
ISN - Interoperable Sensor Networks - Deliverable Page 1 of 15

- 1 -

CONTIKI AND TINYOS

Version: 0.4 (August 13, 2012)

Edited by: Edosoft Factory, S.L (Edosoft)

ISN - Interoperable Sensor Networks - Deliverable Page 2 of 15

- 2 -

Project Data

Acronym: ISN

Name: Interoperable Sensor Networks

ITEA number: 09034

Consortium:

 Vrije Universiteit Brussel

 Freemind

 MTP

 Edosoft

 MAIS

Document data:

Doc name: Contiki and Tiny OS

Doc version: 0.4

Doc type:

Version Date Remarks

0.1 July 20, 2012 First Draft

0.2 July 27, 2012 Added TinyOS

0.3 August 3, 2012 Added Comparative Analysis

0.4 August 13, 2012 Preliminary version

ISN - Interoperable Sensor Networks - Deliverable Page 3 of 15

- 3 -

Contents

1. Purpose ... 4

2. Introduction .. 4

3. Contiki .. 4

3.1. Architecture ... 5

3.2. Programming Model .. 5

3.3. Scheduling ... 6

3.4. Memory Management and Protection ... 6

3.5. Communication Protocol Support ... 6

3.6. Resource Sharing ... 7

3.7. Support for Real-Time Applications ... 7

3.8. 6LowPAN Implementations .. 7

3.9. Additional Features ... 7

4. TinyOS ... 8

4.1. Architecture ... 8

4.2. Programming Model .. 9

4.3. Scheduling ... 10

4.4. Memory Management and Protection ... 10

4.5. Communication Protocol Support ... 10

4.6. Resource Sharing ... 11

4.7. Support for Real-Time Applications ... 11

4.8. 6LowPAN Implementations .. 11

4.9. Additional Features ... 12

5. Comparative Analysis .. 13

6. References .. 14

Figures

Figure 1: Contiki Architecture .. 5

Figure 2: TinyOS Architecture ... 9

Figure 3: Operating System Summary ... 13

Figure 4: Miscellaneous Features Summary .. 13

Figure 5: 6LowPan Implementations ... 13

ISN - Interoperable Sensor Networks - Deliverable Page 4 of 15

- 4 -

1. Purpose

 This document contains the State-of-the-art of Contiki and TinyOS Operating

Systems in the scope of the Interoperable Sensor Networks (ISN) project. This

document integrates the deliverable State-of-the-art: communication, technology,

interoperability, which addressed the state-of-the-art study on communication protocols

done in the first part of the project.

2. Introduction

In complex systems, the Operating System (SO) acts as resource manager. The

job of the SO in a typical system is to manage its resources (processors, memories,

timers, disks, mice, keyboard, network interfaces, etc.) to users in an orderly and

controlled manner. Users and programmers can invoke different OS services via system

calls through multiplexing of OS system resources in time and in space. Time

multiplexing involves different programs taking turn in using the resources. On the

other hand, space multiplexing involves different programs accessing parts of the

resource, possibly at the same time.

The development of miniaturized and cheap sensor nodes, capable of

communicating wirelessly, sensing and performing computations is due to advances in

Micro-Electro Mechanical System (MEMS)-based sensor technology. As we know a

wireless sensor node is composed of a microcontroller, transceiver, timer, memory and

analog to digital converter. The main and most critical resources in sensor node are

energy (is provide by a battery) and memory (is allowed only a few kilobytes). The

microcontroller operates al low frequency compared to traditional processing units.

Dense deployment of sensor nodes in the sensing field and distributed processing

through multi-hop communication among sensor nodes is required to achieve high

quality and fault tolerance in WSNs. Considering the resource constraints of typical

sensor nodes in a WSN, a new approach is required for OS design in WSN.

This document is focusing on OS for severely resource-constraint WSN nodes

such as motes. We have examined the core OS features, such as its Architecture,

Programming Model, Scheduling, Memory Management and Protection,

Communication Protocols, Resource Sharing, and Support for Real-Time Applications,

in both real-time and non-real-time WSN OSs. The document focuses on Contiki and

TinyOS.

3. Contiki

Contiki[2] is an open source OS for WSN sensor nodes. It is a lightweight and

portable OS written in C language and it is build around an event-driven kernel. This

OS provides preemptive multitasking that can be used at the individual process level. A

typical Contiki configuration consumes 2 kilobytes of RAM and 40 kilobytes of ROM.

