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4 Executive Summary 

The work task 3.3.1 targets to address the fault modeling and its propagation along the complete 
development lifecycle. This activity includes the definition of the necessary elements that are 
needed to capture fault information and propagation concept to produce safety analyses. 

Existing fault modeling language candidates such as HiP-HOPS and AltaRica have been deeply 
analyzed to derive needs for the error modeling as proposed by WT3.3.1. 

The starting point for error modeling is the existing modeling approach of EAST-ADLV2.1 tightly 
coupled with the system model by enriching existing architectural elements with its “fault behavior” 
in terms of an error model. 

The Error model proposed by WT3.3.1 allows to represent the erroneous behavior of a system 
element as a black box view via the means of ErrorModelTypes (only external visible faults and 
failures are described) or as a white box view by allowing to a) decompose an ErrorModelType by 
an arbitrary number of ErrorModelPrototypes and “wiring” the visible malfunctions (faults, failures) 
between them and b) provide a language for atomic error models to relate internal faults and 
external faults to theirs external failures. 

In a first step, the mechanisms of error modeling shall be the basis to conduct qualitative safety 
analyzes. In a second step they shall be extended to conduct quantitative safety analyzes in closed 
relation with work performed by WT3.2.2. 
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5 Scope of WT 3.3.1 and structure of the document 
 

5.1 Scope of WT 3.3.1 

Embedded in work package 3, work task 3.3.1 deals with failure and cutset analysis. The basis for 
this work task is the dependability part of EAST-ADLV2.1 which is presented in chapter 9.  

WT3.3.1 aims to address the fault modeling and its propagation along the complete 
development lifecycle and a meta-model extension suitable for the following topics to WT4.2.3.  

For the fault modeling language candidates, the needs, regarding fault information and propagation 
concept to be captured in the model to perform qualitative safety analyzes, will be identified.  
These artifacts are intended to be attached to each block of an architecture (fault models for 
inputs, outputs and block propagation), whatever level it is (functional, logical or physical 
organic or any mix of both). In addition, the same tools shall be used to compute the qualitative 
safety analyses for functional and/or technical safety concept. The fault and failure context for 
safety scenarios shall be extracted from safety requirement analysis and then captured using 
semantics of a fault modeling language. The safety concept will be validated thanks to 
propagation and analysis of these fault models. At implementation level on the hardware (HW) 
side, random hardware failure of hardware design and components (failure in time rates) will 
be considered.  In particular, the failures relations to the upper safety concept and theirs 
contributions to the overall safety analysis will be encompassing. For the hardware 
architecture, the objective is to extend previous qualitative analyses and to perform quantitative 
safety analyses with the final goal to work out ISO26262 metrics, such as Single Point Fault 
Metric (SPFM), Latent Fault Metric (LFM) and Probabilistic Metric HW Failures.  

At implementation level on the software (SW) side, failure mode and propagation from the fault 
modeling language will extend AUTOSAR templates.  Relation to the upper safety concept and 
theirs contributions to analysis will be encompassing. Such failure information will be either 
captured manually or defined from a tool, as the feasibility study of extraction of Matlab 
Simulink behavioral model. Additionally, quantification of occurrence of the software failure 
mode will be investigated according to hardware element 

Such work will be fertilized by preliminary work performed in the ATESST2 and SPEEDS 
projects, but also from aeronautic experience regarding the use of Altarica language, with 
possible use of a subset of it. The final outcomes of this task are an extension of the re levant 
meta-model to support the failure semantic (this document), and a tool specification for the 
failure analysis (see D331b document). 

 

5.2 Structure of the document 

In a first step, the ISO26262 concepts addressed by WT3.3.1 to evaluate risk of malfunctioning 
behavior will be explained, including the selection of most relevant safety analyses methods for 
D331b. 

In a second step, the problematic of evaluating malfunctioning behavior in distributed 
developments mixing OEM, Tier 01 and Tier 02 will be highlighted, and a contract approach will be 
proposed. 

In a third step, HiP-HOPS and AltaRica will be analyzed, and the orientation taken in WT3.3.1 will 
be justified with some requirements for a simplified SAFE language. 

Finally, in a fourth step, the gap between EAST-ADLV2.1 meta-model and previous analysis steps 
will be documented and an extension of the meta-model will be proposed with application rules. 
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6 ISO26262 concepts addressed by WT3.3.1 to evaluate risk of malfunctioning behavior 

 

6.1 Short Overview of ISO26262 Chapters of interest for WT3.3.1 

During the development of a safety critical E/E product, ISO26262 requires or recommends, 
depending on the criticality of the product to be developed, to perform a certain number of 
activities, dealing with risk assessment, of which belong safety analyses. The goal of safety 
analyses is to help evaluating in advanced the potential risks of malfunctioning behavior and find 
adequate safety measure to eradicate or mitigate their effects. ISO26262 chapters, where the 
evaluation of potential risks using safety analyses is useful, are illustrated hereafter: 

 

Figure 1: ISO26262 General Overview [1] highlighting where safety analyzes can help 
 
Safety analysis are used to support the concept and development design phase activities during 
which safety requirements, derived from safety goals, are refined up to HW/SW requirements as 
illustrated hereafter: 
 

 

Figure 2: View of safety requirements refinement supported by safety analyses 
 during the concept and development design phases  
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6.2 ISO26262 and General concept of Fault / Error / Failure for malfunctioning behavior 
and its propagation  

ISO26262 (see [1]) defines fault / error / failure concepts for malfunctioning behavior, their 
interaction and their propagation through different architecture hierarchy levels up to vehicle level: 

 A fault is an abnormal condition that can cause an element or an item to fail. 

 An error is defined as the deviation between a computed, observed or measured value or 
condition from theoretically correct value or condition. 

 A failure is the termination of the ability of an element, to perform a function as required. 

 A malfunctioning behavior is a failure or unintended behavior of an item with respect to 
its design intent. 

Therefore an error can be caused by a fault (abnormal condition), and lead to a failure which can 
be a malfunctioning behavior if appearing at item level. 
 
Faults and failures can be of different types: systematic or random. 

 Systematic faults or failures are manifested in a deterministic way. They can only be 
eliminated by a change of the design or the manufacturing process and cannot be 
quantified. 

 Random fault or failures only concern HW elements. They occur unpredictably during the 
lifetime due to physical causes and follow a probability distribution that allows us to predict 
Random HW failure rates. 

SW faults and failures are always systematic. If you find a scenario that causes a failure, it leads 
each time to the same failure. In this case, only a design change can eliminate the systematic fault 
that causes the failure. 

HW faults and failures can be either systematic or random.  

 Systematic HW: If, as an example, an Electronic Control Unit (ECU) is not protected 
enough against EMC produced by an external neighbor cable from the system, it always 
leads to the same failure of the ECU. Only a design change to improve EMC protection 
would eliminate the systematic faults and failures.   

 Random HW: if, as an example, an abnormal oxidation occurs randomly on an HW part 
belonging to an Electronic Control Unit (ECU), it might lead to a loss of electrical connection 
and therefore lead to a failure of the ECU.   

 

Note:  When systematic and HW random faults and failures are mixed in a same safety analysis, 
so to be able to produce quantitative evaluation, it is needed to quantify systematic faults and 
failures to not produce erroneous probability calculations. 

As an example, if a systematic fault/failure is contributing to an AND Gate in a Fault Tree Analysis, 
its probability of occurrence should be set to 1 to avoid erroneous probability calculation at AND 
Gate level. 

As another example, if a systematic fault/failure is contributing to an OR Gate in a Fault Tree 
Analysis, its probability of occurrence should be set to 0 to avoid erroneous probability calculation 
at OR Gate level. 
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Hazard = potential source of harm 

A failure at one architectural level (e.g. ECU level) can become a fault at an upper architectural 
level (e.g. item level) as shown hereafter. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Example of failures at ECU level which become faults at vehicle level 
 
The fault can propagate in the system to produce an hazard at item level, which can become an 
hazardous event at vehicle level when combined with particular operational situation, and so 
potentially lead to an accident with harm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Example of a fault propagating to a hazard 
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6.3 Types of Safety Analyzes recommended by ISO26262 

Through the different concept and development phases from the safety lifecycle, ISO26262 
recommends or requires, depending on the criticality of the items or elements to be developed, to 
perform safety analyses. 

 
The objective of safety analyses is to support the derivation of safety requirements from the safety 
goals, and to validate and verify their effectiveness and completeness. 
 
Safety analyses help to identify the effect of faults and failures on the functions, behavior and 
design of items or elements. They also provide information on conditions and causes that could 
lead to the violation of a safety goal (top-level safety requirement) or a safety requirement. In such 
a case, additional actions or safety measures shall be determined to eradicate or mitigate the 
effect of faults and failures. 
 
The fault and failures considered in safety analyses can be either random or systematic, and either 
internal or external to the items or elements to be developed. 
 
Safety analyses are either inductive or deductive. 

 Inductive analysis methods are bottom-up methods that start from known causes 
and forecast unknown effects. Inductive methods are required by ISO26262 for 
ASIL A to ASIL D safety goals. 

 Deductive analysis methods are top-down methods that start from known effects 
and seek unknown causes. Deductive methods are required by ISO26262 for ASIL 
C and ASIL D safety goals and only recommended for ASIL B safety goals. 

 
Safety analyses are qualitative or quantitative: 

 Qualitative analyses can be first appropriate and sufficient in most cases to identify 
failures and when it is not needed to predict the frequency of failure e.g. systematic 
failures. 

 Quantitative analyses extend qualitative safety analyses, in a second step, only 
when random hardware failures must be predicted as well as the hardware 
architectural metrics and the evaluation of safety goal violation due to random 
hardware failures. Quantitative analyses are not required to be applied to 
systematic failures e.g. software failures. 

ISO26262 does not require a specific analysis method but list recognized methods as follows:  

Qualitative analysis methods include: Quantitative analysis methods include: 

 Qualitative FMEA1 (inductive) 

 Qualitative FTA2 (deductive) 

  HAZOP3(mixed between inductive and deductive) 

 Qualitative ETA4 (inductive) 

 Ishikawa 

 Quantitative FMEA1 (inductive) 

 Quantitative FTA2 (deductive) 

 Quantitative ETA4 (inductive) 

 Markov models(inductive) 

 Reliability Block Diagrams(deductive) 

1
FMEA : Failure Mode Effect Analysis 

2
FTA : Fault Tree Analysis 

3
HAZOP :  HAZard and OPerability analysis 

4
ETA : Event Tree Analysis 

Table 1 : Example of recognized analyzes methods listed by ISO26262 [1] 

Additionally, the safety analyses might also contribute to the identification of new functional or non-
functional hazards not previously considered during hazard analysis and risk assessment. 
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6.4 Considered safety analyzes in WT3.3.1 (D331b)  

As explained in chapter 5.1, the scope of WT3.3.1 is a first step to define the concepts needed for 
fault/failure propagation, documented in the D331a deliverable. In a second step, it is to define a 
tool specification for most relevant safety analysis methods that will permit to visualize and analyze 
the results from the fault/failure propagation (D331b deliverable). 

Nevertheless to be coherent with fault/failure propagation, it was decided to select the most 
relevant safety analysis methods during first step and give the results in D331a deliverable. 
 

6.4.1 Assessment of most relevant safety analyzes methods using criterion   

The different methods were assessed using different criterion as shown in the table hereafter: 

YES, NO criterion when answer is sure 
Maybe : theoretically possible but never seen 
Limited : when it is not fully capable  

Inductive methods Deductive methods 

FME(D)A ETA Markov FTA RBD 

Capability to address ISO26262 requirements concerning qualitative / quantitative safety analyzes. 
Does this method allow performing 
qualitative and quantitative analyzes? 

YES 
Qualitative FMEA 

Quantitative FMEDA 
YES YES YES YES 

Can this method be performed at different 
architectural levels? YES YES 

YES theoretically 

but very complex at 
low level 

YES YES 

Can this method address systematic failure? YES 
FMEA 

YES YES YES but 

Low interest 
YES but 

Low interest 
Can this method address random failure? YES YES YES YES YES 
Can this method be used to calculate 
architectural metrics (SPFM & LPFM)? 

YES 
FMEDA 

Maybe  
but not direct 

Maybe but not 

direct  

Maybe 
but not direct 

Maybe 
but not direct 

Can this method be used to estimate the 
residual risks of safety goal violation 

Yes Failure Class at 

part level or estimation 
from FMEDA 

Maybe but not 

direct 

Maybe possible 

but not direct 

YES 
PMHF 

Maybe 
but not direct :PMHF 

Does this method support analysis of 
dependent failure? 

YES YES YES YES YES 

Automation capabilities 
Does this method allow mapping with 
architecture? NO NO NO 

State machine 

Limited 
Possible but 
restrictions 

Limited (no direct 

mapping when 
representing failures) 

Can local analyses be generated from 
models?  YES 

Maybe but not 

direct because of 
success? 

Maybe If state 

machine behavior 
defined in blocks 

YES YES 

Can this method be transformed into another 
method without loss of information? 

YES 
ETA but only for failure 
not success, FTA for 

cutset 1  

Limited (only 

failure not success) 
FMEA, FTA with 

cutset 1 only 

NO 
Only input for other 

methods 

YES 
FMEA for cutset 1, 

RBD 

YES 
FMEA for cutset 1, FTA 

Can global analysis be build from local 
analysis? YES 

Maybe but 
not direct 

NO 
Make no cense 

YES 
Transfert gates 

YES 

Can this method be coupled with another 
analysis? 

YES 
FTA, RBD event 

YES 
FTA, RBD, Markov 

YES 
FTA, RBD; ETA  

YES 
FMEA, ETA events 

YES 
FMEA, ETA events 

Post-processing capabilities for results 
Can this method allow identifying Single 
Point Fault? 

YES YES YES YES YES 

Can this method allow identifying Safety 
Mechanism covering a single point Fault? 

YES 
FMEDA 

YES 
Safety Mechanism is 

a barrier 

YES 
Safe state transition 

YES 
AND Gate 

YES 
Adding of parallel 

element 

Can this method allow identifying Latent 
Fault? 

YES 
FMEDA 

Maybe but not 

direct  
YES 

Safety Mechanism 
failure state 

YES 
but not direct 

YES 
but not direct 

Does this method allow understanding and 
visualizing cut-sets? 

YES 
Only cutset 1 

YES 
Only cutset 1 

NO cutset 

computation YES YES 

Does this method allow understanding and 
visualizing failure sequence? 

YES YES YES YES Maybe but not 

direct  
Can this method be configurable to analyze 
and display multiple failure analysis? NO NO YES 

YES 
Cutset analysis and 

display 

YES 
Cutset analysis and 

display 

Does this method help indentifying path 
analysis, from Failure mode to end effect, 
and respective involved elements? 

Limited 
For identification of 
involved elements 

Limited 
For identification of 
involved elements 

Limited 
For identification of 
involved elements 

YES YES 

Table 2 : Synthesis table of assessment of most relevant safety analyzes methods using criterion 
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The goal here was clearly not to fully describe all the safety analysis methods, because there are 
well known and already described in [2] and [3] , but to investigate which are the most relevant for 
the tool specification D331b.  

The considered analysis methods in D331b shall permit, first to answer most of ISO26262 
requirements concerning qualitative and quantitative analyzes, then to allow semi-automation to 
help users to generate safety analyzes. It shall finally offer good post-processing capabilities to 
analyze results and identify weaknesses. 

 HAZOP and Ishikawa technique are more qualitative methods for daily life and will not be 
considered in the tool specification D331b. They are very limited to address ISO26262 
requirements concerning safety analyzes and are not very compatible with tooling. 

 Failure Mode and Effect Analysis (FMEA) is an example of inductive technique, as it starts from 
known causes and explore possible consequences. FMEA is a well known and accepted 
technique in the automotive industry. FMEA Analyses in ISO26262 are generally conducted in 
two steps: 

1. Qualitative analysis during which failure modes and their effects are analyzed. 

2. Quantitative analysis, when dealing with HW random faults, called FME(D)A (Failure Mode 
Effect and Diagnostic Analysis). FME(D)A permits to calculate the architectural metrics (Single 
Point Fault Metrics and Latent Fault Metrics) by introducing safety mechanisms with their 
diagnostic coverage (detection rate of the fault) stopping or mitigating the fault propagation as 
proposed in the ISO26262 Part 5 Annex E [1].  
 
Therefore, even if full automation is maybe not reachable, FME(D)A is a serious candidate for 
the tool specification D331b.  

 

 Event Tree Analysis (ETA) is a second example of inductive technique for identifying and 
evaluating the sequence of events in a potential accident scenario (failure and success) 
following the occurrence of an initiating event. This analysis technique is known in the 
automotive industry but not a current practice as compared with FMEA. It can be used 
potentially to study a specific event and to demonstrate and visualize the effectiveness of a 
safety mechanism (seen as barrier). It can permit to quantify results but would not permit to 
calculate the architectural metrics directly. Moreover the automation capabilities seem reduced.  

 
Therefore the interest is limited and do not present additional value compared to FME(D)A. It is 
not a good candidate for the tool specification D331b. 

 

 Markov modeling is a third inductive technique suitable when the dynamic behavior of the 
system is needed to be studied. It can also be used to model complex interactions within the 
system when failure of a component can influence behavior of other components. In these two 
cases, traditional techniques such as FMEA, ETA, RBD or FTA are not relevant.  

 
Nevertheless Markov analysis technique does not permit to address all qualitative and 
quantitative analyses required by ISO26262. It has limited automation capabilities and requires 
high skills for users for results post-processing. Other kinds of methods will be anyway needed 
and for all these reasons, and therefore it will not be addressed in the tool specification D331b. 

 

 Fault Tree Analysis (FTA) is a deductive analysis technique that starts from known effects and 
explore possible causes (sometime described as “Top Down” approach). FTA is generally 
qualitative in a first step, and then quantified in a second step.  FTA is composed of events and 
logical event connectors (OR-gates, AND-gates, etc…). 

Possible results from the analysis are the listing and visualization of all combination of events 
(cutset) with their importance factor leading to the top event failure and the probability that this 
critical top event will occurs during a specified time interval (when dealing with HW  random 
faults).  
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FTA is a well known and accepted technique in the automotive industry. It can be used to 
address most of the ISO26262 requirements concerning safety analyzes, and can offer good 
post-treatment capabilities. Therefore, even if FTA generation seems difficult to be fully 
automated, FTA method is a serious candidate for the tool specification D331b. 
 

