
SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  1 (70) 

 

         Contract number: ITEA2 – 10039        

Safe Automotive soFtware architEcture (SAFE) 

ITEA Roadmap application domains: 

Major: Services, Systems & Software Creation 

Minor: Society 

ITEA Roadmap technology categories: 

Major:  Systems Engineering & Software Engineering 

Minor 1: Engineering Process Support 

 

WP3 - Deliverable D3.2.2b 

Proposal for extension of meta model for 

hardware modeling 

 
 

Due date of deliverable:  27/12/2013 

Actual submission date:  20/12/2013 

 

Start date of the task:  28/11/2011    Duration:  25 months 

 

Project coordinator name:  Stefan Voget 

Organization name of lead contractor for this deliv erable:  Continental France 

 

Editor: Philippe Cuenot (Continental France) 

Contributors: Philippe Cuenot (Continental France), Nico Adler (FZI), Stefan Otten (FZI) 

Reviewers: Florent Meurville (Valeo), Martin Hillenbrand (FZI), Nico Adler (FZI), Stefan Otten (FZI) 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  2 (70) 

Revision chart and history log 

Version Date Reason 

0.1 2012-07-17 Initialization of document 

0.2 2012-12-14 Revision of template and allocation 

0.3 2013-01-23 Initial documentation of contribution to SAFE meta model and inter-
dependencies to other work tasks 

0.4 2013-02-05 Conti-F contributions chap 4 to 6. 

0.5 2013-02-06 Meta model documentation, Hardware modeling scoping, Performing 
Hardware Modeling based on EAST-ADL 

0.6 2013-02-08 Review of Chapter 6 by Florent for WT331 interface 

0.7 2013-02-19 Current status EAST-ADL + chap. 7 and 9  

0.8 2013-02-21 Update MM description 

0.9 2013-02-22 New chapter 8.3, 8.4, 9.2 and completion of chap 10 and 11 

1.0 2013-02-28 Final version 1.0 with proof reading (published 28.02.2013) 

1.1 2013-12-02 Up to date meta model and clarification of section 9 and section 10 

1.2 2013-12-16 Review 

2.0 2013-12-20 Final version D3.2.2.b (published 20.12.2013) 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  3 (70) 

1 Table of contents 

 

1 Table of contents ........................................................................................................................................ 3 

2 List of figures .............................................................................................................................................. 5 

3 Executive Summary .................................................................................................................................... 6 

4 Introduction and overview of document ...................................................................................................... 7 

4.1 Scope of WT 3.2.2 .............................................................................................................................. 7 

4.2 Structure of document ........................................................................................................................ 9 

5 Overview on ISO 26262 ............................................................................................................................ 10 

6 Safety Analysis Methods Interface............................................................................................................ 14 

6.1 Interface Methodology for Safety Analysis ........................................................................................ 14 

6.2 Interface Element.............................................................................................................................. 17 

7 Hardware modeling scoping ..................................................................................................................... 19 

7.1 Requirements Package: Hardware Components ............................................................................. 19 

7.2 Requirements Package: Hardware Failure ....................................................................................... 19 

7.3 Requirements Package: Hardware Architectural Metrics ................................................................. 20 

7.4 Requirements Package: Safety Goal Violation ................................................................................. 20 

7.5 Requirements Package: Traceability ................................................................................................ 20 

7.6 Allocation of the requirements packages to derived meta model structure ...................................... 20 

8 Performing Hardware Modeling based on EAST-ADL ............................................................................. 22 

8.1 Current status of EAST-ADL ............................................................................................................ 22 

8.2 Proposed extensions to EAST-ADL.................................................................................................. 26 

8.3 Current status of AUTOSAR ............................................................................................................. 27 

8.4 Proposed extensions to AUTOSAR .................................................................................................. 28 

9 WT 3.2.2 Contribution to SAFE Meta-Model ............................................................................................ 29 

9.1 Overview ........................................................................................................................................... 29 

9.2 Proposal for change request on EAST-ADL ..................................................................................... 31 

9.2.1 Package Hardware Structure .................................................................................................... 32 

9.3 Detailed Description of Classes and Links of Package Hardware.................................................... 41 

9.3.1 Package FailureFormula ........................................................................................................... 41 

9.3.2 Package Failure ........................................................................................................................ 42 

9.3.3 Package FailurePart ................................................................................................................. 48 

9.3.4 Package HWQuantitativeMeasure ............................................................................................ 52 

9.3.5 Package HWArchitecturalMetrics ............................................................................................. 54 

9.3.6 Package ProbabilisticMethods .................................................................................................. 56 

10 Description Based on an Example........................................................................................................ 59 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  4 (70) 

10.1 Step 1: Capture Hardware Technical Safety Concept ...................................................................... 60 

10.2 Step 2: Complete HW Component Failure Propagation on Hardware Architecture ......................... 60 

10.3 Step 3: Define target values for HW Components and calculate metrics ........................................ 61 

10.4 Step 4: Define Hardware Part Allocation and Malfunction ................................................................ 61 

10.5 Step 5: Develop Electronics Schematic ............................................................................................ 61 

10.6 Step 6: Perform Electronic FMEA and contribution to HW Component malfunction ........................ 61 

10.7 Step 7: Verify Component Metrics and Probabilistic value ............................................................... 61 

11 IP-XACT interchange ............................................................................................................................ 63 

11.1 Mapping rules ................................................................................................................................... 65 

11.2 Extension for failure information ....................................................................................................... 67 

12 Conclusions and Discussion ................................................................................................................. 68 

13 References ........................................................................................................................................... 69 

14 Acknowledgments................................................................................................................................. 70 

 

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  5 (70) 

2 List of figures 

Figure 1: Overview on ISO 26262 (Relevant parts highlighted) ..................................................... 10 

Figure 2: Overview on structure of architecture (Relevant parts highlighted) ................................. 15 

Figure 3: Overview on iterative safety analysis methods ............................................................... 16 

Figure 4: Hardware allocation and quantitative analysis ................................................................ 16 

Figure 5: Class diagram for Package Dependencies ..................................................................... 22 

Figure 6: Class diagram for Hardware Modeling in the EAST-ADL2 .............................................. 23 

Figure 7: Class diagram for Function Modeling in the EAST-ADL2 ............................................... 24 

Figure 8: Class diagram for Error Modeling in the EAST-ADL2 Dependability ............................... 25 

Figure 9: Class diagram for Error Behavior in the EAST-ADL2 Dependability ............................... 26 

Figure 10: AUTOSAR ECU Resource overview ............................................................................ 27 

Figure 11: Overview on WT 3.2.2-contribution to SAFE meta-model ............................................ 29 

Figure 12: References of package Hardware to EAST-ADL .......................................................... 30 

Figure 13: Electronic Schematic diagram ISO26262-Part5 Figure E.1 .......................................... 59 

Figure 14: Technical Safety Concept for ISO26262-Part5 Figure E.1 ........................................... 60 

Figure 15: Structure of a component IP-XACT .............................................................................. 63 

Figure 16: Design representation in IP-XACT ............................................................................... 63 

Figure 17: AUTOSAR HWcomponent and HWCategory ............................................................... 64 

Figure 18: Class mapping between AUTOSAR and IP-XACT ....................................................... 66 

Figure 19: Hardware Part Failure information for IP-XACT ............................................................ 67 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  6 (70) 

3 Executive Summary 

The work task WT3.2.2 targets the topics of hardware modeling and evaluation according to ISO 
26262. This activity includes the definition of the necessary elements to represent the hardware 
architecture of the technical safety concept and the hardware parts of electronic schematics. It 
also comprises the constructs supporting the calculation of hardware quantitative measures de-
manded by ISO 26262 [1] in terms of the hardware architectural metrics and the evaluation of 
safety goal violations due to random hardware failures. 

Besides giving an overview of relevant sections in ISO 26262, the allocated requirements to 
WT3.2.2 resulting from an ISO 26262 analysis of WT 2.1 and the needs from use case descrip-
tions in WT2.3 are presented.  

In addition to the previous mentioned overview, the methodology for the hardware technical safety 
concept representation, the hardware component failure modes and classification rating definition 
in accordance with the needs of ISO 26262 is presented. As it is objective to develop a meta-
model for hardware modeling, the current version of EAST-ADL[3] and AUTOSAR[2] is analyzed. 
Moreover, the contribution of WT3.2.2 to the SAFE meta-model, which is based on EAST-ADL is 
presented. 

The relation of selected hardware meta model constructs with the consumer electronic inter-
change format IP-XACT [4] from Accelera Organization is discussed. A first overview of proposed 
links is given. 

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  7 (70) 

4 Introduction and overview of document 

This document provides information about a methodology for hardware modeling to facilitate the 
representation and to perform the safety evaluation of the technical safety concept related to 
hardware components and hardware parts as electronic components. The proposed method will 
rely on existing automotive standards AUTOSAR and EAST-ADL, and will forecast to elaborate a 
first approach to connect it to the consumer electronics standard IP-XACT.  

4.1 Scope of WT 3.2.2 

Work task WT3.2.2 deals with model-based structural and failure description of hardware. 

Basis is the hardware design architecture of EAST-ADL [3] and the ECU resource template from 
AUTOSAR [2] in the hardware element description, both being presented in chapter 8. WT3.2.2 
intends to provide a methodology for the hardware architecture component representation and 
decomposition into a hardware part with respect to safety evaluation related to random hardware 
failures. The existing current meta-model of EAST-ADL and AUTOSAR will be analyzed to provide 
proposals for modification of basic standards via change request and to define appropriate safety-
related extensions in terms of the described topics.  

Additionally, the IP-XACT [4] interchange format will be mapped to AUTOSAR hardware elements, 
as component part description, in order to derive requirements for a possible automatic transfor-
mation to favor hardware model exchange with silicon suppliers.  

Therefore, the following artifacts and their interrelations shall be considered: 

Hardware Component  

The applicable concept of EAST-ADL2.1 for hardware components (type and prototype) allows 
representing a logical or technical hardware element. This actual construct allows compositional 
organization of hardware elements, either used to represent logical element or directly as a physi-
cal electronic component. The use of logical elements allows a functional abstraction of electronic 
component, then allocated into one (or several) physical electronic complex component (e.g. 
FPGA, ASIC) or decomposed into a set of physical electronic component (resistors, capacitors, 
etc…). The hardware component concept shall enable a direct relation to behavioral representa-
tion for functional or dysfunctional modeling and possible simulation. Furthermore, the intercon-
nection of component communication via Pins, Ports and Connectors shall allow the definition of 
generic abstraction concept for whatever bus interconnection is capable for on low level electronic 
abstraction features (e.g. SPI, AMBA bus...). The use of hardware components and their intercon-
nections shall also permit flexible and reusable description of hardware characteristics in particular 
for the ports. This would facilitate the allocation of a hardware component to physical elements 
based on predefine semi- formal semantic. 

Hardware Part  

The concept for hardware part shall allow depicting the physical implementation of a hardware 
component, decomposed by multiple electronic parts, to be able to support the description of an 
electronic design schematic using concrete electronic components (exemplarily resistors, capaci-
tors and complex components). AUTOSAR R4.0 includes hardware element constructs required 
for software configuration in AUTOSAR ECU Resource Template. The proposed use of hardware 
part shall enable the use of AUTOSAR hardware elements and define a clear interrelation with 
hardware component. 

Hardware Architecture  

The concept for Hardware Architecture has to comply with the needs of the Technical Safety Con-
cept description of hardware components with regards to software components for the software 
architecture. The hardware architectural level represents the set of hardware components for the 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  8 (70) 

intended features of the system and additionally has to support the introduction of links for safety 
mechanisms and safety measures to be applied on hardware components. The hardware architec-
ture shall be the perspective to collect the overall random failure information and link them in order 
to facilitate the calculation for the hardware architectural metrics and evaluation of the failure rate 
for violation of the safety goal. The hardware architecture is aimed to be based on the hardware 
component net representation and shall be set on the top of EAST-ADL2.1. 

Hardware Electronic Design  

The Hardware Electronic Design represents the hardware detailed design as at the level of electri-
cal schematics representing the interconnections between hardware parts composing the hard-
ware components. The hardware electronic design is the perspective where the random failure 
information of the physical electronic part is available (including value for complex component 
such as microcontroller or ASIC). An unambiguous relation between hardware part failure infor-
mation and hardware components failure data shall be defined to permit the quantitative assess-
ment of the hardware architecture level. The hardware electronic design is aimed to be based on 
the hardware part net representation and shall be set on the top of AUTOSAR 4.0. 

Hardware Software Interface  

The concept for Hardware Software Interface (HIS), as specified in Part 4 for the product devel-
opment at system level, shall be explicitly represented in the system architecture composed by 
hardware and software architecture. Therefore, EAST-ADL2.1 needs to be adjusted to support a 
clear separation of hardware and software with respective component behavior attached to the 
component. An explicit element interface between software function and hardware component 
needs to be defined. This concept shall support continuity of domain flow (e.g. software as sam-
pled physical data and hardware as electrical data) for functional simulation and error propagation. 
In addition, it shall allow abstraction principle compared to detailed concrete implementation ap-
plied at the system level architecture.  

Failure Rate and Failure Mode  

Hardware failure information such as failure rate and failure mode shall be captured in an unam-
biguous formalism to enable the data exchanged within supplier chain and to facilitate quantitative 
assessment of the hardware architecture. Moreover, this concept shall support the allocation and 
interrelation between logical hardware component and physical hardware part for joined calcula-
tions of hardware random failure from different hardware abstraction level (hardware architecture 
and hardware electronic design).  

Fault and contribution to Safety Goal/Malfunction  

The contribution of hardware components to the violation of the safety goal shall be supported by 
tagging safety-related components. The item, identified during hazard and risk analysis, can be 
decomposed according to sub-system development scenario. The hardware sub-system can ex-
hibit local malfunctions, and their contribution to the top level system malfunction linked to the vio-
lation of the safety goal. This shall be incorporated in the meta model. The basic faults related to 
the top level malfunction, should be classified by the type of fault (e.g. single point fault, latent 
fault, multiple or residual fault). 

Hardware Architecture Metrics and Probabilistic val ue 

Based on the hardware component faults and their relations to safety mechanism including asso-
ciated coverage rates, the hardware architectural metrics (Single-point fault and Latent-fault met-
ric) need to be allocated first and subsequently verified by calculation. The same proceeding 
should be applied on probabilistic measures for the evaluation of safety goal violation due to ran-
dom hardware failure (using Probabilistic Metric for random Hardware Failure PMHF) or for the 
evaluation of each cause using Failure Rate Class (FRC) method. The meta model extension de-
veloped in this work task shall enable to store the respective results of the calculation steps. Addi-
tionally, this provides documentation of results together with their respective parameters or as-
sumptions. It shall also be able to express relation over the assumption of the logical hardware 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  9 (70) 

component and physical hardware part, to offer basic repository for the complete failure analysis 
methodology defined in WT3.3.1. Model-based quantitative evaluation in terms of hardware design 
assessment at different abstraction levels is described in the public deliverable D3.3.3b. 

4.2 Structure of document 

The document is structured as follows: 

Subsequent to the introduction an overview on the parts of ISO 26262, which are relevant for the 
hardware development with its relation and assessment to the system development, is given in 
section 5. 

Within section 6, the interface with WT3.3.1 safety analysis methodology will be clarified and de-
fined according to the analysis of the impact from the hardware abstraction view and representa-
tion (system, component, part) in 6.1, and to the definition of the element to be interfaced in 6.2. 

The section 7 deals with the coverage of the hardware requirements from the initial ISO26262 
analysis, with the description of the organization and the topics selected from this WT3.2.2 re-
quirement analysis. Notice that initial and derived requirements are available in an external docu-
ment traced from WT2.1 activities.  

Section 8 deals with hardware modeling using EAST-ADL2 and AUTOSAR 4.0. On the one hand, 
the current version of EAST-ADL2.1 in particular for the hardware description is highlighted and 
described in 8.1. On the other hand in 8.2, some proposed extensions to this current version are 
explained which enhance the possibility to perform complete hardware components development 
and quantitative safety analysis. Moreover the ECU Resource Template of AUTOSAR R4.0 will be 
exhibited in 8.3 showing how to use it for hardware part modeling. In section 8.4 we will briefly dis-
cuss a proposal for change of existing constructs.  

The contribution of WT 3.2.2 to the SAFE meta-model is described in section 9. As introduced in 
section 9.1 the organization of change request and extension is presented. Section 9.2 gives a 
detailed description of the proposed change request for the current EAST-ADL meta model re-
garding classes and links. Our extension for EAST-ADL is described in section 9.3. Moreover, an 
example for the application of the meta-model for hardware modeling is presented in section 10. 

In section 11 the preliminary relation between the hardware part elements as proposed in 
AUTOSAR R4.0 ECU Resource template and the existing construct of IP-XACT is proposed. 

