

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 1/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

WORKPACKAGE 1: META-MODELLING

D1.4 – V3

USIXML REFERENCE MANUAL

Project acronym: UsiXML

Project full title: User interface eXtensible Mark-up Language

ITEA label n° 08026

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 2/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

DOCUMENT CONTROL

Deliverable N° : D1.4

Due Date : 02/2011

Delivery Date : 09/2012

Short Description : Reference manual that explains the different meta-models and meta-model elements that
compose UsiXML.

Lead Partner : BIL

Contributors: UPV, UND, UCL, THA, UCLM

Made available to : Confidential

Rev Date Author Checked by Internal
Approval

Description

0.1 08/07/10 Nathalie Aquino
(UPV),
Ignacio Panach
(UPV)

 Initial version: table of contents

0.2 03/16/11 Ignacio Panach
(UPV),
Nathalie Aquino
(UPV)

 First complete draft

0.2 04/08/11 Mohamed
Boukhebouze,
Philippe Thiran
(UND)

 Update of the domain meta-model
according to the comments of
Gaelle CALVARY

0.3 04/26/11 Nathalie Aquino
(UPV),
Ignacio Panach
(UPV)

 Merge of version 0.2 and updates
from UND

0.4 05/31/2011 Nathalie Aquino
(UPV),
Ignacio Panach
(UPV)

 Incorporation of a new example for
the Abstract User Interface Model,
provided by UCL

0.5 09/20/2011 Nathalie Aquino
(UPV),
Ignacio Panach
(UPV)

 Improvements according to
comments and suggestions from
Charles Robinson and Víctor
López Jaquero

0.6 10/12/2011 Nathalie Aquino
(UPV),
Ignacio Panach
(UPV)

 Incorporation of improvements
based on material sent by
Mohamed Boukhebouze (UND).
Improvements were made in
sections related to Domain and
Workflow meta-models.

1.0 2011/10/21 Final deliverable
2.0 2012/09/05 Gabriel Álvarez

(BIL)
 Improvements according to

comments and suggestions.
2.1 2012/09/10 D. Faure (THA) Quality Check

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 3/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

3 2013/03/25 Gabriel Álvarez
(BIL)

 Improvements according to
comments and suggestions.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 4/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

CONTENTS

1. EXECUTIVE SUMMARY .. 7

2. DOCUMENTS ... 7

2.1. MANDATORY .. 7

2.2. REFERENCE ... 7

3. INTRODUCTION ... 7

4. TASK META-MODEL 8

4.1. OVERVIEW .. 8

4.2. SUMMARY ... 9

4.3. MODELING THROUGH THE ECLIPSE PLUG-IN .. 10

4.4. CLASSES OF THE TASK META-MODEL ... 13

4.5. HOW TO BUILD A TASK MODEL ... 16

4.6. EXAMPLE .. 16

5. CONTEXT META-MODEL 18

5.1. OVERVIEW .. 18

5.2. SUMMARY ... 18

5.3. MODELING THROUGH THE ECLIPSE PLUG-IN .. 19

5.4. CLASSES OF THE CONTEXT META-MODEL ... 22

5.5. HOW TO BUILD A CONTEXT MODEL ... 27

5.6. EXAMPLE .. 28

6. DOMAIN META-MODEL 29

6.1. OVERVIEW .. 29

6.2. SUMMARY ... 30

6.3. MODELING THROUGH THE ECLIPSE PLUG-IN .. 31

6.4. CLASSES OF THE DOMAIN META-MODEL .. 34

6.5. HOW TO BUILD A DOMAIN MODEL .. 39

6.6. EXAMPLE .. 39

7. ABSTRACT USER INTERFACE META-MODEL 40

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 5/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

7.1. OVERVIEW .. 40

7.2. SUMMARY ... 42

7.3. MODELING THROUGH THE ECLIPSE PLUG-IN .. 42

7.4. CLASSES OF THE ABSTRACT USER INTERFACE META-MODEL .. 46

7.5. HOW TO BUILD AN ABSTRACT USER INTERFACE MODEL .. 53

7.6. EXAMPLE .. 53

8. CONCRETE USER INTERFACE META-MODEL 55

8.1. OVERVIEW .. 55

8.2. SUMMARY ... 57

8.3. MODELING THROUGH THE ECLIPSE PLUG-IN .. 57

8.4. CLASSES OF THE CONCRETE USER INTERFACE META-MODEL ... 57

8.4.1. MAIN ENTITIES ... 58

8.4.2. CONCRETEGRAPHICALIU ... 59

8.4.3. CONCRETESTYLE .. 63

8.4.4. CONCRETELISTENER .. 66

8.5. HOW TO BUILD A CONCRETE USER INTERFACE MODEL ... 69

8.6. EXAMPLE .. 69

9. TRANSFORMATION META-MODEL 74

9.1. OVERVIEW .. 74

9.2. SUMMARY ... 74

9.3. MODELING THROUGH THE ECLIPSE PLUG-IN .. 75

9.4. CLASSES OF THE TRANSFORMATION META-MODEL .. 75

9.4.1. STRUCTURE OF PACKAGES .. 75

9.4.2. PACKAGE CONTEXT .. 77

9.4.3. PACKAGE QOC ... 77

9.4.4. PACKAGE TRANSFORMATION ... 82

9.4.4.1. Transformation Rules and Rule Representations... 82

9.4.4.2. Transformation Units ... 86

9.4.4.3. Transformation Model .. 90

9.4.4.4. Runtime Configuration .. 92

9.5. HOW TO BUILD A TRANSFORMATION MODEL .. 94

9.6. CONNECTIONS WITH OTHER TRANSFORMATION LANGUAGES .. 95

9.6.1. ATL RULE REPRESENTATIONS .. 95

9.6.2. GRAPH RULE REPRESENTATIONS .. 97

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 6/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

9.7. A LAB STUDY OF THE TRANSFORMATION META-MODEL ... 100

9.7.1. PACKAGE QOC ... 101

9.7.2. PACKAGE TRANSFORMATION ... 102

9.8. ANALYSIS OF THE TRANSFORMATION META-MODEL AGAINST THE TAXONOMY OF
MODEL TRANSFORMATIONS PROPOSED BY MENS ET AL. .. 107

10. WORKFLOW META-MODEL 110

10.1. OVERVIEW ... 110

10.2. SUMMARY .. 112

10.3. MODELING THROUGH THE ECLIPSE PLUG-IN ... 113

10.4. CLASSES OF THE WORKFLOW META-MODEL ... 113

10.5. HOW TO BUILD A WORKFLOW MODEL .. 119

10.6. EXAMPLE ... 119

11. QUALITY META-MODEL 120

11.1. OVERVIEW ... 120

11.2. SUMMARY .. 121

11.3. MODELING THROUGH THE ECLIPSE PLUG-IN ... 122

11.4. CLASSES OF THE QUALITY META-MODEL .. 122

11.5. QUALITY PERSPECTIVES .. 126

11.6. THE META-MODEL .. 127

11.7. OBJECTS, METHODS AND RESULTS. GLOBAL QUALITY VS LOCAL QUALITY 128

11.8. HOW TO BUILD A QUALITY MODEL .. 130

11.9. EXAMPLE ... 130

12. MAPPING META-MODEL 133

12.1. OVERVIEW ... 133

12.2. MODELING THROUGH THE ECLIPSE PLUG-IN ... 134

12.3. CLASSES OF THE QUALITY META-MODEL .. 134

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 7/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

1. EXECUTIVE SUMMARY

This document is the UsiXML Reference Manual. It is intended to explain what are the meta-models and meta-
model elements of the UsiXML approach and how they could be used.

2. DOCUMENTS

2.1. MANDATORY

2.2. REFERENCE

3. INTRODUCTION

This document explains the different meta-models and meta-model elements that compose the UsiXML
framework. UsiXML proposes modeling interfaces through different abstraction levels. Thus, each abstraction
level represents a view of the interface that is being modeled. The aim of this document is to deal with
questions of the type “what is this?”

This manual includes all the models that compose the UsiXML framework to specify interfaces from the most
abstract level to code generation (Reification). All these models can also be used to perform transformations
from the interface to the most abstract model (Abstraction). Figure 1 shows these models graphically.

Figure 1. An overview of the models that compose the UsiXML framework

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 8/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

This reference manual is structured according to a template that provides the following information for each
UsiXML meta-model:

• The screen-shot of the meta-model expressed as a UML class diagram from MOSKitt environment.
This screen-shot provides an overview of the meta-model.

• Modeling through the Eclipse Plug-in. At this point, how users can manage the meta model
diagramming tool is explained. For each model the Eclipse plug-in offers the users two ways for
modeling: the package model and the diagram option.

• A textual summary of the meta-model. The summary includes information about the inputs required to
build models and the context in which they are useful.

• The textual description of the classes that compose the meta-model together with the textual
description of the corresponding attributes and services.

• A definition of the steps that the analyst must follow to build a model according to a meta-model.

• A practical example that illustrates the use of the meta-model.

Please note that this document is based on UsiXML D1.3 V1.1 (available at http://www.usixml.eu/deliverables).
The meta-models presented in this document are the ones presented in UsiXML D1.3 V1.1. Furthermore, some
information presented in this document has been extracted from UsiXML D1.3 V1.1.

4. TASK META-MODEL

4.1. Overview

Figure 2 shows the task meta-model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 9/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 2. Task meta-model overview

4.2. Summary

The task metamodel defines the abstract syntax used to represent the task model of the system to be
developed. It is part of the Tasks & Concepts layer of the UsiXML Framework. From the structural perspective,
it is inspired by the HTA approach where complex tasks are decomposed into subtasks; from the behavioral
perspective, it is inspired on CTT where temporal relationships are defined in terms of LOTOS operators.

The structure of a task model is defined as decomposition into subtasks that define the parts of a task. The
temporal aspects of the tasks are defined in terms of temporal operations among tasks

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry: In a reification process, the task model is one of the first ones that must be specified to work
with UsiXML. Therefore, this model does not require any previous model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 10/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• Context: This model is especially useful in systems with users who play different roles in the system,
since each role has a specific group of tasks. Moreover, this model is also very useful to describe
complex tasks since they are subdivided into subtasks, facilitating the design of more concrete models.

4.3. Modeling through the Eclipse Plug-in

To describe the task model of an application, the Task Model Editor is used. It allows the definition of tasks and
the temporal relationships among them.
For this meta model the eclipse plug-in offers the users two ways of modeling: the package model and the
diagram option. At this point the principles of the two modeling options are explained.

TaskPackage Model
A new task package model can be created using the Eclipse option File\New\Other\UsiXMLL2.0
Models\TaskPackage Model. This option allows users to define a package model by the creation of new tasks,
Temporal Relationship, Task Decoration and Expression Decoration as it is shown in the figures 3 and 4 below.

Figure 3. New Task Package model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 11/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 4. Task Package model

To obtain the diagram from the task package model the “Initialize taskpackage_diagram diagram file” option
can be selected from the package model menu.

Figure 5. Initialize Task Package diagram.

Task-model diagram .
This type of diagram is more visual than the previous one. The Eclipse plug-in offers a palette to simplify the
drawing of the task model. This kind of diagram can be obtained from the package model menu (as it has been
explained in the previous point) or creating a new \New\Other\UsiXMLL2.0 Models\TaskModel diagram.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 12/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 6. New Task model diagram.

Figure 7. Task model diagram.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 13/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

This diagram (Figure 7) is composed of the following objects:

• Task; with the attributes “Centrality”, “Criticity”, “Frequency”, “Id”, “Max Execution time”, “Max
Iteration”, “Min Execution time”, “Min Iteration”, “Nature” and “Target”

• Relationships; Different type of relationships can be selected, Enabling, Choice, Disabling,
Concurrency, Suspend and Order Ind

• Decorations; Undefined, User, Interactive and Expression.

These two task models can be displayed as an xml opening the model with a text editor, allowing users to
utilize the just created user interface within other applications.

4.4. Classes of the Task Meta-model

Next, we explain the meaning of the classes that make up the Task meta-model:

� TaskModel: The TaskModel meta-class describes the interaction between the entities that are parts of the

system, and the system itself, in terms of tasks that are performed by the entities of the system. It defines a set

of tasks as a whole that are decomposed into sub-tasks as parts structuring the system into task hierarchies

that define the behavior of the system.

o Attributes:
- name (String) : Defines the name of the task model.

• Example:

• Location-aware remote control, Touristic Guide.

o Example:

• Let Location-aware remote control be a TaskModel of a remote control application that mutates the

control UI layout according to the nearest device to control.

� Task: The Task meta-class describes a task performed by one or more system entities. From the structural

point of view, a task can be atomic or composed. While composed tasks represent complex tasks that can be

decomposed into simpler sub-tasks; atomic tasks represent an indivisible action that is performed by a single

entity of the system. Thus, collaborative tasks are represented as composed tasks that can be decomposed into

atomic tasks performed by single entities. To define the temporal relationship among subtasks, the parent task

defines a set of expressions that describes the temporal relationships among subtasks. The tasks can also be

decorated in order to give information such as their criticity, optionality and other details.

o Attributes:

- id (int) : Defines the task unique id.

- name (String) : Defines the task name.

Example:

• NotifyPointOfInterest, NextPhoto, PreviousVideo, EnterComment, etc.

o - description (String) : Explains what the task is about by a textual description as complete as possible.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 14/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Example:

• NotifyPointOfInterest shows a notification to the user that a point of interest has been reached.

o - canonicalTaskType (TASKTYPE) : The canonical type of a task describes the action of the task without

going deeper on details on how it applies.

• Possible value:

• CONVEY, CREATE, REINITIALIZE, FILTER, DELETE, DUPLICATE, NAVIGATE, PERCEIVE, MOVE,

MODIFY, MEDIATE, SELECT, TRIGGER, STOP, TOGGLE

• Example:

• The SignGuestbook task has as the attribute set to APPEND. It adds a sign to a guest book.

o - precondition (String) : Describe the condition in which the task can be executed.

Example:

• NotifyPointOfInterest: a demand for a point of interest must have been created.

o – postcondition (String) : Describe how the task changes the system.

Example:

• NotifyPointOfInterest: a message is shown to the user with the notification.

o Example:

• Let SignGuestbook be a Task where the id is 1, with the name SignGuestbook, the description is to

sign the guest book.

� TaskExpression: The TaskExpression is an abstract meta-class that defines expressions on tasks. Task

expressions allow developers to define: (a) task attributes that varies according to the situation (i.e. criticity,

frequency, etc.), and (b) temporal relationships among tasks. To represent a TaskExpression we employ the

Composite design pattern where the TaskExpression plays the role of Component.

� TemporalRelationship: The TemporalRelationship meta-class is a TaskExpression that allows developers

to define the temporal relationship among TaskExpressions. TemporalRelationships are temporal operations

defined as LOTOS operators on TaskExpressions. The LOTOS temporal operation is defined as a

TTEMPORALOPERATOR that defines the ENABLING, CONCURRENCY, DISABLING, SUSPEND,

ORDERINDEPENDENCE and CHOICE temporal operations. The TemporalRelationship meta-class plays the role

of Composite in the Composite design pattern rooted on TaskExpression.

o Attributes:
- type (TTEMPORALOPERATOR) : Defines the type of the temporal operator in a TemporalRelationship.

• Possible values:

• ENABLING, CONCURRENCY, DISABLING, SUSPEND, ORDERINDEPENDENCE and CHOICE

• Example:

• Let suppose that EnterInformation and SubmitInformation are two tasks that are decorated, and we

want to express that the EnterInformation task is performed before SubmitInformation task. Then, the

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 15/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

TemporalRelationship defines EnterInformation task decoration as predecessor and the

SubmitInformation task decoration as successor. The TTEMPORALOPERATOR used is ENABLING.

� Decoration: The Decoration is an abstract meta-class of TaskExpression that allows developers to define

TaskExpression attributes that vary according to the situation they are performed (i.e. criticity, frequency, etc.).

The Decorator plays the role of abstract Component in the Composite design pattern rooted on the

TaskExpression meta-class. It has two concrete meta-classes according to the type of element they are

decorating (Task or TaskExpression).

o Attributes:

- minIteration (Integer) : Defines the minimum cardinality of the iteration for the task or task expression.

Note that if this attribute is set to 0 then the task or task expression it refers to is optional.

• Example: If this attribute is set to 3, then the task, or the expression, it refers to must be repeated at

least 3 times

- maxIteration (Integer) : Defines the maximum cardinality of the iteration for the task or task expression.

Note that if this attribute is set to -1 then it means that the maximum cardinality is set to infinite.

• Example: If this attribute is set to 5, then the task, or the expression, it refers to may be repeated at

most 5 times.

- criticity (Integer) : Defines the criticity level of a the task (from 0 to 10). If a task is critic, the criticity level

will be high.

• Possible value: An integer from 0 to 5

• Example: A very critical task will have a criticity level around 4 or 5.

- frequency (Integer) : Defines the frequency of the task (from 0 to 10). If a task happens often, the

frequency will be high.

• Possible value: An integer from 0 to 5

• Example: A task that will often happen will have a high frequency (4 or 5).

- centrality (Integer) : Defines if the task is important for the current context. A log in task will not be

central for visiting a website, but would become central when the user want to access to his account.

• Possible value: An integer from 0 to 5

- minExecutionTime (Integer) : Set the minimum time for the execution.

• Possible value: Any integer.

• Example: The value 5 means that the task should at least last 5 seconds.

- maxExecutionTime (Integer) : Defines if the task is important for the current context. A log in task will

not be central for visiting a website, but would become central when the user want to access to his

account.

• Possible value: An integer from 0 to 5

• Example: The value 10 means that the task could not last more than 10 seconds.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 16/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� TaskDecoration: The TaskDecoration is a concrete meta-class of Decoration that allows developers to

define Decorations on Tasks.

o Attributes:

- nature (TNATURE): Defines the interaction needed for the task. This attribute depends on the type of

entity that is available to perform the task. If it is a single user, the nature will be USER; if it is the system,

the nature will be SYSTEM; if both are needed, the task will be INTERACTIVE; if the task is unknown or

too complex to describe the nature, the UNDEFINED value is set.

• Possible values: UNDEFINED, USER, SYSTEM, INTERACTIVE

• Example: A user filling a form is an INTERACTIVE task because the user is interacting with the

system in order to fill the form. A user that is thinking about a solution in his mind is an USER task. The

printing of a document is a SYSTEM task because it only involved the system.

� ExpressionDecoration: The ExpressionDecoration is a concrete meta-class of Decoration that allows

developers to define Decorations on TemporalRelationships.

4.5. How to build a Task Model

Next, we describe the steps that the analyst must follow to define a Task Model. This description involves
identifying which classes of the task meta-model are instantiated in each step.

1. Firstly, the analyst must identify the tasks that make up the system. These tasks are instances of the
class Task.

2. Next, if the task is complex, the analyst must specify how the classes are divided into subtasks by
means of the class TaskComposition.

3. Finally, the analyst must define the meaning of each subtask with the class TaskExpression. For this
aim, we need to specify the elements that compose the task (input elements, process elements, etc.)
and the temporalization among all these elements.

4.6. Example

As a proof of concept, we are going to use a rent-a-car system. The first step is to identify the tasks of the
system. We focus only on the main task of the system: to perform a car renting. Next, we split the task into two
subtasks that are less complex: date selection and user’s personal data. Finally, we define the elements that
compose each task.

Figure 8 shows the task model for the task Date selection. This task is composed of two input elements:
Collection date and Return date. The inserted information is processed by means of the element Store data.
The temporalization among all these elements is enabling (>>).

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 17/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 8. Task Date selection

Figure 9 shows the task model for the task User’s personal data. This task is also composed of two input
elements: Customer’s surname and Customer’s bank account. The order between input elements is not
important; this is the reason why they are related with the temporalization interleaving (|||). Inserted information
is processed by means of the element Store personal data.

Figure 9. Task User’s personal data

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 18/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

5. CONTEXT META-MODEL

5.1. Overview

Figure 10 shows the Context meta-model.

