

Copyright@ CREATE Consortium 2011-2014 Page 1 / 65

Deliverable 4.1: Evaluated Demonstrators v1

CREATE

Creating Evolution Capable Co-operating Applications in Industrial

Automation

• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••• •• ••• ••• •• ••• ••• ••

Project number: ITEA 2 ip10020

Edited by: Silvia de la Maza (INNOVALIA) and Fernando Perales

(TRIMEK)

Contributors: DATAPIXEL, CBT, CEESA, EPC, INNOVALIA,

Malardalen Unieverisy, TIE, TRIMEK, STAUBLI

Date: 30 April 2013

Document version no.: 0.6

This document will be treated as strictly confidential. It will not be disclosed to anybody not having

signed the ITEA 2 Declaration of Non-Disclosure.

Copyright@ CREATE Consortium 2011-2014 Page 2 / 65

List of document contributors

Version Contribution Name Company

0.0 Table of content and

contributors
Antonio Ventura-Traveset DATAPIXEL

0.1

Industrial Metrology

demonstrator

Antonio Ventura-Traveset

Silvia de la Maza

Fernando Perales

DATAPIXEL

INNOVALIA

TRIMEK

0.2 Monitoring and

Quality control

demonstrator

Peter Funk Malardalen University

0.3
Material Flow

demonstrator

Vadim Chepegeim

Anastasios Martidis

Armando Miraglia

TIE

0.4 Merging

information and

format

Fernando Perales TRIMEK

0.5

Final review and

conclusions

Silvia de la Maza

Anastasios Martidis

Peter Funk

INNOVALIA

TIE

Malardalen University

0.6 Final document Fernando Perales TRIMEK

Copyright@ CREATE Consortium 2011-2014 Page 3 / 65

INDEX

1. Material Flow Demonstrator .. 6

1.1. Introduction .. 6

1.1.1 Purpose and scope ... 6

1.1.2 Relation of the demonstrator to the CREATE architecture 7

1.2. Brief tool description and integration ... 11

1.2.1 Technologies involved ... 11

1.2.1.1 SOA paradigm .. 11

1.2.1.2 Devices as web services .. 12

1.2.1.3 Devices as resources .. 15

1.2.1.4 TSB on an integration layer ... 18

1.2.1.5 User-system communication via Cloud .. 19

1.2.2 Demonstrator description .. 19

1.3. Test and results ... 25

1.3.1 Tests and evaluation .. 25

1.3.2 Results ... 27

4. Conclusions .. 28

5. Definition of Abbreviations and Terms .. 30

6. Bibliography ... 31

2. Industrial Metrology .. 33

2.1. Introduction .. 33

2.2. Brief tool description and integration ... 34

2.2.1. Tool integrator .. 34

2.2.2. Industrial metrology set up .. 35

2.2.3 Trajectories and measuring plan ... 38

2.2.4 Decision making support ... 40

2.2.5 Data storage ... 42

2.3. Test and results ... 43

2.4. Conclusions .. 45

3. Monitoring and Quality Control .. 46

Copyright@ CREATE Consortium 2011-2014 Page 4 / 65

3.1. Introduction .. 46

3.2. Brief tool description and integration ... 49

3.3. Test and results ... 51

3.4. Conclusions .. 52

4. Conclusions ... 53

Annex .. 54

A. Flexible Material Flow ... 54

A.1 Devices as web services implemented via service wrappers .. 54

A.2 Devices described as resources and exposed as services .. 60

Copyright@ CREATE Consortium 2011-2014 Page 5 / 65

LIST OF FIGURES

Figure 1: CREATE architecture overview ... 9

Figure 2: GSC conveyor belt in a production line .. 9

Figure 3: Devices as web services in the demonstrator .. 21

Figure 4: Automation systems ontology ... 22

Figure 5: GUI of the CREATE portal while operation ... 24

Figure 6: Workflow designer .. 25

Figure 7: Test bed of the evaluation for the demonstrator .. 26

Figure 8: Industrial metrology demonstrator scheme ... 33

Figure 9: Coordinate Measuring Machine for large camshafts .. 35

Figure 10: Articulated robot for in-line scanning ... 36

Figure 11: Optical sensor for pointcloud acquisition.. 37

Figure 12: Communication architecture and information flow .. 38

Figure 13: Movements and trajectories for scanning .. 39

Figure 14: Measuring plan and geometries to be controlled... 40

Figure 15: Key analysis in the first metrology check ... 41

Figure 16: Colour mapping of manufactured camshafts .. 42

Figure 17: Camshaft pointcloud ... 43

Figure 18: Measurement of the cam ... 44

Figure 19: Measurements of the key .. 44

Figure 20: Measurement of spike ... 44

Figure 21: CBR applied to geometric production measurements (Volvo CE) ... 46

Figure 22: Assembly cell .. 50

Figure 23: Case representation of geometric production measurements .. 50

Figure 24: Web service contract for the conveyor .. 55

Figure 25: Implementation of service and operation contracts ... 56

Figure 26: Implementation of the Initialize operation .. 57

Figure 27: Implementation of Get_Signal() operation contract in GSCConveyor 58

Figure 28: Configure service endpoints .. 59

Figure 29: definition of prefixes ... 60

Figure 30: Definition of Object properties ... 61

Figure 31: Individuals populating the ontology ... 62

Figure 32: Service contract of the device matchmaking service .. 64

Figure 33: Implementation of the service contracts and operations necessary for the device matchmaking

service... 65

Copyright@ CREATE Consortium 2011-2014 Page 6 / 65

1. Material Flow Demonstrator

1.1. Introduction

Manufacturing domain, e.g. automation of a shop floor, is a hot spot for research and

innovations in order to keep up with the market, its dynamicity and demands. In the

context of automation systems, software has been extensively used to support the

automatic execution of tasks. In fact, low level operations are often supported by

specialized software. Lately the usage of the web service technology for networked

intelligent machines or Smart Objects
1
 has been taken into consideration to develop

Internet of Things (IoT) for manufacturing, see e.g. FP6 SOCRADES project (Moreira,

et al., 2008). However, automation of workflows for high level tasks has received much

less attention. Consequently, the integration of multi-vendor software intensive

solutions is still limited. For this reason, the CREATE project aims to provide a

distributed and easily configurable modular automation system based on web services.

Moreover, the components of the production line and their interrelations are

(semantically) described as resources in a machine understandable way and will provide

a knowledge base for device matchmaking algorithms and artificial intelligence

applications for reconfiguration. The results of the project will enable dynamic, flexible

and re-configurable production systems.

The deliverable presents the implemented demonstrator as output of the CREATE

project. The demonstrator aims to provide a minimal but useful system to demonstrate

the approach of the CREATE project. The demonstrator resembles the principles of

Service Oriented Architectures (SOA). The devices installed in the addressed

production line are transformed into virtual objects by means of service wrappers. The

service wrappers export the interfaces of the devices in a SOA fashion. In this way, the

devices can be monitored and controlled over internet by means of standardized and

reusable protocols and technologies.

1.1.1 Purpose and scope

The goal of this section of the deliverable is to present the demonstrators based upon the

flexible material flow use case conceived and developed in the Dutch consortium. It

describes the technologies and tools that were used in the implementation of the

prototype and how they are related to the defined CREATE architecture and a set of

selected technologies. For this reason, this deliverable is closely related to the previous

work documented in the deliverables “D2.1 CREATE Architecture” and “D3.1

Technologies Description”.

1
 RFID, Smart Embedded Devices, Sensor Networks

Copyright@ CREATE Consortium 2011-2014 Page 7 / 65

Furthermore, this document will present the tests and evaluations performed based on

the demonstrator. Based on the evaluation and the planning defined in the work

packages, the conclusions will be presented. The status of the CREATE platform

realization will be shown. Moreover, the results congruency with the expected

CREATE approach value will be discussed.

1.1.2 Relation of the demonstrator to the CREATE architecture

The CREATE project aims to enhance industrial automation via hierarchical networks

of smart objects and services – Smart Neighbourhood Modules (SNM). It employs a

fully distributed software architecture for industrial automation systems that are

composed of cooperating modules (SNMs). These modules consist of mechanical parts

(e.g. devices in a production line) and their controls accomplished by means of

automation software. CREATE will increase the flexibility and adaptation of existing

systems and will allow their integration with new paradigms such as human-centred

design, service orientation, secure and safe distributed control architectures, semantics,

dynamic legacy integration and control system life-cycle engineering support.

The following scenarios consider three actors.

1. An operator is the actor which interacts with the production line. The tasks of

the operator are the monitoring and control of the whole production line and of

each component.

2. The system integrator is an actor who integrates different hardware parts into a

production line.

3. The platform administrator is the actor responsible to maintain the CREATE

system.

Based on the operations that need to be performed by the identified actors, some

scenarios were identified.

1. The operator starts the production line.

a. The operator wants to start the production line and opens a browser with a

view on the preferred device.

b. When the browser is opened, the operator goes to the main URL of the GUI

web application installed at their site.

c. The operator proceeds to login into the GUI by providing username and

password.

d. When the dashboard is loaded in the browser, the operator navigates to the

production line management widget that provides the initialize and start

functionality.

e. The production line starts.

2. The operator monitors the operation of the production line.

a. The operator wants to monitor the operation of the production line which

was started and opens a browser on the preferred device.

Copyright@ CREATE Consortium 2011-2014 Page 8 / 65

b. When the browser is open, the operator goes to the main URL of the GUI

web application installed at their site.

c. After the login, the operator navigates its dashboard and checks the state of

the production line observing the provided monitoring graphs.

3. The system integrator needs to replace a device.

a. The system integrator receives a communication for the CREATE system

that a device is not working correctly and needs to be replaced.

b. It access the suggestion facility based on semantics and artificial intelligence

algorithms to select the best replacement for the defected piece.

c. After selecting the replacement component, the system integrator replaces

the device and updates the workflow status provided by the CREATE

system.

d. The CREATE system informs the other actors associated with the event.

4. The platform administrator set the system in place.

a. The platform administrator installs the server needed to have the GUI

available on the network.

b. The platform administrator connects each device with the related service

wrapper to enable the GUI to actually query the device interface.

c. When the system is up and running, the platform administrator is then able to

insert the needed workflows which fit the requirements of the devices.

The CREATE platform reaches the above described functionality and offers solutions

building on top of the following tools and technologies.

 Thing as a service (TaaS): Internet-of-Things representatives expose different

devices (and their parts) in the virtual world of CREATE.

 Knowledge base: machine-readable knowledge bases used for the purpose of

having automated reasoning over devices and their possible configurations.

 Semantic Service Bus: a distributed bus for message exchange with enhanced

support for semantics and metadata.

 Stack of infrastructural services: several services are provided, e.g. publishing

services, annotation services, authentication and authorization services, etc.

 User interface: a presentation tier based on the advancements made in the EU

projects such as OMELETTE and SOA4ALL.

 Configuration services: these services will represent configuration jobs and they

will effectively create and update descriptions over the performed actions (and

associated conditions) on the particular components and their composites.

The defined architecture for the CREATE platform is presented below (fig. 1).

Copyright@ CREATE Consortium 2011-2014 Page 9 / 65

Figure 1: CREATE architecture overview

The application of the CREATE approach in the flexible material flow use case and the

expected added value is tested on a production line composed of the Generic Substrate

Carrier (GSC
2
), which is a high precision conveyor belt, together with associated

cooperating modules such as in/out-feeders that are used as input and output of products

in the conveyor belt, sensors that are used to identify the position of products on the

conveyor belt and printers (e.g., inkjet print head, industrial and solar panel printers)

that operate on the products on the conveyor belt (fig. 2).

