (Input Port), OP (Output Port) and PM (Parameter).

It is also possible to define a subset of vector element, as for example failure class by explicitly
defining the list of elements in brackets (as for example FC :{O,C}-out = Expression, representing
only Omission and Commission of the list of failure class). In addition, it is possible to define
exception in the vector element implemented by keyword EXCEPT and the list of concerned
element in brackets (as for example FC EXCEPT {V}-out = Expression, representing all failure
class except Value).

The operator allows to applied specialized relation on vector of inputs and outputs (IP and OP) in
the respect of the correct syntax of the propagation expression. The operator SAME allows to
define propagation correspondence of inputs to outputs or inputs, as FC-out = SAME (FC)-in (a
typical use case of application is a communication bus).

Another operator ANY helps to represent a logical disjunction on input port as FC-out = FC-ANY
(IP) (as for example O-out = O-ANY (IP) where all input port omission will be propagated to the
output port similar to an OR between all ports). By extension, the logical conjunction of input port is
defined with ALL (as for example O-out = O-ALL (IP) for summarizing an AND between all input
ports).

A voter operator MAJ for majority exists and is useful for redundant systems based on majority
vote. The typical expression is O-out = O-MAJ(IP) assuming that for n inputs at least (n/2)+1 have
to be omission to propagate the failure on the output.

In combination to vector and operator to build complex expressions, the concept of instantiation is
used for output generalization, like FC-OP meaning list of output failure deviation expression with
O-out1, _O-out2, C-out1, C-out2… For input ports, the applied concept is the expansion, as O-ALL
(IP) means a list of input ports expended in the same failure expression as O-in1 AND O-in2
AND…An example can be: ANY (FC)-OP = SAME (FC)-ANY (IP) OR InternalFailure1 where for
each failure class of the output port the failure propagation will be given from the same failure class
of any input port or an internal failure.

Furthermore one of the most important advantages of the above generalization concept is that it
can provide background for object-oriented principles and can be reused in complex system by
applying pattern templates and instantiation mechanisms. As for example, one may perform a
“generic” component failure behavior defined by a name, and may overload the template by an
additional failure expression.

The implementations of all these mechanisms are application dependant and may be transparent
to HiP-HOPS XML format. Generic Failure Expression and inheritance mechanism of the failure
can created by a front end to capture the failure expression and then be pre-processed to generate
existing adequate XML HiP-HOPS formalism. This concept of pre-processing can be applied to
any newly defined concept to interface the HiP-HOPS format.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 33 (97)

8.1.5 HiP-HOPS Example

The standard use case description of HiP-HOPS is the valve component with “a” as input, “b” as
output and valve flows from a to b being controlled by the command “control”. In normal operation,
the valve is normally closed and opens only when the computer control signal has a continuously
maintained logical value.

See below the description of the malfunction of the valve.

Failure Mode
(as Internal failure)

Description
(as physical cause)

Blocked e.g. by debris

Partially Blocked e.g. by debris

Stuck closed Mechanically stuck

Stuck open Mechanically stuck

Table 5 : HiP-HOPS Valve example

The following failure description will then be implementing in the valve component (according to
XML formalism not depicted here):

Flow Omission : Omission-b = Omission-a OR LowValue-control OR Blocked OR StuckClosed
Flow Commission : Commission-b = Commission-a OR StuckOpen OR HighValue-control
Low Flow : ValueLow-b = ValueLow-a OR PartiallyBlocked
High Flow : ValueHigh-b = ValueHigh-a
Early Flow: Early-b = Early-a OR Early-control
Late Flow: Late-b = Late-a OR Late-control

8.1.6 HiP-HOPS and loops management

HiP-HOPS can handle most logical propagation loops in the model by cutting the loop in a
deterministic way for loop build with only one entry/exit point.

Example 01 : Let‟s imagine three components A, B, C that have basic events or internal failures
IFA, IFB and IFC respectively connected to each other in a loop from C to A.

Figure 14: Loop example in HiP-HOPS

The following propagation is built as a logical loop:

Omission-A.out = Omission-A.in OR IFA
Omission-B.out = Omission-B.in OR IFB
Omission-C.out = Omission-C.in OR IFC
// link
B.in = A.out
C.in = B.out
A.in = C.out

This produces a chain such A causes B to fail, B causes C to fail, and C causes A to fail, whereas
a basic failure in any of the component will cause failure of all components.

A
A.in A-out IFA

B
B.in B.out IFB

C
C.in C.out IFC

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 34 (97)

In practice HiP-HOPS will cut the loop at the point where is starts to repeat. So assuming C is the
output where the analysis begins, the loop is cut when we try to go back from C to A. When this
cutting happens, HiP-HOPS creates a “circle node” to represent the cut. This has the logical value
“always false” (i.e. c contradiction), so any cut set containing it is also always false and can be
removed (as if this behavior can be turn off).

So in this case the cut-set might be: IFA OR IFB OR IFC OR CircleTo[C] and the circle node would
be removed from normal cut-sets.

Example 02 : Another example is the diagnosis for calculation with respective A, B, and C
components, respective basic events or internal failures IFA, IFB and IFC, with A having two inputs
as in1 the input of the regulation and in2 the diagnose value controlled by the output of B (as
diagnoses component).

Figure 15: Loop example with diagnosis in HiP-HOPS

Omission-A.out = (Omission-A.in1 AND Omission-A.in2) OR IFA
Omission-B.out = Omission-B.in OR IFB
Omission-C.out = Omission-C.in OR IFC
// link
B.in = A.out
C.in = A.out
A.in2 = B.out
A.in1 as basic event of the system

This construction would cause a loop between A and B and the resulting cut-sets to be: IFB OR
IFC OR IFA. As the loop generates a contradiction, the loop trough A.in2 would disappear.

But in case of certain situation called “crazy loops”, mostly when the propagation loop has more
than one entry/exit, this behavior becomes invalid, because cutting the loop for one entry affect the
results of the loop being entered at a second point. This case is illustrated in example 03.

Example 03: For example let‟s imagine a chain having 5 links numbered from 1 to 5.

Figure 16: Chain example with 5 links

If you start at any point and move around the chain, you will always count 5 links before reaching
your starting point (see Fig.16a).

At one point, if you break the links (see Fig.16b), this affects how many links we can count before
you reach the break. So, if we start at 3 and break the chain between 2 and 3, so we still count 5
links as 3, 4, 5, 1, 2 before reaching the break. But if you start at 4, you will get only 4 links as 4, 5,
1, 2. This is now inconsistent because it depends on where you start counting from.

If this chain was propagating through a system and the links are the components or basic events,
then we will have the same problem: where we choose to break the loop has an impact on the

1

2

3 4

5

C
C.in C.out IFC

A A.in1
A.out IFA

A.in2

B
B.out B.in IFB

1
2

3 4

5

(a) (b)

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 35 (97)

apparent causes of the failure, because when we enter in the loop at another location effect is
different.

In such scenario, HiP-HOPS is not able to break the loop and will just print out an error message.
Since this situation represents a potentially contradictory logic in the model, the modeler has to
solve this issue with a deterministic solution.

8.1.7 HiP-HOPS and failure propagation mitigation with safety mechanisms

One of the main goals of the safety analysis is to evaluate the efficiency of the safety mechanism
in order to be able to mitigate the effect of a local fault and preventing the propagation of the error.
For system application, the effect of the mitigation of a fault is to provide a protection that can be
either a default value on the output usually called limp-home value, or an additional output control.

As the concept of failure propagation methods in HiP-HOPS is based on failure classification we
may consider defining a dedicated Failure Class to represent the mitigation on a component, by
extension proposed as name LimpHome (LH).

So, let‟s reuse the example 02 from chapter 8.1.6 based on regulation including diagnosis loop. It
contains the respective components A for Acquisition, B for Diagnosis and Limp Home and C for
Computation. Also the associated basic events as internal faults are IFA, IFB and IFC.

Figure 17: HiP-HOPS example with Limp Home

Compare to the previous definition, a new class of failure LimpHome is introduced and the
component description is as follows:

Omission-A.out = (Omission-A.in1 AND Omission-A.in2) OR IFA
LimpHome-A.out = LimpHome-A.in1 OR LimpHome-A.in2
Omission-B.out = IFB
LimpHome-B.out = Omission-B.in
Omission-C.out = Omission-C.in OR IFC
LimpHome-C.out = LimpHome-C.in
// link
B-in = A.out
C-in = A.out
A-in2 = B.out
A-in1 as basic event of the system

Compare to the previous loop example, now the component B mitigates the fault on its input, as
output of A, meaning that fault on its input is not propagated as an omission but as a limp home
indicating that the diagnosis is performed. The omission on diagnosis component is only linked to
its internal failure IFB, as Omision-B.in is removed by the mitigation.

Through this basic example, we see that the loop is cut on the failure class Omission and ensure
that failure class LimpHome is also not looped.

C

C.in C.out IFC

A
A.in1

A.out IFA

A.in2

B

B.out B.in IFB
Limp

Home

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 36 (97)

8.1.8 HiP-HOPS and ISO26262

The following description identifies briefly where the HiP-HOPS analyzer may help to perform
safety assessment in respect to the ISO26262 requirements.

The main questions are concerning the level of architecture to which this methods can be applied
and also if it can be used to demonstrate the effectiveness of safety mechanisms to eradicate or
mitigate failures (systematic or random) toward failure propagation analysis.

The natural matching of HiP-HOPS concept of component, port and line to the architecture
description language may help to automate safety analysis at the different levels of architecture
and provide results from traditional manual deductive and inductive methods in use today (as
respectively FTA and FMEA).

From ISO26262 perspectives, we may expect to perform safety analysis using HiP-HOPS at the
following elements:

- On the functional Safety Concept at the System architecture level.

- On the technical Safety Concept mixing HW and SW architectural element.

- On probabilistic metrics of hardware design, at least to help their construction.

At low level of architecture like AUTOSAR software and hardware part implementation, it might be
very difficult to define such elements with their associated properties and their influence into the
overall system. Nevertheless from theoretical point of view it can be possible.

As the objective of this document is to define overall methods, it will help to answer to this question
or define relationship between actual or new methods and landscape of associated tools.

8.1.9 EAST-ADL2 experiment with HiP-HOPS, limits and opportunities identified

The ATESST2 project proposed an implementation of HiP-HOPS methods and transformation by
mapping the concept of actual EAST-ADLV2 implementation to HiP-HOPS selected concept (see
Figure 18). Notice that mapping may lightly differ from actual EAST-ADLV2.1 due to meta-model
late change.

Figure 18: ATESST2 HiP-HOPS versus EAST-ADLV2 mapping [11]

This mapping is based on the Error Model defined in EAST-ADLV2, which is separated from the
architectural design. This concept gives flexibility for safety assessment but induces more work
during analysis pre-processing as all necessary failure elements from Figure 18 have to be

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 37 (97)

mapped or related to the architectural elements during model construction. As no 1:1 mapping
concept is guaranteed, automation may be limited or complex to be defined.

The multiple perspective capability of EAST-ADL has not been fully exploited in this project and it
could be reconsidered in future as it might help to compose different components of the system. As
safety mechanisms and coverage mechanisms are often mixed between hardware and software
components, the setup of these features shall be carefully designed to allow this close relationship
and failure propagation between hardware and software.

The separation of failure class and output propagation with separate flows for the HiP-HOPS
analyzer allows precise analysis but requires lot of binary equations to be captured. Thanks to the
proposal of the General Failure Expression, Template and Generalization, and pre-processing, we
may define failure semantics independent of the final HiP-HOPS implementation. It would allow us
to define adequate failure semantics according to the phase of the analysis and to the level of
details we want to achieve.

8.1.10 Conclusions on HiP-HOPS

First of all, preliminary safety analysis using mapping of failure class concept from HiP-HOPS to
architecture model has been validated in ATESST2 based on prototype and UML domain model
definition.

From this initial methodology, several improvements easy to reach have been identified such as:

 Generation of failure class from an above failure language syntax and the possible
generalization/specialization of failure class concept,

 Consideration of mitigation with a new failure class,

 Separation of analysis software and hardware safety concept and then merge for an overall
technical safety concept analysis based on plain feature of HiP-HOPS concept as
perspective and exported propagation for hardware allocation (the architecture elements
are present in the SAFE meta-model).

HiP-HOPS derived methods based on Failure Class allows the analysis of formal architectural
elements and fault models, from failure propagation and possible mitigation from safety
mechanism.

The analysis can be automated for a generation approach, where granularity of analysis for debug
has to be specified in the tool interface specification.

Final results are complete FMEA and FTA, allowing local view on component or system parts.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 38 (97)

8.2 AltaRica

8.2.1 AltaRica Historical background

The AltaRica project started in 1997 at the Laboratoire Bordelais de Recherche en Informatique
(LaBRI, FRANCE). It involved, since the very beginning, a strong partnership between academic
laboratories and industries (among which Total and Dassault Aviation played a central role). The
primary objective of the project was to give a formal basis to a reliability workbench and to study
how reliability engineering and formal methods (model-checking) can be cross-fertilized. Quickly, it
became clear that such a formal basis can be obtained only through a dedicated language. The
first version of the AltaRica language was designed by the LaBRI team during years 1998-2000
and G. Point's PhD Thesis [13]. This first version was strongly inspired by works done at the LaBRI

on model-checking on one hand (with notably the model checker MEC [14]) and constraint logic

programming on the other hand.

