
SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 1 (72)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP3

Deliverable D3.6.b: Safety Code Generator Specification

Due date of deliverable: 31/12/2013

Actual submission date: 20/12/2013

Start date of the project: 01/07/2011 Duration: 36 months

Project coordinator name: Stefan Voget

Organization name of lead contractor for this deliverable: BMW Car IT GmbH

Editor: Raphael Trindade

Contributors: Christoph Ainhauser, Raphael Trindade, Vladimir Rupanov

Reviewer: Arthur Gauthier – Dassault Systèmes

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 2 (72)

Revision chart and history log

Version Date Reason

0.1 05.10.2013 Initial draft

0.2 05.11.2013 Added sections related to CHROMOSOME contribution

0.3 15.11.2013 Review of document

0.4 21.11.2013 Iteration over reviewer feedback

0.5

0.6

26.11.2013

06.12.2013

Final version draft

Review of document

0.7 13.12.2013 Final version

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 3 (72)

1 Table of contents

1 Table of contents .. 3

2 List of figures .. 6

3 Executive Summary .. 7

4 Introduction ... 8

4.1 Scope of WT 3.6 ... 8

4.2 Structure of this document .. 8

5 Proposed approach to model software safety requirements and generate software safety mechanisms10

5.1 Modeling ... 10

5.2 Generation .. 10

5.2.1 Workflow ... 10

5.2.2 Generated artifacts ... 11

5.3 Target Platforms ... 13

5.3.1 AUTOSAR .. 13

5.3.2 CHROMOSOME ... 17

6 Meta-model based generator specification ... 18

6.1 Software Safety Requirement Specification in SAFE ... 18

6.2 Error avoidance, detection and handling .. 19

6.3 General requirements on safety code generators .. 20

6.3.1 Scheduling of generated executable entities .. 20

6.3.2 Interface generation for software components ... 20

6.3.3 Re-routing of connectors if inter-component communication is addressed 20

6.3.4 Configuration information .. 21

6.3.5 Annotations ... 21

6.4 Software Safety Requirements Specified within the SAFE Meta-model ... 21

6.4.1 Aliveness Monitor.. 21

6.4.2 Context Range Check ... 22

6.4.3 Gradient Check ... 23

6.4.4 Comparison .. 24

6.4.5 CRC .. 25

6.4.6 Filter .. 26

6.4.7 Actuator Monitor.. 27

6.4.8 CPU Self-test .. 29

6.4.9 RAM Self-test .. 30

6.4.10 Voting .. 31

6.4.11 Health Monitor ... 32

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 4 (72)

6.4.12 Heartbeat .. 33

7 Code generation use case for software safety requirements for AUTOSAR ... 34

7.1 Use case specification: Control-flow Monitor .. 34

7.1.1 Description .. 34

7.1.2 Checkpoint specification ... 34

7.1.3 Control-flow monitoring specification .. 35

7.1.4 Control-flow monitoring interface .. 36

7.1.5 Monitoring element ... 37

7.2 Code Generator Inputs ... 37

7.2.1 Control-flow monitor software safety requirement .. 37

7.2.2 Code generation ... 40

7.3 Generated artifacts ... 41

7.3.1 Service software component type ... 41

7.3.2 Software component prototype ... 42

7.3.3 Client server interface ... 42

7.3.4 Mode switch interface ... 42

7.3.5 Mode group ... 42

7.3.6 Mode declaration .. 42

7.3.7 ECU Configuration .. 42

7.4 Modification to existing AUTOSAR elements ... 43

7.4.1 Software component monitoring ... 43

7.4.2 Internal behavior monitoring ... 44

7.4.3 Runnable entity monitoring ... 44

8 Detailed Specification of code generation for software safety requirements for CHROMOSOME 45

8.1 CPU Self-Test ... 45

8.1.1 Inputs .. 45

8.1.2 Code generation ... 45

8.1.3 Generated artifacts ... 46

8.2 RAM Self-Test .. 46

8.2.1 Inputs .. 46

8.2.2 Code generation ... 47

8.2.3 Generated artifacts ... 47

8.3 Voter ... 47

8.3.1 Inputs .. 48

8.3.2 Code generation ... 48

8.3.3 Generated artifacts ... 48

8.4 Health Monitor .. 49

8.4.1 Inputs .. 49

8.4.2 Code generation ... 50

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 5 (72)

8.4.3 Generated artifacts ... 50

8.5 Heartbeat .. 50

8.5.1 Inputs .. 51

8.5.2 Code generation ... 51

8.5.3 Generated artifacts ... 51

9 Validation of generated artifacts ... 52

9.1 Source code validation ... 52

9.1 Model element validation .. 52

9.2 Traceability information validation .. 52

10 Conclusions and Discussion ... 53

11 References ... 54

12 Acknowledgments... 55

Appendix A – Classification of Software Safety Mechanisms .. 56

General Classification of Mechanism Types .. 56

Semantics ... 58

Fault Avoidance .. 58

Error Detection .. 59

Error Handling ... 64

Appendix B – CHROMOSOME .. 67

Generation of Runtime for CHROMOSOME .. 67

CHROMOSOME Model types .. 67

An Example of Code Generation Workflow for CHROMOSOME .. 69

CHROMOSOME models .. 69

SAFE model .. 70

Safety code generator .. 70

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 6 (72)

2 List of figures

Figure 1 – SAFE Meta-model Satisfy mechanism for tracing realization to requirements 13

Figure 2 – Gradient check specified using an SSR DSL based on ARText 14

Figure 3 – Excerpt of an AUTOSAR software component model using ARText 15

Figure 4 – Gradient check generated as AUTOSAR component ... 16

Figure 5 – Reorganization of connections for accommodating the generated gradient check
mechanism .. 16

Figure 6 – Structure for software safety requirements specification .. 18

Figure 7 – Implementation Safety Extension ... 19

Figure 8 – Aliveness monitor meta-model ... 22

Figure 9 – Context range check meta-model ... 23

Figure 10 – Gradient check meta-model ... 24

Figure 11 – Comparison meta-model .. 25

Figure 12 – CRC meta-model .. 26

Figure 13 – Filter meta-model ... 27

Figure 14 – Actuator monitor meta-model ... 28

Figure 15 – CPU Self-Test meta-model... 29

Figure 16 – Memory Self-Test meta-model ... 30

Figure 17 – Voter meta-model ... 31

Figure 18 – Health Monitor meta-model .. 32

Figure 19 – Heartbeat meta-model .. 33

Figure 20 – SAFE meta-model for the specification of a control-flow monitor software safety
requirement ... 38

Figure 21 – Software safety mechanism structuring and classification .. 57

Figure 22 – Suggested approach for degradation modeling .. 66

Figure 23 – CHROMOSOME Modeling Tool (XMT) .. 68

Figure 24 –Different meta-models within CHROMOSOME meta-model in XMT 68

Figure 25 – Illustration of the code generation workflow for CHROMOSOME 69

Figure 26 – Manifest model with components specification to support WT3.6 SSM generation 70

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 7 (72)

3 Executive Summary

This deliverable describes in detail the requirements regarding the generation of code for software
safety mechanisms. There are two main targets for code generators within WT3.6: AUTOSAR [1]
and CHROMOSOME [2]. For each of these targets there are elements which are realized using C
code and elements which are realized using specific formats related to each technology (e.g.
ARXML for AUTOSAR). The details about code and additional information to be generated by
code generators implemented in the context of the SAFE project are specified for central meta-
model elements.

The main goal of this document is to provide a solid base of information regarding the mapping of
meta-model elements to elements pertaining to the target technology supported by specific
generator implementations. For given elements examples of possible realizations (code and target
technology information) are provided. These examples shall only be used as guidance and do not
strictly specify how given meta-model elements are to be generated.

Code generators implemented according to SAFE must comply with the semantic specification of
safety mechanisms given in this document. However, if the implementation regards the detailed
mechanism generation description in sections 7 and 8, code generators can deviate from the
standard structure defined in this document provided a rational for it.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 8 (72)

4 Introduction

The development of systems for the automotive domain functionality is either realized as software
elements, hardware elements or both. The development of safety critical systems for the
automotive domain implies additional requirements for the realization of functions which in turn can
influence how software and hardware elements are developed. In this document the development
of software based functionality in compliance to the ISO 26262 is addressed regarding the ISO
26262 part 6 requirements allocated to the product development phase at the software level.

According to the ISO 26262, during the software development phase one of the first tasks to be
executed is the definition of software safety requirements (SSR). These requirements shall be
derived from the technical safety concept, more concretely technical safety requirements used as
input for this phase. Therefore before automatically generating software safety mechanisms it is
important to be able to specify such SSRs.

In WT3.6 software safety requirements have been assumed to be the starting point for the
implementation of automatic generators. These requirements usually express patterns regarding
the safety measures to be applied on a given software system in order to realize the specified
technical safety concept. The approach taken by WT 3.6 is to require generators to be developed
based on a formal specification of specialized software safety requirements. In the case of SAFE
this formalism is the SAFE meta-model.

The SSRs provide the necessary information for the generation of software safety mechanisms.
Within WT 3.6 the realization of software safety mechanisms (SSM), namely their implementation
as architectural elements or C code, is seen as the fulfillment of SSRs.

By processing the specified SSRs it shall be possible to automatically generate SSMs and to
generate additional information regarding the traceability link between generated SSMs and the
originating SSRs. This link back to the specification of safety related elements allows the
traceability requirement to be fulfilled and a complete chain linking implementation to specification
to be achieved. The SAFE meta-model provides a construct for managing the artifacts obtained
via generative approaches for SSR realization.

4.1 Scope of WT 3.6

In the context of work package 3 – Model based development for functional safety, work task 3.6
is responsible for the identification of architectural and software patterns for functional safety
measures and furthermore for the evaluation of how suitable generative approaches can be for the
automatic realization/implementation of such architectural and software based measures. The
results obtained within the work task are condensed in this deliverable and encompass:

 The identified software and architectural patterns commonly used in the realization of
technical safety concepts

 The specification of the information required for the realization/implementation of evaluated
patterns

 The requirements on tools realizing generative approaches for the implementation of such
patterns.

4.2 Structure of this document

In the next sections the details regarding the meta-model elements of the software safety
requirement specification language and the required contract between meta-model and safety
code generators are defined. In section 5 the approach for modeling SSRs and generating
software safety mechanisms proposed by WT 3.6 is described in depth and when possible

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 9 (72)

examples regarding the realization of generators is given. Section 6 provides a detailed view on
SSR and SSM semantics, on the required information for the generation of SSMs and the on
mapping of SSRs to SSMs. Sections 7 and 8 provide a detailed specification for a subset of the
mechanisms described in this document. Section 9 provides an overview on how the generated
artifacts can be validated and tested. Finally Section 10 presents the achieved goals of WT3.6
regarding safety code generation and software safety requirements.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 10 (72)

5 Proposed approach to model software safety requirements and generate software

safety mechanisms

In this section the details of the approach proposed by WT3.6 for the specification of software
safety requirements and the generation of software safety mechanisms are described. First the
modeling of software safety requirements approach used in WT3.6 is described. Moreover, the
approach taken for the realization of generators based on the modeling formalism for SSRs is
presented. Finally examples for the specification and generation regarding the two main target
technologies considered within WT3.6 (AUTOSAR and CHROMOSOME) are given.

5.1 Modeling

The safety requirements specific to software elements of an item are commonly refined up to the
point where concrete implementations of functionality fulfilling these requirements can be provided
by software engineers. For example, the functional safety concept required by the ISO 26262 is
done taking into account elements of the preliminary architecture of the item. As the development
moves forward more concrete concepts are defined and finally requirements are specified for
concrete item configurations (hardware and/or software). In the case of WT 3.6 these are software
safety requirements and they are related to the concrete software architecture and software
elements providing functionalities to the item.

Ultimately the modeling formalism used to specify SSR is the SAFE meta-model. The SAFE meta-
model is to be considered the basis for the exchange format between the different tools used
during the safety lifecycle of a product. However the SAFE meta-model does not provide syntactic
sugars and does not worry about ease of use on the part of the user (engineer) modeling SSRs.
For this reason it might be interesting to allow SSRs to be modeled using a formalism which better
suits specific situations.

Usually software safety requirements will be expressed or defined for concrete system software
architectures. Therefore it is very beneficial if the specification of such SSRs is able to be
integrated to the formalism used to define the system software architecture. For example, if an
UML composite structure diagram is being used to model the item architecture ports and
interfaces the formalism for specifying SSRs could be an UML profile. Afterwards the formalism
used to model SSRs can be automatically transformed into a SAFE model.

The recommendation from SAFE regarding the modeling of software safety requirements is that
modeling should happen with the support of a modeling tool which provides a more specialized
language (e.g. textual language) which directly relates to the modeling context (e.g. requirements
on items designed using CHROMOSOME). The models created with such a language should be
transformed into the SAFE exchange format and this could in turn be used by safety code
generators. A more detailed example of how such an approach would look like is given in Section
5.3.

5.2 Generation

In order to generate software safety mechanisms generators implemented based on SAFE shall
support the processing of SAFE conformant input, namely, software safety requirement
specifications in the SAFE exchange format.

5.2.1 Workflow

The SAFE meta-model provides so far three possibilities for code generators to process
specifications:

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 11 (72)

1. Process specifications in an agnostic way where the software safety requirements are simply
SAFE SSRs and are not related to any target technology. In this case the generator must be able
to interpret generic mechanisms. The consequence of this approach is that a lot of information
related to the target technology platform might be missing. One possible solution would be to add
the missing information as configuration information for given SSR specifications. For example, an
agnostic gradient checker could be configured with information regarding AUTOSAR and
automatic code generation would then be possible.

2. Process specifications in which SSRs are specialized into more concrete SSRs (e.g. a built-in
self-test requirement). In this case it is clear for the generator which kind of software safety
mechanism has to be generated for the SSR.

3. Process SSR specifications which define a concrete SSR for a given target technology (e.g. an
AUTOSAR alive monitor). Hence, the generator is provided with information necessary for
generating and integrating the generated artifacts into preexisting models and code.

Regarding the generation of artifacts the generators implemented according to this specification
can either take as basis for the generation the SAFE meta-model or any intermediary
representation derived from the SAFE meta-model. It is common sense in the model driver
development community to base code generators on intermediate representations this is also the
recommendation of WT 3.6. The code generators shall allow the users to configure output targets
for the different types of artifacts being generated this provides the flexibility of integrating
generated artifacts to preexisting artifacts (e.g. project folders).

5.2.2 Generated artifacts

Which artifacts are generated based on the software safety requirements specification using
SAFE depend on the what kind of requirement is specified, what target technology is used and
what artifacts already exist. There are four main types of artifact which are usually generated,
these are: code, models, test data (unit tests, interface tests, etc.) and traceability information.
These artefacts are addressed in next sections.

