
SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 1 (74)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP3

Deliverable D3.3.3b: Final specification for comparison

of architecture

Due date of deliverable: 27/12/2013

Actual submission date: 20/12/2013

Start date of the project: 01/07/2011 Duration: 36 months

Start date of the work task: 30/04/2012 Duration: 20 months

Project coordinator name: Stefan Voget (Continental)

Organization name of lead contractor for this deliverable: FZI Forschungszentrum Informatik

Editors: Nico Adler (FZI), Stefan Otten (FZI)

Contributors: Nico Adler (FZI), Stefan Otten (FZI), Eduard Metzker (Vector Informatik), Thomas
Peikenkamp (OFFIS), Markus Oertel (OFFIS), Andreas Baumgart (OFFIS), Sebastian Voss
(Fortiss), Maged Khalil (Fortiss)

Reviewers: Eduard Metzker (Vector Informatik), Martin Hillenbrand (FZI)

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 2 (74)

Revision chart and history log

Version Date Reason

0.1 04.12.2012 Initialization of document

0.2 05.02.2013 Sections: executive summary, scope, structure, overview of ISO
relevant parts

0.3 06.02.2013 Hardware architecture assessment

0.4 06.02.2013 Description of SAFE meta model extension

0.5 12.02.2013 Consistency checks and metrics for the system safety concept

0.6 15.02.2013 Changes in general parts of document; review of existing parts

0.7 18.02.2013 Update: assessment of hardware

0.8 19.02.2013 Update: pattern-based seamless development

0.9 27.02.2013 Update based on review comments

1.0 27.02.2013 Finalization of document D3.3.3a (protected)

1.1 09.07.2013 Update: Feedback of OEM Advisory Board considered

1.2 21.10.2013 Initialization of document D3.3.3b

1.3 04.11.2013 Update of document structure

1.4 26.11.2013 Added Vector contribution: Consistency of safety case (Chapter 9)

1.5 28.11.2013 Added FZI contribution: Assessment of Hardware (Chapter 8)

1.6 13.12.2013 Review Chapter 1 to 9

1.7 16.12.2013 Update: Review comments chapter 1 to 9

1.8 20.12.2013 Added Offis contribution (Chapter 10)

Added Fortiss contribution (Chapter 11)

2.0 20.12.2013 Finalization of public document D3.3.3b (published 20.12.2013)

2.0.1 03.02.2014 Fortiss: Changes in Chapter 11 and 6.1, additional contributor

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 3 (74)

1 Table of contents

1 Table of contents .. 3

2 List of figures .. 5

3 List of tables .. 6

4 List of abbreviations .. 7

5 Executive Summary .. 8

6 Introduction and overview of document .. 9

6.1 Scope of work task WT3.3.3 .. 9

6.2 Structure of the document .. 9

7 Overview of ISO 26262 ... 10

7.1 Explanation of relevant ISO 26262 Parts .. 10

7.2 Relation of presented methodologies to relevant ISO 26262 Parts .. 11

8 Methodology 1: Assessment of hardware on different level of abstraction .. 12

8.1 Introduction ... 12

8.2 Motivation.. 12

8.2.1 Safety evaluation of hardware designs ... 13

8.2.2 Hardware design levels .. 14

8.3 Basics and related work .. 15

8.3.1 Basics for hardware safety evaluation .. 15

8.3.2 Related work ... 18

8.4 Preparation for model-based hardware evaluation ... 19

8.4.1 Interface to hardware description ... 19

8.4.2 Continuous hardware modeling and evaluation model concept ... 20

8.4.3 Minimal meta model for hardware safety evaluation... 21

8.5 Concept for model-based hardware safety evaluation on different abstraction levels 21

8.6 Structural and failure modeling of hardware designs ... 23

8.6.1 Modeling of hardware structure .. 23

8.6.2 Modeling of hardware failure ... 24

8.7 Qualitative evaluation .. 30

8.7.1 Fault tree generation ... 30

8.7.2 Analysis and failure mode classification ... 31

8.8 Quantitative evaluation ... 33

8.8.1 Hardware FMEDA ... 34

8.8.2 Hardware architectural metrics ... 35

8.8.3 Evaluation of safety goal violations due to random hardware failures 36

8.9 Outlook ... 43

9 Methodology 2: Consistency checks for the safety case .. 44

9.1 Macro structure of the safety case report ... 44

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 4 (74)

9.2 General concept for application of consistency checks and metrics .. 48

9.3 Consistency checks for the safety case ... 49

9.4 Consistency checks for the macro structure of the safety case ... 50

10 Methodology 3: Common-cause analysis in the geometric perspective using physical properties and
environmental conditions .. 54

10.1 Describing physical constraints and geometric installation ... 55

10.1.1 Physical condition ... 55

10.1.2 Geometric Installation ... 56

10.2 Idea of Analysis... 56

10.3 Further Work... 57

11 Methodology 4: Multi-criteria deployment optimization and schedule generation 58

11.1 Approach .. 58

11.1.1 Scheduling Model ... 59

11.1.2 Satisfiability Modulo Theory – SMT .. 60

11.2 SMT Based Deployment and Scheduling Synthesis... 60

11.2.1 SMT Solver YICES ... 60

11.2.2 Translation to YICES .. 60

11.3 Description based on an Example .. 66

11.3.1 Adaptive Cruise Control (ACC) – System ... 66

11.3.2 ACC Schedule Synthesis .. 67

11.3.3 Satisfied Solution Model ... 67

12 Conclusions .. 70

13 References ... 71

14 Acknowledgments... 74

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 5 (74)

2 List of figures

Figure 1: Overview of ISO 26262 [1] with highlighted relevant parts for work task WT3.3.3 10

Figure 2: Qualitative and quantitative analysis methods mentioned in [1] .. 12

Figure 3: Hardware safety evaluation according to [1] Part 5 ... 13

Figure 4: Exemplarily differentiation between hardware architectural design and hardware detailed design
based on electronic schematic example for a valve control of ISO 26262 Part 5 Annex E [3] 14

Figure 5: Failure Rate over time [4] .. 16

Figure 6: Classification of faults according to ISO 26262 [1] .. 16

Figure 7: Excerpt of SAFE meta model regarding hardware failure [26] .. 19

Figure 8: Model-based hardware safety evaluation .. 20

Figure 9: Minimal proposed meta model for model-based hardware safety evaluation 21

Figure 10: Overview: Concept for hardware safety evaluation and abstraction levels 22

Figure 11: Hardware architectural design structural modeling example... 23

Figure 12: Hardware detailed design structural modeling example .. 24

Figure 13: Safety-relations of hardware elements to safety requirements ... 25

Figure 14: Annotation of failure information for hardware architectural design .. 26

Figure 15: Annotation of output deviations for hardware architectural design .. 26

Figure 16: Annotation of failure information for hardware detailed design ... 27

Figure 17: Simplified flow diagram of [1] for manual determination of classification .. 28

Figure 18: Annotation of Classifications for hardware detailed design ... 29

Figure 19: Exemplary single fault tree of output deviations .. 30

Figure 20: Complete fault tree for top-level OutputDeviation-Amplifying .. 30

Figure 21: Derivation of failure mode classifications based on qualitative fault tree analysis [3] 31

Figure 22: Classification: Single-point fault in fault tree .. 31

Figure 23: Classification: Residual fault in fault tree ... 32

Figure 24: Determination of safety-relation for hardware components... 32

Figure 25: Overview: Flow diagram for hardware safety evaluation ... 33

Figure 26: Probability of failure)(tF over time .. 37

Figure 27: Simplified linearization of probability of failure)(tF over system lifetime 37

Figure 28: Unconditional failure intensity)(tw over system lifetime ... 38

Figure 29: Probability of failure)(2 tF over system lifetime for polynomial approach 39

Figure 30: Overview: Failure rate class method [27] .. 40

Figure 31: System-on-chip safety analysis ... 43

Figure 32: Interrelation of consistency checks and metrics and the SAFE meta model 49

Figure 33: Steps for assessment of installations with environmental factors ... 55

Figure 34: Deployment Synthesis in AF3 [37]... 58

Figure 35: Graphical Visualization of a precedence graph G [36] .. 59

Figure 36: Automotive Use Case: Adaptive Cruise Control (ACC) model in AF3 [36] 66

Figure 37: Optimized Schedule of Active Cruise Control in AF3 [36] ... 69

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 6 (74)

3 List of tables

Table 1: Derivation of Classification attributes values .. 29

Table 2: Recommended target values for the hardware architectural metrics [1] Part 5 Table 4, 5 36

Table 3: Recommended target values for PMHF [1] Part 5 Table 6 and PFH [2] Part 1 Table 2 39

Table 4: Failure rate classes example for number of cut-sets = 100 ... 40

Table 5: Failure rate class target values for single-point faults, [1] Part 5 Table 7 ... 41

Table 6: Failure rate class target values for residual faults, [1] Part 5 Table 8... 42

Table 7: Plausibility of dual-point faults .. 42

Table 8: Failure rate class target values for dual-point faults [1] Part 5 Table 9 .. 43

Table 9: Scope section of safety case report ... 44

Table 10: System description section of safety case report ... 45

Table 11: System hazards section of safety case report .. 45

Table 12: Safety requirements section of safety case report ... 46

Table 13: Risk reduction section (functional safety concept) ... 46

Table 14: Risk reduction section (technical safety concept) ... 47

Table 15: Safety analysis section (malfunction / faults / failures) ... 48

Table 16: Checking the safety case for scope definition .. 50

Table 17: Checking the safety case for system description ... 50

Table 18: Checking the safety case for hazard and risk analysis ... 51

Table 19: Checking the safety case for safety goals .. 51

Table 20: Checking the safety case for functional safety requirements ... 52

Table 21: Checking the safety case for technical safety requirements .. 52

Table 22: Checking the safety case for functions of the functional safety concept .. 53

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 7 (74)

4 List of abbreviations

ASIC Application-Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System ARchitecture

E/E Electric/Electronic

EAST-ADL Electronics Architecture and Software Technology – Architecture Description Language

ECU Electrical Control Unit

EDA Electronic Design Automation

EEA Electric/Electronic Architecture

FM Failure Mode

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects and Criticality Analysis

FMEDA Failure Mode, Effects and Diagnostic Analysis

FR Failure Rate

FRC Failure Rate Class

FRD Failure Rate Distribution

FTA Fault Tree Analysis

HARA Hazard and Risk Analysis

HW Hardware

IEC International Electrotechnical Commission

ISO International Organization for Standardization

LF Latent Fault

LFM Latent-Fault Metric

MPF Multiple-Point Fault

MPFL Multiple-Point Fault Latent

OEM Original Equipment Manufacturer

PFD Probability of Dangerous Failure on Demand

PFH Probability of Dangerous Failure per Hour

PMHF Probabilistic Metric for Random Hardware Failures

RBD Reliability Block Diagram

RF Residual Fault

SF Safe Fault

SFF Safe Failure Fraction

SG Safety Goal

SIL Safety Integrity Level

SM Safety Mechanism

SPF Single-Point Fault

SPFM Single-Point Fault Metric

SR Safety-Related

XML Extensible Markup Language

XSD XML Schema Definition

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 8 (74)

5 Executive Summary

The methodologies presented in this deliverable D3.3.3 describe qualitative and quantitative
assessment of architectures regarding functional safety. Therefore, the methodologies for safety
evaluation are in accordance with the needs of ISO 26262, based on requirement analysis
performed in the SAFE project.

The deliverable targets architecture evaluation and assessment in terms of model-based
development with the focus on functional safety. Thus, the context of architecture modeling with
enrichment of failure information and instrumentation for model-based evaluation is presented.

Four specific topics are described into detail: “Assessment of hardware on different level of
abstraction”, “Consistency checks for the safety case”, “Common-cause analysis in the geometric
perspective using physical properties and environmental conditions” and “Multi-criteria deployment
optimization and schedule generation”. The methodologies are classified regarding the relevant
parts of ISO 26262 [1].

Moreover, the relation of the methodologies to corresponding work task in the WP4 “Technology
Platform” is described in order to provide concepts for tool implementation. This enhances the
level of automatism in terms of model-based architecture safety evaluation.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 9 (74)

6 Introduction and overview of document

This document for safety evaluation in terms of assessment of electric and electronic architectures
provides different methodologies to perform qualitative and quantitative assessment on different
abstraction layers and different level of granularity.

6.1 Scope of work task WT3.3.3

Deliverable D3.3.3 deals with the use of SAFE meta model constructs and provides methodologies
to assess architectures regarding functional safety. The defined methodologies are shortly
presented in the following:

Assessment of hardware on different level of abstraction

To provide a model-based safety evaluation of hardware designs, a minimal set of constructs were
extracted out of the SAFE meta model. A methodology and a process description for hardware
safety evaluation is provided. Different phases of hardware concept and development as well as
qualitative and quantitative assessments are addressed. This contribution facilitates the basis for a
research prototype implementation, covered in WT4.2.6.

Consistency checks for the safety case

The SAFE meta model allows to capture the system safety concept in semi-formal way. In
WT3.3.3, the SAFE meta model concepts are used to define a simple template for documenting
consistency checks and metrics to evaluate and improve the formal quality of the system safety
case. This contribution shall provide the basis for tool supported automatic consistency checks
and metrics which shall be implemented in WT4.2.6.

Multi-criteria Deployment Optimization and Schedule Generation

The method comprises an efficient approach for generating suitable system architectures for
embedded systems efficiently, which allows multi-criteria deployment optimization and schedule
generation and can be used as part of a larger design space exploration approach. It is possible to
use multiple criteria for the approach, and the implementation counterpart to this document
features a multi-criteria capable plug-in that can target ASIL-based allocation, worst-case-
execution-time and number of hardware nodes for deployment in the draft version. A concept for
the integration of safety metrics identified in the SAFE/SAFE-E project, such as the hardware
metrics or geometrical aspects identified in methods 1-3 and presented in sections 9, 10 and 11,
will be featured in its final version.

6.2 Structure of the document

The following Section 7 gives an overview of the ten parts of ISO 26262 and classifies the
methodologies of this work task to the corresponding parts and clauses. The first methodology for
safety evaluation of hardware designs is presented in Section 8. Section 9 provides the second
methodology for consistency checks in context of the safety case. Section 10 describes the third
methodology regarding common-cause analysis in the geometric perspective. The fourth
methodology in context of multi-criteria deployment optimization and schedule generation is
presented in Section 11. Finally, in Section 12, a brief conclusion is given.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 10 (74)

7 Overview of ISO 26262

This section briefly describes which parts of the ISO 26262 are involved for the two presented
methodologies of safety evaluation and assessment. Relevant clauses within the parts of the ISO
26262 are framed in different colors, as shown in Figure 1. A brief explanation for each of the
relevant parts is presented as well as the specific relation to the methodologies.

Figure 1: Overview of ISO 26262 [1] with highlighted relevant parts for work task WT3.3.3

7.1 Explanation of relevant ISO 26262 Parts

Part 3 “Concept phase”:

During the concept phase for automotive systems, ISO 26262 Part 3 describes the definition of the
item for development. Afterwards, requirements regarding the initiation of the safety lifecycle are
presented. For the item, a hazard analysis and risk assessment has to be performed. This leads to
the definition of the corresponding functional safety concept.

Part 4 “Product development at the system level”:

ISO 26262 Part 4 specifies requirements and recommendations for the product development at
the system level. Therefore, in a first step requirements for the initiation of the system level

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 11 (74)

product development are defined and technical safety requirements specified. The technical safety
concept in context of the product has to be captured to start the design of the system. After
system design, hardware and software as described in Parts 5 and 6 is developed. For the overall
item integration and testing as well as safety validation and the assessment regarding functional
safety for the complete system, Part 4 provides the corresponding requirements. Concluding,
product release is mentioned.

Part 5 “Product development at the hardware level”:

Requirements for the product development at the hardware level are specified in ISO 26262 Part
5. This part focuses on the definition of requirements for the initiation of product development at
the hardware level, coming from system specification of Part 4. Afterwards, the specific hardware
safety requirements are mentioned to start the initiation of the hardware design. For verification,
requirements focusing on the evaluation of the hardware architectural metrics and the evaluation
of violation of the safety goal due to random hardware failures and hardware integration and
testing are specified.