Figure 10. Context meta-model overview

5.2. Summary

The context meta-model defines the abstract syntax used to represent the context model of the system to be
developed. This is a transversal model because it is related to models belonging to all layers of the UsiXML
Framework.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 19/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

The context model is defined in terms of: Observables and Situations. While Observables describe the entities
that affect the system, Situations describe which states of the entities affect the system, taking into account the
space-time relationship among them.

The internal point of view describes the context at two levels of representation. On the one hand, the high-level
representation allows the definition of a set of related characteristics that are relevant for the system. Therefore,
designers are able to define “custom” representations of entities. On the other hand, the low-level
representation allows the representation of a state of the entity that is relevant for the system. This state is
defined according to the characteristics specified in the high-level representation.

The external point of view allows designers to describe the physical interaction zones that are related to the
entities of the system. Thus, the entities of the system are able to interact with other entities in the spatial
dimension, even using different interaction zones.

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry: The context model is one of the first ones that must be specified to work with UsiXML.
Therefore, this model does not require any previous model.

• Context: This model is especially useful in systems with several agents and several zones that affect
the system.

5.3. Modeling through the Eclipse Plug-in

The goal of the Context Model Editor is the creation, editing and validation of context models describing main
characteristics of the entities that are part of the system, and affect the system context.

To describe the Context model of an application, the Content Model Editor is used defining a set of model
constraints.

As in the previous one for this model, the eclipse plug-in offers the users two ways of modeling: the package
model and the diagram option.

ContextPackage Model
To create a new Content package model the Eclipse option File\New\Other\UsiXMLL2.0
Models\ContentPackage Model can be used. This option allows users to define a package model by the
creation of new Observable, Situation, Zone, Extension, Observation, Representation and Entity State as it is
shown in the figures below.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 20/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 11. New Context Package model

Figure 12. Context Package model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 21/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

To create a diagram with all the objects created in the Content package model, the “Initialize
Contentpackage_diagram diagram file” option can be selected from the package model menu.

Figure 13. Initialize Context Package diagram.

Content-model diagram .
This type of diagram is easier to draw as it is more visual than the previous one, offering a palette to simplify
the drawing of the context model. It can be obtained from the package model menu (as it has been explained in
the previous point) or creating a new \New\Other\UsiXMLL2.0 Models\ContextModel diagram (see figure
below).

Figure 14. New Content model diagram.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 22/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 15. Content model diagram.

This diagram (Figure 15) is composed of the following objects:

• Observable; with the attributes “Name”, “Observations”.

• Zone; with the attributes “Name”, “Represents”.

• State; with the attributes “Extended by”, “Extends”, “Name”, “Observations”, “Represented by” an
“Type”.

• Situation; with the attributes “Expressions” and “Name”.

These two context models generate an xml with the n ew User Interface. This XML allows users to utilize
the user interface within other applications.

5.4. Classes of the Context Meta-model

Next, we explain the meaning of the classes that make up the Context meta-model:

� ContextModel: The ContextModel meta-class defines the system context describing two aspects. On the one

hand, it describes the Observable aspects of the environment that are relevant to the system operation. On the

other hand, it describes the set of context Situations that are relevant to the system operation in terms of the

state of the Observables.

o Attributes:

- name (String) : Location-aware remote control, Touristic Guide.

o Example: Outdoor, Indoor, Cloud, etc.

� Observable: The Observable is an abstract meta-class that defines an aspect that is relevant to the system.

It is defined in terms of quantifiable variables (ObservableVariables) that are used to hold the state of the

Observables. There are two kinds of Observables: Entities and Capabilities. While Entities define those elements

that affect the system operation (i.e. the mobile device being used to interact with the system), Capabilities

describe the characteristics of the Entities (i.e. GPS be part of a car or a mobile phone). Every Observable is

described in terms of Properties that hold the Observable state.

o Attributes:
- name (EString) : Identification for Entities and Capabilities

• Example:

• GPRSCapability, NFCCapability, DisplayCapability, DVDPlayer, etc.

• Possible value: any non-empty string.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 23/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� Property: The Property meta-class represents a quantifiable attribute of an Observable that affects the

system. A Property related to a set of ProperyConstrants that are part of a relevant state of an Entity defining a

Situation.

o Attributes:
- name (EString) : Identification of the aspect

• Example:

• VerticalResolution, Speed, Range, Role, WorkExperience, Team, etc.

• Possible value: any non-empty string.

o Example:

The Property usually describes an attribute of a capability, such the VerticalResolution or the

HorizontalResolution of a DisplayCapability. Besides, Properties can be used to describe user skills or

memberships, such as Role, Team or Experience. The Property concept provides a flexible way of modeling

Capabilities such as those described in the Delivery Context Ontology. Jointly with the Observable sub-meta-

classes, it is a powerful resource to improve the reusability of the models.

� Entity: The Entity meta-class defines an Observable of the system which state is attached to the situations it

operates. There are two types of entities; those related to system aspects, and those related to human aspects.

Entity characteristics are described in terms of Properties, or they can be grouped in Capabilities.

o Attributes:

- type (TINDIVIDUAL) : Defines the type of the entity.

• Example: IPhone (NONHUMAN), Manager (HUMAN) etc.

• Possible value: HUMAN or NONHUMAN.

o Example:

The Entity is usually employed to describe different types of devices, such as mobile phones, TVs, DVD

players, etc. Besides, they can also be used to build different user profiles (User, Guest, Administrator,

Professor, etc.), or any other metadata entity information that should be taken into account.

� Capability: The Capability meta-class defines a characteristic that can be contained in many Entities. The

main advantage of grouping Properties in Capabilities is the possibility to build libraries using standard

Capabilities, such as those defined by the Delivery Context Ontology. As result, the Context model can be

reused in different applications.

o Example:

The Capability is usually employed as aspect descriptors, such as GPRSCapability, NFCCapability,

WiredNetworkCapability, DisplayCapability, etc.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 24/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� EntityExtension: The EntityExtension meta-class represents a relationship between Entities where all

Properties and Capabilities of the parent Entity are inherited by the Entity that extend it. It works in the same

way as Class inheritance.

� Observation: The Observation meta-class represents a relationship between an Entity and an EntityState

that is relevant to the system operation. Thus, the Properties defined by the Entity that is being observed, and

the Properties defined by the Capabilities that are part of the Entity, can be constrained by the

PropertyConstraints of the EntityState that belongs to the Observation.

� EntityState: The EntitySate meta-class represents a state of an entity of the environment that is relevant to

the system operation. It is defined in terms of Observable Properties that are defined as PropertyConstraints.

The EntityState, the EntityState is related to Zones through the Representation relationship in order to add

space and time context to it.

o Attributes:
- name (EString) : Identification for entity state

• Example:

• iPhoneOnWifi, iPhonePhotographer, ExperiencedPhotographer Manager, Engineer, TeamAPlayer,

PrinterOnline, etc.

• Possible value: any non-empty string.

PropertyConstraint: The PropertyConstraint meta-class describes the state of a Property belonging to an

Observable aspect that is an Observation of an EntityState. Note that a PropertyConstraint is related to a single

Property. However, the EntityState is defined by a set of PropertyConstraints, and the same Property can be

constrained by more than one PropertyConstraint (i.e. the temperature Property may be constrained by the

following PropertyConstraints: temperature >36 and temperature < 38). Besides, the PropertyConstraint meta-

class is close related to the Observation relationship because PropertyConstaints must be defined between

Properties belonging to Observables that are linked to the EntityState through an Observation relationship. In

order to avoid aliases, the convention to name Properties in PropertyConstraints is: <name of

Observable>.<name of Property>.

o Attributes:

- expression (EString) : Represents the Property constraint. The name of the ObservableVariable to be

quantified must be preceded by the name of the Observable it belong to and a point in order to avoid name

conflicts.

• Example: Environment.temperature > 30ºC, GPS.Enabled=true, Display.VResolution < 320 pixels,

Connection.BitRate <10 Mbps, etc.

• Possible value: any non-empty string.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 25/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� StateExtension: The StateExtension meta-class defines a relationship between two EntityStates: the

extended and the extension. The mechanism replicates the Observations and the PropertyConstraints from the

extended EntityState to the extension EntityState. Thus, complex EntityStates can be built based on simple

EntityStates representing the state of Entity aspects. As EntityStates can be extended by more than one

EntityState, the EntityStates representing the states of the aspects can be reused to build different

combinations of complex EntityStates. The Entities being Observations of EntityStates cannot be repeated to

avoid conflicts.

� Zone: The Zone element represents physical and virtual spaces in the environment. The Zone representation is

able to define both, static and dynamic spaces. The meaning of the static space is related to spaces that do not

change their position during the execution of the application, for instance, Home, Office, Grandplatz, Squares, and

so on. Conversely, the dynamic spaces change their position during the execution of the application, for instance,

the UserCloseZone, Car, Plane, Robot, etc. Spaces are usually related by events that eventually affect the system.

Thus, Zones are close related to the SpaceEvent element because it establishes a relationship between two Zones.

The Zone concept embraces both, virtual and physical zones. On the one hand, physical zones are physical

representations of physical spaces (i.e. Car, Home, Office, Building, User, etc.). On the other hand, virtual zones

are representations of virtual spaces (i.e. organization domain, process working space, Internet, Intranet, LAN,

MAN, WAN, etc.). Note that an entity can be represented by more than one Zone. It is especially interesting when

modeling “interaction zones”. The

� below shows an example of how the same entity is able to define different “interaction zones”. Finally, the

Anywhere Zone represents a kind of root Zone where all Zones are included.

o Attributes:
- name (EString) : Identification of the interaction zone

• Example:

User close range, Advertisement panel medium range and building long range.

• Possible value: any non-empty string.

o Example:

The Zone is usually used to describe events, suppose that we have to know if a User is in a Room. The Room

may be defined as a Zone (a static space in this particular case) and the User can be defined as an entity (a

dynamic space). Thus, we can define the User Entity which does not have a particular state, for instance

SingleUser state. Thus, through a Representation relationship, the SimpleUser is related to the CloseUserZone.

The space event can be described as “CloseUserZone IN Room”.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 26/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Interaction zone variations

� Representation: The Representation relationship relates EntityStates to Zones. It represents “interaction
zones” that are used to define contextual situations. Although an EntityState can be represented by more than

one Zone; a Zone represents at most one EntityState. The Representation is the only way to relate EntityStates

to Situations by the means of SpaceEvents.

� Situation: The Situation meta-class identifies the space-time relationship among the different EntityStates of

the entities that are part of the Entities that affect the system operation. Situations are the “interface” of the

context to the rest of the models. The “mapping model” is in charge of linking other model elements to

Situations in order to contextualize them. It represents a relevant context state for the system that is

represented by an Expression.

o Attributes:
- name (EString) : Identification of the situation (space-time relationship among EntityStates)

• Example:

InFrontOfTheMonument, At Home, AsAdministrator.

• Possible value: any non-empty string.

� Expression: The Expression meta-class represents relationships among EntityStates in space and time

dimensions. While spatial relationships are represented by the Event sub-meta-class, the Temporalization

Expression sub-meta-class defines the temporal relationships among spatial relationships.

� Event: The Event meta-class defines an Expression that represents the special relationships among the

EntityStates that are relevant to the system operation. The relationship is established through the Zone meta-

class that is related to the EntityState through the Representation relationship. By relating Zones, EntityStates

represent the relationships among different Entities in the context. There are 6 types of Spatial relationships

that are grouped into: trigger relationships (ENTER, EXIT), state relationships (IN, OUT), and directional

relationships (MOVE_FORWARD, MOVE_AWAY).

o Attributes:

Entity

Close Interaction Zone

Medium-range Interaction Zone

Long-range Interaction Zone

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 27/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- type (TSPACE_EVENT): Defines the type of the Event.

• Example: User IN Shopping, Engineer OUT Office, Tourist MOVES_FORWARD Monument.

• Possible values: IN, OUT, ENTER, EXIT, MOVE_FORWARD, MOVE_AWAY.

� Repetition: The Repetition meta-class represents the repetition or cardinality of the expression it embraces.

It is defined by two integers that represent the minimum and maximum times the expression is repreated.

o Attributes:

- minCardinality (Integer) : Defines the minimum cardinality of the repetition for the Expression. Note that

if this attribute is set to 0 then the embraced expression is optional. Besides, if this attribute is set to an

integer greater than 0 then it is mandatory. Finally, no values below 0 are forbidden.

• Example: If this attribute is set to 3, then the Expression it refers to must be repeated at least 3 times.

• Possible values: Any integer greater or equals than 0

- maxCardinality (Integer) : Defines the maximum cardinality of the repetition for Expression. Note that if

this attribute is set to -1 then it means that the maximum cardinality is set to infinite.

• Example: If this attribute is set to 3, then the Expression it refers to must be repeated at most 3 times.

• Possible values: Any integer different than 0

� Temporalization: The Temporalization meta-class represents the temporal relationship among EntityStates that

defines a Situation. The temporal relationships among Events are defined in terms of LOTOS temporal

operators. Thus, by relating Events, we relate Zones; by relating Zones, we relate EntityStates, and by relating

EntityStates we relate the entities that affect the system operation.

o Attributes:

- operator (TTEMPORALIZATION) : Defines the temporal relationship among Expressions.

• Example: The ENABLING operator defined between exp1 and exp2, means that exp1 occurred before

exp2.

• Possible values: ENABLING, CONCURRENCY, DISABLING, SUSPEND, ORDER INDEPENDENCE AND

CHOICE

5.5. How to build a Context Model

Next, we describe the steps that the analyst must follow to define a Context Model. This description involves
identifying which classes of the context meta-model (Figure 10) are instantiated in each step.

1. We must identify the Features of the system.

2. We must identify the Agents that participate in the interaction between the system and the user.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 28/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

3. We must relate Agents with Features by means of Characterization and Observable.

4. We must identify the Zones that affect the system behavior.

5. We must define the conditions to execute the tasks that compose the system behavior. This condition
may depend on an Expression or on a Zone.

5.6. Example

We are going to explain how the context model supports a specific context as an example. For this aim, we are
going to use a mobile phone with several characteristics: Internet connection, NFCcapability and a display.
Each one of these features is modeled as an instance of the class Observable. Each one of these observables
has different Features, i.e., attributes that affect the mobile phone. These are the Features by Observable:

• Internet Connection:

o Wifi connection

o Speed of 10Mbps

• NFCcapability:

o Protocol: ISO14443-4

o Speed: 106

• Display:

o Horizontal resolution: 2,592 pixels

o Vertical resolution: 3,872 pixels

In this context, we have two Individual agents: The mobile phone (non-human agent) and the owner of the
mobile phone (human agent). Each one of these agents can start a task. For example, the task to alert the user
starts when the mobile phone receives a new e-mail. The human agent can also start a task when he wants, for
example, to play music. We can group the agents by means of the class Group. The relationship between
Agents and Groups is represented with the class Membership. For example, the owner of the mobile and the
speaker can be grouped as a single agent that can start a videoconference.

The relationship between agents and Observables is represented with the class Characterization. In our
example, the mobile phone is related with all the instances of Observables. If we are modeling different non-
human agents, they can share one or more Observations. We can also specify which Features belong to each
Agent by means of the class FeatureConstraint. In our example, the mobile phone is related with all the existing
Features.

There are also external characteristics that affect the behavior of the mobile phone. One of these
characteristics consists on the zone where the mobile phone is situated. The zone can be static or dynamic. In
our example we define two zones:

• Zone 1: This zone determines the space where the mobile phone can connect with another device that
supports NFC connection.

• Zone 2: This zone determines the space where the mobile phone has access to internet.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 29/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Both zones can be used to describe events or actions in our mobile phone. For example, we can list all the
devices that are reachable in Zone 1 or we can alert the user when the internet connection is lost. The
relationship between Individual Agents and Zone is represented by means of the class Representation. In our
example, the Agent that represents the mobile phone is related with both zones.

Another external characteristic that affect the behavior of the mobile phone is the Situation. This class
represents when each task can be executed. The Task behavior is defined through TaskExpressions and
SpaceExpressions. Task Expression uses time operators to define when executing tasks. For example, in our
mobile phone we have a task to look for devices with NFC connection (T1). We have also another task to
display a list with all the devices found (T2). T2 can only be executed when T1 finishes successfully. This
situation is represented with the notation T1 >> T2. SpaceExpressions determines which tasks must be
executed in a zone. In our example, we can execute the task to download e-mails (T3) every minute that the
mobile phone is in Zone 2.

Several Situations are related among them with the class Expression that is specialized in three classes:
SpaceEvent, ExpressionRepetition and ExpressionRelationship. The first one, SpaceEvent represents a
relationship between two zones. For example, in our mobile phone, we want to disable the Wifi card when the
mobile phone is out the Zone 2 more than 5 minutes. This is a good policy to save battery. This event can be
represented by means of SpaceEvent. The class ExpressionRepetition allows the repetition of an example.
Using this class, we can define a rule to disable the Wifi card also when the mobile phone come in and out the
Zone 2 more than 5 times. In other words, when the expression “Out the Zone 2” is repeated more than 5
times, the Wifi card is disabled. This also saves battery when the connection to internet is not very good.
Finally, the class ExpressionRelationship represents a special relationship between elements. In our example,
we want to send all the information received by means of the NFC to a mail account by means of Internet. This
is divided into two tasks:

• T4: Get information from the NFC

• T5: Send the information throughout Internet to an e-mail account

There is a SpaceExpression between these two tasks (T4 >> T5) but there is also a spatial relationship, since
the mobile phone must be in Zone 1 and Zone 2 at the same time. This scenario can be represented by means
of the class ExpressionRelationship.

6. DOMAIN META-MODEL

6.1. Overview

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 30/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

6.2. Summary

The UsiXML domain model describes the various entities manipulated by a user while interacting with the
system [UsiXML07, Sta08]. This model specifies the main concepts of a User Interface by identifying the
relationships among all the entities within the scope of the User Interface, their attributes and the methods
encapsulated within the entities. As such, the domain model can be modeled with an object-oriented model like
the UML class diagram [OMG08]. A class diagram of UML is a type of static structure diagrams that provides a
good expressiveness to describe the structure of a system by using the classes, their attributes, and the
relationships between the classes [Seo06]. For this reason, the UsiXML domain model uses the UML class
diagram to describe the different entities manipulated through a User Interface.

Figure 19 shows the UsiXML domain meta-model based on the UML class diagram. The UML Class is the
main concept of this meta-model. It describes a User Interface (UI) entity, its attributes and its operations. A UI

Figure 19. Domain meta-model (based on the UML Class diagram [OMG09]) overview

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 31/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

entity attribute and an operation are represented respectively by the property class and operation class. In turn,
the relationship between entities can be an association that describes a semantic relationship between entities
or a generalization that describes a taxonomic relationship between them.

The meta-model depicted in Figure 19 is a simplified view of the meta-model of UML 2.2 described by OMG’s
specification in [OMG09]. The classes of this meta-model are defined in the following section. Note that, the
definition of the main classes of the meta-model is from the [OMG09]. Another note is that the class Property,
described in [OMG09] is specialized into two classes: Attribute and Association End in order to provide a more
understandable meta-model.

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry : The domain model must be modeled in the first stage of working with UsiXML before specifying
any other model.

• Context : This model must be specified when the analyst does not know which notation he will use to
represent classes, attributes and relationships between classes.

6.3. Modeling through the Eclipse Plug-in

To describe the Domain model of an application, the Domain Model Editor is used. It allows the definition of
entities and their relationships within the scope of the User Interface.
As it has been previously explained, this meta model can be diagrammed using the Eclipse plug-in with its two
ways of modeling: the package model and the diagram option.

DomainPackage Model
As for the others meta models, a new Domain package model can be created using the Eclipse option
File\New\Other\UsiXMLL2.0 Models\DomaintPackage Model. This option allows users to define a package
model by the creation of new Generalization, Dependency, Usage, Interface Realization, Association, Interface,
Class and Association Class as it is shown in the figures below.

