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1. Purpose 

 This document contains the State-of-the-art of Contiki and TinyOS Operating 

Systems in the scope of the Interoperable Sensor Networks (ISN) project. This 

document integrates the deliverable State-of-the-art: communication, technology, 

interoperability, which addressed the state-of-the-art study on communication protocols 

done in the first part of the project. 

 

2. Introduction 

In complex systems, the Operating System (SO) acts as resource manager. The 

job of the SO in a typical system is to manage its resources (processors, memories, 

timers, disks, mice, keyboard, network interfaces, etc.) to users in an orderly and 

controlled manner. Users and programmers can invoke different OS services via system 

calls through multiplexing of OS system resources in time and in space. Time 

multiplexing involves different programs taking turn in using the resources. On the 

other hand, space multiplexing involves different programs accessing parts of the 

resource, possibly at the same time.  

The development of miniaturized and cheap sensor nodes, capable of 

communicating wirelessly, sensing and performing computations is due to advances in 

Micro-Electro Mechanical System (MEMS)-based sensor technology. As we know a 

wireless sensor node is composed of a microcontroller, transceiver, timer, memory and 

analog to digital converter. The main and most critical resources in sensor node are 

energy (is provide by a battery) and memory (is allowed only a few kilobytes).  The 

microcontroller operates al low frequency compared to traditional processing units. 

Dense deployment of sensor nodes in the sensing field and distributed processing 

through multi-hop communication among sensor nodes is required to achieve high 

quality and fault tolerance in WSNs. Considering the resource constraints of typical 

sensor nodes in a WSN, a new approach is required for OS design in WSN. 

This document is focusing on OS for severely resource-constraint WSN nodes 

such as motes. We have examined the core OS features, such as its Architecture, 

Programming Model, Scheduling, Memory Management and Protection, 

Communication Protocols, Resource Sharing, and Support for Real-Time Applications, 

in both real-time and non-real-time WSN OSs. The document focuses on Contiki and 

TinyOS. 

 

3. Contiki 

Contiki[2] is an open source OS for WSN sensor nodes. It is a lightweight and 

portable OS written in C language and it is build around an event-driven kernel. This 

OS provides preemptive multitasking that can be used at the individual process level. A 

typical Contiki configuration consumes 2 kilobytes of RAM and 40 kilobytes of ROM. 

A full Contiki installation includes features like: multitasking kernel, preemptive 

multithreading, proto-threads, TCP/IP networking, IPv6, a Graphical User Interface, a 

web browser, a personal web server, a simple telnet client, a screensaver, and virtual 

network computing. 
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3.1. Architecture 

The Contiki OS is based on a modular architecture. At the kernel level it follows 

the event driven model, but it provides optional threading facilities to individual 

processes. This kernel comprises of a lightweight event scheduler that dispatches events 

to running processes. Process execution is triggered by events dispatched by the kernel 

to the processes or by a polling mechanism. This polling mechanism is used to avoid 

race conditions. Any scheduled event will run to completion, however, event handlers 

can use internal mechanisms for preemption. 

Asynchronous events and synchronous events are supported by Contiki OS. 

Synchronous events are dispatched immediately to the target process that causes it to be 

scheduled. On the other hand asynchronous events are more like deferred procedure 

calls that are en-queued and dispatched later to the target process. 

The polling mechanism can be seen as high-priority events that are scheduled in 

between each asynchronous event. When a poll is scheduled, all processes that 

implement a poll handler are called in order of their priority. 

All OS facilities: senor data handling, communication, device drivers, etc.  are 

provided in the form of services. Each service has its interface and implementation. 

Applications using a particular service need to know the service interface and an 

application is not concerned about the implementation of a service. 
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Figure 1: Contiki Architecture 

 

3.2. Programming Model 

Contiki uses protothreads [3] for multithreading. Protothreads are designed for 

severely memory constraint devices because they are stack-less and lightweight. The main 

features of protothreads are: onlty two bytes per protothread, no extra stack for a thread and 
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highly portable. Since events run to completion and Contiki does not allow interrupt 

handlers to post new events, no process synchronization is provided in Contiki. 
Contiki supports preemptive multithreading and this is implemented as a library 

on top of the event-driven kernel. The library can be linked with applications that 

require multithreading. The Contiki multithreading library is divided in two parts: a 

platform independent part and a platform specific part. The platform independent part 

interfaces to the event kernel and the platform specific part of the library implements 

stack switching and preemption primitives. Since preemption is supported, preemption 

is implemented using the timer interrupt and the thread state is stored on a stack. 