Transport

(GSC conveyor)

FeedOutFeedIn

Sensor

(TOF)

GSC

add-on

module

GSC

add-on

module

Figure 2: GSC conveyor belt in a production line

2
 Generic Substrate Carrier (GSC) is a high precision conveyor belt, developed by CCM

Copyright@ CREATE Consortium 2011-2014 Page 10 / 65

The prototype is composed by physically and logically interconnected devices and

software that are involved in an automated production line of the flexible material flow

domain. It is developed following the CREATE architecture and achieves the exposure

of the devices as web services
3
into the cloud

4
in a modular approach. These services

expose the capabilities provided by the automation software for controlling the state, the

behaviour and the operations of the device. Additionally, capabilities to reconfigure the

production line based on the description of all actors involved in the production line as

resources and their relations, knowledge base and device matchmaking algorithms

performed on triple stores
5
 allow faster and more effective reconfiguration of the

production line.

The prototype provides a friendly GUI which allows users to consume the exposed

services and all the available features in an interactive and intuitive way, accessing the

CREATE portal which offers a dashboard of functionality-dedicated widgets that can be

customized according to the privileges and preferences of users. The communication

between the exposed services and the CREATE portal is performed via an enterprise

service bus which allows the exchange and mapping of heterogeneous messages

containing the information.

As showed by the high level architectural view (fig. 1) and the description of the

prototype, the definitions of previous deliverables (D.3.1 CREATE Architecture) were

respected and followed in the implementation of the first prototype for the CREATE

platform. The physical objects/ devices in the flexible material flow use case were

exposed as web services. The web services can be used via the Cloud to control the

state, the behaviour and the operation of the devices. This can be performed via a GUI

(CREATE portal). The portal is designed to make the interaction between users and

GUI intuitive and effective.

The resource descriptions of the devices as well as descriptions of associated actors in

the production line and their relations are stored in triple stores. The information stored

in these triple stores are used by device matchmaking algorithms that allow faster

reconfiguration of the production line based on a knowledge base. The re-configuration

features of the CREATE platform are also accessed through the CREATE portal. The

exposure of the devices as web services and the re-configuration features developed are

being integrated as new services of the TIE Smart Bridge (TSB), which is a secure and

3
 A software system designed to support machine-to-machine interaction over a network

4
 Computing resources (hardware and software) that are exposed as services over a network

(usually the internet) and can be consumed by a variety of devices that can access this network

are referred to exist on the “cloud”. Cloud is the “infrastructure” where such services can be

found.
5
 Semantic based repositories

Copyright@ CREATE Consortium 2011-2014 Page 11 / 65

flexible messaging solution. It provides routing and mapping/transformations

capabilities for the messages exchanged among services.

The demonstrator described in this deliverable shows the feasibility and applicability of

the CREATE architecture and selected technologies by instantiating a system derived

from that architecture in order to fulfil requirements of the real-life industrial use case

presented by CCM, a company that provides advanced solutions in the field of precise

mechatronics.

1.2. Brief tool description and integration

1.2.1 Technologies involved

1.2.1.1 SOA paradigm

In the Service Oriented Architecture (SOA), systems are built by composing

independent well-defined units of functionality called services. In this type of

architecture, services are loosely coupled. This means that each service acts

independently from the others and the functionalities provided are also decoupled. From

a service point of view, the full system is unknown. The service is only aware of its

functionalities and the functionalities which it requires but it is derived from the overall

system view. Before their deployment, applications (consumers of services) do not

know which concrete service will deliver the concrete functionalities. In this manner, on

one hand the system is easier to extend with additional functionalities. On the other

hand, dynamic discovery and reconfiguration can be set in place.

The dynamic discovery of the services and their functionalities is performed at run-time.

In fact, applications discover available services and bind to them after being loaded.

Dynamic reconfiguration is also possible. At run-time, new service providers can be

added as well as existing ones can become unavailable or be replaced. Applications can

dynamically change their bindings to services based on service availability and the

quality they can provide.

To practically achieve dynamic discovery and reconfiguration, service discovery is

required. Service consumers do not know which service is available and provides the

required functionalities. Because of that there must exist a mechanism for consumers to

learn what service providers can deliver the functionality they need. Service discovery

can be centralized or distributed. Centralized service discovery rely on a single service,

addressed as service registry, which acts as a broker which service consumers can query

to obtain information related to the needed service. On the contrary, distributed

implementations depend on an overlay network on which multiple service providers can

be contacted. Providers send responses for the known services which can satisfy the

query.

Copyright@ CREATE Consortium 2011-2014 Page 12 / 65

Once a consumer discovers the services that implement the desired functionality, it can

request the related service descriptions. The descriptions contain both functional and

non-functional attributes based on which the consumer selects the best service provider

to which to bind.

The CREATE demonstrator is tightly coupled with the SOA paradigm. To make SNMs

communicate between each other, flexibility and re-configurability are required. These

requirements make the SOA paradigm the right design choice. SOA is inspired by agent

based system and ultimately enables manufacturing systems that are robust and adapt to

dynamic changes in their environment and resolve internal and external disturbances in

an intelligent way.

1.2.1.2 Devices as web services

The term “Internet of Things” was first used by Kevin Ashton (That 'Internet of Things'

Thing, 2009) while addressing the usage of RFID in the supply chain to identify objects

and transpose them in the virtual space. Nowadays this concept has expanded its

meaning including all the technologies used to transpose objects in the virtual space.

IoT addresses real objects which are linked to the virtual world by means of hardware

components, e.g. wireless cards and wired connections, which make them communicate

over the internet. When the objects are connected, the communication is obtained by

means of standards for message exchange. An approach used in the industry to

automate the production line composition and monitoring is the usage of Service

Oriented Architectures. In such scenarios the objects are interfaced and exposed to the

rest of the virtual world by means of web services which export standardized interfaces.

The exposure of devices in the virtual world is accomplished by the means of web

services, which grow on top of message exchange standards and architectural styles

(SOAP, REST), semantic descriptions of the web services (WSDL, WADL),

approached for publishing the services (UDDI) and data formats (JSON) used by the

exchange protocols. These concepts will be described briefly in the following section,

as well as a framework for developing web services and their building blocks described

above.

Web Services: A Web Service (Web Service Definition, 2004) is a software system

designed to support machine-to-machine interaction over a network. It is based on the

technologies used for web navigation like HTTP, XML and so on. The interface is

described in a machine-processable format. This guarantees the ability to dynamically

adapt to an interface provided and using it to request the service to perform operations.

Copyright@ CREATE Consortium 2011-2014 Page 13 / 65

Web services are based on standardized formats for message formatting, processing and

data communication. We use web services to expose devices.

Web Services for Devices: Is an umbrella term that is used for a wide range of products

and services that have been boosted by the use of Internet technology. In practice, many

artefacts/devices that have already been developed on technologies unrelated to the

World Wide Web are now improved by the use of Internet technologies. Web services

on devices allow access of remote devices and associated services from computers

through a network. Web service for devices is simply the notion of taking systems that

already exist and function and using them better and more efficient by means of

connection over the Internet (230ht). The communication between services is achieved

with various message exchange formats such as SOAP and REST.

Simple Object Access Protocol (SOAP): (SOAP 1.2, 2001) is a protocol specifying

rules to exchange structured data across the network. Using XML, the protocol

prescribes the structure of the exchanged messages between nodes. The messages are

characterized by a header which has metadata describing the message itself and a body

where the content is put .The protocol specifies bindings with HTTP as well as with

SMTP, which are used to perform communication between machines. These bindings

do not prevent to use the protocol to process and exchange using a different underlying

transport protocol.

Representational State Transfer: also known as REST (Fielding, 2002), is an

architectural style. It prescribes rules that describe an abstract model of web-

architecture. This architectural style is significantly based on the Hyptertext Transfer

Protocol (HTTP) and, in fact, it is characterized by the very same principles. In a very

simplistic definition, REST is a structured way of using HTTP. The principles of the

architecture design are the following.

 The system must be Client-Server (Layered System). In this way, based on the

separation-of-concerns, client is not concerned with specific details of the

server. The layers implemented on the services side are not visible to the client.

In this sense, the client cannot distinguish the end server from possible

intermediary services contacted along the way.

 It must be Stateless. No state is kept between client and server. This is a strong

requirement which is eventually relaxed in many real implementations where

authentication and sessions are required.

 It must be Cacheable. In the system clients can cache responses which when

correctly implemented and managed reduces client-server interactions.

Copyright@ CREATE Consortium 2011-2014 Page 14 / 65

 The availability of a Uniform Interface between client and server makes it

possible for both sides to evolve independently so far the interface is followed.

The Uniform Interface is also significantly based on the HTTP protocol. In fact,

it is characterized by the use of URIs and data format like HTML, XML or

JSON.

REST applications stick to all afore mentioned principles.

JavaScript Object Notation: JSON (json) is a lightweight format to exchange data.

This is a programming language independent format that is used to exchange data. It is

built on collection of name-value pairs and ordered list of values. With this

representation, all available data-structures can be easily described. It is also protocol

independent and can be used as payload to represent data in all communication

technologies. It is fast to process and easy to manipulate.

Web Services Description Language: also known as WSDL (WSDL, 2007), is an

XML format that is used to describe several services characteristics. The main

properties that can be described are the location of the service, which identifies where

the application can be found; the operations that the service is able to perform and the

corresponding messages, protocols used and so on. Since is written in XML, this

description can be processed at runtime and accordingly, dynamic requests for the

specific operations can be requested.

Web Application Description Language: also known as (WADL, 2009), is an XML

format that equivalently to WSDL is used to describe services. This is also automatic

processable. The main difference with WSDL is that WADL is fully REST compliant.

In respect to WSDL, WADL is much less used in real applications.

Universal Description, Discovery and Integration: also known as (UDDI, 2004), was

born as a XML based standard for companies to publicly provide services. It can

provide information related to the company-provider, information about services

location, interface and content provided. The concept of UDDI has been adapted in

other scenarios and is used for automatic discovery of services. It is also identified as

service registry, meaning a location where data about the services are published and

consumed. The current version of UDDI is the version 3.

Copyright@ CREATE Consortium 2011-2014 Page 15 / 65

Windows Communication Foundation (WCF): WCF
6
is a framework provided by

Microsoft to create Service-Oriented applications. It makes it easy to comply with the

service oriented standards which characterize Service Oriented Architectures. In fact,

WDSL descriptions are automatically generated to provide service metadata. It supports

also XML Schema and WS-Policy industry standards. It provides data and operation

contracts to publish to users of the service the needed data structures as well as the

interfaces needed to use the services provided. It provides several built-in transport

protocols and encodings. TSB, the selected ESB for the CREATE platform uses WCF

and the services developed using this framework will extend TSB and integrate all

components of the architecture to the CREATE platform.

1.2.1.3 Devices as resources

The re-configuration of the production line is accomplished based on semantic

description of all components (active and potential) of the production line as resources.

Information associated with the devices themselves (e.g., physical specification),

functional descriptions (e.g., cooperating devices) and non-functional descriptions (e.g.

suppliers) are explicitly described according to an information schema (ontology). The

description is implemented in machine understandable format (RDF), and the ontology

is developed and populated using an ontology language built on that format (OWL).

The populated ontologies with the information associated with the production line is

stored in semantic based repositories (triple stores) and appropriate query language

(SPARQL). The above concepts are explained briefly in the following section, and

compose the knowledge base from which device matchmaking algorithms and artificial

intelligent applications are performed for the reconfiguration of the production line.