Finally, in section 12 a conclusion and discussion is given. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  10 (70) 

5 Overview on ISO 26262 

Within this section, an overview of the relevant parts of ISO 26262 with regard to hardware model-
ing and safety-related activities are given. The selection of the presented parts is based on the 
SAFE requirements elicited in WT 2.1 which are allocated to WT 3.2.2. 

Addressing the development process of electric / electronic components for passenger cars, the 
ISO 26262 “Road vehicles – Functional safety” came into effect in November 2011. This standard 
introduces a safety lifecycle which “encompasses the principal safety activities during the concept 
phase, product development, production, operation, service and decommissioning” ([1], part 2, 
p.3). This can be seen as a guideline that demands a risk-based development approach with 
seamless traceability. In Figure 1 an overview on the different parts of ISO 26262 is given. 

 

 

Figure 1: Overview on ISO 26262 (Relevant parts hig hlighted) 

 

The relevant requirements for the hardware related development are mainly provided in ISO 
26262:2011, Part 5 in “Product development at the Hardware Level”. As a consequence of the 
exclusion from Part 5 chapter 10 “product integration and test” as a SAFE project decision, this 
chapter was considered as non relevant for this analysis. However, the Part 4 (Product develop-
ment at System level) is strongly interlaced with respected to hardware development. Moreover, 
also in other parts, namely Part 7 (production and Operation), Part 8 (Supporting processes), and 
Part 9 (Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analyses) require-
ments are provided that affect directly or also indirectly the hardware development. In the follow-
ing, an overview on the relevant aspects from the respective parts is given. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  11 (70) 

Part 4: Product Development – System Level  

During this phase the development of the item from the system level perspective takes place. The 
process is based on the concept of a V-model. Starting point (on the upper left side) is the specifi-
cation of the technical safety requirements which is followed by the development of the system 
architecture and the system design.  

Safety mechanisms 

During the system development the technical safety requirements specify the necessary safety 
measures to define mechanisms to detect and control the fault in the system, and their interactions 
with the system design in order to reach a safe state within a fault tolerant time interval. The safety 
mechanism shall be specified to prevent latent or multiple point faults with consideration of the 
given architecture and in particular for the one implemented by hardware components. 

System Design – Technical Safety Concept 

The system design shall implement the technical safety requirements by defining the technical 
capability of the intended hardware and software design with regard to the safety achievement. 
Measure to avoid systematic failure shall be introduced according to safety analysis in order to 
avoid system failure, via introducing of safety mechanism for component failure mitigation. Accord-
ing to analysis, specific measure to control random hardware failure during operation shall be 
specified. The target value for the hardware architecture shall be defined according to single-point 
fault and latent-multiple fault metric, and for quantification of avoidance of safety goal violation due 
to random hardware failures. 

System Design – Allocation to Hardware and Software  

As introduce above the system design shall include the hardware and software partitioning via al-
location of technical requirements.  

System Design – Hardware Software Interface Specifi cation 

The interaction between hardware and software component shall be defined to allow specification 
of component hardware devices controlled by software. Additionally, hardware resources, configu-
ration and error mechanism shall be specified. 

System Validation  

The validation with hardware metrics shall be carried out at the item via evaluation of criteria for 
the evaluation of safety goal violation due to random hardware failures and for hardware architec-
tural metrics as single-point fault and latent-multiple fault metrics (calculation of results versus tar-
gets). 

Part 5: Product Development – Hardware Level  

During this phase, the development of the item from the hardware perspective is performed. The 
process is again based on a V-model, going down with the specification of hardware safety re-
quirements as well as hardware design and implementation.  

Hardware Design 

The hardware design shall be performed in accordance to system design and hardware safety 
requirements. It starts from the hardware architecture down to hardware detailed design at the 
level of electronics schematic describing interconnected hardware parts. The traceability of safety 
requirements shall be provided down to the lowest level of hardware components. The environ-
mental conditions and potential causes of failures of hardware components shall be considered 
during design of hardware component. 

Safety Analysis 

The safety analysis of hardware design identifies the causes of failure and effect of faults regard-
ing overall system failure behavior. The effectiveness of safety mechanisms shall demonstrate to 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  12 (70) 

avoid single-point fault, to maintain the system in safe sate and to validate coverage with respect 
to residual and latent faults. This WT3.2.2 will not propose methodology for fault propagation and 
failure identification as this is includes in WT3.3.1, but will provide necessary element to describe 
the fault and safety constraints to the respective hardware components and hardware parts. 

Evaluation of Hardware Metrics 

The hardware architectural metrics shall be computed to evaluate the effectiveness of the archi-
tecture to cope with random hardware failures. They have to be computed, for each violation of 
each safety goal on respective item of ASIL B to D, and to be applied iteratively from hardware 
architecture down to hardware detailed level.  Similar to safety analysis, WT3.2.2 will only cope 
with the elements to capture component failure information, metrics targets and results for relation 
to failure of hardware parts. The model-based methodology is presented in D3.3.3, the overall 
safety analysis methodology is described in WT3.3.1. 

Evaluation of Safety Goal Violations due to Random Hardware Failure 

The evaluation of the residual risk of safety goal violation due to random hardware failures regard-
ing single-point faults, residual faults and possible dual-point (multiple) faults shall be evaluated for 
each violation of each safety goal on respective item of ASIL B to D. Two methods can be used - 
either Probabilistic Metrics for random Hardware Failures (PMHF) which can be build by a quantifi-
cation of a fault tree, or Failure Rate Class (FRC) method which evaluates each fault individually. 
Similar to safety analysis, WT3.2.2 will only cope with elements to capture component failure in-
formation, metrics target and results for relation to failure of hardware parts. The model-based 
methodology is presented in D3.3.3, the overall safety analysis methodology is described in 
WT3.3.1. 

Part 7: Production and Operation  

The relevant requirements for WT 3.2.2 arise from two sections of part 7, namely “Production” and 
“Operation Service”. As for this product cycles the requirement encompasses largely the hardware 
development, only the requirement related to hardware safety measure initiated during hardware 
product development will be considered.  

Part 8: Supporting Processes  

The relevant requirements for WT 3.2.2 arise from Part 8 “Supporting processes”, section 6 name-
ly “Specification and management of safety requirements” and section 9 “Verification”. Section 13 
“Qualification of hardware component” is in focus of work task WT3.2.4.  

Specification and Management of Safety Requirements  

The objective of this section of ISO 26262 is to ensure that all safety requirements are specified 
correctly with respect to their attributes and characteristics. In addition the management of the 
safety requirements and tracing during the entire safety lifecycle has to be consistent, in particular 
for hardware development as context of this task. 

Part 9: Automotive Safety Integrity Level (ASIL)-or iented and Safety-oriented Analyses  

The relevant requirements for WT 3.2.2 arise from three sections of part 9 “Automotive safety in-
tegrity level (ASIL)-oriented and safety-oriented analyses”, namely section 7 “Analysis of depend-
ent Failures” and section 8 “Safety Analyses” as reference for hardware element as introduced in 
System Design part 4 and Hardware development part 5. The section 4 related to “Criteria for co-
existence of elements” and section 5 related to “requirement decomposition with respect to ASIL 
tailoring” is ensured WT3.1.1. Therefore, only from the first two sections an overview is given. 

Analysis of Dependent Failure 

The analysis of dependent failures on the architecture induces to introduce specific measure to be 
applied to the architecture element (e.g. such as redundancy, dissimilar development, safety 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  13 (70) 

mechanism, physical barrier, etc). A common cause failure and cascading failure analysis shall be 
performed for the architecture considering operational life of the product. This evaluation shall be 
performed for systematic faults, random hardware failures according to adequate required meth-
ods. 

Safety Analyses 

With the help of the safety analyses consequences of faults and failures on functions, behavior 
and design of items and elements shall be examined. The context of hardware elements is target-
ed in this task. Moreover, the analyses provide information on causes and conditions that could 
lead to the violations of a safety goal or safety requirement.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  14 (70) 

6 Safety Analysis Methods Interface  

After presenting the relevant parts of ISO 26262 for hardware modeling and in addition to the pri-
mary goal of the representation of the Technical Safety Concept, the calculation of the hardware 
metrics and probabilistic value on hardware element shall be performed. It is essential that ab-
straction level of the hardware development is considered; meaning capability for separation of 
Hardware function and electronic component packaging during development and modeling. Fur-
thermore, these models shall allow to perform safety analysis methods by first qualitative and then 
quantitative value for hardware element. It has been stated that the hardware package will include 
construct for hardware modeling, necessary constructs to perform quantitative measurement, such 
as failure mode and rate, and constructs to allocate or store results of the quantitative hardware 
analysis, such as Single Point Fault metric or Probabilistic Metric for random Hardware Failures. 

The following chapter defines the boundary of the safety analysis methods interface, and interface 
element in detail.  

6.1 Interface Methodology for Safety Analysis 

The model based methods to perform safety analysis, in particular on hardware design to the fail-
ure and effect of faults as defined in ISO 26262-9:2011-Clause 8, is defined in the context of 
WT3.3.1 formally work task “Safety Analysis”. The outputs of an analysis per safety goal are: the 
identification of safety related attribute of the hardware component; the relation of the hardware 
component to the context of analysis as the safety goal or the sub-system malfunction in case of 
decomposition of the system; the typing of the elementary component fault as safe fault, single-
point or residual fault and multiple-point latent; the identification of the safety mechanism covering 
the component fault. These outputs are required to enable the calculation of the hardware archi-
tecture metrics and the residual risk of violation of safety goal due to random hardware failure. 

In addition the model-based development process foreseen by SAFE takes into account all the 
elements / attributes that potentially contribute to a safety risk on vehicle level. So, from vehicle 
items, all elements are decomposed according to engineering phase defined by the ISO26262 
standard, being represented by the Functional Safety Concept and by the Technical Safety Con-
cept. Then, according to the hardware development requirement from Part 5, the hardware archi-
tecture and detailed hardware design shall be captured to allow then further iterative safety analy-
sis. 

The architecture principle selected for the consideration of these needs is based on abstraction 
view and viewpoint, capable to capture and interconnect all relevant artifacts. The resulting archi-
tecture which is used is presented in the Figure 2. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  15 (70) 

 

Figure 2: Overview on structure of architecture (Re levant parts highlighted) 

 

As introduced in task description, the hardware description is mapped to the existing language 
EAST-ADL. The EAST-ADL is structuring functional decomposition and architectural element defi-
nition in the Design abstraction view of EAST-ADL and the Implementation view AUTOSAR. The 
mapping of view point for hardware development in accordance to Figure 2 is conform to 

• Hardware architecture is represented by EAST-ADL Hardware Design Architecture 

• Hardware detailed design is represented by AUTOSAR HW Element from ECU Resource 
Template  

It can be noticed that as Hardware Design Architecture of EAST-ADL is also capable to represent 
Hardware Detailed Design, methods proposed shall allow the support of compatible interface re-
quired by Safety Analysis.  

Finally, the safety analysis analyzing hardware component failure and identifying their fault classi-
fication (single-point or residual…) shall be visible at the hardware architecture level. This iterative 
process of failure analysis allows to iteratively introduce safety mechanism and mitigation effect, 
and to validate their impact and efficiency. The process is not intended to be detailed here, but 
simply showing that hardware architecture will evolve according to safety analysis and technical 
safety requirement management and refinement. The Figure 3 below, represent a general over-
view of the iterative process that will be considered in WT3.3.1 according concrete method selec-
tion.  

The given assumption for WT3.2.2 is that component fault classification, the safety related com-
ponent tag and the relation of the component to the safety/malfunction is given from this safety 
analysis. In addition this analysis is also built on the top of the hardware architecture composed of 
hardware element and hardware safety mechanism, the traceability of safety mechanism to the 
component fault mitigates, and finally by the fault propagation methodology. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  16 (70) 

 

Figure 3: Overview on iterative safety analysis met hods 

 

Moreover, the hardware development process may then, depending of industrial process, perform 
allocation of Hardware Component in Hardware Part in consideration of electronic industrial pro-
cess (e.g. see example in Figure 4 below). Such separation of concern shall then consider the in-
ter-relation between fault characteristic at architecture level and origin from fault at design level.  

 

Figure 4: Hardware allocation and quantitative anal ysis 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  17 (70) 

So, the safety analysis is performed on the impact analysis of the failure mode of the Hardware 
Component. In the context of the architecture, the hardware components are tagged as safety re-
lated and its failures modes are characterized as safe fault, single-point or residual fault and multi-
ple-point latent fault. The corresponding failure modes of the hardware component are considered 
as malfunction for the electronic design. The quantitative values are computed from this fault con-
sideration and from the diagnostic coverage of hardware element identified as safety mechanism. 
Such measures are the hardware architectural metrics as Single-Point Fault metric or Multiple 
Point-Fault and Latent metric, plus the Probabilistic Metrics for random Hardware Failure or the 
individual Failure Rate Class evaluation.  

The necessary failure rate and distribution, only available at the hardware part level, shall then be 
combining to retrieve computed failure rate at the architecture level for each failure mode of the 
hardware component considered.  The correspondence will be performed by the quantification of 
the hardware component malfunction. SAFE meta model constructs shall allow to store this differ-
ent failure information and calculation relation using self define formula. It shall also permit to de-
fine target values and store results of the quantitative hardware analysis. We propose to store in 
constructs by WT3.2.2: the definition of formula for quantitative measurement as relevant failure 
information is store in modeling element. From this interface defined in WT3.2.2, the tools and 
methods specification of WT3.3.1 as D3.3.1.b deliverable will validate the initial formula for calcu-
lation on the top of actual information provided in this chapter and related SAFE model element in 
chapter 9.3. Moreover WT3.3.3 as architecture benchmark analysis makes use failure and metric, 
and will provide a context for validation (see specification D3.3.3[8]) 

 

Key Steps of Hardware modeling and analysis  

Based on the considerations described above the key steps of the methodology for hardware 
modeling and safety analysis can be formulated as below, and shall consider assumption for 
WT3.3.1 work task in the overall detailed methodology. The key steps are identified as: 

• Capture Hardware Technical Safety Concept (with Hardware Component) 

• Complete Hardware Component Failure Propagation (Iterative process for Safety Mecha-
nism validation) 

• Define (or Reuse) initial failure rate data for hardware components and calculates metrics  

• Define Hardware Component allocation and Malfunction (from Hardware Component into 
complex parts such as ASIC, FPGA) 

• Develop Electronics Schematic and capture (or reuse existing) Hardware Part 

• Perform/Reuse Electronic part detailed failure analysis (e.g. FMEA) and contribution to 
Hardware component malfunction  

• Verify hardware component Metrics and Probabilistic value 

 

6.2 Interface Element  

The split decided in the work task organization between safety analysis methods from WT3.3.1, 
hardware architecture assessment from WT 3.3.3 and hardware meta model from WT3.2.2, was 
that, in addition to hardware component and hardware part, the SAFE construct for hardware 
modeling will include: hardware failure related information, calculation constructs necessary for 
hardware architectural metrics and for the two methods for evaluation of the residual risk for viola-
tion of the safety goal.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  18 (70) 

Moreover, constructs shall provide the relationship of the formula calculation for computation of 
Hardware Component failure rates from Hardware Part failure rate and distribution value from in-
dustry source).  

The list of artifacts, consolidated by WT2.1 analysis and derivation requirement synthesized in 7, 
is initiated from following concept: 

• Failure Mode, Failure Rate and Distribution for Hardware Part (to be imported from industry 
source) 

• Failure Mode and Failure Rate of Hardware Component 

• Fault Enumeration to allow Failure Mode classification of a Hardware Component in the 
type in context of an overall hardware architecture 

• Identification of Safety Related impact of the Hardware Component 

• Formula to provide relation and perform calculation from Hardware Part to Hardware Com-
ponent in the context of an electronic design and the given hardware malfunction for the 
design element 

• Hardware architectural metric target values and results for Single-Point Fault Metric and 
Latent-Fault Metric 

• Probabilistic Metrics for random Hardware Failure (today simplified approach) target values 
and results 

• Failure Rate Class target values , values for each Hardware Component and defined 
measures 

• Formula to  perform calculation required for architectural metrics, probabilistic metrics and 
failure rate class, depending of Hardware Component Failure Rate, potential Diagnostic 
Coverage of the selected Safety Mechanism  

• Relation to the top level malfunction (linked to the Safety Goal of the item) of the hardware 
architecture , to allow evaluation for each Safety Goal (direct or indirect evaluation)  

 

The concrete details of the meta model elements is defined in section 9.3.  

Notice that as defined in previous section, thanks to the expressiveness of Hardware Design Ar-
chitecture from EAST-ADL capable to represent Hardware Detailed Design, the constructs provid-
ed could allow completing the calculation directly from Hardware Component model, and so pre-
venting using elements of Hardware Part if convenient.  

