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3 Executive Summary 

This deliverable describes in detail the requirements regarding the generation of code for software 
safety mechanisms. There are two main targets for code generators within WT3.6: AUTOSAR [1] 
and CHROMOSOME [2]. For each of these targets there are elements which are realized using C 
code and elements which are realized using specific formats related to each technology (e.g. 
ARXML for AUTOSAR). The details about code and additional information to be generated by 
code generators implemented in the context of the SAFE project are specified for central meta-
model elements. 

The main goal of this document is to provide a solid base of information regarding the mapping of 
meta-model elements to elements pertaining to the target technology supported by specific 
generator implementations. For given elements examples of possible realizations (code and target 
technology information) are provided. These examples shall only be used as guidance and do not 
strictly specify how given meta-model elements are to be generated. 

Code generators implemented according to SAFE must comply with the semantic specification of 
safety mechanisms given in this document. However, if the implementation regards the detailed 
mechanism generation description in sections 7 and 8, code generators can deviate from the 
standard structure defined in this document provided a rational for it. 
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4 Introduction 

The development of systems for the automotive domain functionality is either realized as software 
elements, hardware elements or both. The development of safety critical systems for the 
automotive domain implies additional requirements for the realization of functions which in turn can 
influence how software and hardware elements are developed. In this document the development 
of software based functionality in compliance to the ISO 26262 is addressed regarding the ISO 
26262 part 6 requirements allocated to the product development phase at the software level. 

According to the ISO 26262, during the software development phase one of the first tasks to be 
executed is the definition of software safety requirements (SSR). These requirements shall be 
derived from the technical safety concept, more concretely technical safety requirements used as 
input for this phase. Therefore before automatically generating software safety mechanisms it is 
important to be able to specify such SSRs.  

In WT3.6 software safety requirements have been assumed to be the starting point for the 
implementation of automatic generators. These requirements usually express patterns regarding 
the safety measures to be applied on a given software system in order to realize the specified 
technical safety concept. The approach taken by WT 3.6 is to require generators to be developed 
based on a formal specification of specialized software safety requirements. In the case of SAFE 
this formalism is the SAFE meta-model. 

The SSRs provide the necessary information for the generation of software safety mechanisms. 
Within WT 3.6 the realization of software safety mechanisms (SSM), namely their implementation 
as architectural elements or C code, is seen as the fulfillment of SSRs. 

By processing the specified SSRs it shall be possible to automatically generate SSMs and to 
generate additional information regarding the traceability link between generated SSMs and the 
originating SSRs. This link back to the specification of safety related elements allows the 
traceability requirement to be fulfilled and a complete chain linking implementation to specification 
to be achieved. The SAFE meta-model provides a construct for managing the artifacts obtained 
via generative approaches for SSR realization. 

4.1 Scope of WT 3.6 

In the context of work package 3 – Model based development for functional safety, work task 3.6 
is responsible for the identification of architectural and software patterns for functional safety 
measures and furthermore for the evaluation of how suitable generative approaches can be for the 
automatic realization/implementation of such architectural and software based measures. The 
results obtained within the work task are condensed in this deliverable and encompass: 

 The identified software and architectural patterns commonly used in the realization of 
technical safety concepts 

 The specification of the information required for the realization/implementation of evaluated 
patterns 

 The requirements on tools realizing generative approaches for the implementation of such 
patterns. 

4.2 Structure of this document 

In the next sections the details regarding the meta-model elements of the software safety 
requirement specification language and the required contract between meta-model and safety 
code generators are defined. In section 5 the approach for modeling SSRs and generating 
software safety mechanisms proposed by WT 3.6 is described in depth and when possible 
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examples regarding the realization of generators is given. Section 6 provides a detailed view on 
SSR and SSM semantics, on the required information for the generation of SSMs and the on 
mapping of SSRs to SSMs. Sections 7 and 8 provide a detailed specification for a subset of the 
mechanisms described in this document. Section 9 provides an overview on how the generated 
artifacts can be validated and tested. Finally Section 10 presents the achieved goals of WT3.6 
regarding safety code generation and software safety requirements. 
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5 Proposed approach to model software safety requirements and generate software 

safety mechanisms 

In this section the details of the approach proposed by WT3.6 for the specification of software 
safety requirements and the generation of software safety mechanisms are described. First the 
modeling of software safety requirements approach used in WT3.6 is described. Moreover, the 
approach taken for the realization of generators based on the modeling formalism for SSRs is 
presented. Finally examples for the specification and generation regarding the two main target 
technologies considered within WT3.6 (AUTOSAR and CHROMOSOME) are given. 

5.1 Modeling 

The safety requirements specific to software elements of an item are commonly refined up to the 
point where concrete implementations of functionality fulfilling these requirements can be provided 
by software engineers. For example, the functional safety concept required by the ISO 26262 is 
done taking into account elements of the preliminary architecture of the item. As the development 
moves forward more concrete concepts are defined and finally requirements are specified for 
concrete item configurations (hardware and/or software). In the case of WT 3.6 these are software 
safety requirements and they are related to the concrete software architecture and software 
elements providing functionalities to the item. 

Ultimately the modeling formalism used to specify SSR is the SAFE meta-model. The SAFE meta-
model is to be considered the basis for the exchange format between the different tools used 
during the safety lifecycle of a product. However the SAFE meta-model does not provide syntactic 
sugars and does not worry about ease of use on the part of the user (engineer) modeling SSRs. 
For this reason it might be interesting to allow SSRs to be modeled using a formalism which better 
suits specific situations. 

Usually software safety requirements will be expressed or defined for concrete system software 
architectures. Therefore it is very beneficial if the specification of such SSRs is able to be 
integrated to the formalism used to define the system software architecture. For example, if an 
UML composite structure diagram is being used to model the item architecture ports and 
interfaces the formalism for specifying SSRs could be an UML profile. Afterwards the formalism 
used to model SSRs can be automatically transformed into a SAFE model. 

The recommendation from SAFE regarding the modeling of software safety requirements is that 
modeling should happen with the support of a modeling tool which provides a more specialized 
language (e.g. textual language) which directly relates to the modeling context (e.g. requirements 
on items designed using CHROMOSOME). The models created with such a language should be 
transformed into the SAFE exchange format and this could in turn be used by safety code 
generators. A more detailed example of how such an approach would look like is given in Section 
5.3. 

5.2 Generation 

In order to generate software safety mechanisms generators implemented based on SAFE shall 
support the processing of SAFE conformant input, namely, software safety requirement 
specifications in the SAFE exchange format.  

5.2.1 Workflow 

The SAFE meta-model provides so far three possibilities for code generators to process 
specifications: 
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1. Process specifications in an agnostic way where the software safety requirements are simply 
SAFE SSRs and are not related to any target technology. In this case the generator must be able 
to interpret generic mechanisms. The consequence of this approach is that a lot of information 
related to the target technology platform might be missing. One possible solution would be to add 
the missing information as configuration information for given SSR specifications. For example, an 
agnostic gradient checker could be configured with information regarding AUTOSAR and 
automatic code generation would then be possible.  

2. Process specifications in which SSRs are specialized into more concrete SSRs (e.g. a built-in 
self-test requirement). In this case it is clear for the generator which kind of software safety 
mechanism has to be generated for the SSR.  

3. Process SSR specifications which define a concrete SSR for a given target technology (e.g. an 
AUTOSAR alive monitor). Hence, the generator is provided with information necessary for 
generating and integrating the generated artifacts into preexisting models and code. 

Regarding the generation of artifacts the generators implemented according to this specification 
can either take as basis for the generation the SAFE meta-model or any intermediary 
representation derived from the SAFE meta-model. It is common sense in the model driver 
development community to base code generators on intermediate representations this is also the 
recommendation of WT 3.6. The code generators shall allow the users to configure output targets 
for the different types of artifacts being generated this provides the flexibility of integrating 
generated artifacts to preexisting artifacts (e.g. project folders). 

5.2.2 Generated artifacts 

Which artifacts are generated based on the software safety requirements specification using 
SAFE depend on the what kind of requirement is specified, what target technology is used and 
what artifacts already exist. There are four main types of artifact which are usually generated, 
these are: code, models, test data (unit tests, interface tests, etc.) and traceability information. 
These artefacts are addressed in next sections. 

5.2.2.1 Code 

Whenever code is to be generated, requirements regarding the use of the generated code shall be 
taken into account (e.g. ASIL level). Code generators must, for instance, state according to which 
standard is the code generated. For example a code generator producing C code would state it 
generates MISRA C [3] compliant code if that is the case. This allows tool users to provide this 
information whenever proof of compliance is necessary. Furthermore naming conventions for 
generated code shall be defined. Depending on the situation the conventions can come from the 
target technology being adopted. 

Moreover, the recommendations of the ISO 26262 regarding code shall also be followed, namely: 
low code complexity, strong typing, naming conventions, hierarchical structuring, cohesion and 
coupling, etc. For detailed information please refer to the ISO 26262 part 6 – Product development 
at the software level [4]. 

5.2.2.2 Model 

Besides generating code, depending on the target technology models also have to be generated. 
The generated models must also be compliant to the recommendations made by the ISO 26262 
regarding software development. Furthermore, it might be the case that preexisting artifacts have 
to be modified or adapted. In this case the original artifact shall not be modified rather a copy shall 
be made and afterwards adapted to include the generated information. The generated artifacts 
must be differentiated from preexisting ones even in the case of adaptation. One of the 
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possibilities is to achieve this through the traceability structure provided by the SAFE meta-model. 
It would also be possible to generate new and adapted artifacts into a new project which consists 
of an adapted copy of the original project. The concrete integration of generated artifacts can be 
defined by each safety code generation implementation. The main requirement is that tool users 
must be able to differentiate generated and adapted artifacts from preexisting ones. 

5.2.2.3 Test data 

Additionally to code and model data, for given scenarios it is also possible generate test data. The 
necessary information for this step can be obtained from the specified SSR and from additional 
generator configuration information. For instance, given an SSR specifying a gradient check of a 
given interface a unit test for the generated code can be generated. The parameters for the test 
are the ones specified in the SSR. 

5.2.2.4 Traceability Information 

Regardless what kind of technology being used to realize SSR traceability information about what 
was generated and where it was generated has to be provided by code generators. This 
information has to be persisted within the SAFE meta-model and the mechanism to realize this is 
provided via Satisfy feature from EAST-ADL [6] depicted in Figure 1. The traceability information 
encompasses code, model elements, models, configuration files, metrics, tests and any other 
information/artifact which somehow influences the software system. 

The traceability information is responsible for linking the generated artifacts to their specification. 
Furthermore it is of great importance to be able to identify and trace generated artifacts. The 
identification allows engineers to determine which additional elements belong to the design after 
generation has taken place. Moreover such traceability is also important for the generation of 
evidence of compliance for certification purposes. 
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Figure 1 – SAFE Meta-model Satisfy mechanism for tracing realization to requirements 

5.3 Target Platforms 

The specification of software safety requirements and the (semi-)automatic generation of software 
and model elements depend on the adopted target platform. In the next sections details regarding 
the modeling of SSR and generation of software related artifacts for different target platforms are 
given. 

5.3.1 AUTOSAR 

In this subsection an overview regarding modeling SSRs and generating SSMs for AUTOSAR is 
given. The goal is not to describe in detail how an AUTOSAR generator shall work, but rather to 
provide general information regarding the generation of software safety mechanisms which have 
AUTOSAR as target technology. 

The goal of modeling software safety requirements for AUTOSAR architectures has been defined 
in SAFE using a loosely coupled approached. The modeling of SSRs shall not require any 
changes in the AUTOSAR meta-model. This is achieved by providing a safety view on top of 
preexisting AUTOSAR artifacts namely either the VFB [7] architecture or a concrete system 
model. 

As previously state, a language allowing the modeling of SSR is preferred. For example, in order 
to integrate the safety view into AUTOSAR a domain specific language (DSL) could be developed. 
This language would allow users to directly reference existing AUTOSAR elements and to define 
software safety requirements for these elements. 
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The software safety requirements are defined according to the SAFE meta-model. However the 
original format for SSR specifications can vary from tool to tool. Figure 2 presents an example of 
how such a DSL (based on ARText [8] for illustration) could be implemented. 

The SSR specification is decouple from the AUTOSAR system architecture specification. The 
referencing to existing AUTOSAR elements is allowed via the meta-model.  Figure 3 presents the 
exemplary AUTOSAR model referenced in Figure 2. 

 

Figure 2 – Gradient check specified using an SSR DSL based on ARText  

In the case of AUTOSAR, a safety code generator could transform each group of software safety 
mechanisms of the same type into an AUTOSAR software component. The realization of the 
internal behavior of this software component is generated according to information obtained from 
the preexisting AUTOSAR system model. The deployment of software components to ECU 
instances is used to define where the source files implementing the internal behavior of the 
component shall be generated. 

Figure 4 shows the AUTOSAR software component generated for the gradient check mechanism 
specified for monitoring the thin plate temperature of the demonstrator used to validate the 
development within SAFE [10], Figure 3.  
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Figure 3 – Excerpt of an AUTOSAR software component model using ARText 

The generated component has then to be instantiated and integrated into the preexisting system 
architecture and the previous connections between components has to be adapted to 
accommodate the newly introduced component. It is the job of safety code generators to realize 
the traceability between the original and adapted version of the model. For example, the 
integration could be done in a copy of the original model and produced as output out of the 
generation process. Figure 5 presents a simple example of how the generated gradient check 
component is integrated into a preexisting AUTOSAR software architecture. 

For SSR specified at the system model level of AUTOSAR the target ECU to which software 
components are mapped is known. In this case the generator uses this information to generate the 
implementation of the software safety mechanisms (e.g. gradient check) in the corresponding 
target locations where the software for each specific ECU lies. 