Ontologies derived from the field of philosophy. Generally, ontologies are used to

formally describe concepts and elements as well as their relations (Gruber, 1995). In

computer science, ontologies are used to formally describe real world objects, classes

and the way they interact and are very domain specific. The main concepts that are

comprised in ontologies are individuals which can be instances as well as objects;

classes which group together objects based on common properties; attributes which

depict the properties related to the individuals described; relations which depict the

possible interactions between individuals and between classes. Based on different

domains, several ontologies have been described like OWL for web ontologies.

6
 http://msdn.microsoft.com/en-us/library/dd456779.aspx

http://msdn.microsoft.com/en-us/library/dd456779.aspx

Copyright@ CREATE Consortium 2011-2014 Page 16 / 65

Ontologies are used extensively in automation systems and significant research has been

performed on the subject.

Pandis et al (Ippokratis Pandis) stress the benefits of using semantic web technologies

for achieving dynamic management of resources in infrastructures and services of

ubiquitous computing. They developed a framework that is composed by sensors and

perceptive interfaces for facilitating ubiquitous computing services with an emphasis on

the role of knowledge bases for dynamic registration and invocation of resources. The

sensors and actuators were controlled from ontology based mechanisms.

Christopoulou et al (Eleni Christopoulou) motivated by the belief that ontologies can

contribute on key issues of ubiquitous computing environments such as knowledge

representation, semantic interoperability and device discovery developed the GAS

ontology. GAS ontology describes the semantics of concepts of an ubiquitous

computing environment as well as their inter-relations. They aim to provide a common

language for heterogeneous device communication that compose such environments and

facilitate discovery device mechanisms.

Reinisch et al (Christian Reinisch) emphasize that in order to deploy automated systems

we have to overcome the challenges of integrating heterogeneous system so that they

combine their functionality. The way to achieve this requires a comprehensive

communication between systems. They propose a generic application model to avoid

the configuration effort that traditional integration approaches require such as use of

gateways. They selected ontologies in order to provide seminal representation of

knowledge, abstraction of the heterogeneous network infrastructure and automatic

reasoning on the stored knowledge. Their representation implements single access point

for configuration and maintenance tasks.

Alsafi et al (Yazen Alsafi) proposed a novel approach aiming to achieve fast

reconfiguration of modular manufacturing systems performed by an ontology-based

reconfiguration agent. The agent is able to reconfigure without human intervention

based on ontological knowledge of the manufacturing environment. Their agent

automates the reconfiguration process and uses inferencing of the manufacturing

environment from the ontological knowledge in order to decide if an environment can

support certain manufacturing requirements. Their approach uses agent architecture for

the integration of the high level planning with the distributed low level control.

The Semantic Web: (W3C, W3C Semantic Web Activity, 2013)is a collaborative

effort led by W3C with the participation of a large number of researchers and industrial

partners. The main goal of the project is to provide a common framework so that data is

more effectively shared and reused across different applications on the web. For this

Copyright@ CREATE Consortium 2011-2014 Page 17 / 65

reason, the two core pillars are the usage of common formats and description languages.

The usage of common formats helps in the effort of integrating and combining data

from diverse resources. Having common formats makes it easy to move information

which is reusable and sharable. On the other hand, description languages aim to picture

the relationship between real world objects and data. This languages need to be machine

processable for automatic processing. However, they need also to produce an output

which is human readable and meaningful. The effort has so far produced widely applied

formats and languages like OWL, SPARQL and RDF.

The Resource Description Framework (RDF): resembles a set of specifications for

data interchange on the Web (W3C, 2004). It defines a language for representing

information and metadata about web resources (for example web pages). This language,

however, easily adapts to other types of information like real world objects mapped in

the virtual world in the context of IoT. The main aim of the language is to be

application-processable avoiding loss of meaning. Existing web-technologies are used

for this purpose like the Uniform Resource Identifier (URI) commonly used to identify

web content. The language can be expressed by means of XML as well as using graphs.

The Web Ontology Language (OWL): is an ontology language based on RDF/XML

documents used in the field of Semantic Web (W3C, 2012). The markup language is

based on the first-order logic and is used to express meaning and semantic of objects

using dictionaries and relations. OWL is not a single language, in fact several flavours

exists which significantly differ from each other. The OWL specifications are the result

of a specialized W3C working group which resulted in the production of a forma W3C

recommendation.

A triple store is a type of database in which elements are stored in triples of strings

(Rusher, 2003). The triple is composed by subject-predicate-object as is usually done in

human languages. For example “foo is bar” can be a meaningful entity. These types of

database are optimized to store and retrieve triples. The database structure is completely

independent from the actual implementation. In fact, some implementations are based

on existing systems like SQL RDBMS; others are completely new engines optimized to

work with triples.

SPARQL is a query language which has been created precisely to find information

from data stored in the RDF format (W3C, SPARQL Query Language for RDF, 2008).

SPARQL is intended to efficiently query data expressed using directed, labelled graphs.

Copyright@ CREATE Consortium 2011-2014 Page 18 / 65

Its structure resembles in some way SQL, but clearly it is structured to better fit the

RDF language.

Device Matchmaking. Based on ontologies, it is possible to automatically select sets of

objects based on their description, properties and relations. Usually such a process is

performed by an intermediate entity which is queried and which applies algorithms to

dynamically retrieve the best fitting objects. This entity is usually called matchmaker.

Besides, such a system can also be applied in the field of the IoT. In fact, devices are

matched using ontologies and matchmacking algorithms based on ontologies. To obtain

this goal, devices are mapped to the virtual world by means of services. Afterwards,

services can be matched based on ontologies which enrich existing service descriptions

(Studer, 2006), but also create more general ontologies (Lopez, 2007).

Service Registry. To collect all the information in a central repository based on which

matchmaking and discovery are possible, the CREATE project is based on the usage of

a service registry. Mostly, the state of the art implementations of ESBs have this

component. However the inclusion of ontologies and semantics is almost completely

discarded. The only available implementation is found in Apache jUDDI service

registry where OWL-S is used. This system does not fit the CREATE project needs

since the technology used is different in respect to what CREATE uses. Moreover, the

lack of the usage of semantics for service registry functionalities in the industry

suggests the need of additional research to fill the gap. The TSB will in this case

provide the needed registry facility with the functionalities enriched by the application

of ontologies. This part of the project is under development and will be the strong point

of the next version of the CREATE demonstrator.

1.2.1.4 TSB on an integration layer

As described in the previous sections of the present report, the output of the CREATE

project has high quality requirements. In fact, the product needs to be scalable but

preserving the integrity of the data handled; the product must be reliable and available,

hiding as much as possible failures and recovery processes. Finally, the portability

requirement imposes the need to transform data in different formats to provide all the

actors with reliable and readable data. To satisfy these requirements, the CREATE

project will include the usage of the TIE SmartBridge service bus (TSB). SmartBridge

is the business integration platform provided by TIE Kinetix. Based on its design and

architecture, the TSB satisfies all the requirements that the CREATE project imposes.

Copyright@ CREATE Consortium 2011-2014 Page 19 / 65

Moreover, because of its frontend and configurability, TSB supports the communication

between human actors as well as communication between human actors and devices or

services.

Moreover, by enriching the information stored in the service bus with semantic

descriptions, the system is able to backup human work which requires the progress of

predefined structured workflows.

1.2.1.5 User-system communication via Cloud

An automated production line cannot disregard the human factor. There is a need for

humans that interact with the automation software (e.g., to control or monitor

production) as well as with the physical devices that are operating during production

(e.g., in case of repairs etc.). The integration of manual work and the successful use of

the devices in the virtual world via the Cloud (that is, use of the exposed web services)

require a user interface by which, users interact. The user interface is considered in the

architecture defined, as an important factor for the success of the CREATE platform.

The user interface is in the form of a portal (CREATE portal) which consumes the

exposed services of the production line and the functionalities they provide as well as

the re-configuration of production line features which are exposed as services too. The

portal is built on top of Apache Rave.

Apache Rave is a mashup engine to aggregate widgets. It is a project based on several

existing Apache projects, and aims to bring together a unified framework in which

widgets can be set in place and easily managed. In fact, inter-widget communication,

authentication, dynamic frontend engine and other features are provided to facilitate the

creation of extensible and dynamic web interfaces. It complies to OpenSocial and W3C

Widget standards. It provides context-aware personalization, collaboration and content

integration capabilities.

1.2.2 Demonstrator description

Devices as web services in the demonstrator

The demonstrator for the GSC production line is composed at this stage from the GSC

conveyor belt (actual device) and high accuracy Mathworks xPC
7
simulators, which act

as simulators for the rest of the devices in the production line, namely in/out-feeder,

sensor and printer. These modules have associated automation software developed on

7
 xPC Target is a real-time software environment from MathWorks and enables engineers to

simulate and test models in real-time regarding physical hardware.

Copyright@ CREATE Consortium 2011-2014 Page 20 / 65

Mathworks xPC. Based on description of services available from the automation

software, web service wrappers were developed using the WCF framework to expose

the devices into the cloud.

The selected message exchange protocol of these services is REST, because REST:

 Is lighter than SOAP (limited bandwidth and resources)

 Is simpler and more flexible than SOAP

 Facilitates scalability

 It’s generality of interfaces

 Allows independent deployment of components

 Facilitates intermediary components to reduce interaction latency, enforce

security and encapsulate legacy systems

 Large vendors (Google, Yahoo, Amazon, Microsoft) are adapting REST

architecture style.

The actual messages under REST architecture are in JSON format. The description of

the web services will be implemented using WSDL 2.0 instead of WADL. WADL is

REST compliant and so it could be used by our application but WSDL 2.0 is a W3C

recommendation, has authentication features that WADL lacks, is significantly more

popular than WADL and thus it is decided as better choice. WCF does not yet support

neither WSDL 2.0 nor WADL (and previous WSDL versions cannot describe REST

services) and efforts are allocated to tackle this challenge.

These services are currently used in a fixed “hardcoded” way, but a semantically based

service registry is under research and development for the dynamic discovery and

selection of services, which will be necessary when we have many devices and available

services in the production line and select a subset of them. A graphical representation of

the architecture implemented in the prototype is presented below (fig. 3).

Copyright@ CREATE Consortium 2011-2014 Page 21 / 65

Figure 3: Devices as web services in the demonstrator

These exposed services allow the control of the behaviour, state and operation of the

devices. Examples of the available operations via the Cloud to the exposed services

include:

 To Start, Stop and Initialize devices individually or as a whole (the production

line).

 Get parameters related to the device such as max allowed deviation of speed or

operating range of the under-pressure.

 Set parameters such the above to the device.

 Retrieve data generated during production line (e.g., position of products, speed

of conveyor belt as well as warning and error notifications) that allow the

monitoring of the production.

Reconfiguration and device matchmaking

Additionally to the exposure of devices as web services, the devices are described as

resources as well as with all associated actors (active or potential) in the production line.

First, one ontology was developed using the OWL language that describes an explicit

representation of entities and their relations in the domain of flexible material flow. The

ontology includes classes and properties (object and data) that define relations between

instances.

The CREATE ontology is constructed on 3 main pillars: components/devices, services

and processes. These parameters act complementary to each other. More specific the 3

building blocks represent:

Copyright@ CREATE Consortium 2011-2014 Page 22 / 65

 Structure/Devices: information about the components of the system; the devices

that cooperate in order for the system to function. Each component is described

in detail regarding its physical and operational specifications.