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  19 (70) 

7 Hardware modeling scoping 

In the work of WT2.1 the ISO 26262 was analyzed into detail. Requirements were elicited from 
each part of the standard and textually described with the corresponding ISO references. For 
WT3.2.2 - hardware modeling – requirements out of part 4, 6, 7, 8, 9 and in particularly Part 5 had 
to be considered. Derived work task specific requirements describe all necessary characteristics 
for the meta model extension of WT3.2.2, to provide hardware modeling on hardware architecture 
level and detailed level of hardware electronic design for hardware safety evaluation. To provide 
structure and traceability in managing the work task specific requirements, the relevant ones were 
categorized by their impact on the hardware model for the SAFE meta models extension. Based 
on the requirements elicitation five categories were derived and introduced: requirements for 
hardware components, hardware failures, hardware architectural metrics, safety goal violation and 
traceability. The scope of the work task hardware modeling regarding meta model constructs is to 
provide all necessary information for structural and failure description of hardware components as 
well as constructs for the evaluation of hardware with regard to hardware architectural metrics and 
evaluation of safety goal violation according to ISO 26262 Part 5, Clause 8 and 9. 

The presented categories contain all requirements for SAFE meta model extension and are ex-
plained into detail in the next sections. Please notice that the refined requirements are not report-
ed below, as these categories where build to provide an initial structure for the SAFE meta model 
contribution as detailed in section 7.6. 

7.1 Requirements Package: Hardware Components 

Requirements regarding the structure of hardware components and parts for hardware architec-
ture and hardware electronic design were collected in the category hardware component. To facili-
tate safety evaluation of a hardware design, the hardware components and their interference have 
to be described into detail according to the needs in ISO 26262, Part 5. The requirements for 
hardware component structure are partially related with existing EAST-ADL and AUTOSAR con-
structs. As the requirement collected for Design Environmental Condition and Special Characteris-
tics deals with constraints description for design operation and then production, operation, de-
commissioning and maintenance, they can be express through Requirement EAST-ADL con-
structs and so are not considered in additional meta modeling artifacts.  

The package hardware component addresses the description of hardware components and parts 
as well as composition of components or parts including port and pin connections. Hard-
ware/Software-Interfaces facilitate the presentation of hardware which is controlled by software. 
The representation of elementary hardware components and the categorization of hardware com-
ponents are also included. 

7.2 Requirements Package: Hardware Failure 

The category hardware failure groups all requirements of the ISO 26262 regarding the relevant 
failure description of hardware components and parts. A meta model extension for the failure de-
scription is related to capture all requirements. 

The package hardware failure captures the description of different failure modes and a failure rate 
of hardware components and parts including potential causes of the failure mode, the failure rate 
distribution of the failure mode and contribution to the malfunction (linked to violation of a safety 
goal). Safety mechanisms with their diagnostic coverage are also addressed. 

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  20 (70) 

7.3 Requirements Package: Hardware Architectural Me trics 

The hardware architectural metrics, described in ISO 26262 Part 5 Clause 8, provide the first safe-
ty evaluation of the hardware architecture claimed by the ISO. All requirements to perform this 
evaluation as well as the methodology, calculation and results are collected in this requirements 
package. 

The package hardware architectural metrics captures the single contribution of each violating fail-
ure mode as a specific failure rate, according to its classification. Target values for the architectur-
al metrics are provided.  

7.4 Requirements Package: Safety Goal Violation 

The evaluation of residual risk of safety goal violation is the second safety evaluation claimed by 
the ISO 26262 and is described into detail in Part 5 Clause 9. All requirements which are relevant 
for both methods, the Probabilistic Metric for Random Hardware Failure (PMHF) and the Failure 
Rate Class (FRC) approach, are grouped in this category. 

This requirement packages addresses all necessary calculations for the evaluation of safety goal 
violation as well as target values. Exposure time for dual-point faults and required dedicated 
measures are included. Additionally, diagnostic coverage on hardware component level is de-
scribed. 

7.5 Requirements Package: Traceability 

The traceability of safety requirements such as safety goals regarding the evaluation of the hard-
ware architecture is provided by the requirements in the category traceability. These requirements 
are in focus work task WT3.1.2 for the “Safety Requirement Expression”. 

The package traceability addresses the dependency of technical and functional requirements. Ad-
ditionally, the links of hardware components to hardware safety requirements and the traceability 
from a preliminary design to hardware components at electronic level are captured.  

The modeling elements used for traceability have been centralized into the SAFE meta model Re-
quirements package. For more details on constructs please refers to [10]. 

7.6 Allocation of the requirements packages to deri ved meta model structure 

A structure for the meta model was derived from the structure of the requirements categorization. 
Therefore, the meta model contains the following sub-packages in the package Hardware: 

• Sub-Package Structure, according to the requirements category hardware components as 
change request for EAST-ADL and AUTOSAR 

• Sub-Package Failure, according to the requirements category hardware failure related to 
hardware components. Additionally, the quantitative assessment for the calculation of sin-
gle contribution for each failure mode for hardware components is included. 

• Sub-Package FailurePart, according to the requirements category hardware failure related 
to the hardware part. Additionally, the quantitative assessment for the calculation of single 
contribution for each failure mode for hardware parts is included. 

• Sub-Package HWQuantitativeMeasure for the classification of the assessments to the ar-
chitectural metrics or probabilistic methods for hardware safety evaluation.  

• Sub-Package HWArchitecturalMetrics, according to the requirements category Hardware 
Architectural Metrics 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  21 (70) 

• Sub-Package ProbabilisticMethods, according to the requirements category Safety Goal 
Violation 

• An additionally package FailureFormula contains all formula expressions required for the 
evaluation of hardware. This has to include the quantitative measures and the previous 
calculations exemplarily, of the single failure mode contributions.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  22 (70) 

8 Performing Hardware Modeling based on EAST-ADL 

In this section the current status of the architecture description language EAST-ADL regarding 
hardware is described. Based on the investigation a proposal for adaption and extension of exist-
ing constructs is provided to facilitate an evaluation of detailed hardware architectures regarding 
functional safety in accordance with ISO 26262. 

8.1 Current status of EAST-ADL 

EAST-ADL provides the description of an automotive architecture on different levels of abstraction. 
This namely is the vehicle level, analysis level, design level, implementation and operational level. 
This architecture description language was developed in various projects together with Original 
Equipment Manufacturers (OEMs), suppliers and research institutes. Current published version of 
EAST-ADL is version 2.1, see also www.east-adl.info. 

The class diagram PackageDependencies of EAST-ADL V2.1[5] gives an overview of the depend-
encies of the package and is presented in Figure 5. Beside the described abstraction layers, es-
pecially the sub-package HardwareModeling and the package Dependability are in special interest 
for hardware and failure modeling. This has to be related with the hardware evaluation including 
the architectural metrics and the probabilistic methods. 

 

 class PackageDependencies

Structure

+ SystemModeling

+ FeatureModeling

+ VehicleFeatureModeling

+ FunctionModeling

+ HardwareModeling

Infrastructure

+ Elements

+ Datatypes

+ UserAttributes

Requirements

Dependability

Timing

VerificationValidation

(from Requirements)

Interchange

Variability

Behav ior

Env ironment

GenericConstraints

 

Figure 5: Class diagram for Package Dependencies  

 

In the sub-package HardwareModeling of the package Structure, EAST-ADL V2.1 describes the 
hardware modeling in the corresponding diagram. The construct HardwareComponentType and 
HardwarComponentPrototype provides a structural entity that defines a part of an electrical archi-
tecture [5], as shown in Figure 5. Further class of interest are the HardwareConnector, 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  23 (70) 

HardwarePin and HardwarePinGroup, as the can be used for the description of the electrically 
connection of hardware components regarding their logical bus between ports of the hardware 
component. 

«atpType»
Sensor

«atpType»
Actuator

«atpType»
PowerSupply

+ isActive  :Boolean

EAElement

«atpStructureElement»
HardwarePin

+ direction  :EADirectionKind [0..1]
+ impedance  :Float [0..1]
+ isGround  :Boolean [0..1]
+ power  :Float [0..1]
+ voltage  :Float [0..1]

IOHardwarePin

+ type  :IOHardwarePinKind

PowerHardwarePinCommunicationHardwarePin

EAElement

«atpStructureElement»
HardwareConnector

+ resistance  :Float [0..1]

«atpType»
Node

+ executionRate  :Float = 1.0
+ nonVolatileMemory  :Integer
+ volati leMemory  :Integer [0..1]

EAElement

«atpStructuredElement»
LogicalBus

+ busSpeed  :Float
+ busType  :LogicalBusKind

EAElement

«atpPrototype»
HardwareComponentPrototype

Context

«atpType»
HardwareComponentType

EAElement

AllocationTarget

EAElement

HardwarePinGroup

«enumeration»
IOHardwarePinKind

 digital
 analog
 pwm
 other

DesignFunctionType

FunctionModeling::
HardwareFunctionType

EAElement

FunctionModeling::
FunctionAllocation

EAElement

FunctionModeling::
AllocateableElement

«enumeration»
LogicalBusKind

 TimeTriggered
 EventTriggered
 TimeandEventTriggered
 other

+bus

*

+wire *

«instanceRef»

+port

2

«isOfType»

+type

1

0..1 +portGroup *

+hardwareComponent

0..1

+port*

0..1 +portGroup *

«instanceRef»

+allocatedElement

1

«instanceRef»
+target

1

1

+connector

*

1

+port*

1 +part

*

 

Figure 6: Class diagram for Hardware Modeling in th e EAST-ADL2  

 

The proposed use of hardware construct HardwareComponentType in Design Level of EAST-
ADL2.1 methodology is to build the hardware node and topology including sensors and actuators, 
to define the allocation of functional block as DesignFunctionType. Notice that the 
HardwareComponentType allows further decomposition to be able to decompose an ECU node. 
But the DesignFunctionType can be specialized, as visible in the Figure 7, as hardware via 
HardwareFunctionType or software with DesignFunctionType or LocalDeviceManager to interface 
a Sensor or BasicSoftwareFunctionType as a general basic software module. Moreover, the be-
havior of the function FunctionBehavior is associated to the FunctionType. So the top level 
FunctionType represent functional chain of hardware and software element, as 
DesignFunctionType, where HardwareComponentType are simply a container, via allocation link, 
for HardwareFunctionType. So the use of Design Level is still a functional approach, as software 
and hardware and not completely split. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  24 (70) 

 class FunctionModeling

Context
EAType

«atpType»
FunctionType

+ isElementary  :Boolean

EAConnector
EAElement

«atpStructureElement»
FunctionConnector

EAElement

PortGroup

EAElement
EAPrototype

«atpPrototype»
FunctionPrototype EAElement

AllocateableElement

EAElement
EAPort

«atpPrototype»
FunctionPort

LocalDev iceManager

FunctionalDev ice

HardwareFunctionTypeBasicSoftwareFunctionType

Context
EAType

«atpType»
HardwareModeling::

HardwareComponentType

EAElement

HardwareModeling::
AllocationTarget

EAElement

FunctionAllocation

EAElement

Allocation

AnalysisFunctionType

DesignFunctionType

AnalysisFunctionPrototype

DesignFunctionPrototype

0..1

+portGroup *
0..1 +portGroup

*

0..1 +connector

*

«instanceRef»+port

2

+hardwareComponent

0..1

0..1 +port

*

«instanceRef»

+target 1

«isOfType»+type

1

+port *

0..1

+functionAllocation
*

0..1

+part

*

+part

*0..1

«isOfType»+type

1

«instanceRef»

+allocatedElement
1

 

Figure 7: Class diagram for Function Modeling in th e EAST-ADL2  

 

Then for the failure part, in the sub-package ErrorModel of the package Dependability, EAST-
ADL2.1 describes the error modeling in the corresponding diagram, as shown in Figure 8. Propa-
gation points for faults can be described by the class FaultInPort and FailureOutPort, while the 
FaultFailurePort describes an abstract port for faults and failures and depends on a hardware pin. 
The constructs ErrorModelType and ErrorModelPrototype provides a hierarchical composition of 
error models. The connection of the ErrorModel with the structural element FunctionType and 
HardwareComponentType is made via respective allocation link as errorModelPrototype_hwTarget 
for HardwareComponentPrototype and errorModelPrototype_functionTarget for 
DesignFunctionPrototype (with relevant specialization from Figure 7). 

A typical target of the ErrorModelType is exemplarily a system/subsystem, a function or a hard-
ware device and represents the internal faults and the fault propagation of the targeted element. 
From the EAST-ADL2.1 Design Level modeling methodology, as introduce above, the functional 
approach applied to ErrorModel for safety analysis constraints the use of ErrorModel for 
HardwareComponent to describe hardware fault that propagates Failure to DesignFunction (hard-
ware or software functional behavior) as a hardware resource failure. The signal fault propagation 
is supported by the ErrorModel of HardwareFunctionType. In the physical electrical domain this 
split of concern is not visible.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  25 (70) 

 class ErrorModel

TraceableSpecification

«atpType»
ErrorModelType

+ genericDescription  :String = NA

EAElement

FaultFailurePropagationLink

+ immediatePropagation  :Boolean = true

EAElement

«atpPrototype»
ErrorModelPrototype

InternalFaultPrototype

Identifiable::Identifiable

+ category  :Identifier [0..1]
+ uuid  :String [0..1]

FaultInPort
FailureOutPort

EAElement

«atpPrototype»
Anomaly

+ genericDescription  :String

Context

«atpType»
FunctionModeling::

FunctionType

+ isElementary  :Boolean

EAElement

«atpPrototype»
FunctionModeling::
FunctionPrototype

TraceableSpecification

«atpType»
Datatypes::EADatatype

ProcessFaultPrototype

EAElement

«atpStructureElement»
HardwareModeling::HardwarePin

+ direction  :EADirectionKind [0..1]
+ impedance  :Float [0..1]
+ isGround  :Boolean [0..1]
+ power  :Float [0..1]
+ voltage  :Float [0..1]

EAElement

«atpPrototype»
FunctionModeling::

FunctionPort

Context

«atpType»
HardwareModeling::

HardwareComponentType

AllocationTarget
EAElement

«atpPrototype»
HardwareModeling::

HardwareComponentPrototype

«atpPrototype»
FaultFailurePort

«instanceRef»

+hwTarget *

+fai lure*

1

«isOfType»

+type

1

1

+part

*

+processFault*

1

«isOfType»

+type

1

+internalFault*

1

«isOfType»

+type

1

«instanceRef»

+functionTarget *

«instanceRef»

+toPort 1

«instanceRef»

+fromPort 1

1 +part

*

1

+faultFai lureConnector *

1

+externalFault*

+hwTarget

*

+target *

«instanceRef»

+hwTarget*

«instanceRef»

+functionTarget *

+target 1

 

Figure 8: Class diagram for Error Modeling in the E AST-ADL2 Dependability  

 

In the sub-package ErrorModel of the package Dependability EAST-ADL 2.1, describes the error 
behavior in the corresponding class diagram ErrorBehavior, as shown in Figure 9. The presented 
different faults can have the following different roles: external, internal or process faults. While 
class FailureOutPort and FaultInPort represent the described propagation points, the 
InternalFaultPrototype represents an internal condition of the target that concerns the components 
faults/failure definition.  

For the stake of fault of hardware part, the internal fault as InternalFaultPrototype represents the 
failure mode of the HardwareComponent. The others relevant information for quantitative assess-
ment as failure rate and distribution are not clearly defined. A construct 
QuantitativeSafetyConstrainst is present but only associate to a FaultFailure as an instance refer-
ence of an Anomaly, as the top level failure effect of an ErrorModel as typed FailureOutPort. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  26 (70) 

 class ErrorBehav ior

TraceableSpecification

«atpType»
ErrorModelType

+ genericDescription  :String = NA

EAElement

ErrorBehav ior

+ failureLogic  :String [0..1]
+ type  :ErrorBehaviorKind

«enumeration»
ErrorBehav iorKind

 HIP_HOPS
 ALTARICA
 AADL
 OTHER

Anomaly

ProcessFaultPrototype

Anomaly

InternalFaultPrototype

FaultFailurePort

FaultInPort

FaultFailurePort

FailureOutPort

+failure*

1

+internalFault*

1

+processFault*

1

+processFault

*

+internalFault

*

+externalFailure

1..*

+externalFault

*

1

+externalFault*

+owner 1

+errorBehaviorDescription 1..*

 

Figure 9: Class diagram for Error Behavior in the E AST-ADL2 Dependability  

 

8.2 Proposed extensions to EAST-ADL 

Basic constructs needed for structural description of hardware exists in EAST-ADL V2.1, as shown 
in Figure 6. With regard to the elicited requirements of ISO 26262 these concepts and constructs 
can cover and fulfill high level description of hardware node and sensors/actuators. Inconvenienc-
es exist for the interconnection of hardware components on the abstraction of low level electronics. 
To model hardware architectures on detailed level to perform the demanded metrics, constructs 
for the structural description has to be provided, exemplarily for hardware ports, pin and their spe-
cific connectors. Additionally, a Hardware-Software-Interface (HSI) has to be introduced, claimed 
by the ISO 26262. Therefore, an adaption of the structural part for the hardware modeling has to 
be provided. Existing artifacts in EAST-ADL shall be referenced and linked, as it should be objec-
tive to reuse as much as possible of the existing structural constructs for the SAFE meta model 
extension. We propose for the structural part a change request of EAST-ADL. The corresponding 
meta model adaption is presented in Section 9.2. 