In the early 2000, Dassault Aviation decided to create its own reliability workbench based on
AltaRica (Cécilia OCAS). Severe restrictions were imposed on the language in order to make the
compilation into fault trees tractable. With the same objective, ARBoost Technologies (now
Dassault Systèmes), designed a simplified version of AltaRica. The idea was mainly to substitute
constraint processing by flow propagation, hence transforming AltaRica into a Data-Flow language
(and achieving substantial complexity saving). Only minor modifications have been done since
then to the language, mainly through normalization of the clause "extern".

8.2.2 AltaRica basic description

The AltaRica Extended language targets model-based safety analysis. This assertion has a few
implications:

 AltaRica models are a vision of the real world systems that are oriented towards the
tractability of safety analysis.

 AltaRica Extended language allows the composition of hierarchical models.

 AltaRica Extended language is oriented towards the definition of state machines in which
transitions are guarded by data flows and events. The events can be both stochastic and
deterministic. Stochastic events are the natural means to express random faults while
deterministic events are the natural means to express systematic faults.

 AltaRica Extended language, in order to allow the analysis of the consequences of a fault,
allows the definition of both the functional behavior and the dysfunctional behavior. The
functional behavior is only defined in such a way that it defines the propagation of
cascading failures from a failed component to components that are not necessarily crippled
by their own faults.

With this last restriction in mind, AltaRica Extended language only defines the functional and
dysfunctional behavior of the system. It does not provide the tools that are required to simulate the
system, nor to compute the cut-sets or sequences leading to a feared condition or a set of them.
The main tools used for that are:

Fault tree compilers; when fault tree compilation is possible, it is the most efficient way to obtain
qualitative results (the cut-sets) and quantitative results (the probabilities of reaching a feared
condition, the importance factors...). However, this technique is intrinsically limited to problems that
match the tree structure. Dynamic systems, in which the order of fault occurrence matters, and
looped systems (a tree is by definition an acyclic graph) are out of scope of traditional fault tree
analysis.

Sequence generators; sequence generators generate all the possible combinations/permutations
of N faults, where N is an integer that is traditionally called “the order” of the sequence. In the

file:///C:/Users/lq3/Documents/Safety/Development/Arboost/ref4/language.html%23ABC94
file:///C:/Users/lq3/Documents/Safety/Development/Arboost/ref4/language.html%23ABC94

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 39 (97)

automotive industry, the fact that many practitioners only use FMEA demonstrates that N is
generally at most 1 or 2, but rarely more. In aerospace industry on the other hand, as the concept
of “safe state” for a plane in flight condition is less applicable, computations are often performed up
to the order 4 or 5. For a system where 1 000 events are possible, this leads to millions of billions
of simulations. As the order of sequences increases, the performance of these algorithms tends to
be paramount. Sequence generators provide qualitative results (the sequence sets); these are
used in quantitative analysis by fault tree tools, although this last step can be discussed.

MonteCarlo simulators; MonteCarlo simulators generate a number of paths of evolution for the
system in order to obtain average values for some parameters, typically, the probability to reach a
feared condition. MonteCarlo simulators are avoided whenever possible because they provide the
worst performance.

Due to the combinatorial nature of the problems that exist in the field of functional safety, the
performance of the tools is essential in their evaluation.

8.2.3 AltaRica basic elements

The following chapter will give an overview of the basic elements managed by AltaRica.

Node:
The base block in AltaRica is a node. A node is a generic object to describe a behavior, which:

- Has an internal state,
- Reacts on events,
- Receives and/or sends data by flows (input and output) which enable to communicate with

other components.

A node may have several sub-nodes which are instances of a node.

In tools, top-level nodes are sometimes referred as “systems”, intermediate nodes are also referred
as “equipments” and leaf nodes are referred as “components”.

Each node may have several input flows and several output flows.
Each node may have one or more state variables.
Each node may undergo one or more events.
Each node may also have one or more assertions, which are equations that define how inputs are transformed into
outputs given the value of the state variable.

Input Flows and Output Flows:
Interface of a Node is defined by Input and Output Flows. These flows are typed. There are mainly
three basic types: Boolean, integer and float. Complex types can be built from these 3 elementary
types.

Link:
Links can be created between two flow ports, to represent the fact that one end will emit a flow into
the other end.

State variable:
A State variable is a variable identifying a component internal state, e.g. a variable with the
following values “open/blocked”. State variables have an initial value.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 40 (97)

Event:
Event can depend on time or not:

- Timed events: take a non null time.
Stochastic events with Probability distributions with parameters (exponential, Weibull ...).
Dirac events.

- Instantaneous events: take no time and may have a priority.

Immediate events.
Conditional events.

If an event is declared, a model must contain at least one transition labeled with this event.

Transition:
A transition is composed of a guard that expresses the conditions that allows the transition to be
passed if the event is triggered, and a series of affectations of state variables that define the
outcome of the transition.

Assertions:
Assertions allow giving a value on output flow variables and may depend on state variables and
input flow variables.

Extern clause:
The role of the extern clause is:

- to give some interpretation to the model, e.g. priorities
- to transitions, probability distributions to events,
- to give tools a specific information,
- to provide some mechanism to extend the language.

8.2.4 AltaRica Failure Description and propagation

In AltaRica, the failure description is double.

In one hand, the failure is declared explicitly as an “event”. On the other hand, the state changes
induced by the events are declared in transitions.

A transition represents a modification of internal state of a component, depending on the current
states value, the value of input flow variables, and occurrence of an event:

Condition |- event -> event -> aff1, …, affn ;

With: condition being a Boolean expression depending on the input flow variables and the
state(s) of the component,

event being a simple identifier declared in the event tab of the component,

affi are affectations of state variables depending on their current value and the input flow
values.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 41 (97)

The following table shows example of transitions:

State diagram AltaRica code

 trans

 St=Working |- failure -> St := Failed;

Condition on one state variable

trans

 St=Working and input_flow=high |- failure -> St := Failed;

Condition on one state variable and input flow variable

trans
 St=Working and Pos=Closed |- failure -> St := Failed;

Condition on 2 state variables

Table 6 : Type of analysis methods required or recommended by ISO26262

In AltaRica, propagation of failure is done using assertions.

Assertions are Boolean expressions used to describe invariants on variables. All configurations of
a node must satisfy specified assertions. These invariants can be used to describe relations
between flow variables as a transfer-function but also they model relationship between states of
the nodes and its flows.

3 possible forms are possible for assertions:
- Simple affectation: An output flow variable is valuated according an input flow variable.
- If condition then conclusion1.
- If condition then conclusion1 else conclusion2.

with a condition being a Boolean expression depending on input flow variables and component
state variables and a conclusion being new values of output flow.

When there is a succession of instructions if-then-else, it can be replaced by (it is equivalent to) a
case expression as shown in the following example.

The measure of a sensor (output) depends on internal state of the component
assert
 (if sensor_state = nominal then sensor_measure = nominal) ;
 (if sensor_state = degraded then sensor_measure = erroneous) ;
 (if sensor_state = failed then sensor_measure = absent) ;

is equivalent to the following statement:
assert
 sensor_measure = (case {sensor_state = nominal : nominal,
 sensor_state = degraded : erroneous,
 else absent})

Figure 19: Example of equivalence between if-then-else expressions and case expression

https://altarica.labri.fr/forge/projects/altarica/wiki/AltaRicaLanguage#Expressions

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 42 (97)

8.2.5 AltaRica Example

The same valve example than used in chapter 8.1.5 with HiP-HOPS will be investigated with
AltaRica to highlight some differences. Just to remind the internal failure modes of the valve are:

Failure Mode
(as Internal failure)

Description
(as physical cause)

Blocked e.g. by debris

Partially Blocked e.g. by debris

Stuck closed Mechanically stuck

Stuck open Mechanically stuck

Table 7 : Example of Valve Internal failure modes

The corresponding code in AltaRica is the following:

node SAFE_WT331Valve
flow
 i : SAFE_MyFlow : in ;
 o : SAFE_MyFlow : out ;
 command : SAFE_MyCommand : in ;
state
 State : {Nominal,StuckOpen,StuckClose,StuckPartiallyOpen};
event
 PartiallyBlocked; StuckOpened; StuckClosed;
init
 State := Nominal;
trans
 State = Nominal |- StuckOpened -> State := StuckOpen;
 State = Nominal |- StuckClosed -> State := StuckClose;
 State = Nominal |- PartiallyBlocked -> State := StuckPartiallyOpen;
assert
 if (State = StuckClose or command = LowValue-control) then o = Omission */ No flow */
 else if (State = StuckOpen or command = HighValue-control) then o = Commission */Unexpected Flow */
 else if (State = StuckPartiallyOpen) then o = ValueLow */Less flow than expected */
 else if (command = EarlyCommand) then o = EarlyFlow */ Flow get out too early */
 else if (command = LateCommand) then o = LateFlow */ Flow get out too late */
 else o = i;
 edon

Figure 20: AltaRica Code Example for our Valve

The AltaRica node representing the Valve has two input flows and one output flow defined in the
“flow” section.

In the “state” section, 4 states for the valve are defined: Nominal, StuckOpen (meaning always
open), StuckClose (meaning always closed) and StuckPartiallyOpen. The initial state of the valve
is Nominal (defined in “init” section).

In the “event” section, 3 events corresponding to the internal failure modes (see Table 7) of the
valve are defined. In this example, one remark is that the internal failure modes Blocked (e.g. by
debris) and StuckClosed have the same effect and therefore only one event StuckClosed was
considered.

In the “trans” section, a transition from normal state to a failed state is defined: as an example the
valve can undergo a “StuckOpened” event, in which case its state becomes “StuckOpen”.

The “assert” section also defines how this failure to operate affects the outflow: the outflow is no
longer controlled and lead to “commission” (unexpected flow) if the valve is in state “StuckOpen” or
the command has failed (“HighValue-control”).

i : in o : out

control : in

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 43 (97)

Moreover in the “assert” section, the functional behavior is also defined: if the state of the valve is
nominal and the valve is under control, then the outflow reflects the inflow.

Nota: In the AltaRica assertion representing failure propagation description input failures are never
considered in comparison with HiP-HOPS. If we want to represent an input failure, we will have to
model a new node upstream whose output is linked to the input flow relevant of downstream node
(i: see Figure 20). In this new upstream node, if output flow might fail in some conditions, it will
automatically be propagated into the output of the downstream node. It can be simply explained by
the fact that when we are in Nominal state for the valve, in the “assert” section, we have defined
that o=i meaning that if everything is OK, the output will simply propagate the input. Therefore if the
valve is working well and received a flow that is incorrect, this incorrect input flow will be
propagated into the output unless we have a safety mechanism implemented that can detect the
failure and stop its propagation. The final behavior is the same but the failure propagation
description in HiP-HOPS would need redundant information as output failure is described once in
upstream node and a second time as input failure in the downstream node.

8.2.6 AltaRica and Loop management

In the design of complex systems, loops are often introduced to take some feedback into account.
For example, a diagnostic may monitor the output of a function and force its transition to a safe
state if invalid outputs are detected.

In AltaRica Extended language, the management of loops has long been a problem for various
reasons. The first one is that loops make the most effective algorithms for safety analyses – fault
trees – at least much harder to use. The impact on Boolean formulae is for example explained in
[15]. A second reason is that the semantic of execution of AltaRica must be defined precisely.
These difficulties are illustrated in [16].

Two main solutions are used to handle loops.

The first one is to create a fictive “instantaneous” transition, which can affect a state, and
consequently take benefit of an initial value for a state. Let us remind that flow variables are not
initialized in AltaRica Extended language. This approach is explained in [17] . This workaround is a
pain for the end user.

The second solution is to handle the loop as it is. This requires that for each loop in the system,
one initial value is provided. A fixed point algorithm is then used to stabilize the loop, with a
predefined maximum number of iterations that must detect the potential divergence of the loop.
The algorithm has converged for one loop when, starting with the initial condition at the first step or
the last stable value during next steps, at the end of an iteration of the loop, the value of the
initialized flow remains unchanged.

For a loop management algorithm the following requirements shall be satisfied:

 The loop management algorithm shall be able to handle loops of any complexity.

 The loop management algorithm shall provide stable results, whatever the names of the
involved components or the order in which initial values are defined.

 The loop management algorithm shall detect divergence. It shall do it rapidly if achievable,
which is often the result of a compromise between memory and CPU consumption.

 The loop management algorithm shall not base its convergence criteria on arbitrary data
provided by the end user.

It shall be clear that transient states are not taken into account in the criteria for the feared
conditions, as AltaRica Extended language does not handle temporal aspects.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 44 (97)

8.2.7 AltaRica and failure propagation mitigation with safety mechanism

In ISO26262, it is required to demonstrate the efficiency of safety mechanisms. As a consequence,
their identification could be necessary. This can be easily achieved by the use of extern clauses in
the smallest enclosing node. Another way to deal with this requirement is to analyze the cut-sets,
which should display an order greater than 1 if the mechanism successfully protects a safety goal.

Safety mechanisms can be modeled with AltaRica Extended Language. It is even one of the goals
of the language to support these mechanisms, whatever their complexity may be. In the aerospace
industry, some systems contain safety mechanisms that are designed to withstand more than 4
failures at least.

However, safety mechanisms are not identified as such in AltaRica Extended Language. They are
nodes, and are not distinguished from the functions they are supposed to protect.