 Services: This pillar mainly is going to serve in the discovery of services and

includes information about the service that the device can perform, the endpoint

where the service is available and the actual availability of the service. This

component is still under research and development.

 Process: information about how the system works real time. Each component

performs a specific task or is inactive. Moreover with the use of object

properties the flow and sequence of actions performed by the device, and by

cooperating with which devices, are explicitly stated.

The ontology was developed using the protégé
8
editor and an image of the image is

presented below (fig. 4) demonstrating the current version of the ontology which is

mainly developed on the Device building block, for achieving reconfiguration.

Figure 4: Automation systems ontology

The ontology is populated with information for components actively involved in the

GSC production line as well as potential replacements/ substitutions. The data of the

populated ontology is stored in triple store available from the dotNetRDF Project
9
,

which is an open source .Net library. On the information stored on the repository,

device matchmaking applications are performed based on the user input and with use of

the SPARQL query language.

In a simplistic way of defining matchmaking, it is the matching for a given input with

appropriate outputs based on some rules. The device matchmaking is matchmaking with

8
 http://protege.stanford.edu/

9
 http://www.dotnetrdf.org/

http://protege.stanford.edu/
http://www.dotnetrdf.org/

Copyright@ CREATE Consortium 2011-2014 Page 23 / 65

devices as inputs. Currently, the device matchmaking application for reconfiguring the

production line receives different input categories (such as devices, suppliers and device

types) and retrieves available outputs that “match”.

For example for a given device as input from the user (e.g., GSC D200 560-1500 which

is a model of the GSC conveyor belt), the output of matching cooperating devices,

would result by querying the triple store behind the GUI with the following query,

SELECT DISTINCT ?resultedDevices

WHERE{ {input device} <http://www.create.org/GSCLine.owl#isDeviceOfType> ?type.

 ?module <http://www.create.org/GSCLine.owl#ModuleOf> ?type.

 ?module <http://www.create.org/GSCLine.owl#cooperatesWith> ?cooperatingModules.

 ?cooperatingModules <http://www.create.org/GSCLine.owl#ModuleOf> ?cooperatingType.

 ?resultedDevices <http://www.create.org/GSCLine.owl#isDeviceOfType> ?cooperatingType.}

It is not the intention of this section to explain triples or how SPARQL works; the above

query matches devices that could cooperate with the device that are is given as input, by

fulfilling all statements, one after the other, for all possible results that meet the criteria.

The sequence of statements for the above query,

 Gets the type of the input device

 Gets the module of this type of device

 Gets cooperating modules of this module

 Gets types of devices for the resulted cooperating modules

 Gets devices that are of the types retrieved in the above step

The results are devices that could cooperate with the input device based on whether the

modules can cooperate (e.g., a conveyor belt with an in-feeder). The device

matchmaking applications are being developed for improved matchmaking by adding

ranking capabilities based for example on whether the devices are compatible on their

physical specifications.

Using matchmaking features such as the above by providing inputs e.g. devices, device

types and suppliers, users can benefit from automated retrieval of appropriate

replacements or new entries on the production line, faster and considering many

parameters/rules; it is depended on the ontology and the richness of the information that

it holds and the strength of the artificial intelligence developed in the application. The

device matchmaking features are exposed also as Web services.

To achieve the dynamic reconfiguration based on matchmaking the web services

wrapping the real devices need to be registered in a service registry. Such capability will

be integrated in the TSB service bus which will provide the necessary interface to store

Copyright@ CREATE Consortium 2011-2014 Page 24 / 65

information about each available service. TSB will also integrate the above described

matchmaking system which will be used to describe workflows which integrated with

the semantic information will let significantly support the human work facilitating

reconfiguration and orchestration. The integration of the TSB service bus will be part of

the next CREATE demonstrator.

CREATE portal

The demonstrator provides a user friendly GUI (CREATE portal) that can be used from

any device that is equipped with a web browser such as tablets, smartphones and

laptops/PCs. From this portal users can enjoy the functionalities provided by the

CREATE approach. The design of the user interface is developed for intuitive and

effective interaction with the users. The dashboard of the portal while operation is

presented on the image below (fig. 5).

Figure 5: GUI of the CREATE portal while operation

The portal acts as an entrance point and as a visually rich interaction panel for

consuming services available in the CREATE platform. The services include the control

of devices as units and as a system as well as visualization of data generated during

production in forms of charts. Moreover there are special widgets that present

notifications about errors and warnings that occurred during production. The device

Copyright@ CREATE Consortium 2011-2014 Page 25 / 65

matchmaking features for re-configuration are also provided via a dedicated widget in

the dashboard of CREATE portal. The design of the production line is also enriched

with a graphical workflow designer that can be used on design time.

Figure 6: Workflow designer

1.3. Test and results

1.3.1 Tests and evaluation

For the evaluation of the demonstrator, numerous tests were conducted, and the targeted

results were mainly qualitative in nature. The tests concerned the use of the production

line and its modules, exposed as web services and as resources for functionalities such

as control of the production line, the transmission of data generated during production

and use of device matchmaking features for reconfiguration purposes. Furthermore, the

GUI of the CREATE portal and the portability of the access were evaluated. The test

were performed by employees of the two Dutch partners (TIE, CCM), in diverse

locations. The first location was CCM HQ, where the access to the portal was

performed via Intranet and the second was from TIE HQ with the use of a VPN

connection between TIE and CCM firewalls. The infrastructural set-up of the tests, are

depicted below (fig. 7).

Copyright@ CREATE Consortium 2011-2014 Page 26 / 65

Figure 7: Test bed of the evaluation for the demonstrator

The reason for the use of VPN connection is that TSB is not yet fully integrated in the

demonstrator so that it would provide security (amongst its others capabilities) to the

communication between web services and CREATE portal.

The users that were involved in the tests had different backgrounds (users with

knowledge of the domain, engineers, actual users of final product, and users unrelated to

the project completely). The factors by which the demonstrator was evaluated are

detailed below.

1. Actual control of devices as units and of production line as a system from the

portal.

For the control of the production line and each device as a module, there were two

possible outcomes, Success and Fail. It was examined for every command

communicated to the devices via CREATE portal, from all users that took place in the

tests, if it performed successfully or not.

2. Accuracy of production line data transmitted and displayed.

The data generated during production, transmitted from the devices and visualized in

forms of charts and in error/ warning notification panels in the CREATE portal, were

examined to verify that the information depicted in the virtual world was correspondent

to the real life production.

Copyright@ CREATE Consortium 2011-2014 Page 27 / 65

3. Speed of re-configuration using the features of the portal.

The reconfiguration capabilities were tested by users that are responsible for such tasks,

and will use these functionalities, such as system operators. They evaluated by stating if

they agree or disagree with the statement “The reconfiguration feature of CREATE

platform adds value in the reconfiguration process”, selecting one of the following

choices: a) Strongly Agree, b) Agree, c) Not sure, d) Disagree, e) Strongly Disagree.

4. Ease of use of the GUI of the portal.

The GUI of the CREATE portal was tested by users with diverse profiles. They had an

introduction on the context of CREATE project and presented with the CREATE portal

to operate the production line. Users evaluated based on the statement “The GUI of the

CREATE portal is intuitive and easy to use” and were given the following choices: a)

Strongly Agree, b) Agree, c) Not sure, d) Disagree, e) Strongly Disagree.

5. Access of portal from several devices (tablets, smartphones, laptops, PDAs).

Users that participated on the tests accessed CREATE portal from various devices, and

specifically, smartphones, tablets, laptops and PCs. The evaluation was revolved on

whether the control of the production line was achieved through all the above devices

that are equipped with a web browser and the ease of use of the portal from each device.

So the evaluation concerned the Fail or Success of the operations and whether users

agree or disagree with the statement “The GUI of the CREATE portal is intuitive and

easy to use”, as above for each device (tablets, smartphones etc.).

1.3.2 Results

The internal evaluation of the demonstrator provided positive feedback. The control of

the production line and the individual devices via the Cloud behaved as was supposed

to, in all tests performed. All possible operations for all modules were performed and

examined, and each time the outcome of the operation was Success. Every time a

command was communicated through the portal, the device(s) performed as the users

intended.

The data generated during production were successfully broadcasted through the web

services and the charts were depicting accurate information as was examined in

cooperation of users, observers of the operation and personnel overviewing the physical

devices.

Potential future users of the CREATE platform and specifically users interested in the

reconfiguration features (e.g., system operators) answered that either strongly agree or

agree with the statement that "The CREATE platform adds value to the reconfiguration

Copyright@ CREATE Consortium 2011-2014 Page 28 / 65

process". Users provided feedback, pointing that the results of the matchmaking

applications can save time by filtering a vast amount of candidates in the production

line and presenting suitable matches/substitutes (depended of the input of the users to

the reconfiguration feature).

The user interface of the portal received very positive comments with most users that

participated in the tests reporting that they strongly agree with the statement that "The

GUI of CREATE portal is intuitive and easy to use". The users involved in the test

ranged from potential future users to unrelated "control group" users (e.g., non-technical

TIE employees) but all of them, after given a context of the application and presented

with the portal, were able to operate the production line through it.

The portability of the platform, meaning the availability of accessing the virtual

production line using devices equipped with web browser was also very successful.

Tested by tablets, smartphones, laptops/PCs, the production line was also controlled,

monitored and reconfigured successfully. The users however indicated that the

monitoring of the production line was easier through bigger devices compared to small

ones (smartphones) because, devices with bigger screens provided visualization of

information from more modules without scrolling up or down.

4. Conclusions

After the several tests performed on the first version of the demonstrator and the

interpretation of the results, conclusions can be drawn. Valuable feedback has been

provided and the next steps have been analysed and scheduled. The CREATE approach

was implemented successfully in the flexible material flow domain, on the first version

of the demonstrator. The production line and its modules are exposed as web services

and can be controlled and monitored in a very portable way from devices that are

equipped with a web browser (tablets, smartphones, laptops/PCs etc.). In the future

more devices will be exposed as services and the dynamic selection of the available

services/modules will be possible. Moreover, the components of the production line are

described as resources and the reconfiguration of the production line can be

significantly faster because of the semantically enriched information schema containing

active and potential components as well as the device matchmaking features and the

artificial intelligence applications. The application will be extended for ordering the

necessary replacements as resulted from the search from within the device matchmaking

features of the portal. The GUI of the CREATE portal has been proven to be very

intuitive to a range of users with different background but efforts will be put in

improving it. In next steps TSB will be fully employed between the CREATE portal and

the available services of the production line, to achieve communication that is secure,

reliable and able to facilitate heterogeneous components. The first version of the

Copyright@ CREATE Consortium 2011-2014 Page 29 / 65

prototype is considered to reached its objectives and the first results meet the

expectations of the market analysis performed for the CREATE approach. Next steps

will be focused on a more generic approach towards the cross domain demonstrator.