Beside the structural part, the specific requirements for hardware modeling presented in Section 7 
claim the description of hardware failure information and the metrics for qualitative and quantitative 
analysis. Beside the concepts for error modeling with the definition of propagation points the 
EAST-ADL V2.1 provides no constructs for failure information. To provide failure modes, failure 
rates of hardware components etc. the existing constructs have to be extended. For the qualitative 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  27 (70) 

and quantitative assessment of the hardware failure expressions have to be formulate and con-
structs for storage of the results,  

These potential extensions together with their rational are described in the Section 9.3. However, 
as this task is still going on in future also the potential extensions will be elaborated in more detail. 

8.3 Current status of AUTOSAR 

As proposed by EAST-ADL abstraction view, AUTOSAR provides the implementation view that 
represents the software oriented implementation. For the hardware related part, in particular in 
AUTOSAR the ECU Resource Template, main elements capable to represent hardware design 
element are available. As it is depicted in Figure 10, the basic class HwElement exists. This ele-
ment can be composed of HwPin through the intermediate class HwPinGroup. Then a connector 
can connect two HWElement by a HwElementConnector and then connect HwPin via 
HwPinConnector or HwPinGroup via HwPinGroupConnector. 

So, we can represent a nested composition like of HwElement by using the nestedElement rela-
tionship, knowing that in term of semantic this is not a strict composition. 

By such means an ECU can be defined as nested HwElement, connected together by their HwPin, 
HwPinGroup, to represent all the electronics Hardware Part and to define a complete ECU elec-
tronic schematic as hardware electronic design level. As explain in the next section, there is place 
for improvement in order to align concept with HW Component and compositional organization of 
an ECU organization.  

 
 object DOC_EcuResscourceOv erv iew

ARElement

HwElement

«atpMixed»
HwPinGroupContent

Identifiable

HwPin

+ pinNumber  :Integer [0..1]

Identi fiable

HwPinGroup

Describable

HwElementConnector
Describable

HwPinGroupConnector

Describable

HwPinConnector

Referrable

HwDescriptionEntity
HwElementCategory::

HwAttributeValue

+ vt  :VerbatimString [0..1]

«atpVariation»
+ v  :Numerical [0..1]

ARElement

HwElementCategory::
HwType

+hwPinGroupConnection

0..*

+hwElement

2

+hwPinGroupContent 1

+hwPin 1

+hwPin 2

+hwPinGroup

2

+hwPinGroup

0..*

1 +nestedElement
0..*

+hwElementConnection
0..*

+hwType

0..1

+hwPinConnection

0..*

+hwPinConnection

0..*

+hwAttributeValue

0..*

+hwPinGroup

1

 

 Figure 10: AUTOSAR ECU Resource overview 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  28 (70) 

8.4 Proposed extensions to AUTOSAR 

As Introduced in the previous section, to facilitate hardware part representation and compositional 
aspects, the ECU resource template requires some improvement. Due to AUTOSAR IPs, we will 
only express needs and then propose to submit this subject to the AUTOSAR consortium as a po-
tential improvement area for a future official change request. 

The draft of the main features to be change in ECU Resource template is the introduction of com-
positional capability by the creation of HwElementType composed of part from 
HwElementPrototype. Another possible of change would be to revise HwPinGroup definition in 
order to introduce the concept of Bus, in order to be more restrictive in the HwPin composition. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  29 (70) 

9 WT 3.2.2 Contribution to SAFE Meta-Model 

Within this section the contribution of WT 3.2.2 to the SAFE meta-model is described. At the be-
ginning an overview about the model is given which is followed by the detailed description of the 
classes and interconnections. Moreover, in another section the meta-model is described by means 
of an example. 

9.1 Overview 

The structuring of the meta model extension regarding hardware is done according to the catego-
ries defined in Section 7.6 as shown in Figure 11. 

 

 
 

Figure 11: Overview on WT 3.2.2-contribution to SAF E meta-model 

 

The top-level package Hardware of the SAFE meta model, developed in Enterprise Architect, con-
tains all meta model extension of WT 3.2.2, except for the structural part. The meta model adap-
tion for EAST-ADL capturing the structural part is described in Section 9.2, as the decided choice 
was to shift it away from the package Hardware and make proposal for EAST-ADL2.1 adaptation 
in HardwareStructure.  

The package Hardware with its sub-packages FailureFormula, Failure, FailurePart, 
HWQuantitativeMeasure, HWArchitecturelMetrics, ProbabilisticMethods is described in Section 
9.3.  

 
 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  30 (70) 

Due to the fact, that the meta model regarding hardware is partially based on the existing con-
structs of EAST-ADL, a lot of references are included. Figure 12 gives an overview of the refer-
ences to EAST-ADL which are used in the package Hardware. In case of a reference, all attributes 
from the EAST-ADL class are inherited. For some classes of EAST-ADL adaptations are required, 
described in Section 9.2. 

 
 class EASTADLReferences

ErrorBehav ior

FunctionBehav ior

«atpType»
HardwareComponentType

FunctionPort

FunctionPrototype

FunctionType

EastAdlReference

+ package  :String
+ package  :String
+ shortName  :Identifer
+ shortName  :Identifer

«atpStructuredElement»
LogicalBus

+ busSpeed  :Float
+ busType  :LogicalBusKind

«enumeration»
LogicalBusKind

 TimeTriggered
 EventTriggered
 TimeandEventTriggered
 other

AllocationTarget

«atpPrototype»
HardwareComponentPrototype

«atpStructureElement»
HardwareConnector

«atpType»
Actuator

«atpType»
Node

+ executionRate  :Float = 1.0
+ nonVolatileMemory  :Integer
+ volatileMemory  :Integer [0..1]

«atpType»
PowerSupply

+ isActive  :Boolean

«atpType»
Sensor

CommunicationHardwarePin

IOHardwarePin

PowerHardwarePin

«atpStructureElement»
HardwarePin

Allocation

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentPrototype

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentType

+ elementary  :Boolean

HardwareDescriptionEnti ty

HwComponentsAndPorts::
HardwarePin

HardwareDescriptionEnti ty

HwComponentsAndPorts::
HardwarePinConnector

+hardwareComponent 0..1 +hardwarePin 0..1+hardwareConnector 0..1+hardwarePart 0..1

 

Figure 12: References of package Hardware to EAST-A DL 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  31 (70) 

9.2 Proposal for change request on EAST-ADL 

This following section will describe the details of the proposal for change request in EAST-ADL2.1. 
It covers the core feature of EAST-ADL in the structural part of the hardware element.  

The first main change represents the introduction of the HardwarePort, for substitution on the long 
run the LogicalBus meta class. This HardwarePort can then be composed by HardwarePin, and 
HardwarePort will represent a transactional description of internal or external bus communication, 
similar to a concept available in IP-XACT (and in AUTOSAR HwPinGroup). As a consequence the 
HardwareConnector will be revised (see next section for details). Linked by the 
HardwareElementEntities generalization, the description of the electrical characteristics of the 
HardwarePin or any other hardware elements need to more flexible expressed. Our proposal is to 
reuse the HwCategory modeling concept from AUTOSAR (see next section and in AUTOSAR 
document for more details) 

The second important change is the creation of the means for a separation at the Design level 
between hardware and software elements, as required by the ISO26262 requirement. The soft-
ware architectural element could l be represent by design function (DesignFunctionType) and the 
hardware architectural element by hardware component (HWComponentType). As consequence, 
first a dedicated element shall be added to represent the hardware software interface, a 
HwSwInterface element representing the hardware abstraction (HWAbstractionFunction). Moreo-
ver them to complete the split, a behavior of the HW component shall be directly attached 
(FunctionBehavior), similar to the behavioral that is attached to DesignFunction. For example in 
hardware domain these behavior may be link to SystemC modeling element including the hard-
ware behavior description for simulation capabilities. 

In the following subsections, the detailed description of the classes and interconnections is de-
tailed. Name of the top-level package is “Hardware Structure”. This on the other hand contains 6 
sub-packages, as following 

• HwCategory 

• HwComponentBehavior 

• HwComponent 

• HwComponentsAndPorts 

• HwSwInterface 

• _instanceRef 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  32 (70) 

9.2.1 Package Hardware Structure  

The package HardwareModeling contains the elements to model physical entities of the embedded electri-
cal/electronic system. These elements allow the hardware to be captured in sufficient detail to allow prelim-
inary functional allocation decisions. It also allow to define the hardware architecture description based on 
hardware component and associated behavior. 

Conversely, the Functional Analysis Architecture and the Functional Design Architecture may be revised 
based on analysis using information from the Hardware Design Architecture. An example is control law 
design, where algorithms may be modified for expected computational and communication delays and then 
finally attached to hardware component. Thus, the Hardware Design Architecture contains information 
about properties in order to support, e.g., timing analysis and performance in these respects.  Finally, it in-
cludes behavioral description of the control law when decision for hardware implementation is made. 

 

 class HardwareModeling

HardwareDescriptionEntity

HwComponentsAndPorts::
HardwarePinConnector

EastAdlReference

«atpStructuredElement»
References::LogicalBus

+ busSpeed  :Float
+ busType  :LogicalBusKind

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentPrototype

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentType

+ elementary  :Boolean

EastAdlReference

References::AllocationTarget

EastAdlReference

«enumeration»
References::LogicalBusKind

 TimeTriggered
 EventTriggered
 TimeandEventTriggered
 other

Note for 
================
EastAdlReference
HardwareDEscriptionEntity
HwComponents::NewHardwareComponentPrototype
================

Only for usabili ty Issue with type (Same as EAST-
ADL)

+bus

*

+wire *

1 +part

*

«isOfType»

+type

1

+hwPinConnector

0..*

 

Figure 1: HardwareModeling - (Class diagram)  

 

This diagram shows an overview of the basic element of HardwareModeling as HardwareComponentType 
and HardwareComponentPrototype.  It depicts the conservation of LogicalBus for backward compatibility 
of EAST-ADL. It is now proposed to be replaced by a more flexible concept the HardwarePort as shown in 
section 9.2.1.4.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  33 (70) 

9.2.1.1 Package HwCategory  

This package represents the HwCategory, similar use as in AUTOSAR, to allow definition of specific at-
tributes to all hardware entities of the Hardware Structure package. 

 

 class DOC_HwCategory

HwAttributeDefinition

+ isRequired  :Boolean

HwAttributeLiteralDefinition

HwCategory

SiUnit

+ factorSiToUnit  :Float
+ offsetSiToUnit  :Float

HwAttributeValue

+ v  :String [0..1]
+ vt  :String [0..1]

HwComponents::
HardwareDescriptionEntity

+hwAttributeLiteral 0..*

+hwAttributeDefinition

1

+hwAttributeValue 0..*

+hwCategory

0..*

+hwAttributeDefinition 0..*

+siUnit 0..1

 

Figure 2: DOC_HwCategory - (Class diagram)  

 

This class diagram represents a flexible definition of attributes, attached to any hardware entity of the 
Hardware Structure package, using meta-class generalization HardwareDescriptionEntity. This modeling 
style is the same as the one in use in AUTOSAR to facilitate reuse, refinement and linkage of element be-
tween EAST-ADL and AUTOSAR.  

The HwCategory class is composing of one or several HwAttributeDefinition representing the ability to de-
fine a particular hardware attribute. This Category can be associated to any HardwareDescriptionEntity, in 
particular to HardwarePin to define electrical characteristics, to HardwarePort to define communication 
parameter (e.g. speeds...), to HardwarePinConnector to define electrical feature (e.g. resistance) or to 
HardwarePortConnector (e.g. bandwidth or any limitation). The category of this element defines the type of 
the attribute value. If the category defined by HwAttributeValue is Enumeration the 
hwAttributeEnumerationLiterals specify the available literals. This HwAttributeLiteralDefinition play the 
role of HwAttributeLiteral for HwAttributeDefinition as the definition of the Enumeration. It is only appli-
cable if the category of the HwAttributeDefinition equals Enumeration. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  34 (70) 

The HwAttributeValue class represents the ability to assign a hardware attribute value. Note that v and vt are 
mutually exclusive. The SiUnit class represents the physical measurement unit. All units that might be de-
fined should stem from SI units. In order to convert one unit into another factor and offset are defined. For 
the calculation from SI-unit to the defined unit the factor (factorSiToUnit) and the offset (offsetSiToUnit) 
are applied: Unit = siUnit * factorSiToUnit + offsetSiToUnit. For the calculation from a unit to SI-unit the 
reciprocal of the factor (factorSiToUnit) and the negation of the offset (offsetSiToUnit) are applied: SiUnit 
= (unit - offsetSiToUnit) / factorSiToUnit 

9.2.1.2 Package HwComponentBehavior  

This package describes the behavior of a hardware component. The proposed adaptation of the 
HardwareComponentType is now the representation of the physical entity of the embedded hardware elec-
trical/electronic component including a hardware behavior. This behavior can be defined by language used 
during hardware architecture development as SystemC, Modelica, VHDL-AMS or Verilog-AMS. 

 

 class DOC_HwComponentBehav ior

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentType

+ elementary  :Boolean

EastAdlReference

References::FunctionBehav ior

+ path  :String
+ representation

«enumeration»
FunctionBehav iorKind

 SIMULINK
 STATEMATE
 ASCET
 SCADE
 MARTE
 MODELICA
 SYSTEMC
 SYSTEMC-AMS
 VHDL-AMS
 Verilog-AMS
 OTHER

+hwComponentType 0..1

 

Figure 3: DOC_HwComponentBehavior - (Class diagram)  

 

This diagram shows the relation of HardwareComponentType with a FunctionBehavior to map the behavior 
of the hardware to a function. Each HardwareComponentType can reference its behavior via the 
FunctionBehavior, owning attributes to define a path as string path of the file and FunctionBehaviorKind is 
an enumeration which lists the various representations. Hardware modeling languages are added to represent 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  35 (70) 

the change on behavior attached HardwareComponentType. Several representations are listed; however, one 
can always extend this list by using the literal OTHER.  

9.2.1.3 Package HwComponents  

This package represents the description of the HardwareComponentType and its specializations for precise 
use, and a compositional approach for hardware component. 

 

 class DOC_HwComponents

EastAdlReference

«atpType»
References::Sensor

EastAdlReference

«atpType»
References::Node

EastAdlReference

«atpType»
References::Actuator

EastAdlReference

HardwareComponentType

+ elementary  :Boolean

AllocationTarget
EastAdlReference

HardwareComponentPrototype

EastAdlReference

«atpType»
References::PowerSupply

HardwareDescriptionEntity

1

+part

*

«isOfType»

+type

1

 

Figure 4: DOC_HwComponents - (Class diagram)  

 

This class diagram represents the definition of hardware component and its composition thanks to 
HardwareComponentType and HardwareComponentPrototype. In addition it includes the list of the class 
specialized for the use at design level of the hardware component. The HardwareComponentType represents 
hardware element on an abstract level, allowing preliminary engineering activities related to hardware. 
Through its ports or pins it can be connected to electrical sources and sinks. It is typically connected through 
its ports to the environment model to participate in the end-to-end behavioral definition of a function. 
HardwareComponentProtoype and HardwareComponentType are specializations of 
HardwareDescriptionEntity as generic lass for hardware relationship definition in the EAST-ADL meta 
model. HardwareComponentPrototype can be typed by a HardwareComponentType, and has a composite 
relation name part to HardwareComponentType. This allows for a reference to the occurrence of a 
HardwareComponentType when it acts as a part. The purpose is to support the definition of hierarchical 
structures, and to reuse the same type of Hardware at several places. For example, a wheel speed sensor may 
occur at all four wheels, but it has a single definition.  

The HardwareComponentType can be specialized to represent specific element of the electric/electronic 
architecture as a Node (e.g. typically an ECU), a Sensor, and Actuator or a PowerSupply element.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  36 (70) 

9.2.1.4 Package HwComponentsAndPorts  

This package describes the interface of the hardware component. Such organization is aimed to define low 
level electrical signal definition and abstraction concept to communication bus with electrical signal group-
ing. 