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  16 (72) 

 

Figure 4 – Gradient check generated as AUTOSAR component 

 

Figure 5 – Reorganization of connections for accommodating the generated gradient check 

mechanism 
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5.3.2 CHROMOSOME 

In this subsection an overview regarding modeling SSRs and the generation of SSMs for 
CHROMOSOME is given. The aim of this subsection is to define the general outline of code 
generation scenarios for CHROMOSOME, where SAFE SSRs are implemented by 
CHROMOSOME SSMs. 

As previously stated, it is recommended to model SSRs in a loosely coupled manner. It is 
expected that a language implementing SAFE meta-model is used to specify SSRs, so the 
modeling of SSRs does not require modification of CHROMOSOME meta-model. A preexisting 
CHROMOSOME system model containing all artifacts excluding safety view is defined in detail in 
CHROMOSOME domain-specific language. A SAFE model extends existing CHROMOSOME 
artifacts with safety requirements. 

In SAFE model SSRs have to be defined to make further code generation possible. The original 
format for SSR specifications can vary depending on the tool used. We expect that the main input 
method for SSRs is a full or partial implementation of SAFE meta-model, in form of textual 
language, graphical tool, or just a file in SAFE model interchange format. Independent of the 
choice the language should allow users to reference external model elements and specify SSRs 
for those elements in the way SAFE meta-model allows such referencing through modeling 
elements defined in the CommonStructure::References::CHROMOSOMEReferences package of 
the SAFE meta-model. 

CHROMOSOME relies strongly (just like AUTOSAR) on tool-supported model-based code 
generation. Safety mechanisms specification is decoupled from the existing CHROMOSOME 
models. Code generator therefore should modify the original CHROMOSOME model. Traceability 
between the original and adapted versions of the model should be provided to enable repeated 
generation. SAFE SSR model shall also be modified by the generator to include references to 
newly generated elements and to allow requirement traceability within SAFE model. Such 
modifications can be implemented by, for example, producing copies of existing models, or by 
annotating the generated and modified elements to distinguish from the original and by keeping 
history of model changes. 

Generation of safety mechanisms code for CHROMOSOME targets results in instantiation of new 
component elements and corresponding modification of data path elements (topics) within the 
CHROMOSOME model. Code generator should locate the elements referenced by the SAFE SSR 
specifications and create new relevant elements in the CHROMOSOME model. The generated 
components have to be configured to produce implementations corresponding to the input SSR 
model. For some SSRs (like, for example, Health Monitor) iteration through other SSR 
specifications may be necessary to generate the SSM configuration. 

Transformation of multiple input models (predefined CHROMOSOME model and SAFE SSRs) can 
be implemented using one of the numerous model transformation frameworks. Almost every 
modeling framework or tool today is accompanied by at least one model transformation 
framework.  

It is the choice of code generator developer, whether C code will be directly generated for every 
generated component instance. An alternative approach is to provide a library of predefined 
generic SSM implementations along with the code generator and only generate configuration data 
for new component instances. The former approach results in generation of source code that is 
optimal for a specific instance of SSM, but increases the maintenance effort for the generator 
developer due to the need to support both the existing components and code generation 
templates. 

The final generation of code for the CHROMOSOME runtime and projects allowing build of binary 
images shall be performed by transforming the adapted CHROMOSOME model with a technology-
specific configuration tool. An example generation workflow and additional details regarding 
CHROMOSOME can be found in Appendix B – CHROMOSOME. 
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6 Meta-model based generator specification 

In this section the elements of the SAFE meta-model related to software safety requirement 
specifications and therefore of interest for safety code generators are described in detail. The work 
done within SAFE regarding the modeling of software safety requirements has been mainly 
divided in two parts: generic and concrete. On one hand the generic part of the SAFE meta-model 
a base for the concept of software safety requirement (SSR) specification is provided. This 
enables users to specify abstract requirements related to SAFE and a given target technology. On 
the other hand the concrete part of the SAFE meta-model provides detailed software safety 
requirement structures where the concrete relations of such requirements are defined (e.g. which 
concrete elements from external meta-models are necessary for a given SSR specification). In the 
following subsections the meta-model elements for SSR specification are described and the 
implications of such elements on safety code generators are detailed. 

6.1 Software Safety Requirement Specification in SAFE 

 

Figure 6 – Structure for software safety requirements specification 

The central concept in the meta-model is the abstract structure for specifying software safety 
requirements. This structure is depicted in Figure 6. The meta-model enables models to specify a 
implementation safety extension composed by a set of software safety requirements (SSR) and 
code generation configuration information as shown in Figure 7. The purpose of software safety 
requirements is defined using a tactic mechanism. The Tactic defines how a given malfunction 
(error) is treated by the requirement. There are three possible tactics: avoid, detect and handle the 
malfunction. The tactics have been identified during the exploration phase realized within WT3.6, 
documented in Appendix A – Classification of Software Safety Mechanisms. The SSRs are 
specified within specific SAFE “Safety Extensions” in order to provide a context for the 
requirements. 

In the case of specifications relating to AUTOSAR there is an abstract meta-class 
AutosarSafetyExtension which is to be used as base for all possible AUTOSAR related safety 
extensions. For CHROMOSOME, the ChromosomeSafetyExtension shall be used. The different 
possibilities of extensions are shown in Figure 7. A software safety requirement is a refinement of 
given technical safety requirements (TSR) and each SSR can trace back to the originating TSR 
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via the RequirementsLink element which allows tracing requirements as covered, refined or 
decomposed. 

The specification of SSRs is still abstract and, depending on the generative approach (i.e. agnostic 
SSR specification or targeted SSR specification), further configuration of SSRs is necessary. For 
this reason the CodeGeneratorConfiguration meta-class has been introduced. This element allows 
configuration parameters to be specified for SSRs. Such parameters are to be interpreted by 
safety code generators in order to obtain further information regarding the SSR specification. This 
configuration structure can also be used for storing generator specific information on a SAFE 
model. 

 

Figure 7 – Implementation Safety Extension 

6.2 Error avoidance, detection and handling 

The meta-model depicted in Figure 6, makes possible to specify software safety requirements 
related to error avoidance, error detection and error handling using the tactics relation. The 
behavior of the system in case of error can be modularly defined using the three kinds of SSR 
tactics. In this way, the engineer might define requirements which cover the avoidance of errors, 
such as a barrier requirement. Requirements that cover the detection of errors, and might in turn 
have another SSR defined as an error reaction. Requirements covering error handling, which are 
related to error detection requirements and might also specify a reaction in case new errors 
happen during the handling process (e.g. a filtering mechanism with a threshold of 5). Examples of 
possible reactions for detected errors are: filtering, notification, reset, memory partition reset and 
default value. More details about the structuring of tactics can be seen in Figure 6. 

Code generators supporting the specification of handling mechanisms shall generate the 
necessary interfaces to access the resources specified by the engineer for handling the error 
(error reaction). For instance, in case a reset handling mechanism is specified as a reaction to a 
given error in an AUTOSAR system, the code generator shall generate the necessary requests to 
the BSW components of AUTOSAR in order to execute the reset procedure. Moreover, for 
mechanisms whose handling is realized through communication (e.g. notifying another 
component) the code generator must generate the correct connections between the related 
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components and if necessary adapt the target/source component with newly required interfaces 
for realizing the communication. 

6.3 General requirements on safety code generators 

In this section general remarks for the implementation of safety code generators are given. These 
remarks provide an overview on the common issues to be handled while generating code for 
software safety requirements specified using the SAFE exchange format. 

6.3.1 Scheduling of generated executable entities 

During the generation of safety code the lines of code realizing the functionality specified through 
SSRs will in most cases represent an executable entity. An executable entity can be either a 
function or a set of functions and both share the characteristic that a given points in time 
(schedule) the entity has to be executed by the underlying technology platform. In order to 
guarantee that the specified software safety requirements are working correctly the executable 
entities generated for the SSR have to be scheduled. 

Generators have therefore to take into consideration what options the target technology platform 
offers for scheduling executable entities. Furthermore, the required information for scheduling can 
be required by generators and stored as configuration information of the given SSR as described 
in Section 6.3.4. 

For instance, while generating a gradient check implementation the safety code generator has to 
take into account how the executable entity for the gradient check will be scheduled and what has 
been specified within the SSR. The reason why the scheduling plays an important role is that the 
time delta specified for the gradient check might have to be refined into smaller slots in order to 
correctly verify if the gradient is varying within acceptable ranges. 

6.3.2 Interface generation for software components 

For accessing information coming from outside the generated software elements (components) 
safety code generators have to generate the related interfaces. Common patterns such as 
separation of concerns and coupling shall be taken into account in order to generate interfaces 
which allow the generated artifacts to be seamlessly integrated with preexisting artifacts. 

In the case where the concrete software architecture defined using a given target technology 
platform provides concepts for the interconnection of software components, the safety code 
generators shall generate the software component interfaces of generated software component 
artifacts according to the concepts defined by the target technology platform. 

For example in the case of AUTOSAR the safety code generator has to generate the component 
ports required and provided by the generated software components and additionally the variable 
access elements within the executable entities contained in these software components. 

6.3.3 Re-routing of connectors if inter-component communication is addressed 

On given target technology platforms, the communication between software components is done 
via the definition of connectors. Safety code generators shall be able to handle the necessary 
modifications regarding connectors in order to integrate the generated artifacts into the preexisting 
ones. It has also to be noted that different technologies might define different types of connectors 
and safety code generators must be able to understand the implications of generating each type of 
connector and the possible side-effects caused by the integration of generated components. 
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6.3.4 Configuration information 

As previously describe in Section 5.2 the SAFE meta-model enables the modeling of configuration 
information regarding SSR. This information can be used by generators to define parameters 
related to the generation which do not influence the SSR specified using the SAFE exchange 
format. 

Whenever a safety code generator requires additional information related to an SSR this 
information shall reflected back into the SSR model. If the generation procedure is applied more 
than once to the same model the configuration information provided by the user is in this case 
already present could be used for further analysis. 

6.3.5 Annotations 

Whenever possible, safety code generators shall make use of annotations to document the 
rational regarding the implementation of SSR and to provide the user with useful information about 
the generation. These annotations shall be realized according to the possibilities provided by the 
target technology platform and could be used to fulfill traceability requirements (e.g. function 
annotations trace back to SAFE model elements). 

6.4 Software Safety Requirements Specified within the SAFE Meta-model 

Besides the generic meta-model structure previously described, the meta-model contains also a 
specialized set of software safety requirements which were chosen for the purpose of validating 
the concepts developed within SAFE. The specialized SSR elements are limited in number since it 
is not the purpose of WT 3.6 to propose a meta-model for every possible software safety 
requirement which can be transformed into a software safety mechanism. 

In the following subsections the specialized SSR elements are described together with the relevant 
information for safety code generation. Where applicable examples of how code generation could 
work are given. 

6.4.1 Aliveness Monitor 

Description: the aliveness monitor depicted in Figure 8, also known as heart-beat monitor, 
supervises the execution of executable entities through the use of checkpoints [11]. Given that an 
error has occurred it can notify the specified handling element. The possible errors for this 
specification are: too late, meaning the checkpoint was achieved after the expected point in time; 
too early, meaning the checkpoint was achieved before expected; too often, meaning the 
checkpoint was arrived too many times regardless of how early or late the executable entity has 
reached checkpoints. 
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Figure 8 – Aliveness monitor meta-model 

Semantics: the specification of an aliveness monitor requirement implies that generators shall 
transform the aliveness monitor SSR into a set of checkpoint definitions configured with the 
parameters defined in the SSR specification. The generated mechanism shall have the necessary 
interfaces for communicating with the system, which can be specified as a reaction to aliveness 
monitor errors. This is especially relevant for the communication of errors to other components of 
the system. Furthermore the details related to scheduling of the generated software components 
must be also generated and integrated to the target technology platform. 

6.4.2 Context Range Check 

Description: the context range check shown in Figure 9 detects errors related to the range of 
values provided to it. The context feature allows the specification of different ranges given different 
contexts (modes of operation). Furthermore, it is also possible to define what kind of reactions 
shall be performed when range errors occur. 



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  23 (72) 

 

Figure 9 – Context range check meta-model 

Semantics: the specification of a context range check requires safety code generators to 
generate the context structures which are able to hold context information (e.g. maximum range 
allowed) furthermore the generated code shall make use of context information provided by the 
system in order to define what are the valid ranges for operation while in the current context. The 
context information shall be obtained through specific interfaces generated by the safety code 
generator for the concrete range check mechanism. Furthermore generators must generate 
interfaces for error communication for each of the specified handling SSR. For example, when a 
filter SSR is specified as the reaction for the detection of values above the maximal specified 
range the safety code generator must generate the proper interface for communicating this error 
and triggering the corresponding handling mechanism. 

6.4.3 Gradient Check 

Description: the gradient check depicted in Figure 10 monitors the temporal behavior of a given 
value and detects when an invalid variation of values happen. This is done through the 
specification of maximal and minimal gradient variations and a time delta which is used for the 
computation of the gradient. The detection of a gradient error is communicated or handled by 
defining a SSR having a handling tactic and using the two possible notifications defined in the 
meta-model (gradient too high or too low).  



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  24 (72) 

 

Figure 10 – Gradient check meta-model 

Semantics: the generation of code for a gradient check mechanism has to take primarily into 
account that a gradient is a stateful property. This means that the gradient can only be computed 
by using previously measured / observed values. Therefore the generated gradient check 
mechanism shall provide a structure where the parameters specified in the SSR are store and 
additional structures for storing the previously obtained value. Furthermore the interface for 
obtaining the value whose gradient is observed has to be generated together with the required 
error communication interfaces. Depending on the generator realization the error handler specified 
via SSR can be generated within the gradient check mechanism (e.g. filtering as a handling 
mechanism). In the case the handler provides a corrected value the related interface shall be also 
generated. 