5.2.2.1 Code

Whenever code is to be generated, requirements regarding the use of the generated code shall be
taken into account (e.g. ASIL level). Code generators must, for instance, state according to which
standard is the code generated. For example a code generator producing C code would state it
generates MISRA C [3] compliant code if that is the case. This allows tool users to provide this
information whenever proof of compliance is necessary. Furthermore naming conventions for
generated code shall be defined. Depending on the situation the conventions can come from the
target technology being adopted.

Moreover, the recommendations of the ISO 26262 regarding code shall also be followed, namely:
low code complexity, strong typing, naming conventions, hierarchical structuring, cohesion and
coupling, etc. For detailed information please refer to the ISO 26262 part 6 – Product development
at the software level [4].

5.2.2.2 Model

Besides generating code, depending on the target technology models also have to be generated.
The generated models must also be compliant to the recommendations made by the ISO 26262
regarding software development. Furthermore, it might be the case that preexisting artifacts have
to be modified or adapted. In this case the original artifact shall not be modified rather a copy shall
be made and afterwards adapted to include the generated information. The generated artifacts
must be differentiated from preexisting ones even in the case of adaptation. One of the

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 12 (72)

possibilities is to achieve this through the traceability structure provided by the SAFE meta-model.
It would also be possible to generate new and adapted artifacts into a new project which consists
of an adapted copy of the original project. The concrete integration of generated artifacts can be
defined by each safety code generation implementation. The main requirement is that tool users
must be able to differentiate generated and adapted artifacts from preexisting ones.

5.2.2.3 Test data

Additionally to code and model data, for given scenarios it is also possible generate test data. The
necessary information for this step can be obtained from the specified SSR and from additional
generator configuration information. For instance, given an SSR specifying a gradient check of a
given interface a unit test for the generated code can be generated. The parameters for the test
are the ones specified in the SSR.

5.2.2.4 Traceability Information

Regardless what kind of technology being used to realize SSR traceability information about what
was generated and where it was generated has to be provided by code generators. This
information has to be persisted within the SAFE meta-model and the mechanism to realize this is
provided via Satisfy feature from EAST-ADL [6] depicted in Figure 1. The traceability information
encompasses code, model elements, models, configuration files, metrics, tests and any other
information/artifact which somehow influences the software system.

The traceability information is responsible for linking the generated artifacts to their specification.
Furthermore it is of great importance to be able to identify and trace generated artifacts. The
identification allows engineers to determine which additional elements belong to the design after
generation has taken place. Moreover such traceability is also important for the generation of
evidence of compliance for certification purposes.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 13 (72)

Figure 1 – SAFE Meta-model Satisfy mechanism for tracing realization to requirements

5.3 Target Platforms

The specification of software safety requirements and the (semi-)automatic generation of software
and model elements depend on the adopted target platform. In the next sections details regarding
the modeling of SSR and generation of software related artifacts for different target platforms are
given.

5.3.1 AUTOSAR

In this subsection an overview regarding modeling SSRs and generating SSMs for AUTOSAR is
given. The goal is not to describe in detail how an AUTOSAR generator shall work, but rather to
provide general information regarding the generation of software safety mechanisms which have
AUTOSAR as target technology.

The goal of modeling software safety requirements for AUTOSAR architectures has been defined
in SAFE using a loosely coupled approached. The modeling of SSRs shall not require any
changes in the AUTOSAR meta-model. This is achieved by providing a safety view on top of
preexisting AUTOSAR artifacts namely either the VFB [7] architecture or a concrete system
model.

As previously state, a language allowing the modeling of SSR is preferred. For example, in order
to integrate the safety view into AUTOSAR a domain specific language (DSL) could be developed.
This language would allow users to directly reference existing AUTOSAR elements and to define
software safety requirements for these elements.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 14 (72)

The software safety requirements are defined according to the SAFE meta-model. However the
original format for SSR specifications can vary from tool to tool. Figure 2 presents an example of
how such a DSL (based on ARText [8] for illustration) could be implemented.

The SSR specification is decouple from the AUTOSAR system architecture specification. The
referencing to existing AUTOSAR elements is allowed via the meta-model. Figure 3 presents the
exemplary AUTOSAR model referenced in Figure 2.

Figure 2 – Gradient check specified using an SSR DSL based on ARText

In the case of AUTOSAR, a safety code generator could transform each group of software safety
mechanisms of the same type into an AUTOSAR software component. The realization of the
internal behavior of this software component is generated according to information obtained from
the preexisting AUTOSAR system model. The deployment of software components to ECU
instances is used to define where the source files implementing the internal behavior of the
component shall be generated.

Figure 4 shows the AUTOSAR software component generated for the gradient check mechanism
specified for monitoring the thin plate temperature of the demonstrator used to validate the
development within SAFE [10], Figure 3.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 15 (72)

Figure 3 – Excerpt of an AUTOSAR software component model using ARText

The generated component has then to be instantiated and integrated into the preexisting system
architecture and the previous connections between components has to be adapted to
accommodate the newly introduced component. It is the job of safety code generators to realize
the traceability between the original and adapted version of the model. For example, the
integration could be done in a copy of the original model and produced as output out of the
generation process. Figure 5 presents a simple example of how the generated gradient check
component is integrated into a preexisting AUTOSAR software architecture.

For SSR specified at the system model level of AUTOSAR the target ECU to which software
components are mapped is known. In this case the generator uses this information to generate the
implementation of the software safety mechanisms (e.g. gradient check) in the corresponding
target locations where the software for each specific ECU lies.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 16 (72)

Figure 4 – Gradient check generated as AUTOSAR component

Figure 5 – Reorganization of connections for accommodating the generated gradient check

mechanism

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 17 (72)

5.3.2 CHROMOSOME

In this subsection an overview regarding modeling SSRs and the generation of SSMs for
CHROMOSOME is given. The aim of this subsection is to define the general outline of code
generation scenarios for CHROMOSOME, where SAFE SSRs are implemented by
CHROMOSOME SSMs.

As previously stated, it is recommended to model SSRs in a loosely coupled manner. It is
expected that a language implementing SAFE meta-model is used to specify SSRs, so the
modeling of SSRs does not require modification of CHROMOSOME meta-model. A preexisting
CHROMOSOME system model containing all artifacts excluding safety view is defined in detail in
CHROMOSOME domain-specific language. A SAFE model extends existing CHROMOSOME
artifacts with safety requirements.

In SAFE model SSRs have to be defined to make further code generation possible. The original
format for SSR specifications can vary depending on the tool used. We expect that the main input
method for SSRs is a full or partial implementation of SAFE meta-model, in form of textual
language, graphical tool, or just a file in SAFE model interchange format. Independent of the
choice the language should allow users to reference external model elements and specify SSRs
for those elements in the way SAFE meta-model allows such referencing through modeling
elements defined in the CommonStructure::References::CHROMOSOMEReferences package of
the SAFE meta-model.

CHROMOSOME relies strongly (just like AUTOSAR) on tool-supported model-based code
generation. Safety mechanisms specification is decoupled from the existing CHROMOSOME
models. Code generator therefore should modify the original CHROMOSOME model. Traceability
between the original and adapted versions of the model should be provided to enable repeated
generation. SAFE SSR model shall also be modified by the generator to include references to
newly generated elements and to allow requirement traceability within SAFE model. Such
modifications can be implemented by, for example, producing copies of existing models, or by
annotating the generated and modified elements to distinguish from the original and by keeping
history of model changes.

Generation of safety mechanisms code for CHROMOSOME targets results in instantiation of new
component elements and corresponding modification of data path elements (topics) within the
CHROMOSOME model. Code generator should locate the elements referenced by the SAFE SSR
specifications and create new relevant elements in the CHROMOSOME model. The generated
components have to be configured to produce implementations corresponding to the input SSR
model. For some SSRs (like, for example, Health Monitor) iteration through other SSR
specifications may be necessary to generate the SSM configuration.

Transformation of multiple input models (predefined CHROMOSOME model and SAFE SSRs) can
be implemented using one of the numerous model transformation frameworks. Almost every
modeling framework or tool today is accompanied by at least one model transformation
framework.

It is the choice of code generator developer, whether C code will be directly generated for every
generated component instance. An alternative approach is to provide a library of predefined
generic SSM implementations along with the code generator and only generate configuration data
for new component instances. The former approach results in generation of source code that is
optimal for a specific instance of SSM, but increases the maintenance effort for the generator
developer due to the need to support both the existing components and code generation
templates.

The final generation of code for the CHROMOSOME runtime and projects allowing build of binary
images shall be performed by transforming the adapted CHROMOSOME model with a technology-
specific configuration tool. An example generation workflow and additional details regarding
CHROMOSOME can be found in Appendix B – CHROMOSOME.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 18 (72)

6 Meta-model based generator specification

In this section the elements of the SAFE meta-model related to software safety requirement
specifications and therefore of interest for safety code generators are described in detail. The work
done within SAFE regarding the modeling of software safety requirements has been mainly
divided in two parts: generic and concrete. On one hand the generic part of the SAFE meta-model
a base for the concept of software safety requirement (SSR) specification is provided. This
enables users to specify abstract requirements related to SAFE and a given target technology. On
the other hand the concrete part of the SAFE meta-model provides detailed software safety
requirement structures where the concrete relations of such requirements are defined (e.g. which
concrete elements from external meta-models are necessary for a given SSR specification). In the
following subsections the meta-model elements for SSR specification are described and the
implications of such elements on safety code generators are detailed.

6.1 Software Safety Requirement Specification in SAFE

Figure 6 – Structure for software safety requirements specification

The central concept in the meta-model is the abstract structure for specifying software safety
requirements. This structure is depicted in Figure 6. The meta-model enables models to specify a
implementation safety extension composed by a set of software safety requirements (SSR) and
code generation configuration information as shown in Figure 7. The purpose of software safety
requirements is defined using a tactic mechanism. The Tactic defines how a given malfunction
(error) is treated by the requirement. There are three possible tactics: avoid, detect and handle the
malfunction. The tactics have been identified during the exploration phase realized within WT3.6,
documented in Appendix A – Classification of Software Safety Mechanisms. The SSRs are
specified within specific SAFE “Safety Extensions” in order to provide a context for the
requirements.

In the case of specifications relating to AUTOSAR there is an abstract meta-class
AutosarSafetyExtension which is to be used as base for all possible AUTOSAR related safety
extensions. For CHROMOSOME, the ChromosomeSafetyExtension shall be used. The different
possibilities of extensions are shown in Figure 7. A software safety requirement is a refinement of
given technical safety requirements (TSR) and each SSR can trace back to the originating TSR

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 19 (72)

via the RequirementsLink element which allows tracing requirements as covered, refined or
decomposed.

The specification of SSRs is still abstract and, depending on the generative approach (i.e. agnostic
SSR specification or targeted SSR specification), further configuration of SSRs is necessary. For
this reason the CodeGeneratorConfiguration meta-class has been introduced. This element allows
configuration parameters to be specified for SSRs. Such parameters are to be interpreted by
safety code generators in order to obtain further information regarding the SSR specification. This
configuration structure can also be used for storing generator specific information on a SAFE
model.

Figure 7 – Implementation Safety Extension

6.2 Error avoidance, detection and handling

The meta-model depicted in Figure 6, makes possible to specify software safety requirements
related to error avoidance, error detection and error handling using the tactics relation. The
behavior of the system in case of error can be modularly defined using the three kinds of SSR
tactics. In this way, the engineer might define requirements which cover the avoidance of errors,
such as a barrier requirement. Requirements that cover the detection of errors, and might in turn
have another SSR defined as an error reaction. Requirements covering error handling, which are
related to error detection requirements and might also specify a reaction in case new errors
happen during the handling process (e.g. a filtering mechanism with a threshold of 5). Examples of
possible reactions for detected errors are: filtering, notification, reset, memory partition reset and
default value. More details about the structuring of tactics can be seen in Figure 6.

Code generators supporting the specification of handling mechanisms shall generate the
necessary interfaces to access the resources specified by the engineer for handling the error
(error reaction). For instance, in case a reset handling mechanism is specified as a reaction to a
given error in an AUTOSAR system, the code generator shall generate the necessary requests to
the BSW components of AUTOSAR in order to execute the reset procedure. Moreover, for
mechanisms whose handling is realized through communication (e.g. notifying another
component) the code generator must generate the correct connections between the related

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 20 (72)

components and if necessary adapt the target/source component with newly required interfaces
for realizing the communication.

6.3 General requirements on safety code generators

In this section general remarks for the implementation of safety code generators are given. These
remarks provide an overview on the common issues to be handled while generating code for
software safety requirements specified using the SAFE exchange format.

6.3.1 Scheduling of generated executable entities

During the generation of safety code the lines of code realizing the functionality specified through
SSRs will in most cases represent an executable entity. An executable entity can be either a
function or a set of functions and both share the characteristic that a given points in time
(schedule) the entity has to be executed by the underlying technology platform. In order to
guarantee that the specified software safety requirements are working correctly the executable
entities generated for the SSR have to be scheduled.

Generators have therefore to take into consideration what options the target technology platform
offers for scheduling executable entities. Furthermore, the required information for scheduling can
be required by generators and stored as configuration information of the given SSR as described
in Section 6.3.4.

For instance, while generating a gradient check implementation the safety code generator has to
take into account how the executable entity for the gradient check will be scheduled and what has
been specified within the SSR. The reason why the scheduling plays an important role is that the
time delta specified for the gradient check might have to be refined into smaller slots in order to
correctly verify if the gradient is varying within acceptable ranges.

6.3.2 Interface generation for software components

For accessing information coming from outside the generated software elements (components)
safety code generators have to generate the related interfaces. Common patterns such as
separation of concerns and coupling shall be taken into account in order to generate interfaces
which allow the generated artifacts to be seamlessly integrated with preexisting artifacts.

In the case where the concrete software architecture defined using a given target technology
platform provides concepts for the interconnection of software components, the safety code
generators shall generate the software component interfaces of generated software component
artifacts according to the concepts defined by the target technology platform.

For example in the case of AUTOSAR the safety code generator has to generate the component
ports required and provided by the generated software components and additionally the variable
access elements within the executable entities contained in these software components.

6.3.3 Re-routing of connectors if inter-component communication is addressed

On given target technology platforms, the communication between software components is done
via the definition of connectors. Safety code generators shall be able to handle the necessary
modifications regarding connectors in order to integrate the generated artifacts into the preexisting
ones. It has also to be noted that different technologies might define different types of connectors
and safety code generators must be able to understand the implications of generating each type of
connector and the possible side-effects caused by the integration of generated components.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 21 (72)

6.3.4 Configuration information

As previously describe in Section 5.2 the SAFE meta-model enables the modeling of configuration
information regarding SSR. This information can be used by generators to define parameters
related to the generation which do not influence the SSR specified using the SAFE exchange
format.

