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5 Executive Summary 

The methodologies presented in this deliverable D3.3.3 describe qualitative and quantitative 
assessment of architectures regarding functional safety. Therefore, the methodologies for safety 
evaluation are in accordance with the needs of ISO 26262, based on requirement analysis 
performed in the SAFE project.  

The deliverable targets architecture evaluation and assessment in terms of model-based 
development with the focus on functional safety. Thus, the context of architecture modeling with 
enrichment of failure information and instrumentation for model-based evaluation is presented. 

Four specific topics are described into detail: “Assessment of hardware on different level of 
abstraction”, “Consistency checks for the safety case”, “Common-cause analysis in the geometric 
perspective using physical properties and environmental conditions” and “Multi-criteria deployment 
optimization and schedule generation”. The methodologies are classified regarding the relevant 
parts of ISO 26262 [1].  

Moreover, the relation of the methodologies to corresponding work task in the WP4 “Technology 
Platform” is described in order to provide concepts for tool implementation. This enhances the 
level of automatism in terms of model-based architecture safety evaluation. 
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6 Introduction and overview of document 

This document for safety evaluation in terms of assessment of electric and electronic architectures 
provides different methodologies to perform qualitative and quantitative assessment on different 
abstraction layers and different level of granularity.  

6.1 Scope of work task WT3.3.3 

Deliverable D3.3.3 deals with the use of SAFE meta model constructs and provides methodologies 
to assess architectures regarding functional safety. The defined methodologies are shortly 
presented in the following: 

 

Assessment of hardware on different level of abstraction 

To provide a model-based safety evaluation of hardware designs, a minimal set of constructs were 
extracted out of the SAFE meta model. A methodology and a process description for hardware 
safety evaluation is provided. Different phases of hardware concept and development as well as 
qualitative and quantitative assessments are addressed. This contribution facilitates the basis for a 
research prototype implementation, covered in WT4.2.6. 

 

Consistency checks for the safety case 

The SAFE meta model allows to capture the system safety concept in semi-formal way. In 
WT3.3.3, the SAFE meta model concepts are used to define a simple template for documenting 
consistency checks and metrics to evaluate and improve the formal quality of the system safety 
case. This contribution shall provide the basis for tool supported automatic consistency checks 
and metrics which shall be implemented in WT4.2.6. 

 

Multi-criteria Deployment Optimization and Schedule Generation  

The method comprises an efficient approach for generating suitable system architectures for 
embedded systems efficiently, which allows multi-criteria deployment optimization and schedule 
generation and can be used as part of a larger design space exploration approach. It is possible to 
use multiple criteria for the approach, and the implementation counterpart to this document 
features a multi-criteria capable plug-in that can target ASIL-based allocation, worst-case-
execution-time and number of hardware nodes for deployment in the draft version. A concept for 
the integration of safety metrics identified in the SAFE/SAFE-E project, such as the hardware 
metrics or geometrical aspects identified in methods 1-3 and presented in sections 9, 10 and 11, 
will be featured in its final version. 

 

6.2 Structure of the document 

The following Section 7 gives an overview of the ten parts of ISO 26262 and classifies the 
methodologies of this work task to the corresponding parts and clauses. The first methodology for 
safety evaluation of hardware designs is presented in Section 8. Section 9 provides the second 
methodology for consistency checks in context of the safety case. Section 10 describes the third 
methodology regarding common-cause analysis in the geometric perspective. The fourth 
methodology in context of multi-criteria deployment optimization and schedule generation is 
presented in Section 11. Finally, in Section 12, a brief conclusion is given. 
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7 Overview of ISO 26262 

This section briefly describes which parts of the ISO 26262 are involved for the two presented 
methodologies of safety evaluation and assessment. Relevant clauses within the parts of the ISO 
26262 are framed in different colors, as shown in Figure 1. A brief explanation for each of the 
relevant parts is presented as well as the specific relation to the methodologies. 

 

Figure 1: Overview of ISO 26262 [1] with highlighted relevant parts for work task WT3.3.3 

 

7.1 Explanation of relevant ISO 26262 Parts 

Part 3 “Concept phase”: 

During the concept phase for automotive systems, ISO 26262 Part 3 describes the definition of the 
item for development. Afterwards, requirements regarding the initiation of the safety lifecycle are 
presented. For the item, a hazard analysis and risk assessment has to be performed. This leads to 
the definition of the corresponding functional safety concept. 

 

Part 4 “Product development at the system level”: 

ISO 26262 Part 4 specifies requirements and recommendations for the product development at 
the system level. Therefore, in a first step requirements for the initiation of the system level 
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product development are defined and technical safety requirements specified. The technical safety 
concept in context of the product has to be captured to start the design of the system. After 
system design, hardware and software as described in Parts 5 and 6 is developed. For the overall 
item integration and testing as well as safety validation and the assessment regarding functional 
safety for the complete system, Part 4 provides the corresponding requirements. Concluding, 
product release is mentioned. 

 

Part 5 “Product development at the hardware level”: 

Requirements for the product development at the hardware level are specified in ISO 26262 Part 
5. This part focuses on the definition of requirements for the initiation of product development at 
the hardware level, coming from system specification of Part 4. Afterwards, the specific hardware 
safety requirements are mentioned to start the initiation of the hardware design. For verification, 
requirements focusing on the evaluation of the hardware architectural metrics and the evaluation 
of violation of the safety goal due to random hardware failures and hardware integration and 
testing are specified. 

 

Part 9 “ASIL-oriented and safety-oriented analyses”: 

ASIL-oriented and safety-oriented analysis is specified in ISO 26262 Part 9. This includes the 
definition of requirements decomposition with respect to ASIL tailoring as well as the definition of 
criteria for the coexistence of elements. Additionally, requirements regarding general safety 
analyses and the analysis of dependent failures for the system are described. 

 

Part 10 “Guideline on ISO 26262”: 

Part 10 of ISO 26262 is intended to provide a guideline for the application of ISO 26262. Therefore 
it contains additional explanations and examples in order to facilitate comprehension of the 
concepts of ISO 26262. It has informative characteristic, therefore in case of inconvenience, the 
requirements, recommendations and information specified in the other parts of ISO 26262 apply. 
Part 10 was published in August 2012 after official release of the ISO 26262. 

 

7.2 Relation of presented methodologies to relevant ISO 26262 Parts 

Methodology 1 (green): Assessment of hardware on different level of abstraction 

For the assessment of hardware, especially ISO 26262 Part 5 is in focus as it describes the 
product development at the hardware level. For different safety analyses and their 
interconnections, Part 9 Clause 8 contains additional information. The guideline of Part 10 
provides application examples regarding different hardware safety evaluations. 

 

Methodology 2 (red): Consistency checks for the safety case 

The consistency checks and metrics defined in WT3.3.3 can be applied during item definition, 
hazard and risk analysis and the functional safety concept, which are related to ISO 26262 Part 3, 
and specification of the technical safety requirements and the system design, included in ISO 
262626 Part 4. They are especially useful when iterating between these tasks. 
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8 Methodology 1: Assessment of hardware on different level of abstraction 

 

8.1 Introduction 

Novel functionalities and innovations, such as driver assistance systems, lead to growing 
technological complexity of electric and electronic systems for road vehicles. Achieving reliability 
as a key factor to ensure hazardless operation is therefore constantly becoming more and more 
challenging. To provide a common understanding and state-of-the-art for the automotive domain, 
the safety standard ISO26262 [1] was published in 2011 as an adaption of the IEC 61508 [2] for 
functional safety of road vehicles. It captures requirements and activities during the entire lifecycle 
of automotive safety-related electric or electronic systems.  

Regarding the hardware architecture of automotive systems, a high reliability has to be achieved 
especially in context of random hardware failures. These failures occur unpredictably during the 
lifetime of electric systems due to exemplarily aging effects and can never be avoided. Therefore, 
during concept and development of the hardware architecture, evaluations have to be performed 
iteratively to ensure and document sufficient rationale.  

8.2 Motivation 

The mentioned complexity of automotive hardware architectures requires consideration of 
functional safety aspects already in early concept and development phase. In order to cope with 
the requirements for safety analysis and evaluation regarding hardware, ISO 26262 [1] Part 9 
“Automotive Safety Integrity Level (ASIL)-oriented and safety-oriented analysis” Clause 8 “Safety 
analyses” claims the evaluation considering qualitative and quantitative aspects to determine faults 
and failures in the system and determine their impact. These analyses have to be supported at 
appropriate level of abstraction iteratively during concept and development. Different analysis 
methods according to ISO 26262 Part 9 are shown in Figure 2. 

Quantitative Analysis Qualitative Analysis

Qualitative FMEA Quantitative FMEA

Qualitative FTA Quantitative FTA

HAZOP Quantitative ETA

Qualitative ETA Markov Models

Reliability Block Diagrams

Inductive analysis method

Deductive analysis method  

Figure 2: Qualitative and quantitative analysis methods mentioned in [1] 

Regarding hardware architectures, quantitative analysis complements qualitative analysis. 
Quantitative evaluation supports the verification of the hardware design against target values. The 
target values are described based on the ASIL-classification of the safety goal, which is 
determined based on hazard analysis and risk assessment (HARA). Being able to evaluate the 
robustness of the hardware architectures allows identification of potential hazardous designs. The 
quantitative evaluation is required for final verification of the hardware design especially in late 
development phases. Benefit from early introduction of safety evaluation and including target value 
verification would serve as an input for definition of safety measures to ensure reliable operation of 
the hardware architecture throughout system lifetime. Early determination of dangerous failures of 
the hardware could additionally reduce development costs and time.  
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8.2.1 Safety evaluation of hardware designs 

Focusing on the different safety analyses and evaluations during product development of the 
hardware, ISO 26262 [1] Part 5 “Product development at the hardware level” describes 
quantitative evaluations which have to be performed for hardware designs to ensure robustness 
and facilitate evidence. The evaluations claimed are shown in Figure 3. 

 

Clause 8: Evaluation of the hardware architectural metrics

Single-Point Fault Metric Latent-Fault Metric

Clause 9: Evaluation of the safety goal violations due to random hardware failures

9.4.1: Evaluation of 

Probabilistic Metric for random 

Hardware Failure (PMHF)

9.4.2: Evaluation of each 

cause of safety goal violation

AND

OR

  
                

       

  
            

                  

AND

 

Figure 3: Hardware safety evaluation according to [1] Part 5 

 

Clause 8 “Evaluation of the hardware architectural metrics” describes the assessment of hardware 
architectures by applying hardware architectural metrics. These metrics provide quantitative 
information on the robustness of the hardware architecture against critical random hardware 
failures. Critical in this context means, that these failures have direct or indirect influence on the 
behavior of the system regarding the violation of the specific safety goal. Therefore, two metrics 
are described: the single-point fault metric and the latent-fault metric where both have to be 
applied including verification against target values. 

In Clause 9 “Evaluation of the safety goal violations due to random hardware failures” the residual 
risk of safety goal violation is evaluated. This assessment has to be done complementary to the 
hardware architectural metrics. ISO 26262 proposes two alternative methods: the Probabilistic 
Metric for random Hardware Failures (PMHF) or the evaluation of each cause of safety goal 
violation by using failure rate classes (FRC). Whereas PMHF represents a global approach 
describing the maximum probability for the violation of the safety goal, the failure rate class 
method considers an individual evaluation of each cause of safety goal violation. 
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8.2.2 Hardware design levels 

For hardware designs, different levels of abstractions are present during different phases of 
concept of development. These are orthogonal to the described evaluations. The iterative 
application of these evaluations during different phases of hardware design has to be ensured in 
terms of functional safety. 
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Figure 4: Exemplarily differentiation between hardware architectural design and hardware detailed 
design based on electronic schematic example for a valve control of ISO 26262 Part 5 Annex E [3] 

For the description of hardware designs, two different development phases are established in [1] 
Part 5: the hardware architectural design and the hardware detailed design. The hardware 
architectural design focuses on the description of hardware in early concept and development 
phase according to [1] Part 5 7.4.1. It represents an initial view on the hardware capturing 
functionalities in corresponding hardware components. The hardware architectural design consists 
of the hardware components as black boxes and their interconnections. For a new development, 
hardware components exemplarily the filtering and signal conditioning could be re-used and taken 
from company specific libraries. At this level of development, no concrete realization in at the level 
of detailed schematic is established. An early safety evaluation on this level including verification 
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against target values would facilitate the introduction of additional or  the improvement of existing 
safety mechanisms. 

During development phase, these hardware components are refined at the level of hardware 
schematics in terms of interconnected hardware parts. This is specified by the hardware detailed 
design. Therefore, a hardware component can be composed of one or more hardware parts. For 
complex hardware parts such as a microcontroller, the hardware part can compose several 
hardware components. At the detailed level, the safety evaluation serves as verification for the 
final hardware design. Figure 1 shows our exemplary differentiation for hardware architectural and 
hardware detailed design based on the example schematic for a valve control provided by ISO 
26262 [1] Part 5 Annex E. 

Further information for Figure 4: The example schematic from ISO 26262 Part 5 Annex E is 
described at the level of electronic schematics consisting of different hardware parts. To explain 
the presented concept of safety evaluation at different level of abstraction for hardware design, the 
corresponding hardware architectural design was rebuild [3]. The example consists of two different 
functions, which are implemented on a single ECU. Function one has the temperature as input, 
measured via R3, and controls the valve I71. The corresponding safety goal is “valve 2 shall not 
be closed for longer than x ms when the temperature is higher than 100°C”. Function two has the 
wheel speed measured redundantly via I1 and I2 as input and controls the valve I61. The safety 
goal defined for this function is “valve 1 shall not be closed for longer than y ms when the speed is 
higher than 100 km/h”. 

8.3 Basics and related work 

The next subsections describe basic information for hardware element failure and reliability 
especially in context of random hardware failures to facilitate a common understanding. 
Additionally, related work and research activities in the context of functional safety regarding 
hardware are briefly presented. 

8.3.1 Basics for hardware safety evaluation 

Quantitative evaluation of hardware architectures requires knowledge about statistical data of 
hardware elements such as failure rates and failure modes. Constructs for hardware safety 
evaluation are presented in the IEC 61508 “Functional Safety of 
Electrical/Electronic/Programmable Electronic Safety-related Systems” [2]. The IEC 61508 was 
published in 1998, the current revised second version in 2010. IEC 61508 defines two different 
types of hardware elements. Type A describes an element which entire failure description and 
behavior is well-known, exemplarily resistors. Type B describes a hardware element, for which the 
entire failure behavior and description is not well-known, exemplarily microcontrollers or abstract 
hardware entities [2]. Due to the fact that ISO 26262 was adapted from the IEC 61508 for the 
automotive domain, a lot of subjects regarding hardware evaluation are related. In the following, 
main topics of functional safety and reliability regarding hardware in context of ISO 26262 are 
described.  

Failure Rate:  

The reliability of a hardware element is described by its failure rate λ. It represents the amount of 
failures of the element in a certain time. The failure rate is dependent on time, λ(t), and its 
characteristics can be described using a bathtub-curve according to Figure 5. 
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Figure 5: Failure Rate over time [4] 

The first phase (I) describes a decreasing failure rate due the fact that the amount of early failures 
is higher. The second phase (II), seen as the lifetime of the element, describes a constant failure 
rate, whereas in phase (III), the failure rate increases because of the element’s aging [4].  In 
context of the presented concept for hardware safety evaluation, the failure rate is assumed to be 
constant. When a constant failure rate is applied, it can be expressed using the unit Failure-In-
Time (FIT). 1 FIT is one failure in 10

9 
h. In order to avoid bias during quantitative evaluation, a 

scaling factor should be applied, when considering failure rates from different sources. 