Figure 20. New Domain Package model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 32/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 21. Domain Package model

To obtain the diagram from the Domain package model the “Initialize DomainDiag diagram file” option can be
selected from the package model menu.

Figure 22. Initialize Domain Package diagram.

Domain-model diagram .
This type of diagram is more visual than the previous one. The eclipse plug-in offers a palette to simplify the
drawing of the context model. It can be obtained from the package model menu (as it has been explained in the
previous point) or creating a new \New\Other\UsiXMLL2.0 Models\DomainModel diagram (see figure below).

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 33/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 23. New Task model diagram.

Figure 24. Domain model diagram.

This diagram is composed of the following objetcs:

• Class; with the attributes “Is Abstract”, “Name” and “Visibility”.

• Interface; with the attributes Name” and “Visibility”.

• AssociationClass; with the attributes “Association”, “Is Abstract”, “Name” and “Visibility”.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 34/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

These two Domain models can be displayed as an xml opening the model with a text editor, allowing users
to use the new user interface within other applications.

6.4. Classes of the Domain Meta-model

Next, we explain the meaning of the classes that make up the Domain meta-model:

� Abstraction: An abstraction is a relationship that relates two elements or sets of elements that represent the

same concept at different levels of abstraction or from different viewpoints.

o Attributes:

No specific attribute

� AggregationKind: is an enumeration type that specifies the kind of aggregation of a property.

AggregationKind is an enumeration of the following values:

• none: Indicates that the property has no aggregation.

• shared: Indicates that the property has a shared aggregation.

• composite: Indicates that the property is aggregated compositely, i.e., the composite object has

responsibility for the existence and storage of the composed objects (parts).

� AssociationClass:. An AssociationClass can be seen as an association that also has class properties, or as
a class that also has association properties.

o Attributes:

No specific attribute

� AssociationEnd: This class represents the role played by one class within an association.

o Attributes

• aggregation (AggregationKind): Specifies the kind of aggregation that applies to the association. The
default value is none.

• isComposite (Boolean) : This is a derived value, indicating whether the aggregation of the association is
composite or not.

• navigable (Boolean) : This is a derived value, indicating whether the association is navigable or not.

� Association: An association specifies a semantic relationship that can occur between typed instances. It has

at least two members end represented by properties, each of which is connected to the type of the end.

o Attributes

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 35/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• isDerived (Boolean): Specifies whether the association is derived from other model elements such as

other associations. The default value is false.

� Attribute: This class represents an attributes of a class or an interface.

o Attributes:

• default (String) : A String that is evaluated to give a default value for the attribute when an object of the

owning Class is instantiated.

• isReadOnly (Boolean): If true, the attribute may only be read, and not written. The default value is false.

� Class: A class describes a set of objects (entities) that share the same specifications of features, and

semantics.

o Attributes:

• name (String) : The name of the class.

• isAbstract (Boolean) : If this attribute is true, then the class does not provide a complete declaration and

can typically not be instantiated. Default value is false.

• visibility (VisibilityKind) : Determines the class accessibility.

� Classifier: A classifier is an abstract class that describes the common elements of interfaces and classes.

o Attributes:

• isAbstract (Boolean) : If this attribute is true, then the class does not provide a complete declaration and

can typically not be instantiated. Default value is false.

� Dependency: A dependency is a relationship that signifies that a single or a set of model elements requires

other model elements for their specification or implementation.

o Attributes:

No specific attribute

� DirectedRelationship: A directed relationship references one or more source elements and one or more

target elements.

o Attributes:

No specific attribute

� DomainModel: Domain model is a description of the classes of objects manipulated by a user while

interacting with a system. A domain model is made up of submodels.

o Attributes

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 36/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• domainName (String): the name of the domain model.

• description (String): the textual description of the domain model.

� Generalization: A generalization is a taxonomic relationship between a more general class and a more

specific class. Each instance of the specific class is also an indirect instance of the general class. Thus, the

specific class inherits the features of the more general class.

o Attributes

• isSubstitutable (Boolean): Indicates whether the specific class can be used wherever the general class

can be used. If true, the execution traces of the specific class will be a superset of the execution traces of

the general class. The default value is true.

� GeneralizationSet: A GeneralizationSet defines a particular set of Generalization relationships that
describe the way in which a general class (or superclass) may be divided using specific subtypes. For example, a
GeneralizationSet could define a partitioning of the class Person into two subclasses: Male Person and Female
Person.

o Attributes:

• isCovering (Boolean): Indicates whether or not the set of specific classes are covering for a particular
general class. When isCovering is true, every instance of a particular general Class is also an instance

of at least one of its specific Classes for the GeneralizationSet. When isCovering is false, there are one

or more instances of the particular general Class that are not instances of at least one of its specific

Classes defined for the GeneralizationSet.

• isDisjoint (Boolean) : Indicates whether or not the set of specific classes in a Generalization
relationship have instance in common. If isDisjoint is true, the specific Classes for a particular

GeneralizationSet have no members in common; that is, their intersection is empty. If isDisjoint is

false, the specific Classes in a particular GeneralizationSet have one or more members in common;

that is, their intersection is not empty.

� Interface: An interface is a kind of classifier that represents a declaration of a set of coherent public features
and obligations. Since interfaces are declarations, they are not instantiable. Instead, an interface specification
is implemented by an instance of an instantiable class, which means that the instantiable class presents a
public facade that conforms to the interface specification

o Attributes:

No specific attribute

� InterfaceRealization: An InterfaceRealization is a specialized Realization relationship between a class and
an Interface. This relationship signifies that the realizing class conforms to the contract specified by the
Interface.

o Attributes:

No specific attribute

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 37/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� ModelElement: A Model element is a constituent of a domain model. This class represents an abstract

generalization class that is specialized in the meta-model.

o Attributes

No specific attribute

� ModelNamedElement: A named element represents elements that may have a name. This class

represents an abstract generalization class that is specialized in the meta-model.

o Attributes:

• name (String) : The name of the element.

• visibility (VisibilityKind) : Determines the element accessibility.

� MultiplicityElement: A multiplicity Element class is represent an inclusive interval of non-negative

integers beginning with a lower bound and ending with a (possibly infinite) upper bound

o Attributes

• isOrdered (Boolean) : For a multivalued multiplicity, this attribute specifies whether the values in an

instantiation of this element are sequentially ordered. Default is false.

• isUnique (Boolean) : For a multivalued multiplicity, this attributes specifies whether the values in an

instantiation of this element are unique. Default is true.

• lower (Integer) : Specifies the lower bound of the multiplicity interval, if it is expressed as an integer.

• upper (UnlimitedNatural) : Specifies the upper bound of the multiplicity interval, if it is expressed as an

unlimited natural.

� Operation: An operation specifies the name, type, and the parameters, of a class operation

o Attributes

• isOrdered (Boolean): Specifies whether the return parameter is ordered or not, if present.

• isUnique (Boolean): Specifies whether the return parameter is unique or not, if present.

• lower (Integer): Specifies the lower multiplicity of the return parameter, if present.

• upper (UnlimitedNatural) : Specifies the upper multiplicity of the return parameter, if present. This is

derive

� Parameter: is a specification of an argument used to pass information into or out of an invocation of a

operation.

o Attributes

• defaut (String): specifies a String that represents a value to be used when no argument is supplied for

the Parameter.

• direction (ParameterDirectionKind): Indicates whether a parameter is being sent into or out of a

operation

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 38/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� ParameterDirectionKind: Parameter Direction kind is an enumeration type that defines literals used to

specify direction of parameters. Parameter Direction kind is an enumeration of the following values:

• In: indicates that parameter values are passed into the behavioral element by the caller.

• Inout: indicates that parameter values are passed into a behavioral element by the caller and then back

out to the caller from the behavioral element.

• Out: indicates that parameter values are passed from a behavioral element out to the caller.

• Return: indicates that parameter values are passed as return values from a behavioral element back to

the caller.

� Property: This class represents a common property of all the instances of a class, interface or an

Association. This class is a generalization of an Attribute and an Association End

o Attributes:

• isDerived (Boolean): Specifies whether the Property is derived, i.e., whether its value or values can be

computed from other information. The default value is false.

� Realization: Realization is a specialized abstraction relationship between two sets of model elements, one

representing a specification and the other represents an implementation of the latter.

o Attributes:

No specific attribute

� Relationship: A relationship references one or more related elements.

o Attributes:

No specific attribute

� Type: This class is used as a constraint on the range of values represented by a typed element. Type is an

abstract generalization class.

o Attributes:

No specific attribute

� VisibilityKind: is an enumeration of the following values:

• public

• private

• protected

• package

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 39/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� Usage: usage is a relationship in which one element requires another element (or set of elements) for its full

implementation or operation.

o Attributes:

No specific attribute

6.5. How to build a Domain Model

The steps to build a Domain model are the same as to build a UML class diagram:

1. Define the Classes that compose the system.

2. For each class we must specify Properties and Operations (attributes and methods in UML
respectively).

3. For each Operation we have to specify the Parameters used in the invocation.

4. We have to specify the relationships among classes. These relationships can be of different types:
Generalization, Association, Association Class and Dependency. If the relationship is an association
we have also to specify the Multiplicity.

6.6. Example

Figure 25 gives an example of a UsiXML domain model expressed using a UML class diagram. In this domain
model, the various entities manipulated through a User Interface are represented by classes (e.g. Person,
Flight, etc.). Each class can have a set of properties and set of operations (e.g. Person class has two
properties: DepartureDate, and ArrivedDate, and two operations: OpenFlight and CloseFlight). In the UsiXML
domain model, two kinds of relationships can exist between entities (classes): 1) Association relationship: it
consists of two classes, each playing a specific role (e.g. a client has the role to make a reservation). Each role
is characterized by a constraint on the number of instances of a class connected across an association
(multiplicity). Note that, an association can represent a composition relation between a class and another one
(e.g. an airport is composed of several terminals). Another note is the fact that, an association can have a
property (e.g. an air company manages a flight of a specific number). This kind of association can be modeled
as a class if the association has itself a set of properties (e.g. Class Stopover). 2) Generalization relationship: it
links a super-class to one or several other sub-classes (e.g. the super class Person is a generalization of Client
class and Passenger class).

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 40/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

7. ABSTRACT USER INTERFACE META-MODEL

7.1. Overview

Figure 26 shows the Abstract User Interface meta-model.

Figure 25. UsiXML Domain model example

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 41/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 26. Abstract User Interface meta-model overview

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 42/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

7.2. Summary

The Abstract User Interface (AUI) (corresponding to the Platform-Independent Model–PIM– in MDE) is an
expression of the UI in terms of interaction spaces (or presentation units), independently of which interactors
are available and even independently of the modality of interaction (graphical, vocal, haptic …). An interaction
space is a grouping unit that supports the execution of a set of logically connected tasks.

The chosen modeling is to compose the AbstractUIModel by a set of AbstractCompoundIUs that are
themselves sets of AbstractInteractionUnit: every abstract object is then such an interaction unit. Each
interaction unit may have one or more AbstractListeners. These listeners allow defining the dynamic of the
model, the way the interaction units will react to the different events. Additionally, the AbstractInteractionUnits
are related to states and transitions enabling the possibility to comply with the State Chart XML (SCXML)
defined by W3C. (http://www.w3.org/TR/scxml/)

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry : the Domain model is necessary for specifying certain elements (AbstractDataIU,
AbstractDataItem) of an Abstract User Interface model. Furthermore, an Abstract User Interface model
could be derived (although not necessarily) from a Task model and a Domain model.

• Context : this model is useful to represent a user interface independently of an interaction modality
(graphical, vocal, haptic, etc.) as well as independently of a particular computing platform.

7.3. Modeling through the Eclipse Plug-in

This kind of modeling allows designers, developers, or even end users to build a representation of user
interfaces at an abstract level. The generated representation can be used to derive specifications
independently of the programming toolkit and the modality as well as the context of use, including the user and
platform and the environment.

AuiPackage Model
A new Abstract package model can be created using the Eclipse option File\New\Other\UsiXMLL2.0
Models\AuiPackage Model. This option allows users to define a package model by the creation of new Abstract
Listener, Abstract compound IU, Abstract Data IU, Abstract Trigger IU, Abstract Selection IU and Rule as it is
shown in the figures below.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 43/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 27. New Aui Package model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 44/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 28. Aui Package model

To obtain the diagram from the Aui package model the “Initialize AuiDiag diagram file” option can be selected
from the package model menu.

Figure 29. Initialize Aui Package diagram

Aui-model diagram .
This type of diagram is more visual than the previous one. The eclipse plug-in offers a palette to simplify the
drawing of the Abstract model. It can be obtained from the package model menu (as it has been explained in
the previous point) or creating a new \New\Other\UsiXMLL2.0 Models\AuiModel diagram (see figure below).

Figure 30. New Aui model diagram.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 45/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 31. Aui model diagram

This diagram (Figure 31) is composed of the following objects:

• CompoundIU; with the attributes “Compound IU Children”, “Desc Label”, “Elementary IU Children”,
“Help”, “Hierarchy”, “Id”, “Importance”, “Label”, “Lang”, “Long Label”, “Order”, “Repetition”, “Role”,
“Security Mechanism”, “Security type”, “Short Label”.

• DataIU; with the attributes “Data Format”, “Data Length”, “Data type”, “Data IU Type”, “Default
Value”, “Desc Label”, “Domain Reference” “Help”, “Hierarchy”, “Id”, “Importance”, “Label”, “Lang”, “Long
Label”, “Max Cardinality”, “Min Cardinality”, “Order”, “Repetition”, “Role”, “Security Mechanism”,
“Security Type” and “Long label”

• TriggerUI; with the attributes “Desc Label”, “Help”, “Hierarchy”, “Id”, “Importance”, “Label”, “Lang”,
“Long Label”, “Order”, “Repetition”, “Role”, “Security Mechanism”, “Security type”, “Short Label”,
“Trigger IU Type”.

• Listener; with the attributes “Id”, “Name”.

• Rule; ; with the attributes “Action Expression”, “Action Name”, “Condition Specifiaction”, “Event
Expression”, “Event Name”, “Justification Content”, “Justification Type”, “Name”.

These two Domain models can be displayed as an xml opening the model with a text editor, allowing users
to use the new user interface within other applications.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 46/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

7.4. Classes of the Abstract User Interface Meta-mo del

Next, we explain the meaning of the classes that make up the Abstract User Interface meta-model:

� AbstractUIModel: This model describes canonically a user interface in terms of abstract interaction units,

relationships and listeners in a way that is independent from the concrete interaction units available on the targets.

The abstract user interface model is independent of the target device or modality.

� AbstractInteractionUnit: Main entity of the model, every abstract object is an AbstractInteractionUnit.

o Attributes:

- id (String) : identification string of the AbstractInteractionUnit.

- role (String) : name of the role played by the AbstractInteractionUnit.

- importance (String) : importance level of the AbstractiInteractionUnit.

• To be discussed later, for the moment a 5 level scale can be used like “Very

high”/”High”/”Medium”/”Low”/”Very low”.

- repetitionFactor (int) : number of times the AbstractInteractionUnit is repeated in the parent entity.

- hierarchyNumber (int) : allows to order the AbstractionInteractionUnit in its parent entity, in function of the

other AbstractInteractionUnits contained in the same parent.

- securityType (AuthenticationType) : defines the type of authentication for the AbstractInteractionUnit.

- securityMechanism (SecurityMechanism) : defines the type of security mechanism for the

AbstractInteractionUnit.

� AuthenticationType

o Attributes

- NONE

- USER_PASSWORD

- INTEGRATED

• Stands for an authentication that can be done by the system, not by the user. For example, through a

MAC address or a certificate.

•

� SecurityMechanism

o Attributes

- NONE

- CAPTCHA

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 47/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� AbstractLocalization: Describes text attributes for AbstractInteractionUnits. It is useful for

internationalization.

o Attributes

- lang (String[2]) : international code (2 letters) for the language supported by the AbstractLocalization.

- label (String) : description label of the AbstractInteractionUnit.

• Example: “department”.

- longLabel (String) : label as it appears in the interface.

• Example: “Department”.

- shortLabel (String) : short version of the label.

• Example: acronym, like “dept”.

- descLabel (String) : description label of the AbstractInteractionUnit.

• Example: “the name of the department”.

- help (String) : textual help provided specifically for the AbstractInteractionUnit.

� AbstractCompoundIU: Composition of one or several AbstractInteractionUnit.

� AbstractSelectionIU: Special type of AbstractCompoundIU representing a way to interact with the interface by

selecting an item in a list.

o Attributes:

- orderCriteria (String) : criteria used to sort the selection.

• Example: “alphabetical”

- isContinuous (Boolean) : specifies if the selection is continuous.

• Example: A selection that may be specialized at concrete level as a voice selection among any number

between 0 and 1.

- start (Float) : starting number (for numerical selection).

- end (Float) : ending number (for numerical selection).

- step (Float) : interval between two successive items, by starting by start and ending by end (for numerical

selection).

- isExpandable (Boolean) : specifies if the user can add item in the selection.

- selectionType (SelectionType) : specifies the type of selection of the unit.

- Rating (Boolean) : specifies if the unit is used for a rating.

� SelectionType

o Attributes

- UNDEFINED

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 48/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- NOSELECTION

- SINGLESELECTION

• One item in the list is selectable.

- SINGLEINTERVAL

• An interval of the list is selectable.

• Example: for a list of digit between 0 and 9, an interval may be the digits between 2 and 5.

- MULTIPLEINTERVAL

• Multiple intervals of the list are selectable.

• Example: for a list of digit between 0 and 9, an interval may be the digits between 2 and 5 and a

second one between 7 and 8.

� AbstractElementaryIU: Atomic AbstractInteractionUnit that can be of 2 types: AbstractDataIU or

AbstractTriggerIU.

� AbstractDataIU: Interaction unit allowing to link data from the Domain Model with elements of the abstract

user interface.

o Attributes:

- domainReference (String) : reference allowing to link the Domain Model in order to populate the

AbstractDataItem.

- maxCardinality (Integer) : maximum number of items in the AbstractDataIU.

- minCardinality (Integer) : minimum number of items in the AbstractDataIU.

- defaultValue (String) : default value or concatenation of default values that can be used if the required

value is not available in the Domain Model.

- dataType (DataType) : type of the data.

- dataLength (Integer) : size of the data, in bytes.

- dataFormat (String) : format of the data.

• Example: .doc, .pdf, .xml, …

- dataIUType (AbstractDatayIUType) : type of interaction.

- isDynamic (Boolean) : specifies if the content can evolve in the time.

� DataType

o Attributes

- BOOLEAN

- HOUR

- DATE

- NATURAL

- INTEGER

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 49/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- REAL

- TEXT

- SECRET

• Stands for a type of data that we want to keep secret.

- ARRAY

- MULTIMEDIA

� AbstractDataIUType

o Attributes

- INPUT

- OUTPUT

- INPUT_OUTPUT

� AbstractTriggerIU: Interaction unit allowing triggering an event.

o Attributes

- triggerIUType (AbstractTriggerIUType) : type of event triggered.

� AbstractTriggerIUType

o Attributes

- NAVIGATION

- OPERATION

- OPERATION_NAVIGATION

� AbstractListener: Entity used to describe the behavior of the AbstractInteractionUnit by using Event-Conditio-
Action (ECA) rules.

o Attributes

- id (String) : identification string of the AbstractListener.

- name (String) : name of the AbstractListener.

� Rule

o Attributes

- name (String) : name of the AbstractListener.

� Justification: The justification is a kind of motivation for the ECA rules, it is not used for describing the interface

itself but more for documentation purposes.

o Attributes

- content (String) : text representing the justification itself.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 50/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- justificationType (JustificationType) : type of justification, the different possibilities are described in the

AbstractJustificationType description.

� JustificationType

o Attributes

- CLAIM: assertion put forward publicly for general acceptance with the implication that there are

underlying ‘reasons’ that could show it to be ‘well founded’ and therefore entitled to be generally accepted.