 Reliability Block Diagram (RBD) is another kind of deductive analysis technique known in 
automotive but not a current practice. RBD performs the system reliability and availability 
analyses on large and complex systems using block diagrams to show network relationships. 
The structure of the reliability block diagram defines the logical interaction of failures, within a 
system, that are required to sustain system operation (success oriented).  

 
A lot of people have the preconceived idea that Reliability Block Diagrams always map with the 
physical arrangement of components in the system but it is not true. In certain cases when 
elements can have several failure modes, it is not true as illustrated below: 

 
C1 and C2 are two capacitors in serial in an electrical circuit 

Capacitors have each two failure modes : Open Circuit / Short Circuit 

 

 
Representation of Capacitors Open Circuit  

Output will be lost if either one of the 
capacitors goes open circuit 

Representation of Capacitors Short Circuit 

Output will be lost if both capacitors 
goes short circuit 

Figure 5: Example of RBD for 2 capacitors with several failure modes 

To evaluate an RBD diagram there must be only one failure mode represented for each 
element. For elements with more than one failure mode, separate RBD diagrams must be 
drawn, one for each failure mode to avoid dependency problems. As in our systems, there is 
always more than one failure mode per element, the direct mapping between physical 
architecture and RBD will be unusual. 

 
Therefore the interest in Reliability Block Diagram is limited and do not present additional value 
compared to Fault Tree Analysis. It is not a good candidate for the tool specification D331b. 

6.4.2 Final choice for D331b    

The ISO26262 (see [1]) required that inductive methods have to be used whatever the criticality 
(ASIL A to ASIL D) and deductive methods for ASIL C and ASIL D as shown in the table hereafter: 

 ASIL A ASIL B ASIL C ASIL D 

Inductive 
methods  

Required Required Required Required 

Deductive 
methods  

Nothing required 
or recommended 

Recommended Required Required 

Table 3 : Type of analysis methods required or recommended by ISO26262 [1] 
 
Therefore for critical systems, we need to select at least one inductive method and one deductive 
method. Considering the results from chapter 6.4.1, for the tool specification D331b, as best 
comprise, the methods proposed will be derived from FME(D)A for inductive technique and FTA 
for deductive technique. 
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7 Problematic of evaluating malfunctioning behavior in distributed developments 

 

7.1 Illustration through an example 

As illustrated in Figure 3 and Figure 4 from chapter 6.2, a lot of people think that when we 
analyzed a fault in a system, we always investigate if this fault can potentially violates a safety 
goal. In a simplified system such as described in ISO26262 Part 5 Annex E [1] made of a single 
ECU with sensors and actuators, this is possible, but in reality systems are often made of several 
ECUs, and therefore investigations are much more complex.  
 
Moreover, most of the time, there is one system responsible (e.g. OEM), and the different ECUs 
are developed by different Tier 01 suppliers. Tier 01 suppliers themselves can buy SW or HW 
development from a Tier 02 supplier. It is a so called distributed development. In this context, the 
propagation of a fault in a HW element developed by a Tier 02 up to the violation of a safety goal is 
not so obvious. 
 
To illustrate the problematic of distributed development, let us take the example of a system whose 
desired function should consist in switching ON/OFF the front lights (low beams) of a car. If 
someone is driving by night in a dark area (operational situation) and the front lights are spuriously 
lost (malfunctioning behavior leading to hazard), it can be easily understood that it become an 
hazardous event  (ASIL B) for the driver, the other occupants of the car and potentially also people 
outside of the car.  From the hazard analysis and risk assessment, safety goal corresponding to 
this hazardous event will be defined as our top level safety requirement. As this stage, the system 
is considered as a “block” box (we do not know how the desired function will be realized). 
 
Then the system responsible will defined first a functional architecture (not shown here) which will 
quickly lead to a preliminary architecture as shown hereafter that can realize the functional 
architecture. Of course, there is not only one unique technical solution to realize the functional 
architecture and therefore variants are possible. 
 

 

 

Figure 6: Example of Preliminary Architecture of front lighting switch system 
 
In this example, the driver can activate a switch (ring) on a lever and set ON/OFF the front lights 
(low beams). The corresponding electrical information is acquired by the Top Column Module ECU 
which then elaborates a Command that is sent on the CAN Bus. The Body Control Management 
ECU receives the Command from the CAN Bus and executes it. 
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Based on a preliminary architecture as defined in Figure 6, the system responsible will have to 
identify, using relevant safety analyzes, the different malfunctions on the output of the components 
of its system that could propagate within the system and could violate the safety goal. 
 

 A malfunction of the output of the switch (e.g. erroneous value: OFF instead of ON) will be 
propagated to the Top Column Module ECU that will send an OFF value on the CAN Bus. Then 
the Body Control Management ECU will receive the erroneous value and will switch OFF the 
front lights. The initial switch malfunction will finally propagate without safety mechanism and 
lead to the violation of the safety goal. 

 

 In the same manner, a malfunction of the output of the Top Column Module ECU (e.g. 
unexpected OFF command sent on the CAN bus) will be received by the Body Control 
Management ECU that will switch OFF the front lights. The initial malfunction will finally 
propagate without safety mechanism and lead to the violation of the safety goal. 

 

 In the same manner, a malfunction of the output of the Body Control Management ECU (e.g. 
unexpected OFF command execution) will switch OFF the front lights. The initial malfunction will 
finally propagate without safety mechanism and lead to the violation of the safety goal. 

 

 And also if both front light modules could have malfunction at the same time, it will lead to a loss 
of front lights and will lead to the violation of the safety goal without safety mechanism. 

 
In this simple example, a safety mechanism can be implemented in the Top Column Module ECU 
to detect a switch malfunction. It will be translated into one functional safety requirement: 
TCM-FSR_001: TCM shall send a light parameter “Invalid” on the CAN bus in case of malfunction 
detection of lighting switch acquisition: ASIL B 
 
And also to be sure that it does not lead to a loss of light, another functional safety requirement is 
needed for the Body Control Management ECU. 
BCM_FSR_001 : When ignition switch is ON, BCM shall switch light ON if it receives a light 
parameter “Invalid” on the CAN bus : ASIL B 

Loss of 
front  

lights 

OFF Command 
sent on CAN Bus 

Switch OFF of 
Front lights 

Erroneous value 
OFF instead of ON 

Loss of 
front  
lights 

Unexpected OFF  
Command sent on  

CAN Bus 

Switch OFF of 
Front lights 

Loss of 
front  

lights 

Unexpected Switch 
OFF of Front lights 
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That means that finally a loss of front lights in our system could mainly be due to a malfunction of 
the output of the Top Column Module ECU that could spuriously send an OFF command on the 
CAN Bus OR due to a malfunction of the output of the Body Management Control ECU that could 
spuriously switch OFF the front lights OR simultaneous malfunction of both Front lights. 
 
As the criticality of the safety goal violated in this example is ASIL B, ISO26262 recommends only 
some metrics targets as shown in the Table hereafter: 
 

 ASIL A ASIL B ASIL C ASIL D 

Single Point Fault 
Metric (SPFM)  

Nothing required  
or recommended 

≥ 90% 
Recommended 

≥ 97% 
Required 

≥ 99% 
Required 

Latent Fault Metric 
(LFM)  

Nothing required  
or recommended 

≥ 60% 
Recommended 

≥ 80% 
Recommended 

≥ 90% 
Required 

Residual risk 
Metric 

Nothing required  
or recommended 

< 10
-7

 / h 
Recommended 

< 10
-7

 / h 
Required 

< 10
-8

 / h 
Required 

Table 4 : Metrics allocation required or recommended by ISO26262 [1] 

 
And if the system responsible (most of the time the OEM) decides to not perform the system 
development itself, but uses developments distributed to several suppliers (Tier 01). In this 
situation, it would be necessary to define the different interfaces between elements of the systems, 
as well as the critical malfunctions with associated allocated metrics.  
 

 
 

Malfunction of output of the Top Column 
Module ECU to control : 

TCM-F002-MF001 : Unexpected sending of 
OFF parameter on CAN Bus : ASIL B 
With max. 5e-8 /h as residual risk : SPFM = 
90% ; LFM = 60% 
Could be also a functional safety 
requirement 

Malfunction of output of the Body control 
Management ECU to control : 

TCM-F002-MF001 : Unexpected switch OFF 
of both front lights : ASIL B 
With max. 5e-8 /h as residual risk : SPFM = 
90% ; LFM = 60% 
Could be also a functional safety 
requirement 

 
Reliability 
targets : 1e-6/h 
for each front 
light 

TCM Supplier : Valeo BCM Supplier : Continental 
Front Light 

supplier : Other 

Figure 7: Example of requirements allocation from OEM to suppliers in a distributed development 
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Therefore, when as in the example, the Top Column Module ECU supplier receives the working 
specification from the OEM, it will have to implement safety mechanisms in its product. These 
safety mechanisms shall stop or mitigate the propagation of SW and HW faults/failures leading to 
specified malfunctions outside of its component perimeter as shown hereafter: 
 

 

Figure 8: Example of component perimeter known by a Tier 01 in distributed development 
 
And at this level, we will never investigate if it leads to a violation of a safety goal because the 
system behavior is under OEM responsibility and is not fully known by the supplier (Tier 01).   
 
Of course, when safety analyzes are performed inside the component to be developed and when 
new malfunctions propagating outside are discovered, the system responsible shall be immediately 
informed in order to analyze impact at higher level. 
 
To manage such scenario, a generic contract-based approach is proposed in chapter 7.2 in order 
to improve the formalism of expected behavior in distributed developments. 
 
 

7.2 Contracts Approach in distributed developments 

Contract-based design is a methodology that allows compositional reasoning. The methodology 
can be applied for different viewpoints like functional and/or dysfunctional behavior. It allows formal 
specification and analysis of component characteristics for safety-related systems. Component 
specifications given by contracts explicitly distinguish between promised behavioral characteristics 
which are guaranteed as long as behavior assumed for the component context hold. Assumptions 
and promises of contracts can be formally described e.g. by using a pattern-based specification 
language. These patterns allow the specification of safety-requirements which guarantee safety-
concepts for components under the assumption that specific combinations of defined failures do 
not occur. Combination of contracts can be analyzed for a set of sub-components in a virtual 
integration test on implying contracts of a parent component composed by these sub-components. 
 
 

7.2.1 Contracts Historical background 

Many of the concepts for contract-based component design are results of the SPEEDS project 
(Speculative and Exploratory Design in Systems Engineering, EU, 6th Framework) [4], and draw 
on classic research on compositionality as well as more recent ones. Further activities regarding 
contract-based requirements engineering using a formal pattern-based requirements specification 
language (RSL) were performed within the project CESAR (Cost-Efficient methods and processes 
for SAfety Relevant embedded systems, ARTEMIS JU) [5].  

  

Unexpected sending of OFF 

parameter on CAN Bus  

Malfunction to control: 
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7.2.2 Contracts basic description 

Contract based modeling was developed in order to meet the requirements of cooperative 
systems. The idea is simple; a system is described by a component as depicted in Figure 9. This 
component is decomposed into sub-components as parts of the component which define the 
elements of the system. Each component part is a system element that is responsible 
to provide a number of well-defined services. However, in order to do so they need to rely on the 
activity of other partners (i.e. they have assumptions on the behavior of the environment in which 
they are embedded). In turn they provide guarantees to other partners about their own behavior. 
Contract based specification methods address these issues by distinguishing what a component 
relies on and what it delivers. This kind of specification is especially useful when no actual 
implementation exits, for example during early development phases when only requirements and 
their relations are known, and can be used to establish the preliminary architecture. Due to locality 
properties of the contracts it is possible to evaluate the impact of the overall architecture layout on 
the different system requirements. 
 
Having a complete and well-defined description of the interface of a component enhances the 
development of large systems by providing means that improve scalability, compositionality and 
abstraction. Re-use of components and design patterns, developing libraries of design components 
and better support for using COTS (Components Off The Shelf) are use-cases that benefit from 
this approach. Existing designs can be easily changed in order to adapt for new requirements or to 
support product family development.  

 

Figure 9: SPEEDS Contract based specification of interface properties [4] 

 
Furthermore contract based modeling provides the necessary infrastructure for efficient 
compositional analyses, thus avoiding many of the complexity problems otherwise associated with 
large models. Evaluating the impact of different design choices and alternative implementations of 
a component helps in avoiding unnecessary cycles in the design process. Compatibility of 
components can already be tested during the early design phases. 

Contract based modeling can be started early in the design process and supports an incremental 
design evolution with gradual improvements going from abstract models towards more and more 
refined ones. It enables the specification of well defined interface between components so that:  

 each component (possibly collections of components) is associated with a contract that 
specifies the interface the component uses to interact with the environment 

 contracts consists of a number of assumption-commitments pairs  

 the implementation of each component can be verified on its own, formal verification 
techniques can be used to validate that the component fulfils its contract 

 

Contract 

Part1: 
Environment 

 
Part2: 

System 

Environment 

 

System 

System Boundary 

Contract 
(System View) 

Part1: 
Assumption 

Part2: 
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 compositional analysis of system-level properties can be based entirely on the contracts 
of the individual components, so that issues of complexity and heterogeneity that arise 
from detailed implementation can be avoided 

 functional aspects of the system as well as non-functional properties, such as safety 
and reliability, can be addressed. 

In the SPEEDS methodology [4] a virtual integration test composes the contracts and then 
verifies whether this assembly is consistent with the contracts of their parent component.  This 
is the fundamental building block underlying the compositional analysis that ensure that the 
decomposition step was correct, in the sense that the defined sub-components will work 
together and satisfy the requirements of their parent component. 

 

Figure 10: Virtual Integration of Heterogeneous Rich Components (HRC) [4] 

 
Based on contracts, in particular two kinds of analyses are part of the virtual integration: 

  Compatibility Analysis: This analysis verifies whether the assumptions and 
promises of interconnected respectively neighboring components are compatible 
with each other. 

  Entailment Analysis: This kind of analysis, also known as dominance check, 
composes the contracts of a set of interconnected components and then verifies 
whether this assembly is consistent with the contracts of their parent component. 

 

In the case of entailment, one can say that the contracts of the sub-components imply the 
contracts of their parent component. Both analyses together enable the developer to ensure that 
the decomposition step was correct, in the sense that the defined sub-components will work 
together and satisfy the requirements of their parent component, provided that the sub-
components satisfy their own contracts. After the incremental verification and validation step, all 
derived sub-components are sufficiently characterized and can be designed independently. The 
developer now has the alternatives to iterate the decomposition step again, implement the sub-
components or select an existing implementation from a library. The developer must ensure that 
any implementation that is provided, either newly developed or selected from a library, satisfies the 
sub-component„s contracts.  
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7.2.3 Contracts basic elements 

The following chapter will give an overview of the basic elements considered by contract-based 
component design. Contracts are specifications for components with promised characteristics for 
an assumed context of that component 

 

Contract 
A contract is a component-specification in terms of promised component characteristics, which 
must hold provided that assumed characteristics of the component‟s environment are fulfilled. 
Such a contract-based specification therefore distinguishes between assumptions on the usage 
context of a component and promised characteristics for the specified usage context. This is the 
basic principle of contract-based design approach in the SPEEDS project and of the HRC meta-
model specification [6]. Contracts have two kinds of assertions, namely assumption and 
promises. These assertions can be described informally or in a formal way e.g. by using a pattern-
based requirement specification language (RSL).  

 

Promise 
The promise describes guaranteed functional and non-functional characteristics in a contract-
based specification. The promise of a contract, assigned to a component, has to hold provided that 
the assumptions are satisfied. If an assumption is not fulfilled then the promise does not 
necessarily hold. 

 

Assumption 
An assumption describes the assumed design environment for a contract-based specification. 
Assumptions characterize the allowed usage context for a component as well as specific use 
cases within the allowed usage. If a component is used accordingly to its assumptions, it will 
guarantee the behavior specified by the promise. 

 

Component 
A Component is a reusable architectural element. It defines a set of interfaces which are 
addressed by the contracts assigned to the component. If a component is considered as a black-
box then only its interfaces and its contracts are known. Otherwise a component can be 
decomposed into a composition of sub-components. Each sub-component can have its own 
contracts. In a clean architecture design the combination of contracts assigned to the sub-
components implies the contracts of the parent component.  

 

7.2.4 Contracts Failure Description 

Pattern-based Safety Contracts are a means to define fault containment properties for a system's 
safety concept. The patterns describe how failures are contained and evaluate the impact on the 
top-level safety requirements. This kind of analysis can be done very early in the design process 
using abstract representation of the component and will be used to derive additional safety 
requirements. With the pattern presented in this chapter it is possible to create a specification of 
the containment or propagation of faults. 

The main concepts used for this pattern are failure-condition and a combination of failure-
conditions in an expression. With these concepts it is possible to describe faults and failures as 
failure-conditions and combinations thereof that are assumed or guaranteed not to occur. The 
pattern can be used to describe the combinations of faults in an assumption and combinations of 
failures or malfunctions in a promise of a safety-contract. As long as the specified assumption 
holds the non-occurrence of the specified failure is guaranteed for the system. Yet, the 
combination of fault occurrences that is assumed not to occur is a violation of the assumption. If 
the assumption is violated then non-occurrence of the failure cannot be guaranteed by the system. 
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The following attributes are used in the pattern: 

 Failure-Condition 

 Degradation modes 

o A mode expression consists of a mode variable, a mode name and a relational 
operator(“= =“, “!=“) 

o Example: DM==normal, DM != detected 

 Expression, Expression Sets 

o An expression is either a failure-condition or a mode expression 

o An expression set is a set of expressions 

o Example: {fail1, fail2, fail3 during dm=normal} 

 perm() 

o If this operator is applied to an expression, the expression holds for all future states 
of the path 

 

Pattern 

S1: 

none of {<expr-set1>, …, <expr-setn>} occur 

This pattern is used to describe the traces that are accepted / not accepted. Any trace that 

contains all elements of one expr-set is not accepted by the pattern. 

 

Example Pattern: 

 none of {{f1,f2}, {f3,f4}} occur  

Figure 11: Example of failure pattern 

 

7.2.5 Contracts Example 

A contract is typically a requirement with a specific structure with an assumption and a promise. 
The concept of contracts makes assumptions about context explicit, which allows assigning 
responsibilities in the development processes. Typically contracts are derived from top-level 
system requirements that may be captured in external requirements management tools like e. g. 
DOORS. Keeping those requirements separate from an architecture model may be required by the 
certification processes. 