Failure Mode: 

The behavior of a hardware element in case of a failure is represented by different failure modes. 
A single hardware element can have several failure modes. For instance, a resistor typically has 
the failure modes “Open Circuit” and “Short Circuit”. A failure rate distribution indicates which part 
of the overall failure rate of the hardware element is distributed to the specific failure mode. The 
failure rate distribution is a percental value between 0 and 100%. 

According to ISO 26262 [1], hardware failure rates, failure modes and their failure rate distributions 
can be determined using commonly recognized industry sources, statistic data or expert judgment. 
ISO 26262 exemplarily lists IEC Standard TR 62380 [5], MIL-HDBK-338B [6] or UTE C 80 811 [7] 
as sources to determine the corresponding values. Additionally, documents like Siemens 
Handbook SN 29500 can be used. 

Failure Mode Classification: 

To describe the impact of a specific failure mode of a hardware element to the system behavior, 
the failure mode of the hardware element has to be classified using the specific fault types. ISO 
26262 proposes a classification as shown in Figure 6. 
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Residual 
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or Residual 
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Multiple-

Point-Fault

Detected Perceived Latent

 

Figure 6: Classification of faults according to ISO 26262 [1] 
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In a first step, a fault of a hardware element can be classified into safe fault, single-point or 
residual fault or multiple-point fault. A safe fault has potential to violate the safety goal and 
therefore represents a fault of order zero. Single-point or residual fault indicates a direct violation 
of the safety goal as a fault of first order. The classification as multiple-point fault indicates a 
potential violation of the safety goal in combination with another independent fault of order n, while 
n is equal or larger than 2. 

Going into detail, a direct violation can either be classified as single-point fault, which is not 
covered by a safety mechanism. A residual fault represents a direct violation that describes the 
part of the failure, which is not covered by a safety mechanism. For multiple-point faults, the fault 
can be detected by a safety mechanism, perceived by the driver through system behavior or 
latent, which is the part of the fault which is not detected or perceived. Latent multiple-point faults 
are also abbreviated to latent faults [1] Part 1, 1.71. ISO 26262 Part 1, 1.101 suggests 
consideration of multiple-point faults up to an order of 2, named dual-point faults. 

In comparison, IEC 61508 classifies faults only into safe fault and dangerous faults. Afterwards 
they can be differentiated into detected or undetected, depending on the coverage of a safety 
mechanism. Recapitulatory, ISO 26262 provides a finer classification of faults. 

Safety Mechanism: 

For hardware elements, a safety mechanism describes a ”technical implementation by E/E 
function” [1], which prevents single-point faults, reduces residual faults and prevents multiple-point 
faults from being latent. The effectiveness of a safety mechanism is presented with two diagnostic 
coverages KDC. The diagnostic coverage KDC,RF with respect to residual faults describes the 
effectiveness of the safety mechanism regarding direct violations of the safety goal. The 
diagnostic coverage KDC,MPF,L addresses the effectiveness regarding multiple-point faults.  

Safety Goal: 

A top level safety requirement which is present for a system can be described as a safety goal. 
Similar to the Safety Integrity Level (SIL) classification provided by the IEC 61508, the ISO 26262 
defines Automotive Safety Integrity Levels (ASIL) to describe the safety-relation of a specific 
safety goal. The ASIL is determined by the parameters “controllability”, “severity” and “probability 
of exposure” of the event. ISO 26262 proposes a classification from ASIL-A to ASIL-D with ASIL-D 
being the most stringent. QM as an additional value requires no specific activities related to safety 
requirements of ISO 26262 [1] Part 3 7.4.4.1. 

Safety Analysis: 

The most common safety analysis methods, described in ISO 26262 as shown in Figure 2, are 
briefly described. The fault tree analysis (FTA) represents a graphical failure analysis technique [8] 
[9]. Quantitative FTA can be achieved by adding probability values to the events. FTA is a well-
established practice for safety analysis in a lot of industry domains, exemplarily avionic [10] or 
nuclear and represents a deductive methodology. 

The failure mode effects analysis (FMEA) focuses on a structured qualitative analysis of the 
elements of a system to identify potential failure modes and their effects on system behavior. It 
was initially formalized in [11]. The failure mode, effects and criticality analysis (FMECA) in 
addition to classical FMEAs addresses quantitative issues by adding information about severity 
and probability of failures using a criticality metric [12]. The failure mode, effects and diagnostic 
analysis (FMEDA) considers additional quantitative failure data and diagnostic coverage, 
exemplarily of safety mechanisms. FMEDA was introduced based on the paper of [13], the name 
was first used in [14]. FMEDA methodology has been refined especially in IEC 61508 to determine 
additional quantitative results such as the safe failure fraction. FMEDA is a common practice for 
safety analysis of electric/electronic systems [12]. 

Other analyses mentioned in ISO 26262 are reliability block diagrams (RBD) and markov models. 
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8.3.2 Related work 

In the technical report [15] of Leitner-Fischer et al., the different parts of the ISO 26262 are 
presented in order to analyses them regarding compatibility with their QuantUM method and tool 
for the support of requirements demanded by the standard. For Part 5 “Product development at 
the hardware level” it is mentioned that hardware evaluation could be supported, but their “UML-
based approach is not really suitable to describe hardware architectures” [15].  

In the paper of Jeon et al. [16], they focus on hardware especially with classification of ASIL C or 
D. The process from specification of safety requirements, design, up to the integration and testing 
in context of hardware is described. This process is in accordance with ISO 26262. Additionally, 
the demanded metrics of Part 5 are explained high level. 

In the article [17] of Bellotti and Mariani, hardware evaluation is mentioned in context of 
microcontroller design. This concerns functional safety and ISO 26262, as functional safety 
requirements have impact on the design of microcontrollers and microprocessors. In the article of 
Sinha [18] the functional analysis of a proposed brake-by-wire system is described in context of 
safety. 

Svancara [19] [20] gives a detailed description of ISO 26262 [1] Part 5 Clause 9 regarding 
evaluation of residual risk of safety goal violation using the second method with failure rate classes 
shown with an electrical powered steering use case. The methodology is demonstrated into detail, 
but no implementation or integration into model-based environments is considered. 

Regarding the modeling and propagation of failures, the approach of HiP-HOPS has to be 
mentioned [21] [22]. A graphical approach for a description of failure propagation in an integrated 
architecture description language is presented in [23]. 
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8.4 Preparation for model-based hardware evaluation 

 

8.4.1 Interface to hardware description 

Focus of work task WT3.2.2 “Hardware description” is a proposal for meta model adaption based 
on EAST-ADL regarding structural description of hardware and an extension regarding hardware 
failure data [26]. The meta model constructs serve as an input for the SAFE meta model provided 
by WT3.5. The meta model constructs form the basis for the methodologies for evaluation 
presented in this deliverable.  

A brief excerpt of the meta model extension for hardware failure description is shown in Figure 7.  

 class Failure

MalfunctionType

Referrable

HWFailureMode

+ allocatedFailureRateDistribution  :Float

+ failureModeType  :String

+ potentialCause  :String

Referrable

HWFault

+ hwFaultType  :HWPointFaultEnum

Referrable

HWFailureRate

+ allocatedValue  :Float

+ rationaleScalingFactor  :String

+ scalingFactor  :Float = 1.0

+ source  :String

«enumeration»

HWPointFaultEnum

 safeFault

 singlePointFault

 dualPointFault

 othersPointFault

HardwareComponentFailure

HardwareSafetyDesignEastAdlReference

HardwareComponentType

+hwFailureMode 1..*

0..*

+hwFailureMode

1

+hwFailureRate

1

+randomHarwareFailure
0..1

+scope

1

 

Figure 7: Excerpt of SAFE meta model regarding hardware failure [26] 

The extension for hardware failure description is based on the EAST-ADL references to 
“HardwareComponentType” and “HardwareComponentPrototype”. This construct allows the 
composition of several hardware component prototypes in a new hardware component type. For 
the concrete hardware component type, a hardware component failure extension is defined, which 
captures all relevant failure information. The hardware failure extension covers the following 
classes: 

 Class “HWFailureMode” for the description of hardware failure modes. These failure modes 
cover a failure rate distribution, the failure mode type (exemplarily “ShortCircuit”) and a 
potential cause (e.g. overheating). 

 Class “HWFailureRate” is used for the annotation of a failure rate values. Additionally, 
scaling factors according to [1] Part 5 including a rationale and the source of the failure 
rate can be described. 

 Class “HWFault” is linked to a hardware failure mode and defines the classification of the 
fault in context of a specific safety goal. For the classification, the enumeration 
“HWFaultEnum” is provides the corresponding literals. 

 Class “HWSafetyMechanism” is an abstract representation of a safety mechanism which is 
covering a specific hardware failure mode. No concrete realization of safety mechanism is 
presented for the meta model approach. 
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8.4.2 Continuous hardware modeling and evaluation model concept 

For the assessment of hardware designs in context of random hardware failures, a model-based 
description is required as a basic prerequisite. This includes a structural description of the 
hardware design as well as annotated failure information, links to the related safety goals including 
target values and safety mechanisms with their diagnostic coverage. The SAFE meta model 
provides all the different perspectives on a safety-related system in terms of functional safety. This 
includes topics such as COTS, safety case, software modeling etc. The SAFE meta model 
contributions are currently in synchronization and alignment in terms of integration issues. 
Additionally, EAST-ADL and AUTOSAR are connected providing meta model constructs for 
specific modeling purpose as reference points. 

Focusing on model-based hardware safety evaluation, a meta model with a minimal set of 
constructs allows a clear structuring and description of the methodology within this deliverable. 
Therefore, specific parts of the SAFE meta model were extracted in terms of model-based 
hardware safety evaluation. This leads to a proposed minimal combination of meta model classes 
for model-based hardware quantitative and qualitative assessment, as shown in Figure 8. 

 

meta model

EAST-ADL class Failure

EastAdlReference

HardwareComponentType

Extension
 class Failure

Referrable

HWFailureRate

+ allocatedValue  :Float

+ rationaleScalingFactor  :String

+ scalingFactor  :Float = 1.0

+ source  :String

AUTOSAR class Failure

AutosarReferable

HwElement

WT3.2.2

 class Concept: Safety Requirements

AbstractSafetyRequirement

SafetyGoal

- asil  :ASILEnum

WT3.2.1

WT3.3.3

WT4.2.6

 class Model.jav a

Classification

+ topLevelName  :Sring

+ topLevelID  :String

+ singlePointFault  :Boolean

+ multiplePointFault  :Boolean

FailureMode

+ name  :String

+ id  :String

+ description  :String

+ failureRate  :Double

+ failureRateDistribution  :Double

HWElement

+ name  :String

+ id  :String

+ description  :String

+ typeID  :String

+ failureRate  :Double

+ value  :Double

LibraryType

+ name  :String

+ id  :String

+ description  :String

+ category  :HWCategories

+ failureRate  :Double

+ referenceDocument  :String

+ scalingFactor  :Double
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+ costs  :Float

Model

+ modelName  :String

+ modelingToolName  :String

+ modelDescription  :String

+ abstractionLevel  :AbstractionLevelEnum

+ activateFaultTypeDetermination  :Boolean

+ activateTypeLibrary  :Boolean

+ executeHWMetrics  :Boolean

+ executeFRC  :Boolean

+ executePMHF  :Boolean

+ lifetime  :Double

SafetyMechanism

+ name  :String

+ id  :String

+ description  :String

+ diagnosticCoverageRF  :Double

+ diagnosticCoverageMPFL  :Double

SafetyRelation

+ name  :String

+ refID  :String

+ safetyRelation  :Boolean

SafetyRequirement

+ name  :String

+ id  :String

+ description  :String

+ asil  :ASILEnum

TargetValue

+ targetValuesSPFMetric  :TargetValuesMetric

+ targetValuesLFMetric  :TargetValuesMetric

+ targetValueFRC  :Double

+ numberOfCutSetsFRC  :Integer

+ numberOfClassesFRC  :Integer

+ targetValuePMHF  :Double

+ rationaleSPFMetric  :String
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+ rationaleFRC  :String
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Figure 8: Model-based hardware safety evaluation 
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8.4.3 Minimal meta model for hardware safety evaluation 

The complete minimal meta model for integrated hardware safety evaluation to support 
assessment is provided in Figure 9. The meta model classes including their attributes contained 
are explained briefly in the following. 

 

Only For Detailed Design Only For Architectural Design

Only For Detailed Design

 class Model.jav a

Classification

+ topLevelName  :Sring

+ topLevelID  :String

+ singlePointFault  :Boolean

+ multiplePointFault  :Boolean

FailureMode

+ name  :String

+ id  :String

+ description  :String

+ failureRate  :Double

+ failureRateDistribution  :Double

+ safetyMechanismRefID  :String

HWElement

+ name  :String

+ id  :String

+ description  :String

+ typeID  :String

+ failureRate  :Double

+ safetyMechanismRefID  :String

+ value  :Double

LibraryType

+ name  :String

+ id  :String

+ description  :String

+ category  :HWCategories

+ failureRate  :Double

+ referenceDocument  :String

+ costs  :Float

Model

+ modelName  :String

+ modelingToolName  :String

+ modelDescription  :String

+ abstractionLevel  :AbstractionLevelEnum

+ activateFaultTypeDetermination  :Boolean

+ activateTypeLibrary  :Boolean

+ executeHWMetrics  :Boolean

+ executeFRC  :Boolean

+ executePMHF  :Boolean

+ lifetime  :Double

SafetyMechanism

+ name  :String

+ id  :String

+ description  :String

+ diagnosticCoverageRF  :Double

+ diagnosticCoverageMPFL  :Double

SafetyRelation

+ name  :String

+ refID  :String

+ safetyRelation  :Boolean

SafetyRequirement

+ name  :String

+ id  :String

+ description  :String

+ asil  :ASILEnum

TargetValue

+ targetValuesSPFMetric  :TargetValuesMetric

+ targetValuesLFMetric  :TargetValuesMetric

+ targetValueFRC  :Double

+ numberOfCutSetsFRC  :Integer

+ numberOfClassesFRC  :Integer

+ targetValuePMHF  :Double

+ rationaleSPFMetric  :String

+ rationaleLFMetric  :String

+ rationaleFRC  :String

+ rationalePMHF  :String

«enumeration»

ASILEnum

 tbd

 ASIL-QM
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Figure 9: Minimal proposed meta model for model-based hardware safety evaluation 

 

8.5 Concept for model-based hardware safety evaluation on different abstraction levels 

As introduced, ISO 26262 [1] Part 9 Clause 8 claims the evaluation of hardware designs on 
appropriate level of abstraction whereas ISO 26262 [1] Part 5 Clause 7 describes two different 
levels of abstraction during hardware concept and development phase. For these two orthogonal 
levels, we provide a concept for model-based hardware safety evaluation as shown in Figure 10. 
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 class Model.jav a

Classification

+ topLevelName  :Sring

+ topLevelID  :String

+ singlePointFault  :Boolean

+ multiplePointFault  :Boolean

FailureMode

+ name  :String

+ id  :String

+ description  :String

+ failureRate  :Double

+ failureRateDistribution  :Double

HWElement

+ name  :String

+ id  :String

+ description  :String

+ typeID  :String

+ failureRate  :Double

+ value  :Double

LibraryType

+ name  :String

+ id  :String

+ description  :String

+ category  :HWCategories

+ failureRate  :Double

+ referenceDocument  :String

+ scalingFactor  :Double

+ rationale  :String

+ costs  :Float

Model

+ modelName  :String

+ modelingToolName  :String

+ modelDescription  :String

+ abstractionLevel  :AbstractionLevelEnum

+ activateFaultTypeDetermination  :Boolean

+ activateTypeLibrary  :Boolean

+ executeHWMetrics  :Boolean

+ executeFRC  :Boolean

+ executePMHF  :Boolean

+ lifetime  :Double

SafetyMechanism

+ name  :String

+ id  :String

+ description  :String

+ diagnosticCoverageRF  :Double

+ diagnosticCoverageMPFL  :Double

SafetyRelation

+ name  :String

+ refID  :String

+ safetyRelation  :Boolean

SafetyRequirement

+ name  :String

+ id  :String

+ description  :String

+ asil  :ASILEnum

TargetValue

+ targetValuesSPFMetric  :TargetValuesMetric

+ targetValuesLFMetric  :TargetValuesMetric

+ targetValueFRC  :Double

+ numberOfCutSetsFRC  :Integer
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+ targetValuePMHF  :Double
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+ rationaleLFMetric  :String
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Figure 10: Overview: Concept for hardware safety evaluation and abstraction levels 

 

On higher level of abstraction, the hardware architectural design is established representing an 
initial view on the hardware design. For this level of abstraction, a deductive methodology for 
model-based hardware safety evaluation is proposed. Annotation of failure modes and their 
propagation through the system can be evaluated using a fault tree analysis, see also the HiP-
HOPS approach [21]. This qualitative analysis supports the quantitative evaluation with the 
determination of the impact of failure modes to the top-level event. The top-level event in this 
context represents the violation of a specific safety requirement. The quantitative evaluations 
represent an initial safety evaluation, based on assumptions for failure rates and failure modes. 
The initial evaluation facilitates early definition of safety mechanisms or identification of safety-
critical sections of the architecture. The initial hardware design can be iteratively reworked and 
improved. This is supported by the verification of results against target values. 