 

 class DOC_HwComponentsAndPorts

EastAdlReference
HardwareDescriptionEntity

HwComponents::HardwareComponentType

+ elementary  :Boolean

HardwareDescriptionEntity

HardwarePort

HardwareDescriptionEntity

HardwarePin

EastAdlReference

References::
CommunicationHardwarePin

EastAdlReference

References::IOHardwarePin

EastAdlReference

References::PowerHardwarePin

HardwareDescriptionEntity

HardwarePinConnector

HardwareDescriptionEntity

HwPortConnector

«instanceRef»

+toHwPin

1

«instanceRef»

+toHwPort

1

1

+hwPin

0..*

0..1

+hwPort 0..*

+hwPinConnector
0..*

+hwPortConnector 0..*

«instanceRef»

+fromHwPin 1

1

+hwPinConnector 0..*

«instanceRef»

+fromHwPort1

0..1

+hwPort 0..*

+hwPin
0..*

+hwPin

0..*

 

Figure 5: DOC_HwComponentsAndPorts - (Class diagram)  

 

This class diagram represents the interface of the hardware component made by HardwarePin and/or 
HardwarePort. The relation between HardwarePort and HardwarePin is defined precisely. The 
HardwarePort provides means to organize hardware pins by composing HwPin . It can be used to define 
external/internal communication bus down to the level of communication transactor for hardware bus. It 
represents a logical connection that carries data from any sender to all receivers. Senders and receivers are 
identified by the wires of the HardwarePort, i.e. the associated HardwareConnectors. The parameter of 
HardwarePort can be defined with flexible mechanism of HardwareCategory applicable to all hardware 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  37 (70) 

entities. Notice that a HardwarePort can be also compose HardwarePort for larger representation or ab-
straction (e.g. address/data/control by a simple transaction). Therefore it has two objectives: abstraction of 
hardware pin(s), and definition of internal/external communication bus; visualization: schematic entry tools 
busses, like address, data, and control bus. HardwarePort can be connected by HwPortConnector. 
HardwarePortConnector connectors represent port wires that electrically connect the hardware components 
through its ports. The connector joins the two referenced ports electrically. HardwarePin represents electri-
cal connection points in the hardware architecture. Depending on modeling style, the actual wire or a logical 
connection can be considered if required. Another use is to compose HardwarePin in HarwdarePort, for the 
stake of communication bus interface. Others use case of HardwaredPin are the declared specialization as a 
CommunicationHardwarePin (any type of communication busses), a PowerHardwarePin (for power supply 
and ground) or a IOHardwarePin (any basic Input output of a component as digital, analog, frequency 
etc…) . 

9.2.1.5 Package HwSwInterface  

This package describes the hardware software interface element. Such element shall allow to link unambig-
uously by a unique element, the hardware component interface with the software element interface.  

 

 class HwSwInterface

HwAbstractionFunction

HwSwInterface

HardwareDescriptionEntity

HwComponentsAndPorts::
HardwarePin

EastAdlReference

References::FunctionPort

EastAdlReference

References::Allocation

+hwswInterfaceAllocation 0..*

1

«instanceRef»

+functionPort

0..1«instanceRef»

+hardwarePin

0..1

+hwAbstractionFunction0..*

 

Figure 6: HwSwInterface - (Class diagram)  

This class diagram represents the definition of the HwSwInterface. A software element is represented by a 
DesignFunction and a hardware element by a HardwareComponent. The HwSwInterface class represents the 
HW-SW interface on the EAST-ADL abstraction Level "Design Level". It is contained into Allocation ele-
ments that originally bundles all function Allocations, and now bundle the Hw-SwInterface elements. 
HwSwInterface is capable to be independent of implementation but allocated into a dedicated hardware ele-
ment for application purpose (build from HwSwInterface abstraction principle). HwSwInterface is composed 
by one or several HwAbstractionFunction that allow defining precise interface between hardware and soft-
ware element of the architecture. As these two elements have heterogeneous interface, as FunctionPort and 
HardwarePin as dedicated construct was necessary to represent this inter-relation. It is an abstraction for 
accessing hardware data by a software element. For software architecture, the abstraction can be defined 
according to company needs, with our without use of BasicSoftwareDriverType for precise definition of 
interface to the middleware. For hardware architecture, it is can linked to the upper HardwareComponent 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  38 (70) 

interface as pin , or it could be attached to an internal pin in context of HardwareComponent composition 
(for more precise interface).  The HwAbstractionFunction has the semantic of execution of the FunctionPort 
where it is linked. This means, once the software DesignFunction is executed the immediate out (or in for 
read) port value propagates to FunctionPort and the HwAbstractionFunction is executed as an immediate 
R/W operation of the HardwarePin. 

9.2.1.6 Package _instanceRef  

This package describes the "instanceRef" context for the dependency "instanceRef" used between modeling 
elements. 

 

 class FunctionPortInFunctionType

«instanceRef»
FunctionPortInFunctionTypeHwAbstrRef

HwSwInterface::
Hw AbstractionFunction

EastAdlReference

References::FunctionPort

EastAdlReference

References::FunctionType

EastAdlReference

References::FunctionPrototype

HardwareDescriptionEntity

Hw ComponentsAndPorts::
Hardw arePin

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentType

+ elementary  :Boolean

AllocationTarget
EastAdlReference

HardwareDescriptionEntity

HwComponents::
HardwareComponentPrototype

«InstanceRef»
HardwarePinInHardwareTypeHwAbstrRef

+baseFunctionType 1

«instanceRef»

+hardwarePin 0..1

1

+hwPin

0..*
«isOfType»

+type

1

1

+part

*

«instanceRef.context»

+contextFunctionPrototype 1

0..1

«instanceRef.context»

+contextHardwareComponentPrototype

1

+port

* 1

«instanceRef.target»

+targetFunctionPort
1

«instanceRef»

+functionPort 0..1

0..1

«instanceRef.target»

+targetHardwarePin 1 +baseHardwareComponentType 1

«isOfType»

 

Figure 7: FunctionPortInFunctionType - (Class diagram)  

 

This class diagram represents the definition of the instanceRef target, base and context for FunctionPort and 
HardwarePin in the use of HwAbstractionFunction.   The HardwarePinInHardwareTypeHwAbstrRef  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  39 (70) 

"instanceRef" meta-class is the container for holding the relation of HardwarePin in context of 
HardwareComponentPrototype for the use of HwAbstractionFunction (from HwSwInterface). The 
FunctionPortInFunctionHwAbstrRef "instanceRef" meta-class is the container for holding the relation of 
FunctionPort in context of Functionprotype for the use of HwAbstractionFunction (from HwSwInterface). 

 

 class HwPinInHwComponentType

«instanceRef»
HwPinInHwComponentInstanceRef

HardwareDescriptionEntity

HwComponentsAndPorts::
HardwarePin

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentType

+ elementary  :Boolean

HardwareDescriptionEntity

HwComponentsAndPorts::
HardwarePinConnector

AllocationTarget
EastAdlReference

HardwareDescriptionEntity

HwComponents::
HardwareComponentPrototype

«instanceRef»

+toHwPin 1

1

+part

*

«instanceRef.context»

+contextHwComponent 1

«isOfType»
+type

1

1

+hwPin

0..*

+hwPinConnector

0..*

+baseHwComponent 1

«instanceRef»

+fromHwPin 1

0..1

«instanceRef.target»

+targetHwPin 1

 

Figure 8: HwPinInHwComponentType - (Class diagram)  

 

This class diagram represents the definition of the instanceRef target, base and context for HardwarePin in 
the use of HardwarePinConnector. The HwPinInHwComponentInstanceRef "instanceRef" meta-class is the 
container for holding the relation of HardwarePin in context of HardwarePrototype for the use of 
HardwarePinConnector. 

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  40 (70) 

 class HwPortInHwComponentType

«instanceRef»
HwPortInComponentInstanceRef

HardwareDescriptionEntity

HwComponentsAndPorts::
HardwarePort

HardwareDescriptionEntity

HwComponentsAndPorts::
HwPortConnector

AllocationTarget
EastAdlReference

HardwareDescriptionEntity

HwComponents::
HardwareComponentPrototype

EastAdlReference
HardwareDescriptionEntity

HwComponents::
HardwareComponentType

+ elementary  :Boolean

«instanceRef»

+toHwPort 1

1

+part

*

«instanceRef.context»

+contextHwComponent 1

«isOfType»

+type

1

+baseHwComponent 1

0..1

+hwPort

0..*

+hwPortConnector

0..*

«instanceRef»

+fromHwPort 1

0..1

+hwPort 0..*

«instanceRef.target»

+targetHwPort 1

0..1

 

Figure 9: HwPortInHwComponentType - (Class diagram)  

This class diagram represents the definition of the instanceRef target, base and context for HardwarePort in 
the use of HardwarePortConnector. This HwPortInComponentInstanceRef "instanceRef" meta-class refer-
ence is the container for holding the relation of HardwarePort in context of HardwarePrototype for the use 
of HardwarePortConnector. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  41 (70) 

9.3 Detailed Description of Classes and Links of Pa ckage Hardware 

 

In the following subsections, a detailed description of the classes and links of the WT 3.2.2 - con-
tribution to the SAFE meta-model is given. Name of the top-level package is “Hardware”. This on 
the other hand contains 6 sub-packages, as following 

• FailureFormula 

• Failure 

• FailurePart 

• HWQuantitativeMeasure 

• HWArchitecturalMetrics 

• ProbabilisticMethods 

 

The structural meta model as part of the proposal for adaption of EAST-ADL was described in 
Section 9.1. 

9.3.1 Package FailureFormula  

This sub-package contains all equations necessary for the evaluation of the hardware architecture. 

 class FailureFormula

HWFMSingleContributionFormula HWLatentFaultMetricFormula HWPMHFFormula HWSinglePointFaultMetricFormula

HWFailureClassContributionFormula

HWLambdaPartFormula

Formula 
Documentation

 

Figure 1: FailureFormula - (Class diagram)  

 

This diagram shows all formula expressions required for the evaluation of the hardware architecture. The 
FormulaDocumentation class indicates for class specialization that documentation on formula expressions is 
documented and can be used for editor implementation (e.g. Java implementation). The contents of the doc-
umentation for each formula attached to a specialization are described below in the respective use in the 
package.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  42 (70) 

9.3.2 Package Failure  

This sub-package describes the failure model of the hardware as derived from the requirements of the ISO 
26262. 

9.3.2.1 Root Package  

 class FailureAnalysis

Identifiable

Malfunction::
MalfunctionPrototype

+ genericDescription  :String

HWComponentPrototypeScope

+ safetyRelated  :Boolean

HardwareFailureAnalysis

HWQuantitativ eMeasure::
HWQuantitativ eFailureAnalysis

TechnicalSafetyExtension

TechnicalSafetyExtension::
HardwareSafetyExtension

EastAdlReference

EASTADLReferences::
HardwareComponentPrototype

+hardwareQuantifiedAnalysis

0..1

«instanceRef»

+scope 1

+hWComponentScope

0..*

«instanceRef»

+malfunctionAnalysis

1

+hardwareSafetyAnalysis 0..*

 

Figure 2: FailureAnalysis - (Class diagram)  

 

This diagram shows an overview of the hardware component failure extension root information where 
hardware related failure data and analysis shall be performed. 

The HardwareFailureAnalysis class represents the container for all Hardware Failure Analysis. One or sev-
eral HardwareFailureAnalysis are aggregated to the HardwareSafetyExtension. Each safety goal (as Mal-
function), must lead to a safety analysis, so this class contains all the information related to the analysis as: 
the relation to the malfunction as the MalfunctionPrototype for each analysis, the 
HwComponentPrototypeScope to identify all hardware component specific to the context as 
HWComponentPrototype inside a type composition, the HWQuantifiedFailureAnalysis to store the results of 
quantitative analysis performed on the level of the composition. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  43 (70) 

 

 

 class Failure

Referrable

HWFailureMode

+ allocatedFailureRateDistribution  :Float
+ fai lureModeType  :String
+ potentialCause  :String

Referrable

HWFault

+ hwFaultType  :HWPointFaultEnum

Referrable

HWFailureRate

+ allocatedValue  :Float
+ rationaleScalingFactor  :String
+ scalingFactor  :Float = 1.0
+ source  :String

«enumeration»
HWPointFaultEnum

 safeFault
 singlePointFault
 dualPointFault
 othersPointFault

HardwareComponentFailure

HWComponentPrototypeScope

+ safetyRelated  :Boolean
Identifiable

MalfunctionType

TechnicalSafetyExtension

HardwareSafetyExtension

+hwFaultCharacterization 0..*

+hwFailureMode 1..*

0..*

+hwFailureMode

1

+hwFailureRate

1

+randomHardwareFailure 0..1

 

 Figure 3: Failure - (Class diagram)  

 

This diagram shows an overview of the hardware component failure model. 

This HardwareComponentFailure class describes the randomHardwareFailure role for the failure data ex-
tension for all HWComponents accessible via the generic safety extension mechanism referencing 
HardwareSafetyExtension. The aggregation relation of HardwareComponentFailure allows defining failure 
rate and failure mode at the component level. The class HWFailureMode describes the failure mode of a 
HWComponent. The HWFailureMode is a specialization of a MalfunctionType. It can be traced according 
Requirement tracing relation from a TechnicalSafetyRequirement composed with  
QuantifiedDiagnosticCoverageProperty class identifying the  Diagnostic Coverage value for Latent and/or 
Residual Fault to be able then to compute HW metrics. The attribute allocatedFailureRateDistribution of 
HWFailureMode describes the allocated distribution of the failure rate of the specific failure mode (in per-
centage) of an HWComponent. The sum of all failure rate distributions of all failure modes for a single 
hardware component must lead to the value 100% (may check for consistency). The failureModeType at-
tribute describes the type of a failure mode of an HWComponent (e.g. "No value" for a sensor). The 
potentialCause attribute allows the documentation of the potential cause of the HWComponent failure mode 
(e.g. high temperature). The HWFailureMode can be derived from e.g. Industry Source (see ISO Part 5 
8.4.3). The HWFailureRate captures the failure rate of an HWComponent. Its attribute allocatedValue ex-
press the FIT rate allocated to this HWComponent out of statistics for architectural evaluation and calcula-
tion of metrics and probabilistic methods (it shall be expressed in FIT). The rationaleScalingFactor attribute 
provides a rationale, if a scaling factor different to 1.0 is applied. The scalingFactor attribute allows poten-
tial scaling between different sources of failure rates as described in ISO Part 5 Annex F. The source attrib-



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  44 (70) 

utes FIT rate source shall documented according to possible source as described in ISO 26262 Part 5 8.4.3 
as a) failure rate from industry source (IEC/TR 62380, IEC 61709 ...) or b) statistic based on return field or 
test, or c) Expert judgment. The appropriate HWFailureRate can be derived from e.g. Industry Source (see 
ISO Part 5 8.4.3) as an allocated value or calculated via analysis. 

The class HWFault represents the classification of an HWComponent fault defined as result analysis as 
SafeFault, SinglePointFault or MultiplePointFault for a specific FailureMode in a context of an 
HardwareFailureAnalysis for an HardwareArchitecture. HWFault can only exist for 
HardwareComponentPrototype when HWComponent are used given by its aggregation to 
HWComponentPrototypeScope. The attribute hwFaultType stores the classification of the FailureMode for 
related MalfunctionPrototype (linked to violation of a Safety Goal). It can be SafeFault (no violation of 
Safety Goal), SinglePointFault (as direct violation of the safety goal), DualPoint-Fault (violation of Safety 
Goal in conjunction with another fault as for example a safety mechanism), and OthersPointFault (remark: 
Multiple-point fault for n>2 are considered as safe faults unless shown to be relevant in the technical safety 
concept (see ISO Part 5 7.4.3.2 Note 1). The HWFault holds the association to HWFailureMode to allow 
reference for the classification of the HWFailureMode. 

 class HWQuantitativeElement

MalfunctionType
Referrable

HWFailureMode

+ allocatedFailureRateDistribution  :Float
+ fai lureModeType  :String
+ potentialCause  :String

Referrable

HWFault

+ hwFaultType  :HWPointFaultEnum

Referrable

HWFailureRate

+ allocatedValue  :Float
+ rationaleScalingFactor  :String
+ scalingFactor  :Float = 1.0
+ source  :String

Formula Documentation

FailureFormula::
HWFMSingleContributionFormula

HWQuantitativ eMeasure::
HWFMSingleContribution

+ lambdaMultiplePointFaultLatent  :Float
+ lambdaResidualFault  :Float
+ lambdaSafeFault  :Float
+ lambdaSafetyComponent  :Float
+ lambdaSinglePointFault  :Float
+ safetyComponentClassName  :Identifier

0..*

+hwFailureMode

1

+hwFaultTypeValue

1

+failureRateDistribution

1

+hwFMSCLambdaValue

1

+hwFailureRateValue
1

+hwFailureModeSingleContribution0..1

 

Figure 4: HWQuantifiedElement - (Class diagram)  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  45 (70) 

This diagram contains the calculation of the single failure mode contribution of HWComponent as prelimi-
nary step for the safety evaluation. 

