
SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 1 (41)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP 3

Deliverable D3.1.2b: Final proposal for extension of
SAFE meta model for safety requirement expression

modeling
Due date of deliverable: 28/02/2013

Actual submission date: 15/03/2013

Start date of the project: 01/07/2011 Duration: 36 months

WT coordinator name: Eduard Metzker

Organization name of lead contractor for this deliverable: Vector Informatik

Editor: WT3.1.2 members (Mohamed Abbaz, Elvira Biendl, Alain Griffault, Eduard Metzker,
Thomas Peikenkamp, Hans Leo Ross)

Contributors: WT3.1.2 members (Mohamed Abbaz, Elvira Biendl, Alain Griffault, Eduard Metzker,
Thomas Peikenkamp, Hans Leo Ross)

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 2 (41)

Revision chart and history log

Version Date Reason

0.1 20.02.2012 Vector: Initial setup for sharing input from project partners

0.2

0.3

24.02.2012

05.03.2012

Vector: Contribution of PREEvision EEA

All: Joint review of contributions

0.4 14.03.2012 Vector: AUTOSAR 4.0 analysis

0.5 28.03.2012 Valeo: contribution update: section 5.4, 2.5, 2.9

0.6 11.04.2012 Valeo: section 5.4, 2.5, 2.9 internal review

0.7 16.04.2012 ?: section 5.4, 2.5, 2.9 from other document (draft) transfer into
deliverable document to 5.4, 7.5, 7.9.

0.8 30.04.2012 Vector: Improved meta-model concepts for requirements refinement
and allocation, removed working annotations

0.9 20.06.2012 Vector: Moved requirement mapping to WP2 to report document

1.0 20.06.2012 Vector: Updated pictures and descriptions to latest meta model
version

1.1 27.06.2012 Vector: integrated review comments

1.2 11.02.2013 Vector: updated the description of the SAFE concepts for safety
requirements expression

1.3 18.02.2013 Vector: Integrated review comments from Telco

1.4 08.03.2013 Vector: Final editing

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 3 (41)

1 Table of contents

1 Table of contents ... 3

2 List of figures .. 5

3 Executive Summary ... 6

4 Introduction .. 7

5 Related Approaches ... 8

5.1 Safety Requirement Modeling in the meta model of PREEvision .. 8

5.1.1 Safety Requirements as subtypes of requirements ... 9

5.1.2 ASIL and ASIL decomposition of safety requirements ... 9

5.1.3 Relation of Safety Goals to Hazards .. 10

5.2 Safety requirements modeling concepts in AUTOSAR 4.0 .. 10

5.3 Safety requirements modeling according to CESAR ... 10

5.3.1 Methodology ... 11

5.3.1.1 Introduction to the CESAR methodology .. 11

5.3.1.2 Requirements Elicitation and Specification .. 11

5.3.1.3 Requirements Analysis ... 12

5.3.1.4 Requirements Change Management .. 12

5.3.1.5 Conclusion .. 13

5.3.2 Requirement Specification Language .. 13

5.3.3 Safety Pattern .. 15

5.3.4 Example Scenario .. 17

5.3.4.1 Creating a new Pattern Contract file ... 17

5.3.4.2 Performing a Safety Pattern Analysis ... 22

5.4 Refinement of Safety Requirements according to ISO 26262 ... 24

5.4.1 Safety Requirements according to ISO 26262 concept phase .. 25

5.4.2 Safety Requirements according to ISO 26262 product development at the system level 25

5.4.3 Safety Requirements according to ISO 26262 product development at the hardware level 26

5.4.4 Safety Requirements according to ISO 26262 product development at the Software level 27

5.4.5 Traceability of Safety Requirements overview (Synthesis) .. 28

5.4.6 Interfaces between Safety Requirements, Safety Concept and Safety Analysis 29

6 SAFE modeling concepts ... 33

6.1 Expression of formal safety requirements ... 33

6.1.1 TraceableSpecification ... 33

6.1.2 Abstract Safety Requirement ... 33

6.1.3 Safety Goal .. 34

6.1.4 Functional Safety Requirement .. 34

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 4 (41)

6.1.5 Technical Safety Requirement ... 34

6.1.6 Safe State .. 35

6.2 Refinement of safety requirements .. 35

6.2.1 Requirement Link ... 36

6.2.2 Requirement Link Type .. 36

6.3 Allocation of safety requirements ... 37

6.3.1 Allocations .. 37

6.3.2 Allocatable Element.. 38

6.3.3 AllocationTarget ... 38

7 Discussion and Future Improvements ... 39

8 Acknowledgements .. 40

9 References ... 41

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 5 (41)

2 List of figures

Figure 1: Management of safety requirements in PREEvision ... 8

Figure 2: Safety requirements as subtypes of requirements ... 9

Figure 3: ASIL and ASIL decomposition .. 10

Figure 4: Relation to Hazards .. 10

Figure 5: Create PatternContracts file ... 17

Figure 6: Create new object .. 18

Figure 7: Run Pattern Editor.. 18

Figure 8: Create additional contract .. 18

Figure 9: Edit contract name ... 19

Figure 10: Create Assumption/Promise ... 19

Figure 11: Edit assumption properties ... 20

Figure 12: Save changes .. 21

Figure 13: Pattern Contracts ... 22

Figure 14: Run Safety Pattern Analysis ... 22

Figure 15: Select analysis type and choose root folder ... 23

Figure 16: Available contracts (left), Selected top-level and dominating contracts (right) 23