6.4.4 Comparison 

Description: the comparison SSR depicted in Figure 11 takes in as input two values and executes 
the specified operation over the two inputs. The use of a comparison is especially important when 
specifying requirements related to redundant or diverse reading/processing of values and/or 
computation of values, etc. The two possible errors defined for this SSR are the Boolean 
evaluation of the operation. Depending on the result further reactions can be specified. For 
example, given the result of a comparison is false an error handler SSR for providing a default 
value could be specified. 
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Figure 11 – Comparison meta-model 

Semantics: the generation of a comparison operation has to take into account what kind of input 
values are provided to the operation (e.g. where do values come from) and the related interfaces 
for obtaining these values shall be generated. The generated code has to take care of realizing 
the operation taking into account the configured tolerance for the comparison. Furthermore 
depending on what kind of reaction is specified the realized mechanism shall either provide an 
interface for writing the error or a value if one is to be provided by the mechanism. 

6.4.5 CRC 

Description: the cyclic-redundancy-check shown in Figure 12 detects errors occurred between 
operations on a given value. Usually additional information will be added to the value in order for 
the check algorithm to perform validation operations on the value. CRC algorithms require certain 
basic parameters which are defined in the meta-model. Additionally it is possible to define 
requirements on the possible reactions to CRC errors. These are done through the specification 
SSRs having a handling tactic. 
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Figure 12 – CRC meta-model 

Semantics: the specification of CRC software safety requirements provides flexibility to code 
generators regarding the implementation of CRC algorithms. The generators have only to take into 
account the CRC configuration parameters defined by the SSRs and to provide the correct 
interfaces for the implementation to work. This mean for example that if some kind of preexisting 
CRC library is to be used the correct interfaces for the mechanism and for storing the 
configuration information of the mechanism have to be generated and the library code does not 
need to be generated. Moreover, the interfaces for communicating CRC errors to the target 
technology platform have also to be generated for the mechanism and in the case of using a third 
party library the interfaces for obtaining error information from the library must also be generated. 

6.4.6 Filter 

Description: the filtering of values, SSR shown in Figure 13, provides an error handling possibility 
for specifications where an error state is only achieved after a given temporal frame of anomalous 
behavior. For example, the error state of a temperature sensor is only achieved if for five cycles 
the sensor delivers unreliable values. Hence, filtering the values delivered between the first time 
an error is seen until the fifth time the error is seen (sequentially in time) can provide the system 
certain robustness against sporadic errors (de-bounce). The filter computes a value to be 
forwarded to the required interfaces of a given system element according to a given expression. 
This expression can take into account, for example, the current value the filter has been provided 
with and previous values (e.g. the average value from last 5 samples). 
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Figure 13 – Filter meta-model 

Semantics: the requirements on generator implementations posed by the specification of filter 
SSR are mainly related to how the filter mechanism is generated. Normally the filtering is highly 
coupled with the SSR requiring filtering. Therefore it is recommended that generators implement 
one of two cases for generation: coupled generation and stand-alone generation. On the coupled 
version of the filter mechanism the filter behavior is generated integrated into the mechanism 
implementation requiring filtering. This implies that the mechanism using the filter will also output 
the filter value. Hence, an appropriate interface shall be generated within the filter-requiring 
mechanism. On the other hand the generation of stand-alone filters requires the interfaces for 
receiving input values and sending the filtered values have to be generated. Safety code 
generators must observe the definition of previous values for a given filter specification since the 
definition of multiple previous values might imply in a temporal relation, meaning that a buffer for 
storing the values provided within a time window has to be generated. 

6.4.7 Actuator Monitor 

Description: the monitoring of actuators, defined via the SSR meta-model depicted in Figure 14, 
provides the ability to determine if there are issues with the control loop of a given system. By 
observing the feedback read from actuators it can be determined if the actuator is behaving as the 
controller expects it to behave. This requires the definition of relationships between input data from 
sensors and controller output data. Since the algorithms used to monitor the behavior of actuators 
vary significantly the approach taken in the SAFE meta-model is to allow the definition of 
monitoring algorithms using external functions (a function in this context is an algorithm executed 
by a function call at code level). In this way the monitoring mechanism functionality can be defined 
using, for example, Simulink ® [12]. 
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Figure 14 – Actuator monitor meta-model 

Semantics: the main consequence for safety code generators implementing actuator monitors is 
that the behavior of the mechanism might be specified using different technologies (e.g. C-code or 
UML models). The generated artifacts have to integrate such technologies and also the target 
technology used to execute the system (e.g. AUTOSAR). The safety code generator shall 
generate a structure for controlling the execution of the mechanism (buffers for delayed values, 
etc.) and interfacing with the behavior realization. Furthermore, interfaces for obtaining the 
required data have to be generated. There is a special characteristic regarding actuator monitors 
since the required information comes from sensors and from controlling components. This means 
that the interfaces have to gather input data coming from the environment and output data being 
provided by the system. This characteristic influences how the generated artifacts (code or model 
elements) interact with preexisting artifacts. It is also important to achieve the integration at the 
scheduling level since the input-output correlation is a temporal correlation and might affect the 
monitoring of the system. 
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6.4.8 CPU Self-test 

 class CpuSelfTest

ChromosomeCpuSelfTest

«enumeration»

CpuTestAlgorithmEnum

 LimitedNumberOfWalkingPatterns

 WalkingBit

 HardwareSupportedTest

CpuSelfTest

Identifiable

CpuSelfTestConfig

- algorithms  :CpuTestAlgorithmEnum

- executeInSegments  :Boolean

- executionPeriodMs  :Integer

- numSegments  :Integer

CHROMOSOMEReference

CHROMOSOMEReferences::

Component

CHROMOSOMEReference

CHROMOSOMEReferences::

Node

Identifiable

Tactic::Situation

- description  :String

AbstractQuantifiableSafetyRequirement

Requirements::SoftwareSafetyRequirement Tactic

Tactic::Detect

CpuSelfTestDetection CpuSelfTestFailed

+config

11

+detectedSituation

*

+target 1

1

+testedNode

11

 

Figure 15 – CPU Self-Test meta-model 

Description: The CPU Self-test (Figure 15) meta-model allows the periodic testing of CPU on the 
specific node and detects when the response to a test is not matching expected. Its configuration 
allows performing CPU tests in segmented mode, so that no large timeslot is occupied in the 
schedule by the test. The total number of segments and full execution period are then specified as 
configuration parameters. 

Semantics: the specification of the CPU self-test requirement implies that generators shall 
transform the SSR into a component instance and schedule it accordingly to the specified 
configuration parameters (to be executed completely or in chunks) and perform the specified CPU 
test. Only one instance of such a component instance per ECU is generated, provided that the 
highest requirement is satisfied. The generated component shall have necessary interfaces to 
communicate errors to other components of the system, or to execute reactions as a direct 
response to the detected error. CPU Self-test is specified with a direct reference to the monitored 
entity (i.e., target ECU / node for deployment). 
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6.4.9 RAM Self-test 

 class MemorySelfTest

MemorySelfTest
Identifiable

MemoryRange

- startAddress  :Integer

- stopAddress  :Integer

«enumeration»

MemoryTestAlgorithmsEnum

 Galpat

 TransparentGalpat

 Checkerboard

 GenericMarch

 MATS_plus_plus

Identifiable

MemorySelfTestConfig

- executeInChunks  :Boolean

- numberOfChunks  :Integer

- periodMs  :Identifier

- testAlgorithm  :MemoryTestAlgorithmsEnum

ChromosomeMemoryTest
CHROMOSOMEReference

CHROMOSOMEReferences::

Node

MemorySelfTestFailed

Tactic

Tactic::Detect

Identifiable

Tactic::Situation

- description  :String

MemorySelfTesting

AbstractQuantifiableSafetyRequirement

Requirements::SoftwareSafetyRequirement

+detectedSituation

*

+config

11

+memoryRange

1..*1

+testedNode

1

 

Figure 16 – Memory Self-Test meta-model 

Description: RAM self-test depicted in Figure 16 performs periodic execution of RAM test of 
specified memory range with specified memory test algorithm. It allows performing RAM tests in 
segmented mode, so that no large timeslot is occupied in the schedule by the test. Total number 
of segments and full execution period are then specified as configuration parameters. 

Semantics: the specification of the RAM self-test requirement implies that generators shall 
transform the RAM self-test detection SSR into a component instance and schedule it accordingly 
to the specified configuration parameters to execute (completely or in chunks) with specified 
period and perform the specified CPU test. The generated component instance shall have 
necessary interfaces to communicate errors to other relevant components of the system. 
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6.4.10 Voting 

 class Voting

AbstractQuantifiableSafetyRequirement

Requirements::

SoftwareSafetyRequirement

Voter

«enumeration»

VotingAlgorithmEnum

 Median

 Mean

 Maximum

 Minimum

Identifiable

VoterParameter

«enumeration»

VoterActiv ationSchemeEnum

 EventTriggered

 TimeTriggered

Identifiable

VoterConfig

- activationScheme  :VoterActivationSchemeEnum

- algorithm  :VotingAlgorithmEnum

- consensusThreshold  :Integer

- numberOfItems  :Integer

ChromosomeVoterParameter

CHROMOSOMEReference

CHROMOSOMEReferences::

Topic

ChromosomeVoter

Identifiable

Tactic::Situation

- description  :String
Tactic

Tactic::Handle

- type  :HandlingType

VoterValueMismatch

VoterNoConsensus

Voting

+handledSituation

1

+errorSituation

*

+config

1 1 +result

11

+inputData

1..*1
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Figure 17 – Voter meta-model 

Description: Voting (Figure 17) defines a simple redundancy-based monitoring mechanism. Being 
configured by number of items to vote on and consensus threshold, voting mechanism allows 
binary pair-wise comparison of multiple input items, producing an output item as consensus value. 
It features discrepancy reporting via error notifications, different for two cases. If one value is 
different in the input array, but consensus could be reached, a “value mismatch” notification is 
issued. If consensus can’t be reached on the input set of data elements, “no consensus” 
notification is issued, which generally should lead to advanced error handling methods, such as 
ECU / node restart or reconfiguration. 

Semantics: the specification of the voting requirement implies that generators shall transform the 
SSR into a component instance. The generated component instance shall be inserted into the 
data path, and inter-component data paths shall be rerouted accordingly. The comparison function 
is specified in the mechanism configuration in SSR model, and transformed into a corresponding 
configuration of the component instance. 

Implementation on target platforms could be performed in two ways. One option is to generate a 
separate component instance, and modify the data paths accordingly. The second option is to 
generate a wrapper for a component instance consuming data from the voter.  

For data-centric platforms like CHROMOSOME generators will transform the SSR in form of a 
component instance on its own, so it has to be scheduled accordingly to match input and output 
data rates / delays. In a different implementation the generated code becomes a wrapper for a 
runnable entity consuming data from the voting component. Additionally, depending on activation 
mode the scheduling info (priority / slots / scheduling strategy) need to be generated for the 
software item. The generated component instance or wrapper shall have necessary interfaces to 
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communicate errors to other components of the system. It will also be configured by the generator 
to match the consensus threshold specified in the voting SSR. 

6.4.11 Health Monitor 

Description: Health Monitor (Figure 18) performs centralized supervision of the system / 
subsystem state and allows execution of preconfigured reactions in response to events, such as a 
specific combination of component instance modes, or error notifications from error detection 
mechanisms. Corresponding reactions can be configured by specifying Tactics of type Handle 
associated with the SSR being source of error notification. 

Semantics: specification of Health Monitor implies that Health Monitor shall be generated as a 
platform-specific component instance, which is capable of executing various error reactions, both 
predefined and user-specified. This means it needs to have sufficient rights to execute signed user 
code, internal reactions such as node restart, and so on. Health Monitor configuration shall be 
generated as a table / struct array, where each row corresponds to one error condition to be 
monitored. Health Monitor also requires generation of communication interfaces not only to receive 
notifications, but also to announce state changes for the related system parts. 

 class HealthMonitor

HealthMonitor

ChromosomeHealthMonitor

CHROMOSOMEReference
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+supervisedComponent

1

+node

1

+trigger 1 +trigger 1

 

Figure 18 – Health Monitor meta-model 
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6.4.12 Heartbeat 

 class Heartbeat

Heartbeat

HeartbeatSenderHeartbeatReceiv er
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HeartbeatConfig
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+config
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*
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1
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1
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Figure 19 – Heartbeat meta-model 

Description: Heartbeat (Figure 19) represents a classical pattern of error detection. It performs 
periodic check of reachability of one computing node / ECU from another one. It consists of 
heartbeat receiver, a primitive implementation of an aliveness monitor containing one checkpoint, 
and an implicit event generator, called heartbeat sender. So, heartbeat sender issues a heartbeat 
signal once per ‘period’ milliseconds, and heartbeat receiver checks arrival of this signal within 
‘deadline’ milliseconds. It should be noted explicitly that deadline computation should include jitter, 
clock drift and correspond to a worst case estimate to avoid false positives. 