Whenever a safety code generator requires additional information related to an SSR this
information shall reflected back into the SSR model. If the generation procedure is applied more
than once to the same model the configuration information provided by the user is in this case
already present could be used for further analysis.

6.3.5 Annotations

Whenever possible, safety code generators shall make use of annotations to document the
rational regarding the implementation of SSR and to provide the user with useful information about
the generation. These annotations shall be realized according to the possibilities provided by the
target technology platform and could be used to fulfill traceability requirements (e.g. function
annotations trace back to SAFE model elements).

6.4 Software Safety Requirements Specified within the SAFE Meta-model

Besides the generic meta-model structure previously described, the meta-model contains also a
specialized set of software safety requirements which were chosen for the purpose of validating
the concepts developed within SAFE. The specialized SSR elements are limited in number since it
is not the purpose of WT 3.6 to propose a meta-model for every possible software safety
requirement which can be transformed into a software safety mechanism.

In the following subsections the specialized SSR elements are described together with the relevant
information for safety code generation. Where applicable examples of how code generation could
work are given.

6.4.1 Aliveness Monitor

Description: the aliveness monitor depicted in Figure 8, also known as heart-beat monitor,
supervises the execution of executable entities through the use of checkpoints [11]. Given that an
error has occurred it can notify the specified handling element. The possible errors for this
specification are: too late, meaning the checkpoint was achieved after the expected point in time;
too early, meaning the checkpoint was achieved before expected; too often, meaning the
checkpoint was arrived too many times regardless of how early or late the executable entity has
reached checkpoints.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 22 (72)

Figure 8 – Aliveness monitor meta-model

Semantics: the specification of an aliveness monitor requirement implies that generators shall
transform the aliveness monitor SSR into a set of checkpoint definitions configured with the
parameters defined in the SSR specification. The generated mechanism shall have the necessary
interfaces for communicating with the system, which can be specified as a reaction to aliveness
monitor errors. This is especially relevant for the communication of errors to other components of
the system. Furthermore the details related to scheduling of the generated software components
must be also generated and integrated to the target technology platform.

6.4.2 Context Range Check

Description: the context range check shown in Figure 9 detects errors related to the range of
values provided to it. The context feature allows the specification of different ranges given different
contexts (modes of operation). Furthermore, it is also possible to define what kind of reactions
shall be performed when range errors occur.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 23 (72)

Figure 9 – Context range check meta-model

Semantics: the specification of a context range check requires safety code generators to
generate the context structures which are able to hold context information (e.g. maximum range
allowed) furthermore the generated code shall make use of context information provided by the
system in order to define what are the valid ranges for operation while in the current context. The
context information shall be obtained through specific interfaces generated by the safety code
generator for the concrete range check mechanism. Furthermore generators must generate
interfaces for error communication for each of the specified handling SSR. For example, when a
filter SSR is specified as the reaction for the detection of values above the maximal specified
range the safety code generator must generate the proper interface for communicating this error
and triggering the corresponding handling mechanism.

6.4.3 Gradient Check

Description: the gradient check depicted in Figure 10 monitors the temporal behavior of a given
value and detects when an invalid variation of values happen. This is done through the
specification of maximal and minimal gradient variations and a time delta which is used for the
computation of the gradient. The detection of a gradient error is communicated or handled by
defining a SSR having a handling tactic and using the two possible notifications defined in the
meta-model (gradient too high or too low).

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 24 (72)

Figure 10 – Gradient check meta-model

Semantics: the generation of code for a gradient check mechanism has to take primarily into
account that a gradient is a stateful property. This means that the gradient can only be computed
by using previously measured / observed values. Therefore the generated gradient check
mechanism shall provide a structure where the parameters specified in the SSR are store and
additional structures for storing the previously obtained value. Furthermore the interface for
obtaining the value whose gradient is observed has to be generated together with the required
error communication interfaces. Depending on the generator realization the error handler specified
via SSR can be generated within the gradient check mechanism (e.g. filtering as a handling
mechanism). In the case the handler provides a corrected value the related interface shall be also
generated.

6.4.4 Comparison

Description: the comparison SSR depicted in Figure 11 takes in as input two values and executes
the specified operation over the two inputs. The use of a comparison is especially important when
specifying requirements related to redundant or diverse reading/processing of values and/or
computation of values, etc. The two possible errors defined for this SSR are the Boolean
evaluation of the operation. Depending on the result further reactions can be specified. For
example, given the result of a comparison is false an error handler SSR for providing a default
value could be specified.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 25 (72)

Figure 11 – Comparison meta-model

Semantics: the generation of a comparison operation has to take into account what kind of input
values are provided to the operation (e.g. where do values come from) and the related interfaces
for obtaining these values shall be generated. The generated code has to take care of realizing
the operation taking into account the configured tolerance for the comparison. Furthermore
depending on what kind of reaction is specified the realized mechanism shall either provide an
interface for writing the error or a value if one is to be provided by the mechanism.

6.4.5 CRC

Description: the cyclic-redundancy-check shown in Figure 12 detects errors occurred between
operations on a given value. Usually additional information will be added to the value in order for
the check algorithm to perform validation operations on the value. CRC algorithms require certain
basic parameters which are defined in the meta-model. Additionally it is possible to define
requirements on the possible reactions to CRC errors. These are done through the specification
SSRs having a handling tactic.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 26 (72)

Figure 12 – CRC meta-model

Semantics: the specification of CRC software safety requirements provides flexibility to code
generators regarding the implementation of CRC algorithms. The generators have only to take into
account the CRC configuration parameters defined by the SSRs and to provide the correct
interfaces for the implementation to work. This mean for example that if some kind of preexisting
CRC library is to be used the correct interfaces for the mechanism and for storing the
configuration information of the mechanism have to be generated and the library code does not
need to be generated. Moreover, the interfaces for communicating CRC errors to the target
technology platform have also to be generated for the mechanism and in the case of using a third
party library the interfaces for obtaining error information from the library must also be generated.

6.4.6 Filter

Description: the filtering of values, SSR shown in Figure 13, provides an error handling possibility
for specifications where an error state is only achieved after a given temporal frame of anomalous
behavior. For example, the error state of a temperature sensor is only achieved if for five cycles
the sensor delivers unreliable values. Hence, filtering the values delivered between the first time
an error is seen until the fifth time the error is seen (sequentially in time) can provide the system
certain robustness against sporadic errors (de-bounce). The filter computes a value to be
forwarded to the required interfaces of a given system element according to a given expression.
This expression can take into account, for example, the current value the filter has been provided
with and previous values (e.g. the average value from last 5 samples).

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 27 (72)

Figure 13 – Filter meta-model

Semantics: the requirements on generator implementations posed by the specification of filter
SSR are mainly related to how the filter mechanism is generated. Normally the filtering is highly
coupled with the SSR requiring filtering. Therefore it is recommended that generators implement
one of two cases for generation: coupled generation and stand-alone generation. On the coupled
version of the filter mechanism the filter behavior is generated integrated into the mechanism
implementation requiring filtering. This implies that the mechanism using the filter will also output
the filter value. Hence, an appropriate interface shall be generated within the filter-requiring
mechanism. On the other hand the generation of stand-alone filters requires the interfaces for
receiving input values and sending the filtered values have to be generated. Safety code
generators must observe the definition of previous values for a given filter specification since the
definition of multiple previous values might imply in a temporal relation, meaning that a buffer for
storing the values provided within a time window has to be generated.

6.4.7 Actuator Monitor

Description: the monitoring of actuators, defined via the SSR meta-model depicted in Figure 14,
provides the ability to determine if there are issues with the control loop of a given system. By
observing the feedback read from actuators it can be determined if the actuator is behaving as the
controller expects it to behave. This requires the definition of relationships between input data from
sensors and controller output data. Since the algorithms used to monitor the behavior of actuators
vary significantly the approach taken in the SAFE meta-model is to allow the definition of
monitoring algorithms using external functions (a function in this context is an algorithm executed
by a function call at code level). In this way the monitoring mechanism functionality can be defined
using, for example, Simulink ® [12].

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 28 (72)

Figure 14 – Actuator monitor meta-model

Semantics: the main consequence for safety code generators implementing actuator monitors is
that the behavior of the mechanism might be specified using different technologies (e.g. C-code or
UML models). The generated artifacts have to integrate such technologies and also the target
technology used to execute the system (e.g. AUTOSAR). The safety code generator shall
generate a structure for controlling the execution of the mechanism (buffers for delayed values,
etc.) and interfacing with the behavior realization. Furthermore, interfaces for obtaining the
required data have to be generated. There is a special characteristic regarding actuator monitors
since the required information comes from sensors and from controlling components. This means
that the interfaces have to gather input data coming from the environment and output data being
provided by the system. This characteristic influences how the generated artifacts (code or model
elements) interact with preexisting artifacts. It is also important to achieve the integration at the
scheduling level since the input-output correlation is a temporal correlation and might affect the
monitoring of the system.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 29 (72)

6.4.8 CPU Self-test

 class CpuSelfTest

ChromosomeCpuSelfTest

«enumeration»

CpuTestAlgorithmEnum

 LimitedNumberOfWalkingPatterns

 WalkingBit

 HardwareSupportedTest

CpuSelfTest

Identifiable

CpuSelfTestConfig

- algorithms :CpuTestAlgorithmEnum

- executeInSegments :Boolean

- executionPeriodMs :Integer

- numSegments :Integer

CHROMOSOMEReference

CHROMOSOMEReferences::

Component

CHROMOSOMEReference

CHROMOSOMEReferences::

Node

Identifiable

Tactic::Situation

- description :String

AbstractQuantifiableSafetyRequirement

Requirements::SoftwareSafetyRequirement Tactic

Tactic::Detect

CpuSelfTestDetection CpuSelfTestFailed

+config

11

+detectedSituation

*

+target 1

1

+testedNode

11

Figure 15 – CPU Self-Test meta-model

Description: The CPU Self-test (Figure 15) meta-model allows the periodic testing of CPU on the
specific node and detects when the response to a test is not matching expected. Its configuration
allows performing CPU tests in segmented mode, so that no large timeslot is occupied in the
schedule by the test. The total number of segments and full execution period are then specified as
configuration parameters.

Semantics: the specification of the CPU self-test requirement implies that generators shall
transform the SSR into a component instance and schedule it accordingly to the specified
configuration parameters (to be executed completely or in chunks) and perform the specified CPU
test. Only one instance of such a component instance per ECU is generated, provided that the
highest requirement is satisfied. The generated component shall have necessary interfaces to
communicate errors to other components of the system, or to execute reactions as a direct
response to the detected error. CPU Self-test is specified with a direct reference to the monitored
entity (i.e., target ECU / node for deployment).

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 30 (72)

6.4.9 RAM Self-test

 class MemorySelfTest

MemorySelfTest
Identifiable

MemoryRange

- startAddress :Integer

- stopAddress :Integer

«enumeration»

MemoryTestAlgorithmsEnum

 Galpat

 TransparentGalpat

 Checkerboard

 GenericMarch

 MATS_plus_plus

Identifiable

MemorySelfTestConfig

- executeInChunks :Boolean

- numberOfChunks :Integer

- periodMs :Identifier

- testAlgorithm :MemoryTestAlgorithmsEnum

ChromosomeMemoryTest
CHROMOSOMEReference

CHROMOSOMEReferences::

Node

MemorySelfTestFailed

Tactic

Tactic::Detect

Identifiable

Tactic::Situation

- description :String

MemorySelfTesting

AbstractQuantifiableSafetyRequirement

Requirements::SoftwareSafetyRequirement

+detectedSituation

*

+config

11

+memoryRange

1..*1

+testedNode

1

Figure 16 – Memory Self-Test meta-model

Description: RAM self-test depicted in Figure 16 performs periodic execution of RAM test of
specified memory range with specified memory test algorithm. It allows performing RAM tests in
segmented mode, so that no large timeslot is occupied in the schedule by the test. Total number
of segments and full execution period are then specified as configuration parameters.

Semantics: the specification of the RAM self-test requirement implies that generators shall
transform the RAM self-test detection SSR into a component instance and schedule it accordingly
to the specified configuration parameters to execute (completely or in chunks) with specified
period and perform the specified CPU test. The generated component instance shall have
necessary interfaces to communicate errors to other relevant components of the system.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 31 (72)

6.4.10 Voting

 class Voting

AbstractQuantifiableSafetyRequirement

Requirements::

SoftwareSafetyRequirement

Voter

«enumeration»

VotingAlgorithmEnum

 Median

 Mean

 Maximum

 Minimum

Identifiable

VoterParameter

«enumeration»

VoterActiv ationSchemeEnum

 EventTriggered

 TimeTriggered

Identifiable

VoterConfig

- activationScheme :VoterActivationSchemeEnum

- algorithm :VotingAlgorithmEnum

- consensusThreshold :Integer

- numberOfItems :Integer

ChromosomeVoterParameter

CHROMOSOMEReference

CHROMOSOMEReferences::

Topic

ChromosomeVoter

Identifiable

Tactic::Situation

- description :String
Tactic

Tactic::Handle

- type :HandlingType

VoterValueMismatch

VoterNoConsensus

Voting

+handledSituation

1

+errorSituation

*

+config

1 1 +result

11

+inputData

1..*1

+target 1

Figure 17 – Voter meta-model

Description: Voting (Figure 17) defines a simple redundancy-based monitoring mechanism. Being
configured by number of items to vote on and consensus threshold, voting mechanism allows
binary pair-wise comparison of multiple input items, producing an output item as consensus value.
It features discrepancy reporting via error notifications, different for two cases. If one value is
different in the input array, but consensus could be reached, a “value mismatch” notification is
issued. If consensus can’t be reached on the input set of data elements, “no consensus”
notification is issued, which generally should lead to advanced error handling methods, such as
ECU / node restart or reconfiguration.

Semantics: the specification of the voting requirement implies that generators shall transform the
SSR into a component instance. The generated component instance shall be inserted into the
data path, and inter-component data paths shall be rerouted accordingly. The comparison function
is specified in the mechanism configuration in SSR model, and transformed into a corresponding
configuration of the component instance.

Implementation on target platforms could be performed in two ways. One option is to generate a
separate component instance, and modify the data paths accordingly. The second option is to
generate a wrapper for a component instance consuming data from the voter.