In ISO26262, it is required to demonstrate the efficiency of safety mechanisms. As a consequence,
their identification could be necessary. This can be easily achieved by the use of extern clauses in
the smallest enclosing node. Another way to deal with this requirement is to analyze the cut-sets,
which should display an order greater than 1 if the mechanism successfully protects a safety goal.

For the sake of illustration, let us consider the diagnosis of a computation unit, as shown in the
next diagram:

Figure 21: Example of safety mechanism modeling in Safety Designer

The output of the unit is checked by a diagnostic module. If this output is invalid, it is detected by
the diagnostic module. The “AND” module only let an invalid command pass through it if both the
command issued by the computation block and the diagnostic flow are invalid.

The following code illustrates the use of extern clauses, for example to define the law of a failure
rate. In this example, a constant law with 0.25 parameter is chosen, which means that, on average,
1 out of 4 invocations of the diagnostic module will fail to detect an incorrect output from the
computation unit.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 45 (97)

The corresponding code in AltaRica is the following:

node SafeEngineControl_TechnicalSafetyConcept_Software_DiagnosticModule
flow
 icone : [1, 3] : local;
 Output : SafeEngineControl_TechnicalSafetyConcept_Diagnostic : out ;
 SupportedBy : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : in ;
 Input : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;
state
 State : {Detecting,NotDetecting};
event
 Failure;
init
 State := Detecting;
trans
 State = Detecting |- Failure -> State := NotDetecting;

assert
 if (SupportedBy = Supported)
 then (if (Input = Valid)
 then Output = OK & (if (State = Detecting) then icone = 1 else icone = 3)
 else (if (State = Detecting)
 then Output = DetectedFault & icone = 3
 else Output = UndetectedFault & icone = 2))
 else Output = NoDiagnostic & icone = 3
extern
 law <event Failure> = constant(0.25);

edon

Figure 22: AltaRica Code Example for a safety mechanism

8.2.8 AltaRica and ISO26262

The following description identifies briefly where the AltaRica extended language may help to
perform safety assessment in respect to ISO26262 requirements.

The natural scope of AltaRica Extended language is to design and validate:

 the functional safety concept at the system architecture level,

 the technical safety concept mixing HW and SW elements.

AltaRica supports FMEA as an inductive method. It also supports the deductive method that is fault
tree analysis when the structure of the problem allows it.

AltaRica Extended language can permit to extend its capabilities by adding information in extern
clause. Then the tools that are supporting AltaRica Extended language can use these additional
information and could provide additional capabilities such as calculation of architectural metrics for
a given safety goal.

At low level of architecture like AUTOSAR software and hardware part implementation, it might be
very difficult to define such elements with their associated properties and their influence into the
overall system. Nevertheless from theoretical point of view it can be possible but would lead to
huge model that would need tool modification for solving and analyzing results.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 46 (97)

8.2.9 AltaRica concepts versus EAST-ADLV2.1

The EAST-ADLV2.1 concepts of interest are presented in chapter 9.1.

A mapping between the ErrorModel structure and AltaRica Extended language is proposed in the
following table:

EAST-ADLV2.1 Concept AltaRica concept Comment

ErrorModelType Node

ErrorModelPrototype Sub
The name of the sub (instance)
is the target‟s shortName.

FaultInPort Flow direction in
Type must be a valid AltaRica
identifier (e.g. Boolean)

FailureOutPort Flow direction out
Type must be a valid AltaRica
identifier (e.g. Boolean)

InternalFaultPrototype Event

In order to keep the semantic
of a internal fault, an extern
clause must be used in
AltaRica.

ProcessFaultPrototype Event

In order to keep the semantic
of a process fault, an extern
clause must be used in
AltaRica.

FaultFailurePropagationLink Assert
At node level, assert define the
links between sub nodes.

Table 8 : Mapping of AltaRica versus EAST-ADLV2.1 ErrorModel

The failureLogic attribute of an instance of ErrorBehavior may contains AltaRica code if type is
ErrorBehaviorKind : ALTARICA. In this case, the AltaRica code shall only contain assertions.

A FaultFailure aggregated by a Dependability is a feared condition in AltaRica. It can be modeled
as an extern(al) clause in AltaRica.

As there is no notion of state in EAST-ADL error model, feared condition expressed on state value
must be turned into a FaultFailure for an artificial FaultFailurePort.

From concept analysis, it seems that all the concepts from HiP-HOPS are covered by the concepts
from AltaRica. It is illustrated through an example in Annex A chapter 17 in which a mapping
between AltaRica and HiP-HOPS concepts is proposed. Therefore the translation of HiP-HOPS
into AltaRica should be possible.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 47 (97)

8.2.10 AltaRica limits

The validation of the safety models developed in AltaRica is not trivial. Results can be obtained
from Altarica models, but do these models correspond to the physical phenomena?

The synchronization between AltaRica models and functional architecture or hardware and
software architecture is complex especially when there are loops and safety mechanisms modeled
with AND structure.

AltaRica cannot handle the dynamics of physical phenomena.

Extern clauses can extend AltaRica, but the semantic of these extern clauses is not standardized
by the language itself.

8.2.11 Conclusions on AltaRica

AltaRica Extended language is being used since 2000 in several tools from the market to assess
complex models in different fields like aeronautics, railways, nuclear and military fields where
safety issues are very critical. Therefore its efficiency is recognized.

AltaRica Extended language support debug and simulation and it is clearly a big advantage to
validate our functional and technical safety concepts.

A remaining doubt is the difficulty for system/safety engineer to model the dysfunctional behavior
using AltaRica Extended languages. Even if tools like SafetyDesigner provide help to generate the
AltaRica syntax, the assertions, describing the failure propagation, inside a node are not trivial and
might require specific skills.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 48 (97)

8.3 Orientation taken by WT3.3.1 in SAFE

8.3.1 Pros and cons analysis of HiP-HOPS and AltaRica languages

In order to help choosing the best orientation for WT3.3.1, a pros and cons analysis was performed
based on the different articles read in the literature and also on the experience of some partners
with these languages. See Table hereafter:

 HiP-HOPS AltaRica

Applicability
(based on

preliminary user
tests ; to be

verified during
use case

Physical architecture validation and
possible low level solution

From functional safety concept to
technical safety concept.

Pros

- Simple to define as concept is basic
(easy to map from an intermediate
language as logical equation; near
FTA approach).
- Allows generation of both FMEA and
FTA view.
- Use for large scale analysis and
synthesis is fast (as no simulation).
- Would allow splitting between
hardware and software analysis.
- Adequate for validation of safety
concept.

- Captures architecture blocks.
- Supports simulation and debug,
which provides an intuitive approach
of failure propagation.
- Allow generation of both FMEA and
FTA.
- Validate test scenario.
- Used and recognized in other fields:
aeronautic, military, railway, nuclear…
high maturity.
- Adequate for exploration of safety
concept.
- Export of FTA possible in Open-PSA
format that can be imported by other
tools.
- Library approach.

Cons

- System debug not allowed by
simulation, could be complex as no
concrete view of the architecture.
- No interchange format standardized:
neither import nor export (e.g. FTA).
- No direct link between component
and system element (library concept
is linked to tool generation).
- Used only recently in few tools from
the market and therefore low maturity.
- Real-time constraints are hard to
model (only sequence is possible).

- The language is rarely mastered by
system/safety engineers.
- Model validation is difficult.
- The synchronization between
AltaRica models and functional
/physical architecture is complex (loop,
safety mechanism modeling...).
- Real-time constraints are hard to
model, if possible.

Table 9 : Pros and Cons table for HiP-HOPS and AltaRIca

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 49 (97)

8.3.2 Language choice in WT3.3.1

Even with the pros and cons analysis, the choice of one unique language is not easy and will also
depend on the level of granularity that users want to address. Moreover a language like AltaRica is
really powerful but also complex to implement for safety engineer and case by case all its
capabilities are not fully needed.

Therefore it was decided in WT3.3.1 to define a simplified SAFE language that could be
compatible with HiP-HOPS and AltaRica having in mind the generation of FMEA/FTA safety
analyzes.

Figure 23: SAFE language proposal

The goal of WT3.3.1 is really not to reinvent a complete language. As HiP-HOPS language
expression seems to be less complex for partners than AltaRica, maybe because it is built like
local FTAs, it was decided to have something closed to HiP-HOPS in a first step.

Of course it should be possible to transform models of the simplified language towards Altarica for
the purpose of a safety analysis and therefore Dassault System partner has provide us some
requirements for the simplified language that should ensure that the translation is possible.

8.3.3 General requirements for a simplified SAFE language

Hereafter are the requirements for a simplified language to be transformed in AltaRica language.

Stochastic events shall be connected to their probabilistic distributions

 Faults need to be connected to their probabilistic distributions

 Maintenance events must also be into account to be able to compute
availability

It shall be possible to define mutually exclusive failure modes (stochastic
events) for a component

 If a resistor has a short circuit, it cannot be simultaneously open

Loops shall be supported

 Monitoring feedback are common practice

 The semantic of these loops shall be explicit and unambiguous

 It shall be possible to simulate the system and the occurrence of faults

Simulation shall be supported

 Simulation provides a better understanding for the designer

SAFE
Language

HiP-
HOPS

AltaRica

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 50 (97)

8.3.4 Hypothesis taken in WT3.3.1

Based on the general requirements from chapter 8.3.3, some hypotheses for WT3.3.1 were
considered:

No maintenance considered: In other fields like Aeronautics, Railway, Military, Nuclear…periodic
maintenance is mandatory but not in automotive. If a latent fault is critical, we will implement a
safety mechanism that will inform the driver using different warning degrees depending on the
criticality of the possible outcome. Moreover this time to discover the latent failure will be taken into
account when computing PMHF.

Constant FIT rate for HW random faults: Even if AltaRica offers the capability to use different
kind of distribution laws with stochastic events, we will consider only constant FIT rate coming from
WT3.2.2.

8.3.5 Refined requirements for a simplified SAFE language

Additionally, some refined requirements were added to precise the content of the simplified SAFE
language:

SL_REQ01 : The SAFE language shall support the logical AND operator

SL_REQ02 : The SAFE language shall support the logical OR operator

SL_REQ03 : The SAFE language shall support the logical NOT operator

SL_REQ04 : The SAFE language shall support local symbol or variable

SL_REQ05 : The SAFE language shall be typed for Boolean expression

SL_REQ06 : The SAFE language shall only allow stratified negation
(failure itself shall not be used in its negated form)
e.g failure1 = fault2 or fault3 and not(failure1) expression is forbidden

Covers :
WT331_REQ_1: The SAFE Meta-model shall provide a fault modeling
language to specify fault information and on which element the fault is
attached as well as information about fault propagation.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 51 (97)

9 Performing Fault/failure and error propagation based on EAST-ADL V2.1

Within this chapter the current status of the architecture description language EAST-ADL with
regard to the fault error failure modeling is described. Furthermore, proposals for an extension of
the EAST-ADL concepts are described which could lead to an enhancement of the possibility to
perform the fault and propagation analysis.

9.1 Current state of EAST-ADL V2.1 concerning fault/failure and error propagation

EAST-ADL is an architecture description language that has been developed in various European
projects in which both, automotive vendors and users are coupled together. The objective is
thereby to define an architecture description language tailored to the needs of the automotive
industry [18]. The current version published on the website of EAST-ADL (www.east-adl.info) is
EAST-ADLV2.1.

EAST-ADL introduces different levels of abstraction, namely:

 Vehicle level (Feature content),

 Analysis level (Abstract functional architecture),

 Design level (Functional architecture, HW architecture, platform abstraction),

 Implementation level (AUTOSAR Software architecture), and

 Operational level (Embedded system in produced vehicle, not in model).

Besides the different abstraction levels, EAST-ADL includes several package extensions of which
the dependability package (see Figure 24) is of special interest for WT3.3.1, and especially the
ErrorModel sub-package (see Figure 25).

Figure 24: EAST-ADL V2.1 Dependability Package with ErrorModelType class highlighted

class DependabilityOrganization

TraceableSpecification

Hazard

TraceableSpecification

Ite m

+ developmentCategory: DevelopmentCategoryKind

TraceableSpecification

FeatureFlaw

TraceableSpecification

HazardousEv ent

+ classificationAssumptions: String [0..1]

+ controllabil ity: ControllabilityClassKind

+ exposure: ExposureClassK ind

+ hazardClassification: ASILKind

+ severity: SeverityClassKind

TraceableSpecification

«atpType»

ErrorModel::ErrorModelType

+ genericDescription: String = NA

TraceableSpecification

SafetyConstraints::

SafetyConstraint

+ asilValue: ASILKind

TraceableSpecification

SafetyConstraints::

Quantitativ eSafetyConstraint

+ failureRate: Float

+ repairRate: Float

TraceableSpecification

SafetyConstraints::

FaultFailure

TraceableSpecification

SafetyCase::SafetyCase

+ context: String

+ stage: LifecycleStageKind

Context

Dependability

TraceableSpecification

«atpType»

Datatypes::EADatatype

RequirementsContainer

SafetyRequirement::

FunctionalSafetyConcept

EAElement

SafetyRequirement::SafetyGoal

+ hazardClassification: ASILKind

+ safeStates: String [0..1]

RequirementsContainer

SafetyRequirement::

TechnicalSafetyConcept

0..1

+safetyConstraint

*

+item 1.. *+item1.. *

+hazard 1.. *

+constrainedFaultFailure1.. *

+constrainedFaultFailure1.. *

+safetyCase 0..*

0..1+eaDatatype

*

0..1

+errorModelType*

+malfunction1.. *

0..1

+faultFailure

*

+derivedFrom 1.. *0..1

+safetyCase

*

0..1

+functionalSafetyConcept

*

0..1

+technicalSafetyConcept *

0..1

+safetyGoal
*

0..1

+hazardousEvent
*

0..1

+hazard

*

0..1

+featureFlaw

*

0..1

+item

*

0..1

+quantitiativeSafetyConstraint

*

http://www.east-adl.info/

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 52 (97)

The EAST-ADL sub-package for error modeling (see Figure 25) provides support for safety
engineering by representing possible, incorrect behaviors of a system in its operation (e.g.
component errors and their propagations).