During subsequent phase of development, the hardware architectural components are specified by 
the hardware detailed design at the level of electronic schematics. The hardware detailed design is 
described by concrete hardware parts. The hardware detailed design can also be evaluated 
regarding functional safety [27]. This evaluation describes the final verification of the hardware 
design and therefore confirms the initial hardware safety evaluation. 
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8.6 Structural and failure modeling of hardware designs 

This chapter explains the concept for structural modeling and failure information of hardware 
designs. The two different abstraction layers are presented and links to the meta model are 
provided. 

8.6.1 Modeling of hardware structure 

For structural modeling of the hardware, the class HWElement is in focus. This class captures all 
relevant information for a hardware component regarding the hardware architectural design or a 
hardware part in context of hardware detailed design. 

8.6.1.1 Hardware architectural design 

Due to the complexity, the concept and development phase regarding hardware is not exclusively 
done at the level of detailed schematic. Therefore, in a first step, the hardware design is modeled 
at functional block level. Hardware components which capture certain functionalities are defined as 
abstract blocks with in- and outputs. These blocks are defined in context of the technical safety 
concept derived from the system design specification, according to ISO 26262 Part 4 Clause 7. 
The hardware components can be taken from previous designs or described in a company-
specific library. Therefore, a re-use of certain parts is facilitated. Regarding the meta model for 
hardware safety evaluation, the hardware component represents a specialization of the class 
HWElement, which is not separately introduced in order to provide generic information. An 
example for a hardware architectural design which is continuously refined in this deliverable is 
shown in Figure 11. 

Computation and

Controlling

(HW Component) 

Amplifying

(HW Component)
Valve

instance

 class Model.jav a

Classification

+ topLevelName  :Sring

+ topLevelID  :String

+ singlePointFault  :Boolean

+ multiplePointFault  :Boolean

FailureMode

+ name  :String

+ id  :String

+ description  :String

+ failureRate  :Double

+ failureRateDistribution  :Double

HWElement

+ name  :String

+ id  :String

+ description  :String

+ typeID  :String
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+ value  :Double
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+ name  :String

+ id  :String
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+ referenceDocument  :String
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+ modelName  :String

+ modelingToolName  :String

+ modelDescription  :String

+ abstractionLevel  :AbstractionLevelEnum

+ activateFaultTypeDetermination  :Boolean

+ activateTypeLibrary  :Boolean

+ executeHWMetrics  :Boolean

+ executeFRC  :Boolean

+ executePMHF  :Boolean

+ lifetime  :Double

SafetyMechanism

+ name  :String

+ id  :String

+ description  :String

+ diagnosticCoverageRF  :Double

+ diagnosticCoverageMPFL  :Double

SafetyRelation

+ name  :String

+ refID  :String
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+ name  :String

+ id  :String
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+ targetValuesLFMetric  :TargetValuesMetric
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Figure 11: Hardware architectural design structural modeling example 

Here, an example containing two hardware components ComputationAndControlling and 
Amplifying is given based on the output stage of function one of the example from ISO 26262 Part 
5 Annex E, as shown in Figure 4. For the hardware components, input and output ports are 
provided including the direction of the connection. These two hardware components serve as an 
example for the complete process of safety evaluation regarding the hardware architectural 
design.  
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8.6.1.2 Hardware detailed design 

The hardware detailed design describes the hardware architecture on a detailed level of 
abstraction with hardware parts such as resistors or capacitors. Before modeling the hardware 
detailed design, a type library containing all relevant hardware part types that are used in the 
model can be defined. As the hardware detailed design contains a high amount of hardware parts, 
the type library concept fits the corresponding needs. The meta model class LibraryType forms the 
basis. 

The type library contains all hardware parts which can be instantiated in the schematic. 
Additionally, all failure data regarding failure modes and failure rates are deposited in the library. 
The type library can also be used to express different technologies which are used for the same 
type of hardware part such as metal film resistors or surface mount device resistor. A consistent 
example for this deliverable for modeling of hardware detailed designs using the type library is 
shown in Figure 12. 

Name: R1
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ID: 2a

Description: Metal Film

 class Model.jav a
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+ topLevelName  :Sring

+ topLevelID  :String

+ singlePointFault  :Boolean
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FailureMode
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+ id  :String

+ description  :String

+ failureRate  :Double

+ failureRateDistribution  :Double
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+ name  :String
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+ typeID  :String
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+ value  :Double
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+ name  :String

+ id  :String

+ description  :String
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+ referenceDocument  :String

+ costs  :Float

Model

+ modelName  :String

+ modelingToolName  :String

+ modelDescription  :String

+ abstractionLevel  :AbstractionLevelEnum

+ activateFaultTypeDetermination  :Boolean
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+ executeHWMetrics  :Boolean

+ executeFRC  :Boolean

+ executePMHF  :Boolean

+ lifetime  :Double

SafetyMechanism

+ name  :String

+ id  :String

+ description  :String

+ diagnosticCoverageRF  :Double

+ diagnosticCoverageMPFL  :Double
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+ name  :String

+ refID  :String

+ safetyRelation  :Boolean

SafetyRequirement

+ name  :String

+ id  :String

+ description  :String
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TargetValue
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+ targetValueFRC  :Double
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+ numberOfClassesFRC  :Integer
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Figure 12: Hardware detailed design structural modeling example 

Here, the hardware parts R1 and R2 are instantiated as hardware elements for the hardware 
detailed design. Both of these hardware parts are referencing to the same hardware library type 
Resistor which exemplarily represents a metal-film resistor type. The reference is achieved using 
the attribute refID of the hardware element, which contains the id of a hardware library type. 

Using the type library concept, the hardware parts and their interconnections have to be modeled. 
The corresponding schematic contains all hardware parts with their interconnections. Additional 
attributes such as the value of exemplarily resistors or capacitors have to be captured for each 
instantiated part, due to the fact that they are not equal for all instantiated hardware parts of the 
same hardware part type. 

8.6.2 Modeling of hardware failure 

In order to provide hardware safety evaluation according to ISO 26262 Part 5, the structural 
description of hardware was extended to provide information about failure data. 
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8.6.2.1 Modeling of safety requirements 

The initiation of the product development at the hardware level requires consideration of hardware 
safety requirements and the overall system safety concept. Safety requirements for the hardware 
design have to be defined and annotated to the model. Regarding this model-based approach, the 
model-based definition of safety-related hardware elements using the class SafetyRelation is 
supported. An example is shown in Figure 13. 

Computation and

Controlling

ID: 1b

Name: ComputationAndControlling_SafetyReq1

RefID: 1b

safetyRelation: true

 class Model.jav a

Classification

+ topLevelName  :Sring

+ topLevelID  :String

+ singlePointFault  :Boolean
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FailureMode

+ name  :String
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+ description  :String
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+ name  :String

+ id  :String
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+ activateTypeLibrary  :Boolean
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Figure 13: Safety-relations of hardware elements to safety requirements 

Here, the safety requirement SafetyReq1 contains a safety-relation named 
ComputationAndControlling_SafetyReq1. In this safety-relation, the refID references the specific 
hardware element. The attribute safetyRelation specifies whether the hardware element is safety-
related or not for the safety requirement using a Boolean attribute type. 

8.6.2.2 Modeling of safety mechanism 

For the quantitative evaluation of the hardware design, failure mode coverage due to safety 
mechanism has to be considered. Therefore, safety mechanisms are modeled using the 
corresponding class of the meta model. The safety mechanism refers to a specific hardware 
element or failure mode it covers. This reference is achieved due to the attribute 
safetyMechanismRefID which is contained in the classes HWElement and FailureMode. 
Therefore, either the coverage of safety mechanisms for a specific failure mode or the coverage 
for the overall hardware element can be expressed. 

8.6.2.3 Hardware architectural design 

For each hardware component, certain failure modes have to be defined. The failure modes 
represent assumptions or expert knowledge exemplarily from previous designs. According to the 
multiplicity in the meta model, for each hardware element one or more failure modes can be 
annotated. A failure rate for the each failure mode can be defined as an attribute. An exemplary 
annotation of failure modes for hardware components is shown in Figure 14. 
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Computation and Controlling Amplifying
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Figure 14: Annotation of failure information for hardware architectural design 

Here, the two hardware components ComputationAndControlling and Amplifying both have the 
three failure modes exemplarily Offset, OutOfRange and StuckInRange annotated. For each of the 
failure modes, a specific failure rate in FIT is defined, which is an assumption as mentioned above.  

For the hardware architectural design, the consequences of random failures of the hardware 
components for the system behavior can be determined with a deductive analysis exemplarily a 
fault tree analysis. A model-based approach for the propagation of failure modes to a system top-
level failure is provided to facilitate quantitative evaluation according to ISO 26262. This is 
facilitated based on output deviations for each hardware component which describe a logical 
failure expression, related to the approach of HiP-HOPS [21]. 

One logical expression for the system could describe the overall fault tree. Due to complexity 
issues, a separation of single output deviations and the annotation to the boundaries of the 
hardware component is performed. An exemplarily output deviation regarding the hardware 
architectural design is shown in Figure 15. 
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Figure 15: Annotation of output deviations for hardware architectural design 

In this example, each of the hardware components has one output deviation, which represents an 
OR combination of all failure modes contained. Additionally, for the hardware component 
Amplifying, the preceding output deviation of ComputationAndControlling is included in the logical 
failure expression. The logical expressions of the output deviations are represented as a String 
value.  
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8.6.2.4 Hardware detailed design 

Subsequent to structural modeling of the hardware detailed design, the failure data in terms of 
failure modes and failure rates has to be annotated to the model. This failure data of standard 
hardware parts is well-established. Therefore, they are not representing assumptions at this phase 
of development. The estimated failure data in terms of failure rates and failure modes can be 
taken from recognized industry source, statistics based on field tests or expert judgment, as 
described in Section 8.3.1. An annotation of failure information for hardware detailed design is 
shown in Figure 16. 
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+ multiplePointFault  :Boolean

FailureMode

+ name  :String
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Figure 16: Annotation of failure information for hardware detailed design 

For the hardware detailed design, the failure rate is annotated to the hardware element itself 
(shown in red letters). For each failure mode, a failure rate distribution is described in percentage, 
which specifies the portion of the overall failure rate of the hardware element which is distributed to 
the failure mode. The failure rate of the failure mode (which is recommended to be defined for the 
hardware architectural design) can be calculated according to Equation 1. 

 

FMHWElementFM FRD   Equation 1 

 

The failure rate of the hardware element represents the sum of all failure modes specific failure 
rates. 

 FMHWElement   Equation 2 

 

Using these two equations, the failure rates specified for the failure modes at architectural level 
can be converted to the failure rate of the overall hardware element and a failure rate distribution 
for the failure mode, as used for the hardware detailed design. Therefore, in the model, either a 
failure rate for the failure mode (recommended for architectural design) or a failure rate for the 
hardware element and a failure rate distribution for the failure mode (recommended for detailed 
design) must be present. For the hardware detailed design, it is also possible to provide the failure 
information by annotation to the hardware library type. If specific failure information for a hardware 
element instance is provided, the failure information is not taken from the hardware library type.  

In contrast to the hardware architectural design, for the hardware detailed design no failure 
propagation approach is facilitated due to the large number of parts and growing complexity. As 
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output deviations for hardware parts are not defined, a qualitative analysis to determine the 
classification of failure modes is not facilitated. This classification has to be manually specified for 
each failure mode. The flow diagram for such a failure mode classification to derive the safety goal 
violation of hardware part failure modes is described in Figure 17. 

Failure Mode

   

Is HW element 

safety-related 

and must be 

considered?

Safe Fault 

(not considered)

Classification

no

Failure mode 

has potential to 

directly violate 

the safety 

goal?

Residual Fault Single-Point Fault

Is a safety 

mechanism 

covering the 

HW element?

Failure mode can 

lead to the violation only 

in combination with another 

independent failure?

Safe Fault 

(safety-related)

Multiple-Point 

Fault

yes

yes

no

yes

no no

yes

Potential 

violation as 

multiple-point 

fault?

yes

 

Figure 17: Simplified flow diagram of [1] for manual determination of classification 

For each failure mode, the corresponding hardware element is either safety-related or not. If not, 
the failure mode is classified as a safe fault which has not to be considered in the analysis. For 
safety-related hardware elements, if the failure mode directly violates the safety goal it can be 
covered by a safety mechanism and classified as a residual fault or classified as a single-point 
fault which is not covered. If the failure mode has the potential for violation in combination with 
another independent fault, it is classified as a multiple-point fault. A classification as multiple-point 
fault and a direct violation is possible. If the failure mode does not violate the safety goal in any 
case, it is classified as a safe fault, which is safety-related and considered in the quantitative 
evaluation. 