Copyright@ CREATE Consortium 2011-2014 Page 30 / 65

5. Definition of Abbreviations and Terms

Abbreviation / Term Definition

ESB Enterprise Service Bus

GUI Graphical User Interface

GSC Generic Substrate Carrier

HTTP Hypertext Transfer Protocol

IoT Internet of Things

JSON JavaScript Object Notation

OWL Web Ontology Language

RDF Resource Description Network

REST Representational State Transfer

UDDI Universal Description Discovery and Integration

SME Small and Medium size Enterprises

SNM Smart Neighbourhood Modules

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and Query Language

TaaS Things as a Service

TSB TIE Smart Bridge

VPN Virtual Private Network

WADL Web Application Description Language

WCF Windows Communication Foundation

WS Web Services

WSDL Web Service Description Language

XML Extensive Markup Language

Copyright@ CREATE Consortium 2011-2014 Page 31 / 65

6. Bibliography

Moreira, et al., 2008. Luciana Moreira, De Souza, Patrik Spiess, Dominique Guinard,

Moritz Köhler, Stamatis Karnouskos, and Domnic Savio. 2008. SOCRADES: a

web service based shop floor integration infrastructure. In Proceedings of the 1st

international conference on The internet of things (IOT'08), Christian

Floerkemeier, Sanjay E. Sarma, Marc Langheinrich, Friedemann Mattern, and

Elgar Fleisch (Eds.). Springer-Verlag, Berlin, Heidelberg, 50-67.

(s.f.). Obtenido de http://www.wisegeek.com/what-is-web-services-for-devices.htm

SOAP 1.2. (17 de December de 2001). Obtenido de W3C: www.w3.org/TR/2001/WD-

soap12-part0-20011217/

UDDI. (2004). Obtenido de UDDI v3.0.2: http://uddi.org/pubs/uddi_v3.htm

Web Service Definition. (11 de February de 2004). Obtenido de W3C:

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

WSDL. (26 de June de 2007). Obtenido de W3C: http://www.w3.org/TR/2007/REC-

wsdl20-adjuncts-20070626/

That 'Internet of Things' Thing. (22 de June de 2009). Obtenido de RFID Journal:

http://www.rfidjournal.com/articles/view?4986

WADL. (31 de August de 2009). Obtenido de W3C:

http://www.w3.org/Submission/wadl/

Christian Reinisch, W. G. (s.f.). Integration of Heterogeneous Building Automation

Systems using Ontologies.

Eleni Christopoulou, A. K. (s.f.). GAS Ontology: an ontology for collaboration among

ubiquitous computing devices.

Gruber, T. R. (1995). Toward principles for the design of ontologies used for

knowledge sharing. International Journal of Human-Computer Studies, 907-

928.

Ippokratis Pandis, J. S. (s.f.). An Ontology-based Framework for Dynamic Resource

Management in Ubiquitous Computing Environments.

json. (s.f.). Obtenido de json: www.json.org

Lopez, U. A. (2007). A Semantic Matching Algorithm for Discovery in UDDI.

Proceedings of the International Conference on Semantic Computing, 751-758.

Rusher, J. (13 de 11 de 2003). Triple Store.

http://dl.acm.org/author_page.cfm?id=81350599086&coll=DL&dl=ACM&trk=0&cfid=318013757&cftoken=57352230

Copyright@ CREATE Consortium 2011-2014 Page 32 / 65

Studer, S. A. (2006). Automatic Matchmaking of Web Services. IEEE 4th International

Conference on Web Services, 45–54.

W3C. (10 de 02 de 2004). RDF Primer. Obtenido de RDF Primer W3C

Recommendation 10 February 2004.

W3C. (15 de 01 de 2008). SPARQL Query Language for RDF. Obtenido de W3C

Recommendation: http://www.w3.org/TR/rdf-sparql-query/

W3C. (11 de 12 de 2012). OWL 2 Web Ontology Language. Obtenido de

http://www.w3.org/TR/owl2-overview/

W3C. (29 de 03 de 2013). W3C Semantic Web Activity. Obtenido de

http://www.w3.org/2001/sw/

Yazen Alsafi, V. V. (s.f.). Ontology-based reconfiguration agent for intelligent

mechatronic systems in flexible manufacturing.

Copyright@ CREATE Consortium 2011-2014 Page 33 / 65

2. Industrial Metrology

2.1. Introduction

This demonstrator aims to show the benefits and advantages acquired by the production

lines when the CREATE methodology is implemented. In this case we have

implemented the architecture and tools than have been developed in the previous WPs,

such as the integrator and communication modules, the metrology robots and optical

sensor and all the data processing algorithms.

In the following figure it is shown the scheme of the demonstrator, it is based on the

real EPC’s production line for camshafts manufacturing.

Figure 8: Industrial metrology demonstrator scheme

Copyright@ CREATE Consortium 2011-2014 Page 34 / 65

As it can be seen, we have established two metrology controls in order to check in real

time the quality of the pieces after two of the main manufacturing processes. In both

cases the data will be acquired by an optical sensor, in the first case mounted in an

articulated robot and in a Cartesian machine in the second.

After each control the virtual part will be compared to the CAD model to determine if

the manufactured piece fulfils the dimensional tolerances required by the company.

More details about the measuring plans are explained in section 2.2.3. From these

results the system will take a decision about the next processing step:

1. If dimensional measure is below tolerance, the piece can follow in the

manufacturing line

2. If dimensional measure is above tolerance, the piece will be defined as defective

and may be sent for repairing processes or eliminate it for material recycling.

In both cases the decision will be made automatically by the system as a function of the

tolerances defined by the company and the results calculated by the metrology SW.

When the manufactured piece reaches the final step of the manufacturing line, we can

be sure that this piece is dimensionally correct, with no deviations and fulfilling all the

requirements. In this way, the productivity will be increased by reducing corrective

actions and avoiding defective product sales.

2.2. Brief tool description and integration

2.2.1. Tool integrator

The industrial metrology demonstrator has implemented the CREATE Integrator

Module, CMI, to allow the integration of the different SNMs. As explained in the D3.1

this module guaranties the communication and interoperability of the system depending

on the SNM configuration required by the company.

For this case, the demonstrator will be form by HW and SW SNMs. In the HW part, it

has been selected a set up for optimizing the data acquisition for dimensional quality

control: an articulated robot, a CMM and one optical sensor; this equipment is directly

integrated in this platform and the communication between them will be supported by it.

It this way the trazability of the information is ensured and also the data can be easily

store independently of the source. Concerning the SW modules, this demonstrator has

implemented the metrology software required for measuring plans and geometry

extraction and the module for communication with the equipment, iCMeCom (see

D3.1).

Copyright@ CREATE Consortium 2011-2014 Page 35 / 65

This represents just an example of a real configuration for an industrial case. Depending

on the requirements of the company for the dimensional quality control more tools can

be added or removed from the platform. In this way the production line can be

reconfigured as a function of the market and product needs. Moreover, other solutions

such as language translator and monitoring control (some of the solutions developed in

the other demostrators) may be inserted in the CMI, so the companies can implement

new configurations with both existing and new solutions acquired.

2.2.2. Industrial metrology set up

The metrology set up needed to implement the dimensional quality control industrial

environments required hardware (robots and sensors) and software (controls, measuring

plans and geometry extraction) components.

Coordinate Measuring Machine

This sort of machine has up to three linear orthogonal axes. This robot configuration is

widely used in metrology because it is easy to calibrate and it brings a superior accuracy

than articulated robots, with a relation of 1/8. Its workspace may be a line, rectangle or

cubic volume depending on the number of axes. Due to the configuration and

dimensional properties of the camshafts, we have selected a CMM with just one axis,

then the movement head orients the optical sensor to acquire the point clouds.

Figure 9: Coordinate Measuring Machine for large camshafts

As mentioned above, to change the orientation of the sensor, a rotating head of up to

tree axes can be added. In metrology applications, this is an indexed head, which can

take only a limited number of fixed orientations, for an increased repeatability. The

rotation of this head is considered as a configuration change and it is never performed

during the sensor operation. Note that if the rotating head were able to perform a

Copyright@ CREATE Consortium 2011-2014 Page 36 / 65

continuous movement of its axes, synchronized with the linear axes, the resulting robot

could not be considered as a Cartesian one.

Articulated robot

The components of its structure are linked with rotary joints. The movement of these

joints allows the tip to reach all the points in its workspace. The volume and shape of

the workspace depends on the number of joints and on the assembly. Some tip positions

may be reached with several combinations of joint positions.

Figure 10: Articulated robot for in-line scanning

In this demonstrator we are using this robot to acquire point clouds after the first

machining process, so just a critical zone of the camshafts is controlled.

 Optical sensor

The optical sensor used in this demonstrator is based on laser triangulation. The laser

optics generated an intensity constant line on the piece surface to be controlled. The

deformations of the line over the piece are reflected in the CCD camera. From the

known working distance and the angle between laser and camera, it is possible to

calculare the coordinates of the surface points.

Main advantages of this type of technology are: piece is not contacted, high amount of

information acquired, high velocity and very high fidelity.

The model used in this demonstrator has the following technical properties:

 Speed scan: 60.000 scans per second

 Working distance: 100 mm

 Vision field: 40 mm

 Laser class II

 Precision: 10 µm

Copyright@ CREATE Consortium 2011-2014 Page 37 / 65

Figure 11: Optical sensor for pointcloud acquisition

Communication protocol

The communication protocol developed for this case is based on a modular software

structure:

In order to maintain the integrity and flexibility of the solution, the control of the device

has not been modified. This control talks to the driver, API or physical controller of the

device and performs the needed processing and data formatting to expose the resource

in a standard way to the rest of the system, through a server. This configuration allows

installation and removing the robots and sensors without affecting the rest of the

system.

As each HW component has its own reference system and acquire different coordinates,

it is required another module that manages the synchronized acquisition, assembling the

data from robots and sensor, taking care of some synchronization issues. For example,

the acquisition must be started in the device that receives the trigger before than in the

device that issues the trigger.

So, the communication protocol can be built upon an ideal model of the system,

regardless of the peculiarities of the hardware.

This scheme has two flows; on one hand all the commands are originated in the custom

application, and are sent to the module which is responsible for the functionality:

movement commands are sent to the RobCom Server; synchronized acquisitions are

ordered to the Data Assembler, while non-synchronized acquisitions may be directly

ordered to the SenCom Server.

Copyright@ CREATE Consortium 2011-2014 Page 38 / 65

On the other hand, information flow follows the inverse path: from the data sources, it is

sent to the custom application. Synchronized information has to be sent to the Data

Assembler, in order to be combined before being sent to the application.

Figure 12: Communication architecture and information flow

2.2.3 Trajectories and measuring plan

The basis for the real time decision support is the acquisition of real data in real time.

As mention above, the best technology to achieve this requirement is the optical

sensors. This technology allows the generation of virtual parts that are the digital replica

of the physical ones.

To generate the virtual part it is necessary that the sensor scans all piece surfaces. This

issue may imply some time-consuming if the trajectories and movements are not

optimized.

The metrology module enables a user-friendly interface to develop the robot and sensor

movements so the time is minimized. Next figure shows the visual aspect of one of the

programmes.

Copyright@ CREATE Consortium 2011-2014 Page 39 / 65

Figure 13: Movements and trajectories for scanning

The main functions needed to generate the trajectories are: Start, stop scanning, go to

and rotate. Then, the lower layer implements automatically the complete program and

the communication with the robots and sensor.

Once the sensor has scanned all the surfaces, the user starts measuring the geometries

by using the pointcloud and the corresponding virtual part. A measuring plan is the

programme used for planning of the features and geometries to be controlled in each

piece. Depending on the shape, size and geometry of the manufactured product the user

can be customized the distances, angles, areas and geometries.

This module allows the definition and saving of new custom geometries depending on

the piece shape. For example, in the case of camshafts, the geometry key (“chaveta”)

has been created as it represents a critical feature. Once the measuring plan is defined,

the user can enter the upper and lower tolerances than can be assumed by the

manufacturing processes. Then, the report shows the result both in quantitative and

qualitative way by a colour code. As it can be seen in the figure below, all the distances

and geometries agree with the dimensional requirements but one of them, a height, is

out of tolerances and a red signal appears.