Abnormal behaviors of architectural elements as well as their instantiations in a particular product
context can be represented. This forms a basis for safety analysis through external techniques and
tools. Through the integration with other language constructs, definitions of error behaviors and
hazards can be traced to the specifications of safety requirements, and further to the subsequent
functional and non-functional requirements on error handing and hazard mitigations as well as to
the necessary V&V efforts.

 ErrorModelType () specifies possible behaviors of a target () architectural entity as
FunctionType or HardwareComponentType that are of concern when analyzing system
anomalies and errors.

 FaultInPort () represents a propagation point for faults that propagate into the containing
ErrorModelType.

 FailureOutPort () represents a propagation point for failures that propagate out from an
ErrorModelType.

 ProcessFaultPrototype () is a systematic fault that represents the anomalies that the
target architectural entities can have due to design or implementation flaws (e.g., incorrect
requirements, buffer size configuration, scheduling, etc.).

 InternalFaultPrototype () represents the particular internal conditions of a target
architectural entity that are of particular concern for its fault/failure definition.

 FaultFailurePropagationLink () connects multiple ErrorModelTypes together via their
ports.

 Anomaly () represents a Fault that may occur internally in an ErrorModel or be
propagated to it, or a failure that is propagated out of an ErrorModel. The anomaly may
represent different faults or failures depending on the range of its EADatatype ().
Typically the EADatatype is an enumeration. For example, a failure out port may carry a set
of failure modes: {Omission, Commission, Value…).

Figure 25: EAST-ADLV2.1 ErrorModelType Content

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 53 (97)

Error behaviors are treated as a separated view, orthogonal to the nominal architecture model.
This separation of concern in modeling is considered necessary in order to avoid the undesired
effects of error modeling, such as the risk of mixing nominal and erroneous behavior in regards to
the comprehension, reuse, and system synthesis (e.g. code generation).

ErrorBehavior defines the
error propagation logic of its
containing ErrorModelType.

failureLogic attribute:
specification of error
behavior based on an
external formalism or the
path to the file containing the
external specification.

type:ErrorBehaviorKind
attribute : type of formalism,
based on enumeration
ErrorBehaviorKind, applied
for the error behavior
description.

Figure 26: EAST-ADLV2.1 ErrorBehavior Content

The SafetyConstraints sub-package is also of special interest for error modeling. It basically
contains constructs for defining safety constraints that apply to FaultFailure which itself refer to
Anomaly.

 FaultFailure decides the actual value of an anomaly given as a fault in port, failure out
port, or internal fault, e.g. {Omission}. It is FaultFailure, instead of Anomaly, to which a
safety constraint is assigned. A FaultFailure is defined as a certain value,
faultFailureValue, occurring at the referenced Anomaly.

 SafetyConstraint represents the qualitative integrity constraints on a fault or failure. Thus,
the system has the same or better performance with respect to the constrained fault or
failure, and depending on the role this is either a requirement or a property.

 QuantitativeSafetyConstraint represents the quantitative integrity constraints on a fault
or failure. Thus, the system has the same or better performance with respect to the
constrained fault or failure, and depending on the role this is either a requirement or a
property. A QuantitativeSafetyConstraint provides information about the probabilistic
estimates of target faults/failures, further specified by the failureRate and repairRate
attribute.

Figure 27: EAST-ADLV2.1 FaultFailure Content

class ErrorBehav ior

TraceableSpecification

«atpType»

ErrorModelType

+ genericDescription: String = NA

EAElement

ErrorBehav ior

+ failureLogic: String [0..1]

+ type: ErrorBehaviorKind

«enumeration»

ErrorBehav iorKind

«enum»

 HIP_ HOPS

 ALTARICA

 AADL

 OTHER

Anomaly

ProcessFaultPrototype

Anomaly

InternalFaultPrototype

FaultFailurePort

FaultInPort

FaultFailurePort

FailureOutPort

+failure*

1

+internalFault*

1

+processFault*

1

+processFault

*

+internalFault

*

+externalFailure

1.. *

+externalFault

*

1

+externalFault*

+owner 1

+errorBehaviorDescription 1.. *

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 54 (97)

9.2 Analysis of Gap between EAST-ADLV2.1 ErrorModel and our needs

Hereafter are highlighted the gaps between the ErrorModel from EAST-ADLV2.1 and our needs:

 Not possible to address AUTOSAR targets (data element instances, component types,
component instances).

 Internal and external faults are addressed in both ErrorModelType and ErrorBehavior.
Distinction is needed to improve visibility. In ErrorModelType, internal details of the target
elements should not be visible (black box view abstracting from internal propagation) but only
FaultIn and FailureOut. Then in a second step, ErrorBehavior of the ErrorModel should be
defined and information about error propagation within the target element (Internal faults)
should be attached.

 The ErrorModel Meta-model from EAST-ADLV2.1 is not very constrained and allows lots of
freedom in its implementation. As an example, it is possible to associate in an ErrorModelType
an HwComponentType and a FunctionType at the same time. This is not correct, but it is still
possible. Therefore the ErrorModel should be reworked in order to avoid such scenarios and
reduce the risk of applying the meta-model in the wrong way.

BPMN ErrorModel

TraceableSpecification

«atpType»

ErrorModelType

+ genericDescription: String = NA

FaultFailurePort

FaultInPort

FaultFailurePort

FailureOutPort
Anomaly

InternalFaultPrototype

Anomaly

ProcessFaultPrototype

1

+externalFault * +failure *

1

+internalFault *

1

+processFault *

1

No AUTOSAR
Targets?

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 55 (97)

 In EAST-ADLV2.1 ErrorBehavior, failureLogic expression permits to express an error behavior
language kind other than HiP-HOPS, ALTARICA or AADL by using enumeration OTHER. But
this failureLogic notation is only informal. In WT3.3.1, it was decided to specify a well-defined
SAFE language including its grammar. Therefore a new meta-model proposal should be done
in order to be able to compose our failureLogic expression using formulae and referencing
internal faults, process fauls, FaultIn, FailureOut automatically. Then the SAFE language will
enforce a semi-formal notation of error propagation.

 In EAST-ADLV2.1 FaultFailure/Anomaly permits to represent different faults or failures
depending on the range of its EADatatype which is an enumeration e.g. {Omission,
Commission, Value…). It is here proposed to replace Anomaly by a more generic concept as
the Malfunction, as it can be useful and easy to exhibit it up to different architecture levels up to
the item. A malfunction would be defined as a failure or unintended behavior of the item or
element of the item that has the potential to propagate. InternalFaults and ProcessFaults are
unintended behavior and therefore Malfunction. FaultIn is propagating to FailureOut and
therefore they are also Malfunction.

class ErrorModel

EAElement

ErrorBehav ior

+ failureLogic: String [0..1]

+ type: ErrorBehaviorKind

«enumeration»

ErrorBehav iorKind

«enum»

 HIP_ HOPS

 ALTARICA

 AADL

 OTHER

Anomaly

InternalFaultPrototype

Anomaly

ProcessFaultPrototype

FaultFailurePort

FaultInPort

FaultFailurePort

FailureOutPort

+internalFault

*

+processFault

*

+externalFault

*

+externalFailure

1.. *

class ErrorModel

InternalFaultPrototype

FaultInPort FailureOutPort

EAElement

«atpPrototype»

Anomaly

+ genericDescription: String

TraceableSpecification

«atpType»

Datatypes::EADatatype

ProcessFaultPrototype

«atpPrototype»

FaultFailurePort

«isOfType»

+type

1

Replacement of
Anomaly by Malfunction

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 56 (97)

10 WT3.3.1 Contribution to SAFE Meta-Model

Within this chapter the contribution of WT3.3.1 to the SAFE meta-model is described. At the
beginning an overview about meta-modeling approach is given which is followed by the detailed
description of the classes and interconnections. Moreover, in another chapter the meta-model is
described by means of an example.

10.1 Overview

The error meta-model is aligned with way of describing the system model. An error model can be
described for different structural elements of the system model: for FunctionTypes,
HardwareComponentTypes, SwComponentTypes or BSWModuleDescriptions.

An ErrorModelType describes the black-box view in terms of error propagation for the referenced
structural element. Thus, the externalFaults and externalFailures typed as MalfunctionPrototype
are associated with the ErrorModelType. In addition, in case the error model is described
hierarchically, the meta-model allows connecting externalFailures and externalFaults via the
“cause-effect relation” named FaultFailurePropagationLink.

To white-box the error behavior of a structural element, the meta-model allows to describe the
ErrorBehavior for a specific ErrorModelType. In this case, also the internal details of the structural
element are known, and respective internalFaults as well as processFaults can be described. In
addition, it is possible to describe HOW externalFaults, internalfaults and processFaults are related
with externalFailures, or with other words: how do those faults contribute to the unintended
behavior of the architectural element associated via the ErrorModelType. For this purpose, the
SAFE meta-model allows to either use existing language to describe the internal error propagation
(e.g. via Altarica) or to use the simplified SAFE language for the same purpose. The requirements
for the grammar and semantics of the simplified SAFE language are described in chapter 8.3.

Error propagation either internally described via the ErrorBehavior or externally via the
FaultFailurePropagationLink, is not to be confused with the data flow of values. Error propagation
and data flow of values differ in two aspects: First, error propagate horizontally without following
the values‟ data flow through the application environment. Second, malfunctions in the application
layer cannot propagate into malfunctions in the application environment.

The MalfunctionProtoypes can by typed with the means of MalfunctionTypes. A MalfunctionType
allows describing how the unintended behavior is represented. In addition, with the help of the
description capabilities of ErrorBehavior and ErrorModelType, it is also possible to describe how
the MalfunctionPrototype becomes “active” (e.g. assuming a MalfunctionPrototype in the role of
externalFailure of an ErrorModelType).

Via the ErrorBehavior means of the meta-model it is possible to describe, how external faults or
internal faults can lead to the occurrence of this external failure. In a next step, with the help of the
hierarchically error modeling approach, it is then possible to describe, how external faults can be
caused from preceding architectural elements (e.g. communication partner, execution
environment). This way it is possible to describe a complete error propagation chain from the root
fault(s) towards the failure of interest.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 57 (97)

10.2 Detailed Description of Classes and Links

Type: Package

Package: ClassModel

Notes:

ErrorModel

Figure 28 : Overview of WT3.3.1 ErrorModel Package proposal

10.2.1 ErrorModel

Database: Java, Stereotype: , Package: ErrorModel

Notes: The error model is a container for all artifacts, which are needed to describe the
error model of an architectural element: malfunctions, error types and error
behaviors.

Relationships

Role Cardinaliy Notes

behavior 0..*. an arbitrary number of error behaviors.

type 0..* an arbitrary number of error model types.

malfunction 0..* an arbitrary number of malfunction types.

TraceableSpecification

«atpType»

ErrorModelType::ErrorModelType

+ genericDescription :String = NA

Identifiable

ErrorBehavior::

AbstractErrorBehavior

Identifiable

«atpPrototype»

Malfunction::MalfunctionPrototype

+ genericDescription :String

Identifiable

«atpType»

Malfunction::MalfunctionType

ErrorModelType::

FaultFailurePropagationLink

+ immediatePropagation :Boolean = true

Identifiable

«atpPrototype»

ErrorModelType::

ErrorModelPrototype

SAFEElement

SafetyExtensions::SafetyExtension

Identifiable

ErrorModel
+errorModel

0..1

+type 0..*

1

+faultFailureConnector *

1

+part *

+behavior 0..*

+errorModel

1

+processFault*+internalFault *

+externalFault

*

+externalFailure

*

«isOfType»

+malfunction 1

+malfunction

0..*

«instanceRef»

+cause

1

«instanceRef»

+effect

1

«isOfType»

+type 1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 58 (97)

10.2.2 ErrorBehavior

Type: Package

Package: ErrorModel

Notes:

ErrorBehavior

Figure 29 : WT3.3.1 ErrorBehavior proposal

10.2.2.1 AbstractErrorBehavior

Database: Java, Stereotype: , Package: ErrorBehavior

Notes: This class contains information about the error behavior independent of concrete
behavior descriptions.

The AbstractErrorBehavior contains internalFaults, representing faults that are either propagated to
externalFailures of the ErrorModelType or masked, according to the definition of its fault
propagation.

A processFault represents a flaw introduced during design, and may lead to any of the failures
represented by the ErrorModelType. A processFault therefore has a direct propagation to all
externalFailures and cannot be masked.