Part 9 “ASIL-oriented and safety-oriented analyses”:

ASIL-oriented and safety-oriented analysis is specified in ISO 26262 Part 9. This includes the
definition of requirements decomposition with respect to ASIL tailoring as well as the definition of
criteria for the coexistence of elements. Additionally, requirements regarding general safety
analyses and the analysis of dependent failures for the system are described.

Part 10 “Guideline on ISO 26262”:

Part 10 of ISO 26262 is intended to provide a guideline for the application of ISO 26262. Therefore
it contains additional explanations and examples in order to facilitate comprehension of the
concepts of ISO 26262. It has informative characteristic, therefore in case of inconvenience, the
requirements, recommendations and information specified in the other parts of ISO 26262 apply.
Part 10 was published in August 2012 after official release of the ISO 26262.

7.2 Relation of presented methodologies to relevant ISO 26262 Parts

Methodology 1 (green): Assessment of hardware on different level of abstraction

For the assessment of hardware, especially ISO 26262 Part 5 is in focus as it describes the
product development at the hardware level. For different safety analyses and their
interconnections, Part 9 Clause 8 contains additional information. The guideline of Part 10
provides application examples regarding different hardware safety evaluations.

Methodology 2 (red): Consistency checks for the safety case

The consistency checks and metrics defined in WT3.3.3 can be applied during item definition,
hazard and risk analysis and the functional safety concept, which are related to ISO 26262 Part 3,
and specification of the technical safety requirements and the system design, included in ISO
262626 Part 4. They are especially useful when iterating between these tasks.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 12 (74)

8 Methodology 1: Assessment of hardware on different level of abstraction

8.1 Introduction

Novel functionalities and innovations, such as driver assistance systems, lead to growing
technological complexity of electric and electronic systems for road vehicles. Achieving reliability
as a key factor to ensure hazardless operation is therefore constantly becoming more and more
challenging. To provide a common understanding and state-of-the-art for the automotive domain,
the safety standard ISO26262 [1] was published in 2011 as an adaption of the IEC 61508 [2] for
functional safety of road vehicles. It captures requirements and activities during the entire lifecycle
of automotive safety-related electric or electronic systems.

Regarding the hardware architecture of automotive systems, a high reliability has to be achieved
especially in context of random hardware failures. These failures occur unpredictably during the
lifetime of electric systems due to exemplarily aging effects and can never be avoided. Therefore,
during concept and development of the hardware architecture, evaluations have to be performed
iteratively to ensure and document sufficient rationale.

8.2 Motivation

The mentioned complexity of automotive hardware architectures requires consideration of
functional safety aspects already in early concept and development phase. In order to cope with
the requirements for safety analysis and evaluation regarding hardware, ISO 26262 [1] Part 9
“Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysis” Clause 8 “Safety
analyses” claims the evaluation considering qualitative and quantitative aspects to determine faults
and failures in the system and determine their impact. These analyses have to be supported at
appropriate level of abstraction iteratively during concept and development. Different analysis
methods according to ISO 26262 Part 9 are shown in Figure 2.

Quantitative Analysis Qualitative Analysis

Qualitative FMEA Quantitative FMEA

Qualitative FTA Quantitative FTA

HAZOP Quantitative ETA

Qualitative ETA Markov Models

Reliability Block Diagrams

Inductive analysis method

Deductive analysis method

Figure 2: Qualitative and quantitative analysis methods mentioned in [1]

Regarding hardware architectures, quantitative analysis complements qualitative analysis.
Quantitative evaluation supports the verification of the hardware design against target values. The
target values are described based on the ASIL-classification of the safety goal, which is
determined based on hazard analysis and risk assessment (HARA). Being able to evaluate the
robustness of the hardware architectures allows identification of potential hazardous designs. The
quantitative evaluation is required for final verification of the hardware design especially in late
development phases. Benefit from early introduction of safety evaluation and including target value
verification would serve as an input for definition of safety measures to ensure reliable operation of
the hardware architecture throughout system lifetime. Early determination of dangerous failures of
the hardware could additionally reduce development costs and time.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 13 (74)

8.2.1 Safety evaluation of hardware designs

Focusing on the different safety analyses and evaluations during product development of the
hardware, ISO 26262 [1] Part 5 “Product development at the hardware level” describes
quantitative evaluations which have to be performed for hardware designs to ensure robustness
and facilitate evidence. The evaluations claimed are shown in Figure 3.

Clause 8: Evaluation of the hardware architectural metrics

Single-Point Fault Metric Latent-Fault Metric

Clause 9: Evaluation of the safety goal violations due to random hardware failures

9.4.1: Evaluation of

Probabilistic Metric for random

Hardware Failure (PMHF)

9.4.2: Evaluation of each

cause of safety goal violation

AND

OR

AND

Figure 3: Hardware safety evaluation according to [1] Part 5

Clause 8 “Evaluation of the hardware architectural metrics” describes the assessment of hardware
architectures by applying hardware architectural metrics. These metrics provide quantitative
information on the robustness of the hardware architecture against critical random hardware
failures. Critical in this context means, that these failures have direct or indirect influence on the
behavior of the system regarding the violation of the specific safety goal. Therefore, two metrics
are described: the single-point fault metric and the latent-fault metric where both have to be
applied including verification against target values.

In Clause 9 “Evaluation of the safety goal violations due to random hardware failures” the residual
risk of safety goal violation is evaluated. This assessment has to be done complementary to the
hardware architectural metrics. ISO 26262 proposes two alternative methods: the Probabilistic
Metric for random Hardware Failures (PMHF) or the evaluation of each cause of safety goal
violation by using failure rate classes (FRC). Whereas PMHF represents a global approach
describing the maximum probability for the violation of the safety goal, the failure rate class
method considers an individual evaluation of each cause of safety goal violation.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 14 (74)

8.2.2 Hardware design levels

For hardware designs, different levels of abstractions are present during different phases of
concept of development. These are orthogonal to the described evaluations. The iterative
application of these evaluations during different phases of hardware design has to be ensured in
terms of functional safety.

ECU

Driver

Dashboard

Response

Function 2

Hardware Architectural Design

I1
C11

R11

R21

C21

I2
C12

R12

R22

C22

R3
C13

R13

R23

C23

R64

R81

R74

R72

R61

R73

R71

R63

R62

C61

T61

C71

T71

ADC1

Out2

Out3

µC

ADC2

Out1

Out0

ADC3

In2

In1

Enable

Out

External Watchdog

In

Function 1

Monitoring

Filtering and

Signal

Conditioning

F2

Filtering and

Signal

Conditioning

F2

Filtering and

Signal

Conditioning

F1

Amplifying F2

Voltage

Adjustment
F2

Amplifying F1

Control F1

Computation and

Controlling

Fluid Control

Fluid Control

SM 4

Legend:

Function 1

Function 2

F1

F2

Covered by Safety MechanismSM

Hardware Detailed Design

Hardware

Component

Hardware

Part

c
o

m
p

o
s
e

d
 o

f

L1

SM 3

SM 4

Computation and

Controlling
SM 1

SM 2

SM 2

Wheel Speed

Measuring

Wheel Speed

Measuring

Temperature

Measuring

Feedback F2

Feedback F1

I61

I71

F2

F1

VCC

VCC

VCC

VCC

VCC
VCC

VCC

VCC

Figure 4: Exemplarily differentiation between hardware architectural design and hardware detailed
design based on electronic schematic example for a valve control of ISO 26262 Part 5 Annex E [3]

For the description of hardware designs, two different development phases are established in [1]
Part 5: the hardware architectural design and the hardware detailed design. The hardware
architectural design focuses on the description of hardware in early concept and development
phase according to [1] Part 5 7.4.1. It represents an initial view on the hardware capturing
functionalities in corresponding hardware components. The hardware architectural design consists
of the hardware components as black boxes and their interconnections. For a new development,
hardware components exemplarily the filtering and signal conditioning could be re-used and taken
from company specific libraries. At this level of development, no concrete realization in at the level
of detailed schematic is established. An early safety evaluation on this level including verification

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 15 (74)

against target values would facilitate the introduction of additional or the improvement of existing
safety mechanisms.

During development phase, these hardware components are refined at the level of hardware
schematics in terms of interconnected hardware parts. This is specified by the hardware detailed
design. Therefore, a hardware component can be composed of one or more hardware parts. For
complex hardware parts such as a microcontroller, the hardware part can compose several
hardware components. At the detailed level, the safety evaluation serves as verification for the
final hardware design. Figure 1 shows our exemplary differentiation for hardware architectural and
hardware detailed design based on the example schematic for a valve control provided by ISO
26262 [1] Part 5 Annex E.

Further information for Figure 4: The example schematic from ISO 26262 Part 5 Annex E is
described at the level of electronic schematics consisting of different hardware parts. To explain
the presented concept of safety evaluation at different level of abstraction for hardware design, the
corresponding hardware architectural design was rebuild [3]. The example consists of two different
functions, which are implemented on a single ECU. Function one has the temperature as input,
measured via R3, and controls the valve I71. The corresponding safety goal is “valve 2 shall not
be closed for longer than x ms when the temperature is higher than 100°C”. Function two has the
wheel speed measured redundantly via I1 and I2 as input and controls the valve I61. The safety
goal defined for this function is “valve 1 shall not be closed for longer than y ms when the speed is
higher than 100 km/h”.

8.3 Basics and related work

The next subsections describe basic information for hardware element failure and reliability
especially in context of random hardware failures to facilitate a common understanding.
Additionally, related work and research activities in the context of functional safety regarding
hardware are briefly presented.

8.3.1 Basics for hardware safety evaluation

Quantitative evaluation of hardware architectures requires knowledge about statistical data of
hardware elements such as failure rates and failure modes. Constructs for hardware safety
evaluation are presented in the IEC 61508 “Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems” [2]. The IEC 61508 was
published in 1998, the current revised second version in 2010. IEC 61508 defines two different
types of hardware elements. Type A describes an element which entire failure description and
behavior is well-known, exemplarily resistors. Type B describes a hardware element, for which the
entire failure behavior and description is not well-known, exemplarily microcontrollers or abstract
hardware entities [2]. Due to the fact that ISO 26262 was adapted from the IEC 61508 for the
automotive domain, a lot of subjects regarding hardware evaluation are related. In the following,
main topics of functional safety and reliability regarding hardware in context of ISO 26262 are
described.

Failure Rate:

The reliability of a hardware element is described by its failure rate λ. It represents the amount of
failures of the element in a certain time. The failure rate is dependent on time, λ(t), and its
characteristics can be described using a bathtub-curve according to Figure 5.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 16 (74)

I II III

t

λ

Figure 5: Failure Rate over time [4]

The first phase (I) describes a decreasing failure rate due the fact that the amount of early failures
is higher. The second phase (II), seen as the lifetime of the element, describes a constant failure
rate, whereas in phase (III), the failure rate increases because of the element’s aging [4]. In
context of the presented concept for hardware safety evaluation, the failure rate is assumed to be
constant. When a constant failure rate is applied, it can be expressed using the unit Failure-In-
Time (FIT). 1 FIT is one failure in 10

9
h. In order to avoid bias during quantitative evaluation, a

scaling factor should be applied, when considering failure rates from different sources.

Failure Mode:

The behavior of a hardware element in case of a failure is represented by different failure modes.
A single hardware element can have several failure modes. For instance, a resistor typically has
the failure modes “Open Circuit” and “Short Circuit”. A failure rate distribution indicates which part
of the overall failure rate of the hardware element is distributed to the specific failure mode. The
failure rate distribution is a percental value between 0 and 100%.

According to ISO 26262 [1], hardware failure rates, failure modes and their failure rate distributions
can be determined using commonly recognized industry sources, statistic data or expert judgment.
ISO 26262 exemplarily lists IEC Standard TR 62380 [5], MIL-HDBK-338B [6] or UTE C 80 811 [7]
as sources to determine the corresponding values. Additionally, documents like Siemens
Handbook SN 29500 can be used.

Failure Mode Classification:

To describe the impact of a specific failure mode of a hardware element to the system behavior,
the failure mode of the hardware element has to be classified using the specific fault types. ISO
26262 proposes a classification as shown in Figure 6.

Fault

Single-Point-

Fault

Residual

Fault

Single-Point

or Residual

Fault

Safe Fault
Multiple-

Point-Fault

Detected Perceived Latent

Figure 6: Classification of faults according to ISO 26262 [1]

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 17 (74)

In a first step, a fault of a hardware element can be classified into safe fault, single-point or
residual fault or multiple-point fault. A safe fault has potential to violate the safety goal and
therefore represents a fault of order zero. Single-point or residual fault indicates a direct violation
of the safety goal as a fault of first order. The classification as multiple-point fault indicates a
potential violation of the safety goal in combination with another independent fault of order n, while
n is equal or larger than 2.

Going into detail, a direct violation can either be classified as single-point fault, which is not
covered by a safety mechanism. A residual fault represents a direct violation that describes the
part of the failure, which is not covered by a safety mechanism. For multiple-point faults, the fault
can be detected by a safety mechanism, perceived by the driver through system behavior or
latent, which is the part of the fault which is not detected or perceived. Latent multiple-point faults
are also abbreviated to latent faults [1] Part 1, 1.71. ISO 26262 Part 1, 1.101 suggests
consideration of multiple-point faults up to an order of 2, named dual-point faults.

In comparison, IEC 61508 classifies faults only into safe fault and dangerous faults. Afterwards
they can be differentiated into detected or undetected, depending on the coverage of a safety
mechanism. Recapitulatory, ISO 26262 provides a finer classification of faults.

Safety Mechanism:

For hardware elements, a safety mechanism describes a ”technical implementation by E/E
function” [1], which prevents single-point faults, reduces residual faults and prevents multiple-point
faults from being latent. The effectiveness of a safety mechanism is presented with two diagnostic
coverages KDC. The diagnostic coverage KDC,RF with respect to residual faults describes the
effectiveness of the safety mechanism regarding direct violations of the safety goal. The
diagnostic coverage KDC,MPF,L addresses the effectiveness regarding multiple-point faults.

Safety Goal:

A top level safety requirement which is present for a system can be described as a safety goal.
Similar to the Safety Integrity Level (SIL) classification provided by the IEC 61508, the ISO 26262
defines Automotive Safety Integrity Levels (ASIL) to describe the safety-relation of a specific
safety goal. The ASIL is determined by the parameters “controllability”, “severity” and “probability
of exposure” of the event. ISO 26262 proposes a classification from ASIL-A to ASIL-D with ASIL-D
being the most stringent. QM as an additional value requires no specific activities related to safety
requirements of ISO 26262 [1] Part 3 7.4.4.1.

Safety Analysis:

The most common safety analysis methods, described in ISO 26262 as shown in Figure 2, are
briefly described. The fault tree analysis (FTA) represents a graphical failure analysis technique [8]
[9]. Quantitative FTA can be achieved by adding probability values to the events. FTA is a well-
established practice for safety analysis in a lot of industry domains, exemplarily avionic [10] or
nuclear and represents a deductive methodology.

The failure mode effects analysis (FMEA) focuses on a structured qualitative analysis of the
elements of a system to identify potential failure modes and their effects on system behavior. It
was initially formalized in [11]. The failure mode, effects and criticality analysis (FMECA) in
addition to classical FMEAs addresses quantitative issues by adding information about severity
and probability of failures using a criticality metric [12]. The failure mode, effects and diagnostic
analysis (FMEDA) considers additional quantitative failure data and diagnostic coverage,
exemplarily of safety mechanisms. FMEDA was introduced based on the paper of [13], the name
was first used in [14]. FMEDA methodology has been refined especially in IEC 61508 to determine
additional quantitative results such as the safe failure fraction. FMEDA is a common practice for
safety analysis of electric/electronic systems [12].

Other analyses mentioned in ISO 26262 are reliability block diagrams (RBD) and markov models.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 18 (74)

8.3.2 Related work

In the technical report [15] of Leitner-Fischer et al., the different parts of the ISO 26262 are
presented in order to analyses them regarding compatibility with their QuantUM method and tool
for the support of requirements demanded by the standard. For Part 5 “Product development at
the hardware level” it is mentioned that hardware evaluation could be supported, but their “UML-
based approach is not really suitable to describe hardware architectures” [15].

In the paper of Jeon et al. [16], they focus on hardware especially with classification of ASIL C or
D. The process from specification of safety requirements, design, up to the integration and testing
in context of hardware is described. This process is in accordance with ISO 26262. Additionally,
the demanded metrics of Part 5 are explained high level.