A full Contiki installation includes features like: multitasking kernel, preemptive

multithreading, proto-threads, TCP/IP networking, IPv6, a Graphical User Interface, a

web browser, a personal web server, a simple telnet client, a screensaver, and virtual

network computing.

ISN - Interoperable Sensor Networks - Deliverable Page 5 of 15

- 5 -

3.1. Architecture

The Contiki OS is based on a modular architecture. At the kernel level it follows

the event driven model, but it provides optional threading facilities to individual

processes. This kernel comprises of a lightweight event scheduler that dispatches events

to running processes. Process execution is triggered by events dispatched by the kernel

to the processes or by a polling mechanism. This polling mechanism is used to avoid

race conditions. Any scheduled event will run to completion, however, event handlers

can use internal mechanisms for preemption.

Asynchronous events and synchronous events are supported by Contiki OS.

Synchronous events are dispatched immediately to the target process that causes it to be

scheduled. On the other hand asynchronous events are more like deferred procedure

calls that are en-queued and dispatched later to the target process.

The polling mechanism can be seen as high-priority events that are scheduled in

between each asynchronous event. When a poll is scheduled, all processes that

implement a poll handler are called in order of their priority.

All OS facilities: senor data handling, communication, device drivers, etc. are

provided in the form of services. Each service has its interface and implementation.

Applications using a particular service need to know the service interface and an

application is not concerned about the implementation of a service.

Contiki Operating

System

Hardware

Radio CPU Sensors Oscillator Others

Driver

Radio CPU Sensors Oscillator Others

Contiki Core

uIP Loader Proto Threads

Node Management

A
p

p
p

lic
a

ti
o

n
 1

A
p

p
lic

a
ti
o

n
 2

A
p

p
lic

a
ti
o

n
 3

S
e

n
s
o

r
D

a
ta

 M
a

n
a

g
e

r

C
o

re
 U

p
d

a
te

r

S
e

n
s
o

r
C

o
n

fi
g

u
ra

to
r

N
e

tw
o

rk
 C

o
n

fi
g

u
ra

to
r

A
p

p
lic

a
ti
o

n
 N

Figure 1: Contiki Architecture

3.2. Programming Model

Contiki uses protothreads [3] for multithreading. Protothreads are designed for

severely memory constraint devices because they are stack-less and lightweight. The main

features of protothreads are: onlty two bytes per protothread, no extra stack for a thread and

ISN - Interoperable Sensor Networks - Deliverable Page 6 of 15

- 6 -

highly portable. Since events run to completion and Contiki does not allow interrupt

handlers to post new events, no process synchronization is provided in Contiki.
Contiki supports preemptive multithreading and this is implemented as a library

on top of the event-driven kernel. The library can be linked with applications that

require multithreading. The Contiki multithreading library is divided in two parts: a

platform independent part and a platform specific part. The platform independent part

interfaces to the event kernel and the platform specific part of the library implements

stack switching and preemption primitives. Since preemption is supported, preemption

is implemented using the timer interrupt and the thread state is stored on a stack.

3.3. Scheduling

Contiki does not employ any sophisticated scheduling algorithm because it is an

event-driven OS. Events are fired to the target application as they arrive. In case of

interrupts, interrupt handlers of an application runs with regard to their priority.

3.4. Memory Management and Protection

Contiki supports dynamic memory management. Contiki provides memory

block management functions and supports dynamic linking of the programs. For

providing memory block management functions the library provides simple but

powerful memory management functions for blocks of fixed length. A memory block is

statically declared using the MEMB() macro. Memory blocks are allocated from the

declared memory by the memb_alloc() function, and are de-allocated using the

memb_free() function.

Apart from this it also supports dynamic linking of the programs. In order to

guard against memory fragmentation Contiki uses a Managed Memory Allocator [4].

The primary responsibility of the managed memory allocator is to keep the allocated

memory free from fragmentation by compacting the memory when blocks are free.

Therefore, a program using the memory allocator module cannot be sure that allocated

memory stays in place.

Contiki does not provide any memory protection mechanism between different

applications.

3.5. Communication Protocol Support

Contiki provides an implementation of TCP/IP protocol stack for small 8 bit

micro-controllers (uIP). uIP does not require its peers to have a complete protocol stack,

but it can communicate with peers running a similar lightweight stack. The uIP

implementation is written in C and it has the minimum set of features needed for a full

TCP/IP stack. uIP can only support one network interface, and it supports TCP, UDP,

ICMP, and IP protocols.