TraceableSpecification

«atpType»

ErrorModelType::ErrorModelType

+ genericDescription :String = NA

Nativ eErrorBehav ior

+ failureLogic :String [0..1]

+ type :ErrorBehaviorKind

«enumeration»

ErrorBehav iorKind

 HIP_HOPS

 ALTARICA

 AADL

 OTHER

Identifiable

AbstractErrorBehavior

EastADLErrorBehav ior

AtpFormulaExpressionString

«atpMixedString»

FailureLogicFormula

Identifiable

«atpPrototype»

Malfunction::MalfunctionPrototype

+ genericDescription :String

+formula 1 +externalFault * +internalFault * +processFault*

+externalFault

0..1

+internalFault

0..1

+externalFailure

*

+processFault

0..1

+externalFailure

1..*

+errorModel

1

+internalFault

*

+processFault

*

+externalFault

*

+externalFailure

0..1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 59 (97)

Each error behavior description relates the occurrences of internal faults and incoming external
faults to external failures. The faults and failures that the error behavior propagates to and from the
target element are declared through the malfunction prototypes of the error model.

Semantics:

An error behavior describes the error propagation logic of its containing ErrorModelType.

The ErrorBehavior description represents the error propagation from internal faults or external
faults to external failures. Faults are identified by the internalFault externalFault associations. The
propagated external failures are identified by the externalFailure association.

Relationships

Role Cardinaliy Notes

processFault * processFaults that may affect the ErrorBehavior of the
architectural element associated via the ErrorModelType.

internalFault * internalFaults that may affect the ErrorBehavior of the
architectural element associated via the ErrorModelType.

10.2.2.2 EastADLErrorBehavior

Database: Java, Stereotype: , Package: ErrorBehavior

Notes: EASTADLErrorBehavior specifies a concrete failure logic description language,
which describes the error propagation through the architectural element referenced
by the containing ErrorModelType (e.g. function, hw component, sw component).

The failure logic is defined via a formula language called FailureLogicFormula (see "formula"
association).

Relationships

Role Cardinality Notes

formula 1 Failure logic used to describe the error propagation.

10.2.2.3 ErrorBehaviorKind

Database: Java, Stereotype: «enumeration», Package: ErrorBehavior

Notes: The ErrorBehaviorKind metaclass represents an enumeration of literals describing
various types of formalisms used for specifying error behavior.

Semantics:

ErrorBehaviorKind represents different formalisms for ErrorBehavior. The semantics is defined at
each enumeration literal.

Extension:

Enumeration, no extension.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 60 (97)

Columns

PK Name Type Not Null Unique Len Prec Scale Init Notes

 HIP_HOPS 0 0 0
A specification of error
behavior according to the
external formalism HiP-
HOPS.

 ALTARICA 0 0 0
A specification of error
behavior according to the
external formalism
ALTARICA.

 AADL 0 0 0
A specification of error
behavior according to the
external formalism AADL.

 OTHER 0 0 0
A specification of error
behavior according to
other user defined
formalism.

10.2.2.4 FailureLogicFormula

Database: Java, Stereotype: «atpMixedString», Package: ErrorBehavior

Notes: FailureLogicFormula is used to describe the error propagation through the
architectural element associated with the containing ErrorModelType. The grammer
of the FailureLogicFormula is defined in the respective specification document.

Relationships

Role Cardinality Notes

externalFailure 0..1 external failures that may result from the ErrorBehavior.

processFault 0..1 processFaults that influence the errorBehavior .

internalFault 0..1 internalFaults that influence the errorBehavior .

externalFault 0..1 external(incoming) faults that influence the errorBehavior.

10.2.2.5 NativeErrorBehavior

Database: Java, Stereotype: , Package: ErrorBehavior

Notes: NativeErrorBehavior represents the descriptions of failure logics or semantics that
the architectural element associated by the ErrorModelType exhibits.

Semantics:

The NativeErrorBehavior is defined in the failureLogic string, either directly or as a url referencing
an external specification.

The failureLogic can be based on different formalisms, depending on the analysis techniques and
tools available. This is indicated by its type:ErrorBehaviorKind attribute. The failureLogic attribute
contains the actual failure propagation logic.

Extension:

UML:Behavior

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 61 (97)

Columns

PK Name Type Not Null Unique Len Prec Scale Init Notes

 failureLogic String 0 0 0 The specification of error
behavior based on an
external formalism or the
path to the file containing
the external
specification.

 type ErrorBeh
aviorKind

 0 0 0 The type of formalism
applied for the error
behavior description.

Relationships

Role Cardinaliy Notes

internalFault * internalFaults that influence the errorBehavior.

externalFailure * external failures that may result from the ErrorBehavior.

externalFault * external(incoming) faults that influence the errorBehavior.

processFault * processFaults that may affect the errorBehavior.

10.2.3 ErrorModelType

Type: Package

Package: ErrorModel

Notes:

ErrorModelPrototype

Figure 30 : WT3.3.1 ErrorModelPrototype proposal

EMPHwComponentEMPBswModuleEMPSwComponent

AutosarAbstractComponentInCompositionInstanceRef

AutosarInstanceReferences::

AutosarComponentInCompositionInstanceRef

EMPFunction

EastAdlReference

EASTADLReferences::

FunctionPrototype

Identifiable

«atpPrototype»

ErrorModelPrototype

AutosarReferable

AutosarReferences::

AutosarBswModuleDescriptionReference

EastAdlReference

SystemDesignElement

EASTADLReferences::

HardwareComponentPrototype

+bswTarget 1

«instanceRef»

+hwTarget 1+swcTarget 1

«instanceRef»

+functionTarget 1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 62 (97)

ErrorModelType

Figure 31 : WT3.3.1 ErrorModelType proposal

10.2.3.1 EMPBswModule

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model prototype specified for a concrete bsw software module.

Relationships

Role Cardinaliy Notes

bswTarget 1 The target basic software module.

10.2.3.2 EMPFunction

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model prototype specified for a concrete function instance.

Relationships

Role Cardinaliy Notes

functionTarget * A nominal function instance as target of the related error model
prototype.

TraceableSpecification

«atpType»

ErrorModelType

+ genericDescription :String = NA

Identifiable

«atpPrototype»

Malfunction::MalfunctionPrototype

+ genericDescription :String

Identifiable

«atpType»

Malfunction::

MalfunctionType

EMTypeFunction

EastAdlReference

EASTADLReferences::

FunctionType

EMTypeSwComponent EMTypeBswModuleEMTypeHwComponent

FaultFailurePropagationLink

+ immediatePropagation :Boolean = true

Identifiable

«atpPrototype»

ErrorModelPrototype

AutosarReferable

AutosarReferences::

AutosarBswModuleDescriptionReference

AutosarReferable

AutosarReferences::

AutosarSwComponentTypeReference

EastAdlReference

SystemDesignElement

EASTADLReferences::

HardwareComponentType

«isOfType»

+malfunction

1

«instanceRef»

+effect 1

«instanceRef»

+cause 1

«isOfType»

+type 1

+scope 1

+externalFailure

*

+externalFault

*

1

+part

*

1

+faultFailureConnector

*

+scope 1+scope 1+scope 1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 63 (97)

10.2.3.3 EMPHwComponent

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model prototype specified for a concrete hardware component instance.

Relationships

Role Cardinaliy Notes

hwTarget * A nominal hardware component instance as target of the error
model prototype.

10.2.3.4 EMPReference

Database: Java, Stereotype: , Package: ErrorModelType

Notes:

10.2.3.5 EMPSwComponent

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model prototype specified for a concrete software component instance.

Relationships

Role Cardinaliy Notes

swcTarget 1 the target software component.

10.2.3.6 EMTypeBswModule

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model type specified for a concrete basic software module.

Relationships

Role Cardinaliy Notes

scope 1 the target basic software module.

10.2.3.7 EMTypeFunction

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model type specified for a concrete function.

Relationships

Role Cardinaliy Notes

scope 1 the target function

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 64 (97)

10.2.3.8 EMTypeHwComponent

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model type specified for a concrete hardware component.

Relationships

Role Cardinaliy Notes

scope 1 the target hardware component.

10.2.3.9 EMTypeSwComponent

Database: Java, Stereotype: , Package: ErrorModelType

Notes: Error model type specified for a concrete software component.

Relationships

Role Cardinaliy Notes

scope 1 the target software component.

10.2.3.10 ErrorModelPrototype

Database: Java, Stereotype: «atpPrototype», Package: ErrorModelType

Notes: The ErrorModelPrototype is used to define hierarchical error models allowing
additional detail or structure to the error model of a particular target. A hierarchal
structure can also be defined when several ErrorModels are integrated to a larger
ErrorModel representing a system integrated from several targets.

There are different subtypes of ErrorModelPrototype specified, allowing to add additional
information describe the context of the ErrorModelProtoype.

Semantics:

An ErrorModelPrototype represents an occurrence of the ErrorModelType that types it.

Extension:

(See ADLFunctionPrototype)

Relationships

Role Cardinaliy Notes

type 1 The ErrorModelType that types the ErrorModelPrototype.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 65 (97)

10.2.3.11 ErrorModelType

Database: <none>, Stereotype: «atpType», Package: ErrorModelType

Notes: ErrorModelType and ErrorModelPrototype support the hierarchical composition of
error models based on the type-prototype pattern also adopted for the nominal
architecture composition. The purpose of the error models is to represent
information relating to the anomalies of a nominal model element.

Independent of the different subtypes of ErrorModelType, this class describes the external faults
affecting the element, external failures caused by the element and fault propagations within the
nominal element.

ErrorModelType inherits the abstract metaclass TraceableSpecification, allowing the
ErrorModelType to be referenced from its design context in a similar way as requirements, test
cases and other specifications.

Constraints:

For an ErrorModelType without part, a respective error behavior shall be defined in the safety
model.

Semantics:

The ErrorModelType represents a specification of the faults and fault propagations of its target
element.

Both types and prototypes may be targets, and the following cases are relevant:

- One nominal type:

The ErrorModelType represents the identified nominal type wherever this nominal type is
instantiated.

- Several nominal types:

The ErrorModelType represents the identified nominal types individually, i.e. the same error model
applies to all nominal types and is reused.

- One nominal prototype:

The ErrorModelType represents the identified nominal prototype whenever its context, i.e. its top-
level composition is instantiated.

- Several nominal prototypes with instanceref:

The ErrorModelType represents the identified set of nominal prototypes (together) whenever their
context, i.e. their top-level composition, is instantiated.

The fault propagation of an errorModelType is defined by its contained parts, the
ErrorModelPrototypes and their connections. In case an error behavior is defined for this error
model type, the fault propagation information, the error behavior and the parts of the error model
shall be consistent.

FaultFailurePropagationLinks define valid propagation paths in the ErrorModelType. In case the
contained external faults and external failures reference nominal ports, the connectivity of the
nominal model may serve as a pattern for connecting malfunction prototypes in the
ErrorModelType.

Extension:

(see ADLTraceableSpecfication)

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 66 (97)

Columns

PK Name Type Not Null Unique Len Prec Scale Init Notes

 genericDescription String 0 0 0 NA

Relationships

Role Cardinality Notes

faultFailureConnector * The contained links for internal propagation of faults/failures
between the subordinate error models.

externalFault * The external faults affecting the proper execution of the
architectural element associated with the error model type.

externalFailure * The external failures visible at the borders of the architectural
element.

part * The contained error models forming a hierarchy.

10.2.3.12 FaultFailurePropagationLink

Database: <none>, Stereotype: , Package: ErrorModelType

Notes: The FaultFailurePropagationLink metaclass represents the links for the
propagations of faults/failures across system elements. In particular, it defines that
one error model provides the faults/failures that another error model receives.

A fault/failure link can only be applied to compatible ports, either for fault/failure delegation within
an error model or for fault/failure transmission across two error models.

A FaultFailurePropagationLink can only connect fault/failures that have compatible types.

Constraints:

[1] Only compatible cause-effect pairs may be connected.

[2] Two fault/failure are compatible if the MalfunctionType of the cause represents a subset of the
MalfunctionType set represented by the MalfunctionType of the effect.

Semantics:

The FaultFailurePropagationLink defines a Failure propagation path, from the cause on one error
model to the effect of another error model.

Extension:

UML::Connector

Columns

PK Name Type Not Null Unique Len Prec Scale Init Notes

 immediatePropaga
tion

Boolean 0 0 0 true

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 67 (97)

Relationships

Role Cardinality Notes

effect 1

cause 1

10.2.4 Malfunction

Type: Package

Package: ErrorModel

Notes:

MalfunctionPrototype

Figure 32 : WT3.3.1 MalfunctionPrototype proposal

Identifiable

«atpType»

MalfunctionType

MFPFunctionPort

EastAdlReference

EASTADLReferences::

FunctionPort

EastAdlReference

«atpStructureElement»

EASTADLReferences::

HardwarePin

MFPBswPortMFPHardwarePin MFPSwcPort

AutosarAbstractPortInCompositionInstanceRef

AutosarInstanceReferences::

AutosarVariableDataPrototypeInstanceRef

MFPVariableMFPOperation

Identifiable

«atpPrototype»

MalfunctionPrototype

+ genericDescription :String

AutosarReferable

AutosarReferences::

AutosarBswModuleEntryReference

AutosarAbstractPortInCompositionInstanceRef

AutosarInstanceReferences::

AutosarOperationPrototypeInstanceRef

+operation 1

+bswEntry 1

«instanceRef»

+functionTarget 0..1

«instanceRef»

+hwTarget 0..1

+variable 1

«isOfType»

+malfunction

1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 68 (97)

MalfunctionType

Figure 33 : WT3.3.1 MalfunctionType proposal

10.2.4.1 MFPBswPort

Database: Java, Stereotype: , Package: Malfunction

Notes:

Semantics:

The MalfunctionPrototype pointing to a basic software module entry.