An example safety contract is the following:  

 

Assumption:  none of {{f1,f2}, {f3,f4}} occur 

Guarantee:  none of {{f0}} occur 

 

The safety pattern, used in the assumption and guarantee, describes scenarios that are 
characterized by sets of failure-conditions, which are not allowed to occur. Informally the above 
contract specifies the required fault containment properties, it states that any combination of 
failures that do not involve (f1 AND f2) OR (f2 AND f3) will never lead to a situation where failure-
condition f0 can occur. 
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7.2.6 Contracts and Loop management 

A typical issue in system design is the management of control loops. The output of one component 
is an input of a component that is connected upstream. A failure resulting from the loop behavior 
(e.g. oscillation) is not detected locally by the components. The combination of the component 
behaviors connected in the loop leads to failure of the system to which the components are 
composed. This issue will later be shown for HiP-HOPS (see chapter 8.1.6) and for Altarica (see 
chapter 8.2.6). Contract-based specifications have semantics defining allowed traces of a system‟s 
behavior. According to Hungar [7] the trace semantics permits to directly relate behaviors and 
specifications: If all traces of the behavior of a component adhere to its specification, the 
component is correct. A system‟s implementation that consists of a composition of sub-
components connected in a loop can have a behavior with traces that are allowed by a contract-
based system specification. If the traces are allowed, then the implementation with the sub-
components connected in a loop entails the system contract and is correct from the system‟s point 
of view. Whether the actual behavior of a system adheres to the specification is subject to an 
analysis.  

7.2.7 Contracts and failure propagation mitigation with safety mechanism 

The pattern-based safety-contract approach allows specifying a safety concept in terms of failure 
modes, failure rates, their propagation, and the usage of counter measures expressed in 
assumptions and promises. This method allows verifying decomposition and integration of safety 
concepts. The safety concept can be seen as requirements on safety that do not want to force a 
special implementation but requires a defined behavior regarding failure propagation. Typical 
requirements are the non-existence of a single-point-of-failure. In particular the safety-modes used 
for stating temporal properties between patterns do not have a direct relation to the 
implementation.  

A safety specification can already include partial details about countermeasures like voting or 
validity checks to realize required fault containment. Expressing such elements is in particular 
important for verifying if the solution that has been created by a supplier still fits into the overall 
safety concept. Countermeasures can be seen as a gateway between functional behavior and 
safety argumentation. 

When a safety specification is formalized it is important to distinguish between the assumptions 
under which a safety concept has to hold and the promise what a component – that later will 
implement this specification – shall do to keep the system safe. This principle enables the supplier 
to build a system without having to communicate with the integrator on an informally ambiguous 
way. E.g. a failure rate for failure modes on a component can only be met by an implementation if 
there is knowledge about the failure rates of propagated failure modes on the input Ports of the 
component. Same applies for argumentations not taking failure rates into account: The non 
existence of a failure mode on a port can only be shown under the assumption that only a known 
number of faults can occur at the same time. 
  
In order to express the relationships between the failure modes and the counter measures, thus 
implementing a technical safety concept, formalism is needed that allows the statement of the 
assumptions as well as the promises in a semantically well defined and unambiguous way. For a 
pattern-based specification of safety-requirements only few patterns are needed to define error 
propagation and counter measure functionality. 
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There are two main scenarios where completeness and consistency of a safety specification needs 
to be checked:  

 On the one hand if the OEM refines a system to distribute the sub-parts to one or more 
suppliers. In this case is important to prove that the refinement still satisfies the upper level 
safety goals.  

 On the other hand a supplier can offer a solution (that could also have different 
assumptions as actually needed in the development process) that refines the OEMs view 
on the system. In this case it is important to prove that this externally developed component 
fit into the already existing component structure and the top-level safety goals are still 
satisfied. 

 
 

7.2.8 Conclusions on Contracts 

Contracts can be used to specify and analyze all kinds of safety-requirements required by the 
ISO26262 in a formalized way [8]. The contract methodology allows the specification and analysis 
of formal safety-requirements including failure propagation and mitigation with safety mechanism. 
Safety-contracts can be used to define combinations of faults for which the occurrence of a failure 
shall be excluded. 
 

The correct implementation of a system‟s safety contracts, dealing with faults or failures to be 
excluded, is subject to a safety analysis. Contract-based methods like entailment or compatibility 
analysis can be applied. Another possibility is to perform safety analyses generated by fault and 
propagation languages such as HiP-HOPS and AltaRica as seen in chapter 8.  

 

The approach proposed in the SAFE extension for fault and failure propagation in chapter 10, will 
be to extend EAST-ADL to perform such contract mind description, and to define failure 
requirement for failure propagation language as implemented in D331b next document released.  
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8 Fault and Propagation language overview and considered method in WT3.3.1 

The following chapters will describe an overview of the two most interesting model based and 
safety analysis based methods as state of the art. Both of them provide a fault and propagation 
language. 

8.1 HiP-HOPS 

“HiP-HOPS” as Hierarchically Performed Hazard Origin & Propagation Studies, is a safety analysis 
methodology that allows automating generation of fault trees for fault tree analysis (FTA) and for 
failure mode and effect representation (FMEA) constructed from system topological models 
annotated with respective component failure data. 
 

8.1.1 HiP-HOPS Historical background 

The “Distributed, Reliable and Intelligent Systems” research group from the University of Hull in 
United Kingdom has been intensively developing novel techniques and tools supporting the quality 
and dependability analysis, optimization and improve testing of highly critical system in various 
industries such as avionic, nuclear plan and process industries. 

Since the last decades, the DRIS [9] team builds important contributions to HiP-HOPS techniques, 
with definition of novel algorithms for bottom up dependability analysis via automatic synthesis of 
Fault Trees and Failure Models and Effects Analyses (FMEAs). They also defined a method for 
temporal logic that enables assessment of the effects of sequences of faults in Fault Tree Analysis 
(FTA) called Pandora [10]. HiP-HOPS methodology can be applied on any type of system design, 
modeled as a topology of any type of component composed to build a system.  HiP-HOPS defines 
semantic to capture the annotation of appropriate failure description of component and their local 
effects, and computed propagation of the failure in the system based on the relation defined in the 
topology of the system. Then it allows automatic generation of common safety analysis like Fault 
Tree Analysis and Failure Modes and Effects Analysis (FMEA). Different HiP-HOPS prototypes 
have been implemented in tools like Matlab Simulink and SimulationX by ITI GmbH. 

HiP-HOPS was adopted by automotive research consortium of European project (ATESST, 
ATESST2, MAENAD), as error modeling extension integrated into the EAST-ADL standard (as the 
architecture description language for design of vehicle control systems). 

In 2011, the HiP-HOPS software tool was commercially launched by ITI GmbH, a CAE software 
house and the author of the SimulationX tool, now integrating HiP-HOPS perspective and toolset. 
In addition, HiP-HOPS licenses have already been sold to large engineering companies which 
include Toyota, Honeywell, FEV automotive and ALL4TEC. 

8.1.2 HiP-HOPS basic description 

HiP-HOPS technique [11] is a safety analysis methodology based on compositional failure 
analysis, where the system failure models are constructed from component failure models using a 
process of composition. The component are modeled according to a dedicated HiP-HOPS failure 
semantic to represent component output deviation according internal failure and input deviation 
defined as logical Boolean equation (see next chapter Failure Description for large details) in order 
to represent the behavior of negative view (also called dysfunctional) of component (in opposition 
to the positive view representing the normal functional behavior).  

The failure behavior of each component is composed according to the component hierarchy and 
topology organization of the system. The failure propagation between components is then 
generated in order to automate and simplify standard safety analysis techniques, as depicted in 
Figure 12. This concept is today applied into the HiP-HOPS toolbox in order to build automatically 
Fault Tree Analysis and Failure Modes and Effects Analysis (FMEA). 
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Figure 12: HiP-HOPS methods overview for Fault Tree Synthesis 
 
The basic modeling of the HiP-HOPS tool is independent of any tool implementation. It has been 
defined according to an XML description in order to interact with the HiP-HOPS engine synthesis. 
The principle of HiP-HOPS synthesis is to work backward from system‟s outputs (or the hazard‟s 
definition) with combination of miniature component fault trees.  A typical miniature component 
fault tree would be the representation of the internal relation defining the component failure 
behavior. The top elements are its outputs deviation, the inputs deviation and internal failures 
represent the leaf nodes. The intermediate node would represent relationship of the various 
elements defined from the Boolean logic expression of the component failure (as failure data). It is 
equivalent to the manual capture of a fault tree of a component.  
 
The synthesis algorithm is working backwards through the model from system output, and then 
combining the miniature fault trees from components, and propagating the input/output relationship 
recursively within the trees relation. This could end to an error as a missing or incorrect relationship 
in failure class called dangling deviation situations. Information is available to highlight dangling 
situations and warn users about possible contradictions. This synthesis is performed using a 
mixture of classical logical reduction techniques, with application of logical rules to reduce complex 
expressions, and improved by application of more techniques, as the use of Binary Decision 
Diagrams (BDDs), to break down the fault trees into a simpler form. 
 
In addition, both qualitative (as logical view and cut-set analysis) and quantitative (numerical-
probabilistic based on unavailability formula capturing failure rate or repair rate of basic events) 
analyses are carried out from the fault trees. FMEAs are then built from extraction of cut-sets of 
first order that are rearranged. All results are displayed in HTML format as shown hereafter: 
 

 

Figure 13: FTA output view from HiP-HOPS toolset  
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8.1.3 HiP-HOPS basic elements 

The following chapter will give an overview of the basic elements managed by HiP-HOPS. Due to 
copyright and Intellectual property (IP) protection, it will not describe the exact XML format as 
language definition interpreted by the HiP-HOPS tool. This chapter will explain the concept 
element useful to be controlled in relation to an architecture language or to a failure language 
modeling. In addition the concept below has been used from ATESST project to perform 
transformation from EAST-ADLV2 elements to HiP-HOPS XML format for safety analysis. 
 
Model: 
It is the top level of the hierarchy encapsulating all elements for the analysis of an XML file. 
 
Hazard: 
It describes the top level failure of the system; it can be a list of hazards. It includes the failure logic 
of the hazard link to at least one output deviation of a component (see Failure description for more 
details on the syntax). 
 

System: 
It is a hierarchy of elements representing the system to analyze. It is composed of components and 
lines representing connection between components for failure propagation. Note that a system can 
be composed of systems.  
 

Component: 
It is the elementary artifact of the system hierarchy. Components include a list of ports for 
component communication that are referenced by lines for definition of propagation of outputs 
deviation. In addition Components include a reference to the field Implementation describing the 
definition of the expression of failure component behavior. 

Lines: 
This element represents the propagation link of the fault via the component port. It is composed by 
a list of connections being referenced by the component port. Optionally the connection can be 
directed to causal and non-causal relations. Furthermore a Line representing the connection can 
include a dedicated failure expression representing failure propagation on the line with the same 
semantic as Boolean expression for output deviation. Notice that this failure logic expression do 
not have explicit basic event, as intrinsic Lines failures, but failure relation between ports 
connected by the line. 
 
Failure Data: 
It represents the failure behavior of an implementation of a component. It is composed of basic 
events representing the intrinsic component failure behavior, of output deviation embedding the 
logic expression for the fault propagation through the output port of one component, and of 
exported propagation representing direct failure propagation, as for example used for hardware 
to software propagation (see description hereafter). 
 

Basic Event: 
This element represents intrinsic component failure behavior as systematic fault or random fault 
with possible quantified value for hardware failure rate. They are identified below in the failure 
expression as “Internal Failure” (see failure description chapter 8.1.4). 

 
Output deviation: 
It describes the logical failure of a component as Boolean logic expression that link cause as basic 
event and/or input deviation to the fault propagated through the output port of the component 
defined as a failure expression (see failure description chapter 8.1.4 for semantic description). It 
may include a tag to indicate, as an example for hazard, that the output failure is the top level 
failure. 
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Exported Propagation: 
It describes the logical failure for any element (such as allocation for example) as Boolean logic 
expression defines with the same semantic of output deviation. 

Furthermore, the syntax offers more concepts than listed above, as for example the concept of 
perspective capable to connect different view of system such as hardware and software, joined 
with a concept of allocation for multiple perspective and CCF for common cause of failure. A 
concept of implementation of component allows defining several implementations for component 
failure behavior and a field Optimization parameter permits to control an optimizer engine. 
Thanks to these advanced features and especially implementation and optimization concept, an 
optimizer is available in the solver to allow system exploration and ASIL decomposition based on 
alternative failure behavior [11]. 

 

8.1.4 HiP-HOPS Failure Description 

The failure logic expression is built with the following syntax: 

- Output Deviation = Internal Failures AND/OR Input Deviations 

- Operator XOR & NOT are provisioned but not yet supported in the expression. 

- Operand support also  

- A jump to an output deviation of a component in the hierarchy of the system 
defined by LocalGoto(output deviation). Possible jump out a system are possible 
with GlobalGoto. These two operands shall carefully be used as they induce 
inconsistency in propagation and may lead to HiP-HOPS engine error.  

- Line failure propagation represented as FromAllocation(propagation), where 
propagation is the name defined in the exported propagation field. 

This component failure shall be expressed as a set of expressions from the above syntax, 
capturing the deviation of each outputs deviation of a component. The input and output deviations 
are defined into different failure classes: 

 Omission failure means failure to provide the data, abbreviated as O  

 Commission failure for unexpected delivery of the data, abbreviated as C 

 Value data corrupted for design malfunction abbreviated as V, LV for low value and HV for 
high value  

 Timing failure of design as T with no temporal indication but simple tag, E for early and L for 
Late 

 Potentially any other classes that may be defined in XML using the correct schema. 

The syntax for the definition of input and output deviation is <Failure Class> - <Port name>, where 
Port name is the name of a port defined in the component. Finally the port can support parameter 
that can be addressed via the port name as - <Port name> - <Parameter> (O_out1-param1 = 
O_in1_param1). 

The HiP-HOPS propagator pattern requires one expression per failure class with a minimum 
expression defined below 

 O-out1 = O-in; C-out1 = C-in; V-out1 = V-in  

  
A proposal of expansion to describe complex functions has been proposed in [12]  with the concept 
of General Failure Expression that can be introduced in HiP-HOPS. This concept can be 
generalized for any improvement on the top of the HiP-HOPS XML format in order to bring a large 
context of extension of the failure expression and facilitate the definition of the failure propagation. 

The proposed General Failure Expression helps to abstract the above description with more 
generic expression of the component failure behavior. The concept of vector and operation has 
been introduced to support this extension. 
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The vector denominated FC represents all possible Failure Classes in the system model.  
Similar to it, all input and output ports, as well as parameters of a given port, can be generalized as 
respectively IP (Input Port), OP (Output Port) and PM (Parameter). 
 
It is also possible to define a subset of vector element, as for example failure class by explicitly 
defining the list of elements in brackets (as for example FC :{O,C}-out = Expression, representing 
only Omission and Commission of the list of failure class). In addition, it is possible to define 
exception in the vector element implemented by keyword EXCEPT and the list of concerned 
element in brackets (as for example FC EXCEPT {V}-out = Expression, representing all failure 
class except Value). 
 
The operator allows to applied specialized relation on vector of inputs and outputs (IP and OP) in 
the respect of the correct syntax of the propagation expression. The operator SAME allows to 
define propagation correspondence of inputs to outputs or inputs, as FC-out = SAME (FC)-in (a 
typical use case of application is a communication bus).  
 
Another operator ANY helps to represent a logical disjunction on input port as FC-out = FC-ANY 
(IP) (as for example O-out = O-ANY (IP) where all input port omission will be propagated to the 
output port similar to an OR between all ports). By extension, the logical conjunction of input port is 
defined with ALL (as for example O-out = O-ALL (IP) for summarizing an AND between all input 
ports).  
 
A voter operator MAJ for majority exists and is useful for redundant systems based on majority 
vote. The typical expression is O-out = O-MAJ(IP) assuming that for n inputs at least (n/2)+1 have 
to be omission to propagate the failure on the output. 

In combination to vector and operator to build complex expressions, the concept of instantiation is 
used for output generalization, like FC-OP meaning list of output failure deviation expression with 
O-out1, _O-out2, C-out1, C-out2… For input ports, the applied concept is the expansion, as O-ALL 
(IP) means a list of input ports expended in the same failure expression as O-in1 AND O-in2 
AND…An example can be: ANY (FC)-OP = SAME (FC)-ANY (IP) OR InternalFailure1 where for 
each failure class of the output port the failure propagation will be given from the same failure class 
of any input port or an internal failure. 
 
Furthermore one of the most important advantages of the above generalization concept is that it 
can provide background for object-oriented principles and can be reused in complex system by 
applying pattern templates and instantiation mechanisms. As for example, one may perform a 
“generic” component failure behavior defined by a name, and may overload the template by an 
additional failure expression.  

The implementations of all these mechanisms are application dependant and may be transparent 
to HiP-HOPS XML format. Generic Failure Expression and inheritance mechanism of the failure 
can created by a front end to capture the failure expression and then be pre-processed to generate 
existing adequate XML HiP-HOPS formalism. This concept of pre-processing can be applied to 
any newly defined concept to interface the HiP-HOPS format. 
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8.1.5 HiP-HOPS Example 

The standard use case description of HiP-HOPS is the valve component with “a” as input, “b” as 
output and valve flows from a to b being controlled by the command “control”. In normal operation, 
the valve is normally closed and opens only when the computer control signal has a continuously 
maintained logical value. 

See below the description of the malfunction of the valve. 

 

Failure Mode 
(as Internal failure) 

Description 
(as physical cause) 

Blocked e.g. by debris 

Partially Blocked e.g. by debris 

Stuck closed Mechanically stuck 

Stuck open Mechanically stuck 

Table 5 : HiP-HOPS Valve example 

 
The following failure description will then be implementing in the valve component (according to 
XML formalism not depicted here): 

Flow Omission : Omission-b = Omission-a OR LowValue-control OR Blocked OR StuckClosed 
Flow Commission : Commission-b = Commission-a OR StuckOpen OR HighValue-control 
Low Flow : ValueLow-b = ValueLow-a OR PartiallyBlocked 
High Flow : ValueHigh-b = ValueHigh-a 
Early Flow: Early-b = Early-a OR Early-control 
Late Flow: Late-b = Late-a OR Late-control 

 

8.1.6 HiP-HOPS and loops management 

HiP-HOPS can handle most logical propagation loops in the model by cutting the loop in a 
deterministic way for loop build with only one entry/exit point.  