On the other hand, Contiki provides RIME. RIME is another lightweight layered

protocol stack for network-based communication. Rime supports both best effort and

reliable transmission. In multi-hop communication, Rime allows applications to run

their own routing protocols. Rime provides single hop unicast, single hop broadcast, and

multi-hop communication support. Applications are allowed to implement protocols

that are not present in the Rime stack.

ISN - Interoperable Sensor Networks - Deliverable Page 7 of 15

- 7 -

However Contiki does not support multicast. Therefore Contiki does not provide

any implementation of group management protocols such as the Internet Group

Management Protocol (ICMP), or Multicast Listener Discovery (MLD) protocol.

Whenever a packet is received, Contiki places it in the global buffer and notifies the

TCP/IP stack. If it is a data packet, TCP/IP notifies the appropriate application. The

application needs to copy the data in the secondary buffer or it can immediately process

the data. Once the application is done with the received data, Contiki overwrites the

global buffer with new incoming data. If an application delays data processing, then

data can be overwritten by new incoming data packets.

To provide IPv6 routing protocol for low power and lossy networks exists an

implementation of RPL called ContikiRPL[6]. ContikiRPL operates over low power

wireless links and lossy power line links.

3.6. Resource Sharing

Contiki provides serialized access to all resources due to events run to

completion and Contiki does not allow interrupt handlers to post new events

3.7. Support for Real-Time Applications

Support for real-time applications is not allowed. There is no implementation of

any real-time process scheduling algorithm in Contiki. Contiki does not provide any

protocol that considers the QoS requirements of multimedia applications on the network

protocol stack side. In addition, since Contiki provides an implementation of the micro

IP stack, interactions between different layers of the protocol stack are not possible.

3.8. 6LowPAN Implementations

SicslowPAN is the first implementation of 6LoWPAN developed for the Contiki

OS. SICSlowPAN is based on the RFC4944, and implements mechanisms for

addressing and fragmentation. It also adds a new header compression mechanism.

SICSlowPAN does not implement networks "Mesh under" but supports using other

routing techniques.

On the other hand, SICSlowPAN is located between IPv6 layer and MAC layer.

Therefore, when the MAC layer receives an IPv6 packet, call SICSlowPAN layer to

adapt from the MAC layer packet to the IP layer. Furthermore, when uIPv6 layer needs

to send a package also uses the SICSlowPAN layer to form the package.

Contiki operating system implements a default non-IP protocol on the MAC

layer, called RIME. uIPv6 and uIPv4 stacks have recently been added. uIPv6 stack is

independent of any of the lower layers, making it possible to send data over standard

802.15.4, 802.11 or 6LoWPAN. uIPv6 stack supports ICMPv6 packets, implements the

neighbour discovery protocol (Neighbour Discovery) and supports both UDP and TCP.

3.9. Additional Features

 Cofee File System: Contiki uses the Coffee file system. This file system gives

support for flash-based sensor devices. Coffee file system provides a

programming interface for building efficient and portable storage abstractions

ISN - Interoperable Sensor Networks - Deliverable Page 8 of 15

- 8 -

and provides provides a platform independent storage abstraction through an

expressive programming interface. Coffee uses a small and constant memory

footprint per file (in default setup uses 5 Kb ROM for the code and 0.5 Kb RAM

at run-time), making it scalable. Coffee also introduces the concept of micro

logs to handle file modifications without using a spanning log structure. Because

of the contiguous page structure file metadata, Coffee uses a small and constant

footprint for each file. Flash memory is divided into logical pages and the size of

the page typically matches the underlying flash memory pages. If the file size is

not known beforehand, Coffee allocates a predefined amount of pages to the file.

Later on, if the reserved size turns out to be insufficient, Coffee creates a new

larger file and copies the old file data into it. To boost the file system

performance, by default Coffee uses a metadata cache of 8 entries in the RAM.

Coffee also provides an implementation of a garbage collector that reclaims

obsolete pages when a file reservation request cannot be satisfied. To allocate

pages to a file, Coffee uses a first fit algorithm. Flash memories suffer from

wear, i.e., every time a page is erased it increases the chances of memory

corruption. Coffee uses wear levelling and its purpose is to spread sector

erasures evenly to minimize the risk of damaging some sectors much earlier than

others. Coffee provides the following APIs to the application programmers.

open(), read(), modify(), seek(), append(),close().