The class HWFMSingleContribution describes the single contribution in term of failure rate (lambda) to the 
elementary metrics of the HWFault for each failure mode of an HWComponent, thanks to the aggegartion 
relation to HWFault. This entity is used to store preliminary calculation for the element used in the context 
of architectural metrics and probabilistic measurement. This intermediate calculus are stored in its attributes 
and defined by a FormulaDocumentation in the HWFMSingleContributionFormula class. The attribute 
lambdaMultiplePointFaultLatent stores the specific failure rate for single failure mode contribution as mul-
tiple-point latent e.g.  lambda(MPF,L), the  lambdaSinglePointFault stores the specific failure rate for single 
failure mode contribution as single-point fault e.g. lambda(SPF), the lambdaResidualFault stores the specif-
ic failure rate for single failure mode contribution as residual fault e.g. lambda(RF) and lambdaSafeFault 
stores the specific failure rate for single failure mode contribution as safe fault e.g.  lambda(SF). The attrib-
ute lambdaSafetyComponent attribute stores the sum of specific failure rates for the hardware component for 
verification and safetyComponentClassName the name of the hardware component class for facilitating fur-
ther consolidation of calculation. The HWFMSingleContributionFormula class aggregated to 
HWFMSingleContribution permits its attributes calculation, and holds association to all elements embedded 
in the formula calculation via respective role hwFaultTypeValue, failureRateDsitribution and 
hwFailureRatevalue. The formula expression shall be for each FailureMode of a safety-related 
HwComponent (part of the item). The formulation is defined as following:  

lambdaSafetyComponent = Value(HWFailureRate) 
SafetyComponentName = HardwareComponent Class name // to allow detect multiple counting of lambdaSafetyComponent 
If (HWFault == SafeFault) 

lambdaSafeFault(HWFMSingleContribution) = [Value(HWFailureRate)*failureRateDistribution(HWFailureMode) ]    
Else 

lambdaSafeFault(HWFMSingleContribution) = 0 
Endif 
 
If (HWFault == SinglePointFault)  

lambdaSinglePointFault(HWFMSingleContribution) = [Value(HWFailureRate)*failureRateDistribution(HWFailureMode) ] 
Else  

lambdaSinglePointFault(HWFMSingleContribution) = 0 
Endif 
 
If (HWFault == DualPointFault) 
       If   (HWSafetyMechanism covers the FailureMode) //residual Fault as HWFailureMode.HWSafetyMechanism != null  

lambdaResidualFault(HWFMSingleContribution) = [Value(HWFailureRate)*failureRateDistribution(HWFailureMode)]* [ 1 - 
hwDiagnosticCoverageRF(HWSafetyMechanism)/100 ] 
lambdaMultiplePointFaultLatentM(HWFMSingleContribution) = [ Value(HWFailureRate) * failureRateDistribution(HWFailureMode) * 
hwDiagnosticCoverageRF(HWSafetyMechanism) ] *  [ ( 1 - hwDiagnosticCoverageLF(HWSafetyMechanism)/100) ] 

       Else   // assume 0% of efficiency for MPL,L metrics (from order 2) 
lambdaResidualFault(HWFMSingleContribution) = 0  
lambdaMultiplePointFaultLatent(HWFMSingleContribution) = [Value(HWFailureRate)*failureRateDistribution(HWFailureMode) ]    

     Endif 
Endif 
 

Notes that Value(HWFailureRate) and failureRateDistribution(HWFailureMode) are applied on the calcu-
lated value extracted from electronic design level  to perform the final calculation and verification of the 
architectural hardware metrics and probabilistic evaluation of violation of the safety goal. The selection be-
tween an allocated and calculated value is a tool feature. It allows first a calculation for estimation based on 
allocation field of failure rate and distribution, and then verification based on 
HWComponentQuantifiedFMFromPart as extract from Failure Part Analysis (see below). 

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  46 (70) 

 class FailureCalculatedFromPart

Referrable

FailurePart::
HWComponentQuantifiedFMFromPart

+ lambdaFailureMode  :Float
+ failureLogic  :String [0..1]

Referrable

HWFault

+ hwFaultType  :HWPointFaultEnum

1

+lambdaFailureModeValue 0..1

 

Figure 5: FailureCalculatedFromPart- (Class diagram)  

 

This diagram shows the association of an HWFault of HWFailureMode of a hardware component on higher 
level and its interference with hardware element part and the associated calculations. 

This HWComponentQuantifiedFMFromPart class describes the quantified failure rate of a HWFailureMode 
of an HWComponent based on the contribution of each HWPartFailureMode of the related HWPart as 
AUTOSAR HW Element. The quantified value is based on the failureLogic attribute expressing relationship 
from HWPart to HWComponent using a logical expression and calculated by a formula stored in the attrib-
ute lambdaFailureMode. See in package FailurePart for detailed on calculation. 

9.3.2.2 Package _instanceRef  

This package describes the "instanceRef" context for the dependency "instanceRef" used between modeling 
elements. 

 

 class HardwareFailureAnalysis

Failure::
HardwareFailureAnalysis Identifiable

Malfunction::
MalfunctionPrototype

+ genericDescription  :String

«instanceRef»
_instanceRef::

MalfunctionInstanceRef

Identifiable

ErrorModelType::
ErrorModelPrototype

«instanceRef.target»

+malfunction 1

«instanceRef.context»

+errorModelPrototype

0..*

+malfunctionAnalysis

1

«instanceRef»

+malfunctionAnalysis

1

 

Figure 6: HardwareFailureAnalysis - (Class diagram)  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  47 (70) 

This class diagram represents the definition of the instanceRef target, base and context for a 
MalfunctionPrototype in the use of HardwareFailureAnalysis. The MalfunctionInstanceRef "instanceRef" 
meta-class is the container for holding the relation to malfunctionAnalysis of an HardwareFailureAnalysis 
class for a MalfunctionPrototype used in context of ErrorModelPrototype. 

 

 

 class HwComponentPrototypeScope

Failure::
HWComponentPrototypeScope

+ safetyRelated  :Boolean

EastAdlReference

EASTADLReferences::
Hardw areComponentPrototype

EastAdlReference

EASTADLReferences::
HardwareComponentType

«InstanceRef»
HwComponentScopeInstanceRef

«instanceRef.base»

+base

0..1

«instanceRef.context»

+context

0..1

«instanceRef.target»

+target

0..1

+scope 1

«instanceRef»

+scope

1

 

Figure 7: HwElementprototypeScope - (Class diagram)  

 

This class diagram represents the definition of the instanceRef target, base and context for 
HWComponentPrototypeScope in the use of HwComponent. The HwComponentInstanceRefs "instanceRef" 
meta-class is the container for holding the relation to HwComponentType in context of 
HwComponentPrototype. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  48 (70) 

9.3.3 Package FailurePart 

This sub-package describes the failure model of the hardware as derived from the requirements of the ISO 
26262. 

9.3.3.1 Root Package 

 

 class FailurePartAnalysis

HWPartFailureAnalysis

HWElementPrototypeScope

+ safetyRelated  :Boolean

Identifiable

Malfunction::
MalfunctionPrototype

+ genericDescription  :String

Referrable

HWComponentQuantifiedFMFromPart

+ lambdaFailureMode  :Float
+ fai lureLogic  :String [0..1]

AutosarSafetyExtension

ImplementationSafetyExtension::
AutosarHardwareSafetyExtension

AutosarReference

AUTOSARReferences::
HwElementPrototype

«instanceRef»

+scope 1

+hwElementScope 0..*

«instanceRef»

+malfunctionPartAnalysis

1

+quantifiedHardwareFMFromPart
0..1

+hardwarePartSafetyAnalysis 0..*

 

Figure 8: FailurePartAnalysis - (Class diagram)  

 

This diagram shows an overview of the hardware part failure extension root information where hardware 
part related failure data and analysis shall be performed. 

The HWPartFailureAnalysis class represents the container for all Hardware Part Failure Analysis. One or 
several HWPartFailureAnalysis are aggregated to the AutosarHardwareSafetyExtension. Each Malfunction 
must lead to a safety part analysis, so this class contains all the information related to the part analysis as: 
the relation to the malfunction as the MalfunctionPrototype for each part analysis, the 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  49 (70) 

HwElementPrototypeScope to identify all hardware part specific to the context as HwElementPrototype in-
side a type composition, the HWComponentQuantifiedFMfromPart to store the results of quantitative analy-
sis performed on the part level and relation to the top level HWFailureMode (as malfunction). 

 

 class PartFailure

HWPartFailure

HWPartFailureMode

+ partFailureModeType  :String
+ FailureRateDistribution  :Integer
+ partPotentialCause  :String

HWPartFailureRate

+ rationaleScalingFactor  :String
+ scalingFactor  :Float = 1.0
+ source  :String
+ value  :Float

AutosarSafetyExtension

ImplementationSafetyExtension::
AutosarHardwareSafetyExtension

+hwPartFailureMode *

+hwPartFailureRate

1

+ramdomHardwarePartFailure 0..1

 

Figure 9: PartFailures - (Class diagram)  

 

This diagram shows the hardware part failures and its contribution to the hardware component failure on 
higher level. 

The HWPartFailure class describes the randomHardwarePartFailure role for the failure data extension for 
all Autosar HWElement accessible via the generic safety extension mechanism referencing 
AutosarHardwareSafetyExtension. The aggregation relation of HWPartFailure allows defining failure rate 
and failure mode at the part level (hardware design level). The class HWPartFailureMode describes the fail-
ure mode of a HWElement. The attribute partFailureModeType describes the type of a part failure mode of a 
HWElement (e.g. "Short Circuit to ground" for a resistance). The attribute FailureRateDistribution of 
HWPartFailureMode describes the distribution of the failure rate of the specific failure mode (in percent-
age) of a HWElement. The partPotentialCause attribute allows the documentation of the potential cause of 
the HWElement failure mode (e.g. high temperature). The HWPartFailureMode can be derived from e.g. 
Industry Source (see ISO Part 5 8.4.3). The HWpartFailureRate captures the failure rate of a HWElement. 
Its attribute value express the FIT rate allocated to this HWElement, it shall be expressed in FIT. The 
rationaleScalingFactor attribute provides a rationale, if a scaling factor different to 1.0 is applied. The 
scalingFactor attribute allows potential scaling between different sources of part failure rates as described 
in ISO Part 5 Annex F. The source attributes FIT rate source shall documented according to possible source 
as described in ISO 26262 Part 5 8.4.3 as a) failure rate from industry source (IEC/TR 62380, IEC 61709 ...) 
or b) statistic based on return field or test, or c) Expert judgment. The appropriate HWPartFailureRate can 
be derived from e.g. Industry Source (see ISO Part 5 8.4.3). 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  50 (70) 

 class HwPartContributionToComponent

HWPartFailureMode

+ partFailureModeType  :String
+ FailureRateDistribution  :Integer
+ partPotentialCause  :String

HWPartFailureRate

+ rationaleScalingFactor  :String
+ scalingFactor  :Float = 1.0
+ source  :String
+ value  :Float

Formula Documentation

FailureFormula::
HWLambdaPartFormula

Referrable

HWComponentQuantifiedFMFromPart

+ lambdaFailureMode  :Float
+ fai lureLogic  :String [0..1]

+hwCQFMlambdaFailureModeValue

1

1

+hwPartFailureRateValue *

1

+failureRateDistributionValue*

 

Figure 9: HwPartFContributionToComponent - (Class diagram)  

 

This diagram shows the hardware part failures and its contribution to the hardware component failure on 
higher level. 

The HWComponentQuantifiedFMFromPart class describes the quantified failure rate of a HWFailureMode 
of an HWElement based on the contribution of each HWPartFailureMode and HWPartFailureRate of the 
related HWPart as AUTOSAR HW Element. The HWLambdaPartFormula class aggregated to 
HWComponentQuantifiedFMFromPart permits its attributes calculation, and holds association to all ele-
ments embedded in the formula calculation via respective role hwpartFailureRateValue and 
failureRateDistributionValue. The formula expression shall be for each FailureMode of a safety-related 
HwComponent (part of the item). The formulation is defined as following:  

// function all represent the failureLogic equation  
lambdaFailureMode = function all HWPartFailureMode [Value(HWPartFailureRate) * FailureRateDistribution(HWPartFailureMode), 
AutosarHWelement) 

 

9.3.3.2 Package _instanceRef  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  51 (70) 

 class HWPartFailureAnalysis

FailurePart::
HWPartFailureAnalysis

«instanceRef»
_instanceRef::

MalfunctionInstanceRef

Identifiable

Malfunction::
MalfunctionPrototype

+ genericDescription  :String

Identifiable

ErrorModelType::
ErrorModelPrototype

«instanceRef.target»

+malfunction 1

«instanceRef.context»

+errorModelPrototype

0..*

+malfunctionPartAnalysis

1

«instanceRef»

+malfunctionPartAnalysis

1

 

Figure 10: HWPartFailureAnalysis - (Class diagram)  

 

This class diagram represents the definition of the instanceRef target, base and context for a 
MalfunctionPrototype in the use of HWPartFailureAnalysis. The MalfunctionInstanceRef "instanceRef" 
meta-class is the container for holding the relation to malfunctionPartAnalysis of an 
HWPartFailureAnalysis class for a MalfunctionPrototype used in context of ErrorModelPrototype. 

 

 class HwElementPrototypeScope

«InstanceRef»
HWElementScopeInstanceRef

AutosarReference

AUTOSARReferences::
HwElementPrototype

AutosarReference

AUTOSARReferences::
HwElementType

FailurePart::
HWElementPrototypeScope

+ safetyRelated  :Boolean

«instanceRef.base»

+base

0..1

«instanceRef.context»

+context
0..1

«instanceRef.target»

+target

1

+scope
1

«instanceRef»

+scope

1

 

Figure 11: HwElementprototypeScope - (Class diagram)  

 

This class diagram represents the definition of the instanceRef target, base and context for 
HWElementPrototypeScope in the use of HwElement. The HwElementInstanceRefs "instanceRef" meta-class 
is the container for holding the relation to HwElementType in context of HwElementPrototype. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  52 (70) 

9.3.4 Package HWQuantitativeMeasure  

This sub-package contains the storage and classification of the safety evaluation. In addition it includes the 
single failure mode contribution as basis for the concrete evaluation. 

 class HWQuantitativ eMeasure

HWArchitecturalMetrics::
HWSinglePointFaultMetric

+ calculatedValue  :Float

HWArchitecturalMetrics::HWLatentFaultMetric

+ calculatedValue  :Float

HWArchitecturalMetrics

HWQuantitativ eFailureAnalysis

HWProbabilisticValue

ProbabilisticMethods::HWPMHF

+ calculatedValue  :Float
+ rationaleDedicatedMeasures  :String
+ exposureTime  :Float
+ rationaleExposureTime  :String

ProbabilisticMethods::
HWFailureClassContainer

+ rationaleCutSet  :String
+ relevantCutSet  :Integer = 100

Failure::Hardw areFailureAnalysis

+hwSinglePointFaultMetric 1 +hwLantentFaultMetric1

+hwArchitecturalMetrics 1

+hardwareQuantifiedAnalysis 0..1

+hwProbalisticValue 1

+hwPMHF 0..1 +hwFailureClassContainer0..1

 

Figure 12: HWQuantitativeMeasure - (Class diagram)  

 

This diagram gives an overview about the quantitative analysis claimed by ISO 26262 Part 5 Clause 8 and 
Clause 9.  

The class HWQuantitativeFailureAnalysis represents the container for all quantified failure analysis re-
quired by the ISO 26262 Part 5 for a dedicated SafetyGoal as specified by aggregation on a 
HardwareFailureAnalysis class.  HWQuantitativeFailureAnalysis allows clustering all meta class for the 
hardware architectural metrics in HWArchitecturalMetrics, as described in the ISO Part 5 Clause 8 (Single-
Point-Fault Metric, Latent-Fault Metric) and for storing in HWProbabilisticValue the probabilistic value for 
violation of safety goal (PMH) or Failure Class Method described in the ISO Part 5 Clause 9. Formally the 
HWArchitecturalMetrics is composed of HWSinglePointFaultMetric for the representation of the single-
point fault metric, demanded by ISO Part 5 Clause 8. The single-point fault metric describes the robustness 
of the hardware architecture to cope with single-point and residual faults (also see ISO Part 5 Annex C). It 
value in % is stored in attribute calculatedValue. HWArchitecturalMetrics is also composed of 
HWSinglelatentFaultMetric for the representation of the latent fault metric, demanded by ISO Part 5 Clause 
8. The latent fault metric describes the robustness of the hardware architecture to cope with multiple-point 
latent faults (also see ISO Part 5 Annex C).  It value in % is stored in attribute calculatedValue. The 
HWProbabilisticValue class is aggregating the results of one of the two methods PMHF or Failure Rate 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  53 (70) 

Class. The HWPMHF class describes the Probabilistic Metric for random Hardware Failures (PMHF) as in 
ISO Part 5 clause 9.4.2. The attribute calculatedValue is the result of the calculation of the PMHF (in FIT). 
The attribute rationaleDedicatedMeasures shall allow defining a rationale for applied dedicated measures in 
the design. The exposurTtime attribute is the duration of exposure used in the simplified computation of the 
PMH. It shall be expressed in h. The attribute rationaleExposureTime is for Documentation of rationale for 
Exposure Time. The HWfailureClassContainer  is a container to store all HW element failure class results 
and associated assumptions taken for the saving of the cut-set cut context as recorded in its attributes, as it is 
defined in ISO Part 5 clause 9.4.3. The attribute rationaleCutSet provides a textual rationale for the number 
of relevant cut-sets and relevantCutSet stores the number of relevant cut-set.  