In the article [17] of Bellotti and Mariani, hardware evaluation is mentioned in context of
microcontroller design. This concerns functional safety and ISO 26262, as functional safety
requirements have impact on the design of microcontrollers and microprocessors. In the article of
Sinha [18] the functional analysis of a proposed brake-by-wire system is described in context of
safety.

Svancara [19] [20] gives a detailed description of ISO 26262 [1] Part 5 Clause 9 regarding
evaluation of residual risk of safety goal violation using the second method with failure rate classes
shown with an electrical powered steering use case. The methodology is demonstrated into detail,
but no implementation or integration into model-based environments is considered.

Regarding the modeling and propagation of failures, the approach of HiP-HOPS has to be
mentioned [21] [22]. A graphical approach for a description of failure propagation in an integrated
architecture description language is presented in [23].

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 19 (74)

8.4 Preparation for model-based hardware evaluation

8.4.1 Interface to hardware description

Focus of work task WT3.2.2 “Hardware description” is a proposal for meta model adaption based
on EAST-ADL regarding structural description of hardware and an extension regarding hardware
failure data [26]. The meta model constructs serve as an input for the SAFE meta model provided
by WT3.5. The meta model constructs form the basis for the methodologies for evaluation
presented in this deliverable.

A brief excerpt of the meta model extension for hardware failure description is shown in Figure 7.

 class Failure

MalfunctionType

Referrable

HWFailureMode

+ allocatedFailureRateDistribution :Float

+ failureModeType :String

+ potentialCause :String

Referrable

HWFault

+ hwFaultType :HWPointFaultEnum

Referrable

HWFailureRate

+ allocatedValue :Float

+ rationaleScalingFactor :String

+ scalingFactor :Float = 1.0

+ source :String

«enumeration»

HWPointFaultEnum

 safeFault

 singlePointFault

 dualPointFault

 othersPointFault

HardwareComponentFailure

HardwareSafetyDesignEastAdlReference

HardwareComponentType

+hwFailureMode 1..*

0..*

+hwFailureMode

1

+hwFailureRate

1

+randomHarwareFailure
0..1

+scope

1

Figure 7: Excerpt of SAFE meta model regarding hardware failure [26]

The extension for hardware failure description is based on the EAST-ADL references to
“HardwareComponentType” and “HardwareComponentPrototype”. This construct allows the
composition of several hardware component prototypes in a new hardware component type. For
the concrete hardware component type, a hardware component failure extension is defined, which
captures all relevant failure information. The hardware failure extension covers the following
classes:

 Class “HWFailureMode” for the description of hardware failure modes. These failure modes
cover a failure rate distribution, the failure mode type (exemplarily “ShortCircuit”) and a
potential cause (e.g. overheating).

 Class “HWFailureRate” is used for the annotation of a failure rate values. Additionally,
scaling factors according to [1] Part 5 including a rationale and the source of the failure
rate can be described.

 Class “HWFault” is linked to a hardware failure mode and defines the classification of the
fault in context of a specific safety goal. For the classification, the enumeration
“HWFaultEnum” is provides the corresponding literals.

 Class “HWSafetyMechanism” is an abstract representation of a safety mechanism which is
covering a specific hardware failure mode. No concrete realization of safety mechanism is
presented for the meta model approach.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 20 (74)

8.4.2 Continuous hardware modeling and evaluation model concept

For the assessment of hardware designs in context of random hardware failures, a model-based
description is required as a basic prerequisite. This includes a structural description of the
hardware design as well as annotated failure information, links to the related safety goals including
target values and safety mechanisms with their diagnostic coverage. The SAFE meta model
provides all the different perspectives on a safety-related system in terms of functional safety. This
includes topics such as COTS, safety case, software modeling etc. The SAFE meta model
contributions are currently in synchronization and alignment in terms of integration issues.
Additionally, EAST-ADL and AUTOSAR are connected providing meta model constructs for
specific modeling purpose as reference points.

Focusing on model-based hardware safety evaluation, a meta model with a minimal set of
constructs allows a clear structuring and description of the methodology within this deliverable.
Therefore, specific parts of the SAFE meta model were extracted in terms of model-based
hardware safety evaluation. This leads to a proposed minimal combination of meta model classes
for model-based hardware quantitative and qualitative assessment, as shown in Figure 8.

meta model

EAST-ADL class Failure

EastAdlReference

HardwareComponentType

Extension
 class Failure

Referrable

HWFailureRate

+ allocatedValue :Float

+ rationaleScalingFactor :String

+ scalingFactor :Float = 1.0

+ source :String

AUTOSAR class Failure

AutosarReferable

HwElement

WT3.2.2

 class Concept: Safety Requirements

AbstractSafetyRequirement

SafetyGoal

- asil :ASILEnum

WT3.2.1

WT3.3.3

WT4.2.6

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ scalingFactor :Double

+ rationale :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

Model.java

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

Minimal set for

HW safety evaluation

<xs:element name="Model">
...

<xs:element name="SafetyRequirements">
...

</xs:element>
<xs:element name="HWElements">

...

</xs:element>
...

</xs:element>

.XSD

XML Schema Definition for model-

based hardware design description

Figure 8: Model-based hardware safety evaluation

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 21 (74)

8.4.3 Minimal meta model for hardware safety evaluation

The complete minimal meta model for integrated hardware safety evaluation to support
assessment is provided in Figure 9. The meta model classes including their attributes contained
are explained briefly in the following.

Only For Detailed Design Only For Architectural Design

Only For Detailed Design

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

+ safetyMechanismRefID :String

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ safetyMechanismRefID :String

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*

0..*

1..*

0..*

1..*

Figure 9: Minimal proposed meta model for model-based hardware safety evaluation

8.5 Concept for model-based hardware safety evaluation on different abstraction levels

As introduced, ISO 26262 [1] Part 9 Clause 8 claims the evaluation of hardware designs on
appropriate level of abstraction whereas ISO 26262 [1] Part 5 Clause 7 describes two different
levels of abstraction during hardware concept and development phase. For these two orthogonal
levels, we provide a concept for model-based hardware safety evaluation as shown in Figure 10.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 22 (74)

HW Detailed Design

Hardware Safety Evaluation HW Architectural Design

Modeling of Structure
Annotation of FM + Output

Deviations

Architectural

Metrics

Evaluation of

Safety Goal

Violation

Qualitative Evaluation
Quantitative Evaluation

(ISO 26262 Part 5)

Architecture Refinement

Target Constraints

Hardware Design

Confirmation

Modeling Classification

Modeling of Structure and Failure (Section 8.6) Qualitative Evaluation

(Section 8.7)

Quantitative Evaluation

(Section 8.8)

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ scalingFactor :Double

+ rationale :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

Model.java

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

Clause 8: Evaluation of the hardware architectural metrics

Single-Point

Fault Metric

Latent-

Fault Metric

Clause 9: Evaluation of the safety goal violations due to

random hardware failures

9.4.1: Evaluation of

Probabilistic Metric for

random Hardware Failure

(PMHF)

9.4.2: Evaluation of each

cause of safety goal

violation (FRC)

AND

OR

AND

XML

Figure 10: Overview: Concept for hardware safety evaluation and abstraction levels

On higher level of abstraction, the hardware architectural design is established representing an
initial view on the hardware design. For this level of abstraction, a deductive methodology for
model-based hardware safety evaluation is proposed. Annotation of failure modes and their
propagation through the system can be evaluated using a fault tree analysis, see also the HiP-
HOPS approach [21]. This qualitative analysis supports the quantitative evaluation with the
determination of the impact of failure modes to the top-level event. The top-level event in this
context represents the violation of a specific safety requirement. The quantitative evaluations
represent an initial safety evaluation, based on assumptions for failure rates and failure modes.
The initial evaluation facilitates early definition of safety mechanisms or identification of safety-
critical sections of the architecture. The initial hardware design can be iteratively reworked and
improved. This is supported by the verification of results against target values.

During subsequent phase of development, the hardware architectural components are specified by
the hardware detailed design at the level of electronic schematics. The hardware detailed design is
described by concrete hardware parts. The hardware detailed design can also be evaluated
regarding functional safety [27]. This evaluation describes the final verification of the hardware
design and therefore confirms the initial hardware safety evaluation.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 23 (74)

8.6 Structural and failure modeling of hardware designs

This chapter explains the concept for structural modeling and failure information of hardware
designs. The two different abstraction layers are presented and links to the meta model are
provided.

8.6.1 Modeling of hardware structure

For structural modeling of the hardware, the class HWElement is in focus. This class captures all
relevant information for a hardware component regarding the hardware architectural design or a
hardware part in context of hardware detailed design.

8.6.1.1 Hardware architectural design

Due to the complexity, the concept and development phase regarding hardware is not exclusively
done at the level of detailed schematic. Therefore, in a first step, the hardware design is modeled
at functional block level. Hardware components which capture certain functionalities are defined as
abstract blocks with in- and outputs. These blocks are defined in context of the technical safety
concept derived from the system design specification, according to ISO 26262 Part 4 Clause 7.
The hardware components can be taken from previous designs or described in a company-
specific library. Therefore, a re-use of certain parts is facilitated. Regarding the meta model for
hardware safety evaluation, the hardware component represents a specialization of the class
HWElement, which is not separately introduced in order to provide generic information. An
example for a hardware architectural design which is continuously refined in this deliverable is
shown in Figure 11.

Computation and

Controlling

(HW Component)

Amplifying

(HW Component)
Valve

instance

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

Figure 11: Hardware architectural design structural modeling example

Here, an example containing two hardware components ComputationAndControlling and
Amplifying is given based on the output stage of function one of the example from ISO 26262 Part
5 Annex E, as shown in Figure 4. For the hardware components, input and output ports are
provided including the direction of the connection. These two hardware components serve as an
example for the complete process of safety evaluation regarding the hardware architectural
design.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 24 (74)

8.6.1.2 Hardware detailed design

The hardware detailed design describes the hardware architecture on a detailed level of
abstraction with hardware parts such as resistors or capacitors. Before modeling the hardware
detailed design, a type library containing all relevant hardware part types that are used in the
model can be defined. As the hardware detailed design contains a high amount of hardware parts,
the type library concept fits the corresponding needs. The meta model class LibraryType forms the
basis.

The type library contains all hardware parts which can be instantiated in the schematic.
Additionally, all failure data regarding failure modes and failure rates are deposited in the library.
The type library can also be used to express different technologies which are used for the same
type of hardware part such as metal film resistors or surface mount device resistor. A consistent
example for this deliverable for modeling of hardware detailed designs using the type library is
shown in Figure 12.

Name: R1

RefID: 2a

Hardware Part

Name: Resistor

ID: 2a

Description: Metal Film

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

instance

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

instance

N
a
m

e
: R

2

R
e
fID

: 2
a

Figure 12: Hardware detailed design structural modeling example

Here, the hardware parts R1 and R2 are instantiated as hardware elements for the hardware
detailed design. Both of these hardware parts are referencing to the same hardware library type
Resistor which exemplarily represents a metal-film resistor type. The reference is achieved using
the attribute refID of the hardware element, which contains the id of a hardware library type.

Using the type library concept, the hardware parts and their interconnections have to be modeled.
The corresponding schematic contains all hardware parts with their interconnections. Additional
attributes such as the value of exemplarily resistors or capacitors have to be captured for each
instantiated part, due to the fact that they are not equal for all instantiated hardware parts of the
same hardware part type.

8.6.2 Modeling of hardware failure

In order to provide hardware safety evaluation according to ISO 26262 Part 5, the structural
description of hardware was extended to provide information about failure data.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 25 (74)

8.6.2.1 Modeling of safety requirements

The initiation of the product development at the hardware level requires consideration of hardware
safety requirements and the overall system safety concept. Safety requirements for the hardware
design have to be defined and annotated to the model. Regarding this model-based approach, the
model-based definition of safety-related hardware elements using the class SafetyRelation is
supported. An example is shown in Figure 13.

Computation and

Controlling

ID: 1b

Name: ComputationAndControlling_SafetyReq1

RefID: 1b

safetyRelation: true

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

+ safetyMechanismRefID :String

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ safetyMechanismRefID :String

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*

0..*

1..*

0..*

1..*

Name: SafetyReq1

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

+ safetyMechanismRefID :String

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ safetyMechanismRefID :String

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*

0..*

1..*

0..*

1..*

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*
instance instance

instance

Figure 13: Safety-relations of hardware elements to safety requirements

Here, the safety requirement SafetyReq1 contains a safety-relation named
ComputationAndControlling_SafetyReq1. In this safety-relation, the refID references the specific
hardware element. The attribute safetyRelation specifies whether the hardware element is safety-
related or not for the safety requirement using a Boolean attribute type.

8.6.2.2 Modeling of safety mechanism

For the quantitative evaluation of the hardware design, failure mode coverage due to safety
mechanism has to be considered. Therefore, safety mechanisms are modeled using the
corresponding class of the meta model. The safety mechanism refers to a specific hardware
element or failure mode it covers. This reference is achieved due to the attribute
safetyMechanismRefID which is contained in the classes HWElement and FailureMode.
Therefore, either the coverage of safety mechanisms for a specific failure mode or the coverage
for the overall hardware element can be expressed.

8.6.2.3 Hardware architectural design

For each hardware component, certain failure modes have to be defined. The failure modes
represent assumptions or expert knowledge exemplarily from previous designs. According to the
multiplicity in the meta model, for each hardware element one or more failure modes can be
annotated. A failure rate for the each failure mode can be defined as an attribute. An exemplary
annotation of failure modes for hardware components is shown in Figure 14.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 26 (74)

Computation and Controlling Amplifying

Name: Offset

FailureRate: 0.09 FIT

Name: OutOfRange

FailureRate: 0.08 FIT

Name: StuckInRange

FailureRate: 0.17 FIT

instance

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

0..*

Name: Offset

FailureRate: 0.09 FIT

Name: OutOfRange

FailureRate: 0.08 FIT

Name: StuckInRange

FailureRate: 0.17 FIT

Figure 14: Annotation of failure information for hardware architectural design

Here, the two hardware components ComputationAndControlling and Amplifying both have the
three failure modes exemplarily Offset, OutOfRange and StuckInRange annotated. For each of the
failure modes, a specific failure rate in FIT is defined, which is an assumption as mentioned above.

For the hardware architectural design, the consequences of random failures of the hardware
components for the system behavior can be determined with a deductive analysis exemplarily a
fault tree analysis. A model-based approach for the propagation of failure modes to a system top-
level failure is provided to facilitate quantitative evaluation according to ISO 26262. This is
facilitated based on output deviations for each hardware component which describe a logical
failure expression, related to the approach of HiP-HOPS [21].

One logical expression for the system could describe the overall fault tree. Due to complexity
issues, a separation of single output deviations and the annotation to the boundaries of the
hardware component is performed. An exemplarily output deviation regarding the hardware
architectural design is shown in Figure 15.

Computation and Controlling Amplifying

Name: Offset

FailureRate: 0.09 FIT

Name: OutOfRange

FailureRate: 0.08 FIT

Name: StuckInRange

FailureRate: 0.17 FIT

instance

Name: Offset

FailureRate: 0.09 FIT

Name: OutOfRange

FailureRate: 0.08 FIT

Name: StuckInRange

FailureRate: 0.17 FIT

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

+ safetyMechanismRefID :String

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ safetyMechanismRefID :String

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*

0..*

1..*

0..*

1..*

Name: OutputDeviation-ComputationAndControlling
LogicalExpression: Offset OR OutOfRange OR StuckInRange

Name: OutputDeviation-Amplifying
LogicalExpression: Offset OR OutOfRange OR StuckInRange OR OutputDeviation-ComputationAndControlling

Figure 15: Annotation of output deviations for hardware architectural design

In this example, each of the hardware components has one output deviation, which represents an
OR combination of all failure modes contained. Additionally, for the hardware component
Amplifying, the preceding output deviation of ComputationAndControlling is included in the logical
failure expression. The logical expressions of the output deviations are represented as a String
value.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 27 (74)

8.6.2.4 Hardware detailed design

Subsequent to structural modeling of the hardware detailed design, the failure data in terms of
failure modes and failure rates has to be annotated to the model. This failure data of standard
hardware parts is well-established. Therefore, they are not representing assumptions at this phase
of development. The estimated failure data in terms of failure rates and failure modes can be
taken from recognized industry source, statistics based on field tests or expert judgment, as
described in Section 8.3.1. An annotation of failure information for hardware detailed design is
shown in Figure 16.