Relationships

Role Cardinality Notes

bswEntry 1 the target bsw module entry.

10.2.4.2 MFPFunctionPort

Database: Java, Stereotype: , Package: Malfunction

Notes: The MalfunctionPrototype pointing to a function port instance.

Extension:

UML::Port

Relationships

Role Cardinality Notes

functionTarget 0..1 A nominal function port instance as target of the malfunction
prototype.

Identifiable

«atpType»

MalfunctionType

MTGeneral MTEnum
Identifiable

«atpFeature»

MTEnumElement
1..*

element

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 69 (97)

10.2.4.3 MFPHardwarePin

Database: Java, Stereotype: , Package: Malfunction

Notes: The MalfunctionPrototype pointing to a HardwarPin instance.

Extension:

UML::Port

Relationships

Role Cardinality Notes

hwTarget * A nominal HW pin instance as target of the malfunction
prototype.

10.2.4.4 MFPOperation

Database: Java, Stereotype: , Package: Malfunction

Notes: The MalfunctionPrototype pointing to an AUTOSAR operation instance.

Relationships

Role Cardinality Notes

operation 1 the target operation prototype instance.

10.2.4.5 MFPSwcPort

Database: Java, Stereotype: , Package: Malfunction

Notes: The MalfunctionPrototype pointing to a HardwarPin instance.

10.2.4.6 MFPVariable

Database: Java, Stereotype: , Package: Malfunction

Notes: The MalfunctionPrototype pointing to an AUTOSAR variable instance.

Relationships

Role Cardinality Notes

variable 1 the target variable prototype instance.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 70 (97)

10.2.4.7 MTEnum

Database: Java, Stereotype: , Package: Malfunction

Notes: This enumeration malfunction type allows to define the different ways, how the
malfunction becomes visible. As a typical example, an enumeration could have the
enumerations "commission" and "omission".

BrakeMalfunctionType:

- BrakePressureTooLow

Semantics="brake pressure is below 20% of requested value".

- Omission

Semantics="brake pressure is below 10% of maximal brake pressure".

- Commission

Semantics="brake pressure exceeds requested value with more than 10% of maximal brake
pressure".

Semantics may also be a more formal expression defining in the type of the nominal datatype what
value range is considered a fault. This depends on the user and tooling available.

Relationships

Role Cardinality Notes

element 1..* elements of the malfunction type enum.

10.2.4.8 MTEnumElement

Database: Java, Stereotype: «atpFeature», Package: Malfunction

Notes:

10.2.4.9 MTGeneral

Database: Java, Stereotype: , Package: Malfunction

Notes: General description of a malfunction. The description field of the derived Identifiable
class shall be used to describe the malfunction.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 71 (97)

10.2.4.10 MalfunctionPrototype

Database: Java, Stereotype: «atpPrototype», Package: Malfunction

Notes: A malfunction is a failure or unintended behavior of the item or element of the item
that has the potential to propagate. The MalfunctionPrototype metaclass represents
an error that may occur internally in an ErrorModel or be propagated to it, or a
failure that is propagated out of an Error Model. The MalfunctionPrototype may
represent different errors depending on its type (enumeration of generic
description).

Semantics:

A malfunction prototype refers to a condition that deviates from expectations based on
requirements specifications, design documents, user documents, standards, etc., or from
someone's perceptions or experiences (ISO26262). The set of available faults or failures
represented by the MalfunctionPrototype is defined by its type, typically an enumeration type like
{omission, commission}. It is an abstract class further specialized with metaclasses for different
types of fault/failure.

Extension:

(UML::Part)

Columns

PK Name Type Not Null Unique Len Prec Scale Init Notes

 genericDescription String 0 0 0 A description of the
MalfunctionPrototype

Relationships
Role Cardinality Notes

malfunction 1
The type of the malfunction prototype. It describes how the
malfunction prototype becomes visible.

10.2.4.11 MalfunctionType

Database: Java, Stereotype: «atpType», Package: Malfunction

Notes: A MalfunctionType describes how a malfunction becomes visible. Currently, it can
either be a generic description of a malfunction or an enumeration of different
"appearance" possibilities.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 72 (97)

10.2.5 _instanceRef

Type: Package

Package: ErrorModel

Notes:

EMPFunction_functionTarget

Figure 34 : WT3.3.1 EMPFunction InstanceRef proposal

EMPHwComponent_hwTarget

Figure 35 : WT3.3.1 EMPHwComponent InstanceRef proposal

FaultFailurePropagationLink

Figure 36 : WT3.3.1 FaultFailurePropagationLink InstanceRef proposal

«instanceRef»

ErrorModelPrototype_functionTarget

EastAdlReference

EASTADLReferences::

FunctionPrototype

ErrorModelPrototype

ErrorModelType::EMPFunction

+functionTarget

*
+target

1«instanceRef.target»

+context

0..*«instanceRef.context»

«instanceRef»

+functionTarget

1

«instanceRef»

ErrorModelPrototype_hwTarget

ErrorModelPrototype

ErrorModelType::EMPHwComponent

EastAdlReference

SystemDesignElement

EASTADLReferences::

HardwareComponentPrototype

+hwTarget

*

«instanceRef»

+hwTarget

1

+target

1«instanceRef.target»

+context

0..*«instanceRef.context»

 class FaultFailurePropagationLink

ErrorModelType::

FaultFailurePropagationLink

+ immediatePropagation :Boolean = true

Identifiable

«atpPrototype»

ErrorModelType::

ErrorModelPrototype

«instanceRef»

MalfunctionInstanceRef

Identifiable

«atpPrototype»

Malfunction::MalfunctionPrototype

+ genericDescription :String

+cause

1

«instanceRef»

+cause

1

«instanceRef»

+effect

1

«instanceRef.target»

+malfunction 1

«instanceRef.context»

+errorModelPrototype 0..*

+effect

1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 73 (97)

MFPFunctionPort_functionTarget

Figure 37 : WT3.3.1 MFPFunctionPort InstanceRef proposal

MFPHardwarePin_hwTarget

Figure 38 : WT3.3.1 MFPHardwarePin InstanceRef proposal

10.2.5.1 ErrorModelPrototype_functionTarget

Database: Java, Stereotype: «instanceRef», Package: _instanceRef

Notes:

Relationships

Role Cardinality Notes

functionTarget * A nominal function instance as target of the related error model
prototype.

«instanceRef»

FaultFailurePort_functionTarget

EastAdlReference

EASTADLReferences::

FunctionPort

EastAdlReference

EASTADLReferences::

FunctionPrototype

MalfunctionPrototype

Malfunction::MFPFunctionPort +functionTarget

*

+target 1

«instanceRef.target»

+context

0..*«instanceRef.context»

«instanceRef»

+functionTarget

0..1

«instanceRef»

FaultFailurePort_hwTarget

EastAdlReference

«atpStructureElement»

EASTADLReferences::

HardwarePin

MalfunctionPrototype

Malfunction::MFPHardwarePin +hwTarget

*

+target 1

«instanceRef.target»

«instanceRef»

+hwTarget

0..1

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 74 (97)

10.2.5.2 ErrorModelPrototype_hwTarget

Database: Java, Stereotype: «instanceRef», Package: _instanceRef

Notes:

Relationships

Role Cardinality Notes

hwTarget * A nominal hardware component instance as target of the error
model protoype.

10.2.5.3 FaultFailurePort_functionTarget

Database: Java, Stereotype: «instanceRef», Package: _instanceRef

Notes:

Relationships

Role Cardinality Notes

functionTarget * A nominal function port as target of the malfunction prototype.

10.2.5.4 FaultFailurePort_hwTarget

Database: Java, Stereotype: «instanceRef», Package: _instanceRef

Notes:

Relationships

Role Cardinality Notes

hwTarget * A nominal HW pin instance as target of the malfunction
prototype.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 75 (97)

10.3 WT3.3.1 Meta-model Description Based on an Example

In this chapter, we show some simple examples for the use of the meta-model described in chapter
10.2. We describe how to model a hierarchy of components and how to model malfunctions.

We omit examples for the other aspects of the meta model. In addition, the examples do not show
how the meta-model elements for describing error behavior can be used, and the link to the system
model is missing as well (e.g. an EMTypeSwComponent is not pointing to an AUTOSAR software
component type). This will be subject of upcoming deliverable versions.

Figure 39 : Application Level Hierarchy diagram highlighting hierarchy modeling capability

This diagram above shows how to model a hierarchy of software components error models. An
error model for the software composition “ApplicationLevel” contains two ErrorModelPrototypes
“sensorProto” and “ControllerProto”.

The two software components are of type “sensor” and “controller”. These two
EMTypeSwComponents could be again a composite error model type, and hence would allow a
hierarchy of error models.

 object ApplicationLev elHierarchy

:ErrorModel

ApplicationLev el :

EMTypeSwComponent

sensor :

EMTypeSwComponent

«atpPrototype»

sensorProto :

ErrorModelPrototype

«atpPrototype»

ControllerProto :

ErrorModelPrototype

controller :

EMTypeSwComponent
type

+part

type

+part

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 76 (97)

The diagram shown hereafter (see Figure 40) refines the application level hierarchy from Figure 39
and adds four malfunction prototypes.

These four malfunctions prototypes are ApplicationEnvironmentMalfunctionProto (the malfunction
caused by the application environment), SensorApplicationEnvironmentMalfunctionProto (the
malfunction from the application environment which affects the sensor),
SensorComputationMalfunctionProto (the external fault emitted from the sensor computation), and
ReceiveSensorComputationMalfunctionProto (the malfunction that the controller receives from the
invalid sensor computations).

The former two malfunctions are connected by the FaultFailurePropagationLink named
“EnvironmentSensorMalfunctionPropagation”, the latter two are connected by the
FaultFailurePropagationLink named “SensorControllerComputationMalfunctionPropagation”.

Figure 40 : Application Level Hierarchy refinement with malfunctions added

 object Ports

ApplicationLev el :

EMTypeSwComponent

sensor :

EMTypeSwComponent

«atpPrototype»

sensorProto :

ErrorModelPrototype

SensorControllerComputationMalfunctionPropagation :

FaultFailurePropagationLink

«atpPrototype»

SensorComputationMalfunctionProto :

MalfunctionPrototype

«atpPrototype»

ControllerProto :

ErrorModelPrototype

controller :

EMTypeSwComponent

«atpPrototype»

Receiv eSensorComputationMalfunctionProto :

MalfunctionPrototype

«atpPrototype»

SensorApplicationEnv ironmentMalfunctionProto :

MalfunctionPrototype

«atpPrototype»

ApplicationEnv ironmentMalfunctionProto :

MalfunctionPrototype

«instanceRef»

applicationEnv ironmentSensorMalfunction :

MalfunctionInstanceRef

Env ironmentSensorMalfunctionPropagation :

FaultFailurePropagationLink

«instanceRef»

sensorMalfunctionCause :

MalfunctionInstanceRef

«instanceRef»

sensorMalfunctionEffect :

MalfunctionInstanceRef

«instanceRef»

controllerMalfunctionEffect :

MalfunctionInstanceRef

+malfunction

+errorModelPrototype

+malfunction

+effect

+errorModelPrototype

+malfunction

+cause

+malfunction

+errorModelPrototype

+effect

+cause

type

+externalFault +externalFault

+part

type

+externalFailure

+part

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 77 (97)

11 WT3.3.1 Error model Application Rules

The error model as explained in chapter 10 is very flexible and allows many different models for
the same system. In order to support exchangeability of analysis models between different tools,
SAFE defines a set of patterns that define how the error model shall be used.

Figure 41: Pattern legend for Applicability

Figure 41 above introduces the set of symbols which are used in the diagrams throughout this
chapter. The meta-model elements AssemblyConnector, PortPrototype and ComponentPrototype
are defined in the AUTOSAR meta-model, while all others are defined in the SAFE meta-model.

Safety relevant items are normally complex system that consists of hardware elements and
software elements. The hardware consists of interconnected Electronic Control Units (ECUs),
which can be further decomposed into programmable microcontrollers, other electronic parts and
printed circuit boards. The software is composed of many interconnected AUTOSAR software
components, which are deployed on the microcontrollers within the ECUs. In addition to AUTOSAR
software components, the microcontrollers also contain an AUTOSAR basic software stack, which
controls the Microcontroller Unit (MCU) hardware and provides generic services to the software
components, like access to input/output channels, persistent memory or partitioning.

While the software architecture for a concrete function is normally defined using the AUTOSAR
meta-model, there is currently no widely accepted single meta-model to capture system and
hardware architecture. To fill that gap, SAFE uses the hierarchical EAST-ADL FDA and HDA meta-
models for the representation of system and hardware architecture.

Once the system architecture and design is modeled in AUTOSAR and EAST-ADL as described
above, the model is augmented with a fault and error propagation model, using the error model
meta-model of SAFE.

11.1 System Model

In a first step, we focus on the vehicle-network level of abstraction for the system model, which is
well suited as a starting point. The software part is represented with the means of AUTOSAR,
while the hardware is represented as a network of interconnected ECUs.

This level of abstraction is sufficiently reduced to allow end-to-end analysis while distinction
between hardware and software is already visible.