The classification of a failure mode can be different for different related safety requirements. The 
annotation is supported by using the class Classification which has the multiplicity 0..* for each 
failure mode and is used in context of a safety requirement. Therefore, it contains the attributes 
topLevelName and topLevelID, which refer to the specific safety requirement for which the 
classification is present. The classification additionally has the attributes singlePointFault and 
multiplePointFault, which are both of type Boolean.  
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Failure Mode 

Classification

Value Attribute 

singlePointFault

Value Attribute 

multiplePointFault

Safe Fault False False

Single-Point Fault True False

Residual Fault 

(SM present)

True False

Multiple-Point Fault False True

Single-Point Fault and

Multiple-Point Fault

True True

 

Table 1: Derivation of Classification attributes values 

The specific failure mode is classified as a Safe Fault, Single-Point Fault, Residual Fault or 
Multiple-Point Fault, according to Section 8.3.1. The value for the model attributes can now be 
derived as shown in Table 1. For the case that a failure mode is directly violating the safety goal 
and additionally in combination with another independent fault, both values are true. Default value 
for both attributes is false which relates to the classification as safe fault. The annotated 
classification for the hardware detailed design is exemplarily shown in Figure 18. 
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Figure 18: Annotation of Classifications for hardware detailed design 

All annotated classifications are done in context of the top-level event SafetyGoal. For this 
example, both failure modes OpenCircuit directly lead to the violation of the specific safety goal, 
whereas the failure modes ShortCirtuit are represented as safe faults. The annotated 
classifications as well as the failure information and hardware modeling directly support a 
quantitative analysis for the hardware detailed design. 
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8.7 Qualitative evaluation 

After output deviations are defined for the hardware architectural design, a qualitative analysis 
follows as an intermediate phase to identify component failure modes which lead to the system 
failure as violation of the safety goal. This qualitative analysis supports a quantitative evaluation by 
the automated determination of classifications. 

8.7.1 Fault tree generation 

In a first step, each output deviation of a hardware component is translated into a single fault tree. 
For the output deviations provided in the example, the corresponding single fault trees are shown 
in Figure 19. 
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Figure 19: Exemplary single fault tree of output deviations 

After the generation of all relevant single fault trees, starting from the top-level event as violation of 
a safety goal, the overall fault tree can be composed. The output deviations related to the top-level 
event contain their preceding output deviations which facilitates the composition of the overall fault 
tree. Regarding the example, OutputDeviation-Amplifying contains the output deviation 
OutputDeviation_ComputationControlling. These two fault trees can now be combined which is 
shown in Figure 20. 
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Figure 20: Complete fault tree for top-level OutputDeviation-Amplifying 
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8.7.2 Analysis and failure mode classification 

The fault trees for the tagged top-level events can afterwards be analyzed in order to determine 
the contribution of the contained component failure modes to the top-level event. Therefore, a 
minimal cut-set analysis is facilitated. The minimal cut-sets with contained failure modes as basic 
events are determined. The order of the corresponding cut-set provides a classification of the 
failure mode into the fault classes provided by ISO 26262 Part 5 7.4.3.2. The determination is 
related to ISO 26262 Part 10 and captured in the following Figure 21. 

Determination based on Fault Tree Analysis

Safe Faults
Single-Point Faults /

Residual Faults

Multiple-Point 

Faults

Events not 

contained in the 

fault tree

Basic Events  in  

minimal cut-set of 

order 1

Basic Events  in  

minimal cut-set of 

order ≥ 2

Failure Mode Classification according to ISO 26262 Part 5 7.4.3.2
 

Figure 21: Derivation of failure mode classifications based on qualitative fault tree analysis [3] 

If the failure mode is not contained in the fault tree, it is classified as a safe fault due to the fact 
that it has on impact on the safety goal violation. If the failure mode is contained in a minimal cut-
set of order one in the fault tree, it is classified as a single-point or residual fault. These faults 
directly lead to the violation of the safety goal. If the failure mode is contained in a minimal cut-set 
of order greater than one, it is classified as a multiple-point fault. These faults lead to the violation 
of the safety goal only in combination with another independent failure mode. 

Regarding the classification using fault tree analysis, ISO 26262 Part 10 Annex B.3.1 provides 
modeling examples. For classification as a single-point fault, the event is affiliated with the top-
level event as the violation of the safety goal only via OR-gates and therefore in a cut-set of order 
one. The representation in a fault tree is exemplarily shown in Figure 22. 

Top-Level 

Event

Event

 

SPF

 

Figure 22: Classification: Single-point fault in fault tree 

For residual faults, several ways of modeling within a fault tree are possible. Either the residual 
fault is represented as a single event which contains the coverage of a related safety mechanism 
by the specific failure rate calculation. This is shown on the left hand side of Figure 23. In this 
case, the residual fault in a fault tree is modeled in the same way as a single-point fault, only the 
probability of the event is different due to additional safety mechanism coverage. The second 
possibility would be, to model the safety mechanism as an extra event. This is shown on the right 
hand side of Figure 23. Here, the residual fault in the fault tree is represented as an AND- 
combination of the overall fault and the percentage not covered by the safety mechanism and 
would be represented in a cut-set of order two. 
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Figure 23: Classification: Residual fault in fault tree 

In this model-based methodology, the approach without modeling of the safety mechanism as an 
extra event is preferred. This facilitates the analysis of residual faults which can be derived from a 
cut-set order of one – same as a single-point fault – due to their direct violation of the safety goal. 
The safety mechanism is independently tagged for the failure mode for specific failure rate 
determination. This is also considered for the representation of multiple-point faults. 

The safety-relation is determined at hardware element level, not at the level of failure modes 
according to ISO 26262 Part 5 Annex E. In context of the approach for hardware architectural 
design, using the fault tree qualitative analysis, the approach shown in Figure 24 is used. 

HW Component 1 HW Component 2

Name: FM1

FailureRate: 0.09 FIT 

Name: FM2

FailureRate: 0.08 FIT

Name: FM1

FailureRate: 0.09 FIT 

Name: FM2

FailureRate: 0.08 FIT

SPF

Not 

in FT

Not 

in FT

Not 

in FT

Safety-

related

Non-

safety-

related

 

Figure 24: Determination of safety-relation for hardware components 

If the hardware component under consideration has at least one failure mode contained in the 
corresponding fault tree for the violation of the safety goal, it is classified as safety-related. 
Exemplarily, FM1 of HW Component 1 is classified as a single-point fault, the HW Component 1 is 
safety-related. FM2 in this case is a safe fault which contributes to the overall safety-related failure 
rate. If the hardware component has no failure mode which is contained in the fault tree, it is 
classified as non-safety-related. Therefore, FM1 and FM2 of HW Component 2 do not contribute 
to the overall safety-related failure rate. However, the determination of safety-relation could also 
be performed at the level of failure modes. 
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8.8 Quantitative evaluation 

The quantitative evaluation according to ISO 26262 Part 5 claims the hardware architectural 
metrics and the evaluation of residual risk of safety goal violation. The concept for the quantitative 
evaluation of hardware designs is described. An overall view of the hardware quantitative 
evaluation is shown in Figure 25. 

 

Figure 25: Overview: Flow diagram for hardware safety evaluation 

Based on the model information regarding failure modes and classifications, the specific failure 
rates can be calculated in context of safety mechanisms. The classification process is shown in 
Figure 17. The determination of specific failure rates and the classification represents a FMEDA 
which leads to the construction of a failure data table capturing all relevant information for the 
safety evaluation. The failure data table contains all hardware elements failure mode, their effects 
on the system behavior via the classifications as well as quantitative values for failure modes and 
diagnostic coverage. Based on the failure data table, the quantitative evaluations according to ISO 
26262 Part 5 can be performed in terms of hardware architectural metrics and evaluation of safety 
goal violations. 
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8.8.1 Hardware FMEDA 

The classification of the failure modes, safety-relevance and the failure information of hardware 
elements captured in the model and together with the calculation of specific failure modes 
represents a FMEDA as a first step for quantitative hardware safety evaluation. The calculation of 
the specific failure rates in context of the classification and safety mechanism coverage is 
described in the following. 

For a safe fault, the specific failure rate is calculated according to Equation 3. The failure rate 
distribution of the specific failure mode describes the ratio of the overall failure rate which is 
distributed to the failure mode in percent. 

FMHWElementSF FRD   Equation 3 

 

In the same way, the specific failure rate for a single-point fault is calculated according to Equation 
4. 

 

FMHWElementSPF FRD   Equation 4 

 

The calculation for single-point and safe fault follow the same equation, but a safe fault is 
considered as safe (fault of order zero) whereas a single-point fault violates the safety goal (fault 
of order one). The equation for the specific failure rate of a residual fault, which is a special case 
of a single-point fault when a safety mechanism is present, is calculated according to Equation 5. 

 

 RFDCFMHWElementRF KFRD ,1   Equation 5 

 

For this calculation, the diagnostic coverage with respect to residual faults of the safety 
mechanism present is considered. In case of a multiple-point fault, the failure rate of the latent 
multiple-point fault is calculated according to Equation 6. 

 

   LMPFDCRFSPFFMHWElementLMPF KFRD ,,, 1)(    Equation 6 

 

In this context the diagnostic coverage with respect to latent multiple-point fault of the safety 
mechanism is taken. As only the latent multiple-point fault is potentially violating the safety goal, 
the detected and perceived multiple-point specific failure rate is not in scope. If the failure mode is 
also directly violating the safety goal as a single-point or residual fault, the specific failure rates of 
the direct violation are not considered for the multiple-point failure rate calculation.  

The specific failure rates of all single failure mode contributions as well as common information of 
the hardware element such as name, the failure rate, failure modes are stored in a failure data 
table. A possible predefined structure of this table is presented in ISO 26262 [1] Part 5 Table E.2 
and E.3. The formal way of storage serves to identify the main failure modes which contribute to 
the single-point fault and latent-fault metric and evaluation of residual risk of safety goal violations. 
This is especially in focus if the target values are not met and additional measures have to be 
initiated.  

The failure data table represents the basis for all safety assessments of the hardware and 
represents the primary result of the FMEDA for hardware elements. 
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8.8.2 Hardware architectural metrics 

The hardware architectural metrics describe the overall robustness of the system against specific 
faults. The evaluation is claimed for ASIL-C and ASIL-D classification of the safety goal and 
recommended for ASIL-B. The hardware architectural metrics are related to the safe-failure 
fraction (SFF) of IEC 61508. Due to the fact, that ISO 26262 provides a more detailed 
classification of faults, as described in Section 8.3.1, two different architectural metrics are 
present: the single-point fault metric and latent-fault metric. The single-point fault metric evaluates 
the impact of single-point faults on the system whereas the latent-fault metric analyzes the impact 
of latent multiple-point faults. 

For the calculation of the hardware architectural metrics, the following values have to be 
determined: 

 Total Failure Rate:   

 Total Safety-Related Failure Rate: 
SR

  

 Sum of Single-Point and Residual Faults:   )( RFSPF   

 Sum of Latent Multiple-Point Faults:  LMPF ,  

The single-point fault metric considers the amount of direct violations of the safety goal (single-
point or residual faults) in the hardware design. This amount is divided by the total safety-related 
failure rate. For visualization, the value is afterwards subtracted from 100%. Therefore, a high 
amount of single-point or residual faults which is critical for system reliability leads to a low amount 
of the single-point fault metric, high robustness is achieved by a value near to 100%. The single-
point fault metric can be regarded as a kind of diagnostic coverage regarding direct violations in 
context of the overall hardware design. The single-point fault metric can be calculated according to 
Equation 7. 



 



HWSR

HWElement

HWSR

RFSPF

MetricSPF

,

,

)(

1




 Equation 7 

 

For the latent-fault metric, the sum of all latent multiple-point fault specific failure rates of all safety-
related hardware elements is considered. All direct violations (single-point and residual faults) are 
already considered in the single-point fault metric and therefore subtracted in the denominator. 
Equal to the single-point fault metric, a high value of the latent-fault metric near to 100% indicates 
high robustness of the hardware design against latent multiple-point faults. 








HWSR

RFSPFHWElement

HWSR

LMPF

MetricLF

,

,

,

)(
1





 Equation 8 

 

For comparison to IEC 61508, the formula for the SFF is given in Equation 9. Basically the same 
concept is used as it can be seen from the structure of the equations. For the SFF, the numerator 
contains the safety-critical failures which are dangerous and undetected, whereas the denominator 
contains the sum of all safety-related failures in the hardware design. Due to the finer 
differentiation regarding the order of the faults, the architectural metrics provide two separate 
evaluations. 
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



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

 Equation 9 

 

The calculated values for the hardware architectural metrics can afterwards be verified against 
target values. These target values depend on the ASIL-classification of the corresponding safety 
requirement and can be user-defined or taken from recommendation of ISO 26262 as shown in 
Table 2. 

ASIL-B ASIL-C ASIL-D

Single-Point Fault Metric             

Latent-Fault Metric             

 

Table 2: Recommended target values for the hardware architectural metrics [1] Part 5 Table 4, 5 

The target values shall provide evidence that the hardware design complies with the safety 
requirements. Other target values can be derived from similar well-trusted design principles. Well-
trusted in this context means, that they were used without any condition that deviates from 
expectation regarding functional safety. 

8.8.3 Evaluation of safety goal violations due to random hardware failures 

The evaluation of residual risk of safety goal violation can be performed using one of the 
alternative methods, the probabilistic metric for random hardware failure (PMHF) or the second 
method using failure rate classes (FRC). The evaluation is claimed for ASIL-C and ASIL-D 
classification of the safety goal and recommended for ASIL-B. 

8.8.3.1 PMHF 

The probabilistic metric for random hardware failure describes an overall probabilistic value for a 
top-level system failure. It is related to the probability of dangerous failure per hour (PFH) and 
probability of dangerous failure on demand (PFD) of IEC61508. PFD is according to [2] only 
claimed for E/E systems with a low demand mode of operation, exemplarily described as 
maximum one demand per year [2] Part 4, 3.5.16. For systems with high or continuous demand 
mode, PFH has to be evaluated. The concept from PFH forms the basis for PMHF of ISO 26262. 

The interpretation of PFH was widely discussed, exemplarily in the article of [29]. The proposed 

right notion is that the PFH refers to the average value of the unconditional failure intensity )(tw . 

The calculation of the PFH can then be expressed according to Equation 10. 



T

avg dttw
T

wPFH
0

)(
1

 Equation 10 

The unconditional failure intensity )(tw  in the case of non-repairable entities can be identified as 

the probability density )(tf  which refers to the probability of failure )(tF  versus time 

as
dt

tdF
tf

)(
)(  . For repairable items, the probability of failure is assumed to be zero after the 

repair which leads to very complex probabilities. ISO 26262 Part 5 9.4.2.2 describes the PMHF as 
the “average probability per hour over the operational lifetime of the item”. This relates to the 
definition of the PFH as the average value of the unconditional failure intensity of the item. In ISO 
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26262 Part 5 9.4.2.1, it is stated that “target values for the maximum probability of the violation of 
each safety goal shall be defined”. 

Due to the fact that fault tree analysis is used for the model-based approach in context of the 
hardware architectural design, the use of PMHF for this level of detail would be reasonable. In ISO 
26262 Part 10 Annex B.4, different scenarios regarding probability evaluation using fault tree 
analysis are discussed. For an event, considering constant failure rates as described in Section 
8.3.1 and an exponential distribution, following Equation 11 describes the probability of failure over 

time )(tF . 

tetF  1)(  Equation 11 

 

This probability of failure over time in hours is shown in Figure 26 for an exemplarily failure rate of 

FIT2 .  
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Figure 26: Probability of failure )(tF over time 

Scaling of the x-axis in hours of operation for this example is very high ( h910 ), due to the low 

failure rate value. For common lifetime of vehicles, which is assumed as 5000h according to ISO 

26262 Part 10 Annex B.4, and low failure rates ( 01.0 t ), the exponential distribution can be 

simplified to a linear function, with the gradient of  .  