For data-centric platforms like CHROMOSOME generators will transform the SSR in form of a
component instance on its own, so it has to be scheduled accordingly to match input and output
data rates / delays. In a different implementation the generated code becomes a wrapper for a
runnable entity consuming data from the voting component. Additionally, depending on activation
mode the scheduling info (priority / slots / scheduling strategy) need to be generated for the
software item. The generated component instance or wrapper shall have necessary interfaces to

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 32 (72)

communicate errors to other components of the system. It will also be configured by the generator
to match the consensus threshold specified in the voting SSR.

6.4.11 Health Monitor

Description: Health Monitor (Figure 18) performs centralized supervision of the system /
subsystem state and allows execution of preconfigured reactions in response to events, such as a
specific combination of component instance modes, or error notifications from error detection
mechanisms. Corresponding reactions can be configured by specifying Tactics of type Handle
associated with the SSR being source of error notification.

Semantics: specification of Health Monitor implies that Health Monitor shall be generated as a
platform-specific component instance, which is capable of executing various error reactions, both
predefined and user-specified. This means it needs to have sufficient rights to execute signed user
code, internal reactions such as node restart, and so on. Health Monitor configuration shall be
generated as a table / struct array, where each row corresponds to one error condition to be
monitored. Health Monitor also requires generation of communication interfaces not only to receive
notifications, but also to announce state changes for the related system parts.

 class HealthMonitor

HealthMonitor

ChromosomeHealthMonitor

CHROMOSOMEReference

CHROMOSOMEReferences::

Node

ChromosomeErrorHandler

CHROMOSOMEReference

CHROMOSOMEReferences::

Component

AbstractQuantifiableSafetyRequirement

Requirements::

SoftwareSafetyRequirement

Tactic

Tactic::Detect

Tactic

Tactic::Handle

- type :HandlingType

Identifiable

Tactic::Situation

- description :String

HealthMonitorErrorCondition

HealthMonitoring

ChromosomeComponentModeCondition ChromosomeErrorEv entCondition

CHROMOSOMEReference

CHROMOSOMEReferences::

ComponentModeInstanceRef

CHROMOSOMEReference

CHROMOSOMEReferences::

Topic

+detectedSituation

*

+errorSituation

*

+handledSituation

1

+supervisedComponent

1

+node

1

+trigger 1 +trigger 1

Figure 18 – Health Monitor meta-model

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 33 (72)

6.4.12 Heartbeat

 class Heartbeat

Heartbeat

HeartbeatSenderHeartbeatReceiv er

ChromosomeHeartbeatSender
ChromosomeHeartbeatReceiv er

Identifiable

HeartbeatConfig

- deadlineMs :Integer

- periodMs :Integer

AbstractQuantifiableSafetyRequirement

Requirements::

SoftwareSafetyRequirement

Identifiable

Tactic::Situation

- description :String

Tactic

Tactic::Detect

HeartBeatDetection HeartBeatDeadlineMissed

CHROMOSOMEReference

CHROMOSOMEReferences::

Node

+config

11

+detectedSituation

*

+sender 1

1

+receiver 1

1

+monitoredNode

1

+monitorNode 1

Figure 19 – Heartbeat meta-model

Description: Heartbeat (Figure 19) represents a classical pattern of error detection. It performs
periodic check of reachability of one computing node / ECU from another one. It consists of
heartbeat receiver, a primitive implementation of an aliveness monitor containing one checkpoint,
and an implicit event generator, called heartbeat sender. So, heartbeat sender issues a heartbeat
signal once per ‘period’ milliseconds, and heartbeat receiver checks arrival of this signal within
‘deadline’ milliseconds. It should be noted explicitly that deadline computation should include jitter,
clock drift and correspond to a worst case estimate to avoid false positives.

Semantics: the specification of a heartbeat SSR in a SAFE model implies that the generators
shall transform this SSR into a pair of component instances to be deployed on specified target
ECU’s. Schedules of the target ECU’s need to be modified to reach execution rates specified by
the SSR configuration parameters ‘period’ and ‘deadline’. ‘Sender’ component instance shall be
configured to be executed every ‘period’ milliseconds, and shall have an interface allowing to send
data to receiver in a non-blocking manner. ‘Receiver’ shall then be either executed on event arrival
and shall require an interface which allows receiving data from the receiver in a blocking manner
with a timeout ‘deadline’. Alternatively, ‘Receiver’ is executed periodically with a period allowing
detection of ‘deadline missed’ events. In addition, the generated runnable component shall have
necessary interfaces to communicate to the system and especially to report errors to other
components of the system.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 34 (72)

7 Code generation use case for software safety requirements for AUTOSAR

In this chapter the requirements for the generation of software safety requirements based on the
AUTOSAR target platform are provided. The information for software safety mechanisms contains
a detailed description of the necessary input, the generated artifacts and the integration strategy
for preexisting artifacts.

7.1 Use case specification: Control-flow Monitor

In this section the details regarding the usage of control-flow software safety requirements are
given.

7.1.1 Description

In order to guarantee the correct behavior of software elements in a given system the engineer
might specify safety requirements which define what the control-flow of such software elements
should be. The decision of defining such a requirement depends on the technical safety concept
defined for the element in question and on the ISO 26262 requirements for a given ASIL.

In this document, the detailed requirements for the realization of a control-flow monitoring
mechanism using AUTOSAR are described in detail. The requirements provide a solid base for
the implementation of a code generator.

There are two aspects related to control-flow monitoring requirements. One is the set of
requirements towards the implementation of a control-flow monitoring mechanism and the other is
the set of requirements towards the specification of control-flow monitoring requirements. This
section describes the former while the latter is described within section 7.2.

A control-flow monitor specification is decomposed as following:

 Checkpoint specification: state machine like specification of checkpoints and transitions.

 Monitoring element: software component or hardware device responsible for receiving
notifications and checking for valid transitions defined by a valid checkpoint specification.

 Monitored element: element whose control-flow is monitored by the monitoring element

 Control-flow monitoring interface: interface specification for the communication between
monitored elements and the control-flow monitoring element.

 Control-flow monitoring specification: the specification describing a monitoring
mechanism for a given monitored element.

7.1.2 Checkpoint specification

The checkpoint specification is responsible for defining the valid states and transitions to be used
by the monitoring element in order to observe if the monitored element has a valid control-flow.
The state machine is completely independent from the monitored element and can be reused to
monitor different elements given the same control-flow is expected. The checkpoint specification
must contain the following properties according to the:

 States: addressable points within the logical and/or temporal execution of software
elements

 Transitions: elements relating the allowed flow between states

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 35 (72)

 Limits for the number of times a state (checkpoint) is reached (maximum, minimum)

Time window in which the checkpoint can be achieved (time unit is monitoring cycles and not
seconds or milliseconds) options are: not before, not after, at

7.1.3 Control-flow monitoring specification

The control-flow monitoring specification determines which and how elements have to be
monitored. In the context of AUTOSAR three possible monitoring approaches are foreseen:

7.1.3.1 Software component monitoring

 The monitoring of a SWC within AUTOSAR regards the observing of the interaction of a
given SWC with the system. In this case the specification must allow the definition of
interaction rules (e.g. sequence of read/write on the component’s ports).

 Requirements:

 The specification shall allow the referencing of ports and data elements of ports
related to a given software component in AUTOSAR.

 The specification shall allow referencing states in a given checkpoint specification.

 The specification shall allow specifying the relation between ports and data
elements and states in checkpoint specifications based on the kind of access being
realized (e.g. read, write, call, send and receive). See AUTOSAR port interfaces for
more details [13].

 The specification shall allow the definition of read and write (or send and receive)
blocks which have to be related to checkpoint definitions.

7.1.3.2 Internal behavior monitoring

 The monitoring of internal behavior of software components regards the sequence in which
runnable entities, defined in the given internal behavior of AUTOSAR software
components, are executed.

 Requirements:

 The specification shall allow referencing runnable entities within the internal
behavior definition of AUTOSAR software components (also within compositions).

 The specification shall allow the referencing of states defined within checkpoint
specifications.

 The specification shall allow defining the relation of runnable entities and states
within checkpoint specifications regarding the possible operations realized over
runnable entities (e.g. on start runnable entity, on stop runnable entity).

 The specification shall allow the referencing of runnable entity execution constraints
from the AUTOSAR Timing specification.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 36 (72)

7.1.3.3 Runnable entity monitoring

The monitoring of runnable entities is the most fine-grained monitoring of all kinds of monitoring
defined in this document. It allows the monitoring of the behavior of the runnable entity itself,
namely, the implementation of its behavior. However, this depends on the interface between safety
engineers and software developers. Since the checkpoints are not defined by the developer, some
kind of exchange of information has to happen between the safety engineer and the software
developer in order to define how the checkpoints related to the safety concept and to the source
code. The AUTOSAR part of the development (e.g. runnable entity variable access) can be
generated automatically, but calling interface from the runnable implementation has to be explicitly
considered by the developer.

 Requirements:

 The specification shall allow references to runnable entities within AUTOSAR
software components and software component compositions.

 The specification shall allow references to variable access elements within
AUTOSAR runnable entities specifications.

 The specification shall allow referencing states defined within checkpoint
specifications.

 The specification shall allow the definition of identifiers to be used within the
runnable entity’s code for reporting a checkpoint event

 Checkpoint events are for example "checkpoint reached" and possible
additional parameters.

 The specification shall allow the definition of relations between the events on
runnable entity’s variables (read/write), points within the code of runnable entity and
states defined within checkpoint specifications.

7.1.4 Control-flow monitoring interface

In order to realize control-flow monitoring within AUTOSAR a communication between the
monitored elements (SWC, runnable, internal behavior) and the monitoring element (e.g.
watchdog manager) is necessary. This is realized through port prototypes. These port prototypes
reference port interfaces. These port interfaces must conform to the specification of the
AUTOSAR watchdog manager interfaces.

The interfaces for control-flow monitoring have to be generated automatically by code generators.
The requirements to be fulfilled by code generators are:

 An interface for the notification of checkpoints reached has to be generated. The interface
shall provide a client server operation named according to the AUTOSAR specification for
the notification of checkpoints.

 An interface for the notification of aliveness events has to be generated. The interface shall
provide a client server operation named according to the AUTOSAR watchdog manager
specification for the notification of an update to the aliveness counter.

 A mode group and the corresponding modes for a given supervised element, for more
details refer to the AUTOSAR watchdog manager specification.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 37 (72)

 A mode switch interface for the notification of mode changes related to the monitoring of a
given supervised element, referencing the corresponding mode group.

7.1.5 Monitoring element

The monitoring element, that is, the component responsible for observing the control-flow of
supervised elements, is realized using the AUTOSAR watchdog manager. The Service Software
Component for the watchdog manager is responsible for providing the necessary interfaces for the
application software components to report their status. The monitoring and check of correctness of
control-flow information is realized within the watchdog manager service software component.

The code generator shall generate the following elements for the monitoring element:

 A service software component type defining the watchdog manager

 For each monitored/supervised element a provided port prototype on this
component has to be generated. The interface of the port prototype depends on the
type of supervision (control-flow or aliveness).

 For the service software component an internal behavior element has to be
generated

 For each type of monitoring specified for the monitoring element a runnable
entity shall be generated.

 For each provided port of the service software component, an operation
invoked event element within the internal behavior shall be generated, the
corresponding runnable entity shall be referenced and the corresponding
port and operation referenced.

 For each of the provided ports of the service software component a port api
option element shall be generated, the corresponding provided port defined
and a port defined argument value generated with a unique ID identifying
the referenced port.

 In case there is a reaction for given control-flow monitoring errors the
following elements shall be generated:

 For each element specified within the reaction block a Provided
Mode Port for status reporting has to be generated.

7.2 Code Generator Inputs

In order to specify the requirement for a control-flow monitor, the engineer needs to provide
different resources to code generators. In the following sections these resources are described in
details.

7.2.1 Control-flow monitor software safety requirement

The first resource to be provided by the engineer is the control-flow monitor software safety
requirement. The input is a model corresponding to the SAFE control-flow monitor meta-model,
shown in Figure 20.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 38 (72)

Figure 20 – SAFE meta-model for the specification of a control-flow monitor software safety

requirement

Tool implementers might provide the safety engineer with support for specifying a control-flow
monitoring requirement. In the next section some DSL constructs which map to the SAFE meta-
model for control-flow monitor specification are described. These constructs can be taken as
example for the definition of tooling support.

The final decision on what notation to take is to be taken by the tool implementer. The description
of the DSL constructs are based on the different kinds of monitored described previously.

7.2.1.1 Software component control-flow monitoring

In the case of monitoring the control-flow of a software component the abstraction level is the
interaction of this component with the system. This means the reading and writing of values to the
component's ports. This monitoring could lead to the fact that the orchestration of the operations in
the ports of different software components within a single software component composition can be
specified by the engineer. In the list below some possible ways to model such a requirement are
described:

 Variant 1:

monitor software component <<reference to autosar SWC>> { policy =
read-before-write }

 Variant 2:

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 39 (72)

monitor software component <<reference to autosar SWC>> { policy =
write-before-read }

 Variant 3:

monitor software component <<reference to autosar SWC>> { policy =
rw-block
 read_block b1 { (<<reference to autosar required port>>)
(, <<reference to autosar required port>>)* }

 write_block b2 { (<<reference to autosar provided
port>>) (, <<reference to autosar provided port>>)* }

 read_block b3 { (<<reference to autosar required port>>)
(, <<reference to autosar required port>>)* }

 write_block b4 { (<<reference to autosar provided
port>>) (, <<reference to autosar provided port>>)* }
 }

 Variant 4:

monitor software component <<reference to autosar SWC>> { policy =
sequence

 (<<reference to autosar provided port>> | <<reference
to autosar required port>>) (-> <<reference to autosar provided
port>> | <<reference to autosar required port>>)*

 }

 Variant 5:

monitor software composition <<reference to autosar composition>> {
policy = sequence

 (<<reference to autosar component>>::<<reference to
autosar provided port>> | <<reference to autosar
component>>::<<reference to autosar required port>>) (-
> <<reference to autosar component>>::<<reference to autosar
provided port>> | <<reference to autosar component>>::<<reference
to autosar required port>>)*

 }

The type of interaction can also be defined based on port properties, for example, send / receive
or call operations. Furthermore, in order to support compositions the DSL could allow the
referencing of the composition in question at the beginning of a statement and within the definition
of the monitor requirement, the engineer would refer to a specific component within the
composition, as shown in Variant 5.

7.2.1.1.1 Internal behavior control-flow monitoring

In the case of monitoring the control-flow of a component’s internal behavior it is interesting for the
user to refer to runnable entities and to define a certain ordering of execution of the runnable
entities which shall be ensured / monitored. The definition of a (partial) order of runnable entities
execution could be specified within the DSL. The user has to be able to refer to the timing
specification from within the DSL.