• Example: “Our organization should cut costs next quarter”

- GROUND: the term ‘ground’ refers to the specific facts relied on to support a given claim.

• Example: “Our organization has lost money the last 3 quarters”

- WARRANT: assertion that entitles you to interpret or link the grounds (facts) as support of the claim.

• Example: “When losing money, organizations should cut expenses as much as possible”

- BACKING: the ‘backing’ consists of a very general set of background assumptions which, in effect,

legitimize the basis for believing in the warrant. That is, if the warrant is not accepted on its surface, then

the backing is called into play to add deeper support to the argument.

• Example: “A business can’t continue to lose money and stay in business”

- REBUTTAL: the ‘rebuttal’ presents the possible exceptions or objections as to why the claim, the grounds,

the warrants, or the backing may not hold for the situation under discussion.

• Example: “That may be true in general, but not with the customers of our company. Besides that,

times have changed; the economy as changed; the dollar has fallen in value.

- QUALIFIER: word that indicates how strongly the claim is being asserted, or how likely that something

might occur.

• Example: “probably”, “certainly”, “very likely”, etc.

- UNDEFINED

� EventExpression: specifies a set of events with relationships between them. The events are represented by

AtomicEvents and are related by TemporalEventExpressions.

o Attributes

- name (String) : name of the EventExpression.

� AtomicEvent

o Attributes

- type (EventType) : type of event, the different possibilities are described in the EventType description.

- Specification (String) : kind of argument that, used in conjunction with type, allows specifying Event to

listen.

� EventType:

o Attributes

- onDataInput: new data has been entered by the user

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 51/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- onErroneousDataInput: new erroneous data has been entered by the user

- onDataOutput: new data has been output through the interface

- onDataSelection: some data has been selected by the user

- onOperationTrigger: an AbstractOperationIU has been activated

- onNavigationTrigger: an AbstractNavigationIU has been activated

- onIUFocusIn: an AbstractInteractionUnit has been focused in

- onIUFocusOut: an AbstractInteractionUnit has been focused out

- onModelUpdate: the Domain Model has been updated

� TemporalEventExpression

o Attributes

- type (TemporalOperator) : type of relationship involved between two AtomicEvents, the different

possibilities are described in the TemporalOperator description.

� EventType: (see Task MM for description of the attributes)

o Attributes

- ENABLING

- CHOICE

- CONCURRENCY

- SUSPEND

- DISABLING

- ORDERINDEPENDANCE

� Condition: logical test that, if satisfied or evaluates to true, causes the action to be carried out.

o Attributes

- specification (String) : logical formula representing the condition to evaluate, for the moment under the

form of a String.

� ActionExpression: specifies a set of actions with relationships between them. The actions are represented by

AtomicActions and are related by TemporalActionExpressions.

o Attributes

- name (String) : name of the ActionExpression.

� AtomicAction

o Attributes

- type (ActionType) : type of action, the different possibilities are described in the ActionType description.

- specification (String) : kind of argument that, used in conjunction with type, allows specifying the action to

launch.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 52/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• Example: for an AbstractActionType ‘modelUpdate’, the actionSpecification could specify which field to

change and what is the new value.

� AbstractActionType

o Attributes

- modelSearch: search for model elements based on logical formula

- modelCreate: create a new model in the Domain Model

- modelRead: read a specified field in the Domain Model

- modelUpdate: update a field in the Domain Model

- modelDelete: delete a field in the Domain Model

- modelInvoke: perform a query external to the current Domain Model

- modelReset: reset the Domain Model with the initial parameters

- modelCopy: copy the Domain Model

- listenerCreate: create a new listener on a specified AbstractInteractionUnit

- listenerDelete: delete a listener of a specified AbstractInteractionUnit

- eventDispatch: dispatch the event to another AbstractInteractionUnit

- IUOpen: open a specified AbstractInteractionUnit

- IUClose: close a specified AbstractInteractionUnit

- IUActivate: activate a specified AbstractInteractionUnit

- IUDesactivate: desactivate a specified AbstractInteractionUnit

- IUEmphasize: focus in a specified AbstractInteractionUnit

- IUDesemphasize: focus out a specified AbstractInteractionUnit

� TemporaActionExpression

o Attributes

- type (TemporalOperator) : type of relationship involved between two AtomicActions, the different

possibilities are described in the TemporalOperator description.

� State: possible state of an AstractInteractionUnit. An AbstractInteractionUnit may have many different states.

o Attributes

- id (String) : identification string of the state.

- Description (String) : description of the state.

� Transition: is related to State by two relationships meaning that a transition has source state and a target state.

Additionally it is related to EventExpression and ActionExpression.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 53/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

7.5. How to build an Abstract User Interface Model

Next, the steps to be followed to create an Abstract User Interface Model are described:

1. Define an AbstractUIModel.

2. Define AbstractInteractionUnits, which can be AbstractCompoundIUs or AbstractElementaryIUs.

3. Define AbstractRelationships between AbstractInteractionUnits.

4. Define AbstractListeners for AbstractInteractionUnits.

7.6. Example

Let us consider a simple Dictionary application to illustrate an Abstract User Interface model. Figure 32 and
Figure 33 illustrate the 1st and the 2nd windows of the Dictionary application. In the 1st window, users can type
the word whose meaning they want to know. As they are typing, words that match what has been already typed
are offered as options to select. If the Cancel button is pressed, then the application closes. If the OK button is
pressed, then the 2nd window is shown. The 2nd window presents the word that has been looked up and its
definition. If the Back button is pressed, the 1st window is shown. If the Close button is pressed, the application
closes.

The following XML code represents an Abstract User Interface Model that defines both windows at an abstract
level.

<AbstractUIModel >
 <AbstractCompounIU id=”0” label="window1">
 <AbstractDataIU id=”1” label="label1">
 <AbstractOrdering=”1”>
 <AbstractOutputIU>
 </AbstractDataIU>
 <AbstractDataIU id=”2” label="selection1">

Figure 32, 33.

Figure33. Dictionary – 2nd window

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 54/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

 <AbstractOrdering=”2”>
 <AbstractSelectionIU orderingCriteria="alphabetical" isExpandable=”false”/>
 <AbstractOutputIU>
 </AbstractDataIU>
 <AbstractTriggerIU id=3 label = "button1">
 <AbstractNavigationIU/>
 <AbstractOperationIU/>
 <AbstractListener>
 <AbstractEvent eventType=onTriggerSelected>
 <AbstractAction actionType=IUOpen actionSpecification="Window2">
 </AbstractListener>
 <AbstractListener>
 <AbstractEvent eventType= onTriggerSelected>
 <AbstractAction actionType=modelRead actionSpecification="SearchWordByNameFromAbstractDictionary">
 </AbstractListener>
 </AbstractTriggerIU>
 <AbstractTriggerIU id=4 label = "button2">
 <AbstractNavigationIU/>
 <AbstractListener>
 <AbstractEvent eventType= onTriggerSelected>
 <AbstractAction actionType=IUClose actionSpecification="Window1">
 <AbstractAction actionType=IUOpen actionSpecification="Window2">
 </AbstractListener>
 </AbstractTriggerIU>
 </AbstractCompoundIU>
</AbstractUIModel>

<AbstractUIModel>
 <AbstractCompounIU id=0 label="window2">
 <AbstractDataIU id=1 label="label1">
 <AbstractOrdering=1>
 <AbstractOutputIU>
 </AbstractDataIU>
 <AbstractDataIU id=2 label="label2">
 <AbstractOrdering=2>
 <AbstractDataItem>
 <AbstractOutputIU>
 </AbstractDataIU>
 <AbstractTriggerIU id=3 label = "back">
 <AbstractNavigationIU/>
 <AbstractOperationIU/>
 <AbstractListener>
 <AbstractEvent eventType= onTriggerSelected>
 <AbstractAction actionType=IUOpen actionSpecification="Window1">
 <AbstractAction actionType=IUClose actionSpecification="Window2">
 </AbstractListener>
 </AbstractTriggerIU>
 <AbstractTriggerIU id=4 label = "close">
 <AbstractNavigationIU/>
 <AbstractListener>
 <AbstractEvent eventType= onTriggerSelected>
 <AbstractAction actionType=IUClose actionSpecification="Window2">
 </AbstractListener>
 </AbstractTriggerIU>
 </AbstractCompoundIU>

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 55/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

</AbstractUIModel>

8. CONCRETE USER INTERFACE META-MODEL

8.1. Overview

Figures below show the Concrete User Interface meta-model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 56/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 57/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

8.2. Summary

The Concrete User Interface (CUI) (corresponding to the Platform-Specific Model–PSM– in MDE) is an
expression of the UI in terms of “concrete interaction units”, that depend on the type of platform and media
available and has a number of attributes that define more concretely how it should be perceived by the user.
"Concrete interaction units" are, in fact, an abstraction of actual UI components generally included in toolkits.

The chosen modeling is to compose the ConcreteUIModel by a set of ConcreteInteractionUnit: every concrete
object is then such an interaction unit. These interaction units may own ConcreteStyles allowing describing a
style for each concrete interaction unit. Furthermore, each interaction unit may have one or more
ConcreteListeners. These listeners allow defining the dynamic of the model, the way the interaction units will
react to the different events. The goal of the Concrete User Interface model is to specify the modality. For the
moment, only the graphical modality is described.

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry : the Domain model is necessary for specifying certain elements (ConcreteAction) of a Concrete
User Interface model. Furthermore, a Concrete User Interface model could be derived (although not
necessarily) from an Abstract User Interface model.

• Context : this model is useful to represent a user interface for a given modality of interaction
(graphical,vocal, haptic, etc.), but independently of a particular computing platform.

8.3. Modeling through the Eclipse Plug-in

Not applicable to this kind of meta-model.

8.4. Classes of the Concrete User Interface Meta-mo del

Next, we explain the meaning of the classes that make up the Concrete User Interface meta-model:

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 58/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

8.4.1. Main entities

� ConcreteUIModel: Last level of abstraction (before the code). Describes user interfaces independently of the

toolkit or the execution environment (Java-Swing, Web, VoiceXML …). The modality is known.

� ConcreteInteractionUnit: Main entity of the model, every concrete object is a ConcreteInteractionUnit. For

the moment, it is refined in three simple modalities (graphical, vocal, tactile) and compound modality (multimodal)

and only the graphical modality is refined (see ConcreteGraphicalIU description).

o Attributes:

- id (Integer) : Identification number of the ConcreteInteractionUnit.

- contextCondition : Link to the Context model.

� ConcreteLocalization: Allows specifying locales in different languages for the concrete interaction unit.

o Attributes:

- id (Integer) : Identification number of the ConcreteLocalization.

- label (String) : Description label of the ConcreteInteractionUnit.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 59/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• Example: “department”.

- longLabel (String) : Long version of the label.

• Example: “the name of the department”.

- shortLabel (String) : short version of the label.

• Example: acronym, like “dept”.

- help (String) : textual help provided specifically for the ConcreteInteractionUnit.

8.4.2. ConcreteGraphicalIU

� ConcreteGraphicalIU: Main graphical entity of the model, every graphical entity is a ConcreteGraphicalIU. It

can be of two types: ConcreteGraphicalCompoundIU or ConcreteGraphicalElemenatryIU. The elementary entities

represent the atomic graphical widgets while the compound entities behave as containers gathering other compound

entities and elementary entities. The way the entities are organized is described in the

ConcreteGraphicalRelationship.

o Attributes

- originX (Float) : x coordinate of the origin point of the ConcreteGraphicalIU.

- originY (Float) : y coordinate of the origin point of the ConcreteGraphicalIU.

- width (Float) : width of the ConcreteGraphicalIU.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 60/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- height (Float) : height of the ConcreteGraphicalIU.

- isVisible (Boolean) : specifies if the ConcreteGraphicalIU is visible.

- isEnabled (Boolean) : specifies if the ConcreteGraphicalIU is enabled.

- isResizable (Boolean) : specifies if the ConcreteGraphicalIU is resizable.

- isSplittable (Boolean) : specifies if the ConcreteGraphicalIU is splittable.

� ConcreteGraphicalCompoundIU: Entity allowing to gather combinations of other

ConcreteGraphicalCompoundIU and ConcreteGraphicalEmentaryIU.

� ConcreteGraphicalElementaryIU: Atomic graphical entity.

� TabBar: Bar gathering tab entries to click in order to show the tab.

� Tab: Entity linking the tab bar entry and the content of the Tab (that is a ConcreteGraphicalCompoundIU).

o Attributes

- text (String) : text to display as entry for the tab in the tab bar.

- Index (Integer) : index of the tab in the tab bar.

� MenuBar: Bar gathering different menu bar items.

� MenuBarItem: Item linking an item of the menu bar with a menu.

o Attributes

- mnemonic (String) : combination of touches to press in order to uncollapse the associated menu.

- index (Integer) : Index of the menu bar item in the menu bar.

� Menu: Organizer of separators and items allowing launching specific menu actions.

� MenuItem: Item allowing launching specific menu action.

o Attributes

- shortcut (String) : combination of touches to press in order to launch the menu item action.

- mnemonic (String) : combination of touches to press in order to launch the menu item action after having

uncollapsed the parent menu.

- index (Integer) : Index of the menu item in the menu.

� MenuSeparator: Separator to be used in menus.

� ComboBox: Combination of a text label and a list box: only one entry is visible and a button on the right allows

showing the entire list for selection.

o Attributes

- isEditable (Boolean) : specifies if the user can type its own entry.

� ComboItem: Item of the combo box list.

o Attributes

- index (Integer) : Index of the combo item in the combo box.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 61/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� CheckBox: Entity allowing the user to make multiple selections from a number of options.

� CheckItem: Item representing an option of the check box.

o Attributes

- isSelected (String) : specifies if the current item is selected.

- index (Integer) : Index of the check item in the check box.

� RadioBox: Entity allowing the user to make single selection from a number of options.

� RadioItem: Item representing an option in the radio box.

o Attributes

- isSelected (String) : specifies if the current item is selected. Setting this attribute to ‘true’ causes setting to

false the isSelected attribute of all the other radio items of the radio box.

- index (Integer) : Index of the radio item in the radio box.

� ListBox: Entity allowing to select one or more items from a list.

� ListItem: Item of the list box.

o Attributes

- index (Integer) : Index of the list item in the list.

� ToolBar: Bar allowing organizing buttons and separators for specific commands that are not belonging to the

menu.

� ToolBarItem: Item of the toolbar.

o Attribute

- index (Integer) : Index of the toolbar item in the toolbar.

- shortcut (String) : combination of touches to press in order to launch the toolbar button action.

� ToolBarSeparator: Separator to be used in toolbars.

� CommandButton: Free button allowing to launch a command.

o Attributes

- wrapText (Boolean) : specifies if the button has to automatically resize in order to wrap the text.

� Label: Simple component allowing to insert or display text.

o Attributes

- text (String) : text of the label.

- wrapText (Boolean) : specifies if the label has to automatically resize in order to wrap the text.

- numberLines (Integer) : maximum number of lines of the label (0 for infinite)

- isEditable (Boolean) : specifies if the text can be changed.

� ImageComponent: Component allowing displaying an image.

o Attributes

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 62/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- urlPath (String) : path to the image.

� VideoComponent: Component allowing playing a video.

o Attributes

- urlPath (String) : path to the video.

� AudioComponent: Component allowing playing an audio file.

o Attributes

- urlPath (String) : path to the audio file.

� Slider: Bar with a cursor that the user can move in order to specify a value.

o Attributes

- minValue (Float) : beginning value of the bar.

- maxValue (Float) : ending value of the bar.

- step (Float) :): interval between two successive values of the bar, by starting by minValue and ending by

maxValue).

� FilePicker: Component allowing uploading a file.

o Attributes

- urlPath (String) : path to the file.

� ProgressionBar: Bar that begins to 0 and finishes to 100 in order to represent a progression in percentages.

o Attributes

- currentValue (Integer) : value between 0 and 100 representing a percentage.

� ConcreteGraphicalRelationship: Entity linked to a ConcreteGraphicalIU in order to describe the way it is
organized. If no ConcreteGraphicalRelationship is specified, then the organization is the following:

- For a ConcreteGraphicalCompoundIU: the components contained in the ConcreteGraphicalCompoundIU

are organized by placing their top-left corner to their specified origin, by taking the origin and the

size/height of the considered ConcreteGraphicalCompoundIU as space reference.

- For a ConcreteGraphicalElementaryIU: the items of the bars (TabBar, MenuBar, ToolBar) are organized

from left to right, the items of boxes (ComboBox, CheckBox, RadioBox, ListBox) and Menu for top to

bottom, by following the indexes.

� TableLayout: Defines the layout of the ConcreteGraphicalIU.

o Attributes

- layoutHint (LayoutHint) : Gives a hint on how the layout is structured.

� Row: If TableLayout hint is chosen, represents a row in the table.

� Cell: If TableLayout hint is chosen, represents a cell in the row of the table. This entity encloses a

ConcreteGraphicalIU.

� LayoutHint

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 63/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

o Attribute

- TableLayout: Allows organizing in rows and cells, like in HTML.

- FlowLayout: Allows organizing the content from left to right by specifying a justification.

- GridLayout: Allows organizing the content as a table with cells of same sizes. By following their indexes, the

components are added in the cells by left to right, by beginning at the top line until the bottom line.

- BorderLayout: Allows organizing the content in 5 zones: North, East, South, West, and center.

- BoxLayout: Allows to organize the content in a box of one line, where the direction of the line can be

specified.

8.4.3. ConcreteStyle

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 64/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� ConcreteStyle: Allows to specify a style for each ConcreteInteractionUnit. For the moment, it is refined in three

simple modalities (graphical, vocal, tactile) and only the graphical modality is refined (see ConcreteGraphicalStyle

description).

� ConcreteGraphicalStyle: Entity allowing specifying the style of a ConcreteGraphicalIU.

o Attributes

- foregroundColor (Color) : color of the foreground.

- backgroundColor (Color) : color of the background.

- backgroudImage (String) : url to the image for the background.

- borderWidth (Float) : width of the border (0 for no border).

- borderColor (Color) : color of the border.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 65/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- textFont (Font) : font of the text, if text is present.

- textAlignment (AlignmentType) : alignment of the text, if text is present.

- styleUnit (StyleUnit) : style of the units used for measuring sizes.

� StyleUnit:

o Attibutes

- Pixel

- PixelFraction

- Mm

- Inches

- Point per inch

� Font: Entity describing font text.

o Attributes

- type (FontType) : type of font, described in FontType description.

- size (Integer) : size of the font.

- isBold (Boolean) : specifies if the font is bold.

- isItalic (Boolean) : specifies if the font is italic.

� FontType:

o Attibutes

- Arial

- Times New Roman

� Color: Entity representing a RGB color.

o Attributes

- red (Integer) : red component of the color (between 0 and 255)

- green (Integer) : green component of the color (between 0 and 255)

- blue (Integer) : blue component of the color (between 0 and 255)

- alpha (Float) : transparence of the color (0 = translucent, 1 = opaque)

� AligmentType

o Attributes

- topLeft

- topCenter

- topcRight

- middleLeft

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 66/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- middleCenter

- middleRight

- bottomLeft

- bottomCenter

- bottomRight

8.4.4. ConcreteListener

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 67/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� ConcreteListener: Allows specifying the behavior of the AbstractInteractionUnits. For the moment, it is refined

in three simple modalities (graphical, vocal, tactile) and only the graphical modality is refined (see

ConcreteGraphicalListener description).

� ConcreteGraphicalListener: Entity used to describe the behavior of a ConcreteGraphicalIU by using Event-
Conditio-Action (ECA) rules.

� ConcreteJustification: The justification is a kind of motivation for the ECA rules, it is not used for describing

the interface itself but more for documentation purposes.

o Attributes

- justificationType (ConcreteJustificationType) : type of justification, the different possibilities are

described in the ConcreteJustificationType description.