Semantics: the specification of a heartbeat SSR in a SAFE model implies that the generators 
shall transform this SSR into a pair of component instances to be deployed on specified target 
ECU’s. Schedules of the target ECU’s need to be modified to reach execution rates specified by 
the SSR configuration parameters ‘period’ and ‘deadline’. ‘Sender’ component instance shall be 
configured to be executed every ‘period’ milliseconds, and shall have an interface allowing to send 
data to receiver in a non-blocking manner. ‘Receiver’ shall then be either executed on event arrival 
and shall require an interface which allows receiving data from the receiver in a blocking manner 
with a timeout ‘deadline’. Alternatively, ‘Receiver’ is executed periodically with a period allowing 
detection of ‘deadline missed’ events. In addition, the generated runnable component shall have 
necessary interfaces to communicate to the system and especially to report errors to other 
components of the system. 
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7 Code generation use case for software safety requirements for AUTOSAR 

In this chapter the requirements for the generation of software safety requirements based on the 
AUTOSAR target platform are provided. The information for software safety mechanisms contains 
a detailed description of the necessary input, the generated artifacts and the integration strategy 
for preexisting artifacts.  

7.1 Use case specification: Control-flow Monitor 

In this section the details regarding the usage of control-flow software safety requirements are 
given. 

7.1.1 Description 

In order to guarantee the correct behavior of software elements in a given system the engineer 
might specify safety requirements which define what the control-flow of such software elements 
should be. The decision of defining such a requirement depends on the technical safety concept 
defined for the element in question and on the ISO 26262 requirements for a given ASIL. 

In this document, the detailed requirements for the realization of a control-flow monitoring 
mechanism using AUTOSAR are described in detail. The requirements provide a solid base for 
the implementation of a code generator. 

There are two aspects related to control-flow monitoring requirements. One is the set of 
requirements towards the implementation of a control-flow monitoring mechanism and the other is 
the set of requirements towards the specification of control-flow monitoring requirements. This 
section describes the former while the latter is described within section 7.2. 

A control-flow monitor specification is decomposed as following: 

 Checkpoint specification: state machine like specification of checkpoints and transitions. 

 Monitoring element: software component or hardware device responsible for receiving 
notifications and checking for valid transitions defined by a valid checkpoint specification. 

 Monitored element: element whose control-flow is monitored by the monitoring element 

 Control-flow monitoring interface: interface specification for the communication between 
monitored elements and the control-flow monitoring element. 

 Control-flow monitoring specification: the specification describing a monitoring 
mechanism for a given monitored element. 

7.1.2 Checkpoint specification 

The checkpoint specification is responsible for defining the valid states and transitions to be used 
by the monitoring element in order to observe if the monitored element has a valid control-flow. 
The state machine is completely independent from the monitored element and can be reused to 
monitor different elements given the same control-flow is expected. The checkpoint specification 
must contain the following properties according to the: 

 States: addressable points within the logical and/or temporal execution of software 
elements 

 Transitions: elements relating the allowed flow between states 
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 Limits for the number of times a state (checkpoint) is reached (maximum, minimum) 

Time window in which the checkpoint can be achieved (time unit is monitoring cycles and not 
seconds or milliseconds) options are: not before, not after, at 

7.1.3 Control-flow monitoring specification 

The control-flow monitoring specification determines which and how elements have to be 
monitored. In the context of AUTOSAR three possible monitoring approaches are foreseen: 

7.1.3.1 Software component monitoring 

 The monitoring of a SWC within AUTOSAR regards the observing of the interaction of a 
given SWC with the system. In this case the specification must allow the definition of 
interaction rules (e.g. sequence of read/write on the component’s ports). 

 Requirements: 

 The specification shall allow the referencing of ports and data elements of ports 
related to a given software component in AUTOSAR. 

 The specification shall allow referencing states in a given checkpoint specification. 

 The specification shall allow specifying the relation between ports and data 
elements and states in checkpoint specifications based on the kind of access being 
realized (e.g. read, write, call, send and receive). See AUTOSAR port interfaces for 
more details [13]. 

 The specification shall allow the definition of read and write (or send and receive) 
blocks which have to be related to checkpoint definitions. 

7.1.3.2 Internal behavior monitoring 

 The monitoring of internal behavior of software components regards the sequence in which 
runnable entities, defined in the given internal behavior of AUTOSAR software 
components, are executed. 

 Requirements: 

 The specification shall allow referencing runnable entities within the internal 
behavior definition of AUTOSAR software components (also within compositions). 

 The specification shall allow the referencing of states defined within checkpoint 
specifications. 

 The specification shall allow defining the relation of runnable entities and states 
within checkpoint specifications regarding the possible operations realized over 
runnable entities (e.g. on start runnable entity, on stop runnable entity). 

 The specification shall allow the referencing of runnable entity execution constraints 
from the AUTOSAR Timing specification. 
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7.1.3.3 Runnable entity monitoring 

The monitoring of runnable entities is the most fine-grained monitoring of all kinds of monitoring 
defined in this document. It allows the monitoring of the behavior of the runnable entity itself, 
namely, the implementation of its behavior. However, this depends on the interface between safety 
engineers and software developers. Since the checkpoints are not defined by the developer, some 
kind of exchange of information has to happen between the safety engineer and the software 
developer in order to define how the checkpoints related to the safety concept and to the source 
code. The AUTOSAR part of the development (e.g. runnable entity variable access) can be 
generated automatically, but calling interface from the runnable implementation has to be explicitly 
considered by the developer. 

 Requirements: 

 The specification shall allow references to runnable entities within AUTOSAR 
software components and software component compositions. 

 The specification shall allow references to variable access elements within 
AUTOSAR runnable entities specifications. 

 The specification shall allow referencing states defined within checkpoint 
specifications. 

 The specification shall allow the definition of identifiers to be used within the 
runnable entity’s code for reporting a checkpoint event 

 Checkpoint events are for example "checkpoint reached" and possible 
additional parameters. 

 The specification shall allow the definition of relations between the events on 
runnable entity’s variables (read/write), points within the code of runnable entity and 
states defined within checkpoint specifications. 

7.1.4 Control-flow monitoring interface 

In order to realize control-flow monitoring within AUTOSAR a communication between the 
monitored elements (SWC, runnable, internal behavior) and the monitoring element (e.g. 
watchdog manager) is necessary. This is realized through port prototypes. These port prototypes 
reference port interfaces. These port interfaces must conform to the specification of the 
AUTOSAR watchdog manager interfaces. 

The interfaces for control-flow monitoring have to be generated automatically by code generators. 
The requirements to be fulfilled by code generators are: 

 An interface for the notification of checkpoints reached has to be generated. The interface 
shall provide a client server operation named according to the AUTOSAR specification for 
the notification of checkpoints. 

 An interface for the notification of aliveness events has to be generated. The interface shall 
provide a client server operation named according to the AUTOSAR watchdog manager 
specification for the notification of an update to the aliveness counter. 

 A mode group and the corresponding modes for a given supervised element, for more 
details refer to the AUTOSAR watchdog manager specification. 
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 A mode switch interface for the notification of mode changes related to the monitoring of a 
given supervised element, referencing the corresponding mode group. 

7.1.5 Monitoring element 

The monitoring element, that is, the component responsible for observing the control-flow of 
supervised elements, is realized using the AUTOSAR watchdog manager. The Service Software 
Component for the watchdog manager is responsible for providing the necessary interfaces for the 
application software components to report their status. The monitoring and check of correctness of 
control-flow information is realized within the watchdog manager service software component. 

The code generator shall generate the following elements for the monitoring element: 

 A service software component type defining the watchdog manager 

 For each monitored/supervised element a provided port prototype on this 
component has to be generated. The interface of the port prototype depends on the 
type of supervision (control-flow or aliveness). 

 For the service software component an internal behavior element has to be 
generated 

 For each type of monitoring specified for the monitoring element a runnable 
entity shall be generated. 

 For each provided port of the service software component, an operation 
invoked event element within the internal behavior shall be generated, the 
corresponding runnable entity shall be referenced and the corresponding 
port and operation referenced. 

 For each of the provided ports of the service software component a port api 
option element shall be generated, the corresponding provided port defined 
and a port defined argument value generated with a unique ID identifying 
the referenced port. 

 In case there is a reaction for given control-flow monitoring errors the 
following elements shall be generated: 

 For each element specified within the reaction block a Provided 
Mode Port for status reporting has to be generated.  

7.2 Code Generator Inputs 

In order to specify the requirement for a control-flow monitor, the engineer needs to provide 
different resources to code generators. In the following sections these resources are described in 
details. 

7.2.1 Control-flow monitor software safety requirement 

The first resource to be provided by the engineer is the control-flow monitor software safety 
requirement. The input is a model corresponding to the SAFE control-flow monitor meta-model, 
shown in Figure 20. 
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Figure 20 – SAFE meta-model for the specification of a control-flow monitor software safety 

requirement 

Tool implementers might provide the safety engineer with support for specifying a control-flow 
monitoring requirement. In the next section some DSL constructs which map to the SAFE meta-
model for control-flow monitor specification are described. These constructs can be taken as 
example for the definition of tooling support. 

The final decision on what notation to take is to be taken by the tool implementer. The description 
of the DSL constructs are based on the different kinds of monitored described previously. 

7.2.1.1 Software component control-flow monitoring 

In the case of monitoring the control-flow of a software component the abstraction level is the 
interaction of this component with the system. This means the reading and writing of values to the 
component's ports. This monitoring could lead to the fact that the orchestration of the operations in 
the ports of different software components within a single software component composition can be 
specified by the engineer. In the list below some possible ways to model such a requirement are 
described: 

 Variant 1: 

monitor software component <<reference to autosar SWC>> { policy = 
read-before-write } 

 Variant 2: 
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monitor software component <<reference to autosar SWC>> { policy = 
write-before-read } 

 Variant 3: 

monitor software component <<reference to autosar SWC>> { policy = 
rw-block 
           read_block b1 { (<<reference to autosar required port>>) 
(, <<reference to autosar required port>>)* } 

            write_block b2 { (<<reference to autosar provided 
port>>) (, <<reference to autosar provided port>>)* } 

           read_block b3 { (<<reference to autosar required port>>) 
(, <<reference to autosar required port>>)* } 

           write_block b4 { (<<reference to autosar provided 
port>>) (, <<reference to autosar provided port>>)* } 
     } 

 Variant 4: 

monitor software component <<reference to autosar SWC>> { policy = 
sequence 

            (<<reference to autosar provided port>> | <<reference 
to autosar required port>>) ( -> <<reference to autosar provided 
port>> | <<reference to autosar required port>>)* 

     } 

 Variant 5: 

monitor software composition <<reference to autosar composition>> { 
policy = sequence 

            (<<reference to autosar component>>::<<reference to 
autosar provided port>> | <<reference to autosar 
component>>::<<reference to autosar required port>>) ( -
> <<reference to autosar component>>::<<reference to autosar 
provided port>> | <<reference to autosar component>>::<<reference 
to autosar required port>>)* 

     } 

The type of interaction can also be defined based on port properties, for example, send / receive 
or call operations. Furthermore, in order to support compositions the DSL could allow the 
referencing of the composition in question at the beginning of a statement and within the definition 
of the monitor requirement, the engineer would refer to a specific component within the 
composition, as shown in Variant 5. 

7.2.1.1.1 Internal behavior control-flow monitoring 

In the case of monitoring the control-flow of a component’s internal behavior it is interesting for the 
user to refer to runnable entities and to define a certain ordering of execution of the runnable 
entities which shall be ensured / monitored. The definition of a (partial) order of runnable entities 
execution could be specified within the DSL. The user has to be able to refer to the timing 
specification from within the DSL. 

Options: 
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 Variant1:  

monitor internal behavior of <<reference to autosar SWC>> :: 
<<reference to internal behavior of the SWC>> { control-flow = 
<<reference to AUTOSAR Timing specification>> } 

 Variant 2: 

monitor internal behavior of <<reference to autosar SWC>> :: 
<<reference to internal behavior of the SWC>> { control-flow = 
<<reference to state machine specification>> } 

 State machine specification provides events related to runnable sequences (e.g. 
startEvent, stopEvent). This can be used by the engineer to define transitions -> 
(st1, startEvent(runnable1)) > st2 

7.2.1.1.2 Runnable control-flow monitoring 

The challenge for monitoring the control-flow of runnable entities is that the instrumentation of the 
runnable entity’s code is necessary. Furthermore, the correct control-flow of the code is not known 
a priori, that is, at AUTOSAR level, and the safety engineer is possibly not able to determine what 
a correct control-flow from the runnable entity’s implementation perspective looks like.  

One possible solution for getting around this kind of issue is to allow a checkpoint specification to 
be defined and offer the developer of the runnable entity’s code to call checkpoints which are 
automatically mapped to the checkpoint specification. This specification would be a kind of 
exchange format between the safety engineer and the software developer responsible for a given 
runnable entity’s implementation. This however implies that the safety engineer is aware of 
implementation details of the runnable entity in question. 

Since it is not completely clear how this kind of monitoring could be seamlessly integrated into the 
development process of safety critical systems, it will not be described in detail in this document. 
The suggestions described previously could be used by tool implementers in order to create code 
generators able to integrate the monitoring requirements of safety engineers with the code 
produced by software developers. 

7.2.1.2 System/Software architecture 

Besides the requirement specification for control-flow monitoring the engineer has to provide the 
AUTOSAR model containing the software architecture and the AUTOSAR model containing the 
system specification determining the deployment of software components to ECUs. 

7.2.1.3 Configuration information 

The engineer has also to provide configuration information to the code generator in order to 
specify where generated artifacts are kept, for example a target source folder for generated 
source code, target model folder for generated model elements and a documentation target folder 
for documentation related to the generated artifacts. 

7.2.2 Code generation 

The code generation step for the control-flow monitoring software safety requirement produces the 
implementation of the logic for controlling the correct transitions specified by the requirement. The 
code shall provide the necessary interfaces for integration with the AUTOSAR Watchdog Manager 
Service Software Component Type described in the generated artifacts section (7.3). 
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Code generators are allowed to define how the meta-model elements are mapped to code. The 
only restriction is that the generated code is able to validate the control-flow using the Control-flow 
Monitor SSR defined by the engineer. 