:FunctionPort

:PortPrototype

:FaultFailurePort

:FunctionConnector

:AssemblyConnector

:FaultFailurePropagationLink

:FaultPrototype or :ComponentPrototype

Name

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 78 (97)

Figure 42 : System model Representation

Figure 42 shows a system model example on implementation level as it would be represented
according to the SAFE methodology. The hardware architecture is represented using the
HardwareModeling package of the EAST-ADL meta-model, where each ECU, microcontroller and
electronic circuit is represented as HardwareComponentType. The software architecture is
represented using the AUTOSAR SWC- and System-Template, the basic software is represented
using the AUTOSAR BSW Module Template. The mapping of software components on ECUs and
the basic software in between is omitted here for simplicity. The AUTOSAR meta-model provides
elements to represent this information.

For the sake of completeness: Depending on the level of abstraction, EAST-ADL or AUTOSAR or
both may the target for the system model required for safety analysis. As mentioned above, we
propose here to use the EAST-ADL capabilities to describe the HW details and use the AUTOSAR
SWC- and System-Template to describe the software-relevant information. However, we argue
that the demanded system model can be described also by using only one of the mentioned meta-
model solutions. E.g. the software-architecture could be described by EAST-ADL facilities like
FunctionType, and the hardware architecture could be described via the AUTOSAR ECU
Resource Template.

Generally, the system model allows developers to work independently on the different subsystems
in the system. In the following, we consider two specific views to the system model and how they
are related to the error model.

In a first step (see chapter 11.2), we separate the application layer and the application environment
and show how the error model can be used as part of a safety contract between those sub-
systems.

In a second step (see chapter 11.3), we separate the complete software entities (e.g. basic
software, RTE, application software) from the hardware and show how this affects the error model.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 79 (97)

11.2 Error model pattern 1 – Separation of application layer and application environment

11.2.1 Introduction

This error model pattern allows engineers to reason independently about the malfunctions in the
software components and the underlying system. For this purpose, the error model creates a clear
cut in the error model between application layer and application environment (ECU-hardware,
basic software and RTE). The malfunctions, their propagation (or isolation) and their compound
probability distribution defined within the error model contribute to a safety contract between the
application software and the application environment. This cuts the two parts of the systems, so
that one can reason about malfunctions independently.

11.2.2 Modeling approach

Figure 43 shows the error model corresponding to the system model mentioned in Figure 42.

Figure 43 : ErrorModel corresponding to Refined System model

To separate the application layer and the application environment, we do the following steps:

1. We define one error model named “application layer” consisting of all application SWCs
and all ECUs including BSW in an application environment. Figure 43 shows the error
model for our example. The boxes in light red are the error model types and error models
for the different components.

2. We argue about the different malfunctions from the application environment and how they
affect the application software. The set of the different malfunctions, e.g., computing and
communication anomalies, in the application environment define the failure ports of the
error model of application environment. The failure ports of the application layer match
exactly those of the application environment.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 80 (97)

In our example, we identified five malfunctions in the application environment:

 A computing anomaly in the Sensor SWC,

 A communication anomaly from the Sensor SWC to the Controller SWC,

 A computing anomaly in the Controller SWC,

 A communication anomaly from the Controller SWC to the Actuator SWC,

 A computing anomaly in the Actuator SWC.

These five malfunctions are depicted as the five failure ports in Figure 43.

3. In a next step, we argue how the error behavior of the application layer shall look like. The
error behavior is modeled by horizontal and vertical FaultFailurePropagationLinks.

Vertical propagation links describe the faults from the application environment that can
induce faults in the SWC. The vertical propagation links always link the application layer‟s
ports and the failure ports of the different software components.

In our example, the vertical propagation links link the five malfunctions listed above to the
affected software component in the application layer.

Horizontal propagation links describe how errors can propagate from one software
component to another on the same level. Every horizontal propagation link is backed by a
concrete physical information flow through the application environment (BSW, hardware or
communication system). However, the failure propagation due to these concrete data flows
is only depicted by the horizontal links. In our example, there are four horizontal
propagation links.

The two internal propagation links model malfunctions that are propagated to the next
software components, i.e., a sensor failure is propagated to the controller and a controller
failure is propagated to the actuator. The other two horizontal propagation links model the
propagation of external malfunctions to internal malfunctions and vice versa.

In these steps, we have followed this general rule for the composition:

To cut the system reasonably, we restrict the direction of fault propagation. Faults propagate only
from the software platform to the software components, but never the other way around.

The general principle of failure model decomposition underlying the separation the application
layer and the application environment is suitable for any decomposition of a system.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 81 (97)

11.2.3 Special case: horizontal error propagation prevented by application environment

In most cases, faults in one software component propagate to another software component without
fault detection or fault handling in the application environment. For those cases, the fault
propagation is modeled in the error model with a horizontal fault-failure propagation link (see
respective description in the meta-model chapter 11) from one software component to the other.

If the application environment has safety mechanisms that handle failures of a SWC, this safety
mechanism must be reflected in the application layer of the error model. In this case, horizontal
error propagation between two application software components is filtered, as shown in the
example below. To reflect the safety mechanism, that is realized by the application environment, in
the application layer of the error model, the error model is enriched by an ErrorModelType called

“Virtual SM”.

Example:

SWC A computes data and sends this data to SWC B through the application environment. The
application environment has a safety mechanism that can detect if the data is within a defined
range and reacts, so that the data out of bounds is not forwarded.

Assume an error occurs in the SWC A and SWC A sends faulty data to SWC B, e.g. the data is out
of a valid range. In this case, the failure mode “data out of range” would directly propagate from
SWC A to SWC B. However, if the application environment is able to detect this failure, failure

mode is isolated by the mentioned “Virtual SM” and does not propagate towards SWC B

accordingly.

The Figure 44 below shows the error model for the described situation. The ErrorModelType

“Virtual SM” has been introduced in the error model, and the external failure of this error model

type does not contain the failure mode “data out of range”, because it has been filtered by the
application environment.

Figure 44 : Example of Error Model modeling Virtual Safety Mechanism

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 82 (97)

11.2.4 Error Model as Safety Contract

The error model pattern proposed above has the goal to contribute arguments to show the
effectiveness of a safety concept. Thus, we propose to see it as part of a safety contract. Via the
model, the application developer has the ability to specify how the application environment shall or
shall NOT affect the execution of its application software. For instance, assuming the error model
specifies that memory corruptions in the RAM shall not propagate to the application software (e.g.
by storing the same value multiple times in the RAM to detect manipulation). In this case, the
safety engineer can use this information to argue about the effectiveness of its safety concept,
because he assumes that memory corruptions is not visible at application software level and can
therefore not propagate towards possible malfunctions or hazards at top level.

11.2.5 Modeling of Separation of Application Layer and Application Environment

In Figure 45, we show how we model the separation of the application layer and the application
environment with the meta-model described in chapter 10.

Figure 45 : Example of modeling of the separation between the application layer and the
application environment

The error model contains an ErrorModelType for the complete system, which itself is composed of
the Application Environment and the Application Layer. In this example, we omit the special case

“Virtual SM” as mentioned in chapter 11.2.3.

 object Separation_Application_Env ironment_Example

ApplicationLayer :

EMTypeSwComponent

CompleteSystem :

ErrorModelType

ApplicationEnv ironment :

ErrorModelType

«atpPrototype»

:MalfunctionPrototype

«atpPrototype»

:MalfunctionPrototype

«atpPrototype»

ApplicationLayerProto :

EMPSwComponent

«atpPrototype»

ApplicationEnv ironmentProto :

ErrorModelPrototype

:ErrorModel

«instanceRef»

:MalfunctionInstanceRef

«instanceRef»

:MalfunctionInstanceRef

:FaultFailurePropagationLink

ComputationFault :

MTEnum

«atpFeature»

cpuComputationFault :

MTEnumElement

«atpFeature»

memoryReadFault :

MTEnumElement

type

+cause

+errorModelPrototype

+malfunction

+effect

+malfunction

+part +part

type

+externalFault

+malfunction

+externalFailure

+malfunction

+errorModelPrototype

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 83 (97)

In this diagram, we also show one faultfailurePropagationLink that models a
ComputationMalfunction that originates in the application environment and propagates a fault to
the application layer.

In the upper right of the diagram, we define computation faults to be either computation faults due
to the CPU or due to invalid memory reads.

11.3 Error model pattern 2 – Separation of Hardware and Software

The separation of hardware and software via a dedicated Hardware Software Interface (HSI) is
strongly linked to the abstraction view on the system, and in particular to the representation of the
technical safety concept where software and hardware interacts together. On the top of the
ISO26262 requirements to identify the HSI interface at the system level, the failure propagation
between the hardware and software shall be defined consistently with HSI definition.

Using AUTOSAR scheme, as proposed in the Error model pattern 1 defined in chapter 11.2, the
application environment interfaces the application layer via RTE interfaces abstracting the ECU‟s
hardware and BSWs. The application environment, also named AUTOSAR execution platform, is
constituted of hardware elements and AUTOSAR software infrastructure such as services, HCAL
layer, etc, and MCAL layer. The MCAL software driver interfaces the hardware controller and the
peripherals using specialized hardware registers. These hardware registers are physical
implementation of the HSI, but do not fit to the abstraction level of the RTE interface.

On the other hand, if EAST-ADL is used for application layer description, the application
environment is simplified as the RTE is not visible, as virtual function bus is abstracted by flow port
connector. For this abstraction level, the main relevance for HSI is able to define relation between
an hardware elements of the ECUs and software elements used in the Functional Design of EAST-
ADL, embracing the hardware abstraction functionality.

This HSI subject is still in discussion between WT3.x, so vertical propagation of error model using
HSI cannot yet be stated. The current proposal of the discussion, built in WT3.2.2, for HSI and
interaction with ErrorModel has been included in AnnexB chapter 18.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 84 (97)

12 Conclusions and next steps

This document is intended to provide information about a proposal for extension of meta-model for
error failure and propagation analysis that shall be compliant with the requirements and main
concepts addressed by ISO26262.

Also the problematic of distributed development and impact of the fault propagation through the
entire item is highlighted in the document. To solve this issue an approach based on pattern-based
safety contracts is proposed.

A solid base of information was provided in the document concerning two relevant fault and
propagation languages candidate: HiP-HOPS and AltaRica. A final pros and cons analysis did not
permit to choose between them. As the priority was to have something simple for the end user, we
came to the conclusion that a simplified SAFE language capable to be transformed transparently
either in HiP-HOPS or AltaRica was the best compromise. So, we elicited requirements for the
grammar and for the semantics of a simplified SAFE language that are now available in the
document.

Since it was an objective to reuse EAST-ADL as much as possible, the current version of EAST-
ADLV2.1 and more particularly the ErrorModel package was presented in a first step. Then the
main gaps compared to our needs were highlighting and finally a proposal for Meta-model
extensions was formulated.

Moreover to correctly use and implement our meta-model proposal, a dedicated example with
some application rules was provided.

Even if some discussions were already performed between the most relevant work tasks having
dependencies with WT3.3.1, the proposed meta-model enhancements for error failure and
propagation analysis has to be synchronized with the meta-model extensions of WT3.2.2, WT3.2.1
and WT3.1.1 in order to harmonize the model properties for the description of re-use related
information. As a consequence a new release of this document will be performed including
clarification of Hardware Software interface.

The next deliverable D331b will provide documentation about Methods and Tool specification for
analysis of qualitative and quantitative cut-sets issued from Error Failure propagation analysis. In
the document D331a most relevant safety analysis techniques recommended by ISO26262 were
assessed and final considered methods for D331b will be qualitative FMEA, quantitative FMEDA
and FTA.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 85 (97)

13 Glossary useful for D331a document

Hazard
Potential source of harm caused by malfunctioning behavior of the
item.

Malfunctioning behavior
Failure or unintended behavior of an item with respect to its design
intent.

Fault Abnormal condition that can cause an element or an item to fail.

Error
Deviation between a computed observed or measured value or
condition from theoretically correct value or condition.

Failure
Termination of the ability of an element, to perform a function as
required.

Systematic fault
Fault whose failure is manifested in a deterministic way that can
only be prevented by applying process or design measures.

Systematic failure

Failure related in a deterministic way to a certain cause, that can
only be eliminated by a change of the design or of the
manufacturing process, operational procedures, documentation or
other relevant factors.

Random hardware
failure

Failure that can occur unpredictably during the lifetime of a
hardware element and that follows a probability distribution.

Malfunction
Malfunction is a failure or unintended behavior of the item or
element of the item that has the potential to propagate.

Horizontal error
propagation

Propagation of errors inside a same architectural level.

Vertical error
propagation

Propagation of errors through different architectural levels.

Informal Notation
Description technique that does not have its syntax completely
defined.

Semi-formal Notation
Description technique whose syntax is completely defined but
whose semantics definition can be incomplete.

Formal Notation
Description technique that has both its syntax and semantics
completely defined.

Application environment
The application environment includes all entities, in which the
application layer is executed. This includes the ECU hardware, the
basic software and RTE.

Application layer The set of all Software Components.

Basic Software
The basic software implements common available services and
ECU provided resources.