- justificationContent (String) : text representing the justification itself.

� ConcreteJustificationType

o Attributes

- claim: assertion put forward publicly for general acceptance with the implication that there are underlying

‘reasons’ that could show it to be ‘well founded’ and therefore entitled to be generally accepted.

• Example: “Our organization should cut costs next quarter”

- ground: the term ‘ground’ refers to the specific facts relied on to support a given claim.

• Example: “Our organization has lost money the last 3 quarters”

- warrant: assertion that entitles you to interpret or link the grounds (facts) as support of the claim.

• Example: “When losing money, organizations should cut expenses as much as possible”

- backing: the ‘backing’ consists of a very general set of background assumptions which, in effect, legitimize

the basis for believing in the warrant. That is, if the warrant is not accepted on its surface, then the

backing is called into play to add deeper support to the argument.

• Example: “A business can’t continue to lose money and stay in business”

- rebuttal: the ‘rebuttal’ presents the possible exceptions or objections as to why the claim, the grounds, the

warrants, or the backing may not hold for the situation under discussion.

• Example: “That may be true in general, but not with the customers of our company. Besides that,

times have changed; the economy as changed; the dollar has fallen in value.

- qualifier: word that indicates how strongly the claim is being asserted, or how likely that something might

occur.

• Example: “probably”, “certainly”, “very likely”, etc.

� ConcreteEvent: specifies the signal that triggers the invocation of the rule.

o Attributes

- eventType (ConcreteEventType) : type of event, the different possibilities are described in the

ConcreteEventType description.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 68/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� ConcreteEventType:

o Attributes

- onGIUClick: a ConcreteGraphicalIU has been clicked

- onGIUActivation: a ConcreteGraphicalIU has been activated

- onGIUDesactivation: a ConcreteGraphicalIU has been desactivated

- onGIUResize: a ConcreteGraphicalIU has been resized

- onGIUInput: data has been entered in a ConcreteGraphicalIU

- onGIUDisplay: a ConcreteGraphicalIU has been displayed

- onDataSelection: a data entry element has been selected

- onDataBlur: a data entry element has lost focus

- onDataChange: a data entry element has lost focus after its content has been modified

- onDataFocus: a data entry element has got focus

- onGIUHover: a mouse pointer has been moved over an element

� ConcreteCondition: logical test that, if satisfied or evaluates to true, causes the action to be carried out.

o Attributes

- conditionSpecification (String) : logical formula representing the condition to evaluate, for the moment

under the form of a String.

� ConcreteAction: consists of updates or invocations on the Domain Model data, or modifications of the concrete

entities themselves.

o Attributes

- actionType (ConcreteActionType) : type of action, the different possibilities are described in the

ConcreteActionType description.

- actionSpecification (String) : kind of argument that, used in conjunction with type, allows to specify the

action to launch.

• Example: for an ConcreteActionType ‘modelUpdate’, the actionSpecification could specify which field to

change and what is the new value.

� ConcreteActionType

o Attributes

- modelSearch: search for model elements based on logical formula

- modelCreate: create a new model in the Domain Model

- modelRead: read a specified field in the Domain Model

- modelUpdate: update a field in the Domain Model

- modelDelete: delete a field in the Domain Model

- modelInvoke: perform a query external to the current Domain Model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 69/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- modelReset: reset the Domain Model with the initial parameters

- modelCopy: copy the Domain Model

- listenerCreate: create a new listener on a specified ConcreteGraphicalIU

- listenerDelete: delete a listener of a specified ConcreteGraphicalIU

- eventDispatch: dispatch the event to another ConcreteGraphicalIU

- GIUOpen: open a specified ConcreteGraphicalIU

- GIUClose: close a specified ConcreteGraphicalIU

- GIUActivate: activate a specified ConcreteGraphicalIU

- GIUDesactivate: desactivate a specified ConcreteGraphicalIU

- GIUEmphasize: focus in a specified ConcreteGraphicalIU

- GIUDesemphasize: focus out a specified ConcreteGraphicalIU

8.5. How to build a Concrete User Interface Model

Next, the steps to be followed to create a Concrete User Interface Model are described:

1. Define a ConcreteUIModel.

2. Define ConcreteInteractionUnits, which can be ConcreteGraphicalIU, ConcreteVocalIU,
ConcreteTactileIU or ConcreteMultimodalIU.

a. If ConcreteGraphicalIU (for the moment, only the graphical modality is considered)

i. Define ConcreteGraphicalRelationships between ConcreteGraphicalIUs.

3. Define ConcreteStyles for ConcreteInteractionUnits.

4. Define ConcreteListeners for ConcreteInteractionUnits.

8.6. Example

Let us consider again the Dictionary application that was presented in Section 7.6. The following XML code
represents a Concrete User Interface Model that defines the 1st window of the Dictionary application at a
concrete level.

<ConcreteUIModel>

 <ConcreteGraphicalCompoundIU id="9" label="Title" longLabel="Title" shortLabel="Title" help="" role="" importance="3" originX="20"
originY="20" width="120" height="120" isVisible="true" isEnabled="true" isResizable="true" index="">

 <ConcreteGraphicalCompoundIU id="10" label="" longLabel="" shortLabel="" help="" role="" importance="3" originX=""
originY="" width="" height="" isVisible="true" isEnabled="true" isResizable="no" index="">

 <Label id="11" label="Type your word" longLabel="Type your word" shortLabel="Type your word" help="" role=""

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 70/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

importance="3" originX="" originY="" width="" height="" isVisible="true" isEnabled="true" isResizable="false" index="" text="Type your word"
wrapText="false" numberLines="1" isEditable="false">

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="0" textAlignment="MiddleLeft" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- light blue -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 </Label>

 <Label id="12" label="" longLabel="" shortLabel="" help="" role="" importance="3" originX="" originY="" width=""
height="" isVisible="true" isEnabled="true" isResizable="false" index="" text="" wrapText="false" numberLines="1" isEditable="true">

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="1" textAlignment="MiddleLeft" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- white -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 <ConcreteGraphicalListener>

 <ConcreteEvent eventType="onGUIInput"/>

 <ConcreteAction actionType="???" actionSpecification="???" /> <!-- on data input, the listbox
must be updated accordingly: options that match the input must appear -->

 </ConcreteGraphicalListener>

 </Label>

 <ListBox id="13" label="" longLabel="" shortLabel="" help="" role="" importance="3" originX="" originY="" width=""
height="" isVisible="true" isEnabled="true" isResizable="false" index="" numberVisibleLines="4">

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 71/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

 <ListItem text="???" index="???"/> <!-- it is not clear how to fill this listbox -->

 <ListItem text="???" index="???"/> <!-- it is not clear how to fill this listbox -->

 <ListItem text="???" index="???"/> <!-- it is not clear how to fill this listbox -->

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="1" textAlignment="MiddleLeft" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- white -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 <ConcreteGraphicalListener>

 <ConcreteEvent eventType="onDataSelection"/>

 <ConcreteAction actionType="???" actionSpecification="???" /> <!-- on data selection, the
input must be updated accordingly: the value of the input will be copied from the selected value -->

 </ConcreteGraphicalListener>

 </ListBox>

 <BoxLayout layoutType="vertical"/>

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="0" textAlignment="" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- light blue -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 </ConcreteGraphicalCompoundIU>

 <ConcreteGraphicalCompoundIU id="14" label="" longLabel="" shortLabel="" help="" role="" importance="3" originX=""

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 72/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

originY="" width="" height="" isVisible="true" isEnabled="true" isResizable="no" index="">

 <CommandButton id="15" label="OK" longLabel="OK" shortLabel="OK" help="" role="" importance="3" originX=""
originY="" width="" height="" isVisible="true" isEnabled="true" isResizable="no" index="" text="OK" wrapText="false">

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="1" textAlignment="MiddleCenter" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 <ConcreteGraphicalListener>

 <ConcreteEvent eventType="onGIUClick"/>

 <ConcreteAction actionType="eventDispatch" actionSpecification="" />

 </ConcreteGraphicalListener>

 </CommandButton>

 <CommandButton id="16" label="Cancel" longLabel="Cancel" shortLabel="Cancel" help="" role="" importance="3"
originX="" originY="" width="" height="" isVisible="true" isEnabled="true" isResizable="no" index="" text="Cancel" wrapText="false">

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="1" textAlignment="MiddleCenter" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 <ConcreteGraphicalListener>

 <ConcreteEvent eventType="onGIUClick"/>

 <ConcreteAction actionType="GIUClose" actionSpecification="close this IU" />

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 73/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

 </ConcreteGraphicalListener>

 </CommandButton>

 <BoxLayout layoutType="horizontal"/>

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="0" textAlignment="" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- light blue -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 </ConcreteGraphicalCompoundIU>

 <BoxLayout layoutType="vertical"/>

 <ConcreteGraphicalStyle backgroundImage="" borderwidth="2" textAlignment="" />

 <ForegroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- black -->

 </ForegroundColor>

 <BackgroundColor>

 <Color red="" green="" blue="" alpha=""/> <!-- light blue -->

 </BackgroundColor>

 <BorderColor>

 <Color red="" green="" blue="" alpha=""/> <!-- grey -->

 </BorderColor>

 <TextFont>

 </TextFont>

 </ConcreteGraphicalStyle>

 </ConcreteGraphicalCompoundIU>

</ConcreteUIModel>

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 74/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

9. TRANSFORMATION META-MODEL

9.1. Overview

Detailed views of the Transformation meta-model are shown in next subsections.

9.2. Summary

According to Kleppe et al. [KWB03] a transformation is the automatic generation of a target model from a
source model, according to a transformation definition. A transformation definition is a set of transformation
rules that together describe how a model in the source language can be transformed into a model in the target
language. A transformation rule is a description of how one or more constructs in the source language can be
transformed into one or more constructs in the target language. Mens et al. [MCG04] have generalized this
definition saying that a transformation is also possible with multiple source models and/or multiple target
models.

The UsiXML transformation meta-model has been defined according to the previous definitions. The aim of this
meta-model is to define how transformation definitions (named transformation models in this document) are
composed in UsiXML.

Transformation models are aggregations of transformation units which, in turn, are aggregations of sub-
transformation units and transformation rules. Transformation units define an execution order for their sub-
transformation units and transformation rules. Transformation rules have a core definition and have several rule
representations, for instance ATL and/or graphs. The core definition of a transformation rule is independent of a
specific transformation technology and is not executable per se. The different rule representations are related
to specific transformation technologies and are executable in the corresponding compilers.

UsiXML proposes a set of conceptual models that represent diverse aspects of user interfaces. Furthermore,
models are located at different abstraction levels. When following a forward engineering process, lower level
models can be obtained from higher level models (reification) by means of model-to-model transformations and
the user interface code can be reached through a model-to-code transformation (reification). When following a
reverse engineering process, the lowest level model can be obtained from code by means of a code-to-model
transformation (abstraction), and then, higher level models can be derived from lower level models by means of
model-to-model transformations (abstraction). It is also possible to have model transformations at a same
abstraction level, for instance when a model is being improved (reflection), or when a model is being
customized for a different context of use (translation). Hence, transformation rules and transformation models
can be classified as reifications, abstractions, reflections, or translations.

Furthermore, the transformation meta-model allows a transformation rule repository to be created and
maintained. In the repository, transformation rules can be represented in different languages or notations.
Transformation rules can be reused in different transformation units which, in turn, can be reused in different
transformation models.

The transformation meta-model allows transformation units and transformation rules to be related to design
options expressed according to the QOC notation [MYBM96, LP07, LPB+07] (see Section Erreur ! Source du
renvoi introuvable.). These design options represent design alternatives that can be evaluated according to

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 75/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

usability criteria. The importance of the usability dimension has been highlighted in works like [SCF05]. The
evaluations can be used to decide which alternative (transformation unit or rule) to execute.

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry : in order to define a transformation model it is necessary to previously define the source meta-
model and the target meta-model. When the transformation model to be defined has the goal to specify
a translation from one context of use to another context of use, it will be necessary to define first the
source and target contexts of use. When the transformation process specified by a transformation
model will be guided by a QOC analysis, it will be necessary to define first the corresponding QOC
model.

• Context : this model is useful to define transformations between models.

9.3. Modeling through the Eclipse Plug-in

Not applicable to this kind of meta-model.

9.4. Classes of the Transformation Meta-model

Next, we explain the meaning of the classes that make up the QOC meta-model.

9.4.1. Structure of packages

The UsiXML Transformation meta-model has been defined in a package named Transformation.
However, classes of the Transformation package have relations with classes of other UsiXML
packages or with classes of other packages that are defined independently of UsiXML. So, in first
place, a description of the structure of packages is given.

Figure 34 presents the first nesting level. There are two packages: UsiXML and QOC. The UsiXML
package contains other UsiXML related classes and packages. The QOC package contains a meta-
model for the Questions-Options-Criteria (QOC) notation [MYBM96] which is useful for analyzing the
rational of design decisions.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 76/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 34. Packages related to the Transformation meta-model

Figure35 illustrates the contents of the UsiXML package. There are two other sub-packages: Context
and Transformation. The Context package defines the UsiXML Context meta-model (described in
Section 5.3 and the Transformation package defines the UsiXML Transformation meta-model. These
are the two relevant UsiXML packages when describing the UsiXML Transformation meta-model.
However, the UsiXML package contains more sub-packages related to the other meta-models of
UsiXML (for instance, Abstract User Interface, Concrete User Interface, etc.). The abstract class Model
represents any UsiXML model and it is specialized in the different sub-packages. For instance, in the
Transformation package we have a class named TransformationModel which is a specialization of
Model.

Figure35. Contents of the UsiXML package

Since classes of the Transformation package have relations with classes of the packages Context and
QOC, the contents of these packages are presented first, and the contents of the Transformation
package are presented later.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 77/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

9.4.2. Package Context

This package contains the UsiXML Context meta-model that aims to describe the context of use (i.e.,
user, platform, environment) in which the generated interface will be executed..

9.4.3. Package QOC

This package supports design rationale based on the QOC (Questions, Options, Criteria) notation
[MYBM96]. It supports the exploration of options during design processes. The analysis starts from a
set of design questions to evaluate different options according to different criteria.

This package has been defined according to [LP07] and [LPB+07].

 Figure36 illustrates the QOC meta-model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 78/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

 Figure36. QOC meta-model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 79/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

A design space allows the design of an artifact to be analyzed taking into account the identification,
comparison, and assessments of alternative designs for the artifact. Hence, the design space is
composed of questions which represent key design issues to be analyzed. General questions can be
decomposed into more specific sub-questions. Furthermore, questions gather a set of options, each of
which represents an alternative design or solution. Complex options can be decomposed again in
consequent questions. Each question is related to a set of relevant criteria in order to assess each
option of the question against each of the relevant criteria. Each of these assessments holds a value
that indicates if, in the context of the question, the option supports, is neutral, or denies the criterion.
Furthermore, each assessment has a set of argumentations that explain the valuation made. Criteria
can be related to more general factors.

� DesignSpace: represents the analysis of the design of an artifact. The analysis is intended to identify,
compare, and assess different options for the design of an artifact.

o Attributes:

- id (String, required) : unique identifier.

- label (String, required) : name of the design space or short description.

o Relationships:

• A design space is composed of one or many questions.

o Examples:

• A design space could be defined to analyze the design of an Automated Teller Machine (ATM). See

[MYBM96] for the complete example.

• A design space could be defined to analyze how to transform from an Abstract User Interface model to

a Concrete User Interface model.

� Question: represents a key design issue.

o Attributes:

- id (String, required) : unique identifier.

- label (String, required) : text of the question.

- arch (ArchitecturalComponent, required) : defines a relationship between the question and a

component of the software architecture.

▪ Possible values: defined by the ArchitecturalComponent enumeration (functionalCore, dialog,

and presentation).

▪ Default value: presentation.

o Relationships:

• A question belongs to one design space.

• A question can be composed of cero or many sub-questions.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 80/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• A sub-question belongs to one parent question.

• A question can be composed of cero or many options.

• A question has one or many relevant criterion.

• A consequent question belongs to one option.

o Restrictions:

• If a question does not have options, it should have at least one sub-question.

• If a question does not have sub-questions, it should have at least two options.

o Examples:

• In the design space that analyzes how to transform an Abstract User Interface model into a Concrete

User Interface model, we can have the following question: what concrete graphical interactor should be

used as target of abstract selection interactors? This question is related to the presentation component

of the software architecture.

� Option: represents a possible answer to a question or, in other words, represents a design solution.

o Attributes:

- id (String, required) : Option’s identifier.

- label (String, required) : Option’s name or short description.

o Relationships:

• An option belongs to one question.

• An option can be composed of cero or many consequent questions.

• An option can be composed of cero or many assessments.

o Restrictions:

• The number of assessments of an option is equal to the number of relevant criterion of the question of

the option. An option must have one assessment for each relevant criterion of the question of the

option.

o Examples:

• Combo box and radio box are two concrete options for transforming abstract selection interactors.

� Criterion: allows assessing and comparing options. It is intended to perform qualitative comparisons between

options.

o Attributes:

- id (String, required) : Criterion’s identifier.

- label (String, required) : Criterion’s name or short description.

o Relationships:

• A criterion can be related to cero or many factors.

• A criterion can be relevant to cero or many questions.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 81/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• A criterion can participate in cero or many assessments.

o Examples:

• Information density and brevity are criteria that can be associated as relevant with regard to the

question of what concrete graphical interactor should be used as target of abstract selection

interactors. The relevant criteria will be used to compare the options for transforming abstract

selection interactors. Information density refers to the amount of information that is displayed. It

should not be too large. Brevity refers to the amount of actions that the user must perform in order to

achieve a goal. This amount should not be too large.

� Factor: allows requirements expressed by the clients and/or users to be represented. Factors correspond to

high-level requirements such as learnability, safety, usability, etc. [LP07].

o Attributes:

- id (String, required) : Factor identifier.

- label (String, required) : Factor name or short description.

o Relationships:

• A factor can be related to cero or many criteria.

o Examples:

• Usability is a factor that can be related to the two previously mentioned criteria: information density

and brevity.

� Assessment: allows options of a question to be evaluated against each of the relevant criteria of the
question. The evaluation indicates if, in the context of the question, the option supports, denies, or is neutral

with respect to each relevant criterion.

o Attributes:

- value (AssessmentValue) : evaluates an option with respect to a relevant criteria. Allows a qualitative

and comparative analysis amongst the various options related to a question.

▪ Possible values: defined by the AssessmentValue enumeration (strongly denies, denies, is

neutral, supports, strongly supports).

▪ Default value: is neutral.

o Relationships:

• An assessment belongs to one option.

• An assessment is made in relation to one criterion.

• An assessment can be composed of cero or many arguments.

o Restrictions:

• There should be an assessment for each pair (option, relevant criterion) of a question.

o Examples:

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 82/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• This class allows us to express that combo box is an option that supports information density but

denies brevity. On the contrary, radio box denies information density and support brevity.

� Argument: allows the assessments of options against criteria to be explained.

o Attributes:

- id (String, required) : Argument identifier.

- text (String, required) : Text that exposes the argument.

o Relationships:

• An argument belongs to one assessment.

o Examples:

• Combo box supports information density because of the following argument:

◦ Combo boxes do not display all of them items at a time.

• Combo box denies brevity because of the following argument:

◦ The user has to make clicks or move a slider to see all possible items.

• Radio box supports brevity because of the following argument:

◦ The user does not have to make any actions to see all the possible items.

• Radio box denies information density because of the following argument:

◦ All possible items are displayed at the same time.

 [LP07] and [LPB+07] can be consulted for more information about QOC.

9.4.4. Package Transformation

9.4.4.1. Transformation Rules and Rule Representations

A transformation rule is intended to specify how one or more elements of one or more source model types
(source meta-model elements) are transformed into one or more elements of one or more target model types
(target meta-model elements). A transformation rule can also specify how one or more elements of a set of
model types are transformed into one or more elements of the same set of model types in order to incorporate
enhancements or customizations for different contexts of use.