Furthermore, since the definition of a control-flow monitor is supported by the AUTOSAR 4.0 
standard it is possible to rely on the Watchdog Manager implementation of an AUTOSAR stack 
complying with the 4.0 version of the standard. In this case there is no need for generating code 
on the side of the safety code generator, rather only the necessary AUTOSAR model elements. 

7.3 Generated artifacts 

The specification of control-flow requirements using a DSL abstracts the engineer from the 
realization details of such requirements in a given target platform. The DSL constructs described 
in the previous chapter provides the engineer with simple constructs which refer to some 
AUTOSAR elements in order to allow the specification of control-flow monitoring requirements. 
These requirements can then be automatically realized within AUTOSAR through the use of a 
code generation framework.  

In this section the artifacts created by the code generation framework are described in more detail. 
It shall serve as a guideline for tool implementers creating code generators. The following 
description is however not to be taken as base implementation since it might not provide all the 
elements necessary for realizing control-flow monitoring in a real AUTOSAR environment. 

7.3.1 Service software component type 

A ServiceSWComponentType AUTOSAR element is generated in order to define the 
WatchdogManager AUTOSAR component type. It provides the interfaces necessary for the 
interactions of regular AUTOSAR software components with the watchdog manager for control-
flow and aliveness monitoring. 

Name: WdgM. 

Ports: 

 For each supervised entity specified using the DSL an AUTOSAR provided port is 
generated. 

 Each provided port provides the corresponding interface for the specified 
monitoring (either control-flow or aliveness). 

 For each error which the watchdog manager is able to communicate a provided port is 
generated. 

 Each provided port provides the interface corresponding to the mode (error) which 
is being reported. 

Internal behavior: 

 For each supervised entity a PortAPIOption has to be defined in order to inform the 
corresponding runnable entity which control-flow structure has to be used for the 
monitoring activities. 

 For each port API option a unique ID shall be defined, used internally by the 
AUTOSAR WdgM BSW module code. 
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 For each supervised entity an OperationInvokedEvent has to be generated and mapped to 
the corresponding runnable entity. 

7.3.2 Software component prototype 

A software component prototype instantiating the watchdog manger in a composition software 
component type in AUTOSAR has to be created in order to provide the monitoring mechanisms to 
application software components. The corresponding connections of each supervised entity 
(monitored by the watchdog manager) to the component's port are also created. 

7.3.3 Client server interface 

For each type of monitoring (control-flow / aliveness) a client-server interface is generated. 

 Control-flow monitoring: provides the operation for notifying about checkpoint reached 
events. See AUTOSAR watchdog manager specification for the requirements on the 
operation name. 

 Aliveness monitoring: provides the operation for notifying the update of the value of 
aliveness counters. See AUTOSAR watchdog manager specification for the requirements 
on the operation name. 

7.3.4 Mode switch interface 

For each possible error to be communicated from the watchdog manager a mode switch interface 
is created and provides the corresponding mode group for the interface. 

7.3.5 Mode group 

For each set of modes used for error reporting by the watchdog manager a 
ModeDeclarationGroup is generated, the errors related to this group are generate within it. The 
mode group is referred to by mode switch interfaces used for error reporting. 

7.3.6 Mode declaration 

For each error reported by the WdgM a ModeDeclaration element is generated. 

7.3.7 ECU Configuration 

The code generator is responsible for generating the ECU configuration file necessary for the 
AUTOSAR watchdog manager to work. This file contains different elements and the generation of 
each element is described below. 

WdgM ECUModuleDef 

In order to configure the AUTOSAR watchdog manager as a control-flow monitoring mechanism 
an ECU Configuration file is generated. The file specifies the configuration of a WdgM 
ECUModuleDef element. 

WdgMSupervisedEntity 
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For each supervised entity (monitored element) specified by the safety engineer a 
WdgMSupervisedEntity entry is generated in the ECUConfiguration file. It receives a unique ID 
controlled by the code generation framework. 

Checkpoints 

Within each WdgMSupervisedEntity entry, the corresponding checkpoints are generated. The 
checkpoint generation is realized depending on the control-flow monitoring specification. The 
generation framework takes as input in most cases a state machine representation of the control-
flow and generates the necessary checkpoints in the watchdog manager configuration. 

WdgMInternalTransition 

Each checkpoint is connected to the subsequent one through a set of transitions. Each transition 
is created as a WdgMInternalTransition by the generator. The transitions are derived from the 
control-flow monitoring specification. 

If the control-flow specification defines an initial state the generator defines within the ECU 
configuration file which initial checkpoint is to be used as initial checkpoint by the watchdog 
manager monitoring code. 

7.4 Modification to existing AUTOSAR elements 

Depending on the type of monitoring specified different adaptations to the AUTOSAR model are 
necessary. Since the adaptations are highly dependent on the code generation utilized to realize 
the control-flow monitoring requirement, the adaptations to existing AUTOSAR models are not 
described in detail in this document. The following sections described in prose how such 
modifications could look like for a code generation framework. 

7.4.1 Software component monitoring 

In order to monitor the interactions of a software component (mainly the activity on provided and 
required ports) either an adaptation to the RTE generation process has to be done in order to 
intercept calls to the RTE related to a given port. Or the monitored component has to be integrated 
into a wrapper component which will handle the interception before the call gets to the RTE. 

Variant 1 - RTE Adaptation 

In this case the RTE is adapted to trigger the watchdog manager monitoring mechanism before 
the real call to the RTE function for reading/writing sending/receiving values to ports is called. This 
implies that implicitly the RTE calls the watchdog manager to inform that a certain checkpoint has 
been reached. 

Variant 2 - Wrapper component 

When monitoring a software component using a wrapper component, extra wrapper software 
component type and prototype are generated. It provides the same interfaces as the ones 
provided by the SWC being monitored. Furthermore, it intercepts the communication between the 
monitored component and the RTE in order to realize the monitoring. For this reason, the wrapper 
component is generated with runnable entities which are responsible for the interception of RTE 
interactions, triggering of the watchdog manager component through the corresponding monitoring 
ports and forwarding the value to the real target of the monitored RTE interaction (e.g. delivering a 
received value to the required port of the monitored component). 



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  44 (72) 

7.4.2 Internal behavior monitoring 

When defining the monitoring of the internal behavior of a given AUTOSAR SWC the engineer 
defines the possible valid sequences in which runnable entities can be executed. In order to 
monitor this sequence, the SWC being monitored has to be adapted so that the required ports for 
the control-flow monitoring are defined within the SWC. Furthermore, the runnable entities have to 
be adapted to interact with the watchdog manager. If the integration with the RTE is planned – 
checkpoint notifications done by the RTE – there must be no adaptation to the monitored software 
component whatsoever. 

In case no adaptation of the RTE is possible the following SWC adaptations are necessary and 
will enable the monitoring of the runnable sequence: 

SWC modifications: 

 Generator creates new ports required for the monitoring on the given software component. 

 Runnable entities are modified to access ports and report to the watchdog manager at the 
start and end of the runnable. 

 A macro for the runnable entities is generated and configured as main function for the 
runnable entities. 

 The macro is then the function which is called by the RTE when the runnable entity 
is supposed to be executed and could have the following structure: 

void runnable_entity_being_monitored_<<name>> () {  
CALL_WDGM_START_(RUNNABLE_ID); 
original_runnable_function(); 
CALL_WDGM_STOP(RUNNABLE_ID); 

} 

 The macro is generated within header files by the generator 

7.4.3 Runnable entity monitoring 

For the monitoring of the internals of runnable entities a state machine is generated and a set of 
macros for checkpoint notification are also generated. The software developer of responsible for 
the runnable entity is also responsible for calling the corresponding macros in the correct 
sequence and the macros report the checkpoints to the watchdog manager realizing the control-
flow monitoring. 
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8 Detailed Specification of code generation for software safety requirements for 

CHROMOSOME 

In this chapter the requirements for the generation of software safety requirements based on the 
CHROMOSOME target platform are provided. The information for software safety mechanisms 
contains a detailed description of the necessary input, the generated artifacts and the integration 
strategy for preexisting artifacts. 

8.1 CPU Self-Test 

The CPU Self-test SSR (meta-model depicted in Figure 15) provides the possibility to detect errors 
of the CPU. It is one of the mechanisms providing the startup proof test and allowing periodically 
scheduled testing of the CPU in case latent fault detection is also critical for the mission duration. 

CPU on the specific node is required to perform a challenge computation, and results are checked 
against expected output. Detection of an error results from a mismatch of response and 
expectation. 

8.1.1 Inputs 

The SSR Specification allows performing CPU tests in one of two main modes: proof test mode 
and segmented mode, so that no large timeslot is occupied in the schedule by the test. Total 
number of segments and full execution period are then specified as configuration parameters. 

Parameterization provides some flexibility in specifying the mechanism SSR for CHROMOSOME. 
SSR has to be configured according to the meta-model (Figure 15). One or more algorithms can 
be selected to specify, which types of tests have to be included. Execution of test in segments can 
also be specified by setting executeInSegments flag to true, then numSegments determines how 
many segments should be scheduled within executionPeriodMs time interval. Otherwise 
(executeInSegments is false) the test is required to be performed as a whole uninterruptable 
sequence once per executionPeriodMs or more often. For CHROMOSOME, the testedNode 
parameter references specific CHROMOSOME node, where the test should be scheduled. 

Software Architecture: CpuSelfTest shall be integrated as an instance of a depend_cpuSelfTest 
component, already implemented in CHROMOSOME and described in the safety-specific manifest 
model. Alternatively, a specialized variant of depend_cpuSelfTest shall be generated as a C 
module, and an instance of this specific variant shall be integrated into the existing 
CHROMOSOME system. 

8.1.2 Code generation 

As specified in the Subsection 5.3.2, code generation happens on the basis of a SAFE model and 
CHROMOSOME model. One component instance of CpuSelfTest is generated per requirement. 

Code generator is required to perform the following transformations: 

 If executionPeriod is equal to zero, the SSM is considered to be a startup proof test, 
otherwise as a periodic test. In the former case, the schedule S, within which the SSM will 
be scheduled, is S = {STARTUP}, and in the latter case it is S = {NORMAL}. 

 In case of specified executionPeriod a component instance shall be scheduled with period 
Texec < executionPeriodMs / numSegments. 

 The algorithms field along with numSegments should be transferred to the configuration of 
component instance implementing the SSM. 
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 Deployment of the generated SSM should occur on the hardware node, specified by the 
testedNode reference. 

Constraints for code generation: 

Only one instance of a periodic CpuSelfTest is generated. Whenever a concurring 
requirement is found, the configuration of an existing CpuSelfTest instance is updated to meet the 
strictest requirement (all specified algorithms and smallest period). 

8.1.3 Generated artifacts 

The implementation of code generator shall provide the following model elements that make 
further code generation and traceability possible:  

CHROMOSOME deployment model 

 An instance CpuSelfTest1 of depend_cpuSelfTest with the following parameters: 

 Execution period = Texec 

 Active schedule set = {S} 

 Number of segments = numSegments 

SAFE model 

 Reference to the component instance CHROMOSOMEReferences::Component with 
the same name (“CpuSelfTest1”). 

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and 
satisfyingTargets referencing the CpuSelfTest1 component instance. 

Further process of code generation happens within target technology configuration tool and is 
described in Appendix B – CHROMOSOME. 

8.2 RAM Self-Test 

The Memory Self-test SSR (meta-model depicted in Figure 16) provides the possibility to detect 
permanent errors in RAM cells or logic. It is one of the mechanisms providing the startup proof test 
and allowing periodically scheduled testing of RAM in case latent fault detection is also critical for 
the mission duration. 

CPU on the tested node executes the specified test on the preconfigured memory address range. 
As periodic execution of such tests at runtime requires copying of data and is a costly operation, it 
is possible to specify that the test is executed in chunks, thus splitting the address range into 
multiple chunks and executing the test in smaller portions. 

8.2.1 Inputs 

The SSR Specification allows performing RAM tests in one of two main modes: proof test mode 
and segmented mode, so that no large timeslot is occupied in the schedule by the test. Total 
number of segments and full execution period are then specified as configuration parameters. 

The SSR has to be configured according to the meta-model (Figure 16). One or more algorithms 
can be selected to specify, which types of tests have to be included. Execution of test in segments 
can also be specified by setting executeInChunks flag to true, then numberOfChunks determines 
how many segments should be scheduled within executionPeriodMs time interval. Otherwise 
(executeInChunks == false) the test is required to be performed as a whole uninterruptable 
sequence once per periodMs or more often. One or more memory ranges limited by startAddress 
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and stopAddress can be specified to be tested. For CHROMOSOME, the testedNode parameter 
references specific CHROMOSOME node, to which the testing mechanism should be deployed. 

Software Architecture: MemorySelfTest shall be integrated as an instance of a 
depend_memorySelfTest component, already implemented in CHROMOSOME and described in 
the safety-specific manifest model. 

8.2.2 Code generation 

As specified in Subsection 5.3.2, code generation happens on the basis of a SAFE model and 
CHROMOSOME model. One component instance of MemorySelfTest is generated per 
requirement. 

Code generator is required to perform the following transformations: 

 If periodMs is equal to zero, the SSM is considered to be a startup proof test, otherwise as 
a periodic test. In the former case, the schedule S, within which the SSM will be scheduled, 
shall be set to S = {STARTUP}, and in the latter case it is set to S = {NORMAL}. 

 In case of specified periodMs the execution period should be 
Texec < periodMs / numberOfChunks. 