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  54 (70) 

9.3.5 Package HWArchitecturalMetrics  

This sub-package describes the hardware architectural metrics as claimed by ISO 26262 Part 5 Clause 8. A 
detailed description of the architectural metrics can be found in ISO 26262 Part 5 Annex C. 

 class HWArchitecturalMetrics

HWLatentFaultMetric

+ calculatedValue  :Float

HWSinglePointFaultMetric

+ calculatedValue  :Float

Formula Documentation

FailureFormula::
HWLatentFaultMetricFormula

Formula Documentation

FailureFormula::
HWSinglePointFaultMetricFormula

HWQuantitativ eMeasure::
HWFMSingleContribution

+ lambdaMultiplePointFaultLatent  :Float
+ lambdaResidualFault  :Float
+ lambdaSafeFault  :Float
+ lambdaSafetyComponent  :Float
+ lambdaSinglePointFault  :Float
+ safetyComponentClassName  :Identifier

+lambdaValue

*

+lfmCalculatedValue

1

+spfmCalculatedValue

1

+lambdaValue

*

 

Figure 13: HWArchitectureMetrics - (Class diagram)  

 

This diagram shows the calculation hardware architectural metrics as described in ISO Part 5-Clause 8 and 
Annex C. 

The HWSinglePointFaultMetric class stores the results of the Hardware Single Point Fualt metric based on 
the contribution of each HWFMSingleContibution provided by the HWSinglePointFaultMetricFormula doc-
umentation class. The generic formula is defined by SPF metric  = 100% - total (single point faults failure 
rate + residual faults failure rate) / total (safety related HWComponent failure rate). In the context of model-
ing the formula is defined as following: 

Value(SinglePointFaultMetric) = { 1 - [  ( Sum (lambdaSinglePointFault(FMSingleContribution) + lambdaResidualFault(FMSingleContribution) ) / 
Sum(LambdaSafetyComponent) ] } * 100  
// Sum(LambdaSafetyComponent) is  only counted once for a HWElement (identical safetyComponentClassName). 

Notes that Value(SinglePointFaultMetric) is applied on estimated value from electronic design level for 
final calculation and verification of the final single-point fault metric.  The selection between calculated and 
estimated value is a tool feature that allow first a calculation for estimation based on allocation field of fail-
ure rate and distribution. Only safety-related HWComponent are considered. 

The HWLatentPointFaultMetric class stores the results of the Hardware Multiple Latent Fault metric based 
on the contribution of each HWFMSingleContibution provided by the HWLatentFaultMetricFormula docu-
mentation class. The generic formula is defined by MPF,Latent metric = 100% - total (multiple-point faults 
latent failure rate) /( total (safety-related HWComponent failure rate) - total (single-point faults failure rate + 
residual faults failure rate)). In the context of modeling the formula is defined as following: 

Value( MultipleLatentFaultMetric) = { 1 - [  Sum (lambdaMultipleFaultLatent(FMSingleContribution) / [ Sum(LambdaSafetyComponent) - Sum ( 
lambdaSinglePointFault(FMSingleContribution) + lambdaResidualFault(FMSingleContribution)  ]   ]  } * 100 
Sum(LambdaSafetyComponent) is only counted once for a HWElement (identical safetyComponentClassName). 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  55 (70) 

Notes that Value(MutiplePointFaultMteric) is applied on estimated value from electronic design level for 
final calculation and verification of the final latent fault metric. The selection between calculated and esti-
mated value is a tool feature that allow first a calculation for estimation based on allocation field of failure 
rate and distribution. Only safety-related HWComponent are considered. 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  56 (70) 

9.3.6 Package ProbabilisticMethods  

This sub-package describes the residual risk of safety goal violation due to random hardware failures as 
claimed by ISO 26262 Part 5 Clause 9. This contains the probabilistic metric for random hardware failures 
(PMHF) and as an alternative the failure rate class method (FRC). 

 class ProbabilisticMethods

HWPMHF

+ calculatedValue  :Float
+ rationaleDedicatedMeasures  :String
+ exposureTime  :Float
+ rationaleExposureTime  :String

HWElementFailureRateClass

+ hwElementFailureClass  :HWValuesFailureRateClassEnum
+ hwElementLatentDiagnosisCoverage  :Float
+ hwElementResidualDiagnosisCoverage  :Float
+ LFTargetFailureRateClass  :HWLFTargetFailureRateClassEnum
+ rationaleDedicatedMeasures  :String
+ rationaleFailureRateClass  :String
+ RFTargetFailureRateClass  :HWRFTargetFailureRateClassEnum
+ SPFTargetFailureRateClass  :HWSPFTargetFailureRateClassEnum

«enumeration»
HWValuesFailureRateClassEnum

 FailureRateClass1 = FR_TargetValue ...
 FailureRateClass2 = FailureRateClas...
 FailureRateClass3 = FailureRateClas...
 FailureRateClass4 = FailureRateClas...
 FailureRateClass5 = FailureRateClas...

HWQuantitativ eMeasure::
HWFMSingleContribution

+ lambdaMultiplePointFaultLatent  :Float
+ lambdaResidualFault  :Float
+ lambdaSafeFault  :Float
+ lambdaSafetyComponent  :Float
+ lambdaSinglePointFault  :Float
+ safetyComponentClassName  :Identi fier

Formula Documentation

FailureFormula::
HWPMHFFormula

Formula Documentation

FailureFormula::
HWFailureClassContributionFormula

HWFailureClassContainer

+ rationaleCutSet  :String
+ relevantCutSet  :Integer = 100

«enumeration»
HWSPFTargetFailureRateClassEnum

 OutOfScope = Not Relevant
 ASIL_D = FRClass1 + DM
 ASIL_C = (FRClass2 + DM)...
 ASIL_B = FRClass2 or FRCass1

«enumeration»
HWRFTargetFailureRateClassEnum

 OutOfScope = Not relevant
 ASIL_D_and_RDC_GTEQ_99_dot_99pct = FRClass5
 ASIL_D_and_RDC_GTEQ_99_dot_9pct = FRClass4
 ASIL_D_and_RDC_GTEQ_99pct = FRClass3
 ASIL_D_and_RDC_GTEQ_90pct = FRClass2
 ASIL_D_and_RDC_LT_90pct = FRClass1 + DM
 ASIL_C_and_RDC_GTEQ_99_dot_9pct = FRClass5
 ASIL_C_and_RDC_GTEQ_99pct = FRClass4
 ASIL_C_and_RDC_GTEQ_90pct = FRClass3
 ASIL_C_and_RDC_LT_90pct = FRClass2 + DM
 ASIL_B_and_RDC_GTEQ_99_dot_9pct = FRClass5
 ASIL_B_and_RDC_GTEQ_99pct = FRClass4
 ASIL_B_and_RDC_GTEQ_90pct = FRClass3
 ASIL_B_and_RDC_LT_90pct = FRClass2

«enumeration»
HWLFTargetFailureRateClassEnum

 OutOfScope = Not Relevant
 ASIL_D_and_LDC_GTEQ_99pct = FRClass4
 ASIL_D_and_LDC_GTEQ_90pct = FRClass3
 ASIL_D_and_LDC_LT_90pct = FRClass2
 ASIL_C_and_LDC_GTEQ_99pct = FRClass5
 ASIL_C_and_LDC_GTEQ_90pct = FRClass4
 ASIL_C_and_LDC_GTEQ_80pct = FRClass3
 ASIL_C_and_LDC_GT_80pct = FRClass2

Dependency from 
HWFailureClassContributionFormula to 
HWValuesFailureRateClassEnum (multiplici ty *)
(Rolename: failureRateClassThreshold)

Dependency from 
HWValuesFailureRateClassEnum (multiplici ty 
1) to HWFailureClassContainer (multiplicity 1) 
(Rolename: relevantCutSetValue

+hwelementFailureRateClass *

+hwPMHFCalculatedValue

1

+lambdaValue*

+lambdaValue

*

+hwEFRChwElementValue

1

 

Figure 14: HWArchitecturalMetrics - (Class diagram)  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  57 (70) 

This diagram contains the evaluation of safety goal violation according to ISO 26262 Part 5 Clause 9. This 
contains the PMHF and the FRC. 

The HWPMF class stores the results of Probabilistic Metric for random Hardware Failures (PMHF).based 
on the contribution of each HWFMSingleContibution and using a simplified methods calculation as stored in 
the HWPMHFFormula documentation class. The simplified formula is defined by PMHF = single point 
faults failure rate + residual faults failure rate + (total safety related faults failure rate / 10-9 * delta) * latent 
multiple point faults failure rate. In the context of modeling the formula is defined as following: 

Value(HWPMHF) = [ Sum (lambdaSinglePointFault(HWFMSingleContribution) + lambdaResidualFault(HWFMSingleContribution)) ] + [ 
Sum(LambdaSafetyComponent)  *  1.10-9  * exposureTime(HWPMHF) * lambdaMultiplePointLatent(HWFMSingleContribution) ] 

// Sum(xxxxValue(xxxxLambdaSafetyComponent) is applied for estimated and calculated, and only counted once (identical 
safetyComponentClassName). 

Notes that Value(HWPMHF) is applied on calculated Value extracted from electronic design level for final 
calculation and verification of the final PMHF probability.  The selection between calculated and estimated 
value is a tool feature that allow first a calculation for estimation based on allocation field of failure rate and 
distribution. Only Component safety relevant is considered. 

The HWFailureClassContainer class all individual component evaluation results defined in the set of 
HWElementFailureRateClass using simplified methods for HWComponent FIT rate calculation. 
HWElementFailureRateClass class describes for an HWComponent, the Failure Rate Class element to eval-
uate measure for a malfunction (link to violation of a safety goal) for a single element. This violation is 
based on failure rate class according to context of evaluation such as ASIL level, list of HWFault and diag-
nostic coverage of the HWComponent as HW Element.  It allows also storing the target for failure rate class, 
relevant or not depending of the possible HWFault of the failure mode of the HWComponent as hardware 
Element. Furthermore if dedicated measures (DM) are required due to failure class target matching and the 
necessary information are captured as a textual description. The calculation of the attribute 
HWElementFailureClass and HWElementDiagnosticCoverage  is derived from the Formula Expression 
FMSingleContributionFormula. The hwElementFailureRateClass attributes from 
HWElementfailureRateClass is the failure Rate Class taken from HWValuesRateClassEnum based on the 
failure rate of the hardware component. FailureRateClass value corresponds to the maximum value applied 
in the Failure Rate Class X considering that lower value is Class X-1 (and 0 for class 1). The failure rate 
class values are determined according to ISO 26262 Part 5 9.4.3.3. Failure Class is based on the number of 
relevant cut-set. The float hwElementLatentDiagnosticCoverage attribute as the diagnostic coverage value 
with respect to latent faults on hardware element level, calculated with the specific failure rate of all latent 
multiple-point faults and the overall failure rate of the hardware part element. The float 
hwElementResidualDiagnosticCoverage attribute as the diagnostic coverage value with respect to latent 
faults on hardware element level, calculated with the specific failure rate of all latent multiple-point faults 
and the overall failure rate of the hardware part element. The LFTargetFailureRateClass attribute as the 
Target Failure Rate Class for multiple-point latent faults, taken from HWLFTargetFailureRateClassEnum. 
The values of HWLFTargetFailureRateClassEnum are taken from ISO 26262 Part 5 9.4.3.11 -Table 9 (Tar-
gets of failure rate class and coverage of hardware part regarding dual-point faults). The string 
rationaleFailureRateClass attribute as the rationale for matching criteria on Failure Rate Class. The string 
rationaleDedicatedMeasures attribute providing rationale for dedicated measures, if required. According to 
ISO 26262 Part 5 9.4.2.4, examples for dedicated measures are a) design features such as hardware part over 
design (e.g. electrical or thermal stress rating) or physical separation (e.g. spacing of contacts on a printed 
circuit board);  b) a special sample test of incoming material to reduce the risk of occurrence of this failure 
mode; c) a burn-in test; d) a dedicated control set as part of the control plan; and e) assignment of safety-
related special characteristics. The RFTargetFailureRateClass attribute as Target Failure Rate Class for 
residual faults, taken from HWRFTargetFailureRateClassEnum. The values of  Target Failure Rate Class 
for residual faults, taken from HWRFTargetFailureRateClassEnum are taken from ISO 26262 Part 5 
9.4.3.6 -Table 8 (Maximum failure rate classes for a given diagnostic coverage of the hardware part - resid-
ual faults). It describes the threshold for Residual Failure according to ASIL level and identifying Failure 
Class Rate limit (FRClassx) and Dedicated Measure (DM) if necessary. Notice that RDC is addressing the 
hwElementResidualDiagnosticCoverage parameter of the HWElementFailureRateClass. The 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  58 (70) 

SPFTargetFailureRateClass attribute as Target Failure Rate Class for single-point faults, taken from 
HWSPFTargetFailureRateClassEnum. The value of HWSPFTargetFailureRateClassEnum are taken of ISO 
26262 Part 5 9.4.3.5 -Table 7 (Targets of failure rate classes of hardware parts regarding single-point faults). 

The HWElementfailureRateClass uses a simplified method for HWComponent FIT rate calculation based on 
relation to HWFMSingleContribution documented in the HWFailureClassContributionFormula. The simpli-
fied formula shall be calculated for each FailureMode of a safety-related HwComponent as 
HW Element Failure Rate Class = Failure Class (safety-related failure rate component) 
HW Element Residual Diagnostic Coverage = 100% - total (single point faults failure rate + residual faults 
failure rate) /safety related failure rate component 
HW Element Latent Diagnostic Coverage = 100% - total(multiple fault latent) / ((safety related failure rate 
component) - total (single point faults failure rate + residual faults failure rate)) 
In the context of modeling the formula is defined as following: 

hwElementResidualDiagnosticCoverage 
HWElementFailureRateClass(hwElementFailureClass) = HWValuesFailureRateClassEnum(LambdaSafetyComponent ) 
HWElementFailureRateClass(hwElementResidualDiagnosticCoverage) = { 1 - ( Sum (lambdaSinglePointFault(HWFMSingleContribution) + 
lambdaResidualFault(HWFMSingleContribution) ) / LambdaSafetyComponent  }  * 100 
HWElementFailureRateClass(hwElementLatentDiagnosticCoverage) =  { 1 - Sum (lambdaMultipleFaultLatent(HWFMSingleContribution) / 
LambdaSafetyComponent }  * 100 

Note that Value(hwElementDiagnosticCoverage) is applied on estimated Value from electronic design level  
to perform the final calculation and verification of the  individual HWElement FailureRateClass and 
ElementDiagnosticCoverage.  The selection between calculated and estimated value is a tool feature that 
allow first a calculation for estimation based on allocation field of failure rate. Only safety-related compo-
nent are considered and LambdaSafetyComponent is only counted once for a HWElement (identical 
safetyComponentClassName). 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  59 (70) 

10 Description Based on an Example 

Within this section the hardware modeling concept is described based on an example. ISO26262 
Part 5 Annex E [1] describes an example for a valve control. This includes sensors, a micropro-
cessor as control unit, valves as actuators and their interconnection with other elementary hard-
ware components. Two safety goals with their ASIL, safety mechanisms and different hardware 
components fulfilling functions are described. Figure 13 is given as an electronic schematic used 
in Annex E.1 to present the example of metrics calculation. 

 

 

Figure 13: Electronic Schematic diagram ISO26262-Pa rt5 Figure E.1 

 

 

The representation of the technical safety concept (TSC) of the ISO26262 example shall be ex-
tended from the given electronic schematic of Figure 13 in order to apply the proposed modeling 
methods. The hardware architecture shall be defined by logical component as functional blocks 
from a top-down development approach. So, the hardware architectural design has been re-
engineered to represent HWComponent as represented in Figure 14 . For information, the soft-
ware elements of the architecture, and in particular software safety mechanism SM2, have been 
added in red on the microprocessor. Notice that the Hardware Software Interface (HSI) required 
by a standard TSC has not been added, due to graphical representation.  