Taking into account the sets of source and target meta-model elements and the source and target contexts of
use, a transformation rule can be categorized as a:

• Reification : in this case, the abstraction level of the source meta-model elements is higher than the
abstraction level of the target meta-model elements. The source and target contexts of use are the
same.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 83/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• Abstraction : in this case, the abstraction level of the source meta-model elements is lower than the
abstraction level of the target meta-model elements. The source and target contexts of use are the
same.

• Reflection : in this case, the abstraction level of the source meta-model elements is equal to the
abstraction level of the target meta-model elements (this is, the set of source model types is the same
than the set of target model types). The source and target contexts of use are the same.

• Translation : in this case, the abstraction level of the source meta-model elements is equal to the
abstraction level of the target meta-model elements (this is, the set of source model types is the same
than the set of target model types). The source and target contexts of use are different.

The core representation of a transformation rule only specifies which are the source and target meta-model
elements and the source and target contexts of use. This core representation of a transformation rule, with this
information, is independent of any specific transformation technology and is not executable per se. However, a
transformation rule is composed of one or more rule representations, for instance ATL and/or graphs (other
types of rule representations, for instance QVT, could be added if necessary). These rule representations are
related to specific transformation technologies and are executable in the corresponding compilers. Each rule
representation is restricted to use only the source and target meta-model elements and the source and target
contexts of use defined in the core representation. Furthermore, each transformation rule has a designated
preferred rule representation that will have priority over other rule representations for execution.

Figure 37 shows a view of the Transformation meta-model that focus on Transformation Rules and Rule
Representations.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 84/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure37. Transformation meta-model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 85/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� TransformationRule: is a unitary transformation operation. It is a description of how one or more

constructs in the source models can be transformed into one or more constructs in the target models. This

element is a core representation for transformation rules.

o Attributes:

- id (String, required): Transformation rule’s identifier.

- name (String, required): Transformation rule’s name.

- description (String, optional): Transformation rule’s goal.

- transformationType (TransformationType, required, derived): category or type of the transformation rule.

▪ Possible values: defined by the TransformationType enumeration (reflection, reification,

abstraction, translation).

▪ Derivation rules:

• Reflection: the abstraction level of the source meta-model elements is equal to the

abstraction level of the target meta-model elements (this is, the set of source model types

is the same than the set of target model types) and the source context model is the same

than the target context model.

• Reification: the set of source meta-model elements corresponds to a higher abstraction

level than the set of target meta-model elements. The source context model is the same

than the target context model.

• Abstraction: the set of source meta-model elements corresponds to a lower abstraction

level than the set of target meta-model elements. The source context model is the same

than the target context model.

• Translation: the abstraction level of the source meta-model elements is equal to the

abstraction level of the target meta-model elements (this is, the set of source model types

is the same than the set of target model types). The source context model is different

than the target context model.

o Relationships:

• A transformation rule has one or many source meta-model elements.

• A transformation rule has one or many target meta-model elements.

• A transformation rule can have zero or one source context model.

• A transformation rule can have zero or one target context model.

• A transformation rule is composed of one or more rule representations.

• A transformation rule has one preferred rule representation.

• A transformation rule can be aggregated in zero or many transformation units.

• A transformation rule can be linked to zero or one option.

o Restrictions:

• If there is a source context model there should be a target context model and vice versa.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 86/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• If the set of source meta-model elements is different than the set of target meta-model elements, then

the source context of use must be the same than the target context of use.

• If there are source and target context models and they are different, then the set of source meta-model

elements must be equal to the set of target meta-model elements.

� RuleRepresentation: is an abstract class that represents a transformation rule in a specific

transformation language that can be executed. Each of these rule representations is governed by a specific

notation and a corresponding compiler is able to execute the rule. For instance, a transformation rule can have

two different rule representations, one in ATL and another one with graphs. These types of rule representations

are presented in Section 9.6.

o Attributes:

- id (String, required): Rule representation identifier.

o Relationships:

• A rule representation belongs to one transformation rule.

• A rule representation is the preferred one just in one transformation rule.

o Restrictions:

• Each rule representation is restricted to use only the source and target meta-model elements and the

source and target contexts of use defined in the core representation of the rule.

9.4.4.2. Transformation Units

A transformation unit gathers transformation rules and sub-transformation units and defines an execution order
for them.

Furthermore, a transformation unit can be linked to a question of a QOC model. In this case, the transformation
unit implements the design issue represented by the question. If the transformation unit linked to a question
gathers a set of transformation rules, then each of these transformation rules must match an option of the
question, this is, each transformation rule implements its corresponding option.

Figure 38 illustrates this case. Transformation unit TU1 has two transformation rules TR1 and TR2. TU1 is
associated to (implements) question Q1. Question Q1 has two options, O1 and O2. TR1 is associated to
(implements) O1 and TR2 is associated to (implements) O2.

Figure38. Transformation unit related to a question and transformation rules related to options

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 87/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

When an option of a question is complex, just one transformation rule can be not enough to implement the
option. In this case, a sub-transformation unit can be used to implement an option. Figure 39 illustrates this
case. O1 is implemented by TU11 and O2 is implemented by TU12. In turn, TU11 and TU12 can have other
sub-transformation units and transformation rules.

With regard to execution orders, a transformation unit can specify that its set of transformation rules will be
executed first, followed by the execution of its set of sub-transformation units, or vice versa.

Furthermore, there are three options for specifying how to execute the transformation rules of a transformation
unit:

• Sequence : all transformation rules are executed sequentially.

• All : all transformation rules are executed in random order.

• Choice : only one transformation rule is executed. This option can only be used when the
transformation unit is linked to a question and each transformation rule is linked to an option of the
question. The transformation rule to be executed will be the one that is linked to the option that best
supports a set of criteria to be maximized and a set of criteria to be minimized during execution (see
the class RuntimeConfiguration). The assessments of options with regard to criteria are consulted in
order to identify this transformation rule. See Section 9.4.4.4 for an example of the selection of the
transformation rule to be executed.

The same three options are used for specifying how to execute the sub-transformation units of a transformation
unit:

• Sequence : all sub-transformation units are executed sequentially.

• All : all sub-transformation units are executed in random order.

• Choice : only one sub-transformation unit is executed. This option can only be used when the
transformation unit is linked to a question and each sub-transformation unit is linked to an option of the
question. The sub-transformation unit to be executed will be the one that is linked to the option that
best supports a set of criteria to be maximized and a set of criteria to be minimized during execution
(see the class RuntimeConfiguration). The assessments of options with regard to criteria are consulted
in order to identify this sub-transformation unit.

Figure 39 shows a view of the Transformation meta-model that focus on Transformation Units.

Figure39. Transformation unit related to a question and sub-transformation units related to options

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 88/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� TransformationUnit: gathers a set of sub-transformation units and a set of transformation rules and

its purpose is to specify the order in which sub-transformation units and transformation rules will be executed.

o Attributes:

- id (String, required): transformation unit identifier.

- name (String, required): name of the transformation unit.

- description (String, optional): description of the transformation unit.

- rulesFirst (Boolean, required): each transformation unit gathers a set of transformation rules and, apart

from that, it can gather several sub-transformation units. It is important to establish the execution order

among the set of transformation rules and the set of sub-transformation units. If the attribute rulesFirst is

true, the set of transformation rules will be executed before executing the set of sub-transformation units.

Otherwise, the set of sub-transformation units will be executed first.

▪ Default value: true.

- orderAmongUnits (OrderType, required): a transformation unit can gather other sub-transformation

units. The aim of this attribute is to specify how these sub-transformation units will be executed.

▪ Possible values: defined by the OrderType enumeration (sequence, choice, all).

• Sequence: all sub-transformation units will be executed sequentially.

• All: all sub-transformation units will be executed randomly.

• Choice: only one sub-transformation unit will be executed. The decision of which sub-

transformation unit will be executed is based on QOC, as previously explained.

▪ Default value: sequence.

- orderAmongRules (OrderType, required): a transformation unit can gather transformation rules. The

aim of this attribute is to specify how these transformation rules will be executed.

▪ Possible values: defined by the OrderType enumeration (sequence, choice, all).

• Sequence: all transformation rules will be executed sequentially.

• All: all transformation rules will be executed randomly.

• Choice: only one transformation rule will be executed. The decision of which

transformation rule will be executed is based on QOC, as previously explained.

▪ Default value: sequence.

o Relationships:

• A transformation unit aggregates an ordered set of sub-transformation units.

• A transformation unit aggregates an ordered set of transformation rules.

• A sub-transformation unit is aggregated in one or more transformation units.

• A transformation unit can be linked to (implement) zero or one question.

• A transformation unit can be linked to (implement) zero or one option.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 89/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• A transformation unit can be aggregated in zero or many transformation models.

o Restrictions:

• A transformation unit must aggregate at least one transformation rule or sub-transformation unit.

• Transformation rules are ordered in transformation units.

• Sub-transformation units are ordered in transformation units.

• A transformation unit cannot be linked to a question and to an option.

• If a transformation unit is linked to a question, then it should aggregate only transformation rules or

only sub-transformation units, not a mix of them.

• If a transformation unit linked to a question aggregates transformation rules,

◦ The attribute orderAmongRules must have value choice.

◦ There should be exactly one transformation rule for each option of the question.

• If a transformation unit linked to a question aggregates sub-transformation units,

◦ The attribute orderAmongUnits must have value choice.

◦ There should be exactly one sub-transformation unit for each option of the question.

• If a transformation unit is linked to an option, then it should be a sub-transformation unit of another

transformation unit that is linked to the question of the option.

o Examples:

Example for order of executions

Suppose we have a transformation unit, TU1, with transformation rules, TR1 and TR2, and with sub-

transformation units, TU2 and TU3. Figure 40 illustrates the case.

If the value of the attribute rulesFirst of TU1 is:

• “True”, then the set of transformation rules will be executed before the set of sub-transformation

units.

Figure 40. A transformation unit with transformation rules and sub-transformation units

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 90/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• “False”, then the set of sub-transformation units will be executed before the set of transformation

rules.

• Once the order between the sets of transformation rules and sub-transformation units of TU1 has

been defined, it is necessary to specify the order of execution inside the sets.

◦ The order of execution of TR1 and TR2 depends on the value of the attribute orderAmongRules of

TU1. If the value is:

▪ “Sequence”, then TR1 and TR2 will be executed in sequential order.

▪ “All”, then TR1 and TR2 will both be executed, in random order.

▪ “Choice”, then just TR1 or just TR2 will be executed. Another example illustrates the

selection process (see Section 9.4.4.4).

◦ The order of execution of TU2 and TU3 depends on the value of the attribute orderAmongUnits of

TU1. If the value is:

▪ “Sequence”, then TU2 and TU3 will be executed in sequential order.

▪ “All”, then TU2 and TU3 will both be executed, in random order.

▪ “Choice”, then just TU2 or just TU3 will be executed. Another example illustrates the

selection process (see Section 9.4.4.4).

9.4.4.3. Transformation Model

A transformation model gathers a set of transformation rules (organized in transformation units) that together
describe how models of one or more source model types are transformed into models of one or more target
model types. A transformation model can also be used to specify how to improve models or how to customize
them for different contexts of use.

Taking into account the sets of source and target model types and the source and target contexts of use, a
transformation model, as well as a transformation rule, can be categorized as a:

• Reification : in this case, the abstraction level of the source model types is higher than the abstraction
level of the target model types. The source and target contexts of use are the same.

• Abstraction : in this case, the abstraction level of the source model types is lower than the abstraction
level of the target model types. The source and target contexts of use are the same.

• Reflection : in this case, the abstraction level of the source model types is equal to the abstraction level
of the target model types (this is, the set of source model types is the same than the set of target model
types). The source and target contexts of use are the same.

• Translation : in this case, the abstraction level of the source model types is equal to the abstraction
level of the target model types (this is, the set of source model types is the same than the set of target
model types). The source and target contexts of use are different.

Furthermore, there must be a correspondence between a transformation model and its transformation rules.
This is:

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 91/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• The set of source meta-model elements that participates in transformation rules of a transformation
model must correspond to the set of source model types of the transformation model.

• The set of target meta-model elements that participates in transformation rules of a transformation
model must correspond to the set of target model types of the transformation model.

• The source context of use used in transformation rules of a transformation model must be the same
than the source context of use of the transformation model.

• The target context of use used in transformation rules of a transformation model must be the same than
the target context of use of the transformation model.

As a consequence of these correspondences:

• If the transformation model is a reification, it will contain transformation rules which are reifications.

• If the transformation model is an abstraction, it will contain transformation rules which are abstractions.

• If the transformation model is a translation, it will contain transformation rules which are translations.

• If the transformation model is a reflection, it will contain transformation rules which are reflections.

� TransformationModel: is a specialization of the class Model. Aggregates transformation units which

aggregate transformation rules that specify how to transform models.

o Attributes:

- sourceModelType (ModelType, required): allows to specify the types of the models (or meta-model

names) that will be the input of the transformation process. It is possible to specify more than one.

▪ Possible values: defined by the ModelType enumeration (task, domain, abstractUI,

concreteUI, context, transformation). The enumeration can be extended if needed.

- targetModelType (ModelType, required): allows to specify the types of the models (or meta-model names)

that will be the output of the transformation process. It is possible to specify more than one.

▪ Possible values: defined by the ModelType enumeration (task, domain, abstractUI,

concreteUI, context, transformation). The enumeration can be extended if needed.

- transformationType (TransformationType, required, derived): category or type of the transformation

model.

▪ Possible values: defined by the TransformationType enumeration (reflection, reification,

abstraction, translation).

▪ Derivation rules:

• Reflection: the set of source model types is the same than the set of target model types

and the source context model is the same than the target context model.

• Reification: the set of source model types corresponds to a higher abstraction level than

the set of target model types. The source context model is the same than the target

context model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 92/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• Abstraction: the set of source model types corresponds to a lower abstraction level than

the set of target model types. The source context model is the same than the target

context model.

• Translation: the set of source model types is the same than the set of target model types.

The source context model is different than the target context model.

o Relationships:

• A transformation model is a specialization of Model.

• A transformation model can have zero or one source context model.

• A transformation model can have zero or one target context model.

• A transformation model aggregates one transformation unit.

• A transformation model can participate in zero or many runtime configurations.

o Restrictions:

• If there is a source context model there should be a target context model and vice versa.

• If the set of source model types is different than the set of target model types, then the source context

of use must be the same than the target context of use.

• If there are source and target context models and they are different, then the set of source model types

must be equal to the set of target model types.

• A transformation model must aggregate transformation rules such that their set of source meta-model

elements must be correspondent with the set of source model types of the transformation model.

• A transformation model must aggregate transformation rules such that their set of target meta-model

elements must be correspondent with the set of target model types of the transformation model.

• A transformation model must aggregate transformation rules whose source context of use is the same

than the source context of use of the transformation model.

• A transformation model must aggregate transformation rules whose target context of use is the same

than the target context of use of the transformation model.

9.4.4.4. Runtime Configuration

A runtime configuration can be defined in order to organize the execution of model transformations. A runtime
configuration indicates the transformation models to be executed and their order of execution.

Furthermore, the runtime configuration defines which rule representation will be used during the execution of all
the involved transformation models. For instance, the runtime configuration can indicate that the ATL
representation will be used for the execution of the involved transformation models. In this case, for each
transformation rule that must be executed, it will be its ATL rule representation the one that will be actually
executed. If a transformation rule does not have an ATL representation, then the transformation rule preferred
rule representation will be used instead.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 93/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

The runtime configuration also defines a set of criteria to be maximized and a set of criteria to be minimized
during the execution of the involved transformation models. These criteria will be used when analyzing which
transformation rule or transformation unit (associated to an option of a question) will be executed in a “choice”
situation. The assessments of the option with respect to these criteria will be analyzed, and the option that best
supports the minimization and maximization requirements will be chosen.

RuntimeConfiguration: organizes the execution of transformation models. Defines the transformation models

involved and their order of execution. Defines the rule representation to be used, a set of criteria to be minimized, and a set of

criteria to be maximized during execution.

o Attributes:

- id (String, required): runtime configuration identifier.

- name (String, required): name of the runtime configuration.

- description (String, optional): description of the runtime configuration.

- preferredRuleRepresentation (String, optional): defines the rule representation to be used during the
execution of transformation models. If no preferred rule representation is defined in a runtime

configuration, or if a transformation rule does not have the corresponding rule representation, then the

preferred rule representation of the transformation rule will be used during the execution.

o Relationships:

• A runtime configuration has one or more transformation models.

• A runtime configuration can have zero or many criteria to maximize.

• A runtime configuration can have zero or many criteria to minimize.

o Restrictions:

• A criterion that is to be maximized in a runtime configuration cannot be minimized in the same

runtime configuration, and vice versa.

o Examples:

Example for the selection of the option to be executed

Consider the example that has been described in Sections Erreur ! Source du renvoi introuvable.

and Erreur ! Source du renvoi introuvable. for QOC.

The question is:

• Q1: what concrete graphical interactor should be used as target of abstract selection interactors?

The options are:

• O1: combo box

• O2: radio box

The criteria relevant for the question are:

• C1: information density (regarding the amount of information displayed)

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 94/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• C2: brevity (regarding the amount of steps the user must perform to achieve a goal)

The assessments are:

• O1 supports C1

• O1 denies C2

• O2 denies C1

• O2 supports C1

Suppose Q1 is related to a transformation unit TU1 with transformation rules TR1 and TR2. TR1

implements O1 and TR2 implements O2.

 Suppose TU1 is defined in a transformation model TM.

Suppose we are going to execute TM and we prepare a runtime configuration RC which specifies that

during execution C1 must be maximized and C2 must be minimized. In this case, during the execution,

TR1 will be selected and executed because it represents the option (O1) whose valuations best support the

requirements expressed in RC.

If RC would have specified that C1 must be minimized and C2 must be maximized, then TR2 would have

been executed.

Al algorithm that takes as input the set of criteria to minimize and the set of criteria to maximize, that

analyzes the assessments of the option-criteria pairs, and that outputs the best available option

(transformation rule/ unit) must be implemented.

9.5. How to build a Transformation Model

Next, the steps to be followed to create a Transformation model are described:

1. Define a TransformationModel.

2. Define TransformationUnits for the TransformationModel. A TransformationUnit can be composed of
subTransformationUnits.

3. Optionally, relate TransformationUnits to Questions or Options.

4. Define TransformationRules for TransformationUnits.

5. Optionally, relate TransformationRules to Options.

6. Define at least one RuleRepresentation for each TransformationRule.

7. Define RuntimeConfiguration.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 95/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

9.6. Connections with other Transformation Language s

A transformation rule has different rule representations. These rule representations specify the transformation
rule according to a specific transformation technology. In this way, the notation of the specific technology is
used to represent the rule, and corresponding tools and compilers can be used to execute the rule.

Two transformation technologies that can be used to represent transformation rules are presented: ATL and
graphs. More transformation technologies could also be adopted, for instance, QVT.

9.6.1. ATL Rule Representations

The transformation meta-model has been linked with ATL. We have used the ATL meta-model (Figure 41)
defined in the URL
http://dev.eclipse.org/viewcvs/viewvc.cgi/org.eclipse.m2m/org.eclipse.atl/plugins/org.eclipse.m2m.atl.engine/src
/org/eclipse/m2m/atl/engine/resources/ATL-
0.2.ecore?view=log&root=Modeling_Project&pathrev=ATL_before_3_0_0. Information about the meaning of
each class can be found in [Jou05] and in http://www.eclipse.org/m2m/atl/doc/. We have only done one change
in the original ATL meta-model; we have change the name of the root class (old NamedElement) for ATL, since
it is more representative to be used as a specialization of the class RuleRepresentation.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 96/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 41. ATL meta-model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / UCL 61 566 104/179/25 97/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

9.6.2. Graph Rule Representations

Graph grammar transformation rules are based on the specification of how a source graph should be
transformed in order to produce a target graph. The basic notion underlying graph transformation is matching
some parts of the source graph and to transform them according to what the transformation rule specifies.
Examples of relevant general purpose graph transformation environments are AAG [T00] and GREAT [A03].
Graph transformation approach has been adapted for its use in user interface design in [LVM+04], [LMR09].