Copyright@ CREATE Consortium 2011-2014 Page 40 / 65

Figure 14: Measuring plan and geometries to be controlled

2.2.4 Decision making support

In line implementation of non-contact dimensional metrology set up enable the

possibility of make decision based on real and real time data.

To optimize these capacities to metrology set ups has been implemented in order to

control different features depending on the production process phase.

Point clouds and virtual parts are generated in real time, so immediately the sensor ends

the scanning the metrology SW module starts processing and generating results.

In the first metrology check, by using the articulated robot just the critical features are

controlled. In this case, the key of the camshaft is controlled after the first machining

process; this is a critical geometry related to the coupled of the piece with the engine, so

any minimal deviation generates no-acceptance by the customer due to high risks of

engine breaks.

Copyright@ CREATE Consortium 2011-2014 Page 41 / 65

Next figure shows the colour mapping of the key and the results from the analysis of the

geometry. The dimensions and shape of the outer surface are within the tolerances but

the diameter of the key is out of it, so a red signal appears in the result table.

Figure 15: Key analysis in the first metrology check

With this result the system automatically decided to take out that piece from the

production line, avoiding over cost and saving energy. Afterwards, depending on the

defect and the deviation, this piece will be remanufactured or neglected.

In case the first metrology check does not detect any deviation, the piece is machined in

the next process. At the end of the line, the final manufactured camshaft is scanned in a

CMM in order to generate the virtual part to be used for real time analysis and other

measurements in the future. This is a complete measure of the piece, so many distances

and geometries are controlled in order to ensure that the piece fulfil all the dimensional

requirements.

The first result is a colour mapping of the piece in order to get a visual result. Moreover,

a report with all the quantitative results and the differences with respect to the nominal

value are shown (Section 2.2.4).

Finally the virtual part, the measuring plan and the results are stored in the server for

future modifications and reviews.

Copyright@ CREATE Consortium 2011-2014 Page 42 / 65

Figure 16: Colour mapping of manufactured camshafts

2.2.5 Data storage

One of the main advantages of this demonstrator is the implementation of the virtual

metrology methodology in industrial plants. VP allows the generation of measurements

and final information by measuring and analysing the virtual parts. So, the system has to

implement an automatic storage of the VP and the information generated, in order to be

accessible and modified in the future.

Each part that is scanned and controlled will be saved as an independent project. New

and existing measuring plans can applied to one project or to a list of project with the

aim of measuring a new feature or controlling the dimensional evolution of some

critical geometry.

For example, one digital camshaft part is form by more than ten millions of points,

which is saved in files of more than 200 MB. For that reason, the vast amount of data

and information has to be compressed and saved to avoid overload of the computer and

reduce storage requirements.

For this purpose, CBT, TRIMEK and DATAPIXEL with the support of INNOVALIA

have been working of algorithms for filtering the raw data and optimize the

segmentation process for geometry extraction. In that way, the size of the files is

reduced and the resource consumption lower.

Copyright@ CREATE Consortium 2011-2014 Page 43 / 65

2.3. Test and results

In this section some of the main test and measurements are shown for the dimensional

quality control of camshafts. The implementation of this equipment is not in-line at this

stage of the project, but all the tools and solutions developed so far have been

completely tested.

Nest figure shows the point cloud of a camshaft, it represents the type of data that will

be acquired at the end of the line, when all the manufacturing processes have passed the

intermediate quality controls.

Figure 17: Camshaft pointcloud

This representation provides no information to the company; it is just a set of points in

the space. However, it helps to ensure that the integration of the robots and sensors in

the platform has been done properly. User has been able to apply the trajectory plan and

acquire information from the sensor.

In order to generate valuable information and check if the data has been collected in the

good way, the metrology module has to process this information and apply the

measuring plan defined at the same time than the product design. For example, if the

comparison between the CAD model and the virtual part (Figure 9) shows no relation, it

means that the data acquired by the system were wrong. The normal situation is that

some locations and feature can differ from the theoretical model, not all the piece.

With the aim of exposing the potential of the metrology module, customized geometries

have been generated for this particular case: key and cam; moreover some other

common geometry such as height, diameter and parallelism are also shown.

Copyright@ CREATE Consortium 2011-2014 Page 44 / 65

Figure 18: Measurement of the cam

Figure 19: Measurements of the key

Figure 20: Measurement of spike

In these tables the titles are geometry / nominal value / max tolerance / min tolerance /

real value / deviation. Then the colour code display in a visual way if the measurements

fulfil with the tolerances. Note that for each geometry an own tolerance can be defined,

depending on the manufacturing capabilities and customer requirements.

Copyright@ CREATE Consortium 2011-2014 Page 45 / 65

These measurements show that just the width of a key is out of tolerances, so this piece

will be taken out of the production line and evaluated for repair action and

remanufacturing.

2.4. Conclusions

The first version of the industrial metrology demonstrator has fulfilled the objective of

testing and showing the integration of the solutions and its capabilities for being

integrated in a production line.

The CMI platform has allow the integration of two different robots and one optical

sensor for acquiring the product information. The communication between the controls

and the platform has managed the data for generating good pointclouds. Then, the

metrology module has received this set of data to apply the measuring plan.

Afterwards, the results automatically generate a report with the main critical features to

be controlled in quantitative and qualitative way. The system exploits the visual report

for a quick detection of defects by the humans and also generates alerts when a

measurement is out of tolerances for automatically takes the decision of retiring the

manufactured piece of the line.

This demonstrator shows some results that are advances beyond the state of the art. For

example, the CMI allows the integration and communication of different robots and

sensors, enabling the communication and management of data and operation from a

single platform. Moreover, the metrology module applies automatically the measuring

plan depending of the type of piece that is manufactured, generating a report that is also

customized. Finally, the interaction between the metrology module and the production

line allows the generation of automatic decision, such as retire the piece from the line

when a defect is detected.

The following steps of this demonstrator will be the integration of all this solutions in

the EPC production line, so the demonstrator can be evaluated in real working

conditions. For that purpose, some work concerning the scanning speed and data

processing has to be done before the implementation of that second version.

Copyright@ CREATE Consortium 2011-2014 Page 46 / 65

3. Monitoring and Quality Control

3.1. Introduction

The basic idea behind Case-Based Reasoning (CBR) is that similar problems have

similar solution, so the notion of similarity is right in the core of CBR. CBR uses

experience to solve problems using a cognitive process similar to how humans reason.

If we face a problem, we most often solve it by applying a solution from a similar

situation from the past.

Case-Based Reasoning in general is not considered to be a set of algorithms or methods

but a knowledge management methodology. Thus, CBR is usually defined as a system

acting according to the CBR cycle. A CBR system has at least four processing steps:

Retrieval, Reuse, Revise and Retain. Given a new case problem, the set of cases most

relevant or similar are retrieved. Then, the retrieved solution(s) are applied to the new

problem. Thereafter, the outcome of applying the adapted solution from the previous

step is evaluated.

Figure 21: CBR applied to geometric production measurements (Volvo CE)

Technicians in manufacturing industry estimate that a cost reduction of more than 30%

in corrective and preventive maintenance is achievable through the use of better tools

for monitoring and decision support. The Worldwide market in automation equipment

for monitoring and controlling is evaluated with €188B [Report EC, 2008].

Copyright@ CREATE Consortium 2011-2014 Page 47 / 65

Overall production equipment effectiveness is in Swedish industry estimated to ~60%

and has an improvement potential of more than 20% (NUTEK 2006/2009
10

, Ahlmann

2002
11

). Ahlmann assigns 6,7 billion € per year of the improvement potential to factors

such as quality drawbacks, delivery delay, production losses, reduced scrap, reduced

running in costs.

With the CREATE approach including monitoring, quality control and diagnostics a

large part of this potential is achievable since the core problem of a dynamic production

system easily can be reconfigurable to meet real time production requirement with

aspect to software and hardware.

In order to optimise the product life cycle it is necessary to monitor the production

process and the use of the product, especially when the life cycle of a product is in

focus. The collected data enables both continuous quality improvement as well as

continuous improvement of the life cycle cost in terms of resources, environmental,

product life span and maintenance. Today much of the experience in how to diagnose

and carry out maintenance is manual labour by technicians and experts acquiring their

skill over many years. This makes the process sensitive to change of staff and

knowledge transfer is difficult.

In the area of monitoring, quality control and diagnostics and innovative approach

making manual monitoring, quality control and diagnosis easily interchangeable with

automated equipment is desirable.

On the Swedish monitoring and quality control demonstrator, Mälardalen University is

developing their learning algorithms for diagnostics and prognostics. Data has been

collected at Volvo CC/CE from their manufacturing and aftermarket, used by

Mälardalen University to develop the algorithms with real data.

Also the hardware and software module is under development at SEMA-TEC and will

contain a web server so it can communicate with the diagnostic/prognostic module at

Mälardalen University and connect to different sensors and actuators. Furthermore,

SEMA-TEC and TIE are cooperating for applying the web services for third parties.

The algorithms for monitoring and quality control are developed at Mälardalen

University; collecting data from sensors is on-going in manufacturing at Volvo CE/CC

and developing the hardware module with operating software to connect sensors,

actuators and ability to communicate.

10

 NUTEK Report on "Productivity Potential Assessment", Swedish Agency for Economic and

Regional Growth – Tillväxtverket
11

 Ahlmann, H. (2002): “From Traditional Practice to the New Understanding: The Significance

of the Life Cycle Profit Concept in Management of Industrial Enterprises”. International

Foundation for Research in Maintenance: Maintenance Management & Modelling Conference,

Växjö, Sweden.

Copyright@ CREATE Consortium 2011-2014 Page 48 / 65

In Sweden the monitoring and quality control module for manufacturing is being

developed for sound and dimensional measurements. SEMA-TEC is currently

developing the necessary hardware and software module and Mälardalen University is

developing the diagnosis and prognosis algorithms and module able to learn and

improve performance. Volvo is providing classified data from their manufacturing sites

enabling Mälardalen University to develop their algorithms with real data used for

evaluation.

The hardware and software module developed for sensor measurements is made by

SEMA-TEC for the CREATE project will result in a flexible hardware unit with

integrated intelligence, multiple reconfigurable inputs and outputs for virtually any

sensor signals, versatile communication protocols and TCP/IP communication. The

flexible software solutions and communication abilities ensures its ability to operate as

a node within a networked solution as well as an autonomous unit performing all

required tasks. The digital and analogue outputs offers the possibility to automate and

perform corrective actions, i.e. any deviations measured by sensors, assessed by the

algorithms, resulting in a physical corrective action, such as activating an actuator,

adjusting a control signal, etc. can be performed directly by the unit. Case-based

reasoning algorithms are currently developed by Mälardalen University that may be

integrated in the unit’s software system, or, the measured data can be uploaded to an

external service/database and analysed by an external application. The unit can also

perform corrective actions downloaded to the unit and physically executed.

Volvo CE/CC are collecting case-data used by Mälardalen University to develop their

diagnostic and prognostic algorithms. The data is from a number of different sources in

production (both sound and dimensional data) in the production and aftermarket

enabling the development of more generic algorithms. One PhD student is working on

the development of the algorithms and framework stationed both at Volvo CE and

Mälardalen University.

SEMA-TEC and Mälardalen University in communication with TIE have looked at

examples for web services with 3rd party interest in the area of monitoring, quality

control and diagnostics with remote access to sensors, data, history etc. By enabling

modules to request web services to perform different tasks, e.g. enabling different

providers to provide services of analysing and classifying sensor data and delivering

back results to the monitoring and quality control module, making the final decision on

corrective action or adjustments of the manufacturing process.