Options:

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 40 (72)

 Variant1:

monitor internal behavior of <<reference to autosar SWC>> ::
<<reference to internal behavior of the SWC>> { control-flow =
<<reference to AUTOSAR Timing specification>> }

 Variant 2:

monitor internal behavior of <<reference to autosar SWC>> ::
<<reference to internal behavior of the SWC>> { control-flow =
<<reference to state machine specification>> }

 State machine specification provides events related to runnable sequences (e.g.
startEvent, stopEvent). This can be used by the engineer to define transitions ->
(st1, startEvent(runnable1)) > st2

7.2.1.1.2 Runnable control-flow monitoring

The challenge for monitoring the control-flow of runnable entities is that the instrumentation of the
runnable entity’s code is necessary. Furthermore, the correct control-flow of the code is not known
a priori, that is, at AUTOSAR level, and the safety engineer is possibly not able to determine what
a correct control-flow from the runnable entity’s implementation perspective looks like.

One possible solution for getting around this kind of issue is to allow a checkpoint specification to
be defined and offer the developer of the runnable entity’s code to call checkpoints which are
automatically mapped to the checkpoint specification. This specification would be a kind of
exchange format between the safety engineer and the software developer responsible for a given
runnable entity’s implementation. This however implies that the safety engineer is aware of
implementation details of the runnable entity in question.

Since it is not completely clear how this kind of monitoring could be seamlessly integrated into the
development process of safety critical systems, it will not be described in detail in this document.
The suggestions described previously could be used by tool implementers in order to create code
generators able to integrate the monitoring requirements of safety engineers with the code
produced by software developers.

7.2.1.2 System/Software architecture

Besides the requirement specification for control-flow monitoring the engineer has to provide the
AUTOSAR model containing the software architecture and the AUTOSAR model containing the
system specification determining the deployment of software components to ECUs.

7.2.1.3 Configuration information

The engineer has also to provide configuration information to the code generator in order to
specify where generated artifacts are kept, for example a target source folder for generated
source code, target model folder for generated model elements and a documentation target folder
for documentation related to the generated artifacts.

7.2.2 Code generation

The code generation step for the control-flow monitoring software safety requirement produces the
implementation of the logic for controlling the correct transitions specified by the requirement. The
code shall provide the necessary interfaces for integration with the AUTOSAR Watchdog Manager
Service Software Component Type described in the generated artifacts section (7.3).

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 41 (72)

Code generators are allowed to define how the meta-model elements are mapped to code. The
only restriction is that the generated code is able to validate the control-flow using the Control-flow
Monitor SSR defined by the engineer.

Furthermore, since the definition of a control-flow monitor is supported by the AUTOSAR 4.0
standard it is possible to rely on the Watchdog Manager implementation of an AUTOSAR stack
complying with the 4.0 version of the standard. In this case there is no need for generating code
on the side of the safety code generator, rather only the necessary AUTOSAR model elements.

7.3 Generated artifacts

The specification of control-flow requirements using a DSL abstracts the engineer from the
realization details of such requirements in a given target platform. The DSL constructs described
in the previous chapter provides the engineer with simple constructs which refer to some
AUTOSAR elements in order to allow the specification of control-flow monitoring requirements.
These requirements can then be automatically realized within AUTOSAR through the use of a
code generation framework.

In this section the artifacts created by the code generation framework are described in more detail.
It shall serve as a guideline for tool implementers creating code generators. The following
description is however not to be taken as base implementation since it might not provide all the
elements necessary for realizing control-flow monitoring in a real AUTOSAR environment.

7.3.1 Service software component type

A ServiceSWComponentType AUTOSAR element is generated in order to define the
WatchdogManager AUTOSAR component type. It provides the interfaces necessary for the
interactions of regular AUTOSAR software components with the watchdog manager for control-
flow and aliveness monitoring.

Name: WdgM.

Ports:

 For each supervised entity specified using the DSL an AUTOSAR provided port is
generated.

 Each provided port provides the corresponding interface for the specified
monitoring (either control-flow or aliveness).

 For each error which the watchdog manager is able to communicate a provided port is
generated.

 Each provided port provides the interface corresponding to the mode (error) which
is being reported.

Internal behavior:

 For each supervised entity a PortAPIOption has to be defined in order to inform the
corresponding runnable entity which control-flow structure has to be used for the
monitoring activities.

 For each port API option a unique ID shall be defined, used internally by the
AUTOSAR WdgM BSW module code.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 42 (72)

 For each supervised entity an OperationInvokedEvent has to be generated and mapped to
the corresponding runnable entity.

7.3.2 Software component prototype

A software component prototype instantiating the watchdog manger in a composition software
component type in AUTOSAR has to be created in order to provide the monitoring mechanisms to
application software components. The corresponding connections of each supervised entity
(monitored by the watchdog manager) to the component's port are also created.

7.3.3 Client server interface

For each type of monitoring (control-flow / aliveness) a client-server interface is generated.

 Control-flow monitoring: provides the operation for notifying about checkpoint reached
events. See AUTOSAR watchdog manager specification for the requirements on the
operation name.

 Aliveness monitoring: provides the operation for notifying the update of the value of
aliveness counters. See AUTOSAR watchdog manager specification for the requirements
on the operation name.

7.3.4 Mode switch interface

For each possible error to be communicated from the watchdog manager a mode switch interface
is created and provides the corresponding mode group for the interface.

7.3.5 Mode group

For each set of modes used for error reporting by the watchdog manager a
ModeDeclarationGroup is generated, the errors related to this group are generate within it. The
mode group is referred to by mode switch interfaces used for error reporting.

7.3.6 Mode declaration

For each error reported by the WdgM a ModeDeclaration element is generated.

7.3.7 ECU Configuration

The code generator is responsible for generating the ECU configuration file necessary for the
AUTOSAR watchdog manager to work. This file contains different elements and the generation of
each element is described below.

WdgM ECUModuleDef

In order to configure the AUTOSAR watchdog manager as a control-flow monitoring mechanism
an ECU Configuration file is generated. The file specifies the configuration of a WdgM
ECUModuleDef element.

WdgMSupervisedEntity

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 43 (72)

For each supervised entity (monitored element) specified by the safety engineer a
WdgMSupervisedEntity entry is generated in the ECUConfiguration file. It receives a unique ID
controlled by the code generation framework.

Checkpoints

Within each WdgMSupervisedEntity entry, the corresponding checkpoints are generated. The
checkpoint generation is realized depending on the control-flow monitoring specification. The
generation framework takes as input in most cases a state machine representation of the control-
flow and generates the necessary checkpoints in the watchdog manager configuration.

WdgMInternalTransition

Each checkpoint is connected to the subsequent one through a set of transitions. Each transition
is created as a WdgMInternalTransition by the generator. The transitions are derived from the
control-flow monitoring specification.

If the control-flow specification defines an initial state the generator defines within the ECU
configuration file which initial checkpoint is to be used as initial checkpoint by the watchdog
manager monitoring code.

7.4 Modification to existing AUTOSAR elements

Depending on the type of monitoring specified different adaptations to the AUTOSAR model are
necessary. Since the adaptations are highly dependent on the code generation utilized to realize
the control-flow monitoring requirement, the adaptations to existing AUTOSAR models are not
described in detail in this document. The following sections described in prose how such
modifications could look like for a code generation framework.

7.4.1 Software component monitoring

In order to monitor the interactions of a software component (mainly the activity on provided and
required ports) either an adaptation to the RTE generation process has to be done in order to
intercept calls to the RTE related to a given port. Or the monitored component has to be integrated
into a wrapper component which will handle the interception before the call gets to the RTE.

Variant 1 - RTE Adaptation

In this case the RTE is adapted to trigger the watchdog manager monitoring mechanism before
the real call to the RTE function for reading/writing sending/receiving values to ports is called. This
implies that implicitly the RTE calls the watchdog manager to inform that a certain checkpoint has
been reached.

Variant 2 - Wrapper component

When monitoring a software component using a wrapper component, extra wrapper software
component type and prototype are generated. It provides the same interfaces as the ones
provided by the SWC being monitored. Furthermore, it intercepts the communication between the
monitored component and the RTE in order to realize the monitoring. For this reason, the wrapper
component is generated with runnable entities which are responsible for the interception of RTE
interactions, triggering of the watchdog manager component through the corresponding monitoring
ports and forwarding the value to the real target of the monitored RTE interaction (e.g. delivering a
received value to the required port of the monitored component).

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 44 (72)

7.4.2 Internal behavior monitoring

When defining the monitoring of the internal behavior of a given AUTOSAR SWC the engineer
defines the possible valid sequences in which runnable entities can be executed. In order to
monitor this sequence, the SWC being monitored has to be adapted so that the required ports for
the control-flow monitoring are defined within the SWC. Furthermore, the runnable entities have to
be adapted to interact with the watchdog manager. If the integration with the RTE is planned –
checkpoint notifications done by the RTE – there must be no adaptation to the monitored software
component whatsoever.

In case no adaptation of the RTE is possible the following SWC adaptations are necessary and
will enable the monitoring of the runnable sequence:

SWC modifications:

 Generator creates new ports required for the monitoring on the given software component.

 Runnable entities are modified to access ports and report to the watchdog manager at the
start and end of the runnable.

 A macro for the runnable entities is generated and configured as main function for the
runnable entities.

 The macro is then the function which is called by the RTE when the runnable entity
is supposed to be executed and could have the following structure:

void runnable_entity_being_monitored_<<name>> () {
CALL_WDGM_START_(RUNNABLE_ID);
original_runnable_function();
CALL_WDGM_STOP(RUNNABLE_ID);

}

 The macro is generated within header files by the generator

7.4.3 Runnable entity monitoring

For the monitoring of the internals of runnable entities a state machine is generated and a set of
macros for checkpoint notification are also generated. The software developer of responsible for
the runnable entity is also responsible for calling the corresponding macros in the correct
sequence and the macros report the checkpoints to the watchdog manager realizing the control-
flow monitoring.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 45 (72)

8 Detailed Specification of code generation for software safety requirements for

CHROMOSOME

In this chapter the requirements for the generation of software safety requirements based on the
CHROMOSOME target platform are provided. The information for software safety mechanisms
contains a detailed description of the necessary input, the generated artifacts and the integration
strategy for preexisting artifacts.

8.1 CPU Self-Test

The CPU Self-test SSR (meta-model depicted in Figure 15) provides the possibility to detect errors
of the CPU. It is one of the mechanisms providing the startup proof test and allowing periodically
scheduled testing of the CPU in case latent fault detection is also critical for the mission duration.

CPU on the specific node is required to perform a challenge computation, and results are checked
against expected output. Detection of an error results from a mismatch of response and
expectation.

8.1.1 Inputs

The SSR Specification allows performing CPU tests in one of two main modes: proof test mode
and segmented mode, so that no large timeslot is occupied in the schedule by the test. Total
number of segments and full execution period are then specified as configuration parameters.

Parameterization provides some flexibility in specifying the mechanism SSR for CHROMOSOME.
SSR has to be configured according to the meta-model (Figure 15). One or more algorithms can
be selected to specify, which types of tests have to be included. Execution of test in segments can
also be specified by setting executeInSegments flag to true, then numSegments determines how
many segments should be scheduled within executionPeriodMs time interval. Otherwise
(executeInSegments is false) the test is required to be performed as a whole uninterruptable
sequence once per executionPeriodMs or more often. For CHROMOSOME, the testedNode
parameter references specific CHROMOSOME node, where the test should be scheduled.

Software Architecture: CpuSelfTest shall be integrated as an instance of a depend_cpuSelfTest
component, already implemented in CHROMOSOME and described in the safety-specific manifest
model. Alternatively, a specialized variant of depend_cpuSelfTest shall be generated as a C
module, and an instance of this specific variant shall be integrated into the existing
CHROMOSOME system.

8.1.2 Code generation

As specified in the Subsection 5.3.2, code generation happens on the basis of a SAFE model and
CHROMOSOME model. One component instance of CpuSelfTest is generated per requirement.

Code generator is required to perform the following transformations:

 If executionPeriod is equal to zero, the SSM is considered to be a startup proof test,
otherwise as a periodic test. In the former case, the schedule S, within which the SSM will
be scheduled, is S = {STARTUP}, and in the latter case it is S = {NORMAL}.

 In case of specified executionPeriod a component instance shall be scheduled with period
Texec < executionPeriodMs / numSegments.

 The algorithms field along with numSegments should be transferred to the configuration of
component instance implementing the SSM.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 46 (72)

 Deployment of the generated SSM should occur on the hardware node, specified by the
testedNode reference.

Constraints for code generation:

Only one instance of a periodic CpuSelfTest is generated. Whenever a concurring
requirement is found, the configuration of an existing CpuSelfTest instance is updated to meet the
strictest requirement (all specified algorithms and smallest period).

8.1.3 Generated artifacts

The implementation of code generator shall provide the following model elements that make
further code generation and traceability possible:

CHROMOSOME deployment model

 An instance CpuSelfTest1 of depend_cpuSelfTest with the following parameters:

 Execution period = Texec

 Active schedule set = {S}

 Number of segments = numSegments

SAFE model

 Reference to the component instance CHROMOSOMEReferences::Component with
the same name (“CpuSelfTest1”).

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and
satisfyingTargets referencing the CpuSelfTest1 component instance.

Further process of code generation happens within target technology configuration tool and is
described in Appendix B – CHROMOSOME.

8.2 RAM Self-Test

The Memory Self-test SSR (meta-model depicted in Figure 16) provides the possibility to detect
permanent errors in RAM cells or logic. It is one of the mechanisms providing the startup proof test
and allowing periodically scheduled testing of RAM in case latent fault detection is also critical for
the mission duration.

CPU on the tested node executes the specified test on the preconfigured memory address range.
As periodic execution of such tests at runtime requires copying of data and is a costly operation, it
is possible to specify that the test is executed in chunks, thus splitting the address range into
multiple chunks and executing the test in smaller portions.

8.2.1 Inputs

The SSR Specification allows performing RAM tests in one of two main modes: proof test mode
and segmented mode, so that no large timeslot is occupied in the schedule by the test. Total
number of segments and full execution period are then specified as configuration parameters.

The SSR has to be configured according to the meta-model (Figure 16). One or more algorithms
can be selected to specify, which types of tests have to be included. Execution of test in segments
can also be specified by setting executeInChunks flag to true, then numberOfChunks determines
how many segments should be scheduled within executionPeriodMs time interval. Otherwise
(executeInChunks == false) the test is required to be performed as a whole uninterruptable
sequence once per periodMs or more often. One or more memory ranges limited by startAddress

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 47 (72)

and stopAddress can be specified to be tested. For CHROMOSOME, the testedNode parameter
references specific CHROMOSOME node, to which the testing mechanism should be deployed.