For comparison, in Figure 27 the exponential distribution for FIT2  is plotted in blue, while the 

simplified function ttF  )(  is plotted in red in the same diagram. Here the x-Axis is shown for 

the assumed system lifetime of 5000h.  
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Figure 27: Simplified linearization of probability of failure )(tF over system lifetime 
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The corresponding unconditional failure intensity )(tw  for this example would be constant over 

time and equal to the failure rate   of the event. This is shown in Figure 28. The average 

unconditional failure intensity avgw  in this case would be of same value FIT2 . 
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Figure 28: Unconditional failure intensity )(tw  over system lifetime 

If considering two events with failure rates 1  and 2  of a fault tree following the simplified 

distribution as described, when having an OR-combination between the two events, the simplified 
linearization would lead to the probability of failure over time as described in Equation 12. 

  

ttttF  )()( 21211   Equation 12 

 

Therefore, the unconditional failure intensity and the average value would be the addition of the 

two failure rates 1  and 2 . If considering AND-combination, the probability of failure over time for 

the linearized approach would be described as shown in Equation 13. 

2

21212 )()( ttttF    Equation 13 

 

This leads to a polynomial probability of failure )(2 tF  over time which is shown in Figure 29. This 

polynomial probability of failure over time results in a linear unconditional failure intensity )(tw  with 

the gradient of 212   . Therefore, the average value avgw  in this case is represented as 

t 21  . 
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Figure 29: Probability of failure )(2 tF  over system lifetime for polynomial approach 

ISO 26262 Part 10 Annex B.4 describes, that in this case of AND-combination, the corresponding 

target value must be met for t 21   while using the system lifetime. 

A simplified estimation of PMHF could be described as the sum of all residual and single-point 
faults due to their direct influence (OR-combination). The AND-combination of latent-fault failure 
rates lead to a low influence on the PMHF, even if higher failure rates are present. Therefore, a 
simplified PMHF value could be calculated according to Equation 14. 

  
HWSR

RFSPFPMHF
,

  Equation 14 

 

Target values for PMHF depend on the ASIL classification of the safety requirement. 
Recommended target values are given in Table 3. In comparison to the PMHF, target values for 
PHF from [2] are also presented according to the corresponding SIL classification. 

ASIL Random hardware failure

target values (PMHF)

PFH target values SIL

ASIL-D                                                              SIL-4

ASIL-C                                                                 SIL-3

ASIL-B                                                                   SIL-2

                                         SIL-1

 

Table 3: Recommended target values for PMHF [1] Part 5 Table 6 and PFH [2] Part 1 Table 2 

In addition to the recommended target values of [1], they can be derived from field data or 
quantitative analysis techniques applied to similar well-trusted design principles. 

 

8.8.3.2 Evaluation of each cause of safety goal violation (FRC) 

ISO 26262 [1] Part 5 9.4.3.2 recommends the application of the second method as failure rate 
class (FRC) for the hardware detailed design. This individual evaluation of each cause of safety 
goal violation is recommended to be applied for the detailed abstraction level. The process for the 
evaluation using the failure rate class approach is shown in Figure 30. 
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Figure 30: Overview: Failure rate class method [27] 

For the failure rate class method, each individual violation of a safety goal by a hardware element 
has to be evaluated. The evaluation is not done at the level of failure modes, thus at the level of 
hardware elements. All failure modes of a hardware element with the same classification (single-
point, residual or multiple-point) are clustered and evaluated together. In contrast to PMHF, the 
FRC method provides a more stringent evaluation as each violation has to meet a specified target 
value. For PMHF, only the overall target value has to be met, allowing single failure modes to 
maintain a high failure rate. 

Failure Rate Class Lower bound Upper bound

Failure Rate Class 1          

Failure Rate Class 2                

Failure Rate Class 3               

Failure Rate Class 4                 

Failure Rate Class 5                   

 

Table 4: Failure rate classes example for number of cut-sets = 100 

The evaluation includes the classification of the failure rate into proposed failure rate classes 
according to Table 4. This is achieved in accordance with ISO 26262 Part 5 9.4.3.3. For residual 
and latent multiple-point faults, a diagnostic coverage on hardware element level has to be 
determined which is verified against target values from ASIL of the safety goal. The target values 
are taken from the overall target values from PMHF, according to Table 3. This ensures 
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consistency between the two alternative methods for evaluation of residual risk of safety goal 
violation. This global target value is distributed to each violation dividing it by a number which can 
be based on the number of minimal cut-sets in the system. ISO 26262 proposes the 
recommended value of 100. The recommended value can be altered if it is ensured that a correct 
failure rate classing is maintained when considering different cut-set order together. 

The maximum value for the failure rate class 1 represents the target value of PMHF ASIL-D 
divided by the recommended value of 100 taken from [1] Part 5 9.4.3.4. For every higher number 
of failure rate class, the failure rate maximum value shall be less than or equal to 10 times the 
failure rate corresponding to the next lower failure rate class. The number of failure rate classes 
can be defined according to the failure rate values existent in the system, the failure rate classes 
1, 2 and 3 are introduced analogous to the occurrence levels 1, 2 and 3 which are used in a 
FMEA. 

For the evaluation of residual risk of safety goal evaluation, dedicated measures have to be 
applied, if prescribed by the target verification. These dedicated measures according to ISO 26262 
Part 5 [1] 9.4.2.4 can include: 

 Design features 

 Special sample tests 

 Burn-in test 

 Dedicated control set 

 Assignment of safety-related special characteristics 

 

Single-Point Fault Verification: 

In case of single-point faults, all single-point fault specific failure rates of a single hardware 
element have to be summed up. The sum of these failure rates then has to be classified according 
the failure rate classes, see Table 4. The corresponding failure rate class is verified against target 
values according to the ASIL of the safety goal as given in Table 5. 

ASIL Failure Rate Class

ASIL-D Failure rate class 1 + dedicated measures

ASIL-C Failure rate class 2 + dedicated measures

or

Failure rate class 1

ASIL-B Failure rate class 2

or

Failure rate class 1
 

Table 5: Failure rate class target values for single-point faults, [1] Part 5 Table 7 

For ASIL-D classification of the safety requirement, the failure rate sum regarding single-point 
faults of each hardware element has to be classified in failure rate class 1 and additionally 
dedicated measures have to be ensured. For ASIL-C, either failure rate class 1 or failure rate class 
2 with additional measures have to be met. For ASIL-C, failure rate class 1 or failure rate class 2 
are required. 

Residual Fault Verification: 

In case of residual faults, the failure rate has to be classified according to Table 4 for the overall 
failure rate of the hardware element. Additionally, the diagnostic coverage with respect to residual 
faults has to be calculated on hardware element level. This diagnostic coverage is not the same as 
the diagnostic coverage of a safety mechanism on system level. The diagnostic coverage with 
respect to residual faults on hardware element level is calculated according to Equation 15. 
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RF
RFDCK




1,  Equation 15 

 

The failure rate classification and the diagnostic coverage have to be verified together against 
target values according to the ASIL of the safety goal as given in Table 6. 

ASIL                                               

ASIL-D Failure rate class 4 Failure rate class 3 Failure rate class 2 Failure rate class 1 + 

dedicated measures

ASIL-C Failure rate class 5 Failure rate class 4 Failure rate class 3 Failure rate class 2 + 

dedicated measures

ASIL-B Failure rate class 5 Failure rate class 4 Failure rate class 3 Failure rate class 2

 

Table 6: Failure rate class target values for residual faults, [1] Part 5 Table 8 

Where the evaluation for single-point faults describes a direct verification of the failure rate 
classification against the target ASIL, for the residual fault a third criteria as the diagnostic 
coverage of the hardware element regarding residual faults is taken into account. Dedicated 
measures have to be taken for a diagnostic coverage lower than 90% while targeting ASIL-D or 
ASIL-C. This table can be extended to the left by adding additional columns which describe a 
higher diagnostic coverage than the maximum 99.9%. This can be achieved in accordance with 
ISO 26262 Part 5 9.4.3.7. 

Latent Multiple-Point Fault Verification: 

In case of multiple-point faults, ISO 26262 Part 5 7.4.3.2 suggests to limit the analysis to dual-
point faults in the most cases. When applying the second method for the evaluation as FRC for 
multiple-point faults, plausibility of dual-point failures has to be considered according to ISO 26262 
Part 5 Clause 9.4.3.8 and 9.4.3.9. If the dual-point failure is not plausible, it shall be accepted with 
the safety goal target. 

Plausibility is on the one hand given if one of the dual-point faults remains latent for a time longer 
than the multiple-point detection interval. For ASIL-D and ASIL-D, if there is no value prescribed, 
the multiple-point fault detection interval can be specified as equal or lower than the item’s “power-
up to power-down” cycle, according to ISO 26262 Part 5 Clause 6.4.8. Additionally, a dual-point 
fault is plausible, if one of the hardware parts diagnostic coverage regarding multiple-point latent 
faults is lower than target values given in Table 7. 

ASIL Hardware part diagnostic coverage

ASIL-D     

ASIL-C     

 

Table 7: Plausibility of dual-point faults 

If the multiple-point fault has to be evaluated, the failure rate classification is provided for the 
overall failure rate of the hardware element in the same way as for residual faults. The diagnostic 
coverage with respect to latent multiple-point faults has to be calculated on hardware element level 
according to Equation 16. Same as for residual faults, this diagnostic coverage is not equal to the 
diagnostic coverage of a safety mechanism on system level. 
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The failure rate classification and the diagnostic coverage both have to be verified against target 
values provided by the ASIL of the safety goal. Target values are shown in Table 8. 

ASIL                                           

ASIL-D Failure rate class 4 Failure rate class 3 Failure rate class 2

ASIL-C Failure rate class 5 Failure rate class 4 Failure rate class 3

 

Table 8: Failure rate class target values for dual-point faults [1] Part 5 Table 9 

For the dual-point fault individual evaluation, a combination of the occurrence of the fault 
represented by the failure rate classification and the diagnostic coverage has to be evaluated 
against target values provided by the ASIL classification of the safety requirement. 

8.9 Outlook 

The presented methodology for hardware safety evaluation will be further refined and applied to 
use cases in terms of concept validation. 

For complex parts, such as a microcontroller or an ASIC, further analysis of the internal structure, 
as shown exemplarily in Figure 31, is necessary. Therefore, an approach according to the safety 
evaluation presented in this deliverable is promising. This will be in focus of our future research in 
terms of the presented model-based methodology.  
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Control

logic

CPU Memory

RAM

 

Figure 31: System-on-chip safety analysis 
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9 Methodology 2: Consistency checks for the safety case 

The ISO 26262 points out the importance of checking the work products throughout the whole 
safety lifecycle for consistency e.g. ISO 26262-2, C.2.2, ISO 26262-3, 7.4.5.1, 8.4.5.1, ISO 26262-
4, 6.4.1.2, 6.4.6.1, 7.4.1.1 [1]. As the essential results of the work products are summarized in the 
safety case, the safety case offers a good focal point to assure the consistency of central work 
products. 

The formalized SAFE meta model structures can be exploited to produce tangible automatic 
consistency checks which can improve the quality of the macro structure and ensure the 
consistency of traceability of the elements of the safety case.  

Chapter 9.1 describes the macro structure of a safety case report which is based on the initial 
structure defined in WT3.1.3. A template is used to describe how the sections of a safety case 
report can be automatically generated and which meta model elements are involved.    

Chapter 0 first describes the general idea of performing consistency checks on the SAFE meta 
model. Furthermore a template is given which supports the documentation of individual 
consistency rules, including the rationale behind the rule and patterns for checking the 
consistency. The template is applied to describe consistency rules for checking the macro 
structure of a safety case.   

9.1 Macro structure of the safety case report 

In the following tables the macro structure of the safety case report is described. The “Report 
section” contains the name of the section of the safety case. The “Section summary” gives a 
rationale why the information is provided in the safety case. The “Artifacts” gives information on 
the artifacts which are provided in the safety case report section. The “Meta model artifact pattern” 
gives a graphical representation of the relevant meta model artifacts and their relations. The 
artifacts which are marked with a check box are included in the actual report section. Sometimes 
there is more than one artifact pattern required. In this case only one pattern is given as an 
example. 

Report section:  

Scope 

Meta model artifact pattern 

Section 

summary 

The following requirements 
describe the scope of this safety 
case. The scope requirements 
limit the applicability of the 
arguments presented in this safety 
case in the intended way. The 
scope section of the safety case 
report defines the context within 
which the remainder of the safety 
case arguments is valid. 

 

Artifacts List of requirement artifacts which 
describe the scope for the safety. 

 

Table 9: Scope section of safety case report 
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Report Section:  

System Description 

Meta model artifact pattern (example) 

Section 

Summary 

The system description presents an 
overview of the system. It is not the 
purpose of this section to provide 
full design detail. Full design detail 
is available in the system 
specification documents. The 
descriptions in this section are 
intended to help the reader of the 
safety case to understand the 
following sections. 

 

Artifacts Artifacts of the system description 
such as ECUs, sensors, actuators, 
processors, HW Modules 

 

Table 10: System description section of safety case report 

 

Report Section:  

System Hazards 

Meta model artifact pattern 

Section 

Summary 

The system hazard section 
presents an overview of the 
system hazards. It is not the 
purpose of this section to provide 
full detail. Full detail including 
operational scenarios and 
operating modes is available in 
the hazard and risk analysis 
report. 

 

Artifacts List of system hazards. 

 

Table 11: System hazards section of safety case report 



SAFE – an ITEA2 project                       D3.3.3b 

 2011 The SAFE  Consortium  46 (74) 

 

Report Section:  

System Requirements 

Meta model artifact pattern (example) 

Section 

Summary 

The safety requirements section 
presents an overview and summary of 
the safety requirements for the system. 
It lists the safety goals, functional 
safety requirements and technical 
safety requirements. It is not the 
purpose of this section to provide full 
detail. Full detail is provided in the 
specification of the system. 

 

Artifacts List of safety goals, functional safety 
requirements and technical safety 
requirements. 

 

Table 12: Safety requirements section of safety case report 

 

Report Section:  

Risk reduction measures: Functional safety concept 

Meta model artifact pattern (example) 

Section 

Summary 

The section summarizes the functional 
safety concept. For each functional 
safety requirement, the function which 
implements the safety requirement is 
given. 

 

Artifacts List of functional safety requirements 
together with the elements of the 
preliminary architecture. 

 

Table 13: Risk reduction section (functional safety concept) 
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Report Section:  

Risk reduction measures: Functional safety concept 

Meta model artifact pattern (example) 

Section 

Summary 

The section summarizes the technical 
safety concept. For each function the 
hardware or software element which 
implements the function  is given. 

 

Artifacts List of functions together with the 
hardware or software elements to 
which the function is allocated. 

 

Table 14: Risk reduction section (technical safety concept) 

 

Report Section:  

Safety analysis: Overview of malfunctions / faults / 
failures 

Meta model artifact pattern (example) 

Section 

Summary 

The safety analysis presents an 
overview of the malfunctions / faults / 
failures which habe been identified by 
analyzing the safety concepts 
presented in the previous section. Full 
detail of the analysis is available in the 
reports of the respective methods (e.g. 
FMEA report). 