Example 01 :  Let‟s imagine three components A, B, C that have basic events or internal failures 
IFA, IFB and IFC respectively connected to each other in a loop from C to A. 

 

Figure 14:  Loop example in HiP-HOPS 
 
The following propagation is built as a logical loop:  

Omission-A.out = Omission-A.in OR IFA 
Omission-B.out = Omission-B.in OR IFB 
Omission-C.out = Omission-C.in OR IFC 
// link 
B.in = A.out 
C.in = B.out 
A.in = C.out 

This produces a chain such A causes B to fail, B causes C to fail, and C causes A to fail, whereas 
a basic failure in any of the component will cause failure of all components. 

A 
A.in A-out IFA 

B 
B.in B.out IFB 

C 
C.in C.out IFC 
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In practice HiP-HOPS will cut the loop at the point where is starts to repeat. So assuming C is the 
output where the analysis begins, the loop is cut when we try to go back from C to A. When this 
cutting happens, HiP-HOPS creates a “circle node” to represent the cut. This has the logical value 
“always false” (i.e. c contradiction), so any cut set containing it is also always false and can be 
removed (as if this behavior can be turn off).  

So in this case the cut-set might be: IFA OR IFB OR IFC OR CircleTo[C] and the circle node would 
be removed from normal cut-sets. 
 
Example 02 : Another example is the diagnosis for calculation with respective A, B, and C 
components, respective basic events or internal failures IFA, IFB and IFC, with A having two inputs 
as in1 the input of the regulation and in2 the diagnose value controlled by the output of B (as 
diagnoses component). 

 
 
 
 
 
 
 

 

Figure 15:  Loop example with diagnosis in HiP-HOPS 
 

Omission-A.out = (Omission-A.in1 AND Omission-A.in2) OR IFA 
Omission-B.out = Omission-B.in OR IFB 
Omission-C.out = Omission-C.in OR IFC 
// link 
B.in = A.out 
C.in = A.out 
A.in2 = B.out 
A.in1 as basic event of the system 

 
This construction would cause a loop between A and B and the resulting cut-sets to be: IFB OR 
IFC OR IFA. As the loop generates a contradiction, the loop trough A.in2 would disappear. 
 
But in case of certain situation called “crazy loops”, mostly when the propagation loop has more 
than one entry/exit, this behavior becomes invalid, because cutting the loop for one entry affect the 
results of the loop being entered at a second point. This case is illustrated in example 03. 

Example 03: For example let‟s imagine a chain having 5 links numbered from 1 to 5. 

  

 

 

Figure 16:  Chain example with 5 links 

If you start at any point and move around the chain, you will always count 5 links before reaching 
your starting point (see Fig.16a).  

At one point, if you break the links (see Fig.16b), this affects how many links we can count before 
you reach the break. So, if we start at 3 and break the chain between 2 and 3, so we still count 5 
links as 3, 4, 5, 1, 2 before reaching the break. But if you start at 4, you will get only 4 links as 4, 5, 
1, 2. This is now inconsistent because it depends on where you start counting from. 
 

If this chain was propagating through a system and the links are the components or basic events, 
then we will have the same problem: where we choose to break the loop has an impact on the 

1 

2 

3 4 

5 

C 
C.in C.out IFC 

A A.in1 
A.out IFA 

A.in2 

B 
B.out B.in IFB 

1 
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3 4 

5 

(a) (b) 
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apparent causes of the failure, because when we enter in the loop at another location effect is 
different.   

In such scenario, HiP-HOPS is not able to break the loop and will just print out an error message. 
Since this situation represents a potentially contradictory logic in the model, the modeler has to 
solve this issue with a deterministic solution. 
 

8.1.7 HiP-HOPS and failure propagation mitigation with safety mechanisms 

One of the main goals of the safety analysis is to evaluate the efficiency of the safety mechanism 
in order to be able to mitigate the effect of a local fault and preventing the propagation of the error. 
For system application, the effect of the mitigation of a fault is to provide a protection that can be 
either a default value on the output usually called limp-home value, or an additional output control.  

As the concept of failure propagation methods in HiP-HOPS is based on failure classification we 
may consider defining a dedicated Failure Class to represent the mitigation on a component, by 
extension proposed as name LimpHome (LH). 

So, let‟s reuse the example 02 from chapter 8.1.6 based on regulation including diagnosis loop. It 
contains the respective components A for Acquisition, B for Diagnosis and Limp Home and C for 
Computation. Also the associated basic events as internal faults are IFA, IFB and IFC.  

 

 

 

 

 

 
Figure 17:  HiP-HOPS example with Limp Home 

Compare to the previous definition, a new class of failure LimpHome is introduced and the 
component description is as follows: 
 

Omission-A.out = (Omission-A.in1 AND Omission-A.in2) OR IFA 
LimpHome-A.out = LimpHome-A.in1 OR  LimpHome-A.in2 
Omission-B.out = IFB 
LimpHome-B.out = Omission-B.in 
Omission-C.out = Omission-C.in OR IFC 
LimpHome-C.out = LimpHome-C.in  
// link 
B-in = A.out 
C-in = A.out 
A-in2 = B.out 
A-in1 as basic event of the system 

 
Compare to the previous loop example, now the component B mitigates the fault on its input, as 
output of A, meaning that fault on its input is not propagated as an omission but as a limp home 
indicating that the diagnosis is performed. The omission on diagnosis component is only linked to 
its internal failure IFB, as Omision-B.in is removed by the mitigation. 

Through this basic example, we see that the loop is cut on the failure class Omission and ensure 
that failure class LimpHome is also not looped.  

C 

C.in C.out IFC 

A 
A.in1 

A.out IFA 

A.in2 

B 

B.out B.in IFB 
Limp 

Home 
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8.1.8 HiP-HOPS and ISO26262 

The following description identifies briefly where the HiP-HOPS analyzer may help to perform 
safety assessment in respect to the ISO26262 requirements.  

The main questions are concerning the level of architecture to which this methods can be applied 
and also if it can be used to demonstrate the effectiveness of safety mechanisms to eradicate or 
mitigate failures (systematic or random) toward failure propagation analysis. 

The natural matching of HiP-HOPS concept of component, port and line to the architecture 
description language may help to automate safety analysis at the different levels of architecture 
and provide results from traditional manual deductive and inductive methods in use today (as 
respectively FTA and FMEA).  

From ISO26262 perspectives, we may expect to perform safety analysis using HiP-HOPS at the 
following elements: 

- On the functional Safety Concept at the System architecture level. 

- On the technical Safety Concept mixing HW and SW architectural element. 

- On probabilistic metrics of hardware design, at least to help their construction. 

At low level of architecture like AUTOSAR software and hardware part implementation, it might be 
very difficult to define such elements with their associated properties and their influence into the 
overall system. Nevertheless from theoretical point of view it can be possible.  

 

As the objective of this document is to define overall methods, it will help to answer to this question 
or define relationship between actual or new methods and landscape of associated tools. 

 

8.1.9 EAST-ADL2 experiment with HiP-HOPS, limits and opportunities identified 

The ATESST2 project proposed an implementation of HiP-HOPS methods and transformation by 
mapping the concept of actual EAST-ADLV2 implementation to HiP-HOPS selected concept (see 
Figure 18). Notice that mapping may lightly differ from actual EAST-ADLV2.1 due to meta-model 
late change. 

  

Figure 18: ATESST2 HiP-HOPS versus EAST-ADLV2 mapping [11] 
 
This mapping is based on the Error Model defined in EAST-ADLV2, which is separated from the 
architectural design. This concept gives flexibility for safety assessment but induces more work 
during analysis pre-processing as all necessary failure elements from Figure 18 have to be 
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mapped or related to the architectural elements during model construction. As no 1:1 mapping 
concept is guaranteed, automation may be limited or complex to be defined. 

The multiple perspective capability of EAST-ADL has not been fully exploited in this project and it 
could be reconsidered in future as it might help to compose different components of the system. As 
safety mechanisms and coverage mechanisms are often mixed between hardware and software 
components, the setup of these features shall be carefully designed to allow this close relationship 
and failure propagation between hardware and software. 

The separation of failure class and output propagation with separate flows for the HiP-HOPS 
analyzer allows precise analysis but requires lot of binary equations to be captured. Thanks to the 
proposal of the General Failure Expression, Template and Generalization, and pre-processing, we 
may define failure semantics independent of the final HiP-HOPS implementation. It would allow us 
to define adequate failure semantics according to the phase of the analysis and to the level of 
details we want to achieve. 

 

8.1.10 Conclusions on HiP-HOPS  

First of all, preliminary safety analysis using mapping of failure class concept from HiP-HOPS to 
architecture model has been validated in ATESST2 based on prototype and UML domain model 
definition.  

From this initial methodology, several improvements easy to reach have been identified such as: 

 Generation of failure class from an above failure language syntax and the possible 
generalization/specialization of failure class concept, 

 Consideration of mitigation with a new failure class, 

 Separation of analysis software and hardware safety concept and then merge for an overall 
technical safety concept analysis based on plain feature of HiP-HOPS concept as 
perspective and exported propagation for hardware allocation (the architecture elements 
are present in the SAFE meta-model). 

 
HiP-HOPS derived methods based on Failure Class allows the analysis of formal architectural 
elements and fault models, from failure propagation and possible mitigation from safety 
mechanism.  

The analysis can be automated for a generation approach, where granularity of analysis for debug 
has to be specified in the tool interface specification.  

Final results are complete FMEA and FTA, allowing local view on component or system parts. 

 

 



SAFE – an ITEA2 project                                   D331a 

 2011 The SAFE  Consortium  38 (97) 

8.2 AltaRica 
 

8.2.1 AltaRica Historical background 

The AltaRica project started in 1997 at the Laboratoire Bordelais de Recherche en Informatique 
(LaBRI, FRANCE). It involved, since the very beginning, a strong partnership between academic 
laboratories and industries (among which Total and Dassault Aviation played a central role). The 
primary objective of the project was to give a formal basis to a reliability workbench and to study 
how reliability engineering and formal methods (model-checking) can be cross-fertilized. Quickly, it 
became clear that such a formal basis can be obtained only through a dedicated language. The 
first version of the AltaRica language was designed by the LaBRI team during years 1998-2000 
and G. Point's PhD Thesis [13]. This first version was strongly inspired by works done at the LaBRI 

on model-checking on one hand (with notably the model checker MEC [14]) and constraint logic 

programming on the other hand.  

In the early 2000, Dassault Aviation decided to create its own reliability workbench based on 
AltaRica (Cécilia OCAS). Severe restrictions were imposed on the language in order to make the 
compilation into fault trees tractable. With the same objective, ARBoost Technologies (now 
Dassault Systèmes), designed a simplified version of AltaRica. The idea was mainly to substitute 
constraint processing by flow propagation, hence transforming AltaRica into a Data-Flow language 
(and achieving substantial complexity saving). Only minor modifications have been done since 
then to the language, mainly through normalization of the clause "extern".  

8.2.2 AltaRica basic description 

The AltaRica Extended language targets model-based safety analysis. This assertion has a few 
implications: 

 AltaRica models are a vision of the real world systems that are oriented towards the 
tractability of safety analysis.  

 AltaRica Extended language allows the composition of hierarchical models.  

 AltaRica Extended language is oriented towards the definition of state machines in which 
transitions are guarded by data flows and events. The events can be both stochastic and 
deterministic. Stochastic events are the natural means to express random faults while 
deterministic events are the natural means to express systematic faults. 

 AltaRica Extended language, in order to allow the analysis of the consequences of a fault, 
allows the definition of both the functional behavior and the dysfunctional behavior.  The 
functional behavior is only defined in such a way that it defines the propagation of 
cascading failures from a failed component to components that are not necessarily crippled 
by their own faults.  

With this last restriction in mind, AltaRica Extended language only defines the functional and 
dysfunctional behavior of the system. It does not provide the tools that are required to simulate the 
system, nor to compute the cut-sets or sequences leading to a feared condition or a set of them. 
The main tools used for that are: 

Fault tree compilers; when fault tree compilation is possible, it is the most efficient way to obtain 
qualitative results (the cut-sets) and quantitative results (the probabilities of reaching a feared 
condition, the importance factors...). However, this technique is intrinsically limited to problems that 
match the tree structure. Dynamic systems, in which the order of fault occurrence matters, and 
looped systems (a tree is by definition an acyclic graph) are out of scope of traditional fault tree 
analysis. 

Sequence generators; sequence generators generate all the possible combinations/permutations 
of N faults, where N is an integer that is traditionally called “the order” of the sequence. In the 

file:///C:/Users/lq3/Documents/Safety/Development/Arboost/ref4/language.html%23ABC94
file:///C:/Users/lq3/Documents/Safety/Development/Arboost/ref4/language.html%23ABC94
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automotive industry, the fact that many practitioners only use FMEA demonstrates that N is 
generally at most 1 or 2, but rarely more. In aerospace industry on the other hand, as the concept 
of “safe state” for a plane in flight condition is less applicable, computations are often performed up 
to the order 4 or 5. For a system where 1 000 events are possible, this leads to millions of billions 
of simulations. As the order of sequences increases, the performance of these algorithms tends to 
be paramount. Sequence generators provide qualitative results (the sequence sets); these are 
used in quantitative analysis by fault tree tools, although this last step can be discussed. 

MonteCarlo simulators; MonteCarlo simulators generate a number of paths of evolution for the 
system in order to obtain average values for some parameters, typically, the probability to reach a 
feared condition. MonteCarlo simulators are avoided whenever possible because they provide the 
worst performance. 

Due to the combinatorial nature of the problems that exist in the field of functional safety, the 
performance of the tools is essential in their evaluation. 

 

8.2.3 AltaRica basic elements 

The following chapter will give an overview of the basic elements managed by AltaRica. 
 
Node: 
The base block in AltaRica is a node. A node is a generic object to describe a behavior, which: 

- Has an internal state, 
- Reacts on events, 
- Receives and/or sends data by flows (input and output) which enable to communicate with 

other components. 
 
A node may have several sub-nodes which are instances of a node.  

In tools, top-level nodes are sometimes referred as “systems”, intermediate nodes are also referred 
as “equipments” and leaf nodes are referred as “components”. 

Each node may have several input flows and several output flows. 
Each node may have one or more state variables. 
Each node may undergo one or more events.   
Each node may also have one or more assertions, which are equations that define how inputs are transformed into 
outputs given the value of the state variable. 

 
Input Flows and Output Flows: 
Interface of a Node is defined by Input and Output Flows. These flows are typed. There are mainly 
three basic types: Boolean, integer and float. Complex types can be built from these 3 elementary 
types. 
 
 
Link: 
Links can be created between two flow ports, to represent the fact that one end will emit a flow into 
the other end.  
 
 
State variable: 
A State variable is a variable identifying a component internal state, e.g. a variable with the 
following values “open/blocked”. State variables have an initial value. 
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Event: 
Event can depend on time or not: 

- Timed events: take a non null time. 
Stochastic events with Probability distributions with parameters (exponential, Weibull ...). 
Dirac events. 

 
- Instantaneous events: take no time and may have a priority. 

Immediate events. 
Conditional events. 

 
If an event is declared, a model must contain at least one transition labeled with this event. 
 
Transition: 
A transition is composed of a guard that expresses the conditions that allows the transition to be 
passed if the event is triggered, and a series of affectations of state variables that define the 
outcome of the transition. 
 
Assertions: 
Assertions allow giving a value on output flow variables and may depend on state variables and 
input flow variables. 

 
Extern clause: 
The role of the extern clause is: 

- to give some interpretation to the model, e.g. priorities 
- to transitions, probability distributions to events, 
- to give tools a specific information, 
- to provide some mechanism to extend the language. 
 

 
 

8.2.4 AltaRica Failure Description and propagation 

In AltaRica, the failure description is double. 

In one hand, the failure is declared explicitly as an “event”. On the other hand, the state changes 
induced by the events are declared in transitions. 

A transition represents a modification of internal state of a component, depending on the current 
states value, the value of input flow variables, and occurrence of an event: 

 

Condition |- event -> event -> aff1, …, affn ; 

 

With: condition being a Boolean expression depending on the input flow variables and the 
state(s) of the component, 

event being a simple identifier declared in the event tab of the component, 

affi are affectations of state variables depending on their current value and the input flow 
values. 
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The following table shows example of transitions: 

State diagram AltaRica code 

 trans  

   St=Working  |-  failure  ->  St := Failed;  

 

Condition on one state variable 

 
trans 

   St=Working and input_flow=high |-  failure  ->  St := Failed; 

 

Condition on one state variable and input flow variable 

 
trans  
   St=Working and Pos=Closed |-  failure  ->  St := Failed;  

 

Condition on 2 state variables 

Table 6 : Type of analysis methods required or recommended by ISO26262 

 
In AltaRica, propagation of failure is done using assertions. 

Assertions are Boolean expressions used to describe invariants on variables. All configurations of 
a node must satisfy specified assertions. These invariants can be used to describe relations 
between flow variables as a transfer-function but also they model relationship between states of 
the nodes and its flows. 

3 possible forms are possible for assertions: 
- Simple affectation: An output flow variable is valuated according an input flow variable. 
- If condition then conclusion1. 
- If condition then conclusion1 else conclusion2. 

 
with a condition being a Boolean expression depending on input flow variables and component 
state variables and a conclusion being new values of output flow. 

 
When there is a succession of instructions if-then-else, it can be replaced by (it is equivalent to) a 
case expression as shown in the following example. 