 

3.3. Scheduling 

Contiki does not employ any sophisticated scheduling algorithm because it is an 

event-driven OS. Events are fired to the target application as they arrive. In case of 

interrupts, interrupt handlers of an application runs with regard to their priority. 

 

3.4. Memory Management and Protection 

Contiki supports dynamic memory management. Contiki provides memory 

block management functions and supports dynamic linking of the programs. For 

providing memory block management functions the library provides simple but 

powerful memory management functions for blocks of fixed length. A memory block is 

statically declared using the MEMB() macro. Memory blocks are allocated from the 

declared memory by the memb_alloc() function, and are de-allocated using the 

memb_free() function. 

Apart from this it also supports dynamic linking of the programs. In order to 

guard against memory fragmentation Contiki uses a Managed Memory Allocator [4]. 

The primary responsibility of the managed memory allocator is to keep the allocated 

memory free from fragmentation by compacting the memory when blocks are free. 

Therefore, a program using the memory allocator module cannot be sure that allocated 

memory stays in place. 

Contiki does not provide any memory protection mechanism between different 

applications. 

 

3.5. Communication Protocol Support 

Contiki provides an implementation of TCP/IP protocol stack for small 8 bit 

micro-controllers (uIP). uIP does not require its peers to have a complete protocol stack, 

but it can communicate with peers running a similar lightweight stack. The uIP 

implementation is written in C and it has the minimum set of features needed for a full 

TCP/IP stack. uIP can only support one network interface, and it supports TCP, UDP, 

ICMP, and IP protocols. 

On the other hand, Contiki provides RIME. RIME is another lightweight layered 

protocol stack for network-based communication. Rime supports both best effort and 

reliable transmission. In multi-hop communication, Rime allows applications to run 

their own routing protocols. Rime provides single hop unicast, single hop broadcast, and 

multi-hop communication support.  Applications are allowed to implement protocols 

that are not present in the Rime stack. 
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However Contiki does not support multicast. Therefore Contiki does not provide 

any implementation of group management protocols such as the Internet Group 

Management Protocol (ICMP), or Multicast Listener Discovery (MLD) protocol. 

Whenever a packet is received, Contiki places it in the global buffer and notifies the 

TCP/IP stack. If it is a data packet, TCP/IP notifies the appropriate application. The 

application needs to copy the data in the secondary buffer or it can immediately process 

the data. Once the application is done with the received data, Contiki overwrites the 

global buffer with new incoming data. If an application delays data processing, then 

data can be overwritten by new incoming data packets. 

To provide IPv6 routing protocol for low power and lossy networks exists an 

implementation of RPL called ContikiRPL[6]. ContikiRPL operates over low power 

wireless links and lossy power line links. 

 

3.6. Resource Sharing 

Contiki provides serialized access to all resources due to events run to 

completion and Contiki does not allow interrupt handlers to post new events 

 

3.7. Support for Real-Time Applications 

Support for real-time applications is not allowed.  There is no implementation of 

any real-time process scheduling algorithm in Contiki. Contiki does not provide any 

protocol that considers the QoS requirements of multimedia applications on the network 

protocol stack side. In addition, since Contiki provides an implementation of the micro 

IP stack, interactions between different layers of the protocol stack are not possible. 

 

3.8. 6LowPAN Implementations 

SicslowPAN is the first implementation of 6LoWPAN developed for the Contiki 

OS. SICSlowPAN is based on the RFC4944, and implements mechanisms for 

addressing and fragmentation. It also adds a new header compression mechanism. 

SICSlowPAN does not implement networks "Mesh under" but supports using other 

routing techniques. 

On the other hand, SICSlowPAN is located between IPv6 layer and MAC layer. 

Therefore, when the MAC layer receives an IPv6 packet, call SICSlowPAN layer to 

adapt from the MAC layer packet to the IP layer. Furthermore, when uIPv6 layer needs 

to send a package also uses the SICSlowPAN layer to form the package. 