 Security Support: Contiki does not provide support for secure communication.

There is a proposal and implementation of a secure communication protocol

with the name ContikiSec

 Simulation Support: Contiki provides sensor network simulations through Cooja

[8].

 Languaje Support: Cotiki supports application development in the C language.

 Supported Platforms: Contiki supports the following sensing platforms: Tmote

[9], AVR series MCU [10].

 Documentation Support: Contiki documentation can be found on the Contiki

home page at: http://www.sics.se/contiki.

4. TinyOS

TinyOS [3] is an open source, flexible, component based, and application

specific operating system designed for sensor networks. TinyOS can support concurrent

programs with very low memory requirements. The TinyOS has a footprint that fits in

400 bytes. The TinyOS component library includes network protocols, distributed

services, sensor drivers and data acquisition tools.

4.1. Architecture

TinyOs is based on monolithic architecture class. TinyOS uses the component

model and different components are glued together with the scheduler to compose a

static image that runs on the mote. A component is an independent computational entity

that exposes one or more interfaces. Components have three computational abstractions:

commands, events, and tasks. Mechanisms for inter-component communication are

commands and events. Tasks are used to express intra component concurrency. A

command is a request to perform some service, while the event signals the completion

http://www.sics.se/contiki

ISN - Interoperable Sensor Networks - Deliverable Page 9 of 15

- 9 -

of the service. TinyOS provides a single shared stack and there is no separation between

kernel space and user space.

Domain-Specific Application Components

Hardware

TelosB MicaZ Intel Mote2

Flash Radio / Serial Sensor / Actuator

Persistent

Attributes &

Event Streams

Device

Attributes &

Event Streams

Network

Collection,

Dissemination &

Routing

Microcontroller Core, Timers, Buses, Onboard ADCs

Service

Interface

OS & Net

Interface

Device

Abstraction

Interface

Microcontroller

Abstraction

Interface

Links

Figure 2: TinyOS Architecture

4.2. Programming Model

TinyOS version 2.1 provides support for multithreading and these TinyOS

threads are called TOS Threads. Given the motes’ resource constraints, an event-based

OS permits greater concurrency. However, preemptive threads offer an intuitive

programming paradigm. The TOS threading package provides the ease of a threading

programming model coupled with the efficiency of an event driven kernel. TOS threads

are backward compatible with existing TinyOS code. TOS threads use a cooperative

threading approach, i.e., TOS threads rely on applications to explicitly yield the

processor. This adds an additional burden on the programmer to explicitly manage the

concurrency. Application level threads in TinyOS can preempt other application level

threads but they cannot preempt tasks and interrupt handlers. A high priority kernel

thread is dedicated to running the TinyOS scheduler. For communication between the

application threads and the kernel, TinyOS 2.1 provides message passing. When an

application program makes a system call, it does not directly execute the code. Rather it

posts a message to the kernel thread by posting a task. Afterwards, the kernel thread

preempts the running thread and executes the system call. This mechanism ensures that

only the kernel directly executes TinyOS code. System calls like Create, Destroy,

Pause, Resume and Join are provided by the TOS threading library.

TOS threads dynamically allocate Thread Control Blocks (TCB) with space for a

fixed size stack that does not grow over time. TOS Threads context switches and system

calls introduce an overhead of less than 0.92%.

ISN - Interoperable Sensor Networks - Deliverable Page 10 of 15

- 10 -

Earlier versions of TinyOS imposed atomicity by disabling the interrupts, i.e.,

telling the hardware to delay handing the external events until after the application

completed an atomic operation. This scheme works well on uniprocessor systems.

Critical section can occur in the user level threads and the designer of the OS does not

want the user to disable the interrupts due to system performance and usability issues.

This problem is circumvented in TinyOS version 2.1. It provides synchronization

support with the help of condition variables and mutexes. These synchronization

primitives are implemented with the help of special hardware instructions e.g., test &

set instruction.

4.3. Scheduling

Earlier versions of TinyOS supported a non-preemptive First-In-First-Out

(FIFO) scheduling algorithm and those versions do not support real-time application.