 

Artifacts List of malfunctions / faults / failures 
detected by safety analysis together 
with the identified detection and 
prevention measures. 
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Table 15: Safety analysis section (malfunction / faults / failures) 

9.2 General concept for application of consistency checks and metrics 

Performing coverage and consistency checks during the development of the system safety case 
helps to ensure the formal quality of each work product as well as the formal quality of the overall 
safety case. This is illustrated in the following picture for the work products safety goals and 
functional safety requirements: A set of consistency checks is applied to a section of the SAFE 
meta model. In the example the section includes the safety goals which are derived from the 
hazard and risk analysis. Consistency checks could now examine the meta model artifacts for 
consistency with related artifacts, e.g. hazards or the derived functional safety requirements. 

As indicated in Figure 32 results of the consistency checks could be fed in to quality metrics which 
compute a formal quality of the work product, e.g. the coverage of safety goals by functional safety 
requirements. 

Both consistency checks and quality metrics can be used in quality reports which help the safety 
engineer to 

 Instantly identify formal quality issues and correct them 

 Get a quantitative summary on the formal quality of the work product  

In this deliverable we focus on the definition of the consistency checks. 
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Figure 32: Interrelation of consistency checks and metrics and the SAFE meta model 

 

9.3 Consistency checks for the safety case 

The overall structure of the safety case has been defined in WT3.3.3. and further formalized in the 
previous sections. The preliminary work helps to define the meta model artifact patterns which 
need to be checked to ensure the consistency of the safety case.  

In the following sections the consistency checks are described in detail. The “Short description” 
gives a short hint why the artifact of the safety case is inconsistent. The “Severity” classifies how 
important the inconsistency is. The “Explanation” gives more details on the reason of the 
inconsistency often with a reference to ISO 26262. The “Task” gives advice how to resolve the 
inconsistency. The “Meta model artifact pattern” gives a graphical representation of the relevant 
meta model artifacts and their relations which are relevant for checking the consistency. The 
artifacts which are marked with a grey color indicate negations. This means that the source artifact 
is inconsistent if the grey artifact is not present in the pattern. Sometimes there is more than one 
artifact pattern required to formulate a complete check. In this case only one pattern is given as an 
example. 
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9.4 Consistency checks for the macro structure of the safety case 

The consistency checks described in this section ensure that all major sections of a safety case 
are available. 

Check:  

SCMS001_SafetyCaseHasNoScope 

Meta model artifact pattern 

Short 

description 

A scope is not defined for the safety 
case. 

 

 

Severity Error 

 

Explanation Requirements which describe the 
scope for the safety case are missing. 

 

Task Add scope requirements to the safety 
case. 

 

Table 16: Checking the safety case for scope definition 

 

Check: 
SCMS010_SafetyCaseHasNoSystemDescription  

Meta model artifact pattern 

Short description A system description is not 
defined for the safety case. 

 

Severity Error 

 

Explanation The system description shall 
provide an overview of the 
system for the safety case. 

 

Task Add a system artifact to the 
safety case. 

 

Table 17: Checking the safety case for system description 
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Check: 

 SCMS020_SafetyCaseHasNoHazardAnalysis 

Meta model artifact pattern 

Short 

description 

A hazard and risk analysis is not 
defined for the safety case. 

 

Severity Error 

 

Explanation The system hazards for the safety case 
are identified by applying the hazard 
analysis and risk assessment (see ISO 
26262-3, 7.1) 

 

Task Add a hazard analysis artifact to the 
safety case. 

 

Table 18: Checking the safety case for hazard and risk analysis 

 

Check: 

SCMS032_SafetyCaseHasNoSafetyGoals  

Meta model artifact pattern 

Short 

description 

Safety goals are not defined for the 
safety case. 

 

Severity Error 

 

Explanation Safety goals shall be identified based 
on the hazard and risk analysis (see 
ISO 26262-3, 7.4.4.3). 

 

Task Add a requirement artifact to the safety 
case which contains the identified 
safety goals.  

 

Table 19: Checking the safety case for safety goals 
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Rule Check 

SCMS034_SafetyCaseHasNoFSR 

Meta model artifact pattern 

Short 

description 

Functional safety requirements are not 
defined for the safety case. 

 

Severity Error 

 

Explanation Functional safety requirements shall be 
identified based on the safety goals 
(see ISO 26262-3, 8.1). 

 

Task Add a requirement artifact to the safety 
case which contains the identified 
functional safety requirements.  

 

Table 20: Checking the safety case for functional safety requirements 

 

Check: 

SCMS036_SafetyCaseHasNoTSR 

Meta model artifact pattern 

Short 

description 

Technical safety requirements are not 
defined for the safety case. 

 

Severity Error 

 

Explanation Technical safety requirements shall be 
identified based on the functional safety 
concept (see ISO 26262-4, 6). 

 

Task Add a requirement artifact to the safety 
case which contains the identified 
technical safety requirements.  

 

Table 21: Checking the safety case for technical safety requirements 
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Check: 

SCMS040_SafetyCaseHasNoFunctionsForFunctionalS
afetyConcept 

Meta model artifact pattern 

Short 

description 

The functions for the functional safety 
concept are not defined for the safety 
case. 

 

Severity Error 

 

Explanation During the development of the 
functional safety concept, the functional 
safety requirements shall be allocated 
to preliminary architectural elements 
(see ISO 26262-3, 8). In PREEvision 
these preliminary artifacts are the 
functions of the logical architecture. 

 

Task Add the identified logical functions to 
the system of the safety case.  

Table 22: Checking the safety case for functions of the functional safety concept 
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10 Methodology 3: Common-cause analysis in the geometric perspective using 

physical properties and environmental conditions 

An important issue described in the automotive standard for functional safety ISO 26262 is the 
assurance of freedom from interference and the analysis of dependent failures. Physical factors 
like temperature, electromagnetic interference (EMI) or collisions can be an unintended cause for 
failures. They are potentials to cause dependent failures which do not occur independently as 
assumed and possibly lead to violations of safety requirements. Safety-related systems are 
typically developed in a distributed way and on different granularity levels such that common 
causes that result from physical interferences can easily be overseen. An example is the possible 
overheating that can result from multiple elements mounted in the same location of the vehicle. 
Each component itself does not produce more heat than the cooling system could handle, but 
caused through the positioning of the component the local heat limits can be exceeded and the 
components, which initially were assumed to be independent of each other, are likely to fail in a 
common cause. It is not obvious to detect potential dependent failures and interference between 
components in a system’s architecture. Thus, it is important to have a methodology that guides the 
realization of safety-related systems and helps identifying situations with dependent failures which 
lead to violations of safety requirements. Furthermore the analysis should give that much insight of 
the relation of the affected elements that strategies for resolving the common cause failures can 
be developed. 

To be able to identify these common causes additional information needs to be available in the 
development models: 

 Physical properties of the components (e.g. production of heat or EMC properties) 

 Physical constraints of the components (e.g. range of temperature where nominal 
operation can be guaranteed, maximum EM radiation that can be shielded) 

 Geometric installation spaces (Components need to be map-able to positions inside the 
vehicle) 

 Environmental conditions (e.g. the defined environmental temperature range is an 
important input to evaluate the maximum temperature in various regions of the vehicle)  

It is intended to provide an interface from the models used in the safety oriented part of the 
development process to models used for physical simulations. 

The methodology that is described in the following section helps installing a hardware architecture 
to a geometric architecture. It allows identifying potential violations of safety requirements due to 
dependent failures which are caused by coupling effects related to physical component 
characteristics and to the geometric system design. Based on an analysis of the safety 
requirement violations adequate mans of compensation can be introduced that ensure fulfilling the 
safety requirements. The methodology consists of several activities which can be used in an ISO 
26262 oriented development process. The activities and their order are depicted in Figure 33. The 
methodology can be applied on system level (ISO 26262 Part 4) or on hardware level (ISO 26262 
Part 5). ISO 26262 compliant safety goals as well as functional and technical safety requirements 
must be defined before. The installation methodology shall ensure the definition of a geometric 
topology for a hardware architecture that complies with safety requirements. It helps identifying 
potential dependent failures related to geometric design decisions for a hardware architecture. 
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Figure 33: Steps for assessment of installations with environmental factors 

 

10.1 Describing physical constraints and geometric installation 

The description of physical constraints and geometric installations is the first step in the 
assessment of installations with environment factors after the safety requirements, a hardware 
architecture and physical environment conditions are defined. In this step first the physical 
environment conditions are assessed for the hardware components of the hardware architecture 
and for other components in the geometric architecture. In a second activity hardware component 
prototypes of the hardware architecture are installed to a geometric architecture. 

 

10.1.1 Physical condition 

Each hardware component typically has physical constraints and properties (e.g. maximum 
operation temperature). Physical conditions can also be assigned to non E/E elements to e.g. part 
of the chassis (like the coefficient of heat conductivity). The physical properties can be defined 
based on requirements, as described before, or based on the specification of single hardware or 
geometric components. As described in [30] one can distinguish between active and passive 
physical conditions.  

 

 Active Physical Properties 

Active physical conditions are physical characteristics of a component which can actively 
influence an environment factor. Other component conditions like functional behavior can 
again influence the active condition. Examples are the characterization of the surface 
temperature of a hardware component, the heat flow related to a solid structure as well as 
cooling characteristics with regard to specific cooling modes. 

 Passive Physical Properties 

Passive physical conditions are assumptions on how a component’s behavior or other 
characteristics relate to an environment factor in the component’s physical environment. 
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The condition therefore defines how a physical environment factor can influence a 
component. An example is the temperature region for which proper function of a 
component is promised. Other temperature regions are either too hot or too cold for the 
usage of the component. 

The description of passive conditions can relate to component states including errors as part of the 
functional states which may lead to component failures. The violation of passive conditions can 
therefore be considered as conditions leading to faults, which are “abnormal condition(s) that can 
cause an element or an item to fail”, according the ISO 26262 vocabulary (ISO 26262 part 1). The 
description of active physical conditions can address conditions, events and states for a 
component including faults, errors and failures. Addressing them in the physical conditions will 
help detecting potential violations of safety requirements during the interference analysis. Hence, it 
is important to distinguish in which operating modes the active properties are valid. E.g. the 
emitted heat might be total different in nominal operation mode than in the case of a cooling fault. 

To specify the physical properties, we propose to use the concept of contracts [2] to separate 
between assumptions and promises. Such contracts define physical component characteristics for 
an assumed environment. These characteristics refer to specific environment factors like 
temperature or EMC as defined by the ISO 26262 part 9, clause 7.4.4. We assume that physical 
conditions either define how a component (actively) influences an environment factor or that they 
define how a component (passively) reacts to an environment factor. 

 

10.1.2 Geometric Installation 

A geometric hardware topology is defined for the hardware architecture. Positions of a geometric 
architecture are assigned to hardware component prototypes with their safety requirements, 
physical conditions as well as behavioral and other characteristics. The definition of a geometric 
hardware topology will allow analyzing whether a chosen hardware architecture is compliant to 
safety requirements with regard to its installation to a geometric architecture. A geometric 
architecture is either designed or modified respecting the hardware architecture to be installed. It 
is assumed that the installation of a hardware architecture for an item to the geometric architecture 
of a vehicle is defined on system level (ISO 26262 part 4) as part of the system design (ISO 26262 
part 4, clause 7). The geometric topology of the hardware components themselves is defined on 
hardware level (ISO 26262 part 5). 

 

10.2 Idea of Analysis 

In this section we propose the idea of a method to analyze possible interference for hardware 
component prototypes in a geometric hardware topology allowing the detection of potential 
dependent failures. “Single events or single causes that could bypass or invalidate a required 
independence or freedom from interference between given elements and violate a safety 
requirement or a safety goal” will be detected as required in the ISO 26262 part 9, clause 7. For 
this part of the ISO 26262, the method can be used to consider “similar and dissimilar redundant 
elements”, “functions and their respective safety mechanisms”, “physical distance between 
hardware elements, with or without barrier” and “common external resources”. The method is 
applied on system level to identify coupling effects on environmental factors as systematic failures, 
as described in ISO 26262 part 4, clause 7.4.3. It can be applied in accordance to ISO 26262 part 
4, clause 8 “Item integration and testing” in order to verify physical conditions of an item 
implementation in the actual environment and in accordance to ISO 26262 part 5, clause 7 
“Hardware design”. 
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The Analysis consists of two steps, the identification of interference potentials and the 
identification of affected safety goals. 

The identification of interface potentials needs to be performed for each type of passive physical 
properties of a component. It need to be identified for each of these types which active physical 
properties directly or indirectly affect the passive constraint. For these components a physical 
simulation needs to be started, which as a result needs to provide the situation which could violate 
the physical constraints (passive conditions). For example, in the case of maximum operation 
temperature the result of the simulation can be a heat map representing the maximum 
temperature reached during the simulation run at various positions in the vehicle. 

In the second step it needs to be identified if one of these temperatures exceeds the constraints 
existing for a particular place in the geometric installation model. If the temperature is bound to 
failure modes of the system, it can be possible that multiple faults occur at the same time based 
on the temperature, there are dependent. Existing fault trees can be modified and the result 
visualized. 

 

10.3 Further Work 

In the upcoming revision of this deliverable we will detail the modeling and analysis steps. In 
particular the interface of the physical simulation, how the meta-model needs to be designed to 
exchange the needed information and how the different properties need to be formalized using 
contracts. 
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11 Methodology 4: Multi-criteria deployment optimization and schedule generation 

In the following section we present an approach that allows multi-criteria deployment optimization 

and schedule generation and can be used as part of a larger design space exploration approach 

as mentioned in [34]. It is possible to use multiple criteria for the approach, and the implementation 

counterpart to this document will feature a multi-criteria capable plug-in that can target ASIL-based 

allocation, worst-case-execution-time and number of hardware nodes for deployment. A theoretical 

concept for the inclusion of selected other safety metrics identified is going to be developed in the 

final version of the document, as identified by methodologies 1-3 and presented in sections 9, 10 

and 11. The approach and descriptions thereof presented in this section are based entirely on the 

work of Sebastian Voss, presented in collaboration with Bernhard Schätz in “Deployment and 

Scheduling Synthesis for Mixed-Critical Shared-Memory Applications” at the ECBS 2013 [36]. 

11.1 Approach 

The presented methodology represents an efficient approach for generating suitable system 

architectures for embedded systems efficiently. The focus is on a joint generation of schedules 

and deployment for mixed-criticality multicore architectures using shared memory. The presented 

approach computes task and message schedules that are optimized with respect to a global 

discrete time base. As part of the solution, the approach generates an optimized assignment of 

tasks to computation resources (cores) concerning local memory constraints of cores and 

criticality constraints of tasks. This approach is integrated into the AUTOFOCUS 3 tool-chain [32], 

using a formally defined model of computation with explicit data-flow and discrete-time semantics 

to develop multi-criticality embedded systems.  

 

 

Figure 34: Deployment Synthesis in AF3 [37] 
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The approach relies on a symbolic encoding scheme, based on a system model that is derived 
from the system architecture. A formalization describing the scheduling problem as a satisfiability 
problem using boolean formulas and linear arithmetic constraints, which are the tackled by a state-
of-the-art satisfiability modulo theory (SMT) solver in order to compute the joint schedule and 
deployment for such architectures, is presented in [36]. 

Implementations are being carried out in the research CASE tool AutoFOCUS3 (AF3)[9], the basic 

sequence of which is shown in Figure 4, part of the tutorial referenced in [37], and are presented in 

more detail in Section 9 of [34] as well as in [36] and [41]. 