Software Architecture: MemorySelfTest shall be integrated as an instance of a
depend_memorySelfTest component, already implemented in CHROMOSOME and described in
the safety-specific manifest model.

8.2.2 Code generation

As specified in Subsection 5.3.2, code generation happens on the basis of a SAFE model and
CHROMOSOME model. One component instance of MemorySelfTest is generated per
requirement.

Code generator is required to perform the following transformations:

 If periodMs is equal to zero, the SSM is considered to be a startup proof test, otherwise as
a periodic test. In the former case, the schedule S, within which the SSM will be scheduled,
shall be set to S = {STARTUP}, and in the latter case it is set to S = {NORMAL}.

 In case of specified periodMs the execution period should be
Texec < periodMs / numberOfChunks.

 Generate the component instance. The ‘algorithms’ parameter values along with
numberOfChunks and startAddress/stopAddress should be transferred to the configuration
of component instance implementing the SSM.

 deployment of the generated SSM should occur on the hardware node, specified by the
testedNode reference.

8.2.3 Generated artifacts

The implementation of code generator shall provide the following model elements that make
further code generation and traceability possible:

CHROMOSOME deployment model

 An instance MemorySelfTestX of depend_memorySelfTest with the following
parameters:

 Execution period = Texec

 Active schedule set = {S}

 NumberOfChunks = numberOfChunks

 StartingAddress = startAddress

 EndAddress = endAddress

SAFE model

 Reference to the component instance CHROMOSOMEReferences::Component with
the same name (“MemorySelfTest1”).

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and
satisfyingTargets referencing the MemorySelfTest1 component instance.

Further process of code generation happens within target technology configuration tool (XMT) and
is described in Appendix B – CHROMOSOME.

8.3 Voter

Voter is an SSR (meta-model depicted in Figure 17) providing the possibility to specify comparison
of multiple values with each other and provide a consensus value based on a specified voting
algorithm.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 48 (72)

Voter is usually applied in context of redundant data items being collected from different sources,
so that certain tolerance between the values can take place. The values are compared against
each other, and discrepancies are reported. At the same time a valid consensus value can be
provided in most cases.

8.3.1 Inputs

Specification: Voter is specified with a configuration and specification of input data and resulting
data item.

Configuration of Voter should be performed in conformance to the meta-model. inputData are
parameters, on which voting should happen; result specifies Voter output. In CHROMOSOME
systems, inputData and result contain references to CHROMOSOME topics. result is correctly
selected using algorithm if number of inputs (matching with specified tolerance) is larger or equal
to consensusThreshold.

Software architecture: The basis for Voter implementation is a generic implementation of voting
functionality within the depend_voter CHROMOSOME component. The component is configurable
and implements all the voting algorithms specified.

The depend_voter implementation allows snapshot comparison with a specified algorithm of an
arbitrary number of input ports VoterIn and output of a result into a single output port VoterResult.
Error management interface is also provided as specified in Section 5.1.

8.3.2 Code generation

As specified in Subsection 5.3.2, code generation is performed on the basis of a SAFE model and
CHROMOSOME model.

While transforming the models, safety code generator is required to perform the following model
transformations:

 Generate a CHROMOSOME component model “VoterNooM”, where N is the value of
consensusThreshold parameter, and M is the value of numberOfItems. The generated
component will have M required input (subscription) ports {Input1, Input2 …} and two
output (publication) ports: {result, errorIndication}.

 Select a node for deployment. In case of one sink for the topic referenced by the result
parameter.

 Generate an instance X (incremental serial number) of the component VoterNooM on the
selected node. Execution period Tx of the voter is set to least common multiple of
execution periods of the sinks of the topic referenced by the result parameter.

 Transfer the parameters algorithm and tolerance to the configuration of the generated
instance

 Generate relevant SAFE model entities and references

8.3.3 Generated artifacts

The implementation of code generator shall provide the following model elements that make
further code generation and traceability possible:

CHROMOSOME manifest model

- A component VoterNooM as described above

CHROMOSOME deployment model

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 49 (72)

 An instance VoterNooMX of VoterNooM on monitoredNode with the following
parameters:

 Execution period = Tx

 Active schedule set = {NORMAL}

 Algorithm = algorithm

 Tolerance = tolerance

SAFE model

 A reference to the component instance CHROMOSOMEReferences::Component with
the same name (“VoterNooMX”).

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and
satisfyingTargets referencing the VoterNooMX component instance.

Further process of code generation happens within target technology configuration tool (XMT) and
is described in Appendix B – CHROMOSOME.

8.4 Health Monitor

The Health Monitor SSR (meta-model shown in Figure 18) makes centralized supervision possible
and allows execution of preconfigured reactions in response to events, such as a specific
combination of runnable modes, or error notifications from error detection mechanisms.

Health monitor is not an implicitly mandatory requirement, but its use is strongly recommended,
while the execution of reactions to detected situations requires privileges that other components
could fail to possess (to execute signed user code, internal reactions such as node restart, and so
on).

8.4.1 Inputs

The SSR specification is trivial, and almost the entire important configuration relies on safety code
generator. The SSR for CHROMOSOME is specified with a single parameter node, which
specifies, on which instance of CHROMOSOME runtime the monitoring should take place.

Software architecture: The implementation of the SSR shall instantiate a separate
CHROMOSOME component for the SSM and shall schedule it appropriately. The corresponding
implementation of the SSM in CHROMOSOME depend_healthMonitor is configured by providing a
table of errorConditions and corresponding errorHandlers. While errorHandlers are simply function
pointers, errorConditions (also “monitors”) are Boolean functions that can be of two predefined
types: stateMonitor and indicationMonitor. When executed, depend_healthMonitor iterates through
the table, evaluating errorConditions, and executes the corresponding errorHandler if the condition
fires (evaluates to true).

The functionality of indicationMonitor is based on a subscription to a healthIndications topic, whose
attribute eventId should match the id configured in indicationMonitor to fire the errorCondition.
Thus, any detector SSM can publish healthIndication’s with a globally unique eventId, and if
HealthMonitor is configured to process such indications, necessary reaction will be executed.

The functionality of stateMonitor is based on user components publishing their state, and
conditions defined in stateMonitor which receive it and evaluate the state changes. This
mechanism is currently out of safety code generation scope.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 50 (72)

8.4.2 Code generation

As specified in Subsection 5.3.2, code generation is performed on the basis of a SAFE model and
CHROMOSOME model. Health monitor generation differs from generation of code for detection
SSMs, while the error condition/handler table needs to be filled based on the model of the system
as a whole, so safety code generator shall process HealthMonitor SSRs before the other ones.

One CHROMOSOME component instance is generated per node.

While transforming the models, code generator is required to perform the following
transformations:

 Iterate through all SSR specifications in SAFE model, filtering out the components
deployed to the node where HealthMonitor is to be deployed

 Optional: generate the monitorTable:

 For each SSR find all Tactics of type Handle

 Find matching Detect tactics

 For each matching Tactic generate an entry in the SSM configuration parameter
monitorTable:

 [indicationMonitor (with a new unique eventId), <matching ChromosomeHandler
function>].

8.4.3 Generated artifacts

The implementation of code generator shall provide the following model elements that make
further code generation and traceability possible:

CHROMOSOME deployment model

 An instance HealthMonitor of depend_healthMonitor at the specified CHROMOSOME
node with the following parameters:

 Active schedule set = {NORMAL}

 Monitor table: filled as described above

SAFE model

 References to the component instance CHROMOSOMEReferences::Component with
the same names (“HealthMonitor”).

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and
satisfyingTargets referencing the HealthMonitor component instance.

Further process of code generation happens within target technology configuration tool (XMT) and
is described in Appendix B – CHROMOSOME.

8.5 Heartbeat

The Heartbeat SSR (meta-model shown in Figure 19) allows for monitoring reachability and
responsiveness of one computing node / ECU from another one.

It consists of heartbeat receiver, a primitive implementation of an aliveness monitor containing one
checkpoint, and an event generator, called heartbeat sender. So, heartbeat sender issues a
heartbeat signal once per ‘periodMs’ milliseconds and heartbeat receiver checks arrival of this
signal within ‘deadlineMs’ milliseconds. It should be noted explicitly that deadline specification
should take possible jitter and clock drift into account and correspond to a worst case estimate to
avoid false positives.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 51 (72)

8.5.1 Inputs

The SSR specification implicitly defines two parts of the heartbeat pattern that need to be
allocated to (typically) different CHROMOSOME nodes. The SSR for CHROMOSOME is specified
with a sender period periodMs, receiver deadline deadlineMs. monitorNode specifies, on which
node the receiver should be located, and monitoredNode specifies, which CHROMOSOME node
will become a sender of the heartbeat signals.

8.5.2 Code generation

While transforming the models, safety code generator is required to perform the following
transformations:

 the parameter deadlineMs is to be transferred into the configuration of HeartbeatReceiver
instance;

 execution period is set for HeartbeatSender Ts = periodMs and HeartbeatReceiver:

Tr < deadlineMs / 2;

 two CHROMOSOME component instances are generated: one of HeartbeatSender
component, and one of HeartbeatReceiver. Deployment of the generated SSM component
instances should occur on the hardware nodes, specified by the respective monitorNode
and monitoredNode references.

Constraints:

 2 * periodMs < deadlineMs

8.5.3 Generated artifacts

The implementation of code generator shall provide the following model elements that make
further code generation and traceability possible:

CHROMOSOME deployment model

 An instance HeartbeatSenderX of depend_heartbeatSender on monitoredNode with the
following parameters:

 Execution period = Ts

 Active schedule set = {NORMAL}

 Am instance HeartbeatReceiverX of depend_heartbeatReceiver on monitorNode with
the following parameters:

 Execution period = Tr

 Active schedule set = {NORMAL}

 Deadline = deadlineMs

SAFE model

 References to the component instances CHROMOSOMEReferences::Component with
the same names (“HeartbeatSenderX”, “HeartbeatReceiverX”).

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and
satisfyingTargets referencing the HeartbeatReceiver and HeartbeatSender component
instances.

Further process of code generation happens within target technology configuration tool (XMT) and
is described in Appendix B – CHROMOSOME.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 52 (72)

9 Validation of generated artifacts

There are different approaches to validate the artifacts generated by code generators. The
approaches vary basically depending on the type of artifact generated: source code, model
elements, documentation and traceability information.

Depending on the target platform being used for system, software and hardware modeling, the
output of safety code generators for the validation of the generated artifacts might vary. For
example, if the validation of the generated elements is realized by external tools safety code
generators might generate either source code for tests or test models which are used as input by
external tools used in the validation process.

9.1 Source code validation

In order to validate the generated source code, code generators can also provide support for the
generation of unit tests or component tests for the software safety requirements provided as input.
In most cases the values provided within the software safety requirement model can also be used
to generate tests for in-range and out-of range tests.

For example, the specification of a range-check software safety requirement will contain the range
boundary values which in turn can be used for the generation of tests.

9.1 Model element validation

In the case of generated model elements, code generators can either provide the validation of the
generated models according to the meta-models of these models, or using external model
validation tools. Furthermore in case the code generator is integrated into a modeling tool which
supports the generated models, additional information can be added to the generated models in
order to provide visual or textual feedback on the implications of the changes triggered by the
output of the code generator.

9.2 Traceability information validation

Regarding traceability information, code generators can provide the expected coverage
information from generated elements. This information can in turn be used by tools in order to
demonstrate coverage or traceability in a more general context, such as the argumentation of
coverage and traceability within a safety case.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 53 (72)

10 Conclusions and Discussion

In this document the approach for modeling software safety requirements (SSRs) developed
during the SAFE Project was described. The approach has been consolidated with the SAFE
meta-model, which allows capturing technical safety requirements, refining technical safety
requirements into SSRs and providing traceability information between system artifacts and
requirements.

Furthermore, the document provides a specification for the implementation of safety code
generators which (semi-)automatically transform SSRs into safety critical code and model artifacts.
This specification is provided in a generic way so that different target technology platforms can be
used for the realization of the SSRs. For reference purposes, the document also provides
examples for the realization of code generators for specific target platforms such as AUTOSAR.

The SAFE meta-model for software safety requirement specification was defined in order to
formalize given software safety mechanism patterns which are commonly used while developing
safety critical systems. The patterns were identified through a state of the art research and
classification of safety mechanisms types. Afterwards, the patterns were captured within the SAFE
Project as meta-model elements. The meta-model elements capture the essential information for
the configuration and deployment of safety mechanisms and allow code generators to produce the
necessary artifacts (code and model elements) to realize the requirements.

The formalization of such patterns eases the argumentation of safety and the execution of safety
analysis still in an early development phase since analyses can be realized on requirements level
specified based on the preliminary system architecture. Furthermore, not only the automatic
generation of code and model artifacts is possible, but also the automatic consolidation of safety
arguments, also based on the SSRs, into the safety case argumentation.

With more fine-grained SSRs formalized in the meta-model a more structured argumentation on
safety can be done. Moreover, activities related to analysis such as FTA can be eased since SSRs
can be linked to other model elements indicating that a safety measure is provided in order to
cope with errors defined using the SAFE error model.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 54 (72)

11 References

[1] www.autosar.org

[2] http://www.fortiss.org/en/research/projects/chromosome/

[3] http://www.misra-c.com/Activities/MISRAC/tabid/160/Default.aspx

[4] International Organization for Standardization: ISO 26262 Road Vehicles – Functional Safety
Part 6

[5] http://www.artop.org/arunit/

[6] http://www.east-adl.info/

[7] http://www.autosar.org/download/R4.0/AUTOSAR_EXP_VFB.pdf

[8] http://www.artop.org/artext/

[9] http://www.eclipse.org/xtend/

[10] SAFE Full Project Proposal (FPP)

[11] http://www.autosar.org/download/R4.0/AUTOSAR_SWS_WatchdogManager.pdf, Page 8,
Section 1.1 – Supervised Entities and Checkpoints

[12] http://www.mathworks.de/products/simulink/

[13] http://www.autosar.org/download/R4.0/AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[14] Weihang Wu and Tim Kelly. 2004. Safety Tactics for Software Architecture

Design. In Proceedings of the 28th Annual International Computer Software and

Applications Conference - Volume 01 (COMPSAC '04), Vol. 1. IEEE Computer

Society, Washington, DC, USA, 368-375.