The core of the TinyOS execution model are tasks that run to completion in a FIFO

manner. Since TinyOS supports only non preemptive scheduling, task must obey run to

completion semantics. Tasks run to completion with respect to other task but they are

not atomic with respect to interrupt handlers, commands, and events they invoke. Since

TinyOS uses FIFO scheduling, disadvantages associated with FIFO scheduling are also

associated with the TinyOS scheduler. The wait time for a task depends on the task’s

arrival time. FIFO scheduling can be unfair to latter tasks especially when short tasks

are waiting behind longer ones.

4.4. Memory Management and Protection

Hardware-based memory protection is not available and the resources are scarce

in sensor nodes.Resource constraints necessitate the use of unsafe, low level languages

like nesC [12]. Memory safety is incorporated in TinyOs version 2.1 [13]. The goals for

memory safety are: trap all pointer and array errors, provide useful diagnostics, and

provide recovery strategies. Implementations of memory-safe TinyOS exploit the

concept of a Deputy. The Deputy is a resource to resource compiler that ensures type

and memory safety for C code. Code compiled by Deputy relies on a mix of compile

and run-time checks to ensure memory safety. Safe TinyOS is backward compatible

with earlier version of TinyOS. The Safe TinyOS tool chain inserts checks into the

application code to ensure safety at run-time. When a check detects that safety is about

to be violated, code inserted by Safe TinyOS takes remedial actions. TinyOS uses a

static memory management approach.

4.5. Communication Protocol Support

Earlier versions of TinyOS provide two multi-hop protocols: dissemination and

TYMO [14,15]. The dissemination protocol reliably delivers data to every node in the

network. This protocol enables administrators to reconfigure queries and to reprogram a

network. The dissemination protocol provides two interfaces: DisseminationValue and

DisseminationUpdate. A producer calls DisseminationUpdate. The command

DisseminationUpdate.change() should be called each time the producers wants to

disseminate a new value. On the other hand, the DisseminationValue interface is

provided for the consumer. The event DisseminationValue.changed() is signaled each

time the dissemination value is changed. TYMO is the implementation of the DYMO

ISN - Interoperable Sensor Networks - Deliverable Page 11 of 15

- 11 -

protocol, a routing protocol for mobile ad hoc networks. In TYMO, packet formats have

changed and it has been implemented on top of the active messaging stack.

TinyOS version 2.1.1 now also provides support for 6lowpan [16], an IPv6

networking layer within a TinyOS network.

At the MAC layer, TinyOS provides an implementation of the following

protocols: a single hop TDMA protocol, a TDMA/CSMA hybrid protocol which

implements Z-MAC’s slot stealing optimization, B-MAC, and an optional

implementation of an IEEE 802.15.4 complaint MAC.

4.6. Resource Sharing

TinyOS has two mechanisms for managing shared resources: Virtualization and

Completion Events. A virtualized resource appears as an independent instance. i.e., the

application uses it independent of other applications. Resources that cannot be

virtualized are handled through completion events. The GenericComm communication

stack of TinyOS is shared among different threads and it cannot be virtualized.

GenericComm can only send one packet at a time, send operations of other threads fail

during this time. Such shared resources are handled through completion events that

inform waiting threads about the completion of a particular task.

4.7. Support for Real-Time Applications

TinyOS does not provide any explicit support for real-time applications. Tasks

in TinyOS observe run to completion semantics in a FIFO manner, hence in its original

form, TinyOS is not a good choice for sensor networks that are being deployed to

monitor real-time phenomena. An effort has been made to implement an Earliest

Deadline First (EDF) process scheduling algorithm and it has been made available in

newer versions of TinyOS. However, it has been shown that the EDF algorithm cannot

produce a feasible schedule when tasks content for resources. In the nutshell, TinyOS is

not a strong choice for real-time applications.

In relation to Quality of Service requirements of real-time multimedia streams,

TinyOS does not provide any specific MAC, network, or transport layers protocol

implementations. At the MAC layer, TinyOS supports TDMA, which can be fine-tuned

depending upon the requirements of an application to support multimedia traffic

streams.

4.8. 6LowPAN Implementations

The first implementation is called 6lowpancli, was released in 2007 and is now

integrated as a native application in TinyOS-2.x. 6lowpancli supports header

compression, fragmentation and addressed. Regarding the higher level protocols,

6lowpancli supports UDP, holding it in the form HC_UDP and ICMPv6 messages.