Hardware Part

Name: Resistor

ID: 2a

Description: Metal Film

FR: 2 FIT

instance

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*
0..*

1..*

1..*

0..*

Name: OpenCircuit

FailureRateDistribution: 90%

Name: ShortCircuit

FailureRateDistribution: 10%

Name: R1

RefID: 2a

FR: 2 FIT

Hardware Part
N

a
m

e
: R

2

R
e
fID

: 2
a

F
R

: 2
 F

IT

Name: OpenCircuit

FailureRateDistribution: 90%

Name: ShortCircuit

FailureRateDistribution: 10%

N
a

m
e

: O
p

e
n

C
irc

u
it

F
a

ilu
re

R
a

te
D

is
trib

u
tio

n
: 9

0
%

N
a

m
e

: S
h

o
rtC

irc
u

it

F
a

ilu
re

R
a

te
D

is
trib

u
tio

n
: 1

0
%

Figure 16: Annotation of failure information for hardware detailed design

For the hardware detailed design, the failure rate is annotated to the hardware element itself
(shown in red letters). For each failure mode, a failure rate distribution is described in percentage,
which specifies the portion of the overall failure rate of the hardware element which is distributed to
the failure mode. The failure rate of the failure mode (which is recommended to be defined for the
hardware architectural design) can be calculated according to Equation 1.

FMHWElementFM FRD  Equation 1

The failure rate of the hardware element represents the sum of all failure modes specific failure
rates.

 FMHWElement  Equation 2

Using these two equations, the failure rates specified for the failure modes at architectural level
can be converted to the failure rate of the overall hardware element and a failure rate distribution
for the failure mode, as used for the hardware detailed design. Therefore, in the model, either a
failure rate for the failure mode (recommended for architectural design) or a failure rate for the
hardware element and a failure rate distribution for the failure mode (recommended for detailed
design) must be present. For the hardware detailed design, it is also possible to provide the failure
information by annotation to the hardware library type. If specific failure information for a hardware
element instance is provided, the failure information is not taken from the hardware library type.

In contrast to the hardware architectural design, for the hardware detailed design no failure
propagation approach is facilitated due to the large number of parts and growing complexity. As

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 28 (74)

output deviations for hardware parts are not defined, a qualitative analysis to determine the
classification of failure modes is not facilitated. This classification has to be manually specified for
each failure mode. The flow diagram for such a failure mode classification to derive the safety goal
violation of hardware part failure modes is described in Figure 17.

Failure Mode

Is HW element

safety-related

and must be

considered?

Safe Fault

(not considered)

Classification

no

Failure mode

has potential to

directly violate

the safety

goal?

Residual Fault Single-Point Fault

Is a safety

mechanism

covering the

HW element?

Failure mode can

lead to the violation only

in combination with another

independent failure?

Safe Fault

(safety-related)

Multiple-Point

Fault

yes

yes

no

yes

no no

yes

Potential

violation as

multiple-point

fault?

yes

Figure 17: Simplified flow diagram of [1] for manual determination of classification

For each failure mode, the corresponding hardware element is either safety-related or not. If not,
the failure mode is classified as a safe fault which has not to be considered in the analysis. For
safety-related hardware elements, if the failure mode directly violates the safety goal it can be
covered by a safety mechanism and classified as a residual fault or classified as a single-point
fault which is not covered. If the failure mode has the potential for violation in combination with
another independent fault, it is classified as a multiple-point fault. A classification as multiple-point
fault and a direct violation is possible. If the failure mode does not violate the safety goal in any
case, it is classified as a safe fault, which is safety-related and considered in the quantitative
evaluation.

The classification of a failure mode can be different for different related safety requirements. The
annotation is supported by using the class Classification which has the multiplicity 0..* for each
failure mode and is used in context of a safety requirement. Therefore, it contains the attributes
topLevelName and topLevelID, which refer to the specific safety requirement for which the
classification is present. The classification additionally has the attributes singlePointFault and
multiplePointFault, which are both of type Boolean.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 29 (74)

Failure Mode

Classification

Value Attribute

singlePointFault

Value Attribute

multiplePointFault

Safe Fault False False

Single-Point Fault True False

Residual Fault

(SM present)

True False

Multiple-Point Fault False True

Single-Point Fault and

Multiple-Point Fault

True True

Table 1: Derivation of Classification attributes values

The specific failure mode is classified as a Safe Fault, Single-Point Fault, Residual Fault or
Multiple-Point Fault, according to Section 8.3.1. The value for the model attributes can now be
derived as shown in Table 1. For the case that a failure mode is directly violating the safety goal
and additionally in combination with another independent fault, both values are true. Default value
for both attributes is false which relates to the classification as safe fault. The annotated
classification for the hardware detailed design is exemplarily shown in Figure 18.

Hardware Part

instance

 class Model.jav a

Classification

+ topLevelName :Sring

+ topLevelID :String

+ singlePointFault :Boolean

+ multiplePointFault :Boolean

FailureMode

+ name :String

+ id :String

+ description :String

+ failureRate :Double

+ failureRateDistribution :Double

+ safetyMechanismRefID :String

HWElement

+ name :String

+ id :String

+ description :String

+ typeID :String

+ failureRate :Double

+ safetyMechanismRefID :String

+ value :Double

LibraryType

+ name :String

+ id :String

+ description :String

+ category :HWCategories

+ failureRate :Double

+ referenceDocument :String

+ costs :Float

Model

+ modelName :String

+ modelingToolName :String

+ modelDescription :String

+ abstractionLevel :AbstractionLevelEnum

+ activateFaultTypeDetermination :Boolean

+ activateTypeLibrary :Boolean

+ executeHWMetrics :Boolean

+ executeFRC :Boolean

+ executePMHF :Boolean

+ lifetime :Double

SafetyMechanism

+ name :String

+ id :String

+ description :String

+ diagnosticCoverageRF :Double

+ diagnosticCoverageMPFL :Double

SafetyRelation

+ name :String

+ refID :String

+ safetyRelation :Boolean

SafetyRequirement

+ name :String

+ id :String

+ description :String

+ asil :ASILEnum

TargetValue

+ targetValuesSPFMetric :TargetValuesMetric

+ targetValuesLFMetric :TargetValuesMetric

+ targetValueFRC :Double

+ numberOfCutSetsFRC :Integer

+ numberOfClassesFRC :Integer

+ targetValuePMHF :Double

+ rationaleSPFMetric :String

+ rationaleLFMetric :String

+ rationaleFRC :String

+ rationalePMHF :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM

 ASIL-A

 ASIL-B

 ASIL-C

 ASIL-D

«enumeration»

HWCategories

 Resistor

 Capacitor

 Microcontroller

 Others

«enumeration»

TargetValuesMetric

 targetValueASILB

 targetValueASILC

 targetValueASILD

«enumeration»

AbstractionLev elEnum

 architectural

 detailed

OutputDev iation

+ name :String

+ id :String

+ logicalExpression :String

0..*

0..*

1..*

0..1

0..*

1..*

0..*

1..*

0..*

1..*

Name: R1

RefID: 2a

FR: 2 FIT

N
a
m

e
: R

2

R
e
fID

: 2
a

F
R

: 2
 F

IT

Name: OpenCircuit

FailureRateDistribution: 90%

Name: ShortCircuit

FailureRateDistribution: 10%

N
a
m

e
: O

p
e

n
C

irc
u

it

F
a

ilu
re

R
a
te

D
is

trib
u

tio
n

: 9
0

%

N
a
m

e
: S

h
o

rtC
irc

u
it

F
a

ilu
re

R
a
te

D
is

trib
u

tio
n

: 1
0

%

TopLevelName: SafetyGoal

SinglePointFault:: true

MultiplePointFault: false

TopLevelName: SafetyGoal

SinglePointFault:: false

MultiplePointFault: false

T
o

p
L

e
v
e

lN
a
m

e
: S

a
fe

ty
G

o
a

ll

S
in

g
le

P
o

in
tF

a
u

lt:: fa
ls

e

M
u

ltip
le

P
o

in
tF

a
u

lt: fa
ls

e

T
o
p

L
e

v
e
lN

a
m

e
: S

a
fe

ty
G

o
a
l

S
in

g
le

P
o

in
tF

a
u

lt:: fa
ls

e

M
u

ltip
le

P
o

in
tF

a
u

lt: fa
ls

e

Figure 18: Annotation of Classifications for hardware detailed design

All annotated classifications are done in context of the top-level event SafetyGoal. For this
example, both failure modes OpenCircuit directly lead to the violation of the specific safety goal,
whereas the failure modes ShortCirtuit are represented as safe faults. The annotated
classifications as well as the failure information and hardware modeling directly support a
quantitative analysis for the hardware detailed design.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 30 (74)

8.7 Qualitative evaluation

After output deviations are defined for the hardware architectural design, a qualitative analysis
follows as an intermediate phase to identify component failure modes which lead to the system
failure as violation of the safety goal. This qualitative analysis supports a quantitative evaluation by
the automated determination of classifications.

8.7.1 Fault tree generation

In a first step, each output deviation of a hardware component is translated into a single fault tree.
For the output deviations provided in the example, the corresponding single fault trees are shown
in Figure 19.

OutputDeviation-

Amplifying

Amplifying_

OutOfRange

Amplifying_

Offset

Amplifying_

StuckInRange

OutputDeviation-

Computation

Controlling

OutputDeviation-

Computation

Controlling

Computation

Controlling_

OutOfRange

Computation

Controlling_

Offset

Computation

Controlling_

StuckInRange

Figure 19: Exemplary single fault tree of output deviations

After the generation of all relevant single fault trees, starting from the top-level event as violation of
a safety goal, the overall fault tree can be composed. The output deviations related to the top-level
event contain their preceding output deviations which facilitates the composition of the overall fault
tree. Regarding the example, OutputDeviation-Amplifying contains the output deviation
OutputDeviation_ComputationControlling. These two fault trees can now be combined which is
shown in Figure 20.

OutputDeviation-

Amplifying

Amplifying_

OutOfRange

Amplifying_

Offset

Amplifying_

StuckInRange

Computation

Controlling_

OutOfRange

Computation

Controlling_

Offset

Computation

Controlling_

StuckInRange

Figure 20: Complete fault tree for top-level OutputDeviation-Amplifying

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 31 (74)

8.7.2 Analysis and failure mode classification

The fault trees for the tagged top-level events can afterwards be analyzed in order to determine
the contribution of the contained component failure modes to the top-level event. Therefore, a
minimal cut-set analysis is facilitated. The minimal cut-sets with contained failure modes as basic
events are determined. The order of the corresponding cut-set provides a classification of the
failure mode into the fault classes provided by ISO 26262 Part 5 7.4.3.2. The determination is
related to ISO 26262 Part 10 and captured in the following Figure 21.

Determination based on Fault Tree Analysis

Safe Faults
Single-Point Faults /

Residual Faults

Multiple-Point

Faults

Events not

contained in the

fault tree

Basic Events in

minimal cut-set of

order 1

Basic Events in

minimal cut-set of

order ≥ 2

Failure Mode Classification according to ISO 26262 Part 5 7.4.3.2

Figure 21: Derivation of failure mode classifications based on qualitative fault tree analysis [3]

If the failure mode is not contained in the fault tree, it is classified as a safe fault due to the fact
that it has on impact on the safety goal violation. If the failure mode is contained in a minimal cut-
set of order one in the fault tree, it is classified as a single-point or residual fault. These faults
directly lead to the violation of the safety goal. If the failure mode is contained in a minimal cut-set
of order greater than one, it is classified as a multiple-point fault. These faults lead to the violation
of the safety goal only in combination with another independent failure mode.

Regarding the classification using fault tree analysis, ISO 26262 Part 10 Annex B.3.1 provides
modeling examples. For classification as a single-point fault, the event is affiliated with the top-
level event as the violation of the safety goal only via OR-gates and therefore in a cut-set of order
one. The representation in a fault tree is exemplarily shown in Figure 22.

Top-Level

Event

Event

SPF

Figure 22: Classification: Single-point fault in fault tree

For residual faults, several ways of modeling within a fault tree are possible. Either the residual
fault is represented as a single event which contains the coverage of a related safety mechanism
by the specific failure rate calculation. This is shown on the left hand side of Figure 23. In this
case, the residual fault in a fault tree is modeled in the same way as a single-point fault, only the
probability of the event is different due to additional safety mechanism coverage. The second
possibility would be, to model the safety mechanism as an extra event. This is shown on the right
hand side of Figure 23. Here, the residual fault in the fault tree is represented as an AND-
combination of the overall fault and the percentage not covered by the safety mechanism and
would be represented in a cut-set of order two.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 32 (74)

Top-Level

Event

Event

Top-Level

Event

Event

Event (SM)

RF

RF

Figure 23: Classification: Residual fault in fault tree

In this model-based methodology, the approach without modeling of the safety mechanism as an
extra event is preferred. This facilitates the analysis of residual faults which can be derived from a
cut-set order of one – same as a single-point fault – due to their direct violation of the safety goal.
The safety mechanism is independently tagged for the failure mode for specific failure rate
determination. This is also considered for the representation of multiple-point faults.

The safety-relation is determined at hardware element level, not at the level of failure modes
according to ISO 26262 Part 5 Annex E. In context of the approach for hardware architectural
design, using the fault tree qualitative analysis, the approach shown in Figure 24 is used.

HW Component 1 HW Component 2

Name: FM1

FailureRate: 0.09 FIT

Name: FM2

FailureRate: 0.08 FIT

Name: FM1

FailureRate: 0.09 FIT

Name: FM2

FailureRate: 0.08 FIT

SPF

Not

in FT

Not

in FT

Not

in FT

Safety-

related

Non-

safety-

related

Figure 24: Determination of safety-relation for hardware components

If the hardware component under consideration has at least one failure mode contained in the
corresponding fault tree for the violation of the safety goal, it is classified as safety-related.
Exemplarily, FM1 of HW Component 1 is classified as a single-point fault, the HW Component 1 is
safety-related. FM2 in this case is a safe fault which contributes to the overall safety-related failure
rate. If the hardware component has no failure mode which is contained in the fault tree, it is
classified as non-safety-related. Therefore, FM1 and FM2 of HW Component 2 do not contribute
to the overall safety-related failure rate. However, the determination of safety-relation could also
be performed at the level of failure modes.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 33 (74)

8.8 Quantitative evaluation

The quantitative evaluation according to ISO 26262 Part 5 claims the hardware architectural
metrics and the evaluation of residual risk of safety goal violation. The concept for the quantitative
evaluation of hardware designs is described. An overall view of the hardware quantitative
evaluation is shown in Figure 25.

Figure 25: Overview: Flow diagram for hardware safety evaluation

Based on the model information regarding failure modes and classifications, the specific failure
rates can be calculated in context of safety mechanisms. The classification process is shown in
Figure 17. The determination of specific failure rates and the classification represents a FMEDA
which leads to the construction of a failure data table capturing all relevant information for the
safety evaluation. The failure data table contains all hardware elements failure mode, their effects
on the system behavior via the classifications as well as quantitative values for failure modes and
diagnostic coverage. Based on the failure data table, the quantitative evaluations according to ISO
26262 Part 5 can be performed in terms of hardware architectural metrics and evaluation of safety
goal violations.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 34 (74)

8.8.1 Hardware FMEDA

The classification of the failure modes, safety-relevance and the failure information of hardware
elements captured in the model and together with the calculation of specific failure modes
represents a FMEDA as a first step for quantitative hardware safety evaluation. The calculation of
the specific failure rates in context of the classification and safety mechanism coverage is
described in the following.

For a safe fault, the specific failure rate is calculated according to Equation 3. The failure rate
distribution of the specific failure mode describes the ratio of the overall failure rate which is
distributed to the failure mode in percent.

FMHWElementSF FRD  Equation 3

In the same way, the specific failure rate for a single-point fault is calculated according to Equation
4.

FMHWElementSPF FRD  Equation 4

The calculation for single-point and safe fault follow the same equation, but a safe fault is
considered as safe (fault of order zero) whereas a single-point fault violates the safety goal (fault
of order one). The equation for the specific failure rate of a residual fault, which is a special case
of a single-point fault when a safety mechanism is present, is calculated according to Equation 5.

 RFDCFMHWElementRF KFRD ,1  Equation 5

For this calculation, the diagnostic coverage with respect to residual faults of the safety
mechanism present is considered. In case of a multiple-point fault, the failure rate of the latent
multiple-point fault is calculated according to Equation 6.