A graph transformation rule is composed of three parts: a left-hand side, a right-hand side and, optionally, a
negative application condition. These three parts include meta-model elements. The meta-model elements
create a graph structure. Any of the attributes of a meta-model element can include an attribute condition,
which is expressed by means of an expression. Rule designers describe in the left-hand side of the rule a
graph structure. The graph transformation engine will match the graph structure in the left-hand side of the rule
in the source graph. The matching parts in the source graph will be transformed according to the graph
structure in the right-hand side of the rule. Finally, the negative application condition is used to prevent infinite
loops, since the transformation engine keeps searching for matches until no one is found. Therefore, if for
instance the right-hand side of the rule does not modify the part matched with the left-hand side, and instead it
adds extra elements, the transformation engine would enter into an infinite loop. Thus, a negative application
condition should be used.

Figure 42. Graph transformation meta-model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 98/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� GraphTransformation: represents a graph transformation rule.

o Attributes:

- id (String, required): identifier of the graph transformation.

- description (String, optional): description of the graph transformation. It can be used to document the

transformation, in the same way as a regular program is documented.

o Relationships:

• A graph transformation aggregates a LHS and a RHS elements, and optionally a NAC element.

o Restrictions:

• A graph transformation must include at least one LHS element.

• A graph transformation must include at least one RHS element.

� MetaModelElement: is a simplification to represent any element included in any meta-model of

UsiXML.

o Attributes:

- id (String, required): identifier of the meta-model element.

- name (String, optional): name of the meta-model element.

- description (String, optional): description of the meta-model element.

- isNacElement (String, optional): the attribute isNacElement is used to specify which elements included in

the NAC are actually acting as NAC elements. In some approaches all the elements included in the NAC

part of the rule play the role of NAC, but in some others approaches the nodes playing the role of NAC

must be explicitly marked.

o Relationships:

• A meta-model element has hierarchical relationship with other meta-model elements, shaping a tree-

based structure.

• Although it is not presented in the model, for the sake of clarity, actually any relationship between two

meta model elements defined in any meta model of UsiXML could also appear between the meta model

elements used in a graph transformation specification.

• The mapping relationship between meta model elements represents the mappings specified between

those elements appearing as aggregates in the LHS, RHS and NAC elements of a graph transformation.

• In the hierarchical decomposition has an associated class including the attribute direct. This attribute

reflects whether a child is direct or not, since in some graph transformation approaches [LMR09] the

rule designer can specify that for instance a window element that has a button included, but

necessarily its parent is not directly the window. Having this extra direct optional attribute does not

prevent the meta-model from supporting a regular graph transformation approach.

o Restrictions:

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 99/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• The source and target meta model elements in a mapping relationship cannot be both members of the

LHS, RHS or NAC, that is, if a mapping is defined between two meta model elements and one is

included in the LHS of a rule, then the other one should be included either in the RHS or the NAC of

the same transformation rule.

� LHS: represents the left-hand side of a graph transformation.

o Attributes:

- id (String, required): the identifier of the LHS.

- description (String, optional): description of the LHS. It can be used to document the transformation, in

the same way as a regular program is documented.

o Relationships:

• A LHS aggregates a set of model elements, that is, any element from any UsiXML meta-model.

o Restrictions:

• A LHS element should aggregate at least one meta-model element.

� RHS: represents the right-hand side of a graph transformation.

o Attributes:

- id (String, required): the identifier of the RHS.

- description (String, optional): description of the RHS. It can be used to document the transformation, in

the same way as a regular program is documented.

o Relationships:

• A RHS aggregates a set of model elements, that is, any element from any UsiXML meta-model.

� NAC: represents the NAC of a graph transformation.

o Attributes:

- id (String, required): the identifier of the NAC.

- description (String, optional): description of the NAC. It can be used to document the transformation, in

the same way as a regular program is documented.

o Relationships:

• A NAC aggregates a set of model elements, that is, any element from any UsiXML meta-model.

� AttributeCondition: represents a condition defined for an attribute of any meta model element. Note

these conditions can appear in meta model elements included in a RHS, LHS or NAC element. This condition

can range from simple variables to complex expression. In some graph transformation environments function

call with no side effect are also allowed.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 100/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

o Attributes:

- id (String, required): the identifier of the attribute condition.

- attributeName (String, optional): name of the attribute the condition is define on.

o Relationships:

• An attribute condition aggregates a single expression.

o Restrictions:

• An attribute condition can include just one expression.

� Expression: represents an expression. The expression can be mathematical or not. It is usually made of

variables, operators and constants.

o Attributes:

- id (String, required): the identifier of the expression.

- expression (String, optional): text string representation of the expression.

9.7. A Lab Study of the Transformation Meta-model

This section shows a lab study as a proof of concept of the transformation meta-model. We show how the
meta-model classes are instantiated to objects that store the needed elements to perform the transformation
between two models. The example (based on similar examples used to describe the classes in previous
sections) consists in transforming an Abstract Model that represents an interface with several input elements
into a Concrete Model with specific widgets.

Figure43 shows the elements that compose the example of transformation. We start from an Abstract Model
that represents a form to create a new customer in a company. We have a container that includes the elements
needed to create the customer: two input elements for the name and the surname respectively, and one
selection for the customer’s marital status (with the items: singles, married, widow). Each input element is
transformed into a TextBox but the selection can be transformed into a Radiobox or into a Listbox, depending
on usability criteria. Next, we are going to specify this transformation using the transformation meta-model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 101/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure43. Example of transformation from Abstract Model to Concrete Model

9.7.1. Package QOC

This package stores the quality criteria used in the transformation. Figure 44 shows the objects used in the lab
study and the relationships among them graphically. Each box represents an object, and the type of each
object is labeled in capital letters. Next we are going to explain the meaning of each object in detail.

In the lab study, the system quality depends on the widget to which we transform a selection. The quality is not
the same if we transform the selection into a RadioBox or into a ListBox based on the target platform. As
follows we discuss the alternatives to improve the quality regarding the selection item.

We represent in each instance of the class DesignSpace a quality target that must be considered in a
transformation between two models. In the lab study, this class is instantiated to a target with the label “From
Abstract to Concrete”. In our lab study, this DesignSpace is related to one instance of class Question that
stores the question to determine the visual aspect of the enumerated elements. The attribute label of Question
is “What concrete graphical interactor should be used as target of abstract selection interactors?” and the
attribute arch has the value “presentation”, since this question is related to presentation issues.

The question has as result several options to satisfy the quality target. We have two instances of the Option
class in our lab study. One option has the label “Display in a RadioBox” and the other has the label “Display in
a ListBox”. The analyst must decide the most suitable option according to a list of criteria that are related to the
instance of Question. In our lab study we have used two usability attributes as criteria: Brevity and Information
Density. Brevity aims to reduce the cognitive effort of the user, for example, the amount of mouse movements
and pressed keys. With regard to Information Density, this attribute aims to reduce the amount of information
that the system displays in an interface. Both, Brevity and Information Density are instances of class Criterion.
Moreover, these two criteria are related to the same sub-characteristic (Understandability), represented in the
transformation model with the class Factor. Options are evaluated against criteria by means of class
Assessment. This class is instantiated to 4 objects:

• The object that relates Radiobox with Brevity has a “strongly support” value.

• The object that relates Radiobox with Information Density has a “strongly denies” value.

• The object that relates Listbox with Brevity has a “strongly denies” value.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 102/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• The object that relates Listbox with Information Density has a “strongly support” value.

The reason why each relationship between criteria and options has a specific value is explained in the objects
of class Argument. The reason for each value in our lab study is respectively:

• A RadioBox improves Brevity because the end-user can select the most suitable option with a single
click.

• A RadioBox decreases Information Density because the system displays all the possible values in the
screen, even when the input element is not obligatory.

• A ListBox decreases Brevity because the end-user has to click on the list to display all the items, use
the scroll to select one item, and other click to select a specific item.

• A ListBox improves Information Density since the items of the list are only displayed when the user
click on the widget.

DESIGN SPACE

From Abstract

to Concrete

QUESTION

What

concrete

graphical...

OPTION

Display in a

Radiobox

Display in a

Listbox

Brevity

Information

Density

CRITERION
FACTOR

Understandab

ility

Strongly

support

Strongly

denies

Strongly

denies

Strongly

support

Text1

Text2

Text3

Text4

ASSESSMENT

ARGUMENT

Figure44. Objects of QOC package in our lab study

9.7.2. Package Transformation

This package contains the classes that represent the rules to perform the transformation between two models,.
Figure45 shows the objects used in the lab study and the relationships among them graphically. Each box
represents an object, and the type of each object is labelled in capital letters. Next we are going to explain the
meaning of each object in detail.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 103/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Transformations are done maximizing and minimizing quality criteria through class Runtime Configuration. In
our lab study we have two instances of Runtime Configuration. One instance has the name “Desktop” since
aims to optimize the interface for a desktop application. For desktop applications, end-users want to maximize
Brevity and minimize Information Density, because, usually, desktop applications do not suffer from space
problems in their interfaces. The other instance of Runtime Configuration has the name “PDA” since it has the
target of optimizing the interface for a PDA. In this case, end-users want to maximize the Information Density
and minimize Brevity, since the screen in a PDA is very narrow.

With regard to class TransformationModel, it stores the source and target models. In our lab study, the attribute
sourceModelType has the value Abstract Model and the targetModelType has the value Concrete Model. The
source and target context is the same. The object of TransformationModel is related to an object of
TransformationUnit, which groups the transformation rules needed to perform the transformation between the
source and target models. In our lab study we have three objects of TransformationUnit:

• A TransformationUnit that gathers all the others TransformationUnits and establishes the order in which
they must be triggered. The attribute id has the value 1, name has the value ContainerGraphical, and
orderAmongUnits has the value sequential since subTransformationUnits are triggered sequentially.
This object is not related to questions or options, since it is not related to transformation rules triggered
with a choice order and its subTransformationUnits are triggered in a sequential order.

• A subTransformationUnit of the object with id 1 that gathers transformation rules triggered in a
sequential order. These transformations are triggered in sequential order independently of questions or
options, therefore, this object is not related to instances of Question or Option. The attribute id has the
value 2, name has the value ContainerGraphical_SequentialTransformations, and orderAmongRules
has the value sequential.

• A subTransformationUnit of the object with id 1 that gathers transformation rules one of which will be
triggered (choice order). This object is related to the instance of the class Question defined in the
package QOC (“How to display input elements with a limited number of valid entries?”). The attribute id
has the value 3, name has the value ContainerGraphical_ChoiceTransformations, and
orderAmongRules has the value choice.

The rules that specify how the transformation is performed are stored in instances of the class
TransformationRule. All these transformation rules has the same source and target context, therefore, they are
related to the same instance of the class ContextModel. Moreover, these rules use instances of the class
MetamodelElements to build source and target elements of the transformation. Firstly, we are going to describe
transformation rules related to the TransformationUnit with id 2 (transformations triggered in a sequential
order).

• An instance of the class TransformationRule to transform instances of AuiClass into instances of
CuiClass. The attribute id has the value 1 and name has the value AuiModel2CuiModel.

• An instance of the class TransformationRule to transform instances of AuiInteractionUnit into instances
of CuiInteractionUnit. The attribute id has the value 2 and name has the value
AuiInteractionUnit2CuiInteractionUnit.

• An instance of the class TransformationRule to transform instances of AuiObject into instances of
CuiOject. The attribute id has the value 3 and name has the value AuiObject2CuiObject.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 104/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• An instance of the class TransformationRule to transform instances of AuiContainer into instances of
CuiContainer. The attribute id has the value 4 and name has the value
AuiContainer2CuiContainerGraphical.

• An instance of the class TransformationRule to transform instances of AuiInteractor into instances of
CuiInteractor. The attribute id has the value 5 and name has the value AuiInteractor2CuiInteractor.

• An instance of the class TransformationRule to transform instances of AuiRelationship into instances of
CuiRelationship. The attribute id has the value 6 and name has the value
AuiRelationship2CuiRelationship.

• An instance of the class TransformationRule to transform instances of DataInteractor into instances of
GraphicalInteractor. The attribute id has the value 7 and name has the value
DataInteractor2GrInteractor.

• An instance of the class TransformationRule to transform instances of Input into instances of TextField.
The attribute id has the value 8 and name has the value Input2TextField.

Secondly, we define the transformation rules related to the TransformationUnit with id 3 (transformation rules
triggered with a choice order). In this group we have only two rules, one to transform instances of Selection into
instances of Radiobox and other to transform instances of Selection into instances of Listbox. The decision
about which transformation rule must be selected depends on the criterion that must be maximized and
minimized with regard to the instances of the class RuntimeConfiguration. If the system will be used in a
Desktop application, then we want to maximize Brevity, and according to the instances of the class
Assessment, the best option is to generate a Radiobox. On the contrary, if we are developing a system for a
PDA, we want to maximize Information Density, and according to the instances of the class Assessment, the
best option is to generate a Listbox. The description of the two instances of TransformationRule is the following:

• An instance of the class TransformationRule to transform instances of Selection into instances of
Radiobox. The attribute id has the value 9 and name has the value Selection2Radiobox.

• An instance of the class TransformationRule to transform instances of Selection into instances of
Listbox. The attribute id has the value 10 and name has the value Selection2Listbox.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 105/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 45. Objects of Transformation package in our lab study

Each one of the instances of TransformationRule can be represented in ATL or graphs without distinction. In
our lab study we have selected the ATL notation, as we show next:

module ContainerGraphical;
create OUT : Concrete from IN : Abstract;

rule AuiModel2CuiModel{
 from
 a:Abstract!AuiModel
 to

M
A

X

M
IN

M
A

X

M
IN

S
O

U
R

C
E

T
A

R
G

E
T

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 106/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

 c:Concrete!CuiModel (auiInteractionUnit1 <- a.auiInteractionUnit1)
}
rule AuiInteractionUnit2CuiInteractionUnit{
 from
 a:Abstract!AuiInteractionUnit
 to
 c:Concrete!CuiInteractionUnit (title <- a.title,
 auiInteractionUnit2 <- a.auiInteractionUnit2,
 auiObject1 <- a.auiObject1)
}
rule AuiObject2CuiObject{
 from
 a: Abstract!AuiObject
 to
 c:Concrete!CuiObject (id <- a.id, label <- a.label, longLabel <- a.longLabel
 , help <- a.help, shortLabel <- a.shortLabel, contextCondition <- a.contextCondition)

}
rule AuiContainer2CuiContainerGraphical{
 from
 a:Abstract!AuiContainer

 to
 c:Concrete!CuiContainer (isSplittable <- a.isSplittable,
 auiContainer2 <- a.auiContainer2),
 g:Concrete!GraphicalContainer ()
}
rule AuiInteractor2CuiInteractor{
 from
 ait:Abstract!AuiInteractor
 to
 cit:Concrete!CuiInteractor ()
}
rule AuiRelationship2CuiRelationship{
 from
 ar: Abstract!AuiRelationship
 to
 cr: Concrete!CuiRelationship (auiInteractor1 <- ar.auiInteractor1,
 auiContainer1 <- ar.auiContainer1)
}
rule DataInteractor2GrInteractor {
 from
 a: Abstract!DataInteractor
 to
 c:Concrete!GraphicalInteractor(),
 g:Concrete!SimpleGrInteractor()

}
rule Selection2Radiobox{
 from
 a:Abstract!Selection
 to
 c:Concrete!RadioBox()

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 107/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

}
rule Selection2Listbox{
 from
 a:Abstract!Selection
 to
 c:Concrete!ListBox()

}
rule Input2TextField {
 from
 a:Abstract!Input
 to
 c:Concrete!TextField(type <- 'text')

9.8. Analysis of the transformation meta-model agai nst the taxonomy of model
transformations proposed by Mens et al.

Table 1 presents a summary of the taxonomy of model transformations proposed by Mens et al.
[MCG04]. They propose a set of questions (left column of Table 1) and a number of objective criteria
(right column of Table 1) to be taken into consideration to provide a concrete answer to the question.

Next, each criterion is briefly explained according to the definitions given in [MCG04] and the proposed
UsiXML Transformation meta-model is analyzed against the criterion.

Table 1. Summary of the taxonomy of model transformations proposed by Mens et al. [MCG04]

Question Criteria

What needs to be
transformed into
what?

Program and model transformation

Endogenous versus exogenous transformations

Horizontal versus vertical transformations

Technological space

What are the
important
characteristics of a
model
transformation?

Level of automation

Complexity of the transformation

Preservation

What are the
success criteria for a
transformation
language or tool?

Ability to create/read/update/delete transformations (CRUD)

Ability to suggest when to apply transformations

Ability to customize or reuse transformations

Ability to guarantee correctness of the transformations

Ability to deal with incomplete or inconsistent models

Ability to group, compose or decompose transformations

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 108/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Ability to test, validate, and verify transformations

Ability to specify generic and higher-order transformations

Ability to specify bidirectional transformations

Support for traceability and change propagation

What are the quality
requirements for a
transformation
language or tool?

Usability and usefulness

Verbosity versus conciseness

Scalability

Mathematical properties

Acceptability by user community

Standardization

Which mechanisms
can be used for
model
transformation?

Functional programming

Logic programming

Graph transformation

• Program and model transformation: our transformation meta-model supports model transformations.
According to [MCG04], model transformations encompass program transformations. Hence, our
transformation meta-model also supports program transformations, for instance a model-to-code
transformation. However, we have not tested yet this kind of transformations.

• Endogenous versus exogenous transformations: endogenous transformations are transformations
between models expressed in the same language. Exogenous transformations are transformations
between models expressed using different languages. Our transformation meta-model supports both,
endogenous and exogenous transformations. Reflection and translation are endogenous. Abstraction
and reification are exogenous.

• Horizontal versus vertical transformations: a horizontal transformation is a transformation where the
source and target models reside at the same abstraction level. In a vertical transformation, the source
and target models reside at different abstraction levels. Our transformation meta-model supports both,
horizontal and vertical transformations. Reflection and translation are horizontal. Abstraction and
reification are vertical.

• Technological space: a distinction is made on whether the source and target models belong to one and
the same or to different technological spaces. In our transformation meta-model, the concept of
technological space can be related to the concept of context of use. Hence, we support transformations
between models of the same or different technological spaces. Reflection, abstraction, and reification
are transformations in which the technological space is not changed. Translation is a transformation
that adapts a model from one technological space to another.

• Level of automation: there are transformations that can be automated and transformations that need to
be performed manually. Our transformation meta-model allows to define core transformation rules

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 109/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

which are not executable per se, but each core transformation rule must have at least one rule
representation which is executable, for instance using ATL and/or graphs.

• Complexity of the transformation: our transformation meta-model allows to define from small
transformations such as reflections, to heavy-duty transformations such as model-to-code generators.

• Preservation: each transformation preserves certain aspects of the source model in the transformed
target models. We need to perform a deeper analysis of this criterion in order to identify the aspects
that should be preserved in the different types of transformations. Preservation is not currently
supported.

• Ability to create/read/update/delete transformations (CRUD): this ability is supported in the
transformation meta-model.

• Ability to suggest when to apply transformations: our transformation meta-model supports this ability
relating transformation rules or transformation units to option designs that can be analyzed against
different criteria in order to select the one that will be executed.

• Ability to customize or reuse transformations: our transformation meta-model supports the reuse of
transformation rules and transformation units.

• Ability to guarantee correctness of the transformations: transformations can be syntactically correct:
given a well-formed source model, a transformation guarantee the production of a well-formed target
model. Transformations can also be semantically correct: the target model has the expected semantic
properties. Currently, our transformation meta-model does not support this ability.