Contiki operating system implements a default non-IP protocol on the MAC 

layer, called RIME. uIPv6 and  uIPv4 stacks have recently been added. uIPv6 stack is 

independent of any of the lower layers, making it possible to send data over standard 

802.15.4, 802.11 or 6LoWPAN. uIPv6 stack supports ICMPv6 packets, implements the 

neighbour discovery protocol (Neighbour Discovery) and supports both UDP and TCP. 

 

3.9. Additional Features 

 Cofee File System: Contiki uses the Coffee file system. This file system gives 

support for flash-based sensor devices. Coffee file system provides a 

programming interface for building efficient and portable storage abstractions 



ISN - Interoperable Sensor Networks - Deliverable Page 8 of 15 

- 8 - 

and provides provides a platform independent storage abstraction through an 

expressive programming interface. Coffee uses a small and constant memory 

footprint per file (in default setup uses 5 Kb ROM for the code and 0.5 Kb RAM 

at run-time), making it scalable. Coffee also introduces the concept of micro 

logs to handle file modifications without using a spanning log structure. Because 

of the contiguous page structure file metadata, Coffee uses a small and constant 

footprint for each file. Flash memory is divided into logical pages and the size of 

the page typically matches the underlying flash memory pages. If the file size is 

not known beforehand, Coffee allocates a predefined amount of pages to the file. 

Later on, if the reserved size turns out to be insufficient, Coffee creates a new 

larger file and copies the old file data into it. To boost the file system 

performance, by default Coffee uses a metadata cache of 8 entries in the RAM. 

Coffee also provides an implementation of a garbage collector that reclaims 

obsolete pages when a file reservation request cannot be satisfied. To allocate 

pages to a file, Coffee uses a first fit algorithm. Flash memories suffer from 

wear, i.e., every time a page is erased it increases the chances of memory 

corruption. Coffee uses wear levelling and its purpose is to spread sector 

erasures evenly to minimize the risk of damaging some sectors much earlier than 

others. Coffee provides the following APIs to the application programmers. 

open(), read(), modify(), seek(), append(),close().  

 Security Support: Contiki does not provide support for secure communication. 

There is a proposal and implementation of a secure communication protocol 

with the name ContikiSec 

 Simulation Support: Contiki provides sensor network simulations through Cooja 

[8]. 

 Languaje Support: Cotiki supports application development in the C language. 

 Supported Platforms: Contiki supports the following sensing platforms: Tmote 

[9], AVR series MCU [10]. 

 Documentation Support: Contiki documentation can be found on the Contiki 

home page at: http://www.sics.se/contiki. 

 

4. TinyOS 

TinyOS [3] is an open source, flexible, component based, and application 

specific operating system designed for sensor networks. TinyOS can support concurrent 

programs with very low memory requirements. The TinyOS has a footprint that fits in 

400 bytes. The TinyOS component library includes network protocols, distributed 

services, sensor drivers and data acquisition tools.  

 

4.1. Architecture 

TinyOs is based on monolithic architecture class. TinyOS uses the component 

model and different components are glued together with the scheduler to compose a 

static image that runs on the mote. A component is an independent computational entity 

that exposes one or more interfaces. Components have three computational abstractions: 

commands, events, and tasks. Mechanisms for inter-component communication are 

commands and events. Tasks are used to express intra component concurrency. A 

command is a request to perform some service, while the event signals the completion 

http://www.sics.se/contiki
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of the service. TinyOS provides a single shared stack and there is no separation between 

kernel space and user space. 
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Figure 2: TinyOS Architecture 

 

4.2. Programming Model 

TinyOS version 2.1 provides support for multithreading and these TinyOS 

threads are called TOS Threads. Given the motes’ resource constraints, an event-based 

OS permits greater concurrency. However, preemptive threads offer an intuitive 

programming paradigm. The TOS threading package provides the ease of a threading 

programming model coupled with the efficiency of an event driven kernel. TOS threads 

are backward compatible with existing TinyOS code. TOS threads use a cooperative 

threading approach, i.e., TOS threads rely on applications to explicitly yield the 

processor. This adds an additional burden on the programmer to explicitly manage the 

concurrency. Application level threads in TinyOS can preempt other application level 

threads but they cannot preempt tasks and interrupt handlers. A high priority kernel 

thread is dedicated to running the TinyOS scheduler. For communication between the 

application threads and the kernel, TinyOS 2.1 provides message passing. When an 

application program makes a system call, it does not directly execute the code. Rather it 

posts a message to the kernel thread by posting a task. Afterwards, the kernel thread 

preempts the running thread and executes the system call. This mechanism ensures that 

only the kernel directly executes TinyOS code. System calls like Create, Destroy, 

Pause, Resume and Join are provided by the TOS threading library. 