   LMPFDCRFSPFFMHWElementLMPF KFRD ,,, 1)(  Equation 6

In this context the diagnostic coverage with respect to latent multiple-point fault of the safety
mechanism is taken. As only the latent multiple-point fault is potentially violating the safety goal,
the detected and perceived multiple-point specific failure rate is not in scope. If the failure mode is
also directly violating the safety goal as a single-point or residual fault, the specific failure rates of
the direct violation are not considered for the multiple-point failure rate calculation.

The specific failure rates of all single failure mode contributions as well as common information of
the hardware element such as name, the failure rate, failure modes are stored in a failure data
table. A possible predefined structure of this table is presented in ISO 26262 [1] Part 5 Table E.2
and E.3. The formal way of storage serves to identify the main failure modes which contribute to
the single-point fault and latent-fault metric and evaluation of residual risk of safety goal violations.
This is especially in focus if the target values are not met and additional measures have to be
initiated.

The failure data table represents the basis for all safety assessments of the hardware and
represents the primary result of the FMEDA for hardware elements.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 35 (74)

8.8.2 Hardware architectural metrics

The hardware architectural metrics describe the overall robustness of the system against specific
faults. The evaluation is claimed for ASIL-C and ASIL-D classification of the safety goal and
recommended for ASIL-B. The hardware architectural metrics are related to the safe-failure
fraction (SFF) of IEC 61508. Due to the fact, that ISO 26262 provides a more detailed
classification of faults, as described in Section 8.3.1, two different architectural metrics are
present: the single-point fault metric and latent-fault metric. The single-point fault metric evaluates
the impact of single-point faults on the system whereas the latent-fault metric analyzes the impact
of latent multiple-point faults.

For the calculation of the hardware architectural metrics, the following values have to be
determined:

 Total Failure Rate: 

 Total Safety-Related Failure Rate: 
SR



 Sum of Single-Point and Residual Faults:  )(RFSPF 

 Sum of Latent Multiple-Point Faults:  LMPF ,

The single-point fault metric considers the amount of direct violations of the safety goal (single-
point or residual faults) in the hardware design. This amount is divided by the total safety-related
failure rate. For visualization, the value is afterwards subtracted from 100%. Therefore, a high
amount of single-point or residual faults which is critical for system reliability leads to a low amount
of the single-point fault metric, high robustness is achieved by a value near to 100%. The single-
point fault metric can be regarded as a kind of diagnostic coverage regarding direct violations in
context of the overall hardware design. The single-point fault metric can be calculated according to
Equation 7.



 



HWSR

HWElement

HWSR

RFSPF

MetricSPF

,

,

)(

1




 Equation 7

For the latent-fault metric, the sum of all latent multiple-point fault specific failure rates of all safety-
related hardware elements is considered. All direct violations (single-point and residual faults) are
already considered in the single-point fault metric and therefore subtracted in the denominator.
Equal to the single-point fault metric, a high value of the latent-fault metric near to 100% indicates
high robustness of the hardware design against latent multiple-point faults.








HWSR

RFSPFHWElement

HWSR

LMPF

MetricLF

,

,

,

)(
1





 Equation 8

For comparison to IEC 61508, the formula for the SFF is given in Equation 9. Basically the same
concept is used as it can be seen from the structure of the equations. For the SFF, the numerator
contains the safety-critical failures which are dangerous and undetected, whereas the denominator
contains the sum of all safety-related failures in the hardware design. Due to the finer
differentiation regarding the order of the faults, the architectural metrics provide two separate
evaluations.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 36 (74)






HWSR

HWElement

HWSR

DU

SFF

,

,
1





 Equation 9

The calculated values for the hardware architectural metrics can afterwards be verified against
target values. These target values depend on the ASIL-classification of the corresponding safety
requirement and can be user-defined or taken from recommendation of ISO 26262 as shown in
Table 2.

ASIL-B ASIL-C ASIL-D

Single-Point Fault Metric

Latent-Fault Metric

Table 2: Recommended target values for the hardware architectural metrics [1] Part 5 Table 4, 5

The target values shall provide evidence that the hardware design complies with the safety
requirements. Other target values can be derived from similar well-trusted design principles. Well-
trusted in this context means, that they were used without any condition that deviates from
expectation regarding functional safety.

8.8.3 Evaluation of safety goal violations due to random hardware failures

The evaluation of residual risk of safety goal violation can be performed using one of the
alternative methods, the probabilistic metric for random hardware failure (PMHF) or the second
method using failure rate classes (FRC). The evaluation is claimed for ASIL-C and ASIL-D
classification of the safety goal and recommended for ASIL-B.

8.8.3.1 PMHF

The probabilistic metric for random hardware failure describes an overall probabilistic value for a
top-level system failure. It is related to the probability of dangerous failure per hour (PFH) and
probability of dangerous failure on demand (PFD) of IEC61508. PFD is according to [2] only
claimed for E/E systems with a low demand mode of operation, exemplarily described as
maximum one demand per year [2] Part 4, 3.5.16. For systems with high or continuous demand
mode, PFH has to be evaluated. The concept from PFH forms the basis for PMHF of ISO 26262.

The interpretation of PFH was widely discussed, exemplarily in the article of [29]. The proposed

right notion is that the PFH refers to the average value of the unconditional failure intensity)(tw .

The calculation of the PFH can then be expressed according to Equation 10.



T

avg dttw
T

wPFH
0

)(
1

 Equation 10

The unconditional failure intensity)(tw in the case of non-repairable entities can be identified as

the probability density)(tf which refers to the probability of failure)(tF versus time

as
dt

tdF
tf

)(
)( . For repairable items, the probability of failure is assumed to be zero after the

repair which leads to very complex probabilities. ISO 26262 Part 5 9.4.2.2 describes the PMHF as
the “average probability per hour over the operational lifetime of the item”. This relates to the
definition of the PFH as the average value of the unconditional failure intensity of the item. In ISO

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 37 (74)

26262 Part 5 9.4.2.1, it is stated that “target values for the maximum probability of the violation of
each safety goal shall be defined”.

Due to the fact that fault tree analysis is used for the model-based approach in context of the
hardware architectural design, the use of PMHF for this level of detail would be reasonable. In ISO
26262 Part 10 Annex B.4, different scenarios regarding probability evaluation using fault tree
analysis are discussed. For an event, considering constant failure rates as described in Section
8.3.1 and an exponential distribution, following Equation 11 describes the probability of failure over

time)(tF .

tetF  1)(Equation 11

This probability of failure over time in hours is shown in Figure 26 for an exemplarily failure rate of

FIT2 .

0 0.5 1 1.5 2 2.5

x 10
9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

Figure 26: Probability of failure)(tF over time

Scaling of the x-axis in hours of operation for this example is very high (h910), due to the low

failure rate value. For common lifetime of vehicles, which is assumed as 5000h according to ISO

26262 Part 10 Annex B.4, and low failure rates (01.0 t), the exponential distribution can be

simplified to a linear function, with the gradient of  .

For comparison, in Figure 27 the exponential distribution for FIT2 is plotted in blue, while the

simplified function ttF  )(is plotted in red in the same diagram. Here the x-Axis is shown for

the assumed system lifetime of 5000h.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-5

t

Figure 27: Simplified linearization of probability of failure)(tF over system lifetime

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 38 (74)

The corresponding unconditional failure intensity)(tw for this example would be constant over

time and equal to the failure rate  of the event. This is shown in Figure 28. The average

unconditional failure intensity avgw in this case would be of same value FIT2 .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-9

t

Figure 28: Unconditional failure intensity)(tw over system lifetime

If considering two events with failure rates 1 and 2 of a fault tree following the simplified

distribution as described, when having an OR-combination between the two events, the simplified
linearization would lead to the probability of failure over time as described in Equation 12.

ttttF )()(21211  Equation 12

Therefore, the unconditional failure intensity and the average value would be the addition of the

two failure rates 1 and 2 . If considering AND-combination, the probability of failure over time for

the linearized approach would be described as shown in Equation 13.

2

21212)()(ttttF   Equation 13

This leads to a polynomial probability of failure)(2 tF over time which is shown in Figure 29. This

polynomial probability of failure over time results in a linear unconditional failure intensity)(tw with

the gradient of 212   . Therefore, the average value avgw in this case is represented as

t 21  .

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-10

t

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 39 (74)

Figure 29: Probability of failure)(2 tF over system lifetime for polynomial approach

ISO 26262 Part 10 Annex B.4 describes, that in this case of AND-combination, the corresponding

target value must be met for t 21  while using the system lifetime.

A simplified estimation of PMHF could be described as the sum of all residual and single-point
faults due to their direct influence (OR-combination). The AND-combination of latent-fault failure
rates lead to a low influence on the PMHF, even if higher failure rates are present. Therefore, a
simplified PMHF value could be calculated according to Equation 14.

  
HWSR

RFSPFPMHF
,

 Equation 14

Target values for PMHF depend on the ASIL classification of the safety requirement.
Recommended target values are given in Table 3. In comparison to the PMHF, target values for
PHF from [2] are also presented according to the corresponding SIL classification.

ASIL Random hardware failure

target values (PMHF)

PFH target values SIL

ASIL-D SIL-4

ASIL-C SIL-3

ASIL-B SIL-2

 SIL-1

Table 3: Recommended target values for PMHF [1] Part 5 Table 6 and PFH [2] Part 1 Table 2

In addition to the recommended target values of [1], they can be derived from field data or
quantitative analysis techniques applied to similar well-trusted design principles.

8.8.3.2 Evaluation of each cause of safety goal violation (FRC)

ISO 26262 [1] Part 5 9.4.3.2 recommends the application of the second method as failure rate
class (FRC) for the hardware detailed design. This individual evaluation of each cause of safety
goal violation is recommended to be applied for the detailed abstraction level. The process for the
evaluation using the failure rate class approach is shown in Figure 30.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 40 (74)

Part 5:

9.4.3.11 Tab. 9

1. Single-Point Fault 2. Residual Fault 3. Multiple-Point Fault

Part 5:

9.4.3.6 Tab. 8

Part 5:

9.4.3.5 Tab. 7

ASIL

ASIL ASIL

FRC 1:

FRC 5:

FRC 2:

FRC 3:

FRC 4:

Figure 30: Overview: Failure rate class method [27]

For the failure rate class method, each individual violation of a safety goal by a hardware element
has to be evaluated. The evaluation is not done at the level of failure modes, thus at the level of
hardware elements. All failure modes of a hardware element with the same classification (single-
point, residual or multiple-point) are clustered and evaluated together. In contrast to PMHF, the
FRC method provides a more stringent evaluation as each violation has to meet a specified target
value. For PMHF, only the overall target value has to be met, allowing single failure modes to
maintain a high failure rate.

Failure Rate Class Lower bound Upper bound

Failure Rate Class 1

Failure Rate Class 2

Failure Rate Class 3

Failure Rate Class 4

Failure Rate Class 5

Table 4: Failure rate classes example for number of cut-sets = 100

The evaluation includes the classification of the failure rate into proposed failure rate classes
according to Table 4. This is achieved in accordance with ISO 26262 Part 5 9.4.3.3. For residual
and latent multiple-point faults, a diagnostic coverage on hardware element level has to be
determined which is verified against target values from ASIL of the safety goal. The target values
are taken from the overall target values from PMHF, according to Table 3. This ensures

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 41 (74)

consistency between the two alternative methods for evaluation of residual risk of safety goal
violation. This global target value is distributed to each violation dividing it by a number which can
be based on the number of minimal cut-sets in the system. ISO 26262 proposes the
recommended value of 100. The recommended value can be altered if it is ensured that a correct
failure rate classing is maintained when considering different cut-set order together.

The maximum value for the failure rate class 1 represents the target value of PMHF ASIL-D
divided by the recommended value of 100 taken from [1] Part 5 9.4.3.4. For every higher number
of failure rate class, the failure rate maximum value shall be less than or equal to 10 times the
failure rate corresponding to the next lower failure rate class. The number of failure rate classes
can be defined according to the failure rate values existent in the system, the failure rate classes
1, 2 and 3 are introduced analogous to the occurrence levels 1, 2 and 3 which are used in a
FMEA.

For the evaluation of residual risk of safety goal evaluation, dedicated measures have to be
applied, if prescribed by the target verification. These dedicated measures according to ISO 26262
Part 5 [1] 9.4.2.4 can include:

 Design features

 Special sample tests

 Burn-in test

 Dedicated control set

 Assignment of safety-related special characteristics

Single-Point Fault Verification:

In case of single-point faults, all single-point fault specific failure rates of a single hardware
element have to be summed up. The sum of these failure rates then has to be classified according
the failure rate classes, see Table 4. The corresponding failure rate class is verified against target
values according to the ASIL of the safety goal as given in Table 5.

ASIL Failure Rate Class

ASIL-D Failure rate class 1 + dedicated measures

ASIL-C Failure rate class 2 + dedicated measures

or

Failure rate class 1

ASIL-B Failure rate class 2

or

Failure rate class 1

Table 5: Failure rate class target values for single-point faults, [1] Part 5 Table 7

For ASIL-D classification of the safety requirement, the failure rate sum regarding single-point
faults of each hardware element has to be classified in failure rate class 1 and additionally
dedicated measures have to be ensured. For ASIL-C, either failure rate class 1 or failure rate class
2 with additional measures have to be met. For ASIL-C, failure rate class 1 or failure rate class 2
are required.

Residual Fault Verification:

In case of residual faults, the failure rate has to be classified according to Table 4 for the overall
failure rate of the hardware element. Additionally, the diagnostic coverage with respect to residual
faults has to be calculated on hardware element level. This diagnostic coverage is not the same as
the diagnostic coverage of a safety mechanism on system level. The diagnostic coverage with
respect to residual faults on hardware element level is calculated according to Equation 15.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 42 (74)

HWComp

RF
RFDCK




1, Equation 15

The failure rate classification and the diagnostic coverage have to be verified together against
target values according to the ASIL of the safety goal as given in Table 6.

ASIL

ASIL-D Failure rate class 4 Failure rate class 3 Failure rate class 2 Failure rate class 1 +

dedicated measures

ASIL-C Failure rate class 5 Failure rate class 4 Failure rate class 3 Failure rate class 2 +

dedicated measures

ASIL-B Failure rate class 5 Failure rate class 4 Failure rate class 3 Failure rate class 2

Table 6: Failure rate class target values for residual faults, [1] Part 5 Table 8

Where the evaluation for single-point faults describes a direct verification of the failure rate
classification against the target ASIL, for the residual fault a third criteria as the diagnostic
coverage of the hardware element regarding residual faults is taken into account. Dedicated
measures have to be taken for a diagnostic coverage lower than 90% while targeting ASIL-D or
ASIL-C. This table can be extended to the left by adding additional columns which describe a
higher diagnostic coverage than the maximum 99.9%. This can be achieved in accordance with
ISO 26262 Part 5 9.4.3.7.

Latent Multiple-Point Fault Verification:

In case of multiple-point faults, ISO 26262 Part 5 7.4.3.2 suggests to limit the analysis to dual-
point faults in the most cases. When applying the second method for the evaluation as FRC for
multiple-point faults, plausibility of dual-point failures has to be considered according to ISO 26262
Part 5 Clause 9.4.3.8 and 9.4.3.9. If the dual-point failure is not plausible, it shall be accepted with
the safety goal target.

Plausibility is on the one hand given if one of the dual-point faults remains latent for a time longer
than the multiple-point detection interval. For ASIL-D and ASIL-D, if there is no value prescribed,
the multiple-point fault detection interval can be specified as equal or lower than the item’s “power-
up to power-down” cycle, according to ISO 26262 Part 5 Clause 6.4.8. Additionally, a dual-point
fault is plausible, if one of the hardware parts diagnostic coverage regarding multiple-point latent
faults is lower than target values given in Table 7.

ASIL Hardware part diagnostic coverage

ASIL-D

ASIL-C

Table 7: Plausibility of dual-point faults

If the multiple-point fault has to be evaluated, the failure rate classification is provided for the
overall failure rate of the hardware element in the same way as for residual faults. The diagnostic
coverage with respect to latent multiple-point faults has to be calculated on hardware element level
according to Equation 16. Same as for residual faults, this diagnostic coverage is not equal to the
diagnostic coverage of a safety mechanism on system level.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 43 (74)

RFSPFHWComp

LMPF

LMPFDCK







,

,, 1 Equation 16

The failure rate classification and the diagnostic coverage both have to be verified against target
values provided by the ASIL of the safety goal. Target values are shown in Table 8.