Copyright@ CREATE Consortium 2011-2014 Page 49 / 65

3.2. Brief tool description and integration

Mälardalen University has developed a framework with a number of algorithms that can

be used to quickly build a decision support tool in monitoring and quality control. By

both handling dimensional data and sound data shows that the tool is generic and can be

adapted to different manufacturing situations.

To give a picture of the CDSS we give the Volvo Car case as an example:

Decision support module for assembly fixture adjustment

The gore consists of nine ingoing parts which each one contributes with its own

variation. The position of the ingoing parts is fixed in an assembly fixture. The internal

position of the parts can be adjusted by adding shims at the position of the reference-

and support points.

The position of the gore in the car can be seen in figure 3

Figure 16: Position of the gore in the car

In the next figure the assembly cell is shown. The position of the ingoing parts is fixed

in an assembly fixture. The internal position of the parts can be adjusted by adding

shims at the position of the reference- and support points. Adjustments are used for

compensate for the variation of the ingoing parts in order to reach the specification

demands on the final sub assembly, the gore. The geometry of the part is controlled by

measurement of predefined points, spread over the geometry to reflect the process

stability.

Copyright@ CREATE Consortium 2011-2014 Page 50 / 65

Figure 22: Assembly cell

Cases in the case library are built on a generic manufacturing structure, measurements

adjustments and outcome. Over time more and more cases are collated in the production

improving performance and accuracy of the system:

Figure 23: Case representation of geometric production measurements

The decision support module will be able to give advices on corrective and preventive

actions and enable transfer between manual monitoring and control and fully automated

control, diagnosis and correction (communicating with following smart neighbourhood

module (SNM) that is able to perform corrective actions. By building up and sharing

experience amongst the monitoring modules, which perform similar tasks, the modules

will learn and improve their capabilities. The measurements and decision will follow

each manufactured part and can be used for corrective actions, classification or as a

reference value later on in the product life cycle.

New cases in the case library contain valuable experiences for future adjustments and

improvements. Ideally this will prevent mistakes from occurring more than once as the

experience will propagate out to all the relevant modules and enable the production

system to learn and improve. According to technicians and engineers, reoccurring

Copyright@ CREATE Consortium 2011-2014 Page 51 / 65

mistakes constitutes a large part of production costs. Monitoring and diagnosis over

complex production processes can be further automated than with traditional approaches

based on modelling, simulation or statistics. The CREATE approach enables decisions

and decision support on at least the same level, or better, than experts. One of the

advantages is that the case based approach is able to suggest solutions prior to sufficient

data have been collected enabling quantitative methods for decision support. It will also

become better than individual experts once the number of cases grow in the case library

capturing the collective experience and knowledge. The monitored data and decision

connected to a specific manufactured part enables feedback to previous steps in the

manufacturing and design process. For example if certain problems occur more or less

frequently after a design alteration, the design department will immediately be notified

about it and necessary actions can be taken to adjust the design to improve the product

or production process.

The methods developed have been applied both for dimensional and sound data from

manufacturing and show ability to identify similar cases used for decision support.

Running the algorithms as a web service on a server gives enough processing power to

make fast and reliable solutions. It also keeps the processing power on the SNM

connected to the sensors and eventual actuators low. If the bandwidth is not large

enough then the SNM with the sensors may need to carry out sensor signal abstraction

(in collaboration with SEMA-TEC).

3.3. Test and results

The data collection and algorithms have been tested at Mälardalen University and

perform well, currently we are working on a scientific publication aiming at a journal

publication describing parts of the algorithms and the results.

Both Volvo Car and Volvo Construction Equipment have collected and classified sensor

data for the project (geometrical and sound). The data has been used by Mälardalen

University to develop the algorithms and methods further.

SEMA-TEC is developing the hardware module connecting the sensors and actuators

with the web service. The hardware will be completed before summer. The hardware is

first critical when doing the cross platform demonstrator since it is the link between the

production and external SMNs and web services. By using PC computers we have been

able to validate and test the monitoring, quality control and diagnosis case. As soon as

the hardware is completed we will start testing the SNM for monitoring as a web

service.

Copyright@ CREATE Consortium 2011-2014 Page 52 / 65

3.4. Conclusions

We have shown that the Case-Based Reasoning methodology is a potent solution for

monitoring, quality control, diagnosis and corrective actions in manufacturing. The

algorithms are able to learn and improve their performance. By using real sensor from

production in the demonstrator empirical results show that the proposed approach also

works in a practical context. All partners have delivered and participated fully and we

are in the most active phase in the project. Mälardalen university has secured funding

for one more project member (faculty funding) since the project is seen as a strategic

investment giving the university credit for their applied research and producing value

for industry and SME companies.

Copyright@ CREATE Consortium 2011-2014 Page 53 / 65

4. Conclusions

The CREATE project is at its most fruitful phase, with first versions of the three

different demonstrators developed for all defined use cases proving the added value of

the CREATE approach in different domains.

This version one of the demonstrator exposes the initial results of the CREATE

methodology. The first aspect to consider is that, in the whole document, in all the cases

the same architecture has been assumed, so that, although each use case has developed

its own solutions to meet the industrial cases, it will be quite easy to integrate and

implement them in the final cross domain demonstrator.

It is also shown that each demonstrator is in a different level of development, but they

are advanced enough to clarify the CREATE methodology and the sort of information

and result generated from its implementation.

For the second version of these demonstrators, expected by 28/02/2014, more advanced

implementation and real working conditions test and results will be shown to validate

the efficiency and benefits provided by CREATE. Also an integration of solutions

between the demonstrator is been taken into account, so the interoperability of the

solutions may be shown clearly.

After the first evaluations and feedback, the partners will work even more closely,

focusing on the cross domain demonstrator. Next steps have already been decided, and

actions have been planned towards this objective.

To sum up, at this stage of the project the technical state of the demonstrators shows

that the CREATE architecture and the related technologies can provide valuable

benefits in the companies independently of the industrial sector, which is one of the key

objectives of the project.

Copyright@ CREATE Consortium 2011-2014 Page 54 / 65

Annex

A. Flexible Material Flow

This section aims to present some parts of the software developed for the exposure of

the devices as web services, as well as resources. The web services (both service

wrappers and services that expose the device matchmaking features) were developed in

Microsoft Visual C# 2010 Express (.NET Framework 4) using the Windows

Communication Framework (WCF). The ontology developed to host information

associated with the production line and the population of the ontology was implemented

using the protégé tool. This information is necessary for the device matchmaking

applications for reconfiguration. The information is stored in semantic repositories

(triple stores). The services related to the reconfiguration use an open source .NET

library (dotNetRDF) for its semantic capabilities (use of triple stores, SPARQL etc.).

A.1 Devices as web services implemented via service wrappers

Each module is exposed as web service by means of web service wrappers that make

the operations of the automation software that controls the device, available to the

cloud. We will present the approach of doing that, by presenting certain sections of the

service wrapper solution for the Generic Substrate Carrier (GSC) module.

The solution includes a project that contains the DataContracts, so that service providers

and clients have an agreement of the data to be used in their transactions such as enums

with the parameters, signals etc. for each module and a class with the parameters of the

module which hold their values. The DataContracts solutions contains service reference

to System.ServiceModel and System.Runtime.Serialization.

The GSCService project contains the service contracts, the implementation of the

services and operations, as well as hosting the services and exposing them for potential

clients. The project is saved as .NET 4 and not as client applications (from project’s

properties) and has references to System.ServiceModel, System.ServiceModel,

System.ServiceModel.Web , System.Runtime.Serialization and the DataContract project

created earlier. The methods that are described in the description of services for GSC

are defined as operation contracts in the service contract. Each module has different

service contracts, because the input parameters for the methods for each contract differ

(the methods have different enums as input for each module). In the operations defined

we also annotate the restful method (WebGet), a template for the uri for accessing the

Copyright@ CREATE Consortium 2011-2014 Page 55 / 65

services as well as the response format (json). A sample of the contracts is presented

below:

using System;
using System.Collections.Generic;
using System.ServiceModel;
using System.ServiceModel.Description;
using System.ServiceModel.Web;
using System.Text;
using System.Runtime.Serialization;
using DataContracts;

namespace GSCConveyor_ServicesWrapper
{
 [ServiceContract]
 public interface IGSCConveyor
 {
 [OperationContract]
 [WebGet(UriTemplate = "GetState", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 eState_Generic Get_State();

 [OperationContract]
 [WebGet(UriTemplate = "GetNotifications", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> Get_Notifications();

 [OperationContract]
 [WebGet(UriTemplate = "GetErrors", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> Get_Errors();

 [OperationContract]
 [WebGet(UriTemplate = "InitializeModule", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 int Initialize();

 [OperationContract]
 [WebGet(UriTemplate = "StartModule", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 int Start();

 [OperationContract]
 [WebGet(UriTemplate = "StopModule", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 int Stop();

 [OperationContract]
 [WebGet(UriTemplate = "Identification", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 string Get_Identification();

 [OperationContract]
 [WebGet(UriTemplate = "ModuleType", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 string Get_ModuleType();

 [OperationContract]
 [WebGet(UriTemplate = "getParam?par={eParam}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 double Get_Param(ParametersGSCConveyor eParam);

Figure 24: Web service contract for the conveyor

Copyright@ CREATE Consortium 2011-2014 Page 56 / 65

These services and operation contracts are implemented by the GSCConveyor:

namespace GSCConveyor_ServicesWrapper
{
 public class GSCConveyor : IGSCConveyor
 {
 /// <summary>
 /// Method that requests the state of the module.
 /// </summary>
 /// <returns>An enumerable with the state of the module.</returns>
 public eState_Generic Get_State()
 {
 eState_Generic state = Conveyor.ModuleState;
 return state;
 }

 /// <summary>
 /// Methods that requests notifications/warnings associated to the module.
 /// </summary>
 /// <returns>A list of strings with the warnings added since last call of
method.</returns>
 public List<string> Get_Notifications()
 {
 Conveyor.wrnCounter = Conveyor.tempWarnings.Count + Conveyor.wrnCounter;
 Conveyor.tempWarnings.Clear();
 for (int i = Conveyor.wrnCounter; i < Conveyor.Notifications.Count; i++)
 {
 Conveyor.tempWarnings.Add(Conveyor.Notifications[i]);
 }
 return Conveyor.tempWarnings;
 }

 /// <summary>
 /// Method that requests errors associated to the module.
 /// </summary>
 /// <returns>A list of strings with the errors added since the last call of the
method.</returns>
 public List<string> Get_Errors()
 {
 Conveyor.errCounter = Conveyor.tempErrors.Count + Conveyor.errCounter;
 Conveyor.tempErrors.Clear();
 for (int i = Conveyor.errCounter; i < Conveyor.Errors.Count; i++)
 {
 Conveyor.tempErrors.Add(Conveyor.Errors[i]);
 }
 return Conveyor.tempErrors;
 }

 /// <summary>
 /// Sends command to initialize module by setting it's state to READY.
 /// </summary>
 /// <returns>An integer that indicates success or fail of the operation.</returns>
 public int Initialize()
 {
 if (Conveyor.ModuleState == eState_Generic.UNKNOWN || Conveyor.ModuleState ==
eState_Generic.ERROR)
 {
 Conveyor.ModuleState = eState_Generic.READY;
 Console.WriteLine("Attempted to Initialize, returned 0");
 return 0;

Figure 25: Implementation of service and operation contracts

Copyright@ CREATE Consortium 2011-2014 Page 57 / 65

In the implementation of the service contract we allow clients to act on the state of GSC

with operations such as Start(), Stop() and Initialize(). Also clients can set parameters

for the module (for those that is allowed) with Set_Param(), get parameter values

(Get_Param()) and signals (Get_Signal()). They access the services using Uris

composed of the endpoint exposing the services and the template for each method.