The measure of a sensor (output) depends on internal state of the component 
assert 
    (if sensor_state = nominal then sensor_measure = nominal) ; 
    (if sensor_state = degraded then sensor_measure = erroneous) ; 
    (if sensor_state = failed then sensor_measure = absent) ; 
 
is equivalent to the following statement: 
assert 
 sensor_measure = (case {sensor_state = nominal    : nominal,     
 sensor_state = degraded : erroneous, 
       else absent}) 

Figure 19: Example of equivalence between if-then-else expressions and case expression 

https://altarica.labri.fr/forge/projects/altarica/wiki/AltaRicaLanguage#Expressions
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8.2.5 AltaRica Example 

The same valve example than used in chapter 8.1.5 with HiP-HOPS will be investigated with 
AltaRica to highlight some differences. Just to remind the internal failure modes of the valve are: 

Failure Mode 
(as Internal failure) 

Description 
(as physical cause) 

Blocked e.g. by debris 

Partially Blocked e.g. by debris 

Stuck closed Mechanically stuck 

Stuck open Mechanically stuck 

Table 7 : Example of Valve Internal failure modes 

 
The corresponding code in AltaRica is the following: 

node SAFE_WT331Valve 
flow 
  i : SAFE_MyFlow : in ; 
  o : SAFE_MyFlow : out ; 
  command : SAFE_MyCommand : in ; 
state 
  State : {Nominal,StuckOpen,StuckClose,StuckPartiallyOpen}; 
event 
  PartiallyBlocked; StuckOpened; StuckClosed; 
init 
  State := Nominal; 
trans 
  State = Nominal |- StuckOpened -> State := StuckOpen; 
  State = Nominal |- StuckClosed -> State := StuckClose; 
  State = Nominal |- PartiallyBlocked -> State := StuckPartiallyOpen; 
assert 
  if (State = StuckClose or command = LowValue-control) then o = Omission */ No flow */ 
  else if (State = StuckOpen or command = HighValue-control) then o = Commission */Unexpected Flow */ 
  else if (State = StuckPartiallyOpen) then o = ValueLow */Less flow than expected */ 
  else if (command = EarlyCommand) then o = EarlyFlow */ Flow get out too early */ 
  else if (command = LateCommand) then o = LateFlow */ Flow get out too late */ 
  else o = i; 
 edon 

Figure 20: AltaRica Code Example for our Valve 

 

The AltaRica node representing the Valve has two input flows and one output flow defined in the 
“flow” section. 

In the “state” section, 4 states for the valve are defined: Nominal, StuckOpen (meaning always 
open), StuckClose (meaning always closed) and StuckPartiallyOpen. The initial state of the valve 
is Nominal (defined in “init” section). 

In the “event” section, 3 events corresponding to the internal failure modes (see Table 7) of the 
valve are defined. In this example, one remark is that the internal failure modes Blocked (e.g. by 
debris) and StuckClosed have the same effect and therefore only one event StuckClosed was 
considered. 

In the “trans” section, a transition from normal state to a failed state is defined: as an example the 
valve can undergo a “StuckOpened” event, in which case its state becomes “StuckOpen”.  

The “assert” section also defines how this failure to operate affects the outflow: the outflow is no 
longer controlled and lead to “commission” (unexpected flow) if the valve is in state “StuckOpen” or 
the command has failed (“HighValue-control”). 

i : in o : out 

control : in 
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Moreover in the “assert” section, the functional behavior is also defined: if the state of the valve is 
nominal and the valve is under control, then the outflow reflects the inflow. 

Nota: In the AltaRica assertion representing failure propagation description input failures are never 
considered in comparison with HiP-HOPS. If we want to represent an input failure, we will have to 
model a new node upstream whose output is linked to the input flow relevant of downstream node 
(i: see Figure 20). In this new upstream node, if output flow might fail in some conditions, it will 
automatically be propagated into the output of the downstream node. It can be simply explained by 
the fact that when we are in Nominal state for the valve, in the “assert” section, we have defined 
that o=i meaning that if everything is OK, the output will simply propagate the input. Therefore if the 
valve is working well and received a flow that is incorrect, this incorrect input flow will be 
propagated into the output unless we have a safety mechanism implemented that can detect the 
failure and stop its propagation. The final behavior is the same but the failure propagation 
description in HiP-HOPS would need redundant information as output failure is described once in 
upstream node and a second time as input failure in the downstream node. 

8.2.6 AltaRica and Loop management 

In the design of complex systems, loops are often introduced to take some feedback into account. 
For example, a diagnostic may monitor the output of a function and force its transition to a safe 
state if invalid outputs are detected. 

In AltaRica Extended language, the management of loops has long been a problem for various 
reasons. The first one is that loops make the most effective algorithms for safety analyses – fault 
trees – at least much harder to use. The impact on Boolean formulae is for example explained in 
[15]. A second reason is that the semantic of execution of AltaRica must be defined precisely. 
These difficulties are illustrated in [16]. 

Two main solutions are used to handle loops.  

The first one is to create a fictive “instantaneous” transition, which can affect a state, and 
consequently take benefit of an initial value for a state. Let us remind that flow variables are not 
initialized in AltaRica Extended language. This approach is explained in [17] . This workaround is a 
pain for the end user. 

The second solution is to handle the loop as it is. This requires that for each loop in the system, 
one initial value is provided. A fixed point algorithm is then used to stabilize the loop, with a 
predefined maximum number of iterations that must detect the potential divergence of the loop. 
The algorithm has converged for one loop when, starting with the initial condition at the first step or 
the last stable value during next steps, at the end of an iteration of the loop, the value of the 
initialized flow remains unchanged. 

For a loop management algorithm the following requirements shall be satisfied: 

 The loop management algorithm shall be able to handle loops of any complexity. 

 The loop management algorithm shall provide stable results, whatever the names of the 
involved components or the order in which initial values are defined. 

 The loop management algorithm shall detect divergence. It shall do it rapidly if achievable, 
which is often the result of a compromise between memory and CPU consumption. 

 The loop management algorithm shall not base its convergence criteria on arbitrary data 
provided by the end user. 

It shall be clear that transient states are not taken into account in the criteria for the feared 
conditions, as AltaRica Extended language does not handle temporal aspects. 
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8.2.7 AltaRica and failure propagation mitigation with safety mechanism 

In ISO26262, it is required to demonstrate the efficiency of safety mechanisms. As a consequence, 
their identification could be necessary. This can be easily achieved by the use of extern clauses in 
the smallest enclosing node. Another way to deal with this requirement is to analyze the cut-sets, 
which should display an order greater than 1 if the mechanism successfully protects a safety goal. 

Safety mechanisms can be modeled with AltaRica Extended Language. It is even one of the goals 
of the language to support these mechanisms, whatever their complexity may be. In the aerospace 
industry, some systems contain safety mechanisms that are designed to withstand more than 4 
failures at least. 

However, safety mechanisms are not identified as such in AltaRica Extended Language. They are 
nodes, and are not distinguished from the functions they are supposed to protect. 

In ISO26262, it is required to demonstrate the efficiency of safety mechanisms. As a consequence, 
their identification could be necessary. This can be easily achieved by the use of extern clauses in 
the smallest enclosing node. Another way to deal with this requirement is to analyze the cut-sets, 
which should display an order greater than 1 if the mechanism successfully protects a safety goal. 

 

For the sake of illustration, let us consider the diagnosis of a computation unit, as shown in the 
next diagram: 

 

Figure 21: Example of safety mechanism modeling in Safety Designer 

 

The output of the unit is checked by a diagnostic module. If this output is invalid, it is detected by 
the diagnostic module. The “AND” module only let an invalid command pass through it if both the 
command issued by the computation block and the diagnostic flow are invalid. 

The following code illustrates the use of extern clauses, for example to define the law of a failure 
rate. In this example, a constant law with 0.25 parameter is chosen, which means that, on average, 
1 out of 4 invocations of the diagnostic module will fail to detect an incorrect output from the 
computation unit. 
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The corresponding code in AltaRica is the following: 

node SafeEngineControl_TechnicalSafetyConcept_Software_DiagnosticModule 
flow 
  icone : [1, 3] : local; 
  Output : SafeEngineControl_TechnicalSafetyConcept_Diagnostic : out ; 
  SupportedBy : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : in ; 
  Input : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ; 
state 
  State : {Detecting,NotDetecting}; 
event 
  Failure; 
init 
  State := Detecting; 
trans 
 State = Detecting |- Failure -> State := NotDetecting; 
 
assert 
 if (SupportedBy = Supported)  
  then (if (Input = Valid)  
   then Output = OK & (if (State = Detecting) then icone = 1 else icone = 3)   
   else (if (State = Detecting)  
    then Output = DetectedFault & icone = 3 
    else Output = UndetectedFault & icone = 2))  
  else Output = NoDiagnostic & icone = 3 
extern 
  law <event Failure> = constant(0.25); 
 
edon 

Figure 22: AltaRica Code Example for a safety mechanism 
 

 

8.2.8 AltaRica and ISO26262 

The following description identifies briefly where the AltaRica extended language may help to 
perform safety assessment in respect to ISO26262 requirements. 

The natural scope of AltaRica Extended language is to design and validate: 

 the functional safety concept at the system architecture level, 

 the technical safety concept mixing HW and SW elements. 

 
AltaRica supports FMEA as an inductive method. It also supports the deductive method that is fault 
tree analysis when the structure of the problem allows it. 
 
AltaRica Extended language can permit to extend its capabilities by adding information in extern 
clause. Then the tools that are supporting AltaRica Extended language can use these additional 
information and could provide additional capabilities such as calculation of architectural metrics for 
a given safety goal.  
 
At low level of architecture like AUTOSAR software and hardware part implementation, it might be 
very difficult to define such elements with their associated properties and their influence into the 
overall system. Nevertheless from theoretical point of view it can be possible but would lead to 
huge model that would need tool modification for solving and analyzing results.  
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8.2.9 AltaRica concepts versus EAST-ADLV2.1 

The EAST-ADLV2.1 concepts of interest are presented in chapter 9.1.  
 
A mapping between the ErrorModel structure and AltaRica Extended language is proposed in the 
following table: 

EAST-ADLV2.1 Concept AltaRica concept Comment 

ErrorModelType Node  

ErrorModelPrototype Sub 
The name of the sub (instance) 
is the target‟s shortName. 

FaultInPort Flow direction in 
Type must be a valid AltaRica 
identifier (e.g. Boolean) 

FailureOutPort Flow direction out 
Type must be a valid AltaRica 
identifier (e.g. Boolean) 

InternalFaultPrototype Event 

In order to keep the semantic 
of a internal fault, an extern 
clause must be used in 
AltaRica. 

ProcessFaultPrototype Event 

In order to keep the semantic 
of a process fault, an extern 
clause must be used in 
AltaRica. 

FaultFailurePropagationLink Assert 
At node level, assert define the 
links between sub nodes. 

Table 8 : Mapping of AltaRica versus EAST-ADLV2.1 ErrorModel 

 
The failureLogic attribute of an instance of ErrorBehavior may contains AltaRica code if type is 
ErrorBehaviorKind : ALTARICA. In this case, the AltaRica code shall only contain assertions. 
 
A FaultFailure aggregated by a Dependability is a feared condition in AltaRica. It can be modeled 
as an extern(al) clause in AltaRica. 

As there is no notion of state in EAST-ADL error model, feared condition expressed on state value 
must be turned into a FaultFailure for an artificial FaultFailurePort. 
 
From concept analysis, it seems that all the concepts from HiP-HOPS are covered by the concepts 
from AltaRica. It is illustrated through an example in Annex A chapter 17 in which a mapping 
between AltaRica and HiP-HOPS concepts is proposed. Therefore the translation of HiP-HOPS 
into AltaRica should be possible. 
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8.2.10 AltaRica limits 

The validation of the safety models developed in AltaRica is not trivial. Results can be obtained 
from Altarica models, but do these models correspond to the physical phenomena? 
  
The synchronization between AltaRica models and functional architecture or hardware and 
software architecture is complex especially when there are loops and safety mechanisms modeled 
with AND structure.  
 
AltaRica cannot handle the dynamics of physical phenomena.  
 
Extern clauses can extend AltaRica, but the semantic of these extern clauses is not standardized 
by the language itself. 
 
 

8.2.11 Conclusions on AltaRica 

AltaRica Extended language is being used since 2000 in several tools from the market to assess 
complex models in different fields like aeronautics, railways, nuclear and military fields where 
safety issues are very critical.  Therefore its efficiency is recognized. 
 
AltaRica Extended language support debug and simulation and it is clearly a big advantage to 
validate our functional and technical safety concepts. 
 
A remaining doubt is the difficulty for system/safety engineer to model the dysfunctional behavior 
using AltaRica Extended languages. Even if tools like SafetyDesigner provide help to generate the 
AltaRica syntax, the assertions, describing the failure propagation, inside a node are not trivial and 
might require specific skills. 
 
 
 
 
 
  



SAFE – an ITEA2 project                                   D331a 

 2011 The SAFE  Consortium  48 (97) 

8.3 Orientation taken by WT3.3.1 in SAFE 

 

8.3.1 Pros and cons analysis of HiP-HOPS and AltaRica languages  

In order to help choosing the best orientation for WT3.3.1, a pros and cons analysis was performed 
based on the different articles read in the literature and also on the experience of some partners 
with these languages. See Table hereafter: 

 

 HiP-HOPS AltaRica 

Applicability 
(based on 

preliminary user 
tests ; to be 

verified during 
use case 

Physical architecture validation and 
possible low level solution 

From functional safety concept to 
technical safety concept. 

Pros 

- Simple to define as concept is basic 
(easy to map from an intermediate 
language as logical equation; near 
FTA approach). 
- Allows generation of both FMEA and 
FTA view. 
- Use for large scale analysis and 
synthesis is fast (as no simulation).  
- Would allow splitting between 
hardware and software analysis.  
- Adequate for validation of safety 
concept. 

- Captures architecture blocks. 
- Supports simulation and debug, 
which provides an intuitive approach 
of failure propagation. 
- Allow generation of both FMEA and 
FTA. 
- Validate test scenario.  
- Used and recognized in other fields: 
aeronautic, military, railway, nuclear… 
high maturity. 
- Adequate for exploration of safety 
concept. 
- Export of FTA possible in Open-PSA 
format that can be imported by other 
tools. 
- Library approach. 

Cons 

- System debug not allowed by 
simulation, could be complex as no 
concrete view of the architecture. 
- No interchange format standardized: 
neither import nor export (e.g.  FTA). 
- No direct link between component 
and system element (library concept 
is linked to tool generation). 
- Used only recently in few tools from 
the market and therefore low maturity. 
- Real-time constraints are hard to 
model (only sequence is possible). 

- The language is rarely mastered by 
system/safety engineers. 
- Model validation is difficult. 
- The synchronization between 
AltaRica models and functional 
/physical architecture is complex (loop, 
safety mechanism modeling...). 
- Real-time constraints are hard to 
model, if possible. 
 

Table 9 : Pros and Cons table for HiP-HOPS and AltaRIca 
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8.3.2 Language choice in WT3.3.1 

Even with the pros and cons analysis, the choice of one unique language is not easy and will also 
depend on the level of granularity that users want to address. Moreover a language like AltaRica is 
really powerful but also complex to implement for safety engineer and case by case all its 
capabilities are not fully needed. 
 
Therefore it was decided in WT3.3.1 to define a simplified SAFE language that could be 
compatible with HiP-HOPS and AltaRica having in mind the generation of FMEA/FTA safety 
analyzes. 
 

 

 

 

 

Figure 23: SAFE language proposal 
 

The goal of WT3.3.1 is really not to reinvent a complete language. As HiP-HOPS language 
expression seems to be less complex for partners than AltaRica, maybe because it is built like 
local FTAs, it was decided to have something closed to HiP-HOPS in a first step. 

 
Of course it should be possible to transform models of the simplified language towards Altarica for 
the purpose of a safety analysis and therefore Dassault System partner has provide us some 
requirements for the simplified language that should ensure that the translation is possible. 

8.3.3 General requirements for a simplified SAFE language 

Hereafter are the requirements for a simplified language to be transformed in AltaRica language. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stochastic events shall be connected to their probabilistic distributions 

 Faults need to be connected to their probabilistic distributions 

 Maintenance events must also be into account to be able to compute 
availability 

It shall be possible to define mutually exclusive failure modes (stochastic 
events) for a component 

 If a resistor has a short circuit, it cannot be simultaneously open 

Loops shall be supported 

 Monitoring feedback are common practice 

 The semantic of these loops shall be explicit and unambiguous 

 It shall be possible to simulate the system and the occurrence of faults 

Simulation shall be supported 

 Simulation provides a better understanding for the designer 

SAFE 
Language 

HiP-
HOPS 

AltaRica 
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8.3.4 Hypothesis taken in WT3.3.1 

Based on the general requirements from chapter 8.3.3, some hypotheses for WT3.3.1 were 
considered: 
 
No maintenance considered: In other fields like Aeronautics, Railway, Military, Nuclear…periodic 
maintenance is mandatory but not in automotive. If a latent fault is critical, we will implement a 
safety mechanism that will inform the driver using different warning degrees depending on the 
criticality of the possible outcome. Moreover this time to discover the latent failure will be taken into 
account when computing PMHF. 
 
Constant FIT rate for HW random faults: Even if AltaRica offers the capability to use different 
kind of distribution laws with stochastic events, we will consider only constant FIT rate coming from 
WT3.2.2. 
 
 

8.3.5 Refined requirements for a simplified SAFE language 

 
Additionally, some refined requirements were added to precise the content of the simplified SAFE 
language: 
 

SL_REQ01 : The SAFE language shall support the logical AND operator 

SL_REQ02 : The SAFE language shall support the logical OR operator 

SL_REQ03 : The SAFE language shall support the logical NOT operator 

SL_REQ04 : The SAFE language shall support local symbol or variable 

SL_REQ05 : The SAFE language shall be typed for Boolean expression 

SL_REQ06 : The SAFE language shall only allow stratified negation 
(failure itself shall not be  used in its negated form) 
e.g failure1 = fault2 or fault3 and not(failure1) expression is forbidden 

Covers : 
WT331_REQ_1: The SAFE Meta-model shall provide a fault modeling 
language to specify fault information and on which element the fault is 
attached as well as information about fault propagation. 
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9 Performing Fault/failure and error propagation based on EAST-ADL V2.1 

Within this chapter the current status of the architecture description language EAST-ADL with 
regard to the fault error failure modeling is described. Furthermore, proposals for an extension of 
the EAST-ADL concepts are described which could lead to an enhancement of the possibility to 
perform the fault and propagation analysis. 

9.1 Current state of EAST-ADL V2.1 concerning fault/failure and error propagation 

EAST-ADL is an architecture description language that has been developed in various European 
projects in which both, automotive vendors and users are coupled together. The objective is 
thereby to define an architecture description language tailored to the needs of the automotive 
industry [18]. The current version published on the website of EAST-ADL (www.east-adl.info ) is 
EAST-ADLV2.1. 

EAST-ADL introduces different levels of abstraction, namely: 

 Vehicle level (Feature content), 

 Analysis level (Abstract functional architecture), 

 Design level (Functional architecture, HW architecture, platform abstraction), 

 Implementation level (AUTOSAR Software architecture), and 

 Operational level (Embedded system in produced vehicle, not in model). 
 