Virtual fault SWC

A Software Component in the error model that represents a safety
mechanism in the application environment. It does not occur in the
system model, but only occurs in the error model for software safety
analysis.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 86 (97)

14 Abbreviations used in D331a document

ASIL Automotive Safety Integrity Level

ATTEST Advancing Traffic Efficiency and Safety through Software Technology

AUTOSAR AUTomotive Open System ARchitecture

BCM Body Control Management

BDD Binary Decision Diagram

CAE Computer Aided Engineering

CAN Controller Area Network

CCF Common Cause of Failure

CESAR Cost-Efficient methods and processes for SAfety Relevant embedded systems

COTS Component Off the Shelf

CPU Central Processing Unit

DM Degradation Mode

DRIS Distributed, Reliable and Intelligent control and cognitive Systems

E/E Electronic and Electrical

EAST-ADL Electronic Architecture and Software Tools- Architecture Description Language

ECU Electronic Control Unit

EMC Electro Magnetic Compatibility

ETA Event Tree Analysis

FDA Functional Design Architecture

FIT Failure In Time

FME(D)A Failure Mode Effect and Diagnostic Analysis

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

GUI Graphical User Interface

HAZOP HAZard and OPerability study

HDA Hardware Design Architecture

HiP-HOPS Hierarchically Performed Hazard Origin & Propagation Studies

HRC Heterogeneous Rich Components

HSI Hardware Software Interface

HW Hardware

IP Intellectual Property

LFM Latent Fault Metric

LH Limp Home

MAENAD Model-based Analysis & Engineering of Novel Architectures for Dependable electric vehicles

MCU Microcontroller Unit

OEM Original Equipment Manufacturer

Open-PSA Open Probabilistic Safety Assessment

RAM Random Access Memory

RBD Reliability Block Diagram

RSL Requirements Specification Language

RTE Real Time Environment

SAFE Safe Automotive soFtware architEcture

SM Safety Mechanism

SPEEDS Speculative and Exploratory Design in Systems Engineering

SPFM Single Point Fault Metric

SW Software

SWC Software Component

TCM Top Column Module

WT Work Task

XML Extensible Markup Language

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 87 (97)

15 References

[1] International Organization for Standardization: ISO 26262 Road vehicles - Functional safety.
(2011)

[2] Project ATESST2: ATESST2 Partners. Review of relevant Safety Analysis Techniques,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D2.1_A3.2_V1.1.pdf

[3] http://www.itemuk.com/assets/docs/ToolKit_Manual.pdf

[4] SPEEDS Consortium: SPEEDS Meta-model Syntax and Draft Semantics, D2.1c. (2007)

[5] Project CESAR: CESAR Partners. RE Language Definitions to formalize multi-criteria
requirements V2, D_SP2_R2.2_M2,
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000_PU.pdf

[6] SPEEDS L-1 Meta-Model, SPEEDS WP2.1 Partners, SPEEDS Project
Deliverable D2.1.5, Revision 1.0.1, May 2009,
http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf

[7] Hungar, H.: Compositionality with Strong Assumptions. In Proceedings of the 23rd Nordic
Workshop on Programming Theory. (2011) 19–21

[8] Damm, W., Josko, B., Peikenkamp, T.: Contract based ISO CD 26262 safety analysis. SAE
Technical Paper 2009-01-0754, 2009, doi:10.4271/2009-01-0754 (2009)

[9] University of Hull, DRIS research group. The Definitive Guide to the HiP-HOPS XML Input
File Format, HiP-HOPS XML Format.doc

[10] Yiannis Papadopoulos, Martin Walker, University of Hull “Qualitative temporal analysis:
Towards a full implementation of the Fault tree Handbook”, Control Engineering Practice,
Vol.17 Issue 10, Elsevier Editions, 2009.

[11] Project ATESST2: ATESST2 Partners. EAST-ADL update suggestions for Safety Analysis
support,
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D3.1_A3.2_V1.1.1.pdf

[12] Yiannis Papadopoulos, Ian Wolfort, Martin Walker, University of Hull “Capture and Reuse of
composable failure patterns” , International Journal of Critical Computer Based Systems, Vol
1, Nos. 1/2/3 2010

[13] G. Point. AltaRica: Contribution à l‟unification des methods formelles et de la Sûreté de
fonctionnement. PhD thesis, Université Bordeaux 1, 2000.

[14] A. Arnold, D. Bégay, and P.Crubillé. Construction and analysis of transition systems with
MEC. World Scientific Publishers, 1994.

[15] A. Rauzy: A New Methodology to Handle Boolean Models with Loops
In IEEE Transactions on Reliability. IEEE Reliability Society. Vol. 52, Num. 1, pp 96–105,
2003.

[16] T. Prosvirnova, and A. Rauzy: Système de Transitions Gardées : formalisme pivot de
modélisation pour la Sûreté de Fonctionnement. In J.F. Barbet ed., Actes du Congrès
Lambda-Mu 18. Octobre, 2012.

[17] Marc BOUISSOU: Gestion de la complexité dans les etudes quantitative de sûreté de
fonctionnement de systems. Collection EDF R&D aux éditions LAVOISIER*

[18] Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F., Törngren,
M.: Modelling Support for Design of Safety-Critical Automotive Embedded Systems. In:
Proceedings of SAFECOMP (2008)

http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D2.1_A3.2_V1.1.pdf
http://www.itemuk.com/assets/docs/ToolKit_Manual.pdf
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP2_R2.2_M2_v1.000_PU.pdf
http://speeds.eu.com/downloads/SPEEDS_Meta-Model.pdf
http://www.atesst.org/home/liblocal/docs/ATESST2_Deliverable_D3.1_A3.2_V1.1.1.pdf

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 88 (97)

16 Acknowledgments

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster
programme Σ! 3674. The work has been funded by the German Ministry for Education and
Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy
and Finance (DGCIS). The responsibility for the content rests with the authors.

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 89 (97)

17 Annex A: Mapping between AltaRica and HiP-HOPS

Based on one example provided by Dassault System on SafetyDesigner 9, a mapping with HiP-
HOPS was proposed by Continental-France.

ITEA 2 ~ 10039

Typing / event versus Failure Class

Altarica : Flow Typing Hip-Hops : Failure Class

FC = DetectedFault

FC : UndetectedFault

FC = Fault

FC = Fault

ITEA 2 ~ 10039

Extract of the exemple

node SafeEngineControl_TechnicalSafetyConcept_Hardware_MicroController

flow

icone : [1, 2] : local;

PowerIn : SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

SensorIn : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

ActuatorOut : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

CPUSupportOut : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out ;

CommandInput : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

SensorProcessedOutput : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

ADCSupportOut : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out ;

HTimerSupportOut : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out ;

sub

HTimerSupport : SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimerMaterialSupport;

HTimer : SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimer;

CPU : SafeEngineControl_TechnicalSafetyConcept_Hardware_CPU;

AnalogicDigitalConvertor : SafeEngineControl_TechnicalSafetyConcept_Hardware_ADC;

assert

AnalogicDigitalConvertor.SensorIn = SensorIn ;

SensorProcessedOutput = AnalogicDigitalConvertor.SensorOut ;

AnalogicDigitalConvertor.PowerIn = PowerIn ;

CPU.PowerIn = PowerIn ;

CPUSupportOut = CPU.CPUSupport ;

HTimer.CommandIn = CommandInput ;

ActuatorOut = HTimer.CommandOut ;

ADCSupportOut = AnalogicDigitalConvertor.ADCSupport ;

HTimerSupport.SupplyIn = PowerIn ;

HTimerSupportOut = HTimerSupport.MaterialSupportOut ;

edon

Altarica

As HiP-HOPS interface is XML based; the next slide represent only concept and equation

With removing of sugar information <data> </data>

Knowing that XML file shall be generated from SAFE meta-model Class

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 90 (97)

ITEA 2 ~ 10039

Analogic Digital Convertor

node SafeEngineControl_TechnicalSafetyConcept_Hardware_ADC

flow

icone : [1, 2] : local;

SensorIn : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

SensorOut : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

PowerIn : SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

ADCSupport : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport :

out ;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (State = OK and PowerIn = Nominal)

then SensorOut = SensorIn and ADCSupport = Supported

else SensorOut = Invalid and ADCSupport = Unsupported

extern

law <event failure> = exponential(5.0E-5);

edon

Altarica

Component

SafeEngineControll_...._ADC

Ports

Port Input SensorIn

Port Output SensorOut

Port Input PowerIn

Port Output ADCSupport

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F1

OutputDeviation FailureEq1

FailureEq1

OutputDeviation Fault-SensorOut

FailureExpression

Fault-PowerIn OR failure

Fault-ADCSupport

FailureExpression

Fault-PowerIn OR failure

UnavailabilityFormula F1

Constant FailureRate 1e-3 //can be Poisson, ...

HiP-HOPS

ITEA 2 ~ 10039

CPU ressource

node SafeEngineControl_TechnicalSafetyConcept_Hardware_CPU

flow

icone : [1, 2] : local;

PowerIn : SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

CPUSupport : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out

;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (PowerIn = Nominal and State=OK) then (CPUSupport =

Supported & icone =2) else (CPUSupport = Unsupported & icone =1);

extern

law <event failure> = exponential(1.0E-6);

edon

Altarica HiP-HOPS

Component

SafeEngineControll_...._CPU

Ports

Port Input PowerIn

Port Output CPUSupport

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F2

OutputDeviation FailureEq2

ExportedDeviation*

FailureEq2

OutputDeviation Fault-CPUSupport

FailureExpression

Fault-PowerIn OR failure

F2

UnavailabilityFormula

Constant FailureRate 1e-3 //can be Poisson, ...

ExportedDeviation* can be the construction of a logical

Expression of a FailureClass to be reuse across perspective

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 91 (97)

ITEA 2 ~ 10039

Hardware Timer Support

node

SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimerMa

terialSupport

flow

icone : [1, 2] : local;

SupplyIn :

SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

MaterialSupportOut :

SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out

;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (SupplyIn = Nominal and State=OK) then

(MaterialSupportOut = Supported & icone=2)else

(MaterialSupportOut = Unsupported & icone =1);

extern

law <event failure> = exponential(3.0E-6);

edon

Altarica HiP-HOPS

Component

SafeEngineControll_...._HTimerMaterialSupport

Ports

Port Input SupplyIn

Port Output MaterialSupportOut

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F3

OutputDeviation FailureEq3

ExportedDeviation*

FailureEq3

OutputDeviation

Fault-materialSupportOut

FailureExpression

Fault-SupplyIn OR failure

F3

UnavailabilityFormula

Constant FailureRate 1e-3 //can be Poisson, ...

ITEA 2 ~ 10039

Hardware Timer

node SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimer

flow

icone : [1, 2] : local;

CommandIn :

SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

CommandOut :

SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (State = OK)

then CommandOut = CommandIn & icone = 2

else CommandOut = Invalid & icone = 1;

extern

law <event failure> = exponential(1.5E-6);

edon

Altarica HiP-HOPS

Component

SafeEngineControll_...._HTimerMaterialSupport

Ports

Port Input CommandIn

Port Output CommandOut

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F4

OutputDeviation FailureEq4

ExportedDeviation*

FailureEq4

OutputDeviation Fault-CommandOut

FailureExpression

Fault-CommandIn OR failure

F4

UnavailabilityFormula

Constant FailureRate 1e-3 //can be Poisson, ...

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 92 (97)

ITEA 2 ~ 10039

Extract of the exemple

node SafeEngineControl_....._MicroController

flow

icone : [1, 2] : local;

PowerIn : SafeEngine….PowerSupply : in ;

SensorIn : SafeEngine…Flow : in ;

ActuatorOut : SafeEngine…Flow : out ;

CPUSupportOut : SafeEngine…Support : out ;

CommandInput : SafeEngine…Flow : in ;

SensorProcessedOutput : SafeEngine…Flow : out ;

ADCSupportOut : Safe….Support : out ;

HTimerSupportOut : SafeEngine….Support : out ;

sub

HTimerSupport : SafeEngine…Support;

HTimer : SafeEngine…_HTimer;

CPU : SafeEngine…..t_Hardware_CPU;

AnalogicDigitalConvertor : SafeEngineControl_T…e_ADC;

assert

AnalogicDigitalConvertor.SensorIn = SensorIn ;

SensorProcessedOutput = AnalogicDigitalConvertor.SensorOut ;

AnalogicDigitalConvertor.PowerIn = PowerIn ;

CPU.PowerIn = PowerIn ;

CPUSupportOut = CPU.CPUSupport ;

HTimer.CommandIn = CommandInput ;

ActuatorOut = HTimer.CommandOut ;

ADCSupportOut = AnalogicDigitalConvertor.ADCSupport ;

HTimerSupport.SupplyIn = PowerIn ;

HTimerSupportOut = HTimerSupport.MaterialSupportOut ;

edon

Altarica HiP-HOPS
System

SubSystem

Components

Component SafeEngineControl_....._MicroController

Ports

Port Input PowerIn

Port Input SensorIn

Implementations Impl_SafeEngine…Controller

FailureData

System mySubComponents

Components

Component

HTimerSupport

Ports

Implementation

FailureData

……

Component H_Timer

…

Lines

Line SensorADCLin

….

SensorADCLin

Line

Type Directed

Connections

Connection

Port.PowerIn

PortExpression CPU.PowerIn

Connection

On the top level a model

has Perspective * that may

includes several system

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 93 (97)

18 Annex B: Proposal of Hardware Software Interface (HSI) consideration in ErrorModel

A proposal of how to integrate HSI in ErrorModel was done by the leader of WT3.2.2 - Continental-
France but due to project timing, it was not possible to freeze something because there were
different views between some WT3.x.x of how to model HSI. The proposal is shown hereafter:

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 94 (97)

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 95 (97)

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 96 (97)

SAFE – an ITEA2 project D331a

 2011 The SAFE Consortium 97 (97)