• Ability to deal with incomplete or inconsistent models: mechanisms for inconsistency management
should be provided in order to deal with ambiguous, incomplete or inconsistent models. Currently, our
transformation meta-model does not support this ability.

• Ability to group, compose, and decompose transformations: in our meta-model, transformation models
are aggregations of transformation units which, in turn, can aggregate other transformation units and
transformation rules. We also provide mechanisms to specify the order in which sub-transformation
units and transformation rules must be applied.

• Ability to test, validate, and verify transformations: currently, our transformation meta-model does not
support this ability.

• Ability to specify generic and higher-order transformations: if it is possible to represent transformations
as models, it is possible to apply transformations to these models, thus achieving a notion of higher-
order transformations. Since we are providing a meta-model for transformations, transformations will be
specified as models, and hence, it will be possible to apply transformations to transformation models.

• Ability to specify bidirectional transformations: bidirectional transformations can be used in two
directions: to transform the source model(s) into target model(s), and the inverse transformation to
transform the target model(s) into source model(s). Our transformation meta-model does not give
support to bidirectional transformations.

• Support for traceability and change propagation: to support traceability, the transformation language or
tool needs to provide mechanisms to maintain an explicit link between the source and target models of
a model transformation. To support change propagation, the transformation language or tool may have

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 110/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

an incremental update mechanism and a consistency checking mechanism. Currently, our
transformation meta-model does not support this ability. However, a mapping meta-model will be
provided to support traceability.

• Usability and usefulness: the language or tool should be useful, which means it has to serve a practical
purpose. On the other hand, it has to be usable too, which means that it should be intuitive and efficient
to use. These properties have not been tested yet.

• Verbosity versus conciseness: conciseness means that the transformation language should have as
few syntactic constructs as possible. From a practical point of view, however, it often requires more
work to specify complex transformations. Hence, the language should be more verbose. We can
considerer that our transformation meta-model will lead to verbose transformation models since
transformations rules can be expressed using different rule representations.

• Scalability: the language or tool should be able to cope with large and complex transformations or
transformations of large and complex software models. The aim of our transformation meta-model is to
deal with transformation of complex interactive systems.

• Mathematical properties: if the transformation language or tool has a mathematical underpinning, it
may be possible, under certain circumstances, to prove theoretical properties of the transformation
such as termination, soundness, completeness (syntactic and semantic), correctness, etc. Our
transformation meta-model does not support this ability.

• Acceptability by user community: the transformation meta-model have not been tested by the user
community yet.

• Standardization: the transformation meta-model, as well as other meta-models of the UsiXML project
will be subject of standardization efforts.

• Regarding the last 3 criteria, functional programming, logic programming, and graph transformation, we
can say that the transformation meta-model allows a transformation rule to have different rule
representations. Right now we have considered ATL and graphs for the rule representations. However,
other representations (functional or logical) could also be added.

10. WORKFLOW META-MODEL

10.1. Overview

Figure 46 shows the Workflow meta-model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 111/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 46. Workflow meta-model (based on BPMN [OMG10]) overview

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 112/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

10.2. Summary

The UsiXML workflow model describes the flow of tasks and information that are passed from one worker to
another, according to a set of procedural rules. This model is decomposed into processes that are in turn
refined into tasks. Tasks are related to produced/consumed resources and to job definitions of the organization.
As such, the UsiXML workflow model has four aspects that are already supported by a set of UsiXML models:

• Functional aspect describes the interactive tasks as viewed by the end user interacting with the system.
This aspect is supported by the task model (Section 4);

• Behavior aspect describes logical and temporal relationships between tasks. This aspect is also
supported by the task model;

• Organizational aspect describes a decomposition of the organization structure into organizational units
(e.g., a service) that are responsible for defining the jobs and their responsibilities. This aspect is
supported by the organization model (Section X);

• Informational aspect describes the classes of objects manipulated by a user while interacting with a
system. This aspect is supported by the domain model (Section 6);

The UsiXML workflow model links the task model, the domain model, and the organization model by matching
the elements of these models to each other. The workflow model defines the relationships between tasks (e.g.
sequence of tasks), the relationships between tasks and domains (e.g. one task produces one data) and the
relationships between tasks and organizations (e.g. one task is performed by one organization). Note that, the
UsiXML workflow model will not replace the task model because the task model describes, opposed to
workflow models, the hierarchical logical structures of one task (the root) and the relationships between its sub-
tasks. However, the workflow model describes the relationships between the root tasks of the User Interface.
Another note is that, in the current version of the UsiXML, the mapping model describes a set of pre-defined
relationships that allows the matching of elements from the UsiXML models (Section X). For example, the
relationship Manipulate matches a task to a domain concept. The UsiXML mapping model does not link only
the elements of the task model, the domain model, and the organization model. It defines also the relationships
between the other UsiXML models. For example: the relationship Is Reified By matches the abstract user
interface model to concrete user interface model. Thus, the workflow model is a part of the mapping model.
But, the UsiXML workflow model provides a more interesting graph view of the flow of tasks, the flow of data
and the involved organization. For this reason, the UsiXML workflow model needs to be based on a sound
model, which helps to provide an understandable representation of the different workflow aspects.

The UsiXML workflow meta-model is based on the BPMN (Business Process Modeling Notation) meta-model
[OMG10]. Indeed, the BPMN is an OMG standard model for workflow description. This standard defines a
common graphical notation to describe workflow aspects. It separates the business information from technical
information and provides a correspondence to an execution model. This standard is close to UML class
diagram. The BPMN is associated with a specific graphical notation.

Next, we detail the entries for building this model and the context in which this model is useful:

• Entry : Task, Organization, and Domain models are inputs for specifying a Workflow model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 113/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

• Context : this model is useful to represent business processes of an organization. Processes are
composed of a sequence of tasks. Each task has a responsible. For each task, its inputs and outputs
are identified.

10.3. Modeling through the Eclipse Plug-in

Not applicable to this kind of meta-model.

10.4. Classes of the Workflow Meta-model

Figure 46 shows the UsiXML workflow meta-model that is based on the BPMN meta-model. Note that the
definition of these classes is from the OMG specification [OMG10]. These classes are explained next:

� Activity: An Activity represents the work that is performed in a workflow. It can be a Task or a sub-process.

o Attributes:

• loopCharacteristics (boolean): identifies whether this Activity is intended for the purposes of

compensation

• IsForCompensation (boolean): indicates if the Activity may be performed once or may be repeated.

� Artifact: represents the graphical element that provides additional information about the Process or elements

within the Process. An artefact can be a DataObject, a Group, a TexteAnnotation, or an Association.

o Attributes:

No specific attribute

� Association: An Association is used to link an artefact with a flow object.

o Attributes:

Direction (AssociationDirection): Indicates whether an association is navigable or not.

� AssociationDirection: Association Direction kind is an enumeration type of the direction of the

Associations. Association Direction kind is an enumeration of the following values:

• None

• One

• Both

� CompensationAssociation: Compensation Association occurs outside the normal flow of the Process

and is based upon a Compensation Event that is triggered through a failure.

o Attributes:

No specific attribute

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 114/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� CompensationEvent: indicates that compensation will be lunched. If an Activity is identified, and it was

successfully completed, then that Activity will be compensated.

o Attributes:

No specific attribute

� ConditionEvent: represents an event that is triggered when a condition is satisfied.

o Attributes:

No specific attribute

� ConditionFlow: represents a Sequence Flow with a condition that is evaluated at runtime to determine

whether or not the Sequence Flow will be used

o Attributes:

No specific attribute

� ConnectingObject: is a relationship that relates two elements or sets of elements workflow elements. A

connectingObject can be Connecting flow or an association.

o Attributes:

No specific attribute

� DataBasedGateway: represents a branching point where Alternatives are based on the process data.

o Attributes:

No specific attribute

� DataObject: a Data Object provides information about what Activities manipulated and/or what they

produce.

o Attributes:

• name (String) : The name of the data object

� DefaultFlow: expresses the default branch to be chosen if all the conditions evaluate to false. This flow is
used with the Data-Based Exclusive Gateways or Inclusive Gateways.

o Attributes:

No specific attribute

� ErrorEvent: indicates that a generated Error.

o Attributes:

No specific attribute

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 115/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� Event: indicates that signals that a situation has occurred and for which a response is necessary.

o Attributes:

• name (String): The name of the event

• EventType (EventTypes) : The type of the event

� EventBasedGateway: represents a branching point where Alternatives are based on an Event that occurs
at that point in the Process (e.g. the receipt of a Message).

o Attributes:

No specific attribute

� EventTypes: is an enumeration type that specifies the kind of events. There are three types of Events, based

on when they affect the flow:

• Start Event indicates where a Process will start

• Intermediate Events occur between a Start Event and an End Event. They will affect the flow of the

Process, but will not start or (directly) terminate the Process

• End Event indicates where a Process will end

� ExceptionFlow: expresses that the flow deviates from the normal flow. For example, A error event, can

initiate exception flow. After triggering at least one activity, his exception flow may lead to a stop event or may
rejoin the normal flow.

o Attributes:

No specific attribute

� ExclusiveGateway: represents alternative paths within a process where only one path can be executed
(XOR-split).

o Attributes:

No specific attribute

� FlowConnecting: represents a directional link between the flow objects. This class represents an
abstraction of two elements (Sequences, Messages).

o Attributes:

No specific attribute

� FlowObject: represents a directional link between elements in a Process. This class is an abstraction of

three core elements (Events, Activities, and Gateways).

o Attributes:

No specific attribute

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 116/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� Fork: fork refers the dividing of a path into two or more parallel paths (AND-Split). It expresses that activities

can be performed concurrently, rather than sequentially.

o Attributes:

No specific attribute

� Gateway: A Gateway is used to control the divergence and convergence of Sequence Flows in a workflow.

o Attributes:

• name (String) : The name of the gateway.

� GraphicalElement: represents the graphical element that is used in the workflow model to describe a

process.

o Attributes:

No specific attribute

� Group: A Group is a grouping of flow objects that are within the same Category. This type of grouping does

not affect the Sequence Flows within the Group.

o Attributes:

No specific attribute

� InclusiveGateway: represents alternative paths within a Process where one or more paths may execute.

Unlike the Exclusive Gateway, all condition expressions are evaluated. The true evaluation of one condition
expression does not exclude the evaluation of other condition expressions. All Sequence Flow with a true
evaluation will be traversed by a Token.

o Attributes:

No specific attribute

� Join: join refers to the combining of two or more parallel paths into one path (AND-Join or synchronization).

o Attributes:

No specific attribute

� Lane: A Lane is a sub-partition within a Pool. Lanes are used to organize and categorize Activities.

o Attributes:

No specific attribute

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 117/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� MessageEvent: A Message arrives from a Participant (pool).

o Attributes:

No specific attribute

� MessageFlow: A Message Flow is used to show the flow of Messages between two Participants (Pools).

o Attributes:

• name (String): The name of the Message Flow.

• Message (String): The message of the Message Flow.

� NoneEvent: expresses an event that does not have a defined trigger.

o Attributes:

No specific attribute

� NormalFlow: Normal flow refers to paths of Sequence Flow that originates from a Start Event and continues

through activities via alternative and parallel paths until it ends at an End Event

o Attributes:

No specific attribute

� ParallelGateway: A Parallel Gateway is used to show the joining of multiple Sequence Flows.

o Attributes:

No specific attribute

� Pool: A Pool is the graphical representation of a Participant (user of the User Interface).

o Attributes:

• role (String) : The role of the participant.

� Process: Contains Flow objects (Activities, Events, Gateways, and Sequence Flow) that adhere to a finite
execution of the process.

o Attributes:

• isClosed (Boolean): specifies whether interactions, such as sending and receiving Messages and

Events, not modeled in the Process can occur when the Process is executed or performed.

• IsExecuble (Boolean): specifies whether the Process is executable.

� Sequence Flow: A Sequence Flow is used to show the order that Activities will be performed in a workflow

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 118/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

o Attributes:

• name (String) : The name of the Sequence Flow.

• label (String) : The label of the Sequence Flow.

� SignalEvent: represents a signal arrives that has been broadcast from another Process. Note that the Signal

is not a Message, which has a specific target for the Message.

o Attributes:

No specific attribute

� Sub-Process: A Sub-Process is a compound activity that is included within a Process.

o Attributes:

No specific attribute

� Swimlane: Swimlane describes the organizational aspect of a workflow. This represents an abstraction of two

core elements (Pool, and Lines).

o Attributes:

No specific attribute

� Task: A Task is an Activity that is included within a Process. It models the UsiXML root tasks of the User

Interface.

o Attributes:

• TaskType (TaskTypes) : The type of the task (Section 5.2)

� TerminateEvent: indicates that all Activities in the Process should be immediately ended. This includes all

instances of multi-instances. The Process is ended without compensation.

o Attributes:

No specific attribute

� TextAnnotation: Text Annotations are a mechanism for a modeler to provide additional text information for

the reader of a workflow model.

o Attributes:

No specific attribute

� TimeEvent: A specific time-date or a specific cycle (e.g., every Friday at 9am) can be set.

o Attributes:

No specific attribute

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 119/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� UncontrolledFlow: Uncontrolled flow refers to flow that is not affected by any conditions or does not pass
through a Gateway.

o Attributes:

No specific attribute

� WorkflowModel: Workflow model describes the tasks and information that are passed from one worker to

another, according. A workflow model is made up of WorkflowObjects.

o Attributes

• WorkflowName (String): the name of the workflow model

• description (String): the textual description of the workflow model.

� WorkflowObject: A workflow object is a constituent of a workflow model. This class represents an abstract

generalization class that is specialized in the meta-model.

o Attributes:

No specific attribute

10.5. How to build a Workflow Model

Next, the steps to be followed to create a Workflow Model are described:

1. Define a WorkflowModel.

2. Define Processes in the WorkflowModel. For each Process:

a. Define Pools (a pool correspond to a role that participates in the Process). Pools could be
decomposed in Lanes.

b. Define the Activities (Tasks) of the Process and place them in the correct Pool or Lane.

c. Define the Events of the Process.

d. Define the SequenceFlow between Activities and Events of the Process. Gateways can be
used to specify the correct sequence of the Process.

e. Define Artifacts (DataObjects, Groups, TextAnnotations) of the Process.

f. Define Associations between the created Artifacts and the Event, Activity or Gateway that uses
or produces the Artifact.

10.6. Example

Figure 47 gives an example of a UsiXML workflow model expressed using BPMN. In this workflow model, the
rounded-corner rectangles represent the root tasks of the User Interface (e.g. Create a waypoint, Transmit
waypoint). The circles represent the events that are triggered by tasks, or the event that trigger the tasks. The

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 120/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

diamond shapes represent the gateways (e.g. data based gateway-Xor) that control the divergence and
convergence of the workflow objects. The solid lines with solid arrowheads represent the sequence flows that
show the order (the sequence) of the tasks’ performance. In turn, the dotted lines with line arrowheads
represent the associations relationship that are used to associate artifact (data, text, and other) with flow
objects; the graphical container represents the pool that is used to express a user of the User Interface. Finally,
the folded-corner rectangle represents the data object (e.g. waypoint) that model the information aspect of the
workflow.

Figure 47. Workflow model example

11. QUALITY META-MODEL

The Quality Meta-Model aims to model the different quality criteria used in the UI development process. This
section provides an overview of the meta-model. A brief introduction to quality is then given in the summary
before describing the quality perspectives and the meta-model itself.

11.1. Overview

Figure 48 shows the Quality Meta-Model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 121/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 48. Workflow model example

11.2. Summary

Different quality models have been proposed in the literature. McCall’s hierarchical quality model [12] focuses
on product quality, organizing it in two views: the external view for the client and the internal view for
developers. Boehm's model [13] adds a third level named primitive characteristics to deal with metrics and
evaluation. The ISO/IEC 9126 standard series divides metrics into internal, external and quality-in-use. This
quality-in-use, also called usability or perceived quality, has been the main focus of the HCI community.
Usability has evolved through standards such as the ISO 9241-110 [9], ISO/IEC 9126-1 [10] and ISO/IEC
25010 [11] among others. As a synthesis, Seffah encompasses most of the usability works in QUIM [14].
However Software Engineering quality models are more than usability. They deal with other important aspects
of general quality in the whole System Development Life Cycle. ISO standards deal also with these aspects. To

cover them, different quality Meta-Models have been proposed such as [18] for data quality, [19] as a quality
Meta-Model for MDE, or [20] that defines a five step process for building product-specific quality models.
However, whilst several quality models exist in Software Engineering, most of them are oriented at evaluating

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 122/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

source code or final products and not models or modeling activities. Other models don't deal with evaluation
aspects (evaluation methods, results...) or they just miss the different quality perspectives.

The Quality Meta-model has been designed to overcome these problems. Moreover, it respects the following
four basic principles:

1. The Quality Meta-model must be generic and domain independent (not limited to HCI).

2. The Quality Meta-model must be independent of the way in which the measurement is done.

3. The Quality Meta-model must be independent of the type of Criteria which compose the Meta-
model.

4. The Quality Meta-model must be independent of the way in which argumentation is done (not
limited to the QOC Meta-model).

11.3. Modeling through the Eclipse Plug-in

Not applicable to this kind of meta-model.

11.4. Classes of the Quality Meta-model

o QualityModel: The QualityModel meta-class defines the representation of a Quality

Model.

� Attributes:
- name (String) : Specifies the name of the Quality Model.

- standard (Boolean) : Specifies whether the current instance of the Quality
Meta-Model represents a quality standard or not. If true, the quality model

represents a standard such as ISO 9241-110. This means that the model is

composed only of instances of QualityModel, Criteria, Attribute and

CriterionAssociation meta-classes.

o Criterion: The Criterion meta-class describes how the Quality Meta-Model is composed.

A quality model is composed of criteria, that can be recursively decomposed into

subcriteria as well through the CriterionAssociation class. This representation allows

to instantiate different standards from different communities such as the Software

Engineering community (for instance to evaluate the quality of the source code) or the

HCI community (for example, instantiating the four layers of QUIM[17].)

� Attributes:
- name (String) : Defines the name of the Criterion.

� Example: Usability for the task.

- problem (String) : Defines the problem the Criterion is dealing with.

- context (String) : Specifies the context in which the Criterion applies.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 123/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

o Attribute: Definition

� Attributes:
- name (String) : It allows to specify one or more attributes for a Criterion.

- cardinality (Unsigned Int) : Defines the cardinality of the attribute. By default,
the cardinality is one.

- type (String) : Defines the type of the attribute.

- value (String) : Holds the value of the attribute.

o CriterionAssociation: The CriterionAssociation is an abstract element that defines the

relationship of the Criterion accordingly to the definition of the Quality Model.

� Attributes:
- type (AssociationType) : Defines the type of the association. This allows to
define how different Criteria are related.

� Possible values: SupportedBy, UnsupportedBy, DiscriminatedBy. A Criterion

can support other criteria (for instance, in QUIM a factor at the Factor level is

supported by criteria from the Criteria level). It can be discriminated by other

Criterion, typically when two criteria are in conflict, or the relationship can be

unsupported when two Criteria are not in conflict but there is no support

between them.

o Recommendation: A Recommendation is a positive assessment that corresponds to one

or more criteria. For instance, the Recommendation says that good quality can be

achieved by maximizing the number of criteria that are satisfied by a given UI.

Different Metrics are used for the same Recommendation. A Recommendation can be

decomposed or rewritten in sub-recommendations through the isRewrittenBy

association.

� Attributes:
- name (String) : Defines the name of the Recommendation.

- description (String) : Explains the Recommendation.

- author (String) : Defines the name of the author of the Recommendation, to

keep trace of the different Recommendations each quality expert has done.

- weight (Integer) : Defines the current weight of a Recommendation. The weight

allows the quality expert to model how important a Recommendation is with

regard to others.

- weightDescription (String) : Explains how the weight is interpreted.

o RecommendationAssessmentMethod: This class represents the way in which the quality

expert or the system itself can determine if a Recommendation