 Generate the component instance. The ‘algorithms’ parameter values along with 
numberOfChunks and startAddress/stopAddress should be transferred to the configuration 
of component instance implementing the SSM. 

 deployment of the generated SSM should occur on the hardware node, specified by the 
testedNode reference. 

8.2.3 Generated artifacts 

The implementation of code generator shall provide the following model elements that make 
further code generation and traceability possible:  

CHROMOSOME deployment model 

 An instance MemorySelfTestX of depend_memorySelfTest with the following 
parameters: 

 Execution period = Texec 

 Active schedule set = {S} 

 NumberOfChunks = numberOfChunks 

 StartingAddress = startAddress 

 EndAddress = endAddress 

SAFE model 

 Reference to the component instance CHROMOSOMEReferences::Component with 
the same name (“MemorySelfTest1”). 

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and 
satisfyingTargets referencing the MemorySelfTest1 component instance. 

Further process of code generation happens within target technology configuration tool (XMT) and 
is described in Appendix B – CHROMOSOME. 

8.3 Voter 

Voter is an SSR (meta-model depicted in Figure 17) providing the possibility to specify comparison 
of multiple values with each other and provide a consensus value based on a specified voting 
algorithm.  
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Voter is usually applied in context of redundant data items being collected from different sources, 
so that certain tolerance between the values can take place. The values are compared against 
each other, and discrepancies are reported. At the same time a valid consensus value can be 
provided in most cases. 

8.3.1 Inputs 

Specification: Voter is specified with a configuration and specification of input data and resulting 
data item.  

Configuration of Voter should be performed in conformance to the meta-model. inputData are 
parameters, on which voting should happen; result specifies Voter output. In CHROMOSOME 
systems, inputData and result contain references to CHROMOSOME topics. result is correctly 
selected using algorithm if number of inputs (matching with specified tolerance) is larger or equal 
to consensusThreshold. 

Software architecture: The basis for Voter implementation is a generic implementation of voting 
functionality within the depend_voter CHROMOSOME component. The component is configurable 
and implements all the voting algorithms specified.  

The depend_voter implementation allows snapshot comparison with a specified algorithm of an 
arbitrary number of input ports VoterIn and output of a result into a single output port VoterResult. 
Error management interface is also provided as specified in Section 5.1. 

8.3.2 Code generation 

As specified in Subsection 5.3.2, code generation is performed on the basis of a SAFE model and 
CHROMOSOME model. 

While transforming the models, safety code generator is required to perform the following model 
transformations: 

 Generate a CHROMOSOME component model “VoterNooM”, where N is the value of 
consensusThreshold parameter, and M is the value of numberOfItems. The generated 
component will have M required input (subscription) ports {Input1, Input2 …} and two 
output (publication) ports: {result, errorIndication}. 

 Select a node for deployment. In case of one sink for the topic referenced by the result 
parameter. 

 Generate an instance X (incremental serial number) of the component VoterNooM on the 
selected node. Execution period Tx of the voter is set to least common multiple of 
execution periods of the sinks of the topic referenced by the result parameter. 

 Transfer the parameters algorithm and tolerance to the configuration of the generated 
instance 

 Generate relevant SAFE model entities and references 

8.3.3 Generated artifacts 

The implementation of code generator shall provide the following model elements that make 
further code generation and traceability possible:  

CHROMOSOME manifest model 

- A component VoterNooM as described above 

CHROMOSOME deployment model 
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 An instance VoterNooMX of VoterNooM on monitoredNode with the following 
parameters: 

 Execution period = Tx 

 Active schedule set = {NORMAL} 

 Algorithm = algorithm 

 Tolerance = tolerance 

SAFE model 

 A reference to the component instance CHROMOSOMEReferences::Component with 
the same name (“VoterNooMX”). 

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and 
satisfyingTargets referencing the VoterNooMX component instance. 

Further process of code generation happens within target technology configuration tool (XMT) and 
is described in Appendix B – CHROMOSOME. 

8.4 Health Monitor 

The Health Monitor SSR (meta-model shown in Figure 18) makes centralized supervision possible 
and allows execution of preconfigured reactions in response to events, such as a specific 
combination of runnable modes, or error notifications from error detection mechanisms. 

 

Health monitor is not an implicitly mandatory requirement, but its use is strongly recommended, 
while the execution of reactions to detected situations requires privileges that other components 
could fail to possess (to execute signed user code, internal reactions such as node restart, and so 
on). 

8.4.1 Inputs 

The SSR specification is trivial, and almost the entire important configuration relies on safety code 
generator. The SSR for CHROMOSOME is specified with a single parameter node, which 
specifies, on which instance of CHROMOSOME runtime the monitoring should take place. 

Software architecture: The implementation of the SSR shall instantiate a separate 
CHROMOSOME component for the SSM and shall schedule it appropriately. The corresponding 
implementation of the SSM in CHROMOSOME depend_healthMonitor is configured by providing a 
table of errorConditions and corresponding errorHandlers. While errorHandlers are simply function 
pointers, errorConditions (also “monitors”) are Boolean functions that can be of two predefined 
types: stateMonitor and indicationMonitor. When executed, depend_healthMonitor iterates through 
the table, evaluating errorConditions, and executes the corresponding errorHandler if the condition 
fires (evaluates to true).  

The functionality of indicationMonitor is based on a subscription to a healthIndications topic, whose 
attribute eventId should match the id configured in indicationMonitor to fire the errorCondition. 
Thus, any detector SSM can publish healthIndication’s with a globally unique eventId, and if 
HealthMonitor is configured to process such indications, necessary reaction will be executed. 

The functionality of stateMonitor is based on user components publishing their state, and 
conditions defined in stateMonitor which receive it and evaluate the state changes. This 
mechanism is currently out of safety code generation scope. 
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8.4.2 Code generation 

As specified in Subsection 5.3.2, code generation is performed on the basis of a SAFE model and 
CHROMOSOME model. Health monitor generation differs from generation of code for detection 
SSMs, while the error condition/handler table needs to be filled based on the model of the system 
as a whole, so safety code generator shall process HealthMonitor SSRs before the other ones. 

One CHROMOSOME component instance is generated per node.  

While transforming the models, code generator is required to perform the following 
transformations: 

 Iterate through all SSR specifications in SAFE model, filtering out the components 
deployed to the node where HealthMonitor is to be deployed 

 Optional: generate the monitorTable: 

 For each SSR find all Tactics of type Handle 

 Find matching Detect tactics 

 For each matching Tactic generate an entry in the SSM configuration parameter 
monitorTable:  

 [indicationMonitor (with a new unique eventId), <matching ChromosomeHandler 
function>]. 

8.4.3 Generated artifacts 

The implementation of code generator shall provide the following model elements that make 
further code generation and traceability possible:  

CHROMOSOME deployment model 

 An instance HealthMonitor of depend_healthMonitor at the specified CHROMOSOME 
node with the following parameters: 

 Active schedule set = {NORMAL} 

 Monitor table: filled as described above 

SAFE model 

 References to the component instance CHROMOSOMEReferences::Component with 
the same names (“HealthMonitor”). 

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and 
satisfyingTargets referencing the HealthMonitor component instance. 

Further process of code generation happens within target technology configuration tool (XMT) and 
is described in Appendix B – CHROMOSOME. 

8.5 Heartbeat 

The Heartbeat SSR (meta-model shown in Figure 19) allows for monitoring reachability and 
responsiveness of one computing node / ECU from another one.  

It consists of heartbeat receiver, a primitive implementation of an aliveness monitor containing one 
checkpoint, and an event generator, called heartbeat sender. So, heartbeat sender issues a 
heartbeat signal once per ‘periodMs’ milliseconds and heartbeat receiver checks arrival of this 
signal within ‘deadlineMs’ milliseconds. It should be noted explicitly that deadline specification 
should take possible jitter and clock drift into account and correspond to a worst case estimate to 
avoid false positives. 
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8.5.1 Inputs 

The SSR specification implicitly defines two parts of the heartbeat pattern that need to be 
allocated to (typically) different CHROMOSOME nodes. The SSR for CHROMOSOME is specified 
with a sender period periodMs, receiver deadline deadlineMs. monitorNode specifies, on which 
node the receiver should be located, and monitoredNode specifies, which CHROMOSOME node 
will become a sender of the heartbeat signals. 

8.5.2 Code generation 

While transforming the models, safety code generator is required to perform the following 
transformations: 

 the parameter deadlineMs is to be transferred into the configuration of  HeartbeatReceiver 
instance; 

 execution period is set for HeartbeatSender Ts = periodMs  and HeartbeatReceiver: 

Tr < deadlineMs / 2; 

 two CHROMOSOME component instances are generated: one of HeartbeatSender 
component, and one of HeartbeatReceiver. Deployment of the generated SSM component 
instances should occur on the hardware nodes, specified by the respective monitorNode 
and monitoredNode references. 

Constraints: 

 2 * periodMs < deadlineMs 

8.5.3 Generated artifacts 

The implementation of code generator shall provide the following model elements that make 
further code generation and traceability possible:  

CHROMOSOME deployment model 

 An instance HeartbeatSenderX of depend_heartbeatSender on monitoredNode with the 
following parameters: 

 Execution period = Ts 

 Active schedule set = {NORMAL} 

 Am instance HeartbeatReceiverX of depend_heartbeatReceiver on monitorNode with 
the following parameters: 

 Execution period = Tr 

 Active schedule set = {NORMAL} 

 Deadline = deadlineMs 

SAFE model 

 References to the component instances CHROMOSOMEReferences::Component with 
the same names (“HeartbeatSenderX”, “HeartbeatReceiverX”). 

 A Satisfy relationship is generated with satisfiedElement aggregating the SSR and 
satisfyingTargets referencing the HeartbeatReceiver and HeartbeatSender component 
instances. 

Further process of code generation happens within target technology configuration tool (XMT) and 
is described in Appendix B – CHROMOSOME. 
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9 Validation of generated artifacts 

There are different approaches to validate the artifacts generated by code generators. The 
approaches vary basically depending on the type of artifact generated: source code, model 
elements, documentation and traceability information. 

Depending on the target platform being used for system, software and hardware modeling, the 
output of safety code generators for the validation of the generated artifacts might vary. For 
example, if the validation of the generated elements is realized by external tools safety code 
generators might generate either source code for tests or test models which are used as input by 
external tools used in the validation process. 

9.1 Source code validation 

In order to validate the generated source code, code generators can also provide support for the 
generation of unit tests or component tests for the software safety requirements provided as input. 
In most cases the values provided within the software safety requirement model can also be used 
to generate tests for in-range and out-of range tests. 

For example, the specification of a range-check software safety requirement will contain the range 
boundary values which in turn can be used for the generation of tests. 

9.1 Model element validation 

In the case of generated model elements, code generators can either provide the validation of the 
generated models according to the meta-models of these models, or using external model 
validation tools. Furthermore in case the code generator is integrated into a modeling tool which 
supports the generated models, additional information can be added to the generated models in 
order to provide visual or textual feedback on the implications of the changes triggered by the 
output of the code generator. 

9.2 Traceability information validation 

Regarding traceability information, code generators can provide the expected coverage 
information from generated elements. This information can in turn be used by tools in order to 
demonstrate coverage or traceability in a more general context, such as the argumentation of 
coverage and traceability within a safety case. 
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10 Conclusions and Discussion 

In this document the approach for modeling software safety requirements (SSRs) developed 
during the SAFE Project was described. The approach has been consolidated with the SAFE 
meta-model, which allows capturing technical safety requirements, refining technical safety 
requirements into SSRs and providing traceability information between system artifacts and 
requirements.  

Furthermore, the document provides a specification for the implementation of safety code 
generators which (semi-)automatically transform SSRs into safety critical code and model artifacts. 
This specification is provided in a generic way so that different target technology platforms can be 
used for the realization of the SSRs. For reference purposes, the document also provides 
examples for the realization of code generators for specific target platforms such as AUTOSAR. 

The SAFE meta-model for software safety requirement specification was defined in order to 
formalize given software safety mechanism patterns which are commonly used while developing 
safety critical systems. The patterns were identified through a state of the art research and 
classification of safety mechanisms types. Afterwards, the patterns were captured within the SAFE 
Project as meta-model elements. The meta-model elements capture the essential information for 
the configuration and deployment of safety mechanisms and allow code generators to produce the 
necessary artifacts (code and model elements) to realize the requirements.  

The formalization of such patterns eases the argumentation of safety and the execution of safety 
analysis still in an early development phase since analyses can be realized on requirements level 
specified based on the preliminary system architecture. Furthermore, not only the automatic 
generation of code and model artifacts is possible, but also the automatic consolidation of safety 
arguments, also based on the SSRs, into the safety case argumentation. 

With more fine-grained SSRs formalized in the meta-model a more structured argumentation on 
safety can be done. Moreover, activities related to analysis such as FTA can be eased since SSRs 
can be linked to other model elements indicating that a safety measure is provided in order to 
cope with errors defined using the SAFE error model. 
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Appendix A – Classification of Software Safety Mechanisms 

In Sections 6.4, 7 and 8, a detailed specification of software safety requirements has been 
presented for a selected group of safety mechanisms. However, there are many other 
mechanisms which allow the realization of software safety requirements. 

SAFE has done an extensive research [14][15][16], review of ISO 26262 recommendations and 
internal discussions amongst project partners regarding safety mechanisms which can be 
implemented in software, namely, which could be specified as SSRs. For these mechanisms a 
classification has been done together with a technical description and semantic specification for 
each of the mechanisms considered in the classification. 

The classification results obtained during the activities of WT 3.6 are presented in this section in 
order to allow further extensions of the SAFE meta-model to incorporate mechanisms not yet 
modeled but already researched during the SAFE project. 