TOS threads dynamically allocate Thread Control Blocks (TCB) with space for a 

fixed size stack that does not grow over time. TOS Threads context switches and system 

calls introduce an overhead of less than 0.92%. 
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Earlier versions of TinyOS imposed atomicity by disabling the interrupts, i.e., 

telling the hardware to delay handing the external events until after the application 

completed an atomic operation. This scheme works well on uniprocessor systems. 

Critical section can occur in the user level threads and the designer of the OS does not 

want the user to disable the interrupts due to system performance and usability issues. 

This problem is circumvented in TinyOS version 2.1. It provides synchronization 

support with the help of condition variables and mutexes. These synchronization 

primitives are implemented with the help of special hardware instructions e.g., test & 

set instruction. 

 

4.3. Scheduling 

Earlier versions of TinyOS supported a non-preemptive First-In-First-Out 

(FIFO) scheduling algorithm and those versions do not support real-time application. 

The core of the TinyOS execution model are tasks that run to completion in a FIFO 

manner. Since TinyOS supports only non preemptive scheduling, task must obey run to 

completion semantics. Tasks run to completion with respect to other task but they are 

not atomic with respect to interrupt handlers, commands, and events they invoke. Since 

TinyOS uses FIFO scheduling, disadvantages associated with FIFO scheduling are also 

associated with the TinyOS scheduler. The wait time for a task depends on the task’s 

arrival time. FIFO scheduling can be unfair to latter tasks especially when short tasks 

are waiting behind longer ones. 

 

4.4. Memory Management and Protection 

Hardware-based memory protection is not available and the resources are scarce 

in sensor nodes.Resource constraints necessitate the use of unsafe, low level languages 

like nesC [12]. Memory safety is incorporated in TinyOs version 2.1 [13]. The goals for 

memory safety are: trap all pointer and array errors, provide useful diagnostics, and 

provide recovery strategies. Implementations of memory-safe TinyOS exploit the 

concept of a Deputy. The Deputy is a resource to resource compiler that ensures type 

and memory safety for C code. Code compiled by Deputy relies on a mix of compile 

and run-time checks to ensure memory safety. Safe TinyOS is backward compatible 

with earlier version of TinyOS. The Safe TinyOS tool chain inserts checks into the 

application code to ensure safety at run-time. When a check detects that safety is about 

to be violated, code inserted by Safe TinyOS takes remedial actions. TinyOS uses a 

static memory management approach. 

 

4.5. Communication Protocol Support 

Earlier versions of TinyOS provide two multi-hop protocols: dissemination and 

TYMO [14,15]. The dissemination protocol reliably delivers data to every node in the 

network. This protocol enables administrators to reconfigure queries and to reprogram a 

network. The dissemination protocol provides two interfaces: DisseminationValue and 

DisseminationUpdate. A producer calls DisseminationUpdate. The command 

DisseminationUpdate.change() should be called each time the producers wants to 

disseminate a new value. On the other hand, the DisseminationValue interface is 

provided for the consumer. The event DisseminationValue.changed() is signaled each 

time the dissemination value is changed. TYMO is the implementation of the DYMO 
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protocol, a routing protocol for mobile ad hoc networks. In TYMO, packet formats have 

changed and it has been implemented on top of the active messaging stack. 

TinyOS version 2.1.1 now also provides support for 6lowpan [16], an IPv6 

networking layer within a TinyOS network. 

At the MAC layer, TinyOS provides an implementation of the following 

protocols: a single hop TDMA protocol, a TDMA/CSMA hybrid protocol which 

implements Z-MAC’s slot stealing optimization, B-MAC, and an optional 

implementation of an IEEE 802.15.4 complaint MAC. 

 

4.6. Resource Sharing 

TinyOS has two mechanisms for managing shared resources: Virtualization and 

Completion Events. A virtualized resource appears as an independent instance. i.e., the 

application uses it independent of other applications. Resources that cannot be 

virtualized are handled through completion events. The GenericComm communication 

stack of TinyOS is shared among different threads and it cannot be virtualized. 