Using this approach we provide an efficient deployment for multi-criteria problems (e.g. timing, 

scheduling) as well as calculate (optimized) partitioning and mapping of systems according to 

ASIL levels in a mixed-criticality environment, and has been developed in the context of the 

SPES_XT Core project [38]. 

As shown in Figure 26, the ASIL levels, which are propagated through the component links on the 

logical architecture, provide one criterion and we can freely select other criteria such as execution 

time, energy consumption or any other resource optimization. 

The deployment synthesis is based on rules definition carried out inside the solver in AF3, as 

further explained in [36]. 

11.1.1 Scheduling Model 

A mixed-critical application may consist of several components providing various functions. These 

functionalities can be described as computational activities, called tasks. We define T = {t0, t1, . . . 

,tn} as a set of tasks. These tasks generally communicate by messages – in the following 

represented by M = {m0, m1, . . . ,mo} – and therefore cannot be executed in arbitrary order. The 

dependency of tasks is described by a precedence relation defining the execution ordering and is 

represented as a directed labeled graph, called a precedence graph G = {T,E}, where E ⊆ T x M x 

T represents the dependencies between these tasks via the exchanged messages, as shown in 

figure 5. For these dependencies, we define two different functions: Ƭ : T →  2
M
 such that Ƭ (t) = 

{m | Ǝt´.(t, m, t´) ∈ E}, and ρ : M → T such that ρ (m) = t´ for (t, m, t´) ∈ E, where Ƭ describes the 

set of messages m ∈ M triggered by a task t, and ρ describes for each message m ∈ M the 

corresponding receiving task t´ ∈ T. Furthermore, each task may have an annotated criticality, 

w.r.t. different safety integrity levels (SIL) as used, e.g., in [32].  

 

Figure 35: Graphical Visualization of a precedence graph G [36] 
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A computation resource may execute a set of concurrent tasks, that is, tasks that can overlap in 

time. These computation resources are called cores. Let C = {c0, c1, . . . ,cm} be a set of cores. 

Furthermore, let ƞ : C → 2
T

 be a function that assigns to every core a set of tasks running on it. A 

set of buses B is used to transport messages between cores. For reasons of simplicity, in the 

following we focus on a single communication resource – i.e., B = {b} – that can be used by all 

computing resources. 

 

11.1.2 Satisfiability Modulo Theory – SMT 

Satisfiability Modulo Theories (SMT) enable checking the satisfiability of logical formulas over one 

or more theories. SMT combines the boolean satisfiability with other background theories, such as, 

linear arithmetic, arrays, uninterpreted functions, etc. [32]. Thus, the well-known constraint 

satisfaction problem of propositional satisfiability SAT, where the goal is to decide whether a 

formula over boolean variables can be made true by choosing true/false values for its 

variables, is extended by more expressive logics such as first-order logic. First-order logic 

formulas consist of logical connectivities, variables, quantifiers, functions and predicate symbols. 

In SMT, interpretations of some symbols are constrained by a background theory (e.g. linear 

arithmetics, etc.). SMT provides a model as a solution. This model consists of interpretations for 

the variable, function and predicate symbols that make the formula true. Finding optimized 

solutions requires either some meta-search techniques or the usage of retractable assertions, 

enabling for a simple re-execution. We will demonstrate a binary search on top of the provided 

solution. Further information on satisfiability modulo theories can be found in [32]. 

11.2 SMT Based Deployment and Scheduling Synthesis 

As mentioned in previous sections, we present an approach for jointly generating (safety-related) 

deployments for multicore architectures using a shared memory (based on different SIL levels) 

and their corresponding schedules. The presented approach uses a formalization for this joint 

generation of deployments and schedules, consequently leading to a much higher class of 

complexity than single scheduling synthesis.  

We formalize this problem as a satisfiability problem using boolean formulas and linear 

arithmetical constraints. We demonstrate that efficient SMT solvers can be used for finding 

deployments of functions to cores w.r.t. schedulability rules, allocated SIL-levels and soft- and 

hardware memory constraints. 

11.2.1 SMT Solver YICES 

YICES [40], [43] is an efficient SMT solver developed at SRI International. It supports a 

combination of first-order theories, such as arithmetics, uninterpreted functions with equality, bit 

vectors, arrays, recursive data-types, and more. YICES is able to solve classical SMT problems, 

namely it decides the satisfiability of propositionally complex formulas in such theories. Further 

information concerning YICES architecture and algorithms can be found in [44]. 

11.2.2 Translation to YICES 

We propose to solve the defined problem, as previously formulated in the introductory section by 

using an SMT solver. Therefore, we need to encode the joint scheduling and deployment problem 
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as a decision problem using boolean formulas with linear arithmetic constraints in order to check 

the validity. The scheduling problem comprises to find a valid deployment of task to cores, w.r.t. 

the given constraints. By finding a valid solution, we are then able to generate a deployment and 

its corresponding schedule that comply to the requirements of an optimized global discrete time 

base ℓ, as previously defined.  

With respect to this goal of finding a deployment including an optimized task and message 

schedule based on AF3 semantics [35], we implement a binary search finding the shortest latency 

possible. Using this binary search as a meta search strategy, latency can bounded, making 

quantifier instantiation terminating, and thus the approach applicable, with respect to 

boundedness. 

11.2.2.1 Assumptions 

Our target is to demonstrate that suitable system architectures can be generated efficiently. A 

suitable system architecture (in our case) includes a safety-oriented deployment and its 

corresponding time schedule. In order to meet this objective, we need to generate a task and 

message schedule, meaning to calculate starting times for all tasks t ∈ T and messages m ∈ M, 

including valid allocation of tasks to cores (e.g. ti,core = {corei}, where ti ∈ T and corei ∈ C). 

 

The following assumptions are used in this approach: 

 The precedence graph is defined a priori. The assignments (Ƭ : T →  2
M
 and ρ : M → T) 

are defined as well. Preemption of tasks is not considered. 

 As messages are input respectively outputs of a certain task (corresponding to the given 

precedence graph G), the precedence relations have to be guaranteed, according the their 

causality. 

 As each message m ∈ M is transferred via a write and read operation in and out of the 

shared memory MEM, we distinguish between a write and read part for each message  

m ∈ M. 

 The time which is estimated as communication duration for each write and read message 

m ∈ M corresponds to the time for transmitting it over the bus and writing it into the shared 

memory. The read and write operations are accumulated as task computation time. 

 

Furthermore, while the developed approach does not rely on the following restrictions, in the 

following for simplification purposes, we expect the computing resources (cores) in the system to 

be identical concerning computation speed, and only use a single communication bus B and a 

single shared memory MEM. 

11.2.2.2 Definitions 

The given precedence graph G comprises several elements: a set of cores, a set of tasks and a 

set of messages. Thus, we begin by defining type declarations for these precedence graph 

elements in YICES. 
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Definition 1 (Tasks):  

A task type specification is done using a set of properties in a dedicated data structure that is 

defined as a record type in YICES input language, as follows: 

 

The defined task record stores parameters of a single executable task ti. The variable start_time 

defines the starting, computation_time the given computation duration and complete_time the 

finishing time of a certain task. The variable core represents the core on the multi-core chip a task 

is allocated to. Furthermore, each task has a dedicated safety integrity level (sil) and needs a 

certain amount of memory (ram). 

 

Definition 2 (Messages): 

We specify a message type by using a message record (comparable to Definition 2) that stores 

the parameter information of a single message mi. The variable start_time stores the starting time 

of a message. The communication_duration stores the given transmission duration and the 

complete_time stores the finishing time of a message. 

 

 

Definition 3 (Cores):  

The set of cores is defined as C = {c1, . . . , cs}. All cores c ∈ C. This set of cores can be specified 

using a scalar: 

 

where 1, 2, . . . , s complies to the size of the set C. A record definition, comparable to tasks and 

messages defines further properties of a core, e.g. a dedicated safety integrity level, w.r.t. a 

standard (sil::ASIL). We use scalar coding instead of a subrange types, because this leads to 

a reduction of decisions by a factor of 100. The set of tasks T and messages M is specified 

comparatively. 

 

(define-type TASKS (record 

start_time :: nat 

computation_time :: nat 

complete_time :: nat 

core :: cores 

sil::ASIL 

ram::nat)) 

define-type CORES (scalar 1 2 ... s)) 

(define-type MESSAGES (record 

start_time :: nat 

communication_duration :: nat 

complete_time :: nat)) 
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11.2.2.3 Assertions 

In the following, we describe the assertions used to solve the given problem. 

Assertion 1 (Scheduling Attributes): 

As tasks and messages have certain computation or communication times, we need to define 

these durations as parameters. The goal is to effectively generate optimized and safety related 

deployments, w.r.t. design rules given by the safety standards. Therefore, a set of additional 

attributes is needed, w.r.t. safety and memory consumption. These attributes are defined a priori 

and can be described as follows: 

 

where ti,sil comprises the safety integrity level, ti,ram the necessary memory used by this task and 

s, t, u, v are the concrete use case-related values. 

 

Assertion 2 (Task Allocation): 

Task computation times need to be disjoint, if tasks are allocated to the same computing resource 

(core), meaning there is only one task at most that is currently using the resource at a time. 

 

We make use of YICES quantifiers for specifying this constraint: 

 

 

 

 

(assert (forall (t1::TASKID t2::TASKID) (or 

(or (or ((= t1 t2) 

(/ = (select (tasks t1) node) (select (tasks 

t2) node))) 

(>= (select (tasks t1) start_time) (select 

(tasks t2) complete_time))) 

(>= (select (tasks t2) start_time) (select 

(tasks t1) complete_time))))) 

⊭ Ǝ t (t ∈ Time) ( 

ti.start_time ≤ t < ti.complete_time Ʌ 

tj.start_time < t ≤ tj.complete_time Ʌ 

ti.core = tj.core Ʌ ti ≠ tj) 

⊨  ti.computation_t = s, 

⊨ ti.sil = t, 

⊨ ti.ram = u, 

⊨ mi.communication_duration = v 
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Assertion 3 (Precedence Graph): 

The goal is to calculate a schedule, where all precedence relations defined in Ƭ (tsend) = {mi_write} 

and ρ(mi_read) = {trec} are met. The causality of a task is important in that context. Therefore, a task 

(tsend) derived from a weak-causal AF3 component should meet the following timing constraints: 

The complete time of this task (tsend) and the start time of the write - part of a message (mi) 

(indicated as mi_write) should be equal and the complete time of the read - part of this message 

should be less or equal to the start time of the receiver task (trec). Note that write and read – parts 

of a message can be timely separated, as this is one of the characteristics using shared memory 

systems: 

 

where message mi_write , mi_read ∈ M and tsend , trec ∈ T. We make use of lambda expressions, to 

denote unnamed functions like this: 

 

where [expression] realizes the arithmetic constraints specified above.  

In case a sender task (tsend) is derived from a strong-causal component this semantic intends a 

different behavior: The complete time of the sender task (tsend) should be greater or equal to the 

start time of the message (mi_write). 

 

where message mi_write ∈ M and tsend ∈ T. The implementation in YICES is comparable to the 

previous one. Using these different semantics (strong and weak - causal) implies that the design 

space varies with respect to the possibilities given by the message allocation and causality. 

 

Assertion 4 (Message Allocations): 

A disjoint access of messages to a shared communication resource needs to be guaranteed, 

meaning there is only one message at a time that can be transmitted and written into the shared 

memory: 

 

⊭ Ǝ t (t ∈ Time) ( 

mi.start_time ≤ t < mi.complete_time Ʌ 

mj.start_time < t ≤ mj.complete_time Ʌ  mi ≠ mj) 

⊨ (mi_write.start_time >= tsend.complete_time) 

(define LINK :: (-> TASKID MESSAGEID MESSAGEID 

TASKID) (lambda 

( source:: TASKID messageSEND:: MESSAGEID 

messageREC:: MESSAGEID target:: TASKID) 

(... expression) 

⊨ (mi_write.start_time = tsend.complete_time) Ʌ 

(mi_read.complete_time ≤ trec.start_time), 
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In case task tsend and task trec are allocated to the same computing resource, the complete time of 

each task is calculated as follows: 

 

In case sender task tsend and receiver task trec are allocated to different computing resources, the 

complete time is calculated as follows: 

 

We use a function of YICES input language to specify this calculation: 

 

Furthermore, local memory is needed by the set of tasks T on their allocated cores C. Thus, a core 

corei provides enough memory for all tasks ti that are allocated to this core. We specify this 

constraint using a comparable functions as the link function specified previously. 

 

Assertion 5 (Safety Integrity Level) 

In order to provide a formalization of the joint generation of schedules and safety-critical 

deployments, we use SIL-annotations of components, to specify deployment constraints: 

 

where task ti,sil comprises to all task ti ∈ T with ƞ( corei) = { ti }, meaning all tasks that are 

allocated to the core corei ∈ C: 

 

(assert (forall (t:: TASKID) (<= (select 

(tasks t) sil) 

(select (nodes (select (tasks t) node)) 

sil)))) 

⊨ (ti,sil <= corei,sil) 

((define DURATION :: (-> TASKID MESSAGEid 

TASKID) (lambda 

( source:: TASKID messageSEND:: MESSAGEID 

messageREC:: MESSAGEID target:: TASKID) 

(if (= (select (tasks source) node) (select 

(tasks target) node)) 

(select (messges message) start_time) 

(+ (select (messages message) 

start_time) (select (messages message) 

computation_time))))) 

mi.complete_time = mi.start_time + mi.communication_duration 

iff: tsend.core ≠ trec.core 

mi.complete_time = mi.start_time 

iff: tsend.core = trec.core 
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11.2.2.4 Correctness Properties 

Finally, given system requirements are specified as a correctness property for the given SMT - 

based joint scheduling and deployment generation approach. We specify the global discrete time 

base as a length | ℓ |. The calculated deployment should contain a schedule using this length | ℓ | 

(e.g. 100 time units). 

 

The check command is used to check whether the current logical context is satisfiable or not. If 

the joint problem of deployment and scheduling is satisfiable using the constraints imposed by the 

given end-to-end system requirement, a solution model is given. 

11.3 Description based on an Example 

In the following we present an automotive use case to demonstrate the usability of the presented 

approach using a real world example. 

11.3.1 Adaptive Cruise Control (ACC) – System 

The Adaptive Cruise Control (ACC) is an automotive use case. The ACC automatically adjusts the 

traveling speed of an automotive vehicle by controlling the acceleration and breaking momentum, 

based on a driver-defined reference speed, the current speed as well as the distance to a 

(possibly present) leading vehicle. Figure 6 shows how the ACC system is modeled using our 

research CASE tool AF3, with an architecture consisting of 5 main components (speed and 

distance plausibilization, speed- and distance-based control, (de-)acceleration computation).  

 

Figure 36: Automotive Use Case: Adaptive Cruise Control (ACC) model in AF3 [36] 

 

(assert (<= (- endLatency startLatency) 100)) 
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AF3 provides different component semantic with respect to timing: the notion of strong and weak 

causality. This approach supports both of them. Therefore, we specify all components as weak-

causal, except of one component, named ”DistancePlausibilization”. This component is specified 

as strong-causal. Furthermore, there are different levels of criticality. Component 

”DistancePlausibilization” and component ”SpeedPlausibilization” have an annotated safety 

integrity level (SIL) of 2, while all other components are of SIL 1, with higher SIL numbers denoting 

a higher criticality level. 