[15] http://www.hq.nasa.gov/office/codeq/doctree/871913.htm - NASA software safety handbook

[16] http://www.autosar.org/download/R4.0/AUTOSAR_TR_SafetyConceptStatusReport.pdf

[17] http://download.fortiss.org/public/xme/xme-0.6-tutorial.pdf

[18] http://www.autosar.org/download/R4.0/AUTOSAR_SWS_WatchdogManager.pdf

[19] http://www.eclipse.org/xtend/

[20] http://www.stack.nl/~dimitri/doxygen/index.html

[21] http://www.gtk.org/gtk-doc

http://www.autosar.org/
http://www.fortiss.org/en/research/projects/chromosome/
http://www.misra-c.com/Activities/MISRAC/tabid/160/Default.aspx
http://www.artop.org/arunit/
http://www.east-adl.info/
http://www.autosar.org/download/R4.0/AUTOSAR_EXP_VFB.pdf
http://www.artop.org/artext/
http://www.eclipse.org/xtend/
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_WatchdogManager.pdf
http://www.mathworks.de/products/simulink/
http://www.autosar.org/download/R4.0/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
http://www.hq.nasa.gov/office/codeq/doctree/871913.htm
http://www.autosar.org/download/R4.0/AUTOSAR_TR_SafetyConceptStatusReport.pdf
http://download.fortiss.org/public/xme/xme-0.6-tutorial.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_SWS_WatchdogManager.pdf
http://www.eclipse.org/xtend/
http://www.stack.nl/~dimitri/doxygen/index.html
http://www.gtk.org/gtk-doc

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 55 (72)

12 Acknowledgments

This document is based on the SAFE and SAFE-E projects. SAFE is in the framework of the
ITEA2, EUREKA cluster program Σ! 3674. The work has been funded by the German Ministry for
Education and Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of
the Economy and Finance (DGCIS). SAFE-E is part of the Eurostars program, which is powered
by EUREKA and the European Community. The work has been funded by the German Ministry of
Education and Research (BMBF) and the Austrian research association (FFG) under the funding
ID E!6095. The responsibility for the content rests with the authors.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 56 (72)

Appendix A – Classification of Software Safety Mechanisms

In Sections 6.4, 7 and 8, a detailed specification of software safety requirements has been
presented for a selected group of safety mechanisms. However, there are many other
mechanisms which allow the realization of software safety requirements.

SAFE has done an extensive research [14][15][16], review of ISO 26262 recommendations and
internal discussions amongst project partners regarding safety mechanisms which can be
implemented in software, namely, which could be specified as SSRs. For these mechanisms a
classification has been done together with a technical description and semantic specification for
each of the mechanisms considered in the classification.

The classification results obtained during the activities of WT 3.6 are presented in this section in
order to allow further extensions of the SAFE meta-model to incorporate mechanisms not yet
modeled but already researched during the SAFE project.

General Classification of Mechanism Types

The safety mechanisms were initially divided into three groups. The definition of each group has to
do with the separation of concerns of each of the mechanisms. The first group is fault avoidance
and it regards mechanisms which implement fault avoidance techniques. For instance, a given
system might fail if a failure manifests itself as a fault to another co-existing (e.g. executed within
the same controller) although independent (e.g. belonging to different protected memory
partitions) part of the system. These mechanisms prevent faults from happening and are therefore
classified as fault avoidance mechanisms. In order to clarify the terminology the following
considerations have to be made:

Fault – abnormal condition that can cause an item to fail (ISO 26262 – Part 1 –
Vocabulary) (e.g. bit flip in memory leads to erroneous address in memory).

Error – manifestation of a fault (ISO 26262 – Part 1 – Vocabulary) (e.g. invalid address in
pointer variable).

Failure – termination of the ability of an item to perform a function as required (ISO 26262
– Part 1 – Vocabulary) (e.g. crash due to invalid pointer).

Errors are the manifestation of faults and therefore cannot be avoided. In order to prevent an error
from happening one must avoid the fault that causes the error to appear. Therefore the term

“Fault avoidance” is used to describe mechanisms which prevent the manifestation of faults in the
form of errors.

The second group of mechanisms is responsible for the detection of errors, namely error detection
mechanisms. The error occurs because the fault which manifests itself as an error could not be
avoided. In this case the system has to provide means to detect that an error has occurred. This
group has been subdivided into two categories. The first category groups mechanisms where the
error detection depends only on the current data, i.e. the current port input value. Therefore this
group is named stateless error detection. The second category contains mechanisms which in
order to be implemented need previous information about the computation process. In this case
these mechanisms are called stateful error detection, e.g. logical monitoring of program sequence.

The third group represents mechanisms which handle errors once they have been detected. There
is a dependency between error detection and error handling since the error handling mechanisms
must become aware of errors detected by the error detection mechanisms.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 57 (72)

Figure 21 – Software safety mechanism structuring and classification

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 58 (72)

Semantics

In the following the semantics of each mechanism that can be automatically generated by a safety
code generator is described. The semantics serves as a base for specification of the generation
process and also for the definition of meta-model constructs which can be used by engineers to
specify the safety mechanisms used in a given system. In the semantics specification, when the
result of a computation or mechanism is false, the interpretation shall be that an error has
occurred. A generated safety mechanism can react to detected errors e.g. by reporting the error to
the error forwarding or communication system which could then in turn trigger error handling
mechanisms for the given error.

Fault Avoidance

Fault avoidance mechanisms prevent errors triggered by faults from manifesting. The mechanisms
are responsible for impeding the execution of actions (e.g. reading memory regions, activating
runnables) which if not impeded would lead the system to an unsafe state.

Partitioning

With partitioning the reader shall understand memory partition and the deployment of functions
(runnable or task) to this partition. This allows the implementation and argumentation of freedom
from interference. Since this technique prevents errors related to illegal memory access and the
interference between software elements it is classified as a fault avoidance safety mechanism.

Capabilities:

Prevents errors caused by invalid or illegal access to certain memory regions. This mechanism
prevents independent elements from causing/suffering interference from arbitrary system
elements.

Semantics:

partition X,Y,…

system element X,Y,… will be executed in the same partition

Interlock

The interlock mechanism avoids errors by requiring a pre-defined sequence of actions to be
executed before the targeted action can actually be executed. Through an interlock an error is
triggered when incorrect sequence of actions for a given resource protected using this mechanism
are executed.

DataInterlock

A Data interlock mechanism computes the plausibility of two or more data values from distinct
channels which refer possibly to different temporal states and feeds the result to a software
component, such that the result value is interpreted as limiter or enabler. Thus, hazardous effects
as a result data failure are avoided. The forwarded result could also be non-discrete.

Capabilities:

Prevent erroneous data communication when the current state is an error state

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 59 (72)

ControlFlowInterlock

A Control flow interlock provides one data value (discrete or non-discrete) as enabler for an
activity, e.g. the execution of a runnable entity. Thus, a runnable can be blocked as long as its
execution could have hazardous effects. The interlock is defined as the correct sequence or set of
control flow actions which must be executed in order to produce a valid state for the controlled
activity.

Capabilities:

Prevent erroneous activation/execution of system element when the current state is an error state

Replication

A replication mechanism is responsible for copying data multiple times in order to reduce the
probability of a fault manifesting itself. A clear example that describes this concept is message
replication on a bus. The replication requires no computing on the receiver side and a simple
repetition on the sending side. The mechanism realizes fault avoidance by reducing the probability
that a bus fault manifests itself as a “message not received” error. The main characteristic of this
mechanism is that it does not require any processing on the receiver side, contrary for example of
a mechanism which saves the same data on different memory regions whereby in this case the
receiver has to check different locations and compare data.

Capabilities:

Avoid random faults during the transmission of values from manifesting

Semantics:

replicate X Y times

repeat Y times the action executed for X

Error Detection

The mechanisms described below comprise stateless and stateful safety mechanisms. The text
structure will not be subdivided into these classes due to readability of section numbering. For a
structural overview please refer to Figure 21. In the following an explanation about the stateful and
stateless definitions is given.

Stateless error detection is the term used in this document to describe error detection
mechanisms which detect system errors independently of system state or state history. The
mechanisms do not require information about previous system to determine if a given error
occurred. An example is a CRC check which does not require information about previous values to
determine if data has been corrupted.

Stateful error detection refers to mechanisms where the error detection does not only depend on
the computation performed by the mechanism but also on previous and current system state. For
example, a gradient check mechanism will always depend on system timestamp (be it discretized
in steps or other time units) and system state (i.e. previous data value).

ParityCheck

Parity checkers might check values for different numbers of parity bits. The most common case is
one bit parity. However this only enables the detection of odd bit errors. More parity bits can be
used to increase error detection capabilities.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 60 (72)

Capabilities:

Detect data corruption during data communication or data storage.

Semantics:

checksum X with Y bits parity

parity(X,Y) ? true : false

MessageReadbackCheck

A message read back check provides support for validating if sent date was correctly sent. This is
usually done at hardware only or hardware dependent levels. The reason is that the validation of
sent data happens at the “transport” layer. For example, while transmitting CAN controllers must
read back the bits sent on bus (“listening”) to make sure there are no collisions and that bus
arbitration worked correctly. However at this level, the mechanism is not controlled by software but
actually by the transmission hardware at physical level. The software part can control the
execution of such mechanism.

Capabilities:

Detect hardware errors on communication components or transmission medium

ChallengeResponseCheck

This mechanism consists of a set of challenge-response pairs whose challenge is sent to another
element on the system and the result of the computation is checked against the response value
previously known to the sender.

Computations can be as simple as the storing of a value in a register and sending it back, to more
complex schemes such as calculating some hash or cryptographic function or even consider
system state, time and history and then sending the result back.

The specification of the mechanism can consist of a sequence of challenge-response values or of
a single one.

Capabilities:

Detect hardware, state or communication errors

Semantics:

challenge comp with values=[(challenge,response)]+

foreach ch,re in values do:

 ret = let comp compute ch

if (ret != re) then

 error detected

 endif

 done

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 61 (72)

SensorCorrelation

This mechanism correlates the value of two similar sensors against each other. For example two
sensors with inverted slopes will allow the detection of measurements due to corruption of one or
both signals. The values must first be converted to the same slope.

Capabilities:

Detect errors near sensor operational limit or sensor measurement errors

Semantics:

correlate s1[-x] and s2[-y] with maximum tolerance X

where:

-x,-y = discrete time step in the past (or zero)

s1-x = The value of s1 at time current_time-(x time steps)

s2-y = The value of s2 at time current_time-(y time steps)

s1value(y) = <<user defined function>>

s2value(z) = <<user defined function>>

v1 = s1value(s1)

v2 = s2value(s2)

compare abs(v1-v2) lte X

SensorRationalityCheck

The rationality check of sensors is done using different input sources. The rationality comes from
the comparison of different sensor values and the interrelation between their values. Example
given by the ISO 26262 is the rationality check of air flow on the engine. The throttle position,
manifold pressure and mass air flow values are taken and converted to the same unit of measure
(air flow). The values are then compared to check for possible sensor errors.

Capabilities:

Detect sensor measurement errors

Semantics:

rationalize s1[-x],s2[-y],s3[-z] with maximum tolerance X

where:

-x,-y,-z = discrete time step in the past (or zero)

s1-x = The value of s1 at time current_time-(x time steps)

s2-y = The value of s2 at time current_time-(y time steps)

s3-z = The value of s3 at time current_time-(z time steps)

s1value(y) = <<user defined function>>

s2value(z) = <<user defined function>>

s3value(t) = <<user defined function>>

--

v1 = s1value(s1)

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 62 (72)

v2 = s2value(s2)

v3 = s3value(s3)

(compare abs(v1-v2) lte X and

compare abs(v2-v3) lte X and

compare abs(v1-v3) lte X)

AnalyticRedundancy

The analytic redundancy mechanism realizes redundancy through a model of the element realized
redundantly. The redundancy is made through computation of values following the analytical
model and comparing the computed value with the value received from the element for which the
mechanism is providing redundancy.

Capabilities:

Detect erroneous values provided by system elements

LogicalControlFlowMonitoring

The logical monitoring (e.g. AUTOSAR WDM logical monitoring features) enables the engineer to
specify the logical behavior according to which a given software element must be executed. The
steps might be specified using, for example, state machines.

Capabilities:

Monitor logical behavior of elements and detect logical ordering errors

Semantics:

check logic of X with SM Y

--

(s,s’) in Tx and (s,s’) in Tsmy ? true : false

Where:

s,s’ are states of X

 (s,s’) is a transition from s to s’

Tx = the set of (s,s’) from X

Tsm = the set of (s,s’) from Y

DataSequenceMonitor

This mechanism monitors the sequencing of data elements which arrive via a communication link
and are forwarded to system elements. Data element sequencing requires a dedicated timestamp
or sequence counter field in the monitored VariableDataPrototype.

The expected data sequence can also be defined as a more holistic data flow model, e.g. based
on petri nets, which would allow the engineer to describe more complex consistency constraints
for compositions of software components.

Capabilities:

Detect errors in the ordering of data messages

Semantics:

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 63 (72)

monitor sequence of element with f(x)

where:

f(x) = <<user defined function>>

--

if compare f(last_id) eq element.id then

last_id = element.id

 else

error

When the data sequence is defined through petri-nets or similar formalism the semantics shall be
the following:

monitor sequence of E with P

where:

E = set of elements which have their sequence monitored

P = formalism which describes the interdependency between element sequences

--

nE = compute(E,P)

for each ne,le,e in nE,lE,E

if ne.id = e.id

le.id = e.id

 else

error

 end for each

DeadlineSupervision

The deadline supervision mechanism monitors for the deadline of specific parts of a given
software component. Deadlines can have a minimum and maximum parameter in order to define a
time window in which the SW-C shall notify the WD that a given part of the component executed/is
going to execute. Deadlines are seen as time windows between checkpoints by AUTOSAR 4.0.
Therefore, one way to see deadlines is the time window between the reaching of a checkpoint A
and the transition to checkpoint B.

This mechanism is a simple case of the LogicalControlFlowMonitoring and thus easier to
implement and use.

Capabilities:

Detect the violation of deadlines for given functions

Semantics:

supervise X on deadlines [{cpA,cpB,min,max}]+

configures AUTOSAR WDM to check X according to checkpoints and deadlines specified by
deadlines

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 64 (72)

DataTimeoutMonitoring

Data timeout monitoring is a mechanism which monitors the arrival interval of data. It differs from
maximum age monitoring in the sense that data can have a short validity but a greater periodicity
(e.g. data from sensors are valid only for 3ms and a given software unit expects valid data every
10ms). This means that the time for reaction (processing of data) is short (e.g. 3ms) but the
periodicity of data is longer (e.g. 10ms).