General Classification of Mechanism Types 

The safety mechanisms were initially divided into three groups. The definition of each group has to 
do with the separation of concerns of each of the mechanisms. The first group is fault avoidance 
and it regards mechanisms which implement fault avoidance techniques. For instance, a given 
system might fail if a failure manifests itself as a fault to another co-existing (e.g. executed within 
the same controller) although independent (e.g. belonging to different protected memory 
partitions) part of the system. These mechanisms prevent faults from happening and are therefore 
classified as fault avoidance mechanisms. In order to clarify the terminology the following 
considerations have to be made: 

Fault – abnormal condition that can cause an item to fail (ISO 26262 – Part 1 – 
Vocabulary) (e.g. bit flip in memory leads to erroneous address in memory). 

Error – manifestation of a fault (ISO 26262 – Part 1 – Vocabulary) (e.g. invalid address in 
pointer variable). 

Failure – termination of the ability of an item to perform a function as required (ISO 26262 
– Part 1 – Vocabulary) (e.g. crash due to invalid pointer). 

Errors are the manifestation of faults and therefore cannot be avoided. In order to prevent an error 
from happening one must avoid the fault that causes the error to appear. Therefore the term 

“Fault avoidance” is used to describe mechanisms which prevent the manifestation of faults in the 
form of errors. 

The second group of mechanisms is responsible for the detection of errors, namely error detection 
mechanisms. The error occurs because the fault which manifests itself as an error could not be 
avoided. In this case the system has to provide means to detect that an error has occurred. This 
group has been subdivided into two categories. The first category groups mechanisms where the 
error detection depends only on the current data, i.e. the current port input value. Therefore this 
group is named stateless error detection. The second category contains mechanisms which in 
order to be implemented need previous information about the computation process. In this case 
these mechanisms are called stateful error detection, e.g. logical monitoring of program sequence. 

The third group represents mechanisms which handle errors once they have been detected. There 
is a dependency between error detection and error handling since the error handling mechanisms 
must become aware of errors detected by the error detection mechanisms. 
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Figure 21 – Software safety mechanism structuring and classification 
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Semantics 

In the following the semantics of each mechanism that can be automatically generated by a safety 
code generator is described. The semantics serves as a base for specification of the generation 
process and also for the definition of meta-model constructs which can be used by engineers to 
specify the safety mechanisms used in a given system. In the semantics specification, when the 
result of a computation or mechanism is false, the interpretation shall be that an error has 
occurred. A generated safety mechanism can react to detected errors e.g. by reporting the error to 
the error forwarding or communication system which could then in turn trigger error handling 
mechanisms for the given error. 

Fault Avoidance 

Fault avoidance mechanisms prevent errors triggered by faults from manifesting. The mechanisms 
are responsible for impeding the execution of actions (e.g. reading memory regions, activating 
runnables) which if not impeded would lead the system to an unsafe state. 

Partitioning 

With partitioning the reader shall understand memory partition and the deployment of functions 
(runnable or task) to this partition. This allows the implementation and argumentation of freedom 
from interference. Since this technique prevents errors related to illegal memory access and the 
interference between software elements it is classified as a fault avoidance safety mechanism. 

Capabilities: 

Prevents errors caused by invalid or illegal access to certain memory regions. This mechanism 
prevents independent elements from causing/suffering interference from arbitrary system 
elements. 

Semantics: 

partition X,Y,… 

------------------------------------------------------------------------------- 

system element X,Y,… will be executed in the same partition 

Interlock 

The interlock mechanism avoids errors by requiring a pre-defined sequence of actions to be 
executed before the targeted action can actually be executed. Through an interlock an error is 
triggered when incorrect sequence of actions for a given resource protected using this mechanism 
are executed. 

DataInterlock 

A Data interlock mechanism computes the plausibility of two or more data values from distinct 
channels which refer possibly to different temporal states and feeds the result to a software 
component, such that the result value is interpreted as limiter or enabler. Thus, hazardous effects 
as a result data failure are avoided. The forwarded result could also be non-discrete. 

Capabilities: 

Prevent erroneous data communication when the current state is an error state 
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ControlFlowInterlock 

A Control flow interlock provides one data value (discrete or non-discrete) as enabler for an 
activity, e.g. the execution of a runnable entity. Thus, a runnable can be blocked as long as its 
execution could have hazardous effects. The interlock is defined as the correct sequence or set of 
control flow actions which must be executed in order to produce a valid state for the controlled 
activity. 

Capabilities: 

Prevent erroneous activation/execution of system element when the current state is an error state 

Replication 

A replication mechanism is responsible for copying data multiple times in order to reduce the 
probability of a fault manifesting itself. A clear example that describes this concept is message 
replication on a bus. The replication requires no computing on the receiver side and a simple 
repetition on the sending side. The mechanism realizes fault avoidance by reducing the probability 
that a bus fault manifests itself as a “message not received” error. The main characteristic of this 
mechanism is that it does not require any processing on the receiver side, contrary for example of 
a mechanism which saves the same data on different memory regions whereby in this case the 
receiver has to check different locations and compare data. 

Capabilities: 

Avoid random faults during the transmission of values from manifesting 

Semantics: 

replicate X Y times 

------------------------------------------------------- 

repeat Y times the action executed for X 

Error Detection 

The mechanisms described below comprise stateless and stateful safety mechanisms. The text 
structure will not be subdivided into these classes due to readability of section numbering. For a 
structural overview please refer to Figure 21. In the following an explanation about the stateful and 
stateless definitions is given. 

Stateless error detection is the term used in this document to describe error detection 
mechanisms which detect system errors independently of system state or state history. The 
mechanisms do not require information about previous system to determine if a given error 
occurred. An example is a CRC check which does not require information about previous values to 
determine if data has been corrupted. 

Stateful error detection refers to mechanisms where the error detection does not only depend on 
the computation performed by the mechanism but also on previous and current system state. For 
example, a gradient check mechanism will always depend on system timestamp (be it discretized 
in steps or other time units) and system state (i.e. previous data value). 

ParityCheck 

Parity checkers might check values for different numbers of parity bits. The most common case is 
one bit parity. However this only enables the detection of odd bit errors. More parity bits can be 
used to increase error detection capabilities. 
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Capabilities: 

Detect data corruption during data communication or data storage. 

Semantics: 

checksum X with Y bits parity 

------------------------------------------- 

parity(X,Y) ? true : false 

MessageReadbackCheck 

A message read back check provides support for validating if sent date was correctly sent. This is 
usually done at hardware only or hardware dependent levels. The reason is that the validation of 
sent data happens at the “transport” layer. For example, while transmitting CAN controllers must 
read back the bits sent on bus (“listening”) to make sure there are no collisions and that bus 
arbitration worked correctly. However at this level, the mechanism is not controlled by software but 
actually by the transmission hardware at physical level. The software part can control the 
execution of such mechanism. 

Capabilities: 

Detect hardware errors on communication components or transmission medium 

ChallengeResponseCheck 

This mechanism consists of a set of challenge-response pairs whose challenge is sent to another 
element on the system and the result of the computation is checked against the response value 
previously known to the sender.  

Computations can be as simple as the storing of a value in a register and sending it back, to more 
complex schemes such as calculating some hash or cryptographic function or even consider 
system state, time and history and then sending the result back. 

The specification of the mechanism can consist of a sequence of challenge-response values or of 
a single one. 

Capabilities: 

Detect hardware, state or communication errors 

Semantics: 

challenge comp with values=[(challenge,response)]+ 

--------------------------------------------------------------------------- 

foreach ch,re in values do: 

                 ret = let comp compute ch 

if (ret != re) then 

        error detected 

                                                                endif 

                                                        done 



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  61 (72) 

SensorCorrelation 

This mechanism correlates the value of two similar sensors against each other. For example two 
sensors with inverted slopes will allow the detection of measurements due to corruption of one or 
both signals. The values must first be converted to the same slope. 

Capabilities: 

Detect errors near sensor operational limit or sensor measurement errors 

Semantics: 

correlate s1[-x] and s2[-y] with maximum tolerance X 

where: 

-x,-y = discrete time step in the past (or zero) 

s1-x = The value of s1 at time current_time-(x time steps) 

s2-y = The value of s2 at time current_time-(y time steps) 

s1value(y) = <<user defined function>> 

s2value(z) = <<user defined function>> 

--------------------------------------------------------------- 

v1 = s1value(s1) 

v2 = s2value(s2) 

compare abs(v1-v2) lte X 

SensorRationalityCheck 

The rationality check of sensors is done using different input sources. The rationality comes from 
the comparison of different sensor values and the interrelation between their values. Example 
given by the ISO 26262 is the rationality check of air flow on the engine. The throttle position, 
manifold pressure and mass air flow values are taken and converted to the same unit of measure 
(air flow). The values are then compared to check for possible sensor errors. 

Capabilities: 

Detect sensor measurement errors 

Semantics: 

rationalize s1[-x],s2[-y],s3[-z] with maximum tolerance X 

where: 

-x,-y,-z = discrete time step in the past (or zero) 

s1-x = The value of s1 at time current_time-(x time steps) 

s2-y = The value of s2 at time current_time-(y time steps) 

s3-z = The value of s3 at time current_time-(z time steps) 

s1value(y) = <<user defined function>> 

s2value(z) = <<user defined function>> 

s3value(t) = <<user defined function>> 

------------------------------------------------------------------ 

v1 = s1value(s1) 
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v2 = s2value(s2) 

v3 = s3value(s3) 

(compare abs(v1-v2) lte X and 

compare abs(v2-v3) lte X and 

compare abs(v1-v3) lte X) 

AnalyticRedundancy 

The analytic redundancy mechanism realizes redundancy through a model of the element realized 
redundantly. The redundancy is made through computation of values following the analytical 
model and comparing the computed value with the value received from the element for which the 
mechanism is providing redundancy. 

Capabilities: 

Detect erroneous values provided by system elements 

LogicalControlFlowMonitoring 

The logical monitoring (e.g. AUTOSAR WDM logical monitoring features) enables the engineer to 
specify the logical behavior according to which a given software element must be executed. The 
steps might be specified using, for example, state machines. 

Capabilities: 

Monitor logical behavior of elements and detect logical ordering errors 

Semantics: 

check logic of X with SM Y 

---------------------------------------------------------------------------------- 

(s,s’) in Tx and (s,s’) in Tsmy ? true : false 

Where: 

s,s’ are states of X 

 (s,s’) is a transition from s to s’ 

Tx = the set of (s,s’) from X 

Tsm =  the set of (s,s’) from Y 

DataSequenceMonitor 

This mechanism monitors the sequencing of data elements which arrive via a communication link 
and are forwarded to system elements. Data element sequencing requires a dedicated timestamp 
or sequence counter field in the monitored VariableDataPrototype. 

The expected data sequence can also be defined as a more holistic data flow model, e.g. based 
on petri nets, which would allow the engineer to describe more complex consistency constraints 
for compositions of software components. 

Capabilities: 

Detect errors in the ordering of data messages 

Semantics: 
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monitor sequence of element with f(x) 

where: 

f(x) = <<user defined function>> 

---------------------------------------------------------- 

if compare f(last_id) eq element.id then 

last_id = element.id 

            else 

error 

When the data sequence is defined through petri-nets or similar formalism the semantics shall be 
the following: 

monitor sequence of E with P 

where: 

E = set of elements which have their sequence monitored 

P = formalism which describes the interdependency between element sequences 

------------------------------------------------------------------------------------------------------------ 

nE = compute(E,P) 

for each ne,le,e in nE,lE,E 

if ne.id = e.id 

le.id = e.id 

         else 

error 

                                                         end for each 

DeadlineSupervision 

The deadline supervision mechanism monitors for the deadline of specific parts of a given 
software component. Deadlines can have a minimum and maximum parameter in order to define a 
time window in which the SW-C shall notify the WD that a given part of the component executed/is 
going to execute. Deadlines are seen as time windows between checkpoints by AUTOSAR 4.0. 
Therefore, one way to see deadlines is the time window between the reaching of a checkpoint A 
and the transition to checkpoint B. 

This mechanism is a simple case of the LogicalControlFlowMonitoring and thus easier to 
implement and use. 

Capabilities: 

Detect the violation of deadlines for given functions 

Semantics: 

supervise X on deadlines [{cpA,cpB,min,max}]+ 

------------------------------------------------------------------------------------------------------------------------- 

configures AUTOSAR WDM to check X according to checkpoints and deadlines specified by 
deadlines 
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DataTimeoutMonitoring 

Data timeout monitoring is a mechanism which monitors the arrival interval of data. It differs from 
maximum age monitoring in the sense that data can have a short validity but a greater periodicity 
(e.g. data from sensors are valid only for 3ms and a given software unit expects valid data every 
10ms). This means that the time for reaction (processing of data) is short (e.g. 3ms) but the 
periodicity of data is longer (e.g. 10ms). 

Capabilities: 

Detect timing violations on communications/data periodicity 

Semantics: 

timeout after X units 

where: 

units = system time unit (e.g ms, us, ns) 

----------------------------------------------------------------------------- 

triggers error if no data is received within X time units 

(could be implemented as annotation e.g. @timeout(5 ms)) 

MaximumAgeMonitoring 

The maximum age monitor shall check if a given message/data is still valid according to an 
expiration date. This expiration date determines how long a message/data can be used before its 
age can influence the behavior of the system. There are implications when using this mechanism 
regarding the synchronization of clocks within the (possibly distributed) system architecture. 

Capabilities: 

Detect validity/expiration violations on data usage 

Semantics: 

maxage of A is X 

----------------------------------------------------------------- 

cur_timestamp - A.timestamp < X ? A : invalid 

Error Handling 

In this section the mechanisms for error correction compiled for WT 3.6 are described. Once 
more, the document structure will not reflect the structure depicted in Figure 21 due to readability 
reasons. 