ASIL

ASIL-D Failure rate class 4 Failure rate class 3 Failure rate class 2

ASIL-C Failure rate class 5 Failure rate class 4 Failure rate class 3

Table 8: Failure rate class target values for dual-point faults [1] Part 5 Table 9

For the dual-point fault individual evaluation, a combination of the occurrence of the fault
represented by the failure rate classification and the diagnostic coverage has to be evaluated
against target values provided by the ASIL classification of the safety requirement.

8.9 Outlook

The presented methodology for hardware safety evaluation will be further refined and applied to
use cases in terms of concept validation.

For complex parts, such as a microcontroller or an ASIC, further analysis of the internal structure,
as shown exemplarily in Figure 31, is necessary. Therefore, an approach according to the safety
evaluation presented in this deliverable is promising. This will be in focus of our future research in
terms of the presented model-based methodology.

SoC

Register

ALU

Control

logic

CPU Memory

RAM

Figure 31: System-on-chip safety analysis

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 44 (74)

9 Methodology 2: Consistency checks for the safety case

The ISO 26262 points out the importance of checking the work products throughout the whole
safety lifecycle for consistency e.g. ISO 26262-2, C.2.2, ISO 26262-3, 7.4.5.1, 8.4.5.1, ISO 26262-
4, 6.4.1.2, 6.4.6.1, 7.4.1.1 [1]. As the essential results of the work products are summarized in the
safety case, the safety case offers a good focal point to assure the consistency of central work
products.

The formalized SAFE meta model structures can be exploited to produce tangible automatic
consistency checks which can improve the quality of the macro structure and ensure the
consistency of traceability of the elements of the safety case.

Chapter 9.1 describes the macro structure of a safety case report which is based on the initial
structure defined in WT3.1.3. A template is used to describe how the sections of a safety case
report can be automatically generated and which meta model elements are involved.

Chapter 0 first describes the general idea of performing consistency checks on the SAFE meta
model. Furthermore a template is given which supports the documentation of individual
consistency rules, including the rationale behind the rule and patterns for checking the
consistency. The template is applied to describe consistency rules for checking the macro
structure of a safety case.

9.1 Macro structure of the safety case report

In the following tables the macro structure of the safety case report is described. The “Report
section” contains the name of the section of the safety case. The “Section summary” gives a
rationale why the information is provided in the safety case. The “Artifacts” gives information on
the artifacts which are provided in the safety case report section. The “Meta model artifact pattern”
gives a graphical representation of the relevant meta model artifacts and their relations. The
artifacts which are marked with a check box are included in the actual report section. Sometimes
there is more than one artifact pattern required. In this case only one pattern is given as an
example.

Report section:

Scope

Meta model artifact pattern

Section

summary

The following requirements
describe the scope of this safety
case. The scope requirements
limit the applicability of the
arguments presented in this safety
case in the intended way. The
scope section of the safety case
report defines the context within
which the remainder of the safety
case arguments is valid.

Artifacts List of requirement artifacts which
describe the scope for the safety.

Table 9: Scope section of safety case report

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 45 (74)

Report Section:

System Description

Meta model artifact pattern (example)

Section

Summary

The system description presents an
overview of the system. It is not the
purpose of this section to provide
full design detail. Full design detail
is available in the system
specification documents. The
descriptions in this section are
intended to help the reader of the
safety case to understand the
following sections.

Artifacts Artifacts of the system description
such as ECUs, sensors, actuators,
processors, HW Modules

Table 10: System description section of safety case report

Report Section:

System Hazards

Meta model artifact pattern

Section

Summary

The system hazard section
presents an overview of the
system hazards. It is not the
purpose of this section to provide
full detail. Full detail including
operational scenarios and
operating modes is available in
the hazard and risk analysis
report.

Artifacts List of system hazards.

Table 11: System hazards section of safety case report

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 46 (74)

Report Section:

System Requirements

Meta model artifact pattern (example)

Section

Summary

The safety requirements section
presents an overview and summary of
the safety requirements for the system.
It lists the safety goals, functional
safety requirements and technical
safety requirements. It is not the
purpose of this section to provide full
detail. Full detail is provided in the
specification of the system.

Artifacts List of safety goals, functional safety
requirements and technical safety
requirements.

Table 12: Safety requirements section of safety case report

Report Section:

Risk reduction measures: Functional safety concept

Meta model artifact pattern (example)

Section

Summary

The section summarizes the functional
safety concept. For each functional
safety requirement, the function which
implements the safety requirement is
given.

Artifacts List of functional safety requirements
together with the elements of the
preliminary architecture.

Table 13: Risk reduction section (functional safety concept)

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 47 (74)

Report Section:

Risk reduction measures: Functional safety concept

Meta model artifact pattern (example)

Section

Summary

The section summarizes the technical
safety concept. For each function the
hardware or software element which
implements the function is given.

Artifacts List of functions together with the
hardware or software elements to
which the function is allocated.

Table 14: Risk reduction section (technical safety concept)

Report Section:

Safety analysis: Overview of malfunctions / faults /
failures

Meta model artifact pattern (example)

Section

Summary

The safety analysis presents an
overview of the malfunctions / faults /
failures which habe been identified by
analyzing the safety concepts
presented in the previous section. Full
detail of the analysis is available in the
reports of the respective methods (e.g.
FMEA report).

Artifacts List of malfunctions / faults / failures
detected by safety analysis together
with the identified detection and
prevention measures.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 48 (74)

Table 15: Safety analysis section (malfunction / faults / failures)

9.2 General concept for application of consistency checks and metrics

Performing coverage and consistency checks during the development of the system safety case
helps to ensure the formal quality of each work product as well as the formal quality of the overall
safety case. This is illustrated in the following picture for the work products safety goals and
functional safety requirements: A set of consistency checks is applied to a section of the SAFE
meta model. In the example the section includes the safety goals which are derived from the
hazard and risk analysis. Consistency checks could now examine the meta model artifacts for
consistency with related artifacts, e.g. hazards or the derived functional safety requirements.

As indicated in Figure 32 results of the consistency checks could be fed in to quality metrics which
compute a formal quality of the work product, e.g. the coverage of safety goals by functional safety
requirements.

Both consistency checks and quality metrics can be used in quality reports which help the safety
engineer to

 Instantly identify formal quality issues and correct them

 Get a quantitative summary on the formal quality of the work product

In this deliverable we focus on the definition of the consistency checks.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 49 (74)

Figure 32: Interrelation of consistency checks and metrics and the SAFE meta model

9.3 Consistency checks for the safety case

The overall structure of the safety case has been defined in WT3.3.3. and further formalized in the
previous sections. The preliminary work helps to define the meta model artifact patterns which
need to be checked to ensure the consistency of the safety case.

In the following sections the consistency checks are described in detail. The “Short description”
gives a short hint why the artifact of the safety case is inconsistent. The “Severity” classifies how
important the inconsistency is. The “Explanation” gives more details on the reason of the
inconsistency often with a reference to ISO 26262. The “Task” gives advice how to resolve the
inconsistency. The “Meta model artifact pattern” gives a graphical representation of the relevant
meta model artifacts and their relations which are relevant for checking the consistency. The
artifacts which are marked with a grey color indicate negations. This means that the source artifact
is inconsistent if the grey artifact is not present in the pattern. Sometimes there is more than one
artifact pattern required to formulate a complete check. In this case only one pattern is given as an
example.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 50 (74)

9.4 Consistency checks for the macro structure of the safety case

The consistency checks described in this section ensure that all major sections of a safety case
are available.

Check:

SCMS001_SafetyCaseHasNoScope

Meta model artifact pattern

Short

description

A scope is not defined for the safety
case.

Severity Error

Explanation Requirements which describe the
scope for the safety case are missing.

Task Add scope requirements to the safety
case.

Table 16: Checking the safety case for scope definition

Check:
SCMS010_SafetyCaseHasNoSystemDescription

Meta model artifact pattern

Short description A system description is not
defined for the safety case.

Severity Error

Explanation The system description shall
provide an overview of the
system for the safety case.

Task Add a system artifact to the
safety case.

Table 17: Checking the safety case for system description

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 51 (74)

Check:

 SCMS020_SafetyCaseHasNoHazardAnalysis

Meta model artifact pattern

Short

description

A hazard and risk analysis is not
defined for the safety case.

Severity Error

Explanation The system hazards for the safety case
are identified by applying the hazard
analysis and risk assessment (see ISO
26262-3, 7.1)

Task Add a hazard analysis artifact to the
safety case.

Table 18: Checking the safety case for hazard and risk analysis

Check:

SCMS032_SafetyCaseHasNoSafetyGoals

Meta model artifact pattern

Short

description

Safety goals are not defined for the
safety case.

Severity Error

Explanation Safety goals shall be identified based
on the hazard and risk analysis (see
ISO 26262-3, 7.4.4.3).

Task Add a requirement artifact to the safety
case which contains the identified
safety goals.

Table 19: Checking the safety case for safety goals

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 52 (74)

Rule Check

SCMS034_SafetyCaseHasNoFSR

Meta model artifact pattern

Short

description

Functional safety requirements are not
defined for the safety case.

Severity Error

Explanation Functional safety requirements shall be
identified based on the safety goals
(see ISO 26262-3, 8.1).

Task Add a requirement artifact to the safety
case which contains the identified
functional safety requirements.

Table 20: Checking the safety case for functional safety requirements

Check:

SCMS036_SafetyCaseHasNoTSR

Meta model artifact pattern

Short

description

Technical safety requirements are not
defined for the safety case.

Severity Error

Explanation Technical safety requirements shall be
identified based on the functional safety
concept (see ISO 26262-4, 6).

Task Add a requirement artifact to the safety
case which contains the identified
technical safety requirements.

Table 21: Checking the safety case for technical safety requirements

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 53 (74)

Check:

SCMS040_SafetyCaseHasNoFunctionsForFunctionalS
afetyConcept

Meta model artifact pattern

Short

description

The functions for the functional safety
concept are not defined for the safety
case.

Severity Error

Explanation During the development of the
functional safety concept, the functional
safety requirements shall be allocated
to preliminary architectural elements
(see ISO 26262-3, 8). In PREEvision
these preliminary artifacts are the
functions of the logical architecture.

Task Add the identified logical functions to
the system of the safety case.

Table 22: Checking the safety case for functions of the functional safety concept

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 54 (74)

10 Methodology 3: Common-cause analysis in the geometric perspective using

physical properties and environmental conditions

An important issue described in the automotive standard for functional safety ISO 26262 is the
assurance of freedom from interference and the analysis of dependent failures. Physical factors
like temperature, electromagnetic interference (EMI) or collisions can be an unintended cause for
failures. They are potentials to cause dependent failures which do not occur independently as
assumed and possibly lead to violations of safety requirements. Safety-related systems are
typically developed in a distributed way and on different granularity levels such that common
causes that result from physical interferences can easily be overseen. An example is the possible
overheating that can result from multiple elements mounted in the same location of the vehicle.
Each component itself does not produce more heat than the cooling system could handle, but
caused through the positioning of the component the local heat limits can be exceeded and the
components, which initially were assumed to be independent of each other, are likely to fail in a
common cause. It is not obvious to detect potential dependent failures and interference between
components in a system’s architecture. Thus, it is important to have a methodology that guides the
realization of safety-related systems and helps identifying situations with dependent failures which
lead to violations of safety requirements. Furthermore the analysis should give that much insight of
the relation of the affected elements that strategies for resolving the common cause failures can
be developed.

To be able to identify these common causes additional information needs to be available in the
development models:

 Physical properties of the components (e.g. production of heat or EMC properties)

 Physical constraints of the components (e.g. range of temperature where nominal
operation can be guaranteed, maximum EM radiation that can be shielded)

 Geometric installation spaces (Components need to be map-able to positions inside the
vehicle)

 Environmental conditions (e.g. the defined environmental temperature range is an
important input to evaluate the maximum temperature in various regions of the vehicle)

It is intended to provide an interface from the models used in the safety oriented part of the
development process to models used for physical simulations.

The methodology that is described in the following section helps installing a hardware architecture
to a geometric architecture. It allows identifying potential violations of safety requirements due to
dependent failures which are caused by coupling effects related to physical component
characteristics and to the geometric system design. Based on an analysis of the safety
requirement violations adequate mans of compensation can be introduced that ensure fulfilling the
safety requirements. The methodology consists of several activities which can be used in an ISO
26262 oriented development process. The activities and their order are depicted in Figure 33. The
methodology can be applied on system level (ISO 26262 Part 4) or on hardware level (ISO 26262
Part 5). ISO 26262 compliant safety goals as well as functional and technical safety requirements
must be defined before. The installation methodology shall ensure the definition of a geometric
topology for a hardware architecture that complies with safety requirements. It helps identifying
potential dependent failures related to geometric design decisions for a hardware architecture.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 55 (74)

Figure 33: Steps for assessment of installations with environmental factors

10.1 Describing physical constraints and geometric installation

The description of physical constraints and geometric installations is the first step in the
assessment of installations with environment factors after the safety requirements, a hardware
architecture and physical environment conditions are defined. In this step first the physical
environment conditions are assessed for the hardware components of the hardware architecture
and for other components in the geometric architecture. In a second activity hardware component
prototypes of the hardware architecture are installed to a geometric architecture.

10.1.1 Physical condition

Each hardware component typically has physical constraints and properties (e.g. maximum
operation temperature). Physical conditions can also be assigned to non E/E elements to e.g. part
of the chassis (like the coefficient of heat conductivity). The physical properties can be defined
based on requirements, as described before, or based on the specification of single hardware or
geometric components. As described in [30] one can distinguish between active and passive
physical conditions.

 Active Physical Properties

Active physical conditions are physical characteristics of a component which can actively
influence an environment factor. Other component conditions like functional behavior can
again influence the active condition. Examples are the characterization of the surface
temperature of a hardware component, the heat flow related to a solid structure as well as
cooling characteristics with regard to specific cooling modes.

 Passive Physical Properties

Passive physical conditions are assumptions on how a component’s behavior or other
characteristics relate to an environment factor in the component’s physical environment.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 56 (74)

The condition therefore defines how a physical environment factor can influence a
component. An example is the temperature region for which proper function of a
component is promised. Other temperature regions are either too hot or too cold for the
usage of the component.

The description of passive conditions can relate to component states including errors as part of the
functional states which may lead to component failures. The violation of passive conditions can
therefore be considered as conditions leading to faults, which are “abnormal condition(s) that can
cause an element or an item to fail”, according the ISO 26262 vocabulary (ISO 26262 part 1). The
description of active physical conditions can address conditions, events and states for a
component including faults, errors and failures. Addressing them in the physical conditions will
help detecting potential violations of safety requirements during the interference analysis. Hence, it
is important to distinguish in which operating modes the active properties are valid. E.g. the
emitted heat might be total different in nominal operation mode than in the case of a cooling fault.

To specify the physical properties, we propose to use the concept of contracts [2] to separate
between assumptions and promises. Such contracts define physical component characteristics for
an assumed environment. These characteristics refer to specific environment factors like
temperature or EMC as defined by the ISO 26262 part 9, clause 7.4.4. We assume that physical
conditions either define how a component (actively) influences an environment factor or that they
define how a component (passively) reacts to an environment factor.

10.1.2 Geometric Installation

A geometric hardware topology is defined for the hardware architecture. Positions of a geometric
architecture are assigned to hardware component prototypes with their safety requirements,
physical conditions as well as behavioral and other characteristics. The definition of a geometric
hardware topology will allow analyzing whether a chosen hardware architecture is compliant to
safety requirements with regard to its installation to a geometric architecture. A geometric
architecture is either designed or modified respecting the hardware architecture to be installed. It
is assumed that the installation of a hardware architecture for an item to the geometric architecture
of a vehicle is defined on system level (ISO 26262 part 4) as part of the system design (ISO 26262
part 4, clause 7). The geometric topology of the hardware components themselves is defined on
hardware level (ISO 26262 part 5).