Capabilities:

Detect timing violations on communications/data periodicity

Semantics:

timeout after X units

where:

units = system time unit (e.g ms, us, ns)

triggers error if no data is received within X time units

(could be implemented as annotation e.g. @timeout(5 ms))

MaximumAgeMonitoring

The maximum age monitor shall check if a given message/data is still valid according to an
expiration date. This expiration date determines how long a message/data can be used before its
age can influence the behavior of the system. There are implications when using this mechanism
regarding the synchronization of clocks within the (possibly distributed) system architecture.

Capabilities:

Detect validity/expiration violations on data usage

Semantics:

maxage of A is X

cur_timestamp - A.timestamp < X ? A : invalid

Error Handling

In this section the mechanisms for error correction compiled for WT 3.6 are described. Once
more, the document structure will not reflect the structure depicted in Figure 21 due to readability
reasons.

DefaultValue

This mechanism realizes masking of errors in the sense that erroneous values are not forwarded
to the system but substituted by a default and valid value instead. The mechanism can silently
realize the feature or together with the masking notify / register an error.

Capabilities:

Prevent erroneous values from being forwarded to the system

Semantics:

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 65 (72)

X defaults to last

--

if an error occurs the value for X defaults to the last valid value received

X defaults to Y

--

if an error occurs the value for X defaults to Y

X defaults to average

--

if an error occurs the value for X defaults to the average of the valid values received

Reporting

A reporting mechanism handles errors by communicating them to interested parties. When a given
error occurs and the reporting mechanism is assigned as handling mechanism the error shall be
somehow persisted and communicated to other system elements which might be influenced by the
error.

Capabilities:

Handle errors which do not directly impact a system element but may lead to system failure if not
noticed by other components.

Semantics:

on X report to Y

where:

X := error event (detected)

Y := set of system elements (e.g. SWC)

--

for each y in Y do:

notify y of X

 end for each

Reset

A reset mechanism can be defined to help the system recover from an error. The reset can be
applied to a given software partition (memory partition). Meaning the application deployed to this
partition is reset. Or it can be defined for the whole system (ECU) and the MCU will be reset.

Capabilities:

Handle errors which require a system element or system restart

Semantics:

reset mcu on X

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 66 (72)

if event X happens reset mcu

reset partN on X

if event X happens reset partition partN

Where:

X is an event which might be triggered, for instance, when a supervised entity violates a
checkpoint/deadline

Degradation

Systems can fail gracefully if the specification defines methods through which the functionality of
the system can be reduced when error occurs. One idea is to specify a degradation tree, as shown
in Figure 22, in which the different functionality levels (qualitative or quantitative) are specified.
Upon an error functionality is degraded and when no solution is available an error is reported.

Figure 22 – Suggested approach for degradation modeling

The approach could be to specify the functionality of system components in a way that a logical
sequence for degradation is achieved, degradation tree could be modeled in a manner similar to
Boolean circuits. This could be in turn transformed into code that disables/enables given functions
in order to maintain system quality or system safety level. However, the specification of
degradation behavior might not be that simple.

Capabilities:

Keep system operational even when the normal operation of the system might be hindered by
errors or damaged system elements.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 67 (72)

Appendix B – CHROMOSOME

CHROMOSOME (often abbreviated by “XME”) is a domain-independent, data-centric middleware
for cyber-physical systems. From the point of view of an application component, CHROMOSOME
abstracts from basic functionality that is traditionally found in operating systems and middleware,
like scheduling and communication. Apart from that, it offers model-driven design tools with code
generation capabilities that allow a user to design the distributed system in an abstract way.

Apart from its configurable nature, CHROMOSOME sets a high goal to support adaptive system
development by allowing dynamic reconfiguration of a distributed application at runtime. The
configuration of an application is changed during a special “plug” phase, which ensures that
runtime system is reconfigured consistently to keep real-time guarantees.

Some more information on core CHROMOSOME concepts can be found in CHROMOSOME
tutorial [17].1

Generation of Runtime for CHROMOSOME

Chromosome development takes place in a manner similar to the AUTOSAR concept of VFB [7].
The model specifies some aspects of deployment, but allows low-level aspects to be generated by
configuration tools without influencing the functional architecture (e.g., the data channels between
component instances as well as the glue code to instantiate components are generated during
configuration phase). Configuration of a distributed application developed with CHROMOSOME
succeeds via a special configuration tool, which generates the final deployment in an automated
model-based fashion.

The configuration tool co-developed and provided with CHROMOSOME is called CHROMOSOME
Modeling Tool (XMT). XMT addresses in first place the needs of configuring the data-centric
communication through generation of necessary marshaling and network communication
components, which are not explicitly specified by the user. It also generates instance information
for components configured to be executed as parts of distributed application. Scheduling of
components is also done automatically (user specifies the period of application execution, and
schedules, in which the component should be present).

CHROMOSOME Model types

In XMT, a model of a system is composed of multiple models defining specific aspects of the
middleware configuration ([17], sec. 5):

 Topic dictionary model: defines the set of topics and associated attributes to be used by
the component interfaces

 Manifest model: defines component blueprints (also referred to as “component types”),
their configuration parameters and interfaces (input/output ports).

 Device types model: defines the types of hardware nodes available for deployment and
their communication-specific properties like network interface types.

 The Deployment model links the other models together. Here the distributed application is
specified: components described by the Manifest are instantiated at specific nodes, and

1 All the presented information is valid for CHROMOSOME release 0.6.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 68 (72)

ComponentInstance-specific configuration is done (execution period and component-
specific parameters).

Not to go deep into details, it is worth mentioning that a component type modeled in the Manifest
model corresponds to a component implementation in form of a C module within the
CHROMOSOME source code or specified by user.

Figure 23 – CHROMOSOME Modeling Tool (XMT)

Manifest

Component1

Ports

Parameters

Component2

...

Deployment

Node1

ComponentInstance1

Node2

...

ComponentInstance2

Device Types

DeviceType1

NetworkInterface1

DeviceType2

...

Topics

Topic1

DataTypeDefinition

Topic2

...

Variable1

Figure 24 –Different meta-models within CHROMOSOME meta-model in XMT

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 69 (72)

An Example of Code Generation Workflow for CHROMOSOME

In this section a general outline of code generation scenarios is provided, where SAFE SSRs are
implemented by CHROMOSOME SSMs.

To preserve source model traceability, the model transformation tool shall not operate on input
model files, but rather on a copy of the SSR model expressed in terms of SAFE meta-model.

An overview of the workflow for the code generation process is depicted in Figure 25.

Scope of WT3.6

Safety Code
Generator

SSM source code

Configuration
Tool

XME Models with SSMs

App + SSM Deployment

App + SSM Manifest

App + SSM Topics

Configuration
Tool

Testbench Models with SSMs

Mock + SSM Deployment

Mock + SSM Manifest

Mock + SSM Topics

SAFE Manifest
SAFE.xmm

Safety-specific Topics

Cmakelists
.txt

main.c

Glue code

doxygen

DocumentationBuild
definition

Application source
code

SAFE model

SSR1

SSR2

SSR3

XME App Models

App Deployment

App Manifest

App Topics
Cmakelists

.txt
main.c

Glue code

doxygen

DocumentationBuild
definition

Mockup source
code

Node projects

Testbench
projects

SAFE model

SSR1

SSR2

SSR3

XME ref

XME ref

XME ref

Figure 25 – Illustration of the code generation workflow for CHROMOSOME

The models and other inputs specified in the workflow need to be described in finer detail. Typical
transformations performed on those models also need to be specified.

CHROMOSOME models

The model of a CHROMOSOME system is transformed into C code by a CHROMOSOME-specific
code generation tool (to distinguish from safety code generator, this tool is further called
configuration tool). A configuration tool supplied with CHROMOSOME is CHROMOSOME
Modeling Tool (XMT). Configuration tool performs integration of predeveloped C components with
custom configuration of such components provided by the CHROMOSOME deployment model
and instantiation of data flow components between them with generated CHROMOSOME runtime.

CHROMOSOME by initial design features no safety view on the system as a whole, and provides
only implementations of component behavior in form of a library of software modules implemented
in C, which integrate into a health management subsystem through tool-supported code
generation process (e.g., through code generation with XMT).

To improve the situation and simplify the development of safety code generators, a
CHROMOSOME manifest model defining safety components has been created. It can be imported
in the form of “SAFE.xmm” manifest by any other CHROMOSOME model, and then used to
specify instances within the deployment model.

In our preliminary approach the generated CHROMOSOME models always import “SAFE.xmm”
and rely on the components modeled in this manifest model.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 70 (72)

Figure 26 – Manifest model with components specification to support WT3.6 SSM

generation

SAFE model

A model acting as an instance of SAFE meta-model shall be used as input for SSR generation.
This model can be presented in SAFE interchange format, in terms of a subset of SAFE meta-
model implemented in an isolated modeling tool, or in a textual language derived from such a
meta-model subset.

For prototyping reasons within WT3.6 the relevant subset of SAFE meta-model has been
implemented using EMF (Eclipse Modeling Framework) partially using SAFE Technology
Platform’s ecore as a basis for building such a prototype.

Safety code generator

The relationship between the SAFE and CHROMOSOME models is established within the safety
code generator logic based on matching entity names and enforcement of a global naming
convention. The safety code generator mainly acts as a model transformation tool rather than
code generator.

Transformation of multiple input models (predefined CHROMOSOME model and SAFE SSRs) can
be implemented using one of the numerous model transformation frameworks. Almost every
modeling framework or tool today is accompanied by at least one model transformation
framework. To be mentioned as an example only, Eclipse Modeling Framework and the Xtend
framework [19] may be used, which provides rich capabilities in specification of meta-models,
model transformation and code generation.

The following subsections discuss the necessary steps that safety code generator shall perform:

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 71 (72)

Generation of additional artifacts into the CHROMOSOME model

New model entities shall be generated in the CHROMOSOME models, such as new topics,
CHROMOSOME components and CHROMOSOME component instances. The possible generated
entities are specified in this section in a generalized form, and defined more precisely in the
following section, where safety code generation for specific SSRs is discussed.

1. Chromosome component instances are normally generated to implement an SSR. Such

component instances perform required detection or handling of errors.

For the sake of example, let us take a look at a simple system with two components, Sensor

and Actuator, which are connected to each other. Sensor publishes topic pressureValue, and

Actuator subscribes to this topic. All of the components are running on a single node. An

example SSR on such a system is to perform periodic CPU tests of the node hardware. Such a

requirement leads to generation of an instance of xme_core_depend_cpuTest component with

configuration parameters inferred from the SSR specification.

2. If the number of input data items for an SSR is not known in advance (e.g., for Voter SSR it is

a part of SSR specification), models of components with required number of input ports need

to be first generated into the manifest model.

3. Some SSRs require for their implementation, that the data flow between the component ports

is changed. In this case before a component instance is generated, new topic definitions need

to be generated, manifest and deployment model for the related component(s) need to be

updated with the re-routed topic as port data item.

For example, instantiation of plausibility checking components like RangeCheck requires such

an update of the dataflow. In the example case the generator shall create a new topic with

name “rangeNotChecked_pressureValue”, and update the deployment model and manifest, so

that the source component generates the new topic, and an instance of Actuator subscribes to

the original one. RangeCheck instance has then a subscription to

rangeNotChecked_pressureValue and publishes pressureValue.

4. Some components require more complex queries and modifications being performed on the

input models. For example, HealthMonitor requires iteration through all other SSRs for the

reaction configuration table to be generated.

Generation of error detection SSRs is performed sequentially one-by-one, allowing an easy query-

and-update workflow for safety code generator. One exception is error management components.

Error management for CHROMOSOME is centered on using HealthMonitor. All CHROMOSOME
components matching the detector SSRs have the following configuration parameters: a Boolean
flag localHandling indicates whether detected errors should be handled by the specified function,
and handler – name of the provided function. Thus there has to be a common step in generation
of all detector SSRs: if a HealthMonitor is present on the node, where the detector SSR will be
implemented, localHandling is set to false. Otherwise, localHandling is set to true, and handler is
filled in by the corresponding ErrorHandler, which is found by exploring the Tactics of subclass
Handle, which refer to the same Situation as the Detect Tactics associated with the detector SSR.
It is the job of safety code generator to acquire error management information from the model and
apply it consistently throughout the generation process.

Generation of references to the generated artifacts within the SAFE model

SAFE meta-model allows referencing CHROMOSOME entities. Such references shall be created
by the code generator. The references created in the SAFE model shall be bound to the related
SSRs by the Satisfy requirements relationships.

SAFE – an ITEA2 project D3.6.b

 2011 The SAFE Consortium 72 (72)

In the above example, the CpuSelfTest SSR should be bound to the instance of the

xme_core_depend_cpuTest component, as shown in the below figure.

Generation of tests

 As it is not possible to directly test the code generated within such a setting, generation of
testbench models is proposed. Generated safety component implementing SSM specified by a
respective SSR is tested within a testbench project, which is a CHROMOSOME system model with
publishers and subscribers mocked. SSM components that detect hardware errors only (like
CpuSelfTest realization) shall be testable through introduction of a private interface for injecting
errors by the testbench.

Additionally, to support test generation, library of mockup component implementations in form of C
code has to be provided.

Generated documentation

Generated component instance models in CHROMOSOME models shall be annotated in a way
that the configuration tool is capable of generating source code comments or documentation
based on the annotations. In case of generated comments, documentation could be later build by
document generation tools, such as, for example, Doxygen [20], gtk-doc [21] or similar. The
annotation shall include information on the source SSR and other related component instances (if
any).

Deployment generation

The output of safety code generator is a deployment specification in form of a CHROMOSOME
deployment model (and possibly topic dictionary and manifest, if required). The code generator
performs necessary conversions from the SSR specification to extract information necessary for
scheduling and extension of data flow. The deployment model specification for every generated
component instances includes:

 Scheduling parameters

 Schedules (node states), in which the component should be executed

 Execution period in milliseconds

 Component-specific parameters defined by the component manifest. For specific components
implementing SAFE SSMs the configuration parameters are discussed in respective
subsections of the next Section.

The specification from the deployment model is satisfied by XMT configuration tool. It performs
schedule generation and generates data flow components, thus enabling the seamless integration
of data-centric components into the system in a fully automated manner. Generation of source
code from the CHROMOSOME model results in the following items for each CHROMOSOME
node:

 Code for configured components in form of component/function wrappers (see [17] for details)

 Configured CHROMOSOME runtime code (“main.c”):

 Configuration of schedule

 Configuration of the data-centric communication (including data flow components for
marshaling/demarshalling and communication over network/bus)

 Glue code to start and initialize all configured components

 Build definition files to enable project compilation and documentation generation from source
code (Make / CMake / other build tool).