Examples of implementation of operation contract defined are presented below:

/// <summary>
 /// Method that initializes the module, by setting its state to 'READY'.
 /// </summary>
 /// <returns>Integer. If the operation was succesful 0, else 1.</returns>
 public int Initialize()
 {
 if (_ModuleState == eState_Generic.UNKNOWN || _ModuleState ==
 eState_Generic.ERROR)
 {
 _ModuleState = eState_Generic.READY;
 return 0;
 }
 else
 {
 Console.WriteLine("Error: Module has to be in state 'UNKNOWN' or 'ERROR'
 in order to Initialize()");
 return 1;
 }
 }

Figure 26: Implementation of the Initialize operation

Copyright@ CREATE Consortium 2011-2014 Page 58 / 65

public double Get_Signal(SignalsGSCConveyor eSignal)
 {
 double signal = Double.NaN;
 switch (eSignal)
 {
 case SignalsGSCConveyor.X_POS:
 if (Conveyor.X_POS >= Conveyor.X_Err)
 {
 Conveyor.Errors.Add("["+DateTime.Now+"] X_POS reached error
level.");
 Console.WriteLine("X_POS reached error level.");
 Stop();
 }
 else
 {
 signal = Conveyor.X_POS;
 if (Conveyor.X_POS >= Conveyor.X_Wrn)
 {
 Conveyor.Notifications.Add("[" + DateTime.Now + "] X_POS
reached warning level.");
 Console.WriteLine("X_POS reached warning level.");
 }
 }
 break;
 case SignalsGSCConveyor.Y_Speed_Act:
 if (Conveyor.Y_Speed_Act >= Conveyor.Y_Speed_Err)
 {
 Conveyor.Errors.Add("[" + DateTime.Now + "] Y_Speed_Act reached
error level.");
 Console.WriteLine("Y_Speed_Act reached error level.");
 Stop();
 }
 else
 {
 signal = Conveyor.Y_Speed_Act;
 if (Conveyor.Y_Speed_Act >= Conveyor.Y_Speed_Wrn)
 {
 Conveyor.Notifications.Add("[" + DateTime.Now + "] Y_Speed_Act
reached warning level.");
 Console.WriteLine("Y_Speed_Act reached warning level.");
 }
 }
 break;
 case SignalsGSCConveyor.Vacuum_Act:
 if (Conveyor.Vacuum_Act >= Conveyor.Vacuum_Err_Max ||
Conveyor.Vacuum_Act<=Conveyor.Vacuum_Err_Min)
 {
 Conveyor.Errors.Add("[" + DateTime.Now + "] Vacuum_Act reached
error level.");
 Console.WriteLine("Vacuum_Act reached error level.");
 Stop();
 }
 else
 {
 signal = Conveyor.Vacuum_Act;
 if (Conveyor.Vacuum_Act >= Conveyor.Vacuum_Wrn_Max ||
Conveyor.Vacuum_Act <= Conveyor.Vacuum_Wrn_Min)
 {

Figure 27: Implementation of Get_Signal() operation contract in GSCConveyor

Copyright@ CREATE Consortium 2011-2014 Page 59 / 65

The services can be configured and exposed. The exposure can be achieved either

programmatically or in a configuration file. We selected the second option because we

can add/remove service endpoints, behaviours and bindings easily with no need to

intervene to the code. Hosting and configuring are presented below:

<?xml version="1.0"?>
<configuration>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true"/>
 </system.webServer>
 <system.serviceModel>
 <services>
 <service name="GSCConveyor_ServicesWrapper.GSCConveyor">
 <endpoint address="http://localhost:8000/GSCConveyor"
 binding="webHttpBinding"
 bindingConfiguration="webHttpBindingWithJsonP"
 contract="GSCConveyor_ServicesWrapper.IGSCConveyor"/>
 </service>
 </services>
 <behaviors>
 <endpointBehaviors>
 <behavior>
 <webHttp />
 </behavior>
 </endpointBehaviors>
 </behaviors>
 <bindings>
 <webHttpBinding>
 <binding name="webHttpBindingWithJsonP" crossDomainScriptAccessEnabled="true" />
 </webHttpBinding>
 </bindings>
 </system.serviceModel>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

Figure 28: Configure service endpoints

We expose the services defined in the service contracts and we specify the address from

where the services can be consumed and since we want to expose the services through

rest, we use the webHttpBinding. Furthermore we specify the contract that the service

implements. The clients will be hosted in web applications hosted in apache rave and in

order to deal with cross domain issues (e.g., we would have problem to call from a

javascript function working in a domain, a different domain) we configure the

webHttpBinding to allow cross domain scripts and we use jsonp to communicate with

client. All these can be seen in the configuration file above.

Copyright@ CREATE Consortium 2011-2014 Page 60 / 65

A.2 Devices described as resources and exposed as services

The ontology (information schema) was developed and populated using the protégé

tool, in OWL and using the turtle
12

syntax. Some “chunks” of this populated ontology is

presented below.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://www.create.org/GSCLine.owl#> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@base <http://www.create.org/GSCLine.owl> .

Figure 29: definition of prefixes

12

 http://en.wikipedia.org/wiki/Turtle_(syntax)

http://en.wikipedia.org/wiki/Turtle_(syntax)

Copyright@ CREATE Consortium 2011-2014 Page 61 / 65

Object Properties

http://www.create.org/GSCLine.owl#ModuleOf

:ModuleOf rdf:type owl:ObjectProperty ;

rdfs:domain :Module ;

rdfs:range :Name ;

owl:inverseOf :isModule .

http://www.create.org/GSCLine.owl#cooperatesWith

:cooperatesWith rdf:type owl:ObjectProperty ,

owl:SymmetricProperty ;

rdfs:range :Module ;

rdfs:domain :Name .

http://www.create.org/GSCLine.owl#isDeviceOfType

:isDeviceOfType rdf:type owl:ObjectProperty ;

rdfs:range :DeviceType ;

rdfs:domain :Name .

http://www.create.org/GSCLine.owl#isModule

:isModule rdf:type owl:ObjectProperty ;

rdfs:range :Module ;

rdfs:domain :Name .

Figure 30: Definition of Object properties

Copyright@ CREATE Consortium 2011-2014 Page 62 / 65

Individuals

http://www.create.org/GSCLine.owl#24-PIN_Printer

:24-PIN_Printer rdf:type :DeviceType ,

owl:NamedIndividual .

http://www.create.org/GSCLine.owl#496-F

:496-F rdf:type :Name ,

owl:NamedIndividual ;

:isDeviceOfType :Friction_Sheet_Feeder ;

:suppliedBy :Kirk-Rudy .

http://www.create.org/GSCLine.owl#9-PIN_Printer

:9-PIN_Printer rdf:type :DeviceType ,

owl:NamedIndividual .

http://www.create.org/GSCLine.owl#ASGCO

:ASGCO rdf:type :Supplier ,

owl:NamedIndividual .

http://www.create.org/GSCLine.owl#Atlantic_Roll_102

:Atlantic_Roll_102 rdf:type :Name ,

owl:NamedIndividual ;

:suppliedBy :Lasermax ;

:isDeviceOfType :Roll_Winder_Feeder .

Figure 31: Individuals populating the ontology

Copyright@ CREATE Consortium 2011-2014 Page 63 / 65

This turtle file containing the information, which is the components of the production

line described as resources, is loaded in a triple store using the dotNetRDF library.

Operation and device matchmaking methods are developed and performed on the data

in the repository and are exposed as web services.

Copyright@ CREATE Consortium 2011-2014 Page 64 / 65

namespace DeviceMatchmakingService
{
 [ServiceContract]
 public interface IMatchmaker
 {
 [OperationContract]
 [WebGet(UriTemplate = "getAllDevices", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getAllDevices();

 [OperationContract]
 [WebGet(UriTemplate = "getAllSuppliers", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getAllSuppliers();

 [OperationContract]
 [WebGet(UriTemplate = "getAllDeviceTypes", ResponseFormat = WebMessageFormat.Json,
BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getAllDeviceTypes();

 [OperationContract]
 [WebGet(UriTemplate = "getCooperatingDeviceTypes?dev={device}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getCooperatingDeviceTypes(string device);

 [OperationContract]
 [WebGet(UriTemplate = "getTypeOfDevice?dev={device}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getTypeOfDevice(string device);

 [OperationContract]
 [WebGet(UriTemplate = "getSuppliersOfDevice?dev={device}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getSuppliersOfDevice(string device);

 [OperationContract]
 [WebGet(UriTemplate = "getDevicesOfType?type={type}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getDevicesOfType(string type);

 [OperationContract]
 [WebGet(UriTemplate = "getSuppliersOfType?type={type}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getSuppliersOfType(string type);

 [OperationContract]
 [WebGet(UriTemplate = "getCooperatingDeviceOfType?type={type}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getCooperatingDeviceOfType(string type);

 [OperationContract]
 [WebGet(UriTemplate = "getSupplierDevices?sup={supplier}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]
 List<string> getSupplierDevices(string supplier);

 [OperationContract]
 [WebGet(UriTemplate = "getSupplierDeviceTypes?sup={supplier}", ResponseFormat =
WebMessageFormat.Json, BodyStyle = WebMessageBodyStyle.Wrapped)]

Figure 32: Service contract of the device matchmaking service

The implementation and the configuration of the service was achieved in the same

manner as demonstrated in the previous section of the Annex.

Copyright@ CREATE Consortium 2011-2014 Page 65 / 65

namespace DeviceMatchmakingService
{
 public class Matchmaker : IMatchmaker
 {
 // The base Uri of the ontology stored in the store where we
query.
 string ontoBaseUri = "http://www.create.org/GSCLine.owl#";

 // Retrieves devices. The results are used in the autocompletion.
 public List<string> getAllDevices()
 {
 List<string> allDevices = new List<string>();

 // Query to retireve all devices.
 SparqlQueryParser queryParser = new SparqlQueryParser();
 SparqlQuery query = queryParser.ParseFromString("SELECT
DISTINCT ?result " +
 "WHERE
{GRAPH ?g { ?result <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.create.org/GSCLine.owl#Name>.} }");

 Object results = Program.store.ExecuteQuery(query);

 //Print out the Results
 if (results is SparqlResultSet)
 {
 // Print the results of the query.
 SparqlResultSet resultsSet = (SparqlResultSet)results;
 foreach (SparqlResult result in resultsSet)
 {
 int i = result.ToString().IndexOf('#');
 Console.WriteLine(result.ToString().Remove(0, i + 1));
 try
 {
 allDevices.Add(result.ToString().Remove(0, i +
1).Replace('_', ' '));
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 }
 }
 return allDevices;
 }

 // Retrieves suppliers. The results are used for the
autocompletion.
 public List<string> getAllSuppliers()
 {
 List<string> allSuppliers = new List<string>();

 // Let's see a model with what types it cooperates
 SparqlQueryParser queryParser = new SparqlQueryParser();
 SparqlQuery query = queryParser.ParseFromString("SELECT
DISTINCT ?result " +

Figure 33: Implementation of the service contracts and operations necessary for the device

matchmaking service.