GenericComm can only send one packet at a time, send operations of other threads fail 

during this time. Such shared resources are handled through completion events that 

inform waiting threads about the completion of a particular task. 

 

4.7. Support for Real-Time Applications 

TinyOS does not provide any explicit support for real-time applications. Tasks 

in TinyOS observe run to completion semantics in a FIFO manner, hence in its original 

form, TinyOS is not a good choice for sensor networks that are being deployed to 

monitor real-time phenomena. An effort has been made to implement an Earliest 

Deadline First (EDF) process scheduling algorithm and it has been made available in 

newer versions of TinyOS. However, it has been shown that the EDF algorithm cannot 

produce a feasible schedule when tasks content for resources. In the nutshell, TinyOS is 

not a strong choice for real-time applications. 

In relation to Quality of Service requirements of real-time multimedia streams, 

TinyOS does not provide any specific MAC, network, or transport layers protocol 

implementations.  At the MAC layer, TinyOS supports TDMA, which can be fine-tuned 

depending upon the requirements of an application to support multimedia traffic 

streams. 

 

4.8. 6LowPAN Implementations 

The first implementation is called 6lowpancli, was released in 2007 and is now 

integrated as a native application in TinyOS-2.x. 6lowpancli supports header 

compression, fragmentation and addressed. Regarding the higher level protocols, 

6lowpancli supports UDP, holding it in the form HC_UDP and ICMPv6 messages. 

Therefore it is possible to ping the motes and use UDP communication from anywhere 

on the Internet to a small sensor node. To perform a bridge between the sensor network 

and conventional network, TinyOS-2.x provides a small application to emulate a tunnel 

IPv6 through the USB port through which you can connect the sensor node. The main 

drawback of 6lowpancli is that it is completely static and needs to be configured 

manually. Not support any mechanism for discovery of neighboring nodes (Neighbor 

Discovery Protocol) or mobility. Besides configuring mesh network (mesh networks) is 
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not supported and when a packet with a destination address different from the node is 

received, it is omitted. 

The second implementation of 6LoWPAN developed for TinyOS-2.x is called 

BLIP (Berkeley Low-Power IP stack). In this case the code is not included natively in 

TinyOS-2.x but can be found on the contributions of the University of Berkeley. BLIP 

implements the basic features defined in RFC4944, i.e., header compression, 

fragmentation and addressing. Support for ICMPv6 and UDP packets. Moreover, the 

latest version adds the first prototype of the TCP stack, which is still experimental. In 

addition, BLIP incorporates a "light" version of Discovery Protocol neighboring nodes 

(Neighbor Discovery Protocol), being able to configure a link local address or global in 

neighboring nodes, depending on whether or not it has received a frame of notice from 

the router. As 6lowpancli, BLIP includes an application to create an IPv6 tunnel to 

connect a conventional network to wireless sensor network. BLIP addition, unlike 

6lowpancli supports mesh networks (mesh networks) as defined in RFC4944 also called 

"mesh under". "Mesh under" indicates that from the point of view of the IP layer, all 

nodes are one hop away, since multiple jumps are performed by the MAC layer. 

 

4.9. Additional Features 

 File System: TinyOS provides a single level file system. The rationale behind 

providing a single level file system is the assumption that only a single 

application runs on the node at any given point in time. As node memory is 

scarce, having a single level file system is therefore sufficient. 

 Database Support: The purpose of sensor nodes is to sense, perform 

computations, store and transmit data; therefore TinyOS provides database 

support in the form of TinyDB. 

 Security Support: Communication security in wireless broadcast medium is 

always required. TinyOS provides its communication security solution in the form 

of TinySec [17]. 

 Simulation Support: TinyOS provides simulation support in the form of TOSSIM 

[18]. The simulation code is written in NesC and consequently can also be deployed 

to actual motes. 

 Language Support: TinyOS supports application development in the NesC 

programming language. NesC is a dialect of the C language. 

 Supported Platforms: TinyOS supports the following sensing platforms: Mica, 

Mica2, Micaz, Telos, Tmote and a few others. 

 Documentatation Support: TinyOS is a well documented OS and extensive 

documentation can be found on the TinyOS home page at http://www.tinyos.net. 
 

 

 

 

 

 

 

 

 

http://www.tinyos.net/
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5. Comparative Analysis 
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