10.2 Idea of Analysis

In this section we propose the idea of a method to analyze possible interference for hardware
component prototypes in a geometric hardware topology allowing the detection of potential
dependent failures. “Single events or single causes that could bypass or invalidate a required
independence or freedom from interference between given elements and violate a safety
requirement or a safety goal” will be detected as required in the ISO 26262 part 9, clause 7. For
this part of the ISO 26262, the method can be used to consider “similar and dissimilar redundant
elements”, “functions and their respective safety mechanisms”, “physical distance between
hardware elements, with or without barrier” and “common external resources”. The method is
applied on system level to identify coupling effects on environmental factors as systematic failures,
as described in ISO 26262 part 4, clause 7.4.3. It can be applied in accordance to ISO 26262 part
4, clause 8 “Item integration and testing” in order to verify physical conditions of an item
implementation in the actual environment and in accordance to ISO 26262 part 5, clause 7
“Hardware design”.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 57 (74)

The Analysis consists of two steps, the identification of interference potentials and the
identification of affected safety goals.

The identification of interface potentials needs to be performed for each type of passive physical
properties of a component. It need to be identified for each of these types which active physical
properties directly or indirectly affect the passive constraint. For these components a physical
simulation needs to be started, which as a result needs to provide the situation which could violate
the physical constraints (passive conditions). For example, in the case of maximum operation
temperature the result of the simulation can be a heat map representing the maximum
temperature reached during the simulation run at various positions in the vehicle.

In the second step it needs to be identified if one of these temperatures exceeds the constraints
existing for a particular place in the geometric installation model. If the temperature is bound to
failure modes of the system, it can be possible that multiple faults occur at the same time based
on the temperature, there are dependent. Existing fault trees can be modified and the result
visualized.

10.3 Further Work

In the upcoming revision of this deliverable we will detail the modeling and analysis steps. In
particular the interface of the physical simulation, how the meta-model needs to be designed to
exchange the needed information and how the different properties need to be formalized using
contracts.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 58 (74)

11 Methodology 4: Multi-criteria deployment optimization and schedule generation

In the following section we present an approach that allows multi-criteria deployment optimization

and schedule generation and can be used as part of a larger design space exploration approach

as mentioned in [34]. It is possible to use multiple criteria for the approach, and the implementation

counterpart to this document will feature a multi-criteria capable plug-in that can target ASIL-based

allocation, worst-case-execution-time and number of hardware nodes for deployment. A theoretical

concept for the inclusion of selected other safety metrics identified is going to be developed in the

final version of the document, as identified by methodologies 1-3 and presented in sections 9, 10

and 11. The approach and descriptions thereof presented in this section are based entirely on the

work of Sebastian Voss, presented in collaboration with Bernhard Schätz in “Deployment and

Scheduling Synthesis for Mixed-Critical Shared-Memory Applications” at the ECBS 2013 [36].

11.1 Approach

The presented methodology represents an efficient approach for generating suitable system

architectures for embedded systems efficiently. The focus is on a joint generation of schedules

and deployment for mixed-criticality multicore architectures using shared memory. The presented

approach computes task and message schedules that are optimized with respect to a global

discrete time base. As part of the solution, the approach generates an optimized assignment of

tasks to computation resources (cores) concerning local memory constraints of cores and

criticality constraints of tasks. This approach is integrated into the AUTOFOCUS 3 tool-chain [32],

using a formally defined model of computation with explicit data-flow and discrete-time semantics

to develop multi-criticality embedded systems.

Figure 34: Deployment Synthesis in AF3 [37]

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 59 (74)

The approach relies on a symbolic encoding scheme, based on a system model that is derived
from the system architecture. A formalization describing the scheduling problem as a satisfiability
problem using boolean formulas and linear arithmetic constraints, which are the tackled by a state-
of-the-art satisfiability modulo theory (SMT) solver in order to compute the joint schedule and
deployment for such architectures, is presented in [36].

Implementations are being carried out in the research CASE tool AutoFOCUS3 (AF3)[9], the basic

sequence of which is shown in Figure 4, part of the tutorial referenced in [37], and are presented in

more detail in Section 9 of [34] as well as in [36] and [41].

Using this approach we provide an efficient deployment for multi-criteria problems (e.g. timing,

scheduling) as well as calculate (optimized) partitioning and mapping of systems according to

ASIL levels in a mixed-criticality environment, and has been developed in the context of the

SPES_XT Core project [38].

As shown in Figure 26, the ASIL levels, which are propagated through the component links on the

logical architecture, provide one criterion and we can freely select other criteria such as execution

time, energy consumption or any other resource optimization.

The deployment synthesis is based on rules definition carried out inside the solver in AF3, as

further explained in [36].

11.1.1 Scheduling Model

A mixed-critical application may consist of several components providing various functions. These

functionalities can be described as computational activities, called tasks. We define T = {t0, t1, . . .

,tn} as a set of tasks. These tasks generally communicate by messages – in the following

represented by M = {m0, m1, . . . ,mo} – and therefore cannot be executed in arbitrary order. The

dependency of tasks is described by a precedence relation defining the execution ordering and is

represented as a directed labeled graph, called a precedence graph G = {T,E}, where E ⊆ T x M x

T represents the dependencies between these tasks via the exchanged messages, as shown in

figure 5. For these dependencies, we define two different functions: Ƭ : T → 2
M
 such that Ƭ (t) =

{m | Ǝt´.(t, m, t´) ∈ E}, and ρ : M → T such that ρ (m) = t´ for (t, m, t´) ∈ E, where Ƭ describes the

set of messages m ∈ M triggered by a task t, and ρ describes for each message m ∈ M the

corresponding receiving task t´ ∈ T. Furthermore, each task may have an annotated criticality,

w.r.t. different safety integrity levels (SIL) as used, e.g., in [32].

Figure 35: Graphical Visualization of a precedence graph G [36]

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 60 (74)

A computation resource may execute a set of concurrent tasks, that is, tasks that can overlap in

time. These computation resources are called cores. Let C = {c0, c1, . . . ,cm} be a set of cores.

Furthermore, let ƞ : C → 2
T

 be a function that assigns to every core a set of tasks running on it. A

set of buses B is used to transport messages between cores. For reasons of simplicity, in the

following we focus on a single communication resource – i.e., B = {b} – that can be used by all

computing resources.

11.1.2 Satisfiability Modulo Theory – SMT

Satisfiability Modulo Theories (SMT) enable checking the satisfiability of logical formulas over one

or more theories. SMT combines the boolean satisfiability with other background theories, such as,

linear arithmetic, arrays, uninterpreted functions, etc. [32]. Thus, the well-known constraint

satisfaction problem of propositional satisfiability SAT, where the goal is to decide whether a

formula over boolean variables can be made true by choosing true/false values for its

variables, is extended by more expressive logics such as first-order logic. First-order logic

formulas consist of logical connectivities, variables, quantifiers, functions and predicate symbols.

In SMT, interpretations of some symbols are constrained by a background theory (e.g. linear

arithmetics, etc.). SMT provides a model as a solution. This model consists of interpretations for

the variable, function and predicate symbols that make the formula true. Finding optimized

solutions requires either some meta-search techniques or the usage of retractable assertions,

enabling for a simple re-execution. We will demonstrate a binary search on top of the provided

solution. Further information on satisfiability modulo theories can be found in [32].

11.2 SMT Based Deployment and Scheduling Synthesis

As mentioned in previous sections, we present an approach for jointly generating (safety-related)

deployments for multicore architectures using a shared memory (based on different SIL levels)

and their corresponding schedules. The presented approach uses a formalization for this joint

generation of deployments and schedules, consequently leading to a much higher class of

complexity than single scheduling synthesis.

We formalize this problem as a satisfiability problem using boolean formulas and linear

arithmetical constraints. We demonstrate that efficient SMT solvers can be used for finding

deployments of functions to cores w.r.t. schedulability rules, allocated SIL-levels and soft- and

hardware memory constraints.

11.2.1 SMT Solver YICES

YICES [40], [43] is an efficient SMT solver developed at SRI International. It supports a

combination of first-order theories, such as arithmetics, uninterpreted functions with equality, bit

vectors, arrays, recursive data-types, and more. YICES is able to solve classical SMT problems,

namely it decides the satisfiability of propositionally complex formulas in such theories. Further

information concerning YICES architecture and algorithms can be found in [44].

11.2.2 Translation to YICES

We propose to solve the defined problem, as previously formulated in the introductory section by

using an SMT solver. Therefore, we need to encode the joint scheduling and deployment problem

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 61 (74)

as a decision problem using boolean formulas with linear arithmetic constraints in order to check

the validity. The scheduling problem comprises to find a valid deployment of task to cores, w.r.t.

the given constraints. By finding a valid solution, we are then able to generate a deployment and

its corresponding schedule that comply to the requirements of an optimized global discrete time

base ℓ, as previously defined.

With respect to this goal of finding a deployment including an optimized task and message

schedule based on AF3 semantics [35], we implement a binary search finding the shortest latency

possible. Using this binary search as a meta search strategy, latency can bounded, making

quantifier instantiation terminating, and thus the approach applicable, with respect to

boundedness.

11.2.2.1 Assumptions

Our target is to demonstrate that suitable system architectures can be generated efficiently. A

suitable system architecture (in our case) includes a safety-oriented deployment and its

corresponding time schedule. In order to meet this objective, we need to generate a task and

message schedule, meaning to calculate starting times for all tasks t ∈ T and messages m ∈ M,

including valid allocation of tasks to cores (e.g. ti,core = {corei}, where ti ∈ T and corei ∈ C).

The following assumptions are used in this approach:

 The precedence graph is defined a priori. The assignments (Ƭ : T → 2
M
 and ρ : M → T)

are defined as well. Preemption of tasks is not considered.

 As messages are input respectively outputs of a certain task (corresponding to the given

precedence graph G), the precedence relations have to be guaranteed, according the their

causality.

 As each message m ∈ M is transferred via a write and read operation in and out of the

shared memory MEM, we distinguish between a write and read part for each message

m ∈ M.

 The time which is estimated as communication duration for each write and read message

m ∈ M corresponds to the time for transmitting it over the bus and writing it into the shared

memory. The read and write operations are accumulated as task computation time.

Furthermore, while the developed approach does not rely on the following restrictions, in the

following for simplification purposes, we expect the computing resources (cores) in the system to

be identical concerning computation speed, and only use a single communication bus B and a

single shared memory MEM.

11.2.2.2 Definitions

The given precedence graph G comprises several elements: a set of cores, a set of tasks and a

set of messages. Thus, we begin by defining type declarations for these precedence graph

elements in YICES.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 62 (74)

Definition 1 (Tasks):

A task type specification is done using a set of properties in a dedicated data structure that is

defined as a record type in YICES input language, as follows:

The defined task record stores parameters of a single executable task ti. The variable start_time

defines the starting, computation_time the given computation duration and complete_time the

finishing time of a certain task. The variable core represents the core on the multi-core chip a task

is allocated to. Furthermore, each task has a dedicated safety integrity level (sil) and needs a

certain amount of memory (ram).

Definition 2 (Messages):

We specify a message type by using a message record (comparable to Definition 2) that stores

the parameter information of a single message mi. The variable start_time stores the starting time

of a message. The communication_duration stores the given transmission duration and the

complete_time stores the finishing time of a message.

Definition 3 (Cores):

The set of cores is defined as C = {c1, . . . , cs}. All cores c ∈ C. This set of cores can be specified

using a scalar:

where 1, 2, . . . , s complies to the size of the set C. A record definition, comparable to tasks and

messages defines further properties of a core, e.g. a dedicated safety integrity level, w.r.t. a

standard (sil::ASIL). We use scalar coding instead of a subrange types, because this leads to

a reduction of decisions by a factor of 100. The set of tasks T and messages M is specified

comparatively.

(define-type TASKS (record

start_time :: nat

computation_time :: nat

complete_time :: nat

core :: cores

sil::ASIL

ram::nat))

define-type CORES (scalar 1 2 ... s))

(define-type MESSAGES (record

start_time :: nat

communication_duration :: nat

complete_time :: nat))

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 63 (74)

11.2.2.3 Assertions

In the following, we describe the assertions used to solve the given problem.

Assertion 1 (Scheduling Attributes):

As tasks and messages have certain computation or communication times, we need to define

these durations as parameters. The goal is to effectively generate optimized and safety related

deployments, w.r.t. design rules given by the safety standards. Therefore, a set of additional

attributes is needed, w.r.t. safety and memory consumption. These attributes are defined a priori

and can be described as follows:

where ti,sil comprises the safety integrity level, ti,ram the necessary memory used by this task and

s, t, u, v are the concrete use case-related values.

Assertion 2 (Task Allocation):

Task computation times need to be disjoint, if tasks are allocated to the same computing resource

(core), meaning there is only one task at most that is currently using the resource at a time.

We make use of YICES quantifiers for specifying this constraint:

(assert (forall (t1::TASKID t2::TASKID) (or

(or (or ((= t1 t2)

(/ = (select (tasks t1) node) (select (tasks

t2) node)))

(>= (select (tasks t1) start_time) (select

(tasks t2) complete_time)))

(>= (select (tasks t2) start_time) (select

(tasks t1) complete_time)))))

⊭ Ǝ t (t ∈ Time) (

ti.start_time ≤ t < ti.complete_time Ʌ

tj.start_time < t ≤ tj.complete_time Ʌ

ti.core = tj.core Ʌ ti ≠ tj)

⊨ ti.computation_t = s,

⊨ ti.sil = t,

⊨ ti.ram = u,

⊨ mi.communication_duration = v

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 64 (74)

Assertion 3 (Precedence Graph):

The goal is to calculate a schedule, where all precedence relations defined in Ƭ (tsend) = {mi_write}

and ρ(mi_read) = {trec} are met. The causality of a task is important in that context. Therefore, a task

(tsend) derived from a weak-causal AF3 component should meet the following timing constraints:

The complete time of this task (tsend) and the start time of the write - part of a message (mi)

(indicated as mi_write) should be equal and the complete time of the read - part of this message

should be less or equal to the start time of the receiver task (trec). Note that write and read – parts

of a message can be timely separated, as this is one of the characteristics using shared memory

systems:

where message mi_write , mi_read ∈ M and tsend , trec ∈ T. We make use of lambda expressions, to

denote unnamed functions like this:

where [expression] realizes the arithmetic constraints specified above.

In case a sender task (tsend) is derived from a strong-causal component this semantic intends a

different behavior: The complete time of the sender task (tsend) should be greater or equal to the

start time of the message (mi_write).

where message mi_write ∈ M and tsend ∈ T. The implementation in YICES is comparable to the

previous one. Using these different semantics (strong and weak - causal) implies that the design

space varies with respect to the possibilities given by the message allocation and causality.

Assertion 4 (Message Allocations):

A disjoint access of messages to a shared communication resource needs to be guaranteed,

meaning there is only one message at a time that can be transmitted and written into the shared

memory:

⊭ Ǝ t (t ∈ Time) (

mi.start_time ≤ t < mi.complete_time Ʌ

mj.start_time < t ≤ mj.complete_time Ʌ mi ≠ mj)

⊨ (mi_write.start_time >= tsend.complete_time)

(define LINK :: (-> TASKID MESSAGEID MESSAGEID

TASKID) (lambda

(source:: TASKID messageSEND:: MESSAGEID

messageREC:: MESSAGEID target:: TASKID)

(... expression)

⊨ (mi_write.start_time = tsend.complete_time) Ʌ

(mi_read.complete_time ≤ trec.start_time),

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 65 (74)

In case task tsend and task trec are allocated to the same computing resource, the complete time of

each task is calculated as follows:

In case sender task tsend and receiver task trec are allocated to different computing resources, the

complete time is calculated as follows:

We use a function of YICES input language to specify this calculation:

Furthermore, local memory is needed by the set of tasks T on their allocated cores C. Thus, a core

corei provides enough memory for all tasks ti that are allocated to this core. We specify this

constraint using a comparable functions as the link function specified previously.

Assertion 5 (Safety Integrity Level)

In order to provide a formalization of the joint generation of schedules and safety-critical

deployments, we use SIL-annotations of components, to specify deployment constraints:

where task ti,sil comprises to all task ti ∈ T with ƞ(corei) = { ti }, meaning all tasks that are

allocated to the core corei ∈ C:

(assert (forall (t:: TASKID) (<= (select

(tasks t) sil)

(select (nodes (select (tasks t) node))

sil))))

⊨ (ti,sil <= corei,sil)

((define DURATION :: (-> TASKID MESSAGEid

TASKID) (lambda

(source:: TASKID messageSEND:: MESSAGEID

messageREC:: MESSAGEID target:: TASKID)

(if (= (select (tasks source) node) (select

(tasks target) node))

(select (messges message) start_time)

(+ (select (messages message)

start_time) (select (messages message)

computation_time)))))

mi.complete_time = mi.start_time + mi.communication_duration

iff: tsend.core ≠ trec.core

mi.complete_time = mi.start_time

iff: tsend.core = trec.core

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 66 (74)

11.2.2.4 Correctness Properties

Finally, given system requirements are specified as a correctness property for the given SMT -

based joint scheduling and deployment generation approach. We specify the global discrete time

base as a length | ℓ |. The calculated deployment should contain a schedule using this length | ℓ |

(e.g. 100 time units).