DefaultValue 

This mechanism realizes masking of errors in the sense that erroneous values are not forwarded 
to the system but substituted by a default and valid value instead. The mechanism can silently 
realize the feature or together with the masking notify / register an error. 

Capabilities: 

Prevent erroneous values from being forwarded to the system 

Semantics: 



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  65 (72) 

X defaults to last 

---------------------------------------------------------------------------------------------- 

if an error occurs the value for X defaults to the last valid value received 

 

X defaults to Y 

------------------------------------------------------------ 

if an error occurs the value for X defaults to Y 

 

X defaults to average 

-------------------------------------------------------------------------------------------------------------- 

if an error occurs the value for X defaults to the average of the valid values received 

Reporting 

A reporting mechanism handles errors by communicating them to interested parties. When a given 
error occurs and the reporting mechanism is assigned as handling mechanism the error shall be 
somehow persisted and communicated to other system elements which might be influenced by the 
error. 

Capabilities: 

Handle errors which do not directly impact a system element but may lead to system failure if not 
noticed by other components. 

Semantics: 

on X report to Y 

where: 

X := error event (detected) 

Y := set of system elements (e.g. SWC) 

---------------------------------------------------- 

for each y in Y do: 

notify y of X 

     end for each 

Reset 

A reset mechanism can be defined to help the system recover from an error. The reset can be 
applied to a given software partition (memory partition). Meaning the application deployed to this 
partition is reset. Or it can be defined for the whole system (ECU) and the MCU will be reset. 

Capabilities: 

Handle errors which require a system element or system restart 

Semantics: 

reset mcu on X 

------------------------------------------- 
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if event X happens reset mcu 

 

reset partN on X 

--------------------------------------------------------- 

if event X happens reset partition partN 

Where: 

X is an event which might be triggered, for instance, when a supervised entity violates a 
checkpoint/deadline 

Degradation 

Systems can fail gracefully if the specification defines methods through which the functionality of 
the system can be reduced when error occurs. One idea is to specify a degradation tree, as shown 
in Figure 22, in which the different functionality levels (qualitative or quantitative) are specified. 
Upon an error functionality is degraded and when no solution is available an error is reported. 

 

Figure 22 – Suggested approach for degradation modeling 

The approach could be to specify the functionality of system components in a way that a logical 
sequence for degradation is achieved, degradation tree could be modeled in a manner similar to 
Boolean circuits. This could be in turn transformed into code that disables/enables given functions 
in order to maintain system quality or system safety level. However, the specification of 
degradation behavior might not be that simple. 

Capabilities: 

Keep system operational even when the normal operation of the system might be hindered by 
errors or damaged system elements. 
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Appendix B – CHROMOSOME 

CHROMOSOME (often abbreviated by “XME”) is a domain-independent, data-centric middleware 
for cyber-physical systems. From the point of view of an application component, CHROMOSOME 
abstracts from basic functionality that is traditionally found in operating systems and middleware, 
like scheduling and communication. Apart from that, it offers model-driven design tools with code 
generation capabilities that allow a user to design the distributed system in an abstract way. 

Apart from its configurable nature, CHROMOSOME sets a high goal to support adaptive system 
development by allowing dynamic reconfiguration of a distributed application at runtime. The 
configuration of an application is changed during a special “plug” phase, which ensures that 
runtime system is reconfigured consistently to keep real-time guarantees.  

Some more information on core CHROMOSOME concepts can be found in CHROMOSOME 
tutorial [17].1 

Generation of Runtime for CHROMOSOME 

Chromosome development takes place in a manner similar to the AUTOSAR concept of VFB [7]. 
The model specifies some aspects of deployment, but allows low-level aspects to be generated by 
configuration tools without influencing the functional architecture (e.g., the data channels between 
component instances as well as the glue code to instantiate components are generated during 
configuration phase). Configuration of a distributed application developed with CHROMOSOME 
succeeds via a special configuration tool, which generates the final deployment in an automated 
model-based fashion.  

The configuration tool co-developed and provided with CHROMOSOME is called CHROMOSOME 
Modeling Tool (XMT). XMT addresses in first place the needs of configuring the data-centric 
communication through generation of necessary marshaling and network communication 
components, which are not explicitly specified by the user.  It also generates instance information 
for components configured to be executed as parts of distributed application. Scheduling of 
components is also done automatically (user specifies the period of application execution, and 
schedules, in which the component should be present). 

CHROMOSOME Model types 

In XMT, a model of a system is composed of multiple models defining specific aspects of the 
middleware configuration ([17], sec. 5): 

 Topic dictionary model: defines the set of topics and associated attributes to be used by 
the component interfaces 

 Manifest model: defines component blueprints (also referred to as “component types”), 
their configuration parameters and interfaces (input/output ports). 

 Device types model: defines the types of hardware nodes available for deployment and 
their communication-specific properties like network interface types. 

 The Deployment model links the other models together. Here the distributed application is 
specified: components described by the Manifest are instantiated at specific nodes, and 

                                                

 

 

1 All the presented information is valid for CHROMOSOME release 0.6. 



SAFE – an ITEA2 project                       D3.6.b 

 2011 The SAFE  Consortium  68 (72) 

ComponentInstance-specific configuration is done (execution period and component-
specific parameters).  

Not to go deep into details, it is worth mentioning that a component type modeled in the Manifest 
model corresponds to a component implementation in form of a C module within the 
CHROMOSOME source code or specified by user. 

 

Figure 23 – CHROMOSOME Modeling Tool (XMT) 
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Figure 24 –Different meta-models within CHROMOSOME meta-model in XMT 
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An Example of Code Generation Workflow for CHROMOSOME 

In this section a general outline of code generation scenarios is provided, where SAFE SSRs are 
implemented by CHROMOSOME SSMs. 

To preserve source model traceability, the model transformation tool shall not operate on input 
model files, but rather on a copy of the SSR model expressed in terms of SAFE meta-model. 

An overview of the workflow for the code generation process is depicted in Figure 25. 
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Figure 25 – Illustration of the code generation workflow for CHROMOSOME 

The models and other inputs specified in the workflow need to be described in finer detail. Typical 
transformations performed on those models also need to be specified. 

CHROMOSOME models 

The model of a CHROMOSOME system is transformed into C code by a CHROMOSOME-specific 
code generation tool (to distinguish from safety code generator, this tool is further called 
configuration tool). A configuration tool supplied with CHROMOSOME is CHROMOSOME 
Modeling Tool (XMT). Configuration tool performs integration of predeveloped C components with 
custom configuration of such components provided by the CHROMOSOME deployment model 
and instantiation of data flow components between them with generated CHROMOSOME runtime. 

CHROMOSOME by initial design features no safety view on the system as a whole, and provides 
only implementations of component behavior in form of a library of software modules implemented 
in C, which integrate into a health management subsystem through tool-supported code 
generation process (e.g., through code generation with XMT).  

To improve the situation and simplify the development of safety code generators, a 
CHROMOSOME manifest model defining safety components has been created. It can be imported 
in the form of “SAFE.xmm” manifest by any other CHROMOSOME model, and then used to 
specify instances within the deployment model.  

In our preliminary approach the generated CHROMOSOME models always import “SAFE.xmm” 
and rely on the components modeled in this manifest model. 
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Figure 26 – Manifest model with components specification to support WT3.6 SSM 

generation 

SAFE model 

A model acting as an instance of SAFE meta-model shall be used as input for SSR generation. 
This model can be presented in SAFE interchange format, in terms of a subset of SAFE meta-
model implemented in an isolated modeling tool, or in a textual language derived from such a 
meta-model subset. 

For prototyping reasons within WT3.6 the relevant subset of SAFE meta-model has been 
implemented using EMF (Eclipse Modeling Framework) partially using SAFE Technology 
Platform’s ecore as a basis for building such a prototype. 

Safety code generator 

The relationship between the SAFE and CHROMOSOME models is established within the safety 
code generator logic based on matching entity names and enforcement of a global naming 
convention. The safety code generator mainly acts as a model transformation tool rather than 
code generator. 

Transformation of multiple input models (predefined CHROMOSOME model and SAFE SSRs) can 
be implemented using one of the numerous model transformation frameworks. Almost every 
modeling framework or tool today is accompanied by at least one model transformation 
framework. To be mentioned as an example only, Eclipse Modeling Framework and the Xtend 
framework [19] may be used, which provides rich capabilities in specification of meta-models, 
model transformation and code generation. 

The following subsections discuss the necessary steps that safety code generator shall perform: 
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Generation of additional artifacts into the CHROMOSOME model 

New model entities shall be generated in the CHROMOSOME models, such as new topics, 
CHROMOSOME components and CHROMOSOME component instances. The possible generated 
entities are specified in this section in a generalized form, and defined more precisely in the 
following section, where safety code generation for specific SSRs is discussed. 

1. Chromosome component instances are normally generated to implement an SSR. Such 

component instances perform required detection or handling of errors. 

For the sake of example, let us take a look at a simple system with two components, Sensor 

and Actuator, which are connected to each other. Sensor publishes topic pressureValue, and 

Actuator subscribes to this topic. All of the components are running on a single node. An 

example SSR on such a system is to perform periodic CPU tests of the node hardware. Such a 

requirement leads to generation of an instance of xme_core_depend_cpuTest component with 

configuration parameters inferred from the SSR specification. 

2. If the number of input data items for an SSR is not known in advance (e.g., for Voter SSR it is 

a part of SSR specification), models of components with required number of input ports need 

to be first generated into the manifest model. 

3. Some SSRs require for their implementation, that the data flow between the component ports 

is changed. In this case before a component instance is generated, new topic definitions need 

to be generated, manifest and deployment model for the related component(s) need to be 

updated with the re-routed topic as port data item. 

For example, instantiation of plausibility checking components like RangeCheck requires such 

an update of the dataflow. In the example case the generator shall create a new topic with 

name “rangeNotChecked_pressureValue”, and update the deployment model and manifest, so 

that the source component generates the new topic, and an instance of Actuator subscribes to 

the original one. RangeCheck instance has then a subscription to 

rangeNotChecked_pressureValue and publishes pressureValue. 

4. Some components require more complex queries and modifications being performed on the 

input models. For example, HealthMonitor requires iteration through all other SSRs for the 

reaction configuration table to be generated. 

 

Generation of error detection SSRs is performed sequentially one-by-one, allowing an easy query-

and-update workflow for safety code generator. One exception is error management components.  

Error management for CHROMOSOME is centered on using HealthMonitor. All CHROMOSOME 
components matching the detector SSRs have the following configuration parameters: a Boolean 
flag localHandling indicates whether detected errors should be handled by the specified function, 
and handler – name of the provided function. Thus there has to be a common step in generation 
of all detector SSRs: if a HealthMonitor is present on the node, where the detector SSR will be 
implemented, localHandling is set to false. Otherwise, localHandling is set to true, and handler is 
filled in by the corresponding ErrorHandler, which is found by exploring the Tactics of subclass 
Handle, which refer to the same Situation as the Detect Tactics associated with the detector SSR. 
It is the job of safety code generator to acquire error management information from the model and 
apply it consistently throughout the generation process.  

Generation of references to the generated artifacts within the SAFE model 

SAFE meta-model allows referencing CHROMOSOME entities. Such references shall be created 
by the code generator. The references created in the SAFE model shall be bound to the related 
SSRs by the Satisfy requirements relationships. 
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In the above example, the CpuSelfTest SSR should be bound to the instance of the 

xme_core_depend_cpuTest component, as shown in the below figure. 

Generation of tests 

 As it is not possible to directly test the code generated within such a setting, generation of 
testbench models is proposed. Generated safety component implementing SSM specified by a 
respective SSR is tested within a testbench project, which is a CHROMOSOME system model with 
publishers and subscribers mocked. SSM components that detect hardware errors only (like 
CpuSelfTest realization) shall be testable through introduction of a private interface for injecting 
errors by the testbench.  

Additionally, to support test generation, library of mockup component implementations in form of C 
code has to be provided. 

Generated documentation 

Generated component instance models in CHROMOSOME models shall be annotated in a way 
that the configuration tool is capable of generating source code comments or documentation 
based on the annotations. In case of generated comments, documentation could be later build by 
document generation tools, such as, for example, Doxygen [20], gtk-doc [21] or similar. The 
annotation shall include information on the source SSR and other related component instances (if 
any). 

Deployment generation 

The output of safety code generator is a deployment specification in form of a CHROMOSOME 
deployment model (and possibly topic dictionary and manifest, if required). The code generator 
performs necessary conversions from the SSR specification to extract information necessary for 
scheduling and extension of data flow. The deployment model specification for every generated 
component instances includes: 

 Scheduling parameters 

 Schedules (node states), in which the component should be executed 

 Execution period in milliseconds 

 Component-specific parameters defined by the component manifest. For specific components 
implementing SAFE SSMs the configuration parameters are discussed in respective 
subsections of the next Section.  

The specification from the deployment model is satisfied by XMT configuration tool. It performs 
schedule generation and generates data flow components, thus enabling the seamless integration 
of data-centric components into the system in a fully automated manner. Generation of source 
code from the CHROMOSOME model results in the following items for each CHROMOSOME 
node:  

 Code for configured components in form of component/function wrappers (see [17] for details) 

 Configured CHROMOSOME runtime code (“main.c”): 

 Configuration of schedule 

 Configuration of the data-centric communication (including data flow components for 
marshaling/demarshalling and communication over network/bus) 

 Glue code to start and initialize all configured components 

 Build definition files to enable project compilation and documentation generation from source 
code (Make / CMake / other build tool). 