Figure 17: Run analysis... 24

Figure 18: Results shown in Status Log .. 24

Figure 19: Traceability of safety requirements overview .. 28

Figure 20: Idea of Safety Requirement Traceability (Functional View) .. 29

Figure 21: overview interfaces between safety requirement allocation from safety concept to lower
level and results of safety analysis .. 30

Figure 22: overview of safety requirement allocation from safety concept to lower level and results
of safety analysis .. 30

Figure 23: Concept: Safety Requirements .. 33

Figure 24: Overview of concept for refinement of safety requirements .. 36

Figure 25: Overview of concept for safety requirements allocation ... 37

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 6 (41)

3 Executive Summary

This document describes how the modeling of safety requirements is supported in the SAFE meta
model. The elements of the SAFE meta model for safety requirements are described and their
relationships to each other. Furthermore the concepts which support requirements refinement,
allocation and traceability are described.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 7 (41)

4 Introduction

This document describes how safety requirements are expressed in the SAFE meta model.
Chapter 5 describes related approaches which have been taken into account for the SAFE meta
model. Chapter 6 describes the details of the SAFE safety requirements model. The
characteristics of safety requirements are explained together with the relation of safety
requirements to environments and hazards. Furthermore the traceability of safety requirements is
supported by using the concepts of requirement links and requirement allocations. Requirements
links and allocations are also described as means for refining safety requirements and associating
safety requirements with artifacts of the architecture.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 8 (41)

5 Related Approaches

This chapter describes contributions from relevant related approaches to the modeling of safety
requirements.

5.1 Safety Requirement Modeling in the meta model of PREEvision

The model based system engineering tool PREEvision [11] allows to create and manage safety
goals and safety requirements. Figure 1 illustrates how safety goals can be further refined into
functional and technical safety requirements.

Figure 1: Management of safety requirements in PREEvision

During the development of the functional safety concept, functional safety requirements can be
allocated to the functions which satisfy these safety requirements. During the development of the
technical safety concept, technical safety requirements can be allocated to elements of the
architecture such as hardware components or software components which implement these
requirements. To describe specific relations between requirements, requirement links can be
used.

The following sections describe how safety requirements are defined in the meta model of
PREEvision 5.0 [11].

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 9 (41)

5.1.1 Safety Requirements as subtypes of requirements

Figure 2: Safety requirements as subtypes of requirements

In PREEvisions meta model safety requirements are defined as subtypes of requirements. The
meta model artifacts reflect the following definitions in the ISO Standard [4],[5].

• OperationalSituation: ISO 26262-3: 7.4.4.1

• OperatingMode: ISO 26262-3: 7.4.4.1

• SafetyGoal: ISO 26262-3: 7.4.8

• SafeState: ISO 26262-3: 7.4.8

• FunctionalSafetyRequirement: ISO 26262-3: 8.4.2.3

• TechnicalSafetyRequirement: ISO 26262-4: 6.4.9

SafetyGoals are typically associated with SafeStates and SafeStates are typically associated to
SafetyGoals.

FunctionalSafetyRequirements are typically associated to SafetyGoals, SafeStates and
OperatingModes. They also describe any functional redundancies.

TechnicalSafetyRequirements are typically associated with FunctionalSafetyRequirements and
SafeStates. They typically describe transitions to SafeStates and measures to maintain the safe
state.

5.1.2 ASIL and ASIL decomposition of safety requirements

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 10 (41)

Figure 3: ASIL and ASIL decomposition

Safety requirements are subtypes of the abstract meta model artefact HasASILDecomposed. ASIL
decomposition of safety requirements is supported as defined in ISO 26262-9: 8.4.3 [10].

5.1.3 Relation of Safety Goals to Hazards

Figure 4: Relation to Hazards

Safety goals have relations to the hazards based on which the safety goals have been derived.

5.2 Safety requirements modeling concepts in AUTOSAR 4.0

AUTOSAR 4.0 does not provide any dedicated artifacts for modeling safety requirements such as
safety goals, functional safety requirements or technical safety requirements.

5.3 Safety requirements modeling according to CESAR

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 11 (41)

5.3.1 Methodology

Requirements engineering is a fundamental part in the development of safety related embedded
systems. It comprises many different disciplines like elicitation, development, analysis, validation,
communication and management of requirements. Each of these disciplines has its own
technologies and relation to system artifacts. Therefore it is not surprising, that a variety of tools –
industrial as well as academic -- are used to cover a complete and consistent requirements
engineering process as already required by modern safety standards.

In the CESAR (Cost-efficient methods and processes for safety relevant embedded systems)
project [12] an approach for integrating these tools, their data formats, and the requirements
engineering process has been developed. Technologies like the CMM (Meta-Model developed in
CESAR), the interoperability platform CMM-API (CESAR meta model application programming
interface) and many adapted validation and verification techniques enabled the creation of a
requirements engineering framework integrating commonly used tools and methods.

5.3.1.1 Introduction to the CESAR methodology

New standards for the development of safety critical embedded systems require a sophisticated
requirements engineering process. Consistency of requirements needs to be ensured, validation
and verification methods need to be applied to the requirements and the architecture, and a full
traceability between all system artifacts has to be maintained. Due to the complexity of these tasks
a huge amount of tools is available to support the user in single activities. Ensuring a consistent
process is complicated by the different data formats, storage locations and used methodologies.

In the CESAR project these boundaries shall be overcome by developing an interoperable,
consistent and adaptable requirements engineering process. The heart of the approach is the
CMM-API, an interoperability approach based on the meta-model developed in the project (CMM).
This API allows to access arbitrary system artifacts from different repositories like the IBM DOORS
database, a Requisite Pro repository or the ModelBus in multiple formats like AUTOSAR, EAST-
ADL. The approach itself is not limited to requirements engineering, but has been developed with
this use case in mind. This way the traceability between system elements distributed across
different storage location and data formats is possible with an easy to use interface. Furthermore
the contract based approach is fully integrated, enabling all connected tools to specify
requirements in assumptions and promises.

The integration of system artifacts, requirements and verification and validation activities (V\&V
cases) in one homogeneous CMM representation enables the creation of a consistent and
interoperable requirements process compliant to the needs of modern safety standards like the
ISO 26262.

5.3.1.2 Requirements Elicitation and Specification

As the development of systems is based on the identified and developed requirements it is
important that requirements accurately capture the stakeholder needs, are well-understood and
verifiable. Due to that, requirements engineering guidelines and safety standards request several
constraints on requirement statements like well-formedness, unambiguity and formalization.
Moreover, requirements should be consistent and they should be satisfied by the proposed
implementation. Formal notations – already recommended by some safety standards – provide a
clear semantics of requirements and allow formal analysis methods applied to requirements
alleviating V\&V. But writing requirements in a formal notation is not an easy task.

Within the CESAR project formalizing and management of requirements is addressed with a
special focus on the interoperability of the developed methods and tools. A process starting from

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 12 (41)

requirements given in natural language to a formal description is introduced consisting of several
steps. Based on an ontology describing the domain (domain specific language), requirement
statements are analyzed to identify actors, actions, and other items as well as the structure of the
sentence to identify the characteristics of the statement. This is mapped to a sequence of
predefined structural templates, so called boilerplates. A set of analysis methods supports the
process. In a second step the boilerplates are transformed into the formal pattern language. RSL
patterns are templates too, but in contrast to boilerplates they are based on a complete formal
language enabling complex semantic analysis regarding safety, functionality, real-time and other
aspects.

According to the principles of interoperability the degree of formalization and the used language is
independent from the tools and repositories used. All three languages can be used with the CMM-
API connected tools like IBM DOORS and IBM Requisite Pro as well as locally or remotely stored
files. Also specialized artifacts of the languages are accessible in all storage formats, e.g.
classifications of requirement parts through the ontology.

In addition to the requirements management itself also the traceability to the architecture is
ensured in a modularized way. Design model adapters exist to allow a seamless integration of
various formats like EAST-ADL, AUTOSAR or SIMULINK.

Using this approach the CESAR project proved that a methodology can be integrated in a
development process regardless of the used tools by means of a suitable interoperability
approach.

5.3.1.3 Requirements Analysis

Different storage locations, multiple requirements formats and varying degrees of formalization
complicate the analyzability of requirements. Furthermore analyzes have to be performed at many
stages of the development process ranging from early consistency and completeness analysis of
requirements to satisfaction checks performed by formal methods or testing.

In the CESAR project we have obtained a sophisticated interlocking between the different aspects
of requirement analysis. For both textual requirement specification languages consistency and
completeness checks have been defined and implemented. The V\&V activities and their results
are stored in CMM and thus independently analyzable. The Permeter tool allows evaluating the
quality of the development process based on the V\&V part of the CMM. Thus a reliable reporting
can be ensured.

Additional benefits are attended by the CMM-API interoperability approach. Outputs from of
ontology based analyses can be reused for formal analyses to prove the upcoming doubts in the
specification. Formal analyzes like Entailment can prove the correct derivation of requirements in
sub-requirements or the existence of contradicting requirements identifying a high amount of
problems before the actual building of the device has begun. Even in these later phases of the
development process the integrated requirements engineering approach can ease the effort for
testing the implementation. Out of the requirements specification in pattern based RSL observers
can be generated in C-Code notation to evaluate the compliance to the requirements automatically
during runtime of the test. An implementation for the BTC Embedded tester allows using these
observers also for test vector generation to maintain a high level of coverage on the requirements.

It has been shown that requirements specification and their validation techniques can be fused is a
consistent development process across the borders of data formats and storage locations. The
semantic grounding of all artifacts allows an intensive reuse of the specification for validation
activities, test vector generation and process monitoring.

5.3.1.4 Requirements Change Management

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 13 (41)

The integration of many modeling and requirements tools in the design process of embedded
systems typically complicate the reaction on changes in requirements since the data might be
spread across different data formats and repositories. Using the CMM-API within the requirements
engineering process the change management can be automated to a very high degree and safe a
lot a revalidation effort.

Changes in the requirements of a product typically do not affect only the changed part itself but
also a wide range of other parts of the system. In the worst case a changed requirement could
result in the need of performing all verification and validation activities of the system again. A goal
of the CESAR project was the development of an impact analysis capable of automatically detect
the parts of the system which are not affected by a change and the parts that need to be adapted
in order to implement the initial changed requirement.

Using the interoperability approach of the CMM-API is it possible to analyze impact on a
homogeneous data view allowing tracking of changes between all connected tools and formats
like IBM DOORS, Requisite Pro, AUTOSAR, EAST-ADL or Simulink. Although the analysis is
applicable to any kind of requirements the highest degree of automation can be reached by using
formalized requirements. As a formal language the pattern based RSL is used. The RSL is fully
integrateable in the Contract Based Approach dividing a system requirement in an Assumption on
the environment and a promise on the work a component shall fulfill. Based on the RSL embedded
in contracts an entailment analysis has been developed in the SPEEDS and CESAR project that
verifies the correct splitting of one requirement in multiple sub-requirements. These technologies
allow us to determine the requirements which are not affected by the initial change and therefore
do not need to be revalidated. Furthermore compensation strategies have been developed to
determine if a rephrasing of multiple requirements could be sufficient to adapt to a change without
any revalidation in a system.

Using the formal impact analysis process it is possible to drastically reduce the revalidation effort
caused by changes in requirements across data format and repository boundaries.

5.3.1.5 Conclusion

Interoperability is an essential aspect of requirements engineering to cope with the various
demands of modern safety standards. We have presented an approach how to combine the
specification, the analysis and the management aspects of requirements in an interoperable
framework based on the CMM. This exchange ability of information is not only limited to the pure
exchange of system artifacts and the creation of links between them, but also provides the
possibility to semantically interpret data. This common understanding of data enables many
stunning use cases like the automatic generation of test cases out of the specification, the
management of changes across tool boundaries and the automatic validation of requirements.

5.3.2 Requirement Specification Language

Stating requirements is one of the essential tasks in developing products. These requirements
build an interface between different groups of people, i.e. customers, engineers, project managers
and many more.

Typically requirements are stored as natural language text which has the disadvantage that
ambiguities of the sentences can cause a huge amount of requirement changes in early as well in
later development phases. To reduce the costs coming from these ambiguities formal languages
are used to have a fixed semantic meaning for a requirement. But it does not only require some
training to write requirements in these formal languages, it can also be hard to read them.

The pattern based RSL fills this gap by providing an easy to learn formal language with a fixed
semantic that is still readable like natural language.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 14 (41)

Patterns consist of static text elements and attributes being filled in by the requirements engineer.
Each pattern has a well defined semantic in order to ensure a consistent interpretation of the
written system specification across all project participants. On the one hand this limits the
possibilities of writing a requirement on the other hand it prevents misunderstandings regarding
the interpretation of the sentences. To gain a set of unambiguous requirements this limitation is
necessary. However writing requirements shall still be possible in an intuitive way. Patterns allow
the writing of natural sounding requirements with defined semantics while being expressive
enough to formalize complex requirements.

To gain a high degree of intuitivism the language shall consist of only a few constructs that can be
easily remembered to give the requirement engineer the possibility to fully understand the RSL
and choose the right pattern that fits the properties he wants to demand on the system.

There exist patterns for each of the following categories:

• Functional Patterns
These Patterns express functional requirements of the system. This includes the
relationship between events, handling of conditions and invariants and the possibility to
define intervals in which the requirements or parts of them are valid.

• Probability Patterns
In nearly all safety critical system it is necessary to express failure or hazard probabilities.
Since there are various partly redundant forms of expressing probabilities that were used
quite ambiguous in common speech, these patterns guide the requirements engineer to
express his needs.

• Safety related Patterns
Only a small part of safety related requirements can be covered with probability patterns.
The major part of the requirements outlines relationships between system components.
These patterns enable the specification of single point of failures or other failure and
hazard dependencies between different components.

• Timing Patterns
These patterns can be used to describe real-time behavior of systems. This includes
periodic and aperiodic activations, jitter or delay.

• Architecture Patterns
These patterns specify the existence of architecture elements like components, events or
connections between components.

• Mapping Patterns

These patterns can be used to express requirements on the mapping from the functional
design perspective to the physical design perspective.

Patterns are noted in a form with optional parts that are not necessarily instantiated. A functional
pattern describing the causality between two events does look like this:

whenever request occurs response occurs during [0ms,10ms].

Phrases in square brackets are considered optional, bold elements are static keywords of the
pattern and italic printed elements represent attributes that have to be filled out by the
requirements engineer. When filling the attributes there are no general restrictions on the names
but they should be descriptive. Concrete implementations of specification and analysis tools may
introduce additional restrictions. The names of the attributes can be used later to be mapped to a
given architecture or they can be used to generate the architecture. When specifying requirements

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 15 (41)

there is no strict typing like int or real but there are categories that specify what is described by the
different attributes.

To not complicate the language too much and to be also expressive enough the set of supported
attributes has to be carefully chosen:

• Event
Events represent the activity in the system. An event can be for example a received signal,
a user input by a pressed button, a computational result or the change of a value. Events
occur at one point of time and have no duration in time.

• Condition
A condition is a logic and/or arithmetic expression based on variables and the status of
events. Conditions can be used in two different ways in patterns. On the one hand they can
be used as pseudo events to trigger an action if the condition becomes true. On the other
hand the condition can be the system state that has to hold for a specified time. The values
the condition is based on may change with time only.

• Interval
Intervals describe a continuous fragment of time which can have relative and quantitative
time measures as delimiters or events. Intervals can be open “]x,y[“ or closed “[x,y]” or a
combination of them.

• Jitter
Jitter of an event is the variation in the point of time of occurrence in a real time context. In
this document jitter is considered as always positive, i.e. the event is delayed.

• Component
Components refer to entities that are able to handle events or condition variables. Typically
these components refer to an actual architecture, but in early design stages, where the
system has not been designed completely there are also “possible” component names
allowed. These identifiers can either be used to generate the missing architecture or be
mapped to the design in later development stages.

More details about the language and its semantics can be found in the CESAR deliverable
[CESAR_D_SP2_R2.3_M3_v1.000_PU.pdf]. The next section focuses on a subset of patterns
dedicated for the specification of safety requirements.

5.3.3 Safety Pattern

Safety requirements are a means to define the properties of a system's safety concept. The two
main elements used within this section are failure-conditions and degradation-modes. With the
pattern presented in this section it is possible to specify of the containment or propagation of
faults.

The following attributes of are used in the patterns:

(1) Failure-Condition

(2) Degradation modes

1. A mode expression consists of a mode variable, a mode name and a relational
operator(“==“, “!=“)

2. Example: DM==normal, DM != detected

(3) Expression, Expression Sets

1. An expression is either a failure-condition or a mode expression

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 16 (41)

2. An expression set is a set of expressions

3. Example: {fail1, fail2, fail3 during dm=normal}

(4) perm()

1. If this operator is applied to an expression, the expression holds for all future states of
the path

Pattern
S1:

none of {<expr-set1>, …, <expr-setn>} occur

This pattern is used to describe the traces that are accepted / not accepted. Any trace that
contains all elements of one expr-set is not accepted by the pattern.

Example Pattern:

 none of {{f1,f2}, {f3,f4}} occur

Pattern
S2:

expr1 only followed by expr2

Only traces will be accepted if any occurrence of expr1 will either be followed directly by expr2 or
hold forever.

Example Pattern:

 fail only followed by (DM==not-detected)

Pattern
S3:

expr1 only after expr2

Only traces will be accepted if any occurrence of expr1 always occurs as a direct follower of
expr2

Example Pattern:

 (DM==detected) only after (DM==not-detected)

Pattern
S4:

ModeVar is defined as (Mode1 , Mode2 , … , Moden)

This pattern is used to define existing modes for a mode variable.

Example Pattern:

 DM is defined as (normal, notDetected, detected)

 To specify that the modes can only occur in a specific order “<” can be used instead of “,”.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 17 (41)

Example Pattern:

 DM is defined as (normal < notDetected < detected)

Pattern
S5:

expr-set does not occur

This pattern is a derived pattern from S1. All expr-sets are stated in seprate patterns.

Example Pattern:

{f1,f2} does not occur

{f3,f4} does not occur

5.3.4 Example Scenario

5.3.4.1 Creating a new Pattern Contract file

Start DOORS and create a new folder. Run the setup script via the context menu as shown in
Figure 5.

Figure 5: Create PatternContracts file

Open the formal module “PatternContracts” and create a new object (Figure 6).

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 18 (41)

Figure 6: Create new object

Run the Pattern Editor as shown in Figure 6 to edit the created object. You are able to select
between opening just the selected object or opening all objects in the Pattern Editor.

Figure 7: Run Pattern Editor

The Pattern Editor starts. Unfold the highest entry until you see the contract (yellow cube). If the
highest entry is selected additional contracts can be created by using the “Create Contract” button
(Figure 7). The small down arrow shows what kind of contracts can be created.

Figure 8: Create additional contract

By selecting the contract its name can be edited in the “Properties” view below (Figure 8).

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 19 (41)

Figure 9: Edit contract name

If the contract is selected an assumption (left symbol, paper with blue line) and/or a promise (right
symbol, paper with red line) can be created (Figure 9).

Figure 10: Create Assumption/Promise

If the “Assumption” is selected its pattern can be edited in the “Properties” view below (Figure 10).
By clicking the small down arrow next to the “Pattern” text box a list of predefined patterns opens
up. After selecting one of the patterns a small description is given in the “Description” window and
the placeholder of the selected pattern can be filled by the text box in the “Pattern Properties”
subsection below.

Editing the pattern of the “Promise” works in the same manner.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 20 (41)

Figure 11: Edit assumption properties

If all necessary contracts are created the changes have to be saved (Figure 11).

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 21 (41)

Figure 12: Save changes

The created contracts will automatically be transferred into the “PatternContracts” file in DOORS
(Figure 13).

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 22 (41)

Figure 13: Pattern Contracts

5.3.4.2 Performing a Safety Pattern Analysis

To perform a safety pattern analysis select the equivalent entry in the “OFFIS Tools” menu (Figure
3-10).

Figure 14: Run Safety Pattern Analysis

In the drop down menu “Analysis Type” you can select between “Dominance Analysis” and
“Consistency Check”. Under “DOORS Root Folder” the directory of the “PatternContracts” file is
chosen. Click “Next” to continue the analysis (Figure 14).

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 23 (41)

Figure 15: Select analysis type and choose root folder

On the left side you see the available contracts. Now you have to select the top-level event and
have to push it with the arrow button into the “Top-Level Contract” pool on the right side of the
window. Additionally you have to select the dominating contracts and have to push them into the
“Dominating Contracts” pool. Continue by clicking “Next” (Figure 16).

Figure 16: Available contracts (left), Selected top-level and dominating contracts (right)

To start the safety pattern analysis press the marked button (Figure 17).

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 24 (41)

Figure 17: Run analysis

The result of the analysis is shown in the “Status Log” section (Figure 3-14). In the case of errors
the log file is shown by pressing the “Help” button. The analysis can be aborted via “Cancel” and if
completed it can be closed with the “Finish” button.

Figure 18: Results shown in Status Log

5.4 Refinement of Safety Requirements according to ISO 26262

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 25 (41)

This section describes refinement of safety requirement from Safety Goals to Functional and
Technical Safety Requirements lower level requirements.

The explanation will be based on the ISO 26262 all parts refer to safety requirements
specification.

For each part 3, 4, 5, 6 an identification of what contain need to be allocated for the safety
requirement specification.

5.4.1 Safety Requirements according to ISO 26262 concept phase

Hazard analysis and risk assessment:

Safety goal expression:

A safety goal shall be determined for each hazardous event with an ASIL attribute evaluated in the
hazard analysis.

The ASIL level attribute shall defined for all safety requirements (include ASIL decomposition
notation) to all safety requirements level.

Safety goal requirement (SG_Reqxx ASIL attribute) expression:

The safety goal shall contain:

 - Safe state requirement (Saf_Reqxx) when applicable (If a safety goal can be achieved by
transitioning to, or by maintaining, one or more safe states, then the corresponding safe state(s)
shall be specified).

Functional safety concept:

Functional safety requirement:

Derive the functional safety requirements, from the safety goals, and to allocate them to the
preliminary architectural.

Functional safety requirement (FS_Reqxx) shall be specified by considering (if applicable):

- operating modes,

- Fault tolerant time interval,

- Safe states,

- Emergency operation interval,

- Functional redundancies (e.g. fault tolerance).

Functional safety requirement with other technology and external measure:

- The functional safety requirements (FSOT_Reqxx) implemented by other technologies,

- The functional safety requirements (FSEM_Reqxx) implemented by external measures.

5.4.2 Safety Requirements according to ISO 26262 product development at the system
level

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 26 (41)

Technical safety requirement: The technical safety requirements specification refines the
functional safety concept.

1) The technical safety requirements shall specify safety-related dependencies between systems
(TSD_Reqxx)

2) The technical safety requirements shall specify the response of the system to stimuli that affect
the achievement of safety goals (TSR_Reqxx),

3) The technical safety requirements shall specify the necessary safety mechanisms
(TSSM_Reqxx) including:

- The measures relating to the detection, indication and control of faults in the system itself,

- The measures relating to the detection, indication and control of faults in external devices that
interact with the system,

- The measures that enable the system to achieve or maintain a safe state

- The measures to detail and implement the warning and degradation concept,

- The measures which prevent faults from being latent.

3.1) Each safety mechanism that enables an item to achieve or maintain a safe state the following
shall be specified:

- The transition to the safe state,

- The fault tolerant time interval,

- The emergency operation interval, if the safe state cannot be reached immediately,

- The measures to maintain the safe state.

4) Hardware-software interface specification (HSI) (TSHSI_Reqxx): The relevant diagnostic
capabilities of the hardware and their use by the software shall be specified.

5.4.3 Safety Requirements according to ISO 26262 product development at the
hardware level

Hardware safety requirement: Hardware safety requirements specification for the hardware
elements of the item shall be derived from the technical safety requirements allocated to
hardware.

The hardware safety requirements specification (HWS_Reqxx) shall include each hardware
requirement that relates to safety, including:

The hardware safety requirements and relevant attributes of safety mechanisms:

- To control internal failures of the hardware of the element, this includes internal safety
mechanisms to cover transient faults when shown to be relevant due, for instance, to the
technology used- fault tolerant time interval,

- To ensure the element is tolerant to failures external to the element,

- To comply with the safety requirements of other elements,

- To detect and signal internal or external failures,

- The hardware safety requirements not specifying safety mechanisms (i.e the target values
for random hardware failures, single point,etc)

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 27 (41)

- The HSI specification initiated in technical safety requirement, shall be refined sufficiently to allow
for the correct control and usage of the hardware by the software, and shall describe each safety-
related dependency between hardware and software.

5.4.4 Safety Requirements according to ISO 26262 product development at the
Software level

Software safety requirement: The software safety requirements shall address each software-
based function whose failure could lead to a violation of a technical safety requirement allocated to
software.

The specification of the software safety requirements shall be derived from the technical safety
concept

The software safety requirements specification (SWS_Reqxx) shall consider:

- The specification and management of safety requirements,

- The specified system and hardware configurations,

- The hardware-software interface specification,

- The relevant requirements of the hardware design specification,

- The timing constraints,

- The external interfaces,

- Each operating mode of the vehicle, the system, or the hardware, having an impact on the
software.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 28 (41)

5.4.5 Traceability of Safety Requirements overview (Synthesis)

Hazardous events 1

Safety goal 1 ASIL top

level

Functional safety

requirement 2 (ASIL)

Functional safety

requirement 3

(external measure)

Technical safety

requirement 2 (HW

allocation)

Technical safety

requirement 4 (SW

allocation)

Technical safety

requirement 3 (HSI

requirement)

Functional safety

requirement 1 (other

technology)

Safety

validation

Safety

validation

Hardware, software and HSI safety requirements implementation:

Hardware architectural design, Software architectural design

Concept

Phase

System level

Hardware &

Software

level

Other

technology

implementation

External

measure

implementation

Product

How

Out of scope

of item

Hardware

safety

requirements

(or refined)

Software

safety

requirements

(or refined)

How

The HSI specification

initiated in technical

safety requirement

refined

Design constraint +

Standard

Design constraint +

Standard

Figure 19: Traceability of safety requirements overview

Traceability of requirements is supported by two concepts in the SAFE meta model. First there are
refinement traces between the different types of safety requirements. The SAFE meta model part
to support this is described in section 6.2

Second there are allocation traces between safety requirements and there allocation targets in the
architecture. The SAFE meta model part to support this is described in section 6.3.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 29 (41)

Figure 20 shows the Idea of Safety Requirement Traceability from the functional view.

Figure 20: Idea of Safety Requirement Traceability (Functional View)

5.4.6 Interfaces between Safety Requirements, Safety Concept and Safety Analysis

The objective is to describe the interfaces between safety requirements allocation from safety
concept to lower level and results of safety analysis (new safety requirements are generated).

Below an overview between safety requirement from safety concept and safety analyses results:

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 30 (41)

Figure 21: overview interfaces between safety requirement allocation from safety concept
to lower level and results of safety analysis

Safety concept and system safety analyses interfaces:

During safety concept, a system FMEA (based on the preliminary architecture) can be initiated to
support the safety concept definition.

Figure 22: overview of safety requirement allocation from safety concept to lower level and
results of safety analysis

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 31 (41)

The first objective of the system FMEA is to ensure that safety concept defined is sufficient
accurate enough to take into account failure modes leading to violation of safety goal via safety
mechanisms specification (refer to paragraph 5.4.1 for more explanations).

The second objective of the system FMEA is to generate new safety requirements not defined and
detected during safety concept according to failure modes analyses and propagations through the
system.

The safety requirements are called functional safety requirements and then derived as follow:

Functional safety requirements => technical safety requirements (hardware or software allocation)
=> Hardware safety requirements or Software safety requirements.

Technical safety concept and system safety analysis interfaces:

During Technical safety concept, a system FMEA (based on detailed architecture and detail
system specification) can be initiated to support the technical safety concept definition.

The first objective of the system FMEA is to ensure that technical safety concept defined (technical
specification) is sufficient accurate enough to take into account failure modes leading to violation
of safety goal via safety mechanisms specification (refer to paragraph 5.4.2 for more explanation).

The second objective of the system FMEA is to generate new safety requirements not defined and
detected during safety concept according to failure modes analyses and propagations through the
system.

The safety requirements are called technical safety requirements and then derived as follow:

Technical safety requirements (hardware or software allocation) => Hardware safety requirements
or Software safety requirements.

Hardware safety requirements and hardware safety analysis interfaces:

During hardware safety analysis via FMEDA (Failure Mode Effect and Diagnostic Analysis):

The objective is to verify via quantitative estimation (single point fault, latent fault metrics and
probability of failure) that the violation of safety goal is compliant according to ISO 26262
quantitative targets. And that the safety concept is also compliant regarding to quantitative
estimation.

If the architecture metrics or probabilities of failure are not met according to quantitative ISO
26262 targets:

New hardware safety requirements (for example add a new diagnostic), software safety
requirements (interface with the diagnostic and how shall be managed) and technical safety
requirement (ensure hardware and software safety requirements consistency and applicative
reaction due to system strategy to maintain a safe state) are specified to define a new hardware
architecture.

The objective of new safety requirements is to be compliant according to quantitative targets via
new hardware architecture update.

Software safety requirements and software safety analysis interfaces:

During the software safety analysis at software architectural level:

The objective:

- identify or confirm the safety related parts of the software

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 32 (41)

- support the specification and verify the efficiency of the safety mechanisms (random
hardware failures and software faults)

1) To specify the necessary software safety mechanisms at the software architectural level,
based on the results of the safety analysis for the mechanism for error detections:

Mechanisms for error detections refer to part 6 table 4: mechanisms for error detection at the
software architectural level.

2) To specify the necessary software safety mechanisms at the software architectural level,
based on the results of the safety analysis for the mechanisms for error handling.

Mechanisms for error handling at the software architectural level refer to part 6 table 5:
mechanisms for error handling at the software architectural level.

When not directly required by the technical safety requirements allocated to software, the use of
software safety mechanisms is reviewed at the system level to analyze the potential impact on the
system behavior.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 33 (41)

6 SAFE modeling concepts

The SAFE meta model concepts for modeling of safety requirements to support the described
methods are described in the following sections.

6.1 Expression of formal safety requirements

Figure 23: Concept: Safety Requirements

6.1.1 TraceableSpecification

Description

Abstract superclass for elements which can be traced (e.g. requirements)

Attributes

• Formal : String

Formal description of the element

• Informal : String

Informal description of the element

• Name : String

Name of the element

• stakeholder : String[0..n]

Stakeholders for the element

6.1.2 Abstract Safety Requirement

Description

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 34 (41)

In the SAFE meta model AbstratcSafetyRequirement is used as the as the abstract superclass for
SafetyGoals, FunctionalSafetyRequirements and TechnicalSafetyRequirements.

Attributes

• asilDecomposed: ASILDecomposedEnum

ASIL which has been assigned via decomposition

6.1.3 Safety Goal

Description

The safety goal is the top-level safety requirement for the item. It needs to be derived from the
hazardous event and inherits the ASIL classification (ISO 26262-3: 7.4.8)

Attributes

• asil: ASILEnum

The automotive safety integrity level of the safety goal

6.1.4 Functional Safety Requirement

Description

Functional safety requirements are derived from the safety goals. Functional safety requirements
are allocated to the preliminary architectural elements of the item, or to external measures (ISO
26262-3: 8.4.2.3)

Attributes

• emergenyOperationInterval : float

Emergency operation interval for the functional safety requirement (ISO 26262-3, 8.4.2.3 d)

• faultTolerantTimeInterval: float

Fault tolerant time interval for the functional safety requirement (ISO 26262-3, 8.4.2.3 b)

6.1.5 Technical Safety Requirement

Description

The technical safety requirements specification refines the functional safety concept, considering
both the functional concept and the preliminary architectural assumptions

The technical safety requirements are allocated to hardware and software, and, if applicable, on
other technologies (ISO 26262-4, 6.4.9)

Attributes

• constraints : String

e.g. environmental conditions or functional constraints (ISO 26262-4, 6.4.1.1 b)

• externalInterfaces : String

The external interfaces, such as communication and user interfaces, if applicable (ISO
26262-4, 6.4.1.1 a)

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 35 (41)

6.1.6 Safe State

Description

The safe state is, according to ISO 26262, an “operating mode of an item without an unreasonable
level of risk”.

Attributes

• ASIL: ASILenum

inherits the ASIL form the correlated Safety Goal

• faultTolerantTimeInterval: float

time-span in which a fault or faults can be present in a system before a hazardous event
occurs

6.2 Refinement of safety requirements

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 36 (41)

Figure 24: Overview of concept for refinement of safety requirements

In the proposed SAFE meta model the refinement of requirements is supported via requirement
links and direct associations between safety goals, functional safety requirements, technical safety
requirements, hardware safety requirements and software safety requirements.

6.2.1 Requirement Link

Description

RequirementsLink is owned by requirement. It is used to establish links between requirements.

Attributes

• requirementLinkType

The type of the link between requirements is determined by the RequirementsLinkType.

6.2.2 Requirement Link Type

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 37 (41)

Description

RequirementsLinkType defines the type of the link between requirements.

• Covers: The requirement which owns a link of this type covers the linked requirements

• Refines: The requirement which owns a link of this type refines the linked requirements

• Conflicts: The requirement which owns a link of this type conflicts with the linked
requirements

• Decomposes: The requirement which owns a link of this type decomposes the linked
requirements

6.3 Allocation of safety requirements

Figure 25: Overview of concept for safety requirements allocation

6.3.1 Allocations

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 38 (41)

Description

Allocations allow allocating requirements to elements of the preliminary architecture as well as
HW-Elements and SW-Elements. This concept also supports the allocation of quantitative targets
or budgets as defined in ISO 26262-4, 7.4.4.4 [5] which have been captured in safety
requirements.

6.3.2 Allocatable Element

Description

Elements which can be allocated to AllocationTargets

6.3.3 AllocationTarget

Description

Elements to which AllocatableElements can be allocated.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 39 (41)

7 Discussion and Future Improvements

In further meta model integration steps during the SAFE project it is planned to remove
HardwareSafetyRequirement and SoftwareSafetyRequirement from the SAFE meta model. The
concept of a HardwareSafetyRequirement can be expressed by allocating a
TechnicaSafetyRequirement to a hardware related architecture artifact. In a similar way
SoftwareSafetyRequirement can be expressed by allocating a TechnicalSafetyRequirement to a
software related architecture artifact.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 40 (41)

8 Acknowledgements

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster
programme Σ! 3674. The work has been funded by the German Ministry for Education and
Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy
and Finance (DGCIS). The responsibility for the content rests with the authors.

SAFE – an ITEA2 project D3.1.2b

 2011 The SAFE Consortium 41 (41)

9 References

[1] SAFE Requirements

https://safe.offis.de/svn/svndav/40_Deliverables/SAFE_D2.1.a/SAFE_D2.1.a.pdf

[2] SAFE Risk List

https://safe.offis.de/svn/svndav/10_Project_Management/SAFE_Plus-Minus-Risks.xlsx

[3] SAFE_D2.1.a-ISO-Part_2.pdf (Management of functional safety)

[4] SAFE_D2.1.a-ISO-Part_3.pdf (Concept Phase)

[5] SAFE_D2.1.a-ISO-Part_4.pdf (Product development at the system level)

[6] SAFE_D2.1.a-ISO-Part_5.pdf (Product development at the hardware level)

[7] SAFE_D2.1.a-ISO-Part_6.pdf (Product development at the software level)

[8] SAFE_D2.1.a-ISO-Part_7.pdf (Production and operation)

[9] SAFE_D2.1.a-ISO-Part_8.pdf (Supporting Processes)

[10] SAFE_D2.1.a-ISO-Part_9.pdf (Automotive Safety Integrity Level (ASIL)-oriented safety-
oriented analysis

[11] PREEvision: model-based EE development from design of the architecture to production
readiness, http://www.vector.com/vi_preevision_en.html, 2012

[12] CESAR Project, http://www.cesarproject.eu/