Besides the different abstraction levels, EAST-ADL includes several package extensions of which 
the dependability package (see Figure 24) is of special interest for WT3.3.1, and especially the 
ErrorModel sub-package (see Figure 25). 
 

 

Figure 24: EAST-ADL V2.1 Dependability Package with ErrorModelType class highlighted 
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The EAST-ADL sub-package for error modeling (see Figure 25) provides support for safety 
engineering by representing possible, incorrect behaviors of a system in its operation (e.g. 
component errors and their propagations). 
 
Abnormal behaviors of architectural elements as well as their instantiations in a particular product 
context can be represented. This forms a basis for safety analysis through external techniques and 
tools. Through the integration with other language constructs, definitions of error behaviors and 
hazards can be traced to the specifications of safety requirements, and further to the subsequent 
functional and non-functional requirements on error handing and hazard mitigations as well as to 
the necessary V&V efforts. 
 
 

 

 ErrorModelType () specifies possible behaviors of a target () architectural entity as 
FunctionType or HardwareComponentType that are of concern when analyzing system 
anomalies and errors. 

 FaultInPort () represents a propagation point for faults that propagate into the containing 
ErrorModelType. 

 FailureOutPort () represents a propagation point for failures that propagate out from an 
ErrorModelType. 

 ProcessFaultPrototype () is a systematic fault that represents the anomalies that the 
target architectural entities can have due to design or implementation flaws (e.g., incorrect 
requirements, buffer size configuration, scheduling, etc.). 

 InternalFaultPrototype () represents the particular internal conditions of a target 
architectural entity that are of particular concern for its fault/failure definition.  

 FaultFailurePropagationLink () connects multiple ErrorModelTypes together via their 
ports. 

 Anomaly () represents a Fault that may occur internally in an ErrorModel or be 
propagated to it, or a failure that is propagated out of an ErrorModel. The anomaly may 
represent different faults or failures depending on the range of its EADatatype (). 
Typically the EADatatype is an enumeration. For example, a failure out port may carry a set 
of failure modes: {Omission, Commission, Value…). 

Figure 25: EAST-ADLV2.1 ErrorModelType Content 
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Error behaviors are treated as a separated view, orthogonal to the nominal architecture model. 
This separation of concern in modeling is considered necessary in order to avoid the undesired 
effects of error modeling, such as the risk of mixing nominal and erroneous behavior in regards to 
the comprehension, reuse, and system synthesis (e.g. code generation). 

 

ErrorBehavior defines the 
error propagation logic of its 
containing ErrorModelType. 
 

failureLogic attribute: 
specification of error 
behavior based on an 
external formalism or the 
path to the file containing the 
external specification. 

type:ErrorBehaviorKind 
attribute : type of formalism, 
based on enumeration 
ErrorBehaviorKind, applied 
for the error behavior 
description. 

Figure 26: EAST-ADLV2.1 ErrorBehavior Content 

 
The SafetyConstraints sub-package is also of special interest for error modeling. It basically 
contains constructs for defining safety constraints that apply to FaultFailure which itself refer to 
Anomaly. 

 

 FaultFailure decides the actual value of an anomaly given as a fault in port, failure out 
port, or internal fault, e.g. {Omission}. It is FaultFailure, instead of Anomaly, to which a 
safety constraint is assigned. A FaultFailure is defined as a certain value, 
faultFailureValue, occurring at the referenced Anomaly. 

 SafetyConstraint represents the qualitative integrity constraints on a fault or failure. Thus, 
the system has the same or better performance with respect to the constrained fault or 
failure, and depending on the role this is either a requirement or a property.  

 QuantitativeSafetyConstraint represents the quantitative integrity constraints on a fault 
or failure. Thus, the system has the same or better performance with respect to the 
constrained fault or failure, and depending on the role this is either a requirement or a 
property. A QuantitativeSafetyConstraint provides information about the probabilistic 
estimates of target faults/failures, further specified by the failureRate and repairRate 
attribute. 

Figure 27: EAST-ADLV2.1 FaultFailure Content 
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9.2 Analysis of Gap between EAST-ADLV2.1 ErrorModel and our needs 

Hereafter are highlighted the gaps between the ErrorModel from EAST-ADLV2.1 and our needs: 
 

 Not possible to address AUTOSAR targets (data element instances, component types, 
component instances). 

 

 Internal and external faults are addressed in both ErrorModelType and ErrorBehavior. 
Distinction is needed to improve visibility. In ErrorModelType, internal details of the target 
elements should not be visible (black box view abstracting from internal propagation) but only 
FaultIn and FailureOut. Then in a second step, ErrorBehavior of the ErrorModel should be 
defined and information about error propagation within the target element (Internal faults) 
should be attached. 

 

 The ErrorModel Meta-model from EAST-ADLV2.1 is not very constrained and allows lots of 
freedom in its implementation. As an example, it is possible to associate in an ErrorModelType 
an HwComponentType and a FunctionType at the same time. This is not correct, but it is still 
possible. Therefore the ErrorModel should be reworked in order to avoid such scenarios and 
reduce the risk of applying the meta-model in the wrong way. 
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 In EAST-ADLV2.1 ErrorBehavior, failureLogic expression permits to express an error behavior 
language kind other than HiP-HOPS, ALTARICA or AADL by using enumeration OTHER. But 
this failureLogic notation is only informal. In WT3.3.1, it was decided to specify a well-defined 
SAFE language including its grammar. Therefore a new meta-model proposal should be done 
in order to be able to compose our failureLogic expression using formulae and referencing 
internal faults, process fauls, FaultIn, FailureOut automatically. Then the SAFE language will 
enforce a semi-formal notation of error propagation. 

 

 In EAST-ADLV2.1 FaultFailure/Anomaly permits to represent different faults or failures 
depending on the range of its EADatatype which is an enumeration e.g. {Omission, 
Commission, Value…). It is here proposed to replace Anomaly by a more generic concept as 
the Malfunction, as it can be useful and easy to exhibit it up to different architecture levels up to 
the item. A malfunction would be defined as a failure or unintended behavior of the item or 
element of the item that has the potential to propagate. InternalFaults and ProcessFaults are 
unintended behavior and therefore Malfunction. FaultIn is propagating to FailureOut and 
therefore they are also Malfunction. 
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10 WT3.3.1 Contribution to SAFE Meta-Model 

Within this chapter the contribution of WT3.3.1 to the SAFE meta-model is described. At the 
beginning an overview about meta-modeling approach is given which is followed by the detailed 
description of the classes and interconnections. Moreover, in another chapter the meta-model is 
described by means of an example. 

10.1 Overview 

The error meta-model is aligned with way of describing the system model. An error model can be 
described for different structural elements of the system model: for FunctionTypes, 
HardwareComponentTypes, SwComponentTypes or BSWModuleDescriptions.  

An ErrorModelType describes the black-box view in terms of error propagation for the referenced 
structural element. Thus, the externalFaults and externalFailures typed as MalfunctionPrototype 
are associated with the ErrorModelType. In addition, in case the error model is described 
hierarchically, the meta-model allows connecting externalFailures and externalFaults via the 
“cause-effect relation” named FaultFailurePropagationLink.  

To white-box the error behavior of a structural element, the meta-model allows to describe the 
ErrorBehavior for a specific ErrorModelType. In this case, also the internal details of the structural 
element are known, and respective internalFaults as well as processFaults can be described. In 
addition, it is possible to describe HOW externalFaults, internalfaults and processFaults are related 
with externalFailures, or with other words: how do those faults contribute to the unintended 
behavior of the architectural element associated via the ErrorModelType. For this purpose, the 
SAFE meta-model allows to either use existing language to describe the internal error propagation 
(e.g. via Altarica) or to use the simplified SAFE language for the same purpose. The requirements 
for the grammar and semantics of the simplified SAFE language are described in chapter 8.3. 

 

Error propagation either internally described via the ErrorBehavior or externally via the 
FaultFailurePropagationLink, is not to be confused with the data flow of values. Error propagation 
and data flow of values differ in two aspects: First, error propagate horizontally without following 
the values‟ data flow through the application environment. Second, malfunctions in the application 
layer cannot propagate into malfunctions in the application environment. 

The MalfunctionProtoypes can by typed with the means of MalfunctionTypes. A MalfunctionType 
allows describing how the unintended behavior is represented. In addition, with the help of the 
description capabilities of ErrorBehavior and ErrorModelType, it is also possible to describe how 
the MalfunctionPrototype becomes “active” (e.g. assuming a MalfunctionPrototype in the role of 
externalFailure of an ErrorModelType).  

Via the ErrorBehavior means of the meta-model it is possible to describe, how external faults or 
internal faults can lead to the occurrence of this external failure. In a next step, with the help of the 
hierarchically error modeling approach, it is then possible to describe, how external faults can be 
caused from preceding architectural elements (e.g. communication partner, execution 
environment). This way it is possible to describe a complete error propagation chain from the root 
fault(s) towards the failure of interest. 
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10.2 Detailed Description of Classes and Links 

Type:  Package  

Package: ClassModel 

Notes:  

ErrorModel 

 

Figure 28 : Overview of WT3.3.1 ErrorModel Package proposal 
 

10.2.1 ErrorModel 

Database: Java, Stereotype: , Package: ErrorModel 

Notes: The error model is a container for all artifacts, which are needed to describe the 
error model of an architectural element: malfunctions, error types and error 
behaviors. 
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10.2.2 ErrorBehavior  

Type:  Package  

Package: ErrorModel 

Notes:  

ErrorBehavior 

 

Figure 29 : WT3.3.1 ErrorBehavior proposal 
 

10.2.2.1 AbstractErrorBehavior 

Database: Java, Stereotype: , Package: ErrorBehavior 

Notes: This class contains information about the error behavior independent of concrete 
behavior descriptions. 

The AbstractErrorBehavior contains internalFaults, representing faults that are either propagated to 
externalFailures of the ErrorModelType or masked, according to the definition of its fault 
propagation. 

 

A processFault represents a flaw introduced during design, and may lead to any of the failures 
represented by the ErrorModelType. A processFault therefore has a direct propagation to all 
externalFailures and cannot be masked.  
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Each error behavior description relates the occurrences of internal faults and incoming external 
faults to external failures. The faults and failures that the error behavior propagates to and from the 
target element are declared through the malfunction prototypes of the error model. 
 
Semantics:  

An error behavior describes the error propagation logic of its containing ErrorModelType. 

The ErrorBehavior description represents the error propagation from internal faults or external 
faults to external failures. Faults are identified by the internalFault externalFault associations. The 
propagated external failures are identified by the externalFailure association.  
 
Relationships 

Role Cardinaliy Notes 

processFault    * processFaults that may affect the ErrorBehavior of the 
architectural element associated via the ErrorModelType. 

internalFault    * internalFaults that may affect the ErrorBehavior of the 
architectural element associated via the ErrorModelType. 

 

10.2.2.2 EastADLErrorBehavior 

Database: Java, Stereotype: , Package: ErrorBehavior 

Notes: EASTADLErrorBehavior specifies a concrete failure logic description language, 
which describes the error propagation through the architectural element referenced 
by the containing ErrorModelType (e.g. function, hw component, sw component). 

 
The failure logic is defined via a formula language called FailureLogicFormula (see "formula" 
association). 
 
Relationships 

Role Cardinality Notes 

formula    1 Failure logic used to describe the error propagation. 

 
 

10.2.2.3 ErrorBehaviorKind 

Database: Java, Stereotype: «enumeration», Package: ErrorBehavior 

Notes: The ErrorBehaviorKind metaclass represents an enumeration of literals describing 
various types of formalisms used for specifying error behavior. 

 
Semantics: 

ErrorBehaviorKind represents different formalisms for ErrorBehavior. The semantics is defined at 
each enumeration literal.  

Extension:  

Enumeration, no extension. 
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Columns 

PK Name Type Not Null Unique Len Prec Scale Init Notes 

 HIP_HOPS    0 0 0  
A specification of error 
behavior according to the 
external formalism HiP-
HOPS. 

 ALTARICA    0 0 0  
A specification of error 
behavior according to the 
external formalism 
ALTARICA. 

 AADL    0 0 0  
A specification of error 
behavior according to the 
external formalism AADL. 

 OTHER    0 0 0  
A specification of error 
behavior according to 
other user defined 
formalism. 

 

10.2.2.4 FailureLogicFormula 

Database: Java, Stereotype: «atpMixedString», Package: ErrorBehavior 

Notes: FailureLogicFormula is used to describe the error propagation through the 
architectural element associated with the containing ErrorModelType. The grammer 
of the FailureLogicFormula is defined in the respective specification document. 

 
Relationships 

Role Cardinality Notes 

externalFailure  0..1  external failures that may result from the ErrorBehavior. 

processFault  0..1 processFaults that influence the errorBehavior . 

internalFault 0..1 internalFaults that influence the errorBehavior . 

externalFault 0..1 external(incoming) faults that influence the errorBehavior. 

 

10.2.2.5 NativeErrorBehavior 

Database: Java, Stereotype: , Package: ErrorBehavior 

Notes: NativeErrorBehavior represents the descriptions of failure logics or semantics that 
the architectural element associated by the ErrorModelType exhibits.  

 
Semantics:  

The NativeErrorBehavior is defined in the failureLogic string, either directly or as a url referencing 
an external specification.  

The failureLogic can be based on different formalisms, depending on the analysis techniques and 
tools available. This is indicated by its type:ErrorBehaviorKind attribute. The failureLogic attribute 
contains the actual failure propagation logic.  
 
Extension: 

UML:Behavior  
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Columns 

PK Name Type Not Null Unique Len Prec Scale Init Notes 

 failureLogic String   0 0 0  The specification of error 
behavior based on an 
external formalism or the 
path to the file containing 
the external 
specification. 

 type ErrorBeh
aviorKind 

  0 0 0  The type of formalism 
applied for the error 
behavior description. 

 

Relationships 

Role Cardinaliy Notes 

internalFault  *  internalFaults that influence the errorBehavior. 

externalFailure  * external failures that may result from the ErrorBehavior. 

externalFault  * external(incoming) faults that influence the errorBehavior. 

processFault  *  processFaults that may affect the errorBehavior. 

 

 

10.2.3 ErrorModelType  

Type:  Package  

Package: ErrorModel 

Notes:  
 
ErrorModelPrototype 

 

Figure 30 : WT3.3.1 ErrorModelPrototype proposal 
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ErrorModelType 

 

Figure 31 : WT3.3.1 ErrorModelType proposal 
 

10.2.3.1 EMPBswModule 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model prototype specified for a concrete bsw software module. 
 
Relationships 

Role Cardinaliy Notes 

bswTarget    1 The target basic software module. 

 

10.2.3.2 EMPFunction 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model prototype specified for a concrete function instance. 
 
Relationships 

Role Cardinaliy Notes 

functionTarget    * A nominal function instance as target of the related error model 
prototype. 
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10.2.3.3 EMPHwComponent 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model prototype specified for a concrete hardware component instance. 
 
Relationships 

Role Cardinaliy Notes 

hwTarget    * A nominal hardware component instance as target of the error 
model prototype. 

 

10.2.3.4 EMPReference 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: 
   

10.2.3.5 EMPSwComponent 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model prototype specified for a concrete software component instance. 
 
Relationships 

Role Cardinaliy Notes 

swcTarget    1 the target software component. 

 

10.2.3.6 EMTypeBswModule 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model type specified for a concrete basic software module. 
 
Relationships 

Role Cardinaliy Notes 

scope    1 the target basic software module.  

 

10.2.3.7 EMTypeFunction 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model type specified for a concrete function. 
 
Relationships 

Role Cardinaliy Notes 

scope    1 the target function 

  



SAFE – an ITEA2 project                                   D331a 

 2011 The SAFE  Consortium  64 (97) 

10.2.3.8 EMTypeHwComponent 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model type specified for a concrete hardware component. 
 
Relationships 

Role Cardinaliy Notes 

scope    1 the target hardware component. 

 

10.2.3.9 EMTypeSwComponent 

Database: Java, Stereotype: , Package: ErrorModelType 

Notes: Error model type specified for a concrete software component. 
 
Relationships 

Role Cardinaliy Notes 

scope    1 the target software component. 

 

10.2.3.10 ErrorModelPrototype 

Database: Java, Stereotype: «atpPrototype», Package: ErrorModelType 

Notes: The ErrorModelPrototype is used to define hierarchical error models allowing 
additional detail or structure to the error model of a particular target. A hierarchal 
structure can also be defined when several ErrorModels are integrated to a larger 
ErrorModel representing a system integrated from several targets.  

 
There are different subtypes of ErrorModelPrototype specified, allowing to add additional 
information describe the context of the ErrorModelProtoype. 
 
Semantics: 

An ErrorModelPrototype represents an occurrence of the ErrorModelType that types it. 
 
Extension: 

(See ADLFunctionPrototype) 
 
Relationships 

Role Cardinaliy Notes 

type    1 The ErrorModelType that types the ErrorModelPrototype. 
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10.2.3.11 ErrorModelType 

Database: <none>, Stereotype: «atpType», Package: ErrorModelType 

Notes: ErrorModelType and ErrorModelPrototype support the hierarchical composition of 
error models based on the type-prototype pattern also adopted for the nominal 
architecture composition. The purpose of the error models is to represent 
information relating to the anomalies of a nominal model element.  

 
Independent of the different subtypes of ErrorModelType, this class describes the external faults 
affecting the element, external failures caused by the element and fault propagations within the 
nominal element.  
 
ErrorModelType inherits the abstract metaclass TraceableSpecification, allowing the 
ErrorModelType to be referenced from its design context in a similar way as requirements, test 
cases and other specifications.  
 
Constraints: 

For an ErrorModelType without part, a respective error behavior shall be defined in the safety 
model. 
 
Semantics: 

The ErrorModelType represents a specification of the faults and fault propagations of its target 
element. 
 
Both types and prototypes may be targets, and the following cases are relevant: 

- One nominal type: 

The ErrorModelType represents the identified nominal type wherever this nominal type is 
instantiated. 

- Several nominal types: 

The ErrorModelType represents the identified nominal types individually, i.e. the same error model 
applies to all nominal types and is reused. 

- One nominal prototype: 

The ErrorModelType represents the identified nominal prototype whenever its context, i.e. its top-
level composition is instantiated. 

- Several nominal prototypes with instanceref: 

The ErrorModelType represents the identified set of nominal prototypes (together) whenever their 
context, i.e. their top-level composition, is instantiated. 
 