The check command is used to check whether the current logical context is satisfiable or not. If

the joint problem of deployment and scheduling is satisfiable using the constraints imposed by the

given end-to-end system requirement, a solution model is given.

11.3 Description based on an Example

In the following we present an automotive use case to demonstrate the usability of the presented

approach using a real world example.

11.3.1 Adaptive Cruise Control (ACC) – System

The Adaptive Cruise Control (ACC) is an automotive use case. The ACC automatically adjusts the

traveling speed of an automotive vehicle by controlling the acceleration and breaking momentum,

based on a driver-defined reference speed, the current speed as well as the distance to a

(possibly present) leading vehicle. Figure 6 shows how the ACC system is modeled using our

research CASE tool AF3, with an architecture consisting of 5 main components (speed and

distance plausibilization, speed- and distance-based control, (de-)acceleration computation).

Figure 36: Automotive Use Case: Adaptive Cruise Control (ACC) model in AF3 [36]

(assert (<= (- endLatency startLatency) 100))

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 67 (74)

AF3 provides different component semantic with respect to timing: the notion of strong and weak

causality. This approach supports both of them. Therefore, we specify all components as weak-

causal, except of one component, named ”DistancePlausibilization”. This component is specified

as strong-causal. Furthermore, there are different levels of criticality. Component

”DistancePlausibilization” and component ”SpeedPlausibilization” have an annotated safety

integrity level (SIL) of 2, while all other components are of SIL 1, with higher SIL numbers denoting

a higher criticality level.

11.3.2 ACC Schedule Synthesis

We demonstrate the proposed approach by using the AF3 system model of the ACC from the

previous section. This model is transformed into a scheduling model represented by an extended

precedence graph G. We use the scheduling model as a basis for the presented SMT-based

scheduling approach.

For the given ACC use case, we generate a set of 5 tasks T = {tSpeedPlausibilization, tDistancePlausibilization,

. . . , tAccerelation} according to the given components and a set of 13 messages M = {mSensSpeed, . . . ,

mCmdAcc}. Furthermore, based on the technical architecture of the ACC, we generate to 2 cores C

= {core1, core2}, a shared memory MEM and an avalon bus B.

In the next step, assertions are generated w.r.t. the defined system attributes, e.g. the

computation time (computation_time) or the different safety integrity levels (SIL) for each task.

This is done for all elements in the scheduling model.

The YICES assert command is used for specifying the system attributes:

In a next step, we define constraints that are imposed by precedence relations defined in the

generated precedence graph G. As tasks and messages cannot be scheduled in an arbitrary

order, precedence relations are defined by the functions Ƭ and ρ are used to guarantee all

precedence relations in G (e.g. Ƭ(tDistancePlausibilization) = {mCurSpeed} and ρ(mCurSpeed) = {tDistanceControl}).

As a system requirement, the goal is to minimize the logical tick duration | ℓ |. Therefore, we

demand for a schedule with a latency of less than 100 time units, as discussed in section 11.2.2.4.

11.3.3 Satisfied Solution Model

The function of a SMT solver is to check the satisfiability of logical formulas over one or more

theories. The solution model provided by the SMT solver is a valid deployment for the given

deployment problem under consideration. However, the SMT solver outputs one solution that

(assert (= (select (task

SpeedPlausibilization) computation_time) 10))

(assert (= (select (task

SpeedPlausibilization) sil) 1))

...

(assert (= (select (m CurSpeed)

communication_duration) 2))

...

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 68 (74)

fulfills the defined constraints. A valid solution, a model, consists of interpretations for the

variables, functions and predicate symbols that makes the formula true. For analysis and

demonstration of operation, we invoke YICES on the given Adaptive Cruise Control (ACC) -

System.

Solution Model given by YICES SMT - Solver:

The solution model comprises all defined elements. This includes a solution for the defined task

and message scheduling problem. Furthermore, the following allocation of tasks to cores has been

generated, w.r.t. a priori defined safety integrity level and memory constraints:

ƞ(core0) = {tDistancePlausibilization, tSpeedPlausibilization} and ƞ(core1) = {tSpeedControl, tDistanceControl, tAccerelation }.

For instance, task tDistancePlausibilization has a calculated start time of 0 time units. Task

tSpeedPlausibilization starts at 12 time units and is allocated to core core0. Message mCurSpeed_write, for

instance, has an allocated starting time of 22 time units.

Thus, based on the solution model provided, we are able to extract an integrated task and

message schedule γ = {ti ↦ γ i , ∀ ti ∈ T} that is integrated into the AF3 system model.

(= duration 34)

(= (task DistancePlausibilization)

(mk-record

start_time :: 0

computation_time :: 10

core :: 0))

ram :: 250

sil :: 1

(= (task SpeedPlausibilization)

(mk-record

start_time :: 12

computation_time :: 10

core :: 0))

ram :: 100

sil :: 1

...

(= (message CurSpeed_write

(mk-record

start_time :: 22

communication_duration :: 2

(= (message CurDist

...

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 69 (74)

The calculated schedule is illustrated in figure 7. As previously explained, tasks tSpeedPlausibilization

and tDistancePlausibilization are allocated to the same core core0. The other tasks are allocated to the

core core1. Hence, the execution ordering needs to be disjoint for that node.

Figure 37: Optimized Schedule of Active Cruise Control in AF3 [36]

Thus, the optimized global discrete time base ℓ for the given AF3 system model under

consideration is calculated to be 34 time units. YICES SMT Solver needs less than 100 msec to

calculate a valid solution. Using a binary search for optimizing the duration | ℓ | of the global

discrete time base, YICES uses less than 1 sec.

γ = {tSpeedPlausibilization ↦ 〈 12; {22, 0} 〉,

 {tDistancePlausibilization ↦ 〈 0, {10, 12} 〉,

 {tSpeedControl ↦ 〈 2, { } 〉,

 {tDistanceControl ↦ 〈 14, { } 〉

 {tAccerelation ↦ 〈 24, { } 〉}

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 70 (74)

12 Conclusions

This second version of deliverable D3.3.3 describes concepts and methodologies for the
assessment of architectures in context of functional safety. Four different methodologies are
presented: First methodology addresses model-based hardware safety assessment on different
level of abstraction. The second methodology is in focus of coverage and consistency checks for
the safety case. Third methodology describes performing common-cause analysis in the geometric
perspective using physical properties and environmental conditions. Methodology 4 provides multi-
criteria deployment optimization and schedule generation. Additionally, in the work package 4
“Technology platform”, the methodologies are in focus of implementation work.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 71 (74)

13 References

[1] International Standards Organization, ISO 26262 Standard, “Road Vehicles - Functional
Safety,” http://www.iso.org/, 2011.

[2] International Electrotechnical Commission, IEC 61508 Standard, “Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-related Systems,”
http://www.iec.ch/functionalsafety, 2009.

[3] Adler, N., Otten, S., Mohrhard, M., and Müller-Glaser, K.-D., “Rapid Safety Evaluation of
Hardware Architectural Designs Compliant with ISO 26262,” in Rapid System Prototyping
(RSP), 24rd IEEE International Symposium on, 2013, pp. 66–72.

[4] Börcsök, J., “Functional Safety: Basic Principles of Safety-Related Systems,” Hüthig Verlag,
1. Edition 2007.

[5] International Electrotechnical Commission, "Technical Report: Reliability data handbook -
Universal model for reliability prediction of electronics components, PCBs and equipment,"
IEC Standard TR 62380, Rev. Aug. 2004.

[6] Departement of Defense, "Military handbook: electronic reliability design handbook," MIL-
HDBK-338B, Rev. Oct. 1998.

[7] FIDES Group, "Reliability Methodology for Electronic Systems," FIDES guide 2009 edition A,
Rev. Sept. 2010.

[8] International Electrotechnical Commission, IEC 61025 Standard, “Fault tree analysis (FTA),”
2006.

[9] Veseley, W. E. et al., NUREG-0492 Standard, “Fault Tree Handbook,” 1981.

[10] Veseley, W. E. et al., “Fault Tree Handbook with Aerospace Applications,” NASA Office of
Safety and Mission Assurance, 2002.

[11] Departement of Defense, “Military Standard: Procedures for Performing a Failure Mode,
Effects and Criticality Analysis,” MIL-STD1629, 1974.

[12] Grebe, J. C., Goble, W. M., “FMEDA – Accurate Product Failure Metrics,” FMEDA
Development Paper, Rev. 1.1, 2007.

[13] Collett, R. E. and Bachant, P. W., “Integration of BIT Effectiveness with FMECA,”
Proceedings of the Annual Reliability and Maintainability IEEE Symposium, New York, 1984.

[14] Moore Products Co., “Safety Manual for QUADLOG,” 1997.

[15] Leitner-Fischer, F. and Leue, S., "The QuantUM Approach in the Context of the ISO
Standard 26262 for Automotive Systems," Technical Report soft-11-01, University of
Konstanz, 2011.

[16] Jeon, S.-H., et al., "Automotive hardware development according to iso 26262," presented at
13th International Conference on Advanced Communication Technology (ICACT), Korea,
Feb. 13-16, 2011.

[17] Bellotti, M., and Mariani, R., "How future automotive functional safety requirements will
impact microprocessors design," Microelectronics Reliability, 2010,
doi:10.1016/j.microrel.2010.07.041

[18] Sinha, P., "Architectural design and reliability analysis of a fail-operational brake-by-wire
system from ISO 26262 perspectives," Reliability Engineering and System Safety, 2011,
doi:10.1016/j.ress.2011.03.013.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=46752
http://www.iec.ch/functionalsafety

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 72 (74)

[19] Svancara, K., Forbes, W., Priddy, J., Kudanowski, M. et al., "Experience with the second
method for eps hardware analysis: "evaluation of each cause of safety goal violation due to
random hardware failures", " presented at VDA Automotive SYS Conference on Quality and
Functional Safety Management for Automotive software-based Systems, Germany, May 14-
16, 2012.

[20] Svancara, K., Priddy, J., Lovric, T., Miller, J. et al., "Advantages of the Alternative Method for
Random Hardware Failures Quantitative Evaluation - a Practical Survey for EPS," SAE Int. J.
Passeng. Cars – Electron. Electr. Syst. 6(2):377-388, 2013, doi:10.4271/2013-01-0190.

[21] Papadopoulos, Y. et al., “Engineering failure analysis and design optimisation with hip-hops,”
Engineering Failure Analysis, vol. 18, no. 2, pp. 590 – 608, 2011, the Fourth International
Conference on Engineering Failure Analysis Part 1.

[22] M. Walker, Y. Papadopoulos, D. Parker, H. Lönn, M. Törngren, D. Chen, R. Johansson, and
A. Sandberg, “Semi-automatic fmea supporting complex systems with combinations and
sequences of failures,” SAE Int. J. Passeng. Cars - Mech. Syst. 2(1), pp. 791–802, 2009.

[23] Adler, N., Hillenbrand, M., Müller-Glaser, K.-D., Metzker, E., and Reichmann, C.,
“Graphically notated fault modeling and safety analysis in the context of electric and
electronic architecture development and functional safety,” in Rapid System Prototyping
(RSP), 23rd IEEE International Symposium on, 2012, pp. 36–42.

[24] AUTOSAR, "AUTOSAR Project Objectives V3.0.0, R4.0 Rev. 3,” Rev. Dec. 2011.

[25] ATESST2 Consortium, "EAST-ADL Domain Model Specification - Deliverable D4.1.1," Rev.
June 2010.

[26] Cuenot, P., Adler, N., and Otten, S., SAFE Project, “Deliverable D3.2.2b: Proposal for
extension of meta model for hardware modeling,” 2013.

[27] Adler, N., Otten, S., Cuenot, P., and Müller-Glaser, K., "Performing Safety Evaluation on
Detailed Hardware Level according to ISO 26262," SAE Int. J. Passeng. Cars – Electron.
Electr. Syst. 6(1):102-113, 2013, doi:10.4271/2013-01-0182.

[28] Vector Informatik GmbH, “PREEvision User Manual Version 6.0.1”, 2013.

[29] Innal, F., Dutuit, Y., Rauzy, A., and Signoret, J.-P., “New insight into the average probability
of failure on demand and the probability of dangerous failure per hour of safety instrumented
systems”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability June 1, 2010 vol. 224 no. 2 75-86, 2009, doi:10.1243/1748006XJRR278.

[30] Baumgart, A., „A Contract-Based Installation Methodology for Safety-Related Automotive
Systems“, SAE Technical Paper 2013-01-0192, April 2013

[31] Damm, W., Baumgart, A., Böde, E., Büker, M., Ehmen, G., Gezgin, T., Henkler, S., Hungar,
H., Josko, B., Oertel, M., Peikenkamp, T., Reinkemeier, P., Stierand, I. and Weber, R.,
“Architecture Modeling”, OFFIS, March 2011.

[32] L. de Moura and N.Bjoerner, “Satisfiability modulo theories: An appetizer,” in SBMF, 2009,
pp. 23–36.

[33] H. Gall, “Functional safety IEC 61508 / IEC 61511 the impact to certification and the user,” in
Proceedings of the 2008 IEEE/ACS International Conference on Computer Systems and
Applications, ser. AICCSA ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp.
1027–1031. [Online]. Available: http://dx.doi.org/10.1109/AICCSA.2008.4493673

[34] The SAFE-E Consortium. Deliverable D4.4.a “First version of plug-in for safety and multi
criteria architecture modeling and benchmarking”. EUROSTARS. 2013.

[35] AutoFOCUS3. Fortiss GmbH. 2013, af3.fortiss.org.

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 73 (74)

[36] Sebastian Voss, Bernhard Schätz, “Deployment and Scheduling Synthesis for Mixed-Critical
Shared-Memory Applications”. Proceedings of the 20th Annual IEEE International
Conference and Workshops on the Engineering of Computer Based Systems (ECBS) 2013.

[37] Sebastian Voss, Antoaneta Kondeva, Daniel Ratiu, Bernhard Schätz, “Seamless Model-
based Development of Embedded Systems with AF3 Phoenix”. Tutorial at the 20th Annual
IEEE International Conference and Workshops on the Engineering of Computer Based
Systems (ECBS) 2013.

[38] SPES-XT Project Consortium. spes2020.informatik.tu-muenchen.de/spes_xt-home. 2013.

[39] Z3 SMT Solver, Microsoft Research, Microsoft Corportation. research.microsoft.com/en-
us/um/redmond/projects/z3. 2013.

[40] YICES SMT Solver, SRI Tools, Stanford Research Institute. yices.csl.sri.com. 2013.

[41] Sebastian Voss, Johannes Eder, Florian Hölzl, Bernhard Schätz. “An integrated Design
Space Exploration Approach”. Submitted.

[42] Automotive, Railway and Avionics Multicore Systems – ARAMiS Project Consortium..
www.projekt-aramis.de. 2013.

[43] B. Dutertre and L. de Moura, “The yices smt solver,” Computer Science Laboratory, SRI
International, Tech. Rep.

[44] B. Dutertre and L. de Moura, “Fast linear-arithmetic solver for dpll(t),” in Proc. 18th
Computer-Aided Verification conference, ser. LNCS, vol. 4144. Springer-Verlag, 2006, pp.
81–94.

http://www.projekt-aramis.de/

SAFE – an ITEA2 project D3.3.3b

 2011 The SAFE Consortium 74 (74)

14 Acknowledgments

This document is based on the SAFE and SAFE-E projects. SAFE is in the framework of the
ITEA2, EUREKA cluster program Σ! 3674. The work has been funded by the German Ministry for
Education and Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of
the Economy and Finance (DGCIS). SAFE-E is part of the Eurostars program, which is powered
by EUREKA and the European Community. The work has been funded by the German Ministry of
Education and Research (BMBF) and the Austrian research association (FFG) under the funding
ID E!6095. The responsibility for the content rests with the authors.