In this following section, the hardware modeling methods, with dependency to failure propagation 
from WT 3.3.1 contribution and model-based safety evaluation from WT3.3.3, is described based 
on this example. Only a brief description is presented, as this example will be studied later in the 
project thanks to tool and method environments for demonstrating meta models results and meth-
ods. In addition, the described engineering steps for the example are reduced to one considered 
safety goal and limited to calculation of Hardware Architectural Metrics. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  60 (70) 

 

Figure 14: Technical Safety Concept for ISO26262-Pa rt5 Figure E.1 

 

10.1 Step 1: Capture Hardware Technical Safety Conc ept  

• Define HW components  

• Clarify HSI  

• Define malfunction of each HW component (internalFault as Failure mode, externalFault as 
input fault and externalFailure as output failure propagation)  

• Information: Hardware architecture of the Technical Safety Concept in this context is an 
assembly of hardware component, as shown as black boxes in Figure 14. 

 

10.2 Step 2: Complete HW Component Failure Propagat ion on Hardware Architecture 

• Propagate fault failure link between all hardware components from WT3.3.1 

• Identify contribution to top level malfunction of the Hardware architecture 

• Information: Safety mechanism are already in architecture model (loop to Step1 can be 
added as a result of safety analysis) 

• Complete the qualitative safety analysis (from WT3.3.1) 

• Classify failure character and contribution for each fault thanks to cut-set order and cover-
age by a safety requirement with specification of diagnostic coverage of the safety mecha-
nism; tag failure (Single Point, Residual, Multiple Point Latent) 

• Identify primary Hardware Safety Requirements based on the top-level malfunction of the 
HW Architecture. The primary Hardware Safety Requirements shall prevent the occurrence 
of the malfunctions of the Hardware Components. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  61 (70) 

10.3 Step 3: Define target values for HW Components  and calculate metrics 

• Estimate (or use existing) values for Failure Rate and distribution as target value of the HW 
Component 

• Estimate (or use existing) values for Diagnostic Coverage (Latent and Residual) of the 
Safety Mechanism as target value for the HW Component  

• Compute metrics: Evaluate the hardware architectural metric results (see WT3.3.3 for de-
tails) and define additional measures (or revise assumption target values) 

• Validate the preliminary hardware architectural metric results with the target value of the 
ASIL 

10.4 Step 4: Define Hardware Part Allocation and Ma lfunction 

• Design decision for merging HW Components to build a HW Part (exclusively for complex 
hardware like ASICs or microcontroller) 

• Information: Estimated failure rates and diagnostic coverage of HW Components are used 
for HW Part analysis (and further composition of HW Part) 

• Information: The merged HW Components contains the primary Hardware Safety Re-
quirement (malfunction) which is used for Hardware Part Analysis 

Remarks: It shall be noticed that HW Component shall be not be decomposed into several HW 
Parts (ASIC for example). This may influence badly the quantitative measurement on hardware 
architecture. If such request is necessary, the complete architecture shall be redesign with the 
respect of HW component is indivisible component. 

10.5 Step 5: Develop Electronics Schematic 

• Capture all electronic Hardware Parts as Hardware Elements in AUTOSAR (as from Figure 
13) (complex Hardware and resistors, capacitor, etc.) 

• Identify the concrete industry references for all HW Parts regarding technology, etc (Bill of 
material (BOM) as a result)  

10.6 Step 6: Perform Electronic FMEA and contributi on to HW Component malfunction 

• Perform Electronic FMEA (based on electronic schematic) in order to identify HW Part 
Failure contribution to HW Component malfunction (as Failure Mode) 

• Define logical behavioral relation (using AND and OR formula) between Failure Mode of 
HW Part and malfunction of the HW component (as Failure mode) 

• Allocate failure rate and distribution from industrial data base to HW Parts from the BOM  

• Allocate real value for Safety Mechanism diagnostic coverage (Latent and Residual) for all 
relevant HW Parts from the BOM  

• Compute Failure Rate of the malfunction of the HW Component (from the behavioral rela-
tion)  

10.7 Step 7: Verify Component Metrics and Probabili stic value  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  62 (70) 

• Reintroduce at the Hardware Architecture level the computed Failure rate for HW Compo-
nent to verify the hardware architectural metrics 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  63 (70) 

11 IP-XACT interchange  

The IP-XACT format is a well define XML schema for meta data that documents the characteris-
tics of hardware Intellectual Property (IP) for the automation of the configuration and the integra-
tion of IP blocks. This is an IEEE standard by the ACCELERA Systems Initiative IP-XACT tech-
nical committee (see [4]]) that allow to exchange hardware digital IP elements, to manage them  in 
libraries, to configure them and to automate their integration into a hardware design. 

Three main element of IP-XACT can be introduced as component, bus interface and design, rep-
resented by the picture below (from document [9]). The component, from depicted Figure 15, de-
scribes all internal characteristics and external interfaces as for example bus interface. Then com-
ponents are gathered in a so called design, as visible in Figure 16. 

 

 

Figure 15: Structure of a component IP-XACT 

 

 

Figure 16: Design representation in IP-XACT 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  64 (70) 

Due to actual limitation of digital element and interface, an extension for addressing analogue 
mixed signal domain is under discussion in the technical committee, expecting a potential candi-
date date for mid 2013. By default, the actual extension point “vendor extension” allow to define 
this extension, but it usage is not standardized.  

In comparison, the actual AUTOSAR R4.0 meta model allows definition of digital and analog com-
ponent as HWComponent using mechanism of HWCategory for specialization of hardware type as 
proposed in 8.3 and 8.4.  Moreover, as show from Figure 17, a HWElement as a specialization of 
an HWDescriptionEntity is referencing an HWCategory composed by HW attributes definition. 
Such mechanism allows defining electrical characteristics associated to each HWElement and in 
particular HWPin. For more details on use of HWCategory please refers to AUTOSAR document-
ed. 

 

 class DOC_Hw ElementCategory

ARElement

HwCategory

Identifiable

HwAttributeDef

+ isRequired  :Boolean

Referrable

HwDescriptionEntity

HwAttributeValue

+ vt  :VerbatimString [0..1]

«atpVariation»
+ v  :Numerical [0..1]

ARElement

Unit

+ factorSiToUnit  :Float [0..1]
+ offsetSiToUnit  :Float [0..1]

Identifiable

HwAttributeLiteralDef

ARElement

HwType

ARElement

HwElement

GeneralAnnotation

Annotation

+annotation

0..1

1 +nestedElement 0..*

+hwType 0..1+hwAttributeValue 0..*

+unit 0..1

+hwAttributeDef

1

+hwAttributeDef 0..*

+hwAttributeLiteral 0..*

+hwCategory

0..*

 

Figure 17: AUTOSAR HWcomponent and HWCategory 

 

In order to be able to support hardware exchange element via IP-XACT interchange the existing 
classes from the IP-XACT XML definition to AUTOSAR ECU Resource Template selected meta 
Class has to be mapped. This preliminary mapping of respective IP-XACT classes versus 
AUTOSAR hardware elements will be specified in the next section. Thanks to the vendor exten-
sion we may propose an extension to support IP-XACT failure information modeling. Such map-
ping will then allow the writing of a model to model transformation to improve data exchange be-
tween silicon semi-conductor suppliers and automotive product suppliers.  



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  65 (70) 

11.1 Mapping rules 

This section will represent a first draft for mapping the classes of the hardware parts from 
AUTOSAR R4.0 HWElement (with consideration of Type and Prototype) versus components of 
the IP-XACT IEEE1685-2009 standard.  

The use of the character “~” in the table below, identify that construct of AUTOSAR can be applied 
but requires restriction and limitation in the use, as design pattern for specific usage (e.g. IP-XACT 
semantic definition a BusInterface compare to simple composition of HwPin (and HwPinGroup) in 
HwPingroup. 

 

AUTOSAR R4.0 IP-XACT Remarks for IP-XACT 

HwElementType Component 

Vendor/Library/Name 

In addition IP-XACT identifies a Version attribute for 
an element (information from change manage-
ment). 

 It is so called VLN/V. 

~ HwPinGroup BusInterface 

Vendor/Library/Name 

For bus interface definition, the parameter 
AbstractionType and BusType are managed under 
VLNV control. 

~ HwElementType Designs 

Vendor/Library/Name 

VLNV control.  

Represent a Composition of ComponentInstances 

A design is always embedded in a component that 
defines top level interface. 

IP-XACT Component description 
HwElementType Design/Library/Name Basic entry for Component description. 

A component can include a Design  

 Model Intermediate level to represent the element respec-
tive to the model as Ports, View and 
ModelParameter. 

A View represents an abstract level defining map-
ping to FileSets. 

A Port defines individual signal wire or transactional 
interface  

A ModelParameter defines configurations 

 FileSets Intermediate level for behavioral definition of the 
VLNV for definition of code execution source 

 MemoryMap Represent the information about the internal regis-
ter. Is is not defined in AUTOSAR as MCAL imple-
mentation linked  

MemoryMapped      As-
sembly  

HWConnection 

AdressesSpaces Defines the memory mapping of the IP inside the 
CPU space address 

~ HwPinGroup BusInterface/BusInterfaces 

Salve/master 

BusType 

AbstractionType 

PortMap  

 

 

Define a Bus Interface of the component  

Slave/Master defines access mode for direction 
and a logical name (or Monitor/System with Mir-
rored option for checking interface connection) 

BusType defines the Bus and high level attributes 
as compatibility rules. 

AbstractionType defines low levels signal imple-
mentation of a given BusType by logical name (wire 
or transactional). Several abstractions can be de-
fined for a same BusType.  

 PortMap define the mapping of logical port (wire or 
transactional) to a logical port physical mapping to 
the signal. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  66 (70) 

HwPin Ports/Port/Wire/ 

WireTypeDefs/WireTypeDef 

Digital port direction as single signal or vector of 
signal or a TLM port for transaction. 

Reference to FileSets behavior parameter. 

HwPin Ports/Port/Wire/ 

SignalTypeDefs/SignalTypeDef 

DomainTypeDefs/DomainTypeDef 

Analogue domain definition. 

Reference to SignalType (discrete or continuous for 
AMS simulator) or DomainType (continuous analog 
or others domain for multi-domain simulator) with 
typeDefinition (reference to domain definition) or 
signalType (AMS model definition) and with 
viewNameRef as FileSets for code behavior pa-
rameter. 

~ HwPinGroup Ports/Port/Transactional/Service/ 

ServiceTypDef 

TransTypeDef 

Digital transaction direction definition. 

ServiceTypDef definition the type of TLM transac-
tion (digital simulator) and parameter. 

TransType as reference to FileSets for code behav-
ior parameter. 

HwCategory View Allow the definition two additional parameter “Lan-
guage and Model Name” and “File Set Ref .List” the 
typing of the IP-XACT Port for the model of execu-
tion (digital, TimeDataFlow, Electrical Network). 

IP-XACT Design description 
HwElementPrototype ComponentInstances Component instance name of of ComponentRef 

referencing the VLNV component inside the library.  

Port interface, as wire or transactional, is defined 
by portConnectors referencing physical Port of the 
component. 

Bus interface is defined by busConnectors refer-
ence Bus interfaces name of the component. 

HwPinConnector  adHocConnections Connecting two Ports with wire or transactional 
interface without using bus interface. The ports can 
be an internal port of the instance component as 
internalPortReference referencing componentRef 
as component instance name and portRef as Port 
name of the Component. Or it can be an external 
port of the design component as 
ExternalPortReference referenced by portRef as 
port name of the deign component. 

~HwPinGroupConnector  hierConnections Hierarchical connection of bus interface, identified 
by interfaceRef from the design component bus 
interface, and connected to a bus interface of a 
component instance referenced by componentRef 
as component instance name and busRef as Com-
ponent Bus Interface name. 

~HwPinGroupConnector interConnections Connection between two bus interfaces of compo-
nent instance referenced by componentRef as 
component instance name and busRef as compo-
nent bus Interface name of the component. 

Figure 18: Class mapping between AUTOSAR and IP-XACT 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  67 (70) 

11.2 Extension for failure information 

The objective of this section is to find a solution on how to define that the failure information of the 
hardware part such mainly as failure mode, failure rate and distribution is attached to hardware 
element of IP-XACT. The objective is to ensure that failure relevant information can be transmitted 
with hardware component information and package. The selected data are the attributes of the 
classes depicted in Figure 19  as part the hardware meta model from section 9. 

The IP-XACT vendor extensions concept allows registering definition of extra elements thanks the 
VPN(V) component. The selected data can be defined as parameter of the vendor extension in a 
new field failureDefs attached to components.  

Then, the new field shall allow defining multiple failureModeDefs/failureModeDef for definition of 
component failure mode data and a single failureRateDefs/failureRateDef for definition of failure 
rate in time data of a component.  

The proposal is to decompose the failureModeDef field in three parameters as the attributes of the 
HWPartFailureMode  class from Figure 19 (failureModeTypeDef for the definition of failure type, 
failureModeDef for the definition of failure mode, failureRateDistributionDef for of the failure distri-
bution, failureModePotentialCauseDef for textual definition of potential failure cause if relevant).  
The failureRateDef field is decomposed in two parameters as the attributes of the 
HWPartFailureRate  class from Figure 19 (failureRateValueDef for definition of failure rate, 
failureRateSourceDef for textual definition of industry source of failure rate). In failureRateDef  
field, two addition parameters as failureScalingFactor and failureRationaleScalingFactor shall be 
optional as they depend of the use of the component in an IP-XACT Design. 

 

 class PartFailure

HWPartFailureMode

+ partFailureModeType  :String
+ FailureRateDistribution  :Integer
+ partPotentialCause  :String

 

 class PartFailure

HWPartFailureRate

+ rationaleScalingFactor  :String
+ scalingFactor  :Float = 1.0
+ source  :String
+ value  :Float

 

Figure 19: Hardware Part Failure information for IP-XACT 

 

As, this chapter is only an initial proposal it can only be discuss with Accelera member and align 
with ongoing activities defined in the Accelera IP-XACT work group. 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  68 (70) 

12 Conclusions and Discussion 

This document provides a proposal for adaption and extension of hardware structural and failure 
modeling. Additionally, constructs for quantitative safety evaluation of hardware in terms of hard-
ware architectural metrics and evaluation of residual risk of safety goal violation conform to re-
quirements addressed by ISO26262. 

 
Since it was an objective to reuse EAST-ADL as much as possible, the current version of EAST-
ADLV2.1 and AUTOSAR R4.0 were analyzed. Concrete proposal for future change request in the-
se architecture description languages (expressed as meta model solution for EAST-ADL 2.1) is 
provided.  
 
This document has been produced to support the WT3.3.1 overall safety evaluation methodology, 
and to provide meta model constructs to WT3.3.3 for the model-based safety evaluation of hard-
ware. WT4.2.6 describes a research prototype implementation. 
 
 

 

 

 

 

 

 

 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  69 (70) 

13 References 

[1] ISO 26262 Road vehicles - Functional safety. (2011), Part 5 : Product development at the 
hardware level, http://www.iso.org/ 

[2] AUTOSAR Automotive Open System Architecture R4.0, 
AUTOSAR_RessourceTemplate_ECU.pdf, http://www.autosar.org/ 

[3] EAST-ADL language and Association, http://www.east-adl.info/ 

[4] IP-XACT Accelera System Initiative, http://www.accellera.org/activities/committees/ip-xact 

[5] EAST-ADL language and Association, Deliverable D4.1.1: EAST-ADL Domain Model Speci-
fication, 2010 

[6] Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F., Törngren, 
M.: Modelling Support for Design of Safety-Critical Automotive Embedded Systems. In: Pro-
ceedings of SAFECOMP (2008) 

[7] Peikenkamp, T., Cavallo, A., Valacca, L., Böde, E., Pretzer, M., Hahn, E.M.: Towards a 
Unified Model-Based Safety Assessment. In: Proceedings of SAFECOMP. (2006) 275–288 

[8] SAFE_D3.3.3a.pdf (Specification for comparison of architecture) 

[9] ARM reference manual for IP-XACT Component version 1.0 from 2007, 
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0429a/DDI0429A_ip_exact_component
s_v1_0_ref_manual.pdf 

[10] SAFE_D3.1.1c.pdf (Specification for requirements definition and traceability purpose)  

[11] SAFE_D3.3.3b.pdf (Final specification for comparison of architecture) 

[12] SAFE_D3.3.1b.pdf (Methodology and Tool specification for analysis of qualitative and quan-
titative cut-sets issued from error failure propagation analyses) 



SAFE – an ITEA2 project                       D3.2. 2 

 2012 The SAFE  Consortium  70 (70) 

14 Acknowledgments 

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster pro-
gramme  Σ! 3674. The work has been funded by the German Ministry for Education and Research 
(BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy and Finance 
(DGCIS). The responsibility for the content rests with the authors. 

 