Therefore it is possible to ping the motes and use UDP communication from anywhere

on the Internet to a small sensor node. To perform a bridge between the sensor network

and conventional network, TinyOS-2.x provides a small application to emulate a tunnel

IPv6 through the USB port through which you can connect the sensor node. The main

drawback of 6lowpancli is that it is completely static and needs to be configured

manually. Not support any mechanism for discovery of neighboring nodes (Neighbor

Discovery Protocol) or mobility. Besides configuring mesh network (mesh networks) is

ISN - Interoperable Sensor Networks - Deliverable Page 12 of 15

- 12 -

not supported and when a packet with a destination address different from the node is

received, it is omitted.

The second implementation of 6LoWPAN developed for TinyOS-2.x is called

BLIP (Berkeley Low-Power IP stack). In this case the code is not included natively in

TinyOS-2.x but can be found on the contributions of the University of Berkeley. BLIP

implements the basic features defined in RFC4944, i.e., header compression,

fragmentation and addressing. Support for ICMPv6 and UDP packets. Moreover, the

latest version adds the first prototype of the TCP stack, which is still experimental. In

addition, BLIP incorporates a "light" version of Discovery Protocol neighboring nodes

(Neighbor Discovery Protocol), being able to configure a link local address or global in

neighboring nodes, depending on whether or not it has received a frame of notice from

the router. As 6lowpancli, BLIP includes an application to create an IPv6 tunnel to

connect a conventional network to wireless sensor network. BLIP addition, unlike

6lowpancli supports mesh networks (mesh networks) as defined in RFC4944 also called

"mesh under". "Mesh under" indicates that from the point of view of the IP layer, all

nodes are one hop away, since multiple jumps are performed by the MAC layer.

4.9. Additional Features

 File System: TinyOS provides a single level file system. The rationale behind

providing a single level file system is the assumption that only a single

application runs on the node at any given point in time. As node memory is

scarce, having a single level file system is therefore sufficient.

 Database Support: The purpose of sensor nodes is to sense, perform

computations, store and transmit data; therefore TinyOS provides database

support in the form of TinyDB.

 Security Support: Communication security in wireless broadcast medium is

always required. TinyOS provides its communication security solution in the form

of TinySec [17].

 Simulation Support: TinyOS provides simulation support in the form of TOSSIM

[18]. The simulation code is written in NesC and consequently can also be deployed

to actual motes.

 Language Support: TinyOS supports application development in the NesC

programming language. NesC is a dialect of the C language.

 Supported Platforms: TinyOS supports the following sensing platforms: Mica,

Mica2, Micaz, Telos, Tmote and a few others.

 Documentatation Support: TinyOS is a well documented OS and extensive

documentation can be found on the TinyOS home page at http://www.tinyos.net.

http://www.tinyos.net/

ISN - Interoperable Sensor Networks - Deliverable Page 13 of 15

- 13 -

5. Comparative Analysis

OS Architecture
Programming

Model
Sheduling

Memory

Management

and

Protection

Communic

ation

Protocol

Support

Resource

Sharing

Support for

Real-Time

Applications

6LowPan

Implementations

Contiki Modular
Protothreads

and events

Events are

fired as

they

occur.

Interrupts

execute

w.r.t.

priority

Dynamic

memory

management

and linking.

No process

address space

protection.

uIP and

Rime

Serialized

Access
No Sicslowpan

TinyOS Monolitic

Primarily

event Driven,

support for

TOS threads

has been

added

FIFO

Static

Memory

Management

with memory

protection

Active

Message

Virtualization

and

Completion

Events

No

6lowpancli

and

BLIP

Figure 3: Operating System Summary

OS
Communication

Security

File System

Support

Simulation

Support

Programming

Languaje
Shell

Contiki ContikiSec
Coffee file

system
Cooja C

Unix-like

shell runs on

sensor mote

TinySO TinySec
Single level

file system
TOSSIM NesC Not available

Figure 4: Miscellaneous Features Summary

6LowPAN

Implementation

ICMPv6

Echo
UDP TCP

Neighbor

Discovery

Mesh

Header

Route

Over

SiscLowPAN(Contiki) YES YES YES YES YES YES

6Lowpancli(Tinyos-2x) YES YES NO NO NO NO

BLIP (TinyOS-2.x) YES YES PROTOTIPE YES YES YES

Figure 5: 6LowPan Implementations

ISN - Interoperable Sensor Networks - Deliverable Page 14 of 15

- 14 -

6. References

[1] http://www.itea2.org/

[2] Dunkels, A.; Gronvall, B.; Voigt, T. Contiki a Lightweight and Flexible

Operating System for Tiny Networked Sensors. In Proceedings of the 9
th

Annual IEEE International Conference on Local Computer Networks,

Washington, DC, USA, October 2004; pp. 455-462.