The fault propagation of an errorModelType is defined by its contained parts, the 
ErrorModelPrototypes and their connections. In case an error behavior is defined for this error 
model type, the fault propagation information, the error behavior and the parts of the error model 
shall be consistent. 
 
FaultFailurePropagationLinks define valid propagation paths in the ErrorModelType. In case the 
contained external faults and external failures reference nominal ports, the connectivity of the 
nominal model may serve as a pattern for connecting malfunction prototypes in the 
ErrorModelType. 
 
Extension: 

(see ADLTraceableSpecfication) 
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Columns 

PK Name Type Not Null Unique Len Prec Scale Init Notes 

 genericDescription String   0 0 0 NA  

 
Relationships 

Role Cardinality Notes 

faultFailureConnector  * The contained links for internal propagation of faults/failures 
between the subordinate error models. 

externalFault    * The external faults affecting the proper execution of the 
architectural element associated with the error model type. 

externalFailure    * The external failures visible at the borders of the architectural 
element. 

part  * The contained error models forming a hierarchy. 

 

10.2.3.12 FaultFailurePropagationLink 

Database: <none>, Stereotype: , Package: ErrorModelType 

Notes: The FaultFailurePropagationLink metaclass represents the links for the 
propagations of faults/failures across system elements. In particular, it defines that 
one error model provides the faults/failures that another error model receives. 

 
A fault/failure link can only be applied to compatible ports, either for fault/failure delegation within 
an error model or for fault/failure transmission across two error models.  
 
A FaultFailurePropagationLink can only connect fault/failures that have compatible types.  
 
Constraints: 

[1] Only compatible cause-effect pairs may be connected. 
 
[2] Two fault/failure are compatible if the MalfunctionType of the cause represents a subset of the 
MalfunctionType set represented by the MalfunctionType of the effect.  

Semantics: 

The FaultFailurePropagationLink defines a Failure propagation path, from the cause on one error 
model to the effect of another error model.  
 
Extension: 

UML::Connector 
 
Columns 

PK Name Type Not Null Unique Len Prec Scale Init Notes 

 immediatePropaga
tion 

Boolean   0 0 0 true  
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Relationships 

Role Cardinality Notes 

effect   1  

cause   1   

 

 

10.2.4 Malfunction  

Type:  Package  

Package: ErrorModel 

Notes:  

MalfunctionPrototype 

 

Figure 32 : WT3.3.1 MalfunctionPrototype proposal 
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MalfunctionType 

 

Figure 33 : WT3.3.1 MalfunctionType proposal 
 

 

10.2.4.1 MFPBswPort 

Database: Java, Stereotype: , Package: Malfunction 

Notes:  
 
Semantics: 

The MalfunctionPrototype pointing to a basic software module entry. 
 
Relationships 

Role Cardinality Notes 

bswEntry    1 the target bsw module entry. 

 
 

10.2.4.2 MFPFunctionPort 

Database: Java, Stereotype: , Package: Malfunction 

Notes: The MalfunctionPrototype pointing to a function port instance. 
 
Extension:  

UML::Port 
 
Relationships 

Role Cardinality Notes 

functionTarget    0..1 A nominal function port instance as target of the malfunction 
prototype. 
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10.2.4.3 MFPHardwarePin 

Database: Java, Stereotype: , Package: Malfunction 

Notes: The MalfunctionPrototype pointing to a HardwarPin instance. 

Extension:  

UML::Port 
 
Relationships 

Role Cardinality Notes 

hwTarget    * A nominal HW pin instance as target of the malfunction 
prototype. 

 
 

10.2.4.4 MFPOperation 

Database: Java, Stereotype: , Package: Malfunction 

Notes: The MalfunctionPrototype pointing to an AUTOSAR operation instance. 
 
Relationships 

Role Cardinality Notes 

operation   1 the target operation prototype instance. 

 

 

10.2.4.5 MFPSwcPort 

Database: Java, Stereotype: , Package: Malfunction 

Notes: The MalfunctionPrototype pointing to a HardwarPin instance. 

 

10.2.4.6 MFPVariable 

Database: Java, Stereotype: , Package: Malfunction 

Notes:  The MalfunctionPrototype pointing to an AUTOSAR variable instance. 
 
Relationships 

Role Cardinality Notes 

variable    1 the target variable prototype instance. 
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10.2.4.7 MTEnum 

Database: Java, Stereotype: , Package: Malfunction 

Notes: This enumeration malfunction type allows to define the different ways, how the 
malfunction becomes visible. As a typical example, an enumeration could have the 
enumerations "commission" and "omission". 

 
BrakeMalfunctionType: 

- BrakePressureTooLow 

Semantics="brake pressure is below 20% of requested value". 

- Omission 

Semantics="brake pressure is below 10% of maximal brake pressure". 

- Commission 

Semantics="brake pressure exceeds requested value with more than 10% of maximal brake 
pressure". 
 
Semantics may also be a more formal expression defining in the type of the nominal datatype what 
value range is considered a fault. This depends on the user and tooling available. 
 
Relationships 

Role Cardinality Notes 

element   1..* elements of the malfunction type enum. 

 
 

10.2.4.8 MTEnumElement 

Database: Java, Stereotype: «atpFeature», Package: Malfunction 

Notes: 

  

10.2.4.9 MTGeneral 

Database: Java, Stereotype: , Package: Malfunction 

Notes: General description of a malfunction. The description field of the derived Identifiable 
class shall be used to describe the malfunction. 
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10.2.4.10 MalfunctionPrototype 

Database: Java, Stereotype: «atpPrototype», Package: Malfunction 

Notes: A malfunction is a failure or unintended behavior of the item or element of the item 
that has the potential to propagate. The MalfunctionPrototype metaclass represents 
an error that may occur internally in an ErrorModel or be propagated to it, or a 
failure that is propagated out of an Error Model. The MalfunctionPrototype may 
represent different errors depending on its type (enumeration of generic 
description). 

 
Semantics: 

A malfunction prototype refers to a condition that deviates from expectations based on 
requirements specifications, design documents, user documents, standards, etc., or from 
someone's perceptions or experiences (ISO26262). The set of available faults or failures 
represented by the MalfunctionPrototype is defined by its type, typically an enumeration type like 
{omission, commission}. It is an abstract class further specialized with metaclasses for different 
types of fault/failure. 
 
Extension: 

(UML::Part) 
 
Columns 

PK Name Type Not Null Unique Len Prec Scale Init Notes 

 genericDescription String   0 0 0  A description of the 
MalfunctionPrototype 

 

Relationships 
Role Cardinality Notes 

malfunction   1  
The type of the malfunction prototype. It describes how the 
malfunction prototype becomes visible. 

 

 

10.2.4.11 MalfunctionType 

Database: Java, Stereotype: «atpType», Package: Malfunction 

Notes: A MalfunctionType describes how a malfunction becomes visible. Currently, it can 
either be a generic description of a malfunction or an enumeration of different 
"appearance" possibilities. 
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10.2.5 _instanceRef  

Type:  Package  

Package: ErrorModel 

Notes:  

 

EMPFunction_functionTarget 

 

Figure 34 : WT3.3.1 EMPFunction InstanceRef proposal 
 

EMPHwComponent_hwTarget 

 

Figure 35 : WT3.3.1 EMPHwComponent InstanceRef proposal 
 

FaultFailurePropagationLink 

 

Figure 36 : WT3.3.1 FaultFailurePropagationLink InstanceRef proposal 
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MFPFunctionPort_functionTarget 

 

Figure 37 : WT3.3.1 MFPFunctionPort InstanceRef proposal 
 

MFPHardwarePin_hwTarget 

 

Figure 38 : WT3.3.1 MFPHardwarePin InstanceRef proposal 
 

 

10.2.5.1 ErrorModelPrototype_functionTarget 

Database: Java, Stereotype: «instanceRef», Package: _instanceRef 

Notes:  
 
Relationships 

Role Cardinality Notes 

functionTarget    * A nominal function instance as target of the related error model 
prototype. 
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10.2.5.2 ErrorModelPrototype_hwTarget 

Database: Java, Stereotype: «instanceRef», Package: _instanceRef 

Notes:  
 
Relationships 

Role Cardinality Notes 

hwTarget    * A nominal hardware component instance as target of the error 
model protoype. 

 

 

10.2.5.3 FaultFailurePort_functionTarget 

Database: Java, Stereotype: «instanceRef», Package: _instanceRef 

Notes: 
 
Relationships 

Role Cardinality Notes 

functionTarget    * A nominal function port as target of the malfunction prototype. 

 

 

10.2.5.4 FaultFailurePort_hwTarget 

Database: Java, Stereotype: «instanceRef», Package: _instanceRef 

Notes: 
  
Relationships 

Role Cardinality Notes 

hwTarget    * A nominal HW pin instance as target of the malfunction 
prototype. 
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10.3 WT3.3.1 Meta-model Description Based on an Example 

In this chapter, we show some simple examples for the use of the meta-model described in chapter 
10.2. We describe how to model a hierarchy of components and how to model malfunctions. 

We omit examples for the other aspects of the meta model. In addition, the examples do not show 
how the meta-model elements for describing error behavior can be used, and the link to the system 
model is missing as well (e.g. an EMTypeSwComponent is not pointing to an AUTOSAR software 
component type). This will be subject of upcoming deliverable versions. 

 

 

Figure 39 : Application Level Hierarchy diagram highlighting hierarchy modeling capability 
 

This diagram above shows how to model a hierarchy of software components error models. An 
error model for the software composition “ApplicationLevel” contains two ErrorModelPrototypes 
“sensorProto” and “ControllerProto”. 

 

The two software components are of type “sensor” and “controller”. These two 
EMTypeSwComponents could be again a composite error model type, and hence would allow a 
hierarchy of error models. 
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The diagram shown hereafter (see Figure 40) refines the application level hierarchy from Figure 39 
and adds four malfunction prototypes. 

 
These four malfunctions prototypes are ApplicationEnvironmentMalfunctionProto (the malfunction 
caused by the application environment), SensorApplicationEnvironmentMalfunctionProto (the 
malfunction from the application environment which affects the sensor), 
SensorComputationMalfunctionProto (the external fault emitted from the sensor computation), and 
ReceiveSensorComputationMalfunctionProto (the malfunction that the controller receives from the 
invalid sensor computations).  

  
The former two malfunctions are connected by the FaultFailurePropagationLink named 
“EnvironmentSensorMalfunctionPropagation”, the latter two are connected by the 
FaultFailurePropagationLink named “SensorControllerComputationMalfunctionPropagation”. 

 

 

Figure 40 : Application Level Hierarchy refinement with malfunctions added 
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11 WT3.3.1 Error model Application Rules  

The error model as explained in chapter 10 is very flexible and allows many different models for 
the same system. In order to support exchangeability of analysis models between different tools, 
SAFE defines a set of patterns that define how the error model shall be used. 

 

 

 

 

 

 

Figure 41: Pattern legend for Applicability 
 

Figure 41 above introduces the set of symbols which are used in the diagrams throughout this 
chapter. The meta-model elements AssemblyConnector, PortPrototype and ComponentPrototype 
are defined in the AUTOSAR meta-model, while all others are defined in the SAFE meta-model. 
 
Safety relevant items are normally complex system that consists of hardware elements and 
software elements. The hardware consists of interconnected Electronic Control Units (ECUs), 
which can be further decomposed into programmable microcontrollers, other electronic parts and 
printed circuit boards. The software is composed of many interconnected AUTOSAR software 
components, which are deployed on the microcontrollers within the ECUs. In addition to AUTOSAR 
software components, the microcontrollers also contain an AUTOSAR basic software stack, which 
controls the Microcontroller Unit (MCU) hardware and provides generic services to the software 
components, like access to input/output channels, persistent memory or partitioning. 
 
While the software architecture for a concrete function is normally defined using the AUTOSAR 
meta-model, there is currently no widely accepted single meta-model to capture system and 
hardware architecture. To fill that gap, SAFE uses the hierarchical EAST-ADL FDA and HDA meta-
models for the representation of system and hardware architecture. 
 
Once the system architecture and design is modeled in AUTOSAR and EAST-ADL as described 
above, the model is augmented with a fault and error propagation model, using the error model 
meta-model of SAFE.  

 

11.1 System Model 

In a first step, we focus on the vehicle-network level of abstraction for the system model, which is 
well suited as a starting point. The software part is represented with the means of AUTOSAR, 
while the hardware is represented as a network of interconnected ECUs.  

This level of abstraction is sufficiently reduced to allow end-to-end analysis while distinction 
between hardware and software is already visible. 
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Figure 42 : System model Representation 

 
Figure 42 shows a system model example on implementation level as it would be represented 
according to the SAFE methodology. The hardware architecture is represented using the 
HardwareModeling package of the EAST-ADL meta-model, where each ECU, microcontroller and 
electronic circuit is represented as HardwareComponentType. The software architecture is 
represented using the AUTOSAR SWC- and System-Template, the basic software is represented 
using the AUTOSAR BSW Module Template. The mapping of software components on ECUs and 
the basic software in between is omitted here for simplicity. The AUTOSAR meta-model provides 
elements to represent this information. 

 

For the sake of completeness: Depending on the level of abstraction, EAST-ADL or AUTOSAR or 
both may the target for the system model required for safety analysis. As mentioned above, we 
propose here to use the EAST-ADL capabilities to describe the HW details and use the AUTOSAR 
SWC- and System-Template to describe the software-relevant information. However, we argue 
that the demanded system model can be described also by using only one of the mentioned meta-
model solutions. E.g. the software-architecture could be described by EAST-ADL facilities like 
FunctionType, and the hardware architecture could be described via the AUTOSAR ECU 
Resource Template. 

 

Generally, the system model allows developers to work independently on the different subsystems 
in the system. In the following, we consider two specific views to the system model and how they 
are related to the error model.  

In a first step (see chapter 11.2), we separate the application layer and the application environment 
and show how the error model can be used as part of a safety contract between those sub-
systems. 

In a second step (see chapter 11.3), we separate the complete software entities (e.g. basic 
software, RTE, application software) from the hardware and show how this affects the error model. 
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11.2 Error model pattern 1 – Separation of application layer and application environment 

 

11.2.1 Introduction 

This error model pattern allows engineers to reason independently about the malfunctions in the 
software components and the underlying system. For this purpose, the error model creates a clear 
cut in the error model between application layer and application environment (ECU-hardware, 
basic software and RTE). The malfunctions, their propagation (or isolation) and their compound 
probability distribution defined within the error model contribute to a safety contract between the 
application software and the application environment. This cuts the two parts of the systems, so 
that one can reason about malfunctions independently. 
 

11.2.2 Modeling approach 

Figure 43 shows the error model corresponding to the system model mentioned in Figure 42. 

 

Figure 43 : ErrorModel corresponding to Refined System model  
 

To separate the application layer and the application environment, we do the following steps: 

1. We define one error model named “application layer” consisting of all application SWCs 
and all ECUs including BSW in an application environment. Figure 43 shows the error 
model for our example. The boxes in light red are the error model types and error models 
for the different components.   

2. We argue about the different malfunctions from the application environment and how they 
affect the application software. The set of the different malfunctions, e.g., computing and 
communication anomalies, in the application environment define the failure ports of the 
error model of application environment. The failure ports of the application layer match 
exactly those of the application environment. 



SAFE – an ITEA2 project                                   D331a 

 2011 The SAFE  Consortium  80 (97) 

In our example, we identified five malfunctions in the application environment: 

 A computing anomaly in the Sensor SWC, 

 A communication anomaly from the Sensor SWC to the Controller SWC, 

 A computing anomaly in the Controller SWC, 

 A communication anomaly from the Controller SWC to the Actuator SWC, 

 A computing anomaly in the Actuator SWC.  

These five malfunctions are depicted as the five failure ports in Figure 43.   

3. In a next step, we argue how the error behavior of the application layer shall look like. The 
error behavior is modeled by horizontal and vertical FaultFailurePropagationLinks. 

Vertical propagation links describe the faults from the application environment that can 
induce faults in the SWC. The vertical propagation links always link the application layer‟s 
ports and the failure ports of the different software components. 

In our example, the vertical propagation links link the five malfunctions listed above to the 
affected software component in the application layer. 
 
Horizontal propagation links describe how errors can propagate from one software 
component to another on the same level. Every horizontal propagation link is backed by a 
concrete physical information flow through the application environment (BSW, hardware or 
communication system). However, the failure propagation due to these concrete data flows 
is only depicted by the horizontal links. In our example, there are four horizontal 
propagation links. 
 
The two internal propagation links model malfunctions that are propagated to the next 
software components, i.e., a sensor failure is propagated to the controller and a controller 
failure is propagated to the actuator. The other two horizontal propagation links model the 
propagation of external malfunctions to internal malfunctions and vice versa. 

 
In these steps, we have followed this general rule for the composition: 

To cut the system reasonably, we restrict the direction of fault propagation. Faults propagate only 
from the software platform to the software components, but never the other way around. 

The general principle of failure model decomposition underlying the separation the application 
layer and the application environment is suitable for any decomposition of a system.  
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11.2.3 Special case: horizontal error propagation prevented by application environment 

In most cases, faults in one software component propagate to another software component without 
fault detection or fault handling in the application environment. For those cases, the fault 
propagation is modeled in the error model with a horizontal fault-failure propagation link (see 
respective description in the meta-model chapter 11) from one software component to the other. 

 
If the application environment has safety mechanisms that handle failures of a SWC, this safety 
mechanism must be reflected in the application layer of the error model. In this case, horizontal 
error propagation between two application software components is filtered, as shown in the 
example below. To reflect the safety mechanism, that is realized by the application environment, in 
the application layer of the error model, the error model is enriched by an ErrorModelType called 

“Virtual SM”.  

Example: 

SWC A computes data and sends this data to SWC B through the application environment. The 
application environment has a safety mechanism that can detect if the data is within a defined 
range and reacts, so that the data out of bounds is not forwarded. 
 

Assume an error occurs in the SWC A and SWC A sends faulty data to SWC B, e.g. the data is out 
of a valid range. In this case, the failure mode “data out of range” would directly propagate from 
SWC A to SWC B. However, if the application environment is able to detect this failure, failure 

mode is isolated by the mentioned “Virtual SM” and does not propagate towards SWC B 

accordingly. 

 

The Figure 44 below shows the error model for the described situation. The ErrorModelType 

“Virtual SM” has been introduced in the error model, and the external failure of this error model 

type does not contain the failure mode “data out of range”, because it has been filtered by the 
application environment. 
 