11.3.2 ACC Schedule Synthesis 

We demonstrate the proposed approach by using the AF3 system model of the ACC from the 

previous section. This model is transformed into a scheduling model represented by an extended 

precedence graph G. We use the scheduling model as a basis for the presented SMT-based 

scheduling approach. 

For the given ACC use case, we generate a set of 5 tasks T = {tSpeedPlausibilization, tDistancePlausibilization, 

. . . , tAccerelation} according to the given components and a set of 13 messages M = {mSensSpeed, . . . , 

mCmdAcc}. Furthermore, based on the technical architecture of the ACC, we generate to 2 cores C 

= {core1, core2}, a shared memory MEM and an avalon bus B. 

In the next step, assertions are generated w.r.t. the defined system attributes, e.g. the 

computation time (computation_time) or the different safety integrity levels (SIL) for each task. 

This is done for all elements in the scheduling model. 

The YICES assert command is used for specifying the system attributes: 

 

In a next step, we define constraints that are imposed by precedence relations defined in the 

generated precedence graph G. As tasks and messages cannot be scheduled in an arbitrary 

order, precedence relations are defined by the functions Ƭ and ρ are used to guarantee all 

precedence relations in G (e.g. Ƭ(tDistancePlausibilization) = {mCurSpeed} and ρ(mCurSpeed) = {tDistanceControl}). 

As a system requirement, the goal is to minimize the logical tick duration | ℓ |. Therefore, we 

demand for a schedule with a latency of less than 100 time units, as discussed in section 11.2.2.4. 

11.3.3 Satisfied Solution Model 

The function of a SMT solver is to check the satisfiability of logical formulas over one or more 

theories. The solution model provided by the SMT solver is a valid deployment for the given 

deployment problem under consideration. However, the SMT solver outputs one solution that 

(assert (= (select (task 

SpeedPlausibilization) computation_time) 10)) 

(assert (= (select (task 

SpeedPlausibilization) sil) 1)) 

... 

(assert (= (select (m CurSpeed) 

communication_duration) 2)) 

... 
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fulfills the defined constraints. A valid solution, a model, consists of interpretations for the 

variables, functions and predicate symbols that makes the formula true. For analysis and 

demonstration of operation, we invoke YICES on the given Adaptive Cruise Control (ACC) - 

System.  

Solution Model given by YICES SMT - Solver: 

 

 

The solution model comprises all defined elements. This includes a solution for the defined task 

and message scheduling problem. Furthermore, the following allocation of tasks to cores has been 

generated, w.r.t. a priori defined safety integrity level and memory constraints:  

ƞ(core0) = {tDistancePlausibilization, tSpeedPlausibilization} and ƞ(core1) = {tSpeedControl, tDistanceControl, tAccerelation }. 

For instance, task tDistancePlausibilization has a calculated start time of 0 time units. Task 

tSpeedPlausibilization starts at 12 time units and is allocated to core core0. Message mCurSpeed_write, for 

instance, has an allocated starting time of 22 time units. 

Thus, based on the solution model provided, we are able to extract an integrated task and 

message schedule γ = {ti ↦ γ i ,  ∀ ti ∈ T} that is integrated into the AF3 system model. 

 

 

(= duration 34) 

(= (task DistancePlausibilization) 

(mk-record 

start_time :: 0 

computation_time :: 10 

core :: 0)) 

ram :: 250 

sil :: 1 

(= (task SpeedPlausibilization) 

(mk-record 

start_time :: 12 

computation_time :: 10 

core :: 0)) 

ram :: 100 

sil :: 1 

... 

(= (message CurSpeed_write 

(mk-record 

start_time :: 22 

communication_duration :: 2 

(= (message CurDist 

... 
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The calculated schedule is illustrated in figure 7. As previously explained, tasks tSpeedPlausibilization 

and tDistancePlausibilization are allocated to the same core core0. The other tasks are allocated to the 

core core1. Hence, the execution ordering needs to be disjoint for that node. 

 

 

Figure 37: Optimized Schedule of Active Cruise Control in AF3 [36] 

 

Thus, the optimized global discrete time base ℓ for the given AF3 system model under 

consideration is calculated to be 34 time units. YICES SMT Solver needs less than 100 msec to 

calculate a valid solution. Using a binary search for optimizing the duration | ℓ | of the global 

discrete time base, YICES uses less than 1 sec. 

 

γ = {tSpeedPlausibilization  ↦ 〈 12; {22, 0} 〉, 

   {tDistancePlausibilization ↦ 〈 0, {10, 12} 〉, 

   {tSpeedControl   ↦ 〈 2, { } 〉, 

   {tDistanceControl  ↦ 〈 14, { } 〉 

   {tAccerelation ↦ 〈 24, { } 〉} 



SAFE – an ITEA2 project                       D3.3.3b 

 2011 The SAFE  Consortium  70 (74) 

12 Conclusions 

This second version of deliverable D3.3.3 describes concepts and methodologies for the 
assessment of architectures in context of functional safety. Four different methodologies are 
presented: First methodology addresses model-based hardware safety assessment on different 
level of abstraction. The second methodology is in focus of coverage and consistency checks for 
the safety case. Third methodology describes performing common-cause analysis in the geometric 
perspective using physical properties and environmental conditions. Methodology 4 provides multi-
criteria deployment optimization and schedule generation. Additionally, in the work package 4 
“Technology platform”, the methodologies are in focus of implementation work. 

 



SAFE – an ITEA2 project                       D3.3.3b 

 2011 The SAFE  Consortium  71 (74) 

13 References 

[1] International Standards Organization, ISO 26262 Standard, “Road Vehicles - Functional 
Safety,” http://www.iso.org/, 2011. 

[2] International Electrotechnical Commission, IEC 61508 Standard, “Functional Safety of 
Electrical/Electronic/Programmable Electronic Safety-related Systems,” 
http://www.iec.ch/functionalsafety, 2009. 

[3] Adler, N., Otten, S., Mohrhard, M., and Müller-Glaser, K.-D., “Rapid Safety Evaluation of 
Hardware Architectural Designs Compliant with ISO 26262,” in Rapid System Prototyping 
(RSP), 24rd IEEE International Symposium on, 2013, pp. 66–72. 

[4] Börcsök, J., “Functional Safety: Basic Principles of Safety-Related Systems,” Hüthig Verlag, 
1. Edition 2007. 

[5] International Electrotechnical Commission, "Technical Report: Reliability data handbook - 
Universal model for reliability prediction of electronics components, PCBs and equipment," 
IEC Standard TR 62380, Rev. Aug. 2004. 

[6] Departement of Defense, "Military handbook: electronic reliability design handbook," MIL-
HDBK-338B, Rev. Oct. 1998. 

[7] FIDES Group, "Reliability Methodology for Electronic Systems," FIDES guide 2009 edition A, 
Rev. Sept. 2010. 

[8] International Electrotechnical Commission, IEC 61025 Standard, “Fault tree analysis (FTA),” 
2006. 

[9] Veseley, W. E. et al., NUREG-0492 Standard, “Fault Tree Handbook,” 1981. 

[10] Veseley, W. E. et al., “Fault Tree Handbook with Aerospace Applications,” NASA Office of 
Safety and Mission Assurance, 2002. 

[11] Departement of Defense, “Military Standard: Procedures for Performing a Failure Mode, 
Effects and Criticality Analysis,” MIL-STD1629, 1974. 

[12] Grebe, J. C., Goble, W. M., “FMEDA – Accurate Product Failure Metrics,” FMEDA 
Development Paper, Rev. 1.1, 2007. 

[13] Collett, R. E. and Bachant, P. W., “Integration of BIT Effectiveness with FMECA,” 
Proceedings of the Annual Reliability and Maintainability IEEE Symposium, New York, 1984. 

[14] Moore Products Co., “Safety Manual for QUADLOG,” 1997. 

[15] Leitner-Fischer, F. and Leue, S., "The QuantUM Approach in the Context of the ISO 
Standard 26262 for Automotive Systems," Technical Report soft-11-01, University of 
Konstanz, 2011. 

[16] Jeon, S.-H., et al., "Automotive hardware development according to iso 26262," presented at 
13th International Conference on Advanced Communication Technology (ICACT), Korea, 
Feb. 13-16, 2011. 

[17] Bellotti, M., and Mariani, R., "How future automotive functional safety requirements will 
impact microprocessors design," Microelectronics Reliability, 2010, 
doi:10.1016/j.microrel.2010.07.041 

[18] Sinha, P., "Architectural design and reliability analysis of a fail-operational brake-by-wire 
system from ISO 26262 perspectives," Reliability Engineering and System Safety, 2011, 
doi:10.1016/j.ress.2011.03.013. 

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_tc_browse.htm?commid=46752
http://www.iec.ch/functionalsafety


SAFE – an ITEA2 project                       D3.3.3b 

 2011 The SAFE  Consortium  72 (74) 

[19] Svancara, K., Forbes, W., Priddy, J., Kudanowski, M. et al., "Experience with the second 
method for eps hardware analysis: "evaluation of each cause of safety goal violation due to 
random hardware failures", " presented at VDA Automotive SYS Conference on Quality and 
Functional Safety Management for Automotive software-based Systems, Germany, May 14-
16, 2012. 

[20] Svancara, K., Priddy, J., Lovric, T., Miller, J. et al., "Advantages of the Alternative Method for 
Random Hardware Failures Quantitative Evaluation - a Practical Survey for EPS," SAE Int. J. 
Passeng. Cars – Electron. Electr. Syst. 6(2):377-388, 2013, doi:10.4271/2013-01-0190. 

[21] Papadopoulos, Y. et al., “Engineering failure analysis and design optimisation with hip-hops,” 
Engineering Failure Analysis, vol. 18, no. 2, pp. 590 – 608, 2011, the Fourth International 
Conference on Engineering Failure Analysis Part 1. 

[22] M. Walker, Y. Papadopoulos, D. Parker, H. Lönn, M. Törngren, D. Chen, R. Johansson, and 
A. Sandberg, “Semi-automatic fmea supporting complex systems with combinations and 
sequences of failures,” SAE Int. J. Passeng. Cars - Mech. Syst. 2(1), pp. 791–802, 2009. 

[23] Adler, N., Hillenbrand, M., Müller-Glaser, K.-D., Metzker, E., and Reichmann, C., 
“Graphically notated fault modeling and safety analysis in the context of electric and 
electronic architecture development and functional safety,” in Rapid System Prototyping 
(RSP), 23rd IEEE International Symposium on, 2012, pp. 36–42. 

[24] AUTOSAR, "AUTOSAR Project Objectives V3.0.0, R4.0 Rev. 3,” Rev. Dec. 2011.  

[25] ATESST2 Consortium, "EAST-ADL Domain Model Specification - Deliverable D4.1.1," Rev. 
June 2010. 

[26] Cuenot, P., Adler, N., and Otten, S., SAFE Project, “Deliverable D3.2.2b: Proposal for 
extension of meta model for hardware modeling,” 2013. 

[27] Adler, N., Otten, S., Cuenot, P., and Müller-Glaser, K., "Performing Safety Evaluation on 
Detailed Hardware Level according to ISO 26262," SAE Int. J. Passeng. Cars – Electron. 
Electr. Syst. 6(1):102-113, 2013, doi:10.4271/2013-01-0182.  

[28] Vector Informatik GmbH, “PREEvision User Manual Version 6.0.1”, 2013. 

[29] Innal, F., Dutuit, Y., Rauzy, A., and Signoret, J.-P., “New insight into the average probability 
of failure on demand and the probability of dangerous failure per hour of safety instrumented 
systems”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk 
and Reliability June 1, 2010 vol. 224 no. 2 75-86, 2009, doi:10.1243/1748006XJRR278. 

[30] Baumgart, A., „A Contract-Based Installation Methodology for Safety-Related Automotive 
Systems“, SAE Technical Paper 2013-01-0192, April 2013 

[31] Damm, W., Baumgart, A., Böde, E., Büker, M., Ehmen, G., Gezgin, T.,  Henkler, S., Hungar, 
H., Josko, B., Oertel, M., Peikenkamp, T., Reinkemeier, P., Stierand, I. and Weber, R., 
“Architecture Modeling”, OFFIS, March 2011. 

[32] L. de Moura and N.Bjoerner, “Satisfiability modulo theories: An appetizer,” in SBMF, 2009, 
pp. 23–36. 

[33] H. Gall, “Functional safety IEC 61508 / IEC 61511 the impact to certification and the user,” in 
Proceedings of the 2008 IEEE/ACS International Conference on Computer Systems and 
Applications, ser. AICCSA ’08. Washington, DC, USA: IEEE Computer Society, 2008, pp. 
1027–1031. [Online]. Available: http://dx.doi.org/10.1109/AICCSA.2008.4493673 

[34] The SAFE-E Consortium. Deliverable D4.4.a “First version of plug-in for safety and multi 
criteria architecture modeling and benchmarking”. EUROSTARS. 2013. 

[35] AutoFOCUS3. Fortiss GmbH. 2013, af3.fortiss.org. 



SAFE – an ITEA2 project                       D3.3.3b 

 2011 The SAFE  Consortium  73 (74) 

[36] Sebastian Voss, Bernhard Schätz, “Deployment and Scheduling Synthesis for Mixed-Critical 
Shared-Memory Applications”. Proceedings of the 20th Annual IEEE International 
Conference and Workshops on the Engineering of Computer Based Systems (ECBS) 2013. 

[37] Sebastian Voss, Antoaneta Kondeva, Daniel Ratiu, Bernhard Schätz, “Seamless Model-
based Development of Embedded Systems with AF3 Phoenix”. Tutorial at the 20th Annual 
IEEE International Conference and Workshops on the Engineering of Computer Based 
Systems (ECBS) 2013. 

[38] SPES-XT Project Consortium. spes2020.informatik.tu-muenchen.de/spes_xt-home. 2013. 

[39] Z3 SMT Solver, Microsoft Research, Microsoft Corportation. research.microsoft.com/en-
us/um/redmond/projects/z3. 2013. 

[40] YICES SMT Solver, SRI Tools, Stanford Research Institute. yices.csl.sri.com. 2013. 

[41] Sebastian Voss, Johannes Eder, Florian Hölzl, Bernhard Schätz. “An integrated Design 
Space Exploration Approach”. Submitted. 

[42] Automotive, Railway and Avionics Multicore Systems – ARAMiS Project Consortium.. 
www.projekt-aramis.de. 2013. 

[43] B. Dutertre and L. de Moura, “The yices smt solver,” Computer Science Laboratory, SRI 
International, Tech. Rep. 

[44] B. Dutertre and L. de Moura, “Fast linear-arithmetic solver for dpll(t),” in Proc. 18th 
Computer-Aided Verification conference, ser. LNCS, vol. 4144. Springer-Verlag, 2006, pp. 
81–94. 

http://www.projekt-aramis.de/


SAFE – an ITEA2 project                       D3.3.3b 

 2011 The SAFE  Consortium  74 (74) 

14 Acknowledgments 

This document is based on the SAFE and SAFE-E projects. SAFE is in the framework of the 
ITEA2, EUREKA cluster program Σ! 3674. The work has been funded by the German Ministry for 
Education and Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of 
the Economy and Finance (DGCIS). SAFE-E is part of the Eurostars program, which is powered 
by EUREKA and the European Community. The work has been funded by the German Ministry of 
Education and Research (BMBF) and the Austrian research association (FFG) under the funding 
ID E!6095. The responsibility for the content rests with the authors. 