[3] Protothreads: Lightweight, Stackless Threads in C; Available online:

http://www.sics.se/ ~adam/pt/
[4] Contiki Documentation; Available online: http://www.sics.se/~adam/contiki/docs/

[5] Winter, T.; Thubert, P. RPL: Ipv6 Routing Protocol for Low Power and Lossy

Networks, Draft-ietf-roll-rpl-11; Available online: http://tools.ietf.org/html/draft-

ietf-roll-rpl-06 (accessed on 17 April 2011).

[6] Tsiftes, N.; Eriksson, J.; Dunkels, A. Low-Power Wireless Ipv6 Routing with

ContikiRPL. In Proceedings of ACM/IEEE IPSN, Stockholm, Sweden, 12–16 April

2010.

[7] Tisftes, N.; Dunkels, A.; He, Z.; Voigt, T. Enabling Large Scale Storage in Sensor

Networks with the Coffee File System. In Proceedings of the 9th International

Conference on Information Processing in Sensor Networks, Francisco, CA, USA,

13–16 April 2009.

[8] Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross Level Sensor

Network Simulation with Cooja. In Proceedings of the 31st IEEE Conference on

Local Computer Networks (LCN), Tampa, FL, USA, 14–16 November 2006.

[9] MoteIV Cooperation; Available online: http://www. Moteiv.com

[10] Atmel AVR Devices.; Available online: http://www.atmel.com/products/avr/

[11] Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay,

D.; Hill, J.; Welsh, M.; Brewer, E.; Culler, D. Tinyos: An Operating System for

Sensor Networks; Available online: http://dx.doi.org/10.1007/3-540-27139-2_7.

[12] Gay, D.; Levis, P.; von Behren, R.; Welsh, M.; Brewer, E.; Culler, D. The NesC

Language: A Holistic Approach to Networked Embedded Systems. In Proceedings

of the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation, New York, NY, USA, May 2003.

[13] Cooprider, N.; Archer, W.; Eide, E.; Gay, D.; Regehr, J. Efficient Memory Safety

for Tinyos. In Proceedings of the 5th International Conference on Embedded

Networked Sensor Systems (SenSys’07), New York, NY, USA, November 2007;

pp. 205-218.

[14] TinyOS Network Working Group; Available online:

http://docs.tinyos.net/index.php/TinyOS_ Tutorials#Network_Protocols

[15] Network Protocols TinyOS documentation Wiki; Available online:

http://docs.tinyos.net/ index.php/Network_Protocols

[16] Montenegro, G.; Kushalnagar, N.; Hui, J.; Culler, D. Transmission of Ipv6 Packets

over IEEE 802.15.4 Networks, RFC 4944; Available online:

http://tools.ietf.org/html/rfc4944

[17] Karlof, C.; Sastry, N.; Wagner, D. TinySec: A Link Layer Security for Wireless

Sensor Networks. In Proceedings of the 2th ACM SenSys, Baltimore, MD, USA, 3–

5 November 2004.

[18] Levis, P.; Lee, N.; Welsh, M.; Culler, D. ToSSIM: Accurate and Scaleable

Simulation of Entire TinyOS Applications. In Proceedings of the 1st ACM SenSys,

Los Angeles, CA, USA, 5–7 November 2003.

[19] 6LoWPAN, the wireless embedded Internet. Zach Selby, Carsten Bormann.

WILEY

http://www.itea2.org/
http://www.atmel.com/products/avr/
http://dx.doi.org/10.1007/3-540-27139-2_7
http://tools.ietf.org/html/rfc4944

ISN - Interoperable Sensor Networks - Deliverable Page 15 of 15

- 15 -

[20] Interconnecting Smart Objects with IP. Jean-Philippe Vasseur, Adam Dunkels.

MK.

[21] Evaluating 6lowPAN implementations in WSNs. Ricardo Silva. Jorge Sá Silva

and Fernando Boavida, Department of Informatics Engineering, University of

Coimbra.

[22] Evaluation of IPv6 over low power- Wireless personal area networks

implementations. Kevin Dominik Korte,Iyad Tumar,Jürgen Schönwälder,

Computer Science. Jacobs University Bremen.