 

 

Figure 44 : Example of Error Model modeling Virtual Safety Mechanism  
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11.2.4 Error Model as Safety Contract 

The error model pattern proposed above has the goal to contribute arguments to show the 
effectiveness of a safety concept. Thus, we propose to see it as part of a safety contract. Via the 
model, the application developer has the ability to specify how the application environment shall or 
shall NOT affect the execution of its application software. For instance, assuming the error model 
specifies that memory corruptions in the RAM shall not propagate to the application software (e.g. 
by storing the same value multiple times in the RAM to detect manipulation). In this case, the 
safety engineer can use this information to argue about the effectiveness of its safety concept, 
because he assumes that memory corruptions is not visible at application software level and can 
therefore not propagate towards possible malfunctions or hazards at top level. 

11.2.5 Modeling of Separation of Application Layer and Application Environment 

In Figure 45, we show how we model the separation of the application layer and the application 
environment with the meta-model described in chapter 10. 

 

Figure 45 : Example of modeling of the separation between the application layer and the 
application environment 

 
The error model contains an ErrorModelType for the complete system, which itself is composed of 
the Application Environment and the Application Layer. In this example, we omit the special case 

“Virtual SM” as mentioned in chapter 11.2.3. 

 object Separation_Application_Env ironment_Example

ApplicationLayer :

EMTypeSwComponent

CompleteSystem :

ErrorModelType

ApplicationEnv ironment :

ErrorModelType

«atpPrototype»

:MalfunctionPrototype

«atpPrototype»

:MalfunctionPrototype

«atpPrototype»

ApplicationLayerProto :

EMPSwComponent

«atpPrototype»

ApplicationEnv ironmentProto :

ErrorModelPrototype

:ErrorModel

«instanceRef»

:MalfunctionInstanceRef

«instanceRef»

:MalfunctionInstanceRef

:FaultFailurePropagationLink

ComputationFault :

MTEnum

«atpFeature»

cpuComputationFault :

MTEnumElement

«atpFeature»

memoryReadFault :

MTEnumElement

type

+cause

+errorModelPrototype

+malfunction

+effect

+malfunction

+part +part

type

+externalFault

+malfunction

+externalFailure

+malfunction

+errorModelPrototype
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In this diagram, we also show one faultfailurePropagationLink that models a 
ComputationMalfunction that originates in the application environment and propagates a fault to 
the application layer. 

In the upper right of the diagram, we define computation faults to be either computation faults due 
to the CPU or due to invalid memory reads. 

11.3 Error model pattern 2 – Separation of Hardware and Software 

The separation of hardware and software via a dedicated Hardware Software Interface (HSI) is 
strongly linked to the abstraction view on the system, and in particular to the representation of the 
technical safety concept where software and hardware interacts together. On the top of the 
ISO26262 requirements to identify the HSI interface at the system level, the failure propagation 
between the hardware and software shall be defined consistently with HSI definition. 

Using AUTOSAR scheme, as proposed in the Error model pattern 1 defined in chapter 11.2, the 
application environment interfaces the application layer via RTE interfaces abstracting the ECU‟s 
hardware and BSWs. The application environment, also named AUTOSAR execution platform, is 
constituted of hardware elements and AUTOSAR software infrastructure such as services, HCAL 
layer, etc, and MCAL layer. The MCAL software driver interfaces the hardware controller and the 
peripherals using specialized hardware registers. These hardware registers are physical 
implementation of the HSI, but do not fit to the abstraction level of the RTE interface.  

On the other hand, if EAST-ADL is used for application layer description, the application 
environment is simplified as the RTE is not visible, as virtual function bus is abstracted by flow port 
connector.  For this abstraction level, the main relevance for HSI is able to define relation between 
an hardware elements of the ECUs and software elements used in the Functional Design of EAST-
ADL, embracing the hardware abstraction functionality. 

This HSI subject is still in discussion between WT3.x, so vertical propagation of error model using 
HSI cannot yet be stated. The current proposal of the discussion, built in WT3.2.2, for HSI and 
interaction with ErrorModel has been included in AnnexB chapter 18. 
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12 Conclusions and next steps 

This document is intended to provide information about a proposal for extension of meta-model for 
error failure and propagation analysis that shall be compliant with the requirements and main 
concepts addressed by ISO26262. 
 
Also the problematic of distributed development and impact of the fault propagation through the 
entire item is highlighted in the document. To solve this issue an approach based on pattern-based 
safety contracts is proposed. 
 
A solid base of information was provided in the document concerning two relevant fault and 
propagation languages candidate: HiP-HOPS and AltaRica. A final pros and cons analysis did not 
permit to choose between them. As the priority was to have something simple for the end user, we 
came to the conclusion that a simplified SAFE language capable to be transformed transparently 
either in HiP-HOPS or AltaRica was the best compromise. So, we elicited requirements for the 
grammar and for the semantics of a simplified SAFE language that are now available in the 
document. 
 
Since it was an objective to reuse EAST-ADL as much as possible, the current version of EAST-
ADLV2.1 and more particularly the ErrorModel package was presented in a first step. Then the 
main gaps compared to our needs were highlighting and finally a proposal for Meta-model 
extensions was formulated.  
 
Moreover to correctly use and implement our meta-model proposal, a dedicated example with 
some application rules was provided. 
 
Even if some discussions were already performed between the most relevant work tasks having 
dependencies with WT3.3.1, the proposed meta-model enhancements for error failure and 
propagation analysis has to be synchronized with the meta-model extensions of WT3.2.2, WT3.2.1 
and WT3.1.1 in order to harmonize the model properties for the description of re-use related 
information. As a consequence a new release of this document will be performed including 
clarification of Hardware Software interface. 
 
The next deliverable D331b will provide documentation about Methods and Tool specification for 
analysis of qualitative and quantitative cut-sets issued from Error Failure propagation analysis. In 
the document D331a most relevant safety analysis techniques recommended by ISO26262 were 
assessed and final considered methods for D331b will be qualitative FMEA, quantitative FMEDA 
and FTA. 
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13 Glossary useful for D331a document 

 

Hazard 
Potential source of harm caused by malfunctioning behavior of the 
item. 

Malfunctioning behavior 
Failure or unintended behavior of an item with respect to its design 
intent. 

Fault Abnormal condition that can cause an element or an item to fail. 

Error 
Deviation between a computed observed or measured value or 
condition from theoretically correct value or condition. 

Failure 
Termination of the ability of an element, to perform a function as 
required. 

Systematic fault 
Fault whose failure is manifested in a deterministic way that can 
only be prevented by applying process or design measures. 

Systematic failure 

Failure related in a deterministic way to a certain cause, that can 
only be eliminated by a change of the design or of the 
manufacturing process, operational procedures, documentation or 
other relevant factors. 

Random hardware 
failure 

Failure that can occur unpredictably during the lifetime of a 
hardware element and that follows a probability distribution. 

Malfunction 
Malfunction is a failure or unintended behavior of the item or 
element of the item that has the potential to propagate. 

Horizontal error 
propagation 

Propagation of errors inside a same architectural level. 

Vertical error 
propagation 

Propagation of errors through different architectural levels. 

Informal Notation 
Description technique that does not have its syntax completely 
defined. 

Semi-formal Notation 
Description technique whose syntax is completely defined but 
whose semantics definition can be incomplete. 

Formal Notation 
Description technique that has both its syntax and semantics 
completely defined. 

Application environment 
The application environment includes all entities, in which the 
application layer is executed. This includes the ECU hardware, the 
basic software and RTE. 

Application layer The set of all Software Components. 

Basic Software 
The basic software implements common available services and 
ECU provided resources. 

Virtual fault SWC 

A Software Component in the error model that represents a safety 
mechanism in the application environment. It does not occur in the 
system model, but only occurs in the error model for software safety 
analysis. 

 

 



SAFE – an ITEA2 project                                   D331a 

 2011 The SAFE  Consortium  86 (97) 

14 Abbreviations used in D331a document 

ASIL Automotive Safety Integrity Level 

ATTEST Advancing Traffic Efficiency and Safety through Software Technology 

AUTOSAR AUTomotive Open System ARchitecture 

BCM Body Control Management 

BDD Binary Decision Diagram 

CAE Computer Aided Engineering 

CAN Controller Area Network 

CCF Common Cause of Failure 

CESAR Cost-Efficient methods and processes for SAfety Relevant embedded systems 

COTS Component Off the Shelf 

CPU Central Processing Unit 

DM Degradation Mode 

DRIS Distributed, Reliable and Intelligent control and cognitive Systems 

E/E Electronic and Electrical 

EAST-ADL Electronic Architecture and Software Tools- Architecture Description Language 

ECU Electronic Control Unit 

EMC Electro Magnetic Compatibility 

ETA Event Tree Analysis 

FDA Functional Design Architecture  

FIT Failure In Time 

FME(D)A Failure Mode Effect and Diagnostic Analysis 

FMEA Failure Mode and Effect Analysis 

FTA Fault Tree Analysis 

GUI Graphical User Interface 

HAZOP HAZard and OPerability study 

HDA Hardware Design Architecture 

HiP-HOPS Hierarchically Performed Hazard Origin & Propagation Studies 

HRC Heterogeneous Rich Components 

HSI Hardware Software Interface 

HW Hardware 

IP Intellectual Property 

LFM Latent Fault Metric 

LH Limp Home 

MAENAD Model-based Analysis & Engineering of Novel Architectures for Dependable electric vehicles 

MCU Microcontroller Unit 

OEM Original Equipment Manufacturer 

Open-PSA Open Probabilistic Safety Assessment 

RAM Random Access Memory 

RBD Reliability Block Diagram 

RSL Requirements Specification Language 

RTE Real Time Environment 

SAFE Safe Automotive soFtware architEcture 

SM Safety Mechanism 

SPEEDS Speculative and Exploratory Design in Systems Engineering 

SPFM Single Point Fault Metric 

SW Software 

SWC Software Component 

TCM Top Column Module 

WT Work Task 

XML Extensible Markup Language 
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17 Annex A: Mapping between AltaRica and HiP-HOPS 

Based on one example provided by Dassault System on SafetyDesigner 9, a mapping with HiP-
HOPS was proposed by Continental-France. 

 

 

ITEA 2 ~ 10039

Typing / event versus Failure Class

Altarica : Flow Typing Hip-Hops :  Failure Class

FC = DetectedFault

FC : UndetectedFault

FC = Fault

FC = Fault

ITEA 2 ~ 10039

Extract of the exemple 

node SafeEngineControl_TechnicalSafetyConcept_Hardware_MicroController

flow

icone : [1, 2] : local;

PowerIn : SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

SensorIn : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

ActuatorOut : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

CPUSupportOut : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out ;

CommandInput : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

SensorProcessedOutput : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

ADCSupportOut : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out ;

HTimerSupportOut : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out ;

sub

HTimerSupport : SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimerMaterialSupport;

HTimer : SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimer;

CPU : SafeEngineControl_TechnicalSafetyConcept_Hardware_CPU;

AnalogicDigitalConvertor : SafeEngineControl_TechnicalSafetyConcept_Hardware_ADC;

assert

AnalogicDigitalConvertor.SensorIn = SensorIn ;

SensorProcessedOutput = AnalogicDigitalConvertor.SensorOut ;

AnalogicDigitalConvertor.PowerIn = PowerIn ;

CPU.PowerIn = PowerIn ;

CPUSupportOut = CPU.CPUSupport ;

HTimer.CommandIn = CommandInput ;

ActuatorOut = HTimer.CommandOut ;

ADCSupportOut = AnalogicDigitalConvertor.ADCSupport ;

HTimerSupport.SupplyIn = PowerIn ;

HTimerSupportOut = HTimerSupport.MaterialSupportOut ;

edon

Altarica

As HiP-HOPS interface is XML based;  the next slide represent only concept and equation 

With removing of  sugar information <data> </data>

Knowing that XML file shall be generated from SAFE meta-model Class



SAFE – an ITEA2 project                                   D331a 

 2011 The SAFE  Consortium  90 (97) 

 

 

 

ITEA 2 ~ 10039

Analogic Digital Convertor

node SafeEngineControl_TechnicalSafetyConcept_Hardware_ADC

flow

icone : [1, 2] : local;

SensorIn : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

SensorOut : SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

PowerIn : SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

ADCSupport : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : 

out ;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (State = OK and PowerIn = Nominal)

then SensorOut = SensorIn and ADCSupport = Supported

else SensorOut = Invalid and ADCSupport = Unsupported

extern

law <event failure> = exponential(5.0E-5);

edon

Altarica

Component 

SafeEngineControll_...._ADC

Ports 

Port Input SensorIn

Port Output SensorOut

Port Input PowerIn

Port Output ADCSupport

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F1

OutputDeviation FailureEq1

FailureEq1

OutputDeviation Fault-SensorOut

FailureExpression

Fault-PowerIn OR failure

Fault-ADCSupport

FailureExpression

Fault-PowerIn OR failure

UnavailabilityFormula F1

Constant  FailureRate 1e-3    //can be Poisson, ...

HiP-HOPS

ITEA 2 ~ 10039

CPU ressource

node SafeEngineControl_TechnicalSafetyConcept_Hardware_CPU

flow

icone : [1, 2] : local;

PowerIn : SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

CPUSupport : SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out 

;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (PowerIn = Nominal and State=OK) then (CPUSupport = 

Supported & icone =2) else (CPUSupport = Unsupported & icone =1);

extern

law <event failure> = exponential(1.0E-6);

edon

Altarica HiP-HOPS

Component 

SafeEngineControll_...._CPU

Ports 

Port Input PowerIn

Port Output CPUSupport

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F2

OutputDeviation FailureEq2

ExportedDeviation*

FailureEq2

OutputDeviation Fault-CPUSupport

FailureExpression

Fault-PowerIn OR failure

F2

UnavailabilityFormula

Constant  FailureRate 1e-3    //can be Poisson, ...

ExportedDeviation* can be the construction of a logical 

Expression of a  FailureClass to be reuse across perspective
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ITEA 2 ~ 10039

Hardware Timer Support

node

SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimerMa

terialSupport

flow

icone : [1, 2] : local;

SupplyIn : 

SafeEngineControl_TechnicalSafetyConcept_PowerSupply : in ;

MaterialSupportOut : 

SafeEngineControl_TechnicalSafetyConcept_MaterialSupport : out 

;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (SupplyIn = Nominal and State=OK) then 

(MaterialSupportOut = Supported & icone=2)else 

(MaterialSupportOut = Unsupported & icone =1);

extern

law <event failure> = exponential(3.0E-6);

edon

Altarica HiP-HOPS

Component 

SafeEngineControll_...._HTimerMaterialSupport

Ports 

Port Input SupplyIn

Port Output MaterialSupportOut

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F3

OutputDeviation FailureEq3

ExportedDeviation*

FailureEq3

OutputDeviation

Fault-materialSupportOut

FailureExpression

Fault-SupplyIn OR failure

F3

UnavailabilityFormula

Constant  FailureRate 1e-3    //can be Poisson, ...

ITEA 2 ~ 10039

Hardware Timer

node SafeEngineControl_TechnicalSafetyConcept_Hardware_HTimer

flow

icone : [1, 2] : local;

CommandIn : 

SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : in ;

CommandOut : 

SafeEngineControl_TechnicalSafetyConcept_FunctionalFlow : out ;

state

State : {OK,KO};

event

failure;

init

State := OK;

trans

State = OK |- failure -> State := KO;

assert

if (State = OK)

then  CommandOut = CommandIn & icone = 2 

else CommandOut = Invalid & icone = 1;

extern

law <event failure> = exponential(1.5E-6);

edon

Altarica HiP-HOPS

Component 

SafeEngineControll_...._HTimerMaterialSupport

Ports 

Port Input CommandIn

Port Output CommandOut

Implementation

FailureData

BasicEvents

Basic Event failure

UnavailabityFormula F4

OutputDeviation FailureEq4

ExportedDeviation*

FailureEq4

OutputDeviation Fault-CommandOut

FailureExpression

Fault-CommandIn OR failure

F4

UnavailabilityFormula

Constant  FailureRate 1e-3    //can be Poisson, ...
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ITEA 2 ~ 10039

Extract of the exemple 

node SafeEngineControl_....._MicroController

flow

icone : [1, 2] : local;

PowerIn : SafeEngine….PowerSupply : in ;

SensorIn : SafeEngine…Flow : in ;

ActuatorOut : SafeEngine…Flow : out ;

CPUSupportOut : SafeEngine…Support : out ;

CommandInput : SafeEngine…Flow : in ;

SensorProcessedOutput : SafeEngine…Flow : out ;

ADCSupportOut : Safe….Support : out ;

HTimerSupportOut : SafeEngine….Support : out ;

sub

HTimerSupport : SafeEngine…Support;

HTimer : SafeEngine…_HTimer;

CPU : SafeEngine…..t_Hardware_CPU;

AnalogicDigitalConvertor : SafeEngineControl_T…e_ADC;

assert

AnalogicDigitalConvertor.SensorIn = SensorIn ;

SensorProcessedOutput = AnalogicDigitalConvertor.SensorOut ;

AnalogicDigitalConvertor.PowerIn = PowerIn ;

CPU.PowerIn = PowerIn ;

CPUSupportOut = CPU.CPUSupport ;

HTimer.CommandIn = CommandInput ;

ActuatorOut = HTimer.CommandOut ;

ADCSupportOut = AnalogicDigitalConvertor.ADCSupport ;

HTimerSupport.SupplyIn = PowerIn ;

HTimerSupportOut = HTimerSupport.MaterialSupportOut ;

edon

Altarica HiP-HOPS
System

SubSystem

Components

Component SafeEngineControl_....._MicroController

Ports

Port Input  PowerIn

Port Input SensorIn

Implementations Impl_SafeEngine…Controller

FailureData

System mySubComponents

Components

Component

HTimerSupport

Ports

Implementation

FailureData

……

Component H_Timer

…

Lines

Line SensorADCLin

….

SensorADCLin

Line

Type Directed

Connections

Connection 

Port.PowerIn

PortExpression CPU.PowerIn

Connection

On the top level a model 

has Perspective * that may 

includes several system
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18 Annex B: Proposal of Hardware Software Interface (HSI) consideration in ErrorModel 

A proposal of how to integrate HSI in ErrorModel was done by the leader of WT3.2.2 - Continental-
France but due to project timing, it was not possible to freeze something because there were 
different views between some WT3.x.x of how to model HSI. The proposal is shown hereafter: 
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