
SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 1 (50)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP3

Deliverable D3.1.3: Proposal for extension of Meta-

model for safety case modeling and documentation

Due date of deliverable: 31/03/2013

Actual submission date: 28/03/2013

Start date of the project: 01/07/2011 Duration: 36 months

Project coordinator name: Stefan Voget

Organization name of lead contractor for this deliverable: fortiss

Editor: Maged Khalil (fortiss GmbH)

Contributors: Maged Khalil (fortiss GmbH), Eduard Metzker (Vector Informatik GmbH)

Reviewers: Eduard Metzker (Vector Informatik GmbH)

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 2 (50)

Revision chart and history log

Version Date Reason

0.1 2012-09-19 Initialization of document

0.2 2012-10-18 Input to Introduction Section 4

0.3 2012-11-07 Input to Overview on ISO Section 5

0.4 2012-11-16 Input to EAST-ADL Overview Section 7

0.5 2012-11-16 Input to Overview on ISO Section 5

0.6 2012-11-23 Input to Methodology Section 6

0.7 2012-11-29 Further Input to Methodology Section 6

0.8 2012-12-20 Editing and Input in various sections

0.9 2013-02-13 Input to SAFE Meta-model Contribution Section 8

0.10 2013-02-15 Introduction of Patterns Section 6.3

0.11 2013-03-08 Editing and Input in various sections

0.12 2013-03-24 First version ready for review

0.13 2013-03-26 Incorporation of first review comments

0.14 2013-03-27 Updated version reviewed. Input to Section 8.3.

1.0 2013-03-28 Incorporation of review comments, finalization of deliverable

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 3 (50)

1 Table of contents

1 Table of contents .. 3

2 List of figures .. 5

3 Executive Summary .. 6

4 Introduction and overview of document .. 7

4.1 Scope of WT 3.1.3 .. 7

4.2 Structure of document .. 8

5 Overview on ISO 26262 .. 9

6 Methodology for Safety Case Description... 13

6.1 Introduction ... 13

6.1.1 Background and Motivation .. 14

6.2 Safety Case Description Elements and Relations .. 15

6.2.1 Specification Elements.. 15

6.2.2 Relations and possible expressions ... 17

6.2.3 Steps for building a safety case goal structure ... 17

6.3 Safety Case Patterns .. 18

6.3.1 Introduction ... 18

6.3.2 Background and related work ... 19

6.3.3 Safety case pattern templates .. 20

6.3.4 Using safety case patterns ... 23

6.4 Testing of safety cases ... 24

7 Safety Cases with EAST-ADL .. 25

7.1 Current status of EAST-ADL and other suggested extensions .. 25

7.2 Proposed extensions to EAST-ADL.. 28

8 WT 3.1.3 Contribution to SAFE Meta-model .. 31

8.1 Overview ... 31

8.2 Class Description .. 32

8.3 Proposed Interaction with SAFE Meta-model Elements for Documentation 33

8.3.1 Area: Scope .. 35

8.3.2 Area: System description .. 35

8.3.3 Area: System Hazards .. 36

8.3.4 Area: Safety Requirements ... 37

8.3.5 Area: Risk Assessment ... 38

8.3.6 Area: Risk Reduction Measures ... 39

8.3.7 Area: Safety Analysis .. 41

9 Interdependencies with other work tasks / packages ... 43

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 4 (50)

10 Conclusions and Discussion ... 45

11 Abbreviations used in D3.1.3 .. 46

12 References ... 47

13 Acknowledgments... 50

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 5 (50)

2 List of figures

Figure 1: Overview on ISO 26262 (Relevant parts highlighted) ... 9

Figure 2: Concept phase activities after HA/RA carried out ... 10

Figure 3: Overview on Structure of Architecture .. 13

Figure 4: Example Goal Structure ... 15

Figure 5: An example usage of the logical transformation pattern ... 21

Figure 6: Safety case template for channel redundancy patterns .. 23

Figure 7: EAST-ADL Dependability Package .. 25

Figure 8: EAST-ADL Safety Case ... 26

Figure 9: EAST-ADL Ground, Warrant and Claim Diagram ... 27

Figure 10: Toulmin Argumentation Concept Elements .. 27

Figure 11: Proposed EAST-ADL2 extension for modeling safety cases in ATESST Project 28

Figure 12: Internal Structure of proposed Class Safety Case .. 29

Figure 13: Possible links from EAST-ADL to Solution Element ... 30

Figure 14: SAFE Meta-model Overview with SafetyCaseExpressions highlighted 31

Figure 15: Overview of SafetyCaseExpression relations to SAFE Object in SAFE Meta-model 32

Figure 16: Strategies of a safety case report modeled in GSN exploiting the SAFE MM 34

Figure 17: SAFE Meta Model Concepts for Scope .. 35

Figure 18: Item Architecture of the SAFE Meta-model .. 36

Figure 19: Hazards as defined in the SAFE Meta-model (Excerpt) .. 37

Figure 20: Safety Requirement Expression as defined in the SAFE Meta-model (Excerpt) 38

Figure 21: Initial risk description in the SAFE Meta-model... 39

Figure 22: Functional Safety Concept of the SAFE Meta Model (Excerpt) 40

Figure 23: Technical Safety Concept of the SAFE Meta Model (Excerpt) 40

Figure 24: Concept for Fault Tree Analysis and Failure Modeling in the SAFE Meta Model
(Excerpt) ... 41

Figure 25: Relationships between WT 3.1.3 and other WTs ... 43

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 6 (50)

3 Executive Summary

The work task 3.1.3 targets the topics of safety case modeling and documentation according to
ISO 26262.

Besides giving an overview on the relevant sections of ISO 26262 the requirements allocated to
WT 3.1.3 which are resulting from the ISO 26262 analysis of WT 2.1 are presented. In an addi-
tional section, the current achievements on the requirements allocated to WT 3.1.3 are presented.

In addition to the previous mentioned overview the methodology for safety case documentation in
accordance with ISO 26262 is presented. Since it is the objective to develop a Meta-model exten-
sion for safety cases the current version of EAST-ADL is analyzed. Moreover, the contribution of
WT 3.1.3 to the SAFE Meta-model, which is based on EAST-ADL, is presented. Methods of how
to use the provided safety case capability in a generic as well as in a pattern-based approach are
explained.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 7 (50)

4 Introduction and overview of document

The document at hand provides information about a methodology for safety case modeling and
documentation and a proposal for the extension of the SAFE Meta-model that enables its use in a
model-driven development environment. In the following subsection the scope of the work task as
well as the structure of the document is presented.

4.1 Scope of WT 3.1.3

Embedded in work package 3, work task 3.1.3 deals with the safety case modeling including the
ability to describe artifacts of the SAFE Meta-model in a safety case relevant context, as well as an
expression of relations between artifacts in that context. The basis for this work task is the struc-
tured argumentation notation known as the Goal Structuring Notation (GSN) which is presented in
section 6. WT 3.1.3 aims to provide a methodology for argumentation about safety cases and a
Meta-model extension suitable for the mentioned topics to WT 3.5. Furthermore WT 3.1.3 ex-
plores how the provided methodology can be used in a pattern-based approach. In order to be
able to do so, mainly the following artifacts and their interrelations are considered:

Hazard

Hazards represent the potential source of harm and form a key aspect of the hazard analysis and
risk assessment and a focal point for safety activities. WT 3.1.1 provides a concept to express
hazards in formal as well as informal formulation.

Hazardous Event

Hazardous events are relevant combinations of hazards and operational situations in a given op-
erating mode. WT 3.1.1 develops a suitable representation including a concept for hazardous
events shall enable the classification according to the parameters severity, probability of exposure,
and controllability. Based on these parameters the ASIL classification is performed which is be
supported by the Meta-model concept. Hazardous events can be categorized into general problem
patterns that, in their turn, result in general solution patterns which can be collected into libraries
that include the corresponding safety case template.

Safety Goal

WT 3.1.1 derives safety goals from hazardous events and enables the expressions and documen-
tation of safety goals with their respective parameters and association with a SAFE state (“operat-
ing mode of an item without an unreasonable level of risk” [1]). The safety goal is the starting point
for any safety case.

Functional Safety Concept

The functional safety concept details the approach that will be used to counteract or mitigate the
effects of the hazardous event and satisfy the corresponding safety goal(s). Functional safety con-
cept can be categorized into known solution patterns, e.g., use redundancy to overcome the low
reliability of a single channel or a source of common cause failures.

Technical Safety Concept

The technical safety concept describes the actual implementation details of the corresponding
functional safety concept. E.g., redundancy can be achieved by using a homogenous hardware
redundancy pattern, or a software logical redundancy pattern, according to the requirements of the
situation.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 8 (50)

4.2 Structure of document

The document is structured as follows:

Subsequent to this introduction an overview on the parts of ISO 26262, which are relevant for
safety case modeling and documentation, is given in section 5.

Within chapter 6, the methodology for safety case description is explained. To do this, in a first
step some background information and motivation is given, followed by a general introduction to
the methodology used. Safety case description elements and their relations are discussed in Sec-
tion (6.2). Section (6.3) gives an overview of pattern-based approaches and details the use of so-
lution patterns for the generation of safety case skeletons or templates. Finally, an overview of
testing of safety cases is given in Section (6.4).

Section 7 deals with EAST-ADL. EAST-ADL is an architecture description language (ADL), which
has been developed in various projects in which both automotive vendors and users cooperated,
where the objective was to define an ADL tailored to the needs of the automotive industry. The
current version published on their website (www.east-adl.info) is EAST-ADL V2.1 [44].

On the one hand, the current version of EAST-ADL and in particular the dependability part is de-
scribed und studied from a safety case perspective. On the other hand, some proposed exten-
sions from parallel research and industrial projects to this current version are explained which in-
troduce or enhance the possibility to perform safety case documentation in compliance with ISO
26262.

The contribution of WT 3.1.3 to the SAFE Meta-model is described in section 8. Within this section
an overview on the part of the Meta-model as well as a detailed description of the classes and
links used to construct the Meta-model is presented. Moreover, an example for the application of
the Meta-model for safety case documentation is presented.

In section 9 the relevant interdependencies to other work tasks of SAFE are depicted and ex-
plained.

Finally, in section 10 a summary and conclusion are given.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 9 (50)

5 Overview on ISO 26262

Addressing the development process of electric / electronic components for passenger cars, the
ISO 26262 “Road vehicles – Functional safety” came into effect in November 2011. This standard
introduces a safety lifecycle which “encompasses the principal safety activities during the concept
phase, product development, production, operation, service and decommissioning” ([1], part 2,
p.3) and which can be seen as a guideline that demands a risk-assessment based development
approach with seamless traceability.

Within this section, an overview on the relevant parts of ISO 26262 with regard to safety case
modeling is given. The selection of the presented parts is based on the source of the SAFE re-
quirements elicited in WT 2.1 which are allocated to WT 3.1.3.

However, as the purpose of a safety case is, simply put, to link safety goals to the solution fulfilling
them using clear lines of argumentation, it is clear that safety case modeling capability is relevant
for virtually all aspects of the ISO26262 activities covered by the SAFE Meta-model, in order to
provide the link between generated artifacts and the requirements driving them.

In figure (1) an overview on the different parts of ISO 26262 is given, with relevant parts directly
derived from WT2.1 requirements colored red and other safety case modeling relevant parts col-
ored blue.

Figure 1: Overview on ISO 26262 (Relevant parts highlighted)

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 10 (50)

In the following, an overview on the relevant aspects from the respective ISO26262 parts is given.

Part 3: Concept Phase

The concept phase comprises mainly four different parts, namely the item definition, the initiation
of the safety lifecycle, the hazard analysis and risk assessment, and the functional safety concept.
These parts are explained in the following subsections.

Item Definition

The objective of the definition is to provide an overview on the item, the implemented functionali-
ties and the dependencies as well as interactions of the item with the environment or other items
of the vehicle. This information shall be provided in form of functional and non-functional require-
ments of the item. Moreover, the item definition includes a boundary description of the item as well
as of elements of the item, i.e. a description of the interfaces and the expected as well as provided
functionalities and interactions.

Initiation of the Safety Lifecycle

During the sub-phase of the initiation of the safety lifecycle it is distinguished between new devel-
opments and modifications of existing items. Depending on this the entire safety lifecycle or a tai-
lored version needs to be applied.

Hazard Analysis and Risk Assessment

In general, the hazard analysis and risk assessment takes place based on the item definition and
evaluates present risks without taking into account internal safety mechanisms of the item. This
serves as the basis for defining safety goals and deriving the functional safety concept and its re-
quirements, as shown in figure (2).

Figure 2: Concept phase activities after HA/RA carried out

In a first step of the analysis, possible operational situations that are scenarios which might occur
during the vehicles lifetime are collected. In this step it is important also to cover situations that

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 11 (50)

arise through foreseeable misuse of the vehicle. Subsequent to the definition of operational situa-
tions hazards which are related to the item need to be determined. Although the hazards need to
be related to the item and are associated with a malfunction of the item, the description takes
place on vehicle level, i.e. the resulting behavior at vehicle level needs to be determined. After
identifying the hazards, relevant combinations of both, hazards and operational situations, are cap-
tured as hazardous events. These hazardous events are subject to classification according to the
three parameters controllability, probability of exposure and severity. Based on the parameters the
ASIL (Automotive Safety Integrity Level) is determined and assigned to the hazardous event. In
case the determination of the ASIL leads to ASIL A, B, C or D, a safety goal has to be derived
from the particular hazardous event. These safety goals are the top-level safety requirements for
the item and serve as a basis for the later development of the functional safety concept.

Functional Safety Concept

Subsequent to the hazard analysis and risk assessment the functional safety concept is devel-
oped. The functional safety concept consists of functional safety requirements and preliminary
architectural assumptions. The functional safety requirements which are derived from the safety
goals are allocated to the elements of the item.

Part 4: Product Development – System Level

During this phase the development of the item from the system level perspective takes place. The
process is based on the concept of a V-model. Starting point (on the upper left side) is the specifi-
cation of the technical safety requirements which is followed by the development of the system
architecture and the system design. The way up to the upper right point of the V-model is built by
the integration, verification, validation and functional safety assessment activities.

Part 5: Product Development – Hardware Level

During this phase the development of the item from the hardware perspective is performed. The
process is again based on a V-model, going down with the specification of hardware safety re-
quirements as well as hardware design and implementation and back upwards with hardware inte-
gration and testing.

Part 6: Product Development – Software Level

During this phase the development of the item from the Software perspective is performed. The
process is again based on a V-model, going down with the specification of Software safety re-
quirements as well as Software design and implementation and back upwards with Software inte-
gration, testing and validation.

Part 8: Supporting Processes

The relevant requirements for WT 3.1.3 arise from two sections of part 8 (supporting processes),
namely “Verification” and “Documentation”, with the following overview limited to these sections.

Verification

Within the section “Verification” requirements are given which need to be fulfilled in order to en-
sure that the work products comply with their requirements.

Documentation

Within the section “Documentation” requirements are given which need to be fulfilled in order to
ensure that the work products and processes and all relevant links are properly documented.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 12 (50)

Part 9: Automotive Safety Integrity Level (ASIL)-oriented and Safety-oriented Analyses

The assigned and accepted requirements for WT 3.1.3 arise from one section of part 9 (automo-
tive safety integrity level (ASIL)-oriented and safety-oriented analyses), namely “Safety analyses”.
An over of only this section of part 9 is given.

Safety Analyses

With the help of the safety analyses consequences of faults and failures on functions, behavior
and design of items and elements shall be examined. Moreover, the analyses provide information
on causes and conditions that could lead to the violations of a safety goal or safety requirement.
Additionally, the analyses contribute to the identification of new hazards not discovered during the
hazard analysis and risk assessment.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 13 (50)

6 Methodology for Safety Case Description

After presenting the relevant parts of ISO 26262 covered by the requirements from WP 2 allocated
to WT 3.1.3, we will present the methodology we propose to express safety cases in this section.

6.1 Introduction

Although ISO 26262 requires looking at the risk emanating from the item without considering other
elements of the vehicle architecture and without considering internal safety measures (cp. ISO
26262:3-2011, requirement 7.4.1.2), this risk itself is determined by the role of the item in the vehi-
cle architecture. An example for this is that an EPS (electric power steering) system can be real-
ized in a way that it can be overruled in any case by the driver. This would lead to a totally different
classification compared to the realization of an EPS which cannot be overruled by the driver due to
a too strong impact [45].

Therefore the model-based development process foreseen by SAFE has to take into account not
only the item features but also all other elements / attributes that potentially contribute to the risk
on vehicle level. The architecture suitable for the consideration of these needs has to fulfill the fol-
lowing aspects:

• there is a hierarchical architecture

• environmental aspects have to be distinguished

• functional / technical aspects have to be distinguished

• within technical aspects the hardware and software aspects need to be distinguished

The resulting architecture which is used in SAFE/SAFE-E [45] is presented in the following figure.

Figure 3: Overview on Structure of Architecture

Due to the structure of the architecture matrix shown the ASIL allocation could be different. More-
over, ASIL decomposition could be applied on any horizontal level, which has influences to the
lower horizontal levels. Analogous to this, safety requirements could be allocated to different ele-

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 14 (50)

ments within the horizontal level; this implies that a safety mechanism could be implemented into a
sensor or alternatively into the controller or the actuator. By applying graceful degradation also the
technical behavior in case of failure could be different and again this would lead to different inherit-
ing of safety requirements to lower horizontal level.

As already depicted in the previous section 5, ISO26262 requires a detailed traceability linking re-
quirements and their fulfillment to the underlying architecture in a comprehensible manner. This
link between safety goals and the solutions fulfilling them using clear lines of argumentation is,
simply put, the purpose of a safety case.

A common definition of a safety case is “a documented body of evidence that provides a convinc-
ing and valid argument that a system is adequately SAFE for a given application in a given envi-
ronment”, whereby an argument is defined as “a connected series of claims intended to establish
an overall claim.” In attempting to persuade others of the truth of an overall claim, we make sup-
porting claims. These claims may themselves need further support. This gives rise to a hierarchy
of claims (representing a logical chain of reasoning) by which an argument is established.

Given the multitude of generated safety-critical artifacts, let alone non safety-critical ones, it is
clear that establishing this link through tracing alone is not possible, especially since simple trace-
ability does not provide the expressiveness required for adequately describing the relations of var-
ious artifacts within a safety case context. This gives rise to the need for a dedicated safety case
specific view on the artifacts.

6.1.1 Background and Motivation

“A safety case should communicate a clear, comprehensive and defensible argument that a sys-
tem is acceptably SAFE to operate in a particular context.” [13]

The concept of the ‘safety case’ has already been adopted across many industries (including de-
fense, aerospace, nuclear and railways), see [1], [34], [35], [36], [37] and has been emphasized in
numerous research works such as [33], [38], [39], [40]. Studying the safety standards and guid-
ance relating to these sectors, it is possible to identify a number of definitions of the safety case –
some clearer than others. The definition given above attempts to cleanly define the core concept
that is in agreement with the majority of the definitions we have discovered.

According to [13], a commonly observed failing of safety assessments is that the role of the safety
argument is often neglected. In such safety cases, many pages of supporting evidence are often
presented (e.g. hundreds of pages of fault trees or Failure Modes and Effects Analysis tables), but
little is done to explain how this evidence relates to the safety objectives. The reader is often left to
guess at an unwritten and implicit argument.

Both argument and evidence are crucial safety case elements that must go hand-in-hand. Argu-
ment without supporting evidence is unfounded, and therefore unconvincing. Evidence without
argument is unexplained; it can be unclear how (or even if) safety objectives have been satisfied.

Safety cases thus have to be supported by the SAFE Meta-model, with the following rationale:

• The structured information management can be used as part of a safety argument in a
safety case, and gives support to systematic safety/reliability analysis.

• The ability to support a safety case at a software architecture description level is important
since it addresses an expanding area of functionality where the complexity is high.

• Traceability between the safety case and the design information is made possible, facilitat-
ing the work of the safety engineer, i.e. identifying the right information.

• Facilitate the system development of safety critical systems, by providing a link to where in
a safety argument a certain “Entity” or “Item” under change is used. (Impact analysis of
safety related systems)

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 15 (50)

6.2 Safety Case Description Elements and Relations

Within this section the description of the safety case description elements we use from GSN and
their relations is given.

In order that safety cases can be developed, discussed, challenged, presented and reviewed
amongst stakeholders, and maintained throughout the product lifecycle, it is necessary for them to
be documented clearly. The documented argument of the safety case should be structured to be
comprehensible to all its stakeholders. It should also be clear how the evidence is being asserted
to support this argument.

GSN has been standardized into a first version since November 2011 and the specification docu-
ment is readily available for free download. It is the primary source of the following two subsec-
tions.

The following subsection 6.2.1 gives a description of the standard elements used to describe arti-
facts while the subsequent section 6.2.2 details the types of relationships and the possible combi-
nations used. Figure (4) depicts an example of the use of GSN [12].

Figure 4: Example Goal Structure

6.2.1 Specification Elements

GSN [12] uses the following basic elements to describe the role of artifacts within a safety case:

Goal

• rendered as a rectangle,

• presents a claim forming part of the argument.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 16 (50)

• One or more sub-goals may be declared for a given goal. This structure then asserts that if
the claims presented in the sub-goals are true, this is sufficient to establish that the claim in
the main goal is true.

Strategies

• rendered as a parallelogram,

• describe the nature of the inference that exists between a goal and its supporting goal(s)

• and are used to describe the nature of the inference which is asserted as existing between
sub-goals and the parent goal.

Solutions

• A solution, rendered as a circle, presents a reference to an evidence item or items.

• Multiple solutions may satisfy a goal.

• Multiple goals may be satisfied by one solution.

Contexts

• Claims can only be asserted to be true in a specified context. Context elements are used to
make this relationship clear.

• A context, rendered as an oblong rectangle with rounded out sides, presents a contextual
artifact. This can be a reference to contextual information, or a statement.

• Where used, contexts define or constrain the scope over which the claim is made.

Assumptions

• An assumption is an intentionally unsubstantiated statement. The scope of an assumption
is the entire argument. Having connected an assumption to a goal, the assumption is taken
to be connected to the entirety of the argument supporting this goal.

• Therefore, it is not necessary to restate the assumption in the supporting argument.

• rendered as an oval with the letter ‘A’ at the bottom-right.

Justifications

• rendered as an oval with the letter ‘J’ at the bottom-right,

• presents a statement of rationale,

• and does not alter the meaning of the claim made in the goal, but provides rationale for its
inclusion or its phrasing.

• Should an equivalent justification be required elsewhere in the argument, it will need to be
re-stated or re-linked.

Furthermore it is possible to represent undeveloped entities, rendered as a hollow diamond ap-
plied to the center of an element, indicating that a line of argument has not been developed. It can
apply to goals (as below) and strategies.

A specific instance of undeveloped entities is an undeveloped goal, rendered as a rectangle
with the hollow-diamond ‘undeveloped entity’ symbol at the center-bottom, presenting a claim
which is intentionally left undeveloped in the argument.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 17 (50)

6.2.2 Relations and possible expressions

The core elements described in the previous section are linked using the following types of rela-
tionships [12]:

SupportedBy

• rendered as a line with a solid arrowhead, allows inferential or evidential relationships to be
documented.

• Inferential relationships declare that there is an inference between goals in the argument.
Evidential relationships declare the link between a goal and the evidence used to substan-
tiate it.

• Permitted connections are:

o goal-to-goal,

o goal-to-strategy,

o goal-to-solution,

o strategy to goal.

InContextOf

• rendered as a line with a hollow arrowhead, declares a contextual relationship.

• Permitted connections are:

o goal-to-context,

o goal-to-assumption,

o goal-to-justification,

o strategy-to-context,

o strategy-to-assumption

o and strategy-to-justification.

6.2.3 Steps for building a safety case goal structure

Works of Kelly and McDermid as well as the GSN standard base on well-revised argumentation
works and suggest a multi-step approach to formulating goal structures and hence building safety
cases, as seen in the following subsections.

Top Down: When classically working from Safety Goals

For a classic staged approach to safety arguments, Kelly [5] defines six steps in the top-down de-
velopment of a goal structure:

1. Identify the goals to be supported;

2. Define the basis on which the goals are stated;

3. Identify the strategy used to support the goals;

4. Define the basis on which the strategy is stated;

5. Elaborate the strategy (and proceed to identify new goals – back to step 1), or step 6;

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 18 (50)

6. Identify the basic solution.

Bottom-Up: When working from existing evidence

When analyses evidence already exists or when an existing safety case needs updating, it is pos-
sible to adapt Kelly’s six steps (see Section 2.3) for top-down GSN development, into a process
which can be used to develop a goal structure from the bottom up [12]:

1. Identify evidence to present as GSN solutions;

2. Infer ‘evidence assertion’ claims to be directly supported by these solutions, and present these
as GSN goals;

3. Derive higher-level sub-goals that are supported by the evidence assertions;

4. Describe how each layer of sub-goals satisfies the parent goal (i.e. strategy);

5. Check that any necessary contextual information is included;

6. Check back down the structure for completeness;

7. Join the resulting goal structure to a known top goal or a set of sub-goals.

Using these methods in conjunction with the steps explained in section [8.3], it is possible to gen-
erate and document safety cases.

6.3 Safety Case Patterns

The idea of design patterns was original proposed by an architect [15] who wrote several books on
the field of urban planning and building construction. The concept of design patterns is a universal
approach to describe common solutions to widely recurring design problems. A pattern is an ab-
stract representation for how to solve a general problem which occurs over and over in many ap-
plications. Describing proven solutions as patterns provides a good documentation for these solu-
tions and makes them more accessible for future use in new systems. Ever since, this concept has
been applied to many different domains including hardware and software design.

Patterns support and help designers and system architects choose suitable solutions for design
problems, and thus also found resonance in the development of safety-critical embedded systems,
where a high level of confidence in the implemented solutions (in this case through repeated test-
ing and use in field) is highly desirable. Reusing proven solutions also makes it possible to reuse
the arguments originally used to prove the safety of these solutions and thus gives rise to the con-
cept of safety case patterns, as discussed in [14] and [10]. An approach to combine arguments by
the compositional use of patterns has been suggested in [16].

6.3.1 Introduction

It is easy to imagine a situation where a developer has already implemented a function many times
and reused many if not all of its elements wanting to also reuse the safety case used to argue the
development’s safety. In fact, informal reuse of safety case material is already commonplace, es-
pecially within stable and well understood domains. However, this type of uncontrolled and often
ad hoc reuse can fail to fully exploit opportunities for reuse, and can in some cases be potentially
dangerous [14]. This is mainly due to:

• Artifacts being reused inappropriately

• Reuse occurring in an ad-hoc fashion

• Loss of knowledge

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 19 (50)

• Lack of Consistency / Process Maturity

• Lack of traceability

These problems stem from the general issue of documentation, especially when it is informal and
textual, as is most documentation. Using some kind of structured (if not formalized) description, it
is possible to reuse the safety cases fully or partially using the concept of patterns.

A deeper view into pattern use in software development in general and in safety-critical systems
specifically is provided in the following subsections.

As with all patterns, a catalogue of mandatory and optional features will have to be established,
examples for which can be found in [14]. A suggestion for a pattern template for safety-critical ap-
plication was also provided in [32].

A key element of the pattern format when applied to safety cases is the notion of pattern applica-
bility. Applicability defines under what circumstances the pattern can be legitimately applied. For
example, descriptions of applicability could indicate which standards the pattern adheres to, the
level of design detail required or the assumption of system behavior. Applicability of a safety case
pattern is perhaps more closely tied to the structural description of the pattern than with design
patterns. The goal structure representation of the pattern may specifically require certain elements
to be present in the goal structure into which the pattern is placed (e.g. a context entity, model,
assumption or constraint).

A difference in emphasis between the design patterns of Gamma (widely used in architecture de-
sign) and safety case patterns is that, in addition to the pattern rationale being documented by
intent and motivation, the rationale behind a safety argument or safety process should also be
embedded in the elements of the structural description using the goal structuring notation (this is in
our case achieved through the use of the GSN elements - strategies, assumptions and justifica-
tions).

Safety case patterns are intended to describe partial solutions and will not typically describe the
complete structure of a system safety argument. It is expected that a collection of patterns will
therefore emerge over time forming a ‘recipe book’ of safety arguments and processes, a number
of which would be used together to aid in the construction of the safety case, as discussed in [14],
[10], and [16].

6.3.2 Background and related work

While the Gang of Four book [17] has been the most popular work on design patterns over the last
two decades, there have been several attempts in the literature to adapt this concept in many
fields of system design. In 1987 Cunningham and Beck presented five patterns for designing win-
dows-based user interfaces with Smalltalk [18]. Around the same time, Jim Coplien began to doc-
ument C++ Idioms that represent specific constructs like patterns for C++. He published these idi-
oms as a book in 1991 [19], and later he published these idioms and patterns as paper in 1997
[20].

From 1990 to 1993, several papers addressing the use of design patterns in object oriented pro-
gramming were published at the OOPSLA (Object-Oriented Programming Systems, Languages,
and Applications) conference. In 1994, the Hillside group (see http://hillside.net) organized the first
PLoP (Pattern Languages of Programs) annual conference. The revised papers from PLoP are
normally published in the book series “Pattern Languages of Program Design” (see e.g. [21]).
Meanwhile, Buschmann et al. published the book “Pattern-oriented software architecture: a system
of patterns” [22] which includes a collection of relatively independent solutions to common design
problems represented as a catalog of design patterns.

Another well-known work is the catalog presented by Bruce Douglass in [23]. This catalog includes
a set of patterns for real-time embedded systems. The presented patterns deal with real-time de-
sign issues like concurrency, resource sharing, distribution, and SAFE and reliable architecture.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 20 (50)

The concept of design pattern has become an important area of research in many fields like: fault
tolerance [24], telecommunications [25], embedded systems [26], [27], security [28], [29], and
many other fields. Each of these fields has its own patterns and sometime its own representation,
but all follow the basic principle of design patterns. Works seeking to structure and facilitate the
selection of architectural patterns and measures adequate for safety-critical requirements have
already been presented [32], but the selection process is still highly manual and case dependent,
and focuses on individual patterns as a guideline with no link to a holistic view.

On the other hand, there is extensive work on formalized reasoning about safety cases and safety
concept argumentation [38], [42], [13], as well as the use of patterns for safety cases [14], which
culminated in a standardization of the structured notation known as GSN [12]. An analysis of in-
dustrial safety cases yielded a finite set of patterns [41] from which it is possible to construct a pat-
tern library of problem types and their respective solutions and use it to automate the generation of
and argumentation about safety concepts as well as safety cases, for which it is planned to im-
plement a proof-of-concept in the research CASE tool AutoFOCUS3 [30] in the next project phase.
Safety case pattern catalogues and the capability for compositional argumentation is suggested in
several research works such as [6], [7], [8], [9], [10], [11] and [16].

6.3.3 Safety case pattern templates

Safety case templates can be generated, stored and reused for many categories of patterns, such
as:

• Strategy (Problem solving) patterns

• Design patterns

• Constraint patterns and Safety Mechanisms

• COTS – Commercial Off The Shelf Components

Problem solving strategy patterns

As discussed in [41] the range of problems developers in a domain face and subsequently the al-
gorithms they favor in solving them are not unlimited. By identifying recurring paradigms and ana-
lyzing them it is possible to generate templates of their safety cases. The strategy node is the core
element of the actual argumentation in a problem pattern safety case template, supporting the jus-
tification of goals being fulfilled by sub-goals. By applying strategy patterns, it is possible to build
argumentations using only accepted justifications. This way confidence in the correctness of the
argument can be increased. Still the appropriateness and correct use of a pattern has to be evalu-
ated before trusting a safety case, but the question of the fundamental validity of each single ar-
gumentation step itself need not be argued. On the long run, it is desirable to establish general
and domain-specific patterns as a pattern library for a faster and easier creation of safety argu-
ments [41].

Example Pattern: Logical transformation

The goal is a logical combination leading to desirable or undesirable situations. It is possible to
generate a safety case skeleton that represents the pattern of avoiding a situation in which the
constraint is violated, e.g. to keep acceleration larger or equal than a lower bound in an adaptive
cruise control. This is simplified by transforming the goal into avoiding an acceleration which is
smaller than the lower bound [41], as shown in figure (5).

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 21 (50)

Figure 5: An example usage of the logical transformation pattern

Design Patterns

ISO 26262 [1] requires that component architectures, independently of their functionalities, display
certain characteristics or adhere to constraints. Some of these such as modularity, simplicity, and
an adequate level of granularity and encapsulation are simply good engineering practices aimed at
avoiding failures arising from unnecessary complexity.

Other requirements, such as freedom from interference, which is the absence of dependent fail-
ures (cascading and common cause failures) in safety-critical components, are aimed at guaran-
teeing correct operation of safety-critical functions.

Furthermore, the ISO26262 [1] dictates that “if the embedded software has to implement software
components of different ASILs, or safety-related and non-safety-related software components,
then all of the embedded software shall be treated in accordance with the highest ASIL, unless the
software components meet the criteria for coexistence in accordance with ISO 26262-9:2011,
Clause 6.” This latter clause mentions freedom from interference and component independence as
being the central requirements for such co-existence.

According to ISO26262, there are several ways for components to have freedom from interfer-
ence, such as:

• be functionally diverse (the use of totally different approaches to achieve the same results);

• be based on diverse technologies (the use of different type of equipment to perform the
same result)

• not share common parts or services whose failure could result in a dangerous mode of
failure of all systems

• be designed so that the predominant failure mode for common support systems (e.g. pow-
er supply) is in a SAFE direction (i.e. fail-safe)

• not share common operational or maintenance or test procedures

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 22 (50)

• be physically separated such that foreseeable failures do not affect redundant safety-
related systems.

Example Pattern: Redundancy

The guidelines above have in turn matured into various design patterns, many of which revolve
around redundancy and partitioning, which is the separation of functions or component elements
to achieve a design, which can be used for fault containment to avoid cascading failures. The de-
sign patterns vary in their addressed context, structure, and presented solution and can be catego-
rized in many ways. For example for redundancy there exist [32]:

• Hardware Patterns: Includes the patterns that contain explicit hardware redundancy. This
group contains the following patterns:

o Homogeneous Duplex Pattern

o Heterogeneous Duplex Pattern.

o Triple Modular Redundancy Pattern

o M-Out-Of-N Pattern

o Monitor-Actuator Pattern

o Sanity Check Pattern

o Watchdog Pattern

o Safety Kernel Pattern

• Software Patterns: Includes the patterns that use software diversity (redundancy) to toler-
ate software faults. This group contains the following patterns:

o N-Version Programming Pattern

o Recovery Block Pattern.

o Acceptance Voting Pattern

o N-Self Checking Programming Pattern

o Recovery Block with Backup Voting Pattern

• Combination of Hardware and Software Patterns: Include the following patterns that do
not contain explicit hardware redundancy or software diversity:

o Protected Single Channel Pattern

o 3-Level Safety Monitoring Pattern

All the above patterns fall under one general paradigm and as such can be covered by a general
safety case pattern template as shown in figure (6), namely that of solving the lack of confidence
in the safety-critical channel using a redundancy strategy. This general template can in turn be
instantiated and subsequently further specified and extended to suit the specific case and used
solution, for example using context elements.

Decision trees to provide assistance in selecting the suitable pattern have been developed and
discussed in [32].

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 23 (50)

Figure 6: Safety case template for channel redundancy patterns

Safety Mechanisms

Safety mechanisms are trusted solutions to repeated engineering problems facing designers and
developers of safety-critical systems which have developed to patterns commonly used in the real-
ization of technical safety concepts. A collection of safety mechanisms has been discussed in [43].
Safety mechanisms, their integration into the SAFE Meta-model and the generation of their code
have been covered in WT3.6. Similarly to Strategy patterns and design patterns, safety mecha-
nisms can also be accompanied by safety case snippets or templates that can be instantiated as
needed and integrated into the safety case at the generation point.

COTS Components

These pattern category targets the re-use of previously developed hardware and software compo-
nents, including COTS products. The safety cases for these may be built around proofs of validity
or the proven in use argumentation in case of sufficient field data. Similarly to safety mechanisms,
COTS components can also be accompanied by safety case snippets or templates that can be
instantiated as needed and integrated into the safety case at the insertion point of the COTS prod-
uct.

6.3.4 Using safety case patterns

Combining the parts explained in the previous subsections a 5-step approach could be suggested
using which it would be possible to quickly construct safety cases from a pattern library.

Step 1: Definition of Safety Goal and identification of problem type

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 24 (50)

Step 2: Selection of suitable paradigm or design pattern / safety mechanism / COTS Component

Step 3: Creation of safety goal instances and generation of safety case skeleton

Step 4: Integration into existing safety cases (with compositional argumentation)

Step 5: Testing for safety case / concept completeness and consistency

6.4 Testing of safety cases

Safety cases can have more than one role, depending on when and how they are generated and
used. Each of these roles defines what types of tests can be performed and to which means.

Descriptive Safety Cases

Use:

When goal structures are generated to argue about existing products or during products develop-
ment a safety case evolves which describes the safety of the system under development and the
fulfillment of its safety goals. This safety case describes the status quo and aims at providing a
clear and justifiable argument that the safety goals are met.

Testing:

Using the set of relation rules identified in Section 6.2.1 and 6.2.2, e.g., each Goal must resolve to

a Solution, in a model-based development environment it is possible to perform completeness
and consistency checks on this type of safety case.

Prescriptive Safety Cases

Use:

In conjunction with the use of patterns, once a decision is made to solve a known problem or use a
trusted solution pattern or purchase a COTS component, the developer can directly create an in-
stance of the (partial) safety case template or skeleton for the known pattern/component. It thus
becomes possible to know what the safety case should look like and to use this as development
guideline.

Testing:

Using the generated safety case skeleton as a reference, the developer can test existing solutions
against it to see whether their arguments hold.

The extent of the testing depth and automation rely on how high the integration of the safety case
elements into the development artifact landscape is.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 25 (50)

7 Safety Cases with EAST-ADL

Within this section the current status of the architecture description language EAST-ADL V2.1 with
regard to safety cases is described. Furthermore, proposals for an extension of the EAST-ADL
concept are described which could lead to an enhancement of the possibility to model and docu-
ment safety cases according to ISO 26262.

EAST-ADL introduces different levels of abstraction within a hierarchical modeling concept which
facilitates controlling the complexity of systems. These levels are:

• Vehicle level,

• Analysis level,

• Design level,

• Implementation level, and

• Operational level.

7.1 Current status of EAST-ADL and other suggested extensions

Besides the different abstraction levels EAST-ADL includes several packages like, for instance,
the variability package, the timing package, and the dependability package which is of special in-
terest for this work task. An overview on the dependability package [44] is given in figure (6).

Figure 7: EAST-ADL Dependability Package

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 26 (50)

As it can be seen in figure (6), the basic artifacts needed for expressing safety activities, like for
instance hazards, hazardous events and safety goals, are already included. For WT 3.1.3 it should
be the objective to reuse as much as possible the already existing content provided in EAST-ADL.

Furthermore, EAST-ADL (version 2.1.9.1) includes Safety Case description capability in the Safe-
tyCase Sub-Package [44], shown in figure (8).

Figure 8: EAST-ADL Safety Case

These various elements are described in the following subsection [EAST-ADL Domain Model
Specification 2.1.9.1)] and their relations shown in detail in figure (8):

Claim:

A Claim represents a statement, the truth of which needs to be confirmed and which has associa-
tions to the strategy for goal decomposition and to supported arguments. It also holds associations
to the evidences for the SafetyCase.

Ground:

Claim is based on Grounds (evidences) - specific facts about a precise situation that clarify and
make good the Claim.

Ground represents statements that explain how the SafetyCase Ground clarifies and make good
the Claim.

Ground has associations to the entities that are the evidences in the SafetyCase.

LifecycleStageKind:

The SafetyCase should be initiated at the earliest possible stage in the safety program so that
hazards are identified and dealt with while the opportunities for their exclusion exist.

The LifecycleStageKind is an enumeration meta-class with enumeration literals indicating safety
case life cycle stage.

SafetyCase:

SafetyCase represents a safety case that communicates a clear, comprehensive and defensible
argument that a system is acceptably SAFE to operate in a given context.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 27 (50)

Safety Cases are used in safety related systems, where failures can lead to catastrophic or at
least dangerous consequences.

Figure 9: EAST-ADL Ground, Warrant and Claim Diagram

The structures shown in figure (7) is in turn based on the Toulmin Model of Argumentation defined
in Stephen Toulmin’s 1958 work “Uses of Argumentation” [2], the main concept of which is shown
graphically in figure (8).

Figure 10: Toulmin Argumentation Concept Elements

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 28 (50)

We have chosen to expand this capability using GSN, to specifically offer a few extra elements
such as context, assumption and justification elements, as will be seen in the following section.

7.2 Proposed extensions to EAST-ADL

Investigating the current capability to express safety cases in EAST-ADL, as shown in the previous
section 7.1, showed that there is a potential need for extensions, according to the description giv-
en in Section 6. Our research into safety case modeling has favored the Goal Structuring Notation
(GSN), which was introduced in Section 6, and has already been successfully used in the nuclear,
aerospace and railway domains. Extension of EAST-ADL to include Elements of GSN has already
been suggested in several ongoing research projects, such as the proposed safety case exten-
sions for EAST-ADL2 in the ATTEST project. The approach followed in this project is most similar
to our exploration and findings and will be used here where suitable to avoid repetition. The poten-
tial extensions together with their rationale are described in the following.

Introduction of Safety Case Class with GSN Notations

Instead of using the current SafetyCase we support the extension of EAST-ADL with a Safety

Case class based on GSN as suggested in [3] and shown in figure (9).

Figure 11: Proposed EAST-ADL2 extension for modeling safety cases in ATESST Project

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 29 (50)

The Safety Case class is centered on the Safety Goal, which can be decomposed directly into 2 or
more goals or indrectly via the use of a strategy. Each goal shall resolve to at least one solution.
This rule can be used later in section 6.4 to test safety cases for completeness and consitency.
Contexts and justification are presented and assumptions can be included as well, as seen in the
internal class diagram, shown in figure (10) with the safety goal forming the center of the safety
case structure. The elements and relations shown in figure (10) were previously explained in
section 6.2.

Figure 12: Internal Structure of proposed Class Safety Case

Linking Safety Case Class to EAST-ADL Models

An especially important element of the class Safety Case is the Solution entitity, which represents
any information that supports or, in its ultimate form, proves that the Goal it is connected to is
achieved. As such, the information can be of many types. In figure (11) a class diagram of

Solution is presented which shows how the Solution entity can be specialized to hold the wide
array of information that can support a claim. The second level in the hierarchy can consist of
general EAST-ADL classes that could supply this information, as shown.

The safety case argument can be seen as consisting of two general branches; the product safety
argument and the SAFE process argument. The later part of a safety case argument is considered
to be out of scope of the EAST-ADL metamodel since it is supposed to be independent of
methodology. However, such process parts as are covered in activities of WP6 can be used in this
argumentation as well, i.e. support of assessment activities and application rules etc.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 30 (50)

Figure 13: Possible links from EAST-ADL to Solution Element

There are several alternatives to integrate the safety case package to the EAST-ADL Meta-model:

1- A collection of EAST-ADL entities are associated with the safety case entity.

2- EAST-ADL2 entities are directly associated with the safety case entity.

3- GSN entities are directly associated with EAST-ADL entities.

While the first two alternatives seem easier the traceability they allow is also much limited.
Traceability is a central as well as mandatory aspect of safety-critical development and as such we
suggest following alternative 3 were possible.

A potential first instance of this alternative would be link many of the output results of the EAST-
ADL V&V (verification and validation) package to the Safety Case Solution element, as shown in
figures (9) and (11).

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 31 (50)

8 WT 3.1.3 Contribution to SAFE Meta-model

Within this section the contribution of WT 3.1.3 to the SAFE Meta-model is described. At the be-
ginning an overview about the model is given which is followed by the detailed description of the
classes and interconnections for the simple class option.

8.1 Overview

The contribution of WT 3.1.3 is mainly captured in two class diagrams of the SAFE Meta-model
created in Enterprise Architect. In the first diagram, which is shown in figure (14), the artifacts
needed for the hazard analysis and risk assessment and their interconnections are modeled [46].
The attributes shown in this diagram are only those that are not included in the referenced classes
of the current version of EAST-ADL.

 class Class Model

Process

+ Activi ties

+ Activi tyStatus

+ Test

Validation

+ TestEnvironement

+ TestResult

System

+ ArchitecturalElements

+ Development Category

+ DevelopmentCategory

+ Driver

+ Environment

+ FunctionalSafetyConcept

+ HazardAnalysisAndRiskAssessment

+ ItemDescription

+ OperationalSituation

+ OtherItems

+ WarningAndDegradationConcept

+ Component

+ Instance

+ DriverItem

+ EnvironmentItem

+ Other ItemsItem

Configuration

+ ImpactAnalysis

+ Variant

+ Version

Software

+ SoftwareComponent

Behav ior

+ Behavior

+ Dysfunctional

+ Functional

+ SafetyMechanism

SafetyMechanisms

+ AutosarOutput

+ AutosarSafeExtension

+ AutosarSystemSafetyExtension

+ AutosarVfbSafetyExtension

+ ChromosomeOutput

+ ConfigParameter

+ ConfigParameterValue

+ FloatConfigParameterValue

+ IntegerConfigParameterValue

+ Output

+ SafeExtension

+ SSM

+ SSMConfiguration

+ SSMImplementation

+ SoftwareSafetyMechanisms

FaultModel

+ Error

+ Event

+ Fai lure

+ Fai lureMode

+ Fault

+ FaultModel

+ Probabili tyLaw

+ faulttree

CommonStructure

+ AbstractTypes

+ DataTypes

+ References

+ TopLevel

AbstractTypes

+ PackageableElement

+ SAFEElement

+ SAFEObject

+ SafetyCaseExpression

(from CommonStructure)

DataTypes

+ SafeElementType

+ Boolean

+ Date

+ Float

+ Identi fer

+ Integer

+ String

+ UriString

+ UrlString

(from CommonStructure)

References

+ AbstractReference

+ AUTOSARElementType

+ AutosarReference

+ EastAdlReference

+ ExternalReference

+ InternalReference

+ IpxactReference

+ Referrable

+ SysmlReference

+ InstanceReferences

+ UsageExample

(from CommonStructure)

TopLevel

+ SAFEPackage

+ SAFE

(from CommonStructure)

Hardware

+ Structure

+ Failure

+ HWArchitecturalMetrics

+ SafetyGoalViolation

+ Traceabili ty

Hazards

+ Actor

+ AtomicCondition

+ CompositeCondition

+ CompositeConditionOperator

+ Controllabil ityReference

+ FunctionPrototype

+ FunctionType

+ Hazard

+ HazardousEvent

+ Item

+ MalfunctionPrototype

+ MalfunctionType

+ OperationalActor

+ OperationalCondition

+ Property

+ RiskDescription

Requirements

+ Development Categorie

+ AbstractSafetyRequirement

+ AllocatableElement

+ Allocation

+ AllocationTarget

+ ASILDecomposedEnum

+ ASILEnum

+ FunctionalSafetyRequirement

+ HazardAnalysis

+ OperatingMode

+ OperationalSituation

+ RequirementsLink

+ RequirementsLinkType

+ SafeState

+ SafetyGoal

+ TechnicalSafetyRequirement

+ TraceableSpecification

Figure 14: SAFE Meta-model Overview with SafetyCaseExpressions highlighted

The relation of SafetyCaseExpressions [46] to the SAFE Meta-model Elements is shown in the
following figure.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 32 (50)

 class AbstractTypes

«interface»

SAFEObject

SafetyCaseExpression

- elementType :SafeElementType

«interface»

References::Referrable

+ getShortName() :Identifier

SAFEElement

- shortName :Identifier

+ getPackageableName() :String

+ getShortName() :Identi fier
Should we provide such class that

group interface ?

Or should we allow all SAFE class to

pickup all interfaces they need ?

We shall properly define

which element are class or

interface and which can be

used by other SAFE element.

«interface»

PackageableElement

+ getPackageableName() :String

0..*

SupportedBy

0..*

InContextOf

Figure 15: Overview of SafetyCaseExpression relations to SAFE Object in SAFE Meta-

model

As it can be seen there are various elements originating in the current EAST-ADL version that can
be reused for the SAFE Meta-model. In case of referencing an element it is assumed that the at-
tributes defined for the class in EAST-ADL are inherited. A decision of whether to extend the Safe-
tyCaseExpressions Class (and hence the SAFE Meta-model) with the subclasses shown in Sec-
tion 7.2 will be made at the next phase in the project, with the stabilization of the SAFE Meta-
model.

8.2 Class Description

SAFEElement

Database: Java, Stereotype: , Package: AbstractTypes

Notes: base class for all SAFE class that represent something (i.e. not technical class).

SafetyCaseExpression

Database: Java, Stereotype: , Package: AbstractTypes

Notes: provide information like justification or explanation on a specific element in safety
case .

Columns

PK Name Type Not Null Unique Len Prec Scale Init Notes

 elementType SafeEl-
ementType

 0 0

0

Elementtype can be one of six GSN types.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 33 (50)

1- Goals

2- Strategies

3- Solutions

4- Contexts

5- Assumptions

6- Justifications.

These can linked to each other by 2 types of connections:

1- SupportedBy

2- InContextOf.

Relationships

Columns Association Notes

 SafetyCaseExpression.

 SAFEObject.

 SAFEElement.

 SafetyCaseExpression.

InContextOf 0..* SafetyCaseExpression.

 SafetyCaseExpression.

part of GSN
interface

SupportedBy 0..* SafetyCaseExpression.

 SafetyCaseExpression.

part of GSN
interface

8.3 Proposed Interaction with SAFE Meta-model Elements for Documentation

Aside from being useful for developing SAFE systems, a safety case’s original and ongoing pur-
pose is to document the correct development of the safety-critical product and the fulfillment of all
safety goals.

By assigning the correct safety case element to each used artifact and joining the artifacts in the
safety case context through the appropriate relations it is possible to generate safety case reports
encapsulating the information required for proving fulfillment of the safety goals in a comprehensi-
ble and defensible manner. The depth of the reports and the degree of automation depends on the
level of integration of the safety case elements into the generated Meta-model artifacts as shown
in section 7.2. In the following it is explicitly not recommended using GSN on an “atomic level” on
individual SAFE Meta-model artifacts, but rather to use GSN to explain the structure of a safety
case report, based on the concepts of the SAFE Meta-model.

In [5] the following areas of a safety case report are proposed:

• Scope

• System Description

• System Hazards

• Safety Requirements

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 34 (50)

• Risk Assessment

• Hazard Control / Risk Reduction Measures

• Safety Analysis / Test

• Safety Management System

• Development Process Justification

The last two areas are out of the scope of this concept because the safety management system
and the development process specification are not in the scope of the SAFE project.

Figure (16) illustrates the strategies of a safety case report, which follows the following structure
and exploits concepts defined in the SAFE Meta-model.

Figure 16: Strategies of a safety case report modeled in GSN exploiting the SAFE MM

In the following sections we propose how these areas can be generated based on concepts of the
SAFE Meta-model.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 35 (50)

8.3.1 Area: Scope

The scope can be generated based on the items associated to the hazard and risk analysis. The
following picture shows the relevant part of the SAFE Meta-model:

Figure 17: SAFE Meta Model Concepts for Scope

The following SAFE Meta-model concepts should be provided in the scope area of the safety case
report:

• Requirements which support the scope of the safety case, e.g. in terms of unintended
uses, misuses, limits or expected system life span

• Operating Modes

• Operational Situations

8.3.2 Area: System description

The system description should not provide full design detail but rather support the reader of the
safety case report to make sense of the system hazards and requirements which are later de-
scribed in the report.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 36 (50)

Figure 18: Item Architecture of the SAFE Meta-model

The following SAFE Meta-model concepts should be provided in the system description area of
the safety case report:

• System descriptions

• Component descriptions

• System diagrams

8.3.3 Area: System Hazards

The system hazards area should list the key hazards posed by the system in order to summarize
the identified hazards [5]. Hazards are an explicit part of the SAFE Meta-model as depicted in the
following excerpt.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 37 (50)

Figure 19: Hazards as defined in the SAFE Meta-model (Excerpt)

The following SAFE Meta-model concepts should be provided in the system description area of
the safety case report:

• Hazard

8.3.4 Area: Safety Requirements

In the area safety requirements a number of sources for safety requirements must be taken into
account [5] and are interpreted in the context of the SAFE Meta-model as outlined in the following
points:

1. Safety requirements derived from hazard analysis (including safety goals as top level
safety requirements)

2. Safety requirements which are the results of refinements from higher level safety
requirements

3. Safety requirements which have been given directly by the customer or safety standards

The following picture shows the relevant excerpt of the SAFE Meta-model.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 38 (50)

Figure 20: Safety Requirement Expression as defined in the SAFE Meta-model (Excerpt)

The following SAFE Meta-model concepts should be provided in the system description area of
the safety case report:

• Safety Goals

• Functional Safety Requirements

• Technical Safety Requirements

• Hardware Safety Requirements

• Software Safety Requirements

8.3.5 Area: Risk Assessment

The area risk assessment of the safety case report aims to describe the level of residual risk which
is left after risk reduction measures have been applied [5].

The initial risk associated with a hazard is captured in the SAFE Meta-model in the hazardous
event. However the residual risk after the implementation of risk reduction measures is not yet part
of the SAFE Meta-model and can therefore not provided in the safety case report.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 39 (50)

Figure 21: Initial risk description in the SAFE Meta-model

The following SAFE Meta-model concepts should be provided in the system description area of
the safety case report:

• Hazardous Event

8.3.6 Area: Risk Reduction Measures

The area risk reduction measures describes means for reducing the probability of hazard occur-
rence or mitigation of hazard occurrence which have been integrated in the system design [5].

The following figures show excerpts of the SAFE Meta-model which could be exploited for this in-
formation.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 40 (50)

Figure 22: Functional Safety Concept of the SAFE Meta Model (Excerpt)

Figure 23: Technical Safety Concept of the SAFE Meta Model (Excerpt)

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 41 (50)

The AnalysisLevelElement contributes to reducing or mitigating hazards by addressing the safety
requirements which have been allocated to them.

The following SAFE Meta-model concepts should be provided in the risk reduction measures area
of the safety case report:

• AnalysisLevelElements, which address one or more FunctionalSafetyRequirement, which
have been created to reduce or mitigate risks from one or more Hazards

• SystemDesignElements, which address one or more TechnicalSafetyRequirements, which
have been created to reduce or mitigate risks from one or more hazards

8.3.7 Area: Safety Analysis

The area safety analysis provides evidence that the risk reduction measures which have been re-
ported in the previous area are sufficient [5]. Examples for means to achieve this are safety analy-
sis methods (e.g. FMEA), inspections or in-service evidence. As in the other areas of the safety
case report only a summary is required while details can be maintained in other documents.

The following figure shows an extract of the SAFE Meta-model that support analysis such as fault
tree analysis and FMEA.

Figure 24: Concept for Fault Tree Analysis and Failure Modeling in the SAFE Meta Model

(Excerpt)

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 42 (50)

A potential approach to document that the risk reduction measures defined previously are suffi-
cient is to check if every failure which is identified in an FMEA can be associated with a risk reduc-
tion measure.

The following SAFE Meta-model concepts should be provided in the safety analysis area of the
safety case report:

• Failures identified in an FMEA together with the associated risk reduction measures (e.g.
architecture elements or requirements as prevention measures or test cases as detection
measures)

However linking risk reduction measures with failures is not yet supported by the SAFE Meta-
model. This is an obvious point for improvement of the SAFE Meta-model.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 43 (50)

9 Interdependencies with other work tasks / packages

The relationships between WT 3.1.3 and other work task are shown in the following Figure 25.

Figure 25: Relationships between WT 3.1.3 and other WTs

As it can be seen in the figure, there are various dependencies between WT 3.1.3 and other work
tasks. In the following these interdependencies are described in more detail.

As shown in the figure, there is a relationship between WT 3.1.3 and WT 3.5 concerning the Meta-
model structure. In particular this means that WT 3.1.3 has to contribute a respective Meta-model
part for the integration in the SAFE Meta-model which is developed within WT 3.5. In order to en-
sure correctness of structure and settings as well as easy integration of the Meta-model parts into
the combined SAFE model WT 3.5 set up a guideline document and a master document for the
model so that each work task can work with replicas. By doing this, the consistency can be en-
sured.

Interdependency exists with the work task 3.2.1. Within this work task the Meta-model principles
for the functional safety concept will be developed. Since the functional safety concept includes
the functional safety requirements which are derived from the safety goals which are a starting
point of the WT 3.1.3 – elements a strong communication is necessary to ensure that all artifacts
needed for the derivation are present. Moreover, seamless traceability from the artifacts of the
hazard analysis and risk assessment to the functional safety requirements needs to be established
and can be supported by safety case expressions. Finally, safety concepts are prime candidates
for the use of patterns as detailed in Section 6.3.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 44 (50)

Due to the fact that not only a seamless traceability from safety goals to functional safety require-
ments has to be established but also that safety goals are top-level safety requirements and need
to fulfill the same requirements on safety requirement expression given in the ISO 26262 as func-
tional or technical safety requirements there is the need for synchronization between the work
packages 3.1.1 and 3.1.2 and 3.1.3.

An additional synchronization link is established between WT 3.1.1 and WT 3.1.3. Within WT
3.1.3, the fundaments for expressing safety goals and hazardous events are established. Safety
goals form the basis for any safety case and an important aspect for this documentation is the
tracing from hazards to their solutions; therefore an exchange with respect to the representation of
all included artifacts has to take place.

With respect to WT 3.2.4 dealing with the handling of COTS there is as well the need for synchro-
nization. COTS components’ hazards should already be known and could come with encapsulated
safety cases for their inner workings at the very least, which could then be integrated into the safe-
ty case at the COTS inclusion point. Furthermore, these components have to be integrated in the
hazard analysis and risk assessment and the safety case reassessed from a system level per-
spective.

Similarly WT3.6 introduces safety mechanisms, which represent tried and trusted solution for
known and repeating problems. This is also a prime candidate for encapsulating safety case snip-
pets with every mechanism, which can be imported and incorporated into the safety case at the
safety mechanism insertion point.

Another bi-directional relationship exists between WT 3.1.1 and WT 3.3.1 (Failure and cut-sets
analysis) as well as (3.3.3) due to the fact that analyses results represent inputs for the safety
case.

Besides the relationships already mentioned there is the need for communication between WT
3.1.3, 3.1.1 and WT 3.2.2 concerning safety goals. There is the need for relating hardware failure
information to safety goals in order to determine the role of violation of safety goals which then
allows calculating hardware metrics, all of which flow into a safety case.

The degree of synchronization inclusion of the information performed is directly linked to the de-
gree of automation achieved, and can vary from none to manual links to high, with cross class
linkages.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 45 (50)

10 Conclusions and Discussion

This document provides information about the safety case concept as adopted by many safety
critical industries describes the proposed methodology for safety case modeling and documenta-
tion as well as for an extension of the SAFE Meta-model for hazard and environment modeling.

Besides giving an overview on the relevant parts of ISO 26262 the requirements arising from WT
2.1 (ISO 26262 Analysis), a focal part of this deliverable lies in the presentation of the methodolo-
gy for safety case modeling and documentation. This methodology is compliant to the require-
ments given in ISO 26262 and in addition comprises aspects arising from experiences in the de-
velopment of automotive systems as well as other safety critical industries (such as defense, rail-
ways and aerospace). However, the ability to describe and link development artifacts in a safety
case relevant context is only half the story. How this capability is employed is the other half of this
document. The concepts of solution and design patterns are introduced, along with the concept of
compositional argumentation. These concepts are far from fully matured and therefore, the initial
concepts presented in this paper can be seen as a basis for further development.

The initial contribution to the SAFE Meta-model presented in this deliverable provides the possibil-
ity to link safety-critical artifacts together to form an ISO 26262 compliant safety case. At the same
time the requirements coming from the methodology are considered. In case the methodology is
extended there might also arise the need to adapt the corresponding part of the SAFE Meta-
model, including those developed in other work tasks.

Since it is an objective to reuse EAST-ADL as much as possible the status of the current version
of EAST-ADL is presented and initial proposals for extensions are formulated. However, these
proposals need to be further elaborated in future. For the proposed extension of the SAFE Meta-
model EAST-ADL references are used whenever possible.

The specification described in this work will be further developed during the ongoing implementa-
tion phase and could be expanded to include new concepts. Most promising among these is the
capability for compositional argumentation introduced in Section 6.3, as well as the concept of as-
sured safety arguments, a new structure proposed by Hawkins and Kelly in [4] for introduces a
confidence argument that documents the confidence in the structure and evidence of the safety
argument.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 46 (50)

11 Abbreviations used in D3.1.3

ASIL Automotive Safety Integrity Level

ATESST Advancing Traffic Efficiency and Safety through Software Technology

EPS Electric Power Steering

GSN Goal Structuring Notation

EAST-ADL Electronic Architecture and Software Tools- Architecture Description Language

HA Hazard Analysis

RA Risk Analysis

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

HW Hardware

SAFE Safe Automotive soFtware architEcture

WT Work Task

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 47 (50)

12 References

[1] International Organization for Standardization: ISO 26262 Road vehicles - Functional safety.
(2011)

[2] S. Toulmin: “Uses of Argumentation”. Cambridge University Press, 1958; 2nd edn., 2003

[3] The ATESST Consortium: “ATESST Project Deliverable D2.2.2”, 2007

[4] R. Hawkins, T. Kelly, J. Knight and P. Graydon: “A New Approach to Creating Clear Safety
Arguments”. Advances in Systems Safety - Proceedings of the Nineteenth Safety-Critical Sys-
tems Symposium, Southampton, UK, February 8-10, 2011. Springer 2011

[5] T. Kelly, Arguing Safety – A Systematic Approach to Managing Safety Cases, PhD Thesis,
Department of Computer Science, The University of York, 1998.

[6] R. Weaver, The Safety of Software – Constructing and Assuring Arguments, PhD Thesis, De-
partment of Computer Science, The University of York, 2003.

[7] F. Ye, Justifying the Use of COTS Components within Safety Critical Applications, PhD The-
sis, Department of Computer Science, The University of York, 2005.

[8] R. Hawkins, K. Clegg, R. Alexander, T. Kelly, Using a Software Safety Argument Pattern Cat-
alogue: Two Case Studies, in F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP
2011, LNCS 6894, pp. 185 - 198. Springer, Heidelberg, 2011.

[9] M. Jaffe, R. Busser, D. Daniels, H. Delseny, G. Romanski, Progress Report on Some Pro-
posed Upgrades to the Conceptual Underpinnings of DO178B/ED-12B, In Proceedings of the
3rd IET International Conference on System Safety, 2008.

[10] T. Kelly, Concepts and principles of compositional safety case construction, Technical Report
COMSA/2001/1/1, The University of York, 2001.

[11] R. Hawkins and T. Kelly, A Software Safety Argument Pattern Catalogue, Department of
Computer Science, The University of York, 2008.

[12] GSN Community: “The Goal Structuring Notation GSN Community Standard Version 1”.
Origin Consulting (York) Limited, 2011

[13] T. Kelly and R. Weaver: “The Goal Structuring Notation . A Safety Argument Notation”. Proc.
DSN 2004 Workshop on Assurance Cases, 2004

[14] Kelly, Tim P., and John A. McDermid. "Safety case construction and reuse using patterns."
16th International Conference on Computer Safety, Reliability and Security (SAFECOMP
1997). 1997.

[15] C. Alexander. A Pattern Language: Towns, Buildings, Construction. Oxford University Press,
New York, 1977.

[16] M. Khalil “Pattern-based methods for model-based safety-critical software architecture design”
ZeMoSS 2013 Workshop at the SE 2013 in Aachen. February 2013.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design Patterns: Elements of Reusable
Object-Oriented Software.” Addison-Wesley, Boston, MA, USA, 1997.

[18] K. Beck and W. Cunningham. “Using pattern languages for object-oriented programs.” In Po-
sition Paper for the Specification and Design for Object-Oriented Programming Workshop,
The 3rd Conference on Object- Oriented Programming Systems, Languages and Applica-
tions, Orlando, USA, 1987.

[19] J. O. Coplien. Advanced C++ programming styles and idioms. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1992.

[20] J. O. Coplien. Idioms and patterns as architectural literature. IEEE Softw., 14(1):36–42, 1997.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 48 (50)

[21] D. Manolescu, M. Voelter, and J. Noble. “Pattern Languages of Program Design 5.” Addison-
Wesley Professional, 2005.

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. “Pattern-oriented soft-
ware architecture: a system of patterns.” John Wiley & Sons, Inc. New York, 1996.

[23] B. P. Douglass. “Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Sys-
tems.” Addison-Wesley, New York, Boston, MA, USA, 2002.

[24] R. Hanmer. “Patterns for Fault Tolerant Software.” Wiley Publishing, 2007.

[25] L. Rising. “Design patterns in communications software.” Cambridge University Press, New
York, NY, USA, 2001.

[26] M. Pont. “Patterns for Time-Triggered Embedded Systems: Building reliable applications with
the 8051 family of microcontrollers.” ACM Press, New York, 2001.

[27] M. J. Pont and M. P. Banner. “Designing embedded systems using patterns: a case study.”
Journal of Systems and Software, 71(3):201–213, 2004.

[28] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,and P. Sommerlad.
„Security Patterns: Integrating Security and Systems Engineering.” John Wiley & Sons, March
2006.

[29] N. Yoshioka, H. Washizaki, and K. Maruyama. “A survey on security patterns.” Progress in
Informatics:, 5:35–47, 2009.

[30] AutoFOCUS 3, research CASE tool, af3.fortiss.org, 2012 fortiss GmbH

[31] European Organisation for Civil Aviation Equipment, EUROCAE ED-79/ARP-4754: Certifica-
tion considerations for highly integrated aircraft, 2011.

[32] A. Armoush, “Design Patterns for Safety-Critical Embedded Systems”, Ph.D. Thesis, RWTH-
Aachen, 2010

[33] „Funktionale Sicherheit: Grundzüge sicherheitstechnischer Systeme“, Börcsök, J. / VDE-
Verlag, 2011

[34] European Organization for Civil Aviation Equipment (EUROCAE) and United States Depart-
ment of Defense (DOD), EUROCAE ED-12B/DO-178B: Software considerations in airborne
systems and equipment certification, 1992.

[35] United States Department of Defense (DOD), DO-178C: Software considerations in airborne
systems and equipment certification, 2012.

[36] European Committee for ElectroTechnical Standardization, EN-50126 Railway Standard,
www.cenelec.eu, 2008.

[37] IEC 61508.

[38] Papadopoulos Y., McDermid J.A., The Potential for a Generic Approach to Certification of
Safety-Critical Systems in the Transportation Sector, Reliability Engineering and System Safe-
ty, 63(1):47-66, Elsevier Science,1999.

[39] “Engineering a safer world”, Nancy Leveson / MIT Press, 2011

[40] „Funktionale Sicherheit von mechatronischen Systemen bei mobilen Arbeitsmaschinen“, Mar-
tinus, M. / Technische Universität München, 2004

[41] Stefan Wagner, Bernhard Schätz, Stefan Puchner, Peter Kock, A Case Study on Safety Cas-
es in the Automotive Domain: Modules, Patterns, and Models, Proc. International Symposium
on Software Reliability Engineering (ISSRE '10), IEEE Computer Society, 2010

[42] Tim Kelly, A Systematic Approach to Safety Case Management, SAE 2004 World Congress &
Exhibition, March 2004, Detroit, MI, USA, Session: Safety-Critical Systems.

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 49 (50)

[43] Weihang Wu and Tim Kelly. 2004. Safety Tactics for Software Architecture Design. In Pro-
ceedings of the 28th Annual International Computer Software and Applications Conference -
Volume 01 (COMPSAC '04), Vol. 1. IEEE Computer Society, Washington, DC, USA, 368-375.

[44] The EAST-ADL Consortium. EAST-ADL V2.1. http://www.east-adl.info/

[45] The SAFE Consortium. Deliverable D3.1.1a “Final proposal for extension of Meta-model for
hazard and environment modeling”. ITEA2. 2013.

[46] The SAFE Consortium. Deliverable D3.5a “Initial proposal for Meta-model definition”. ITEA2.
2012

SAFE – an ITEA2 project D3.1.3

 2013 The SAFE Consortium 50 (50)

13 Acknowledgments

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster pro-
gramme Σ! 3674. The work has been funded by the German Ministry for Education and Research
(BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy and Finance
(DGCIS). The responsibility for the content rests with the authors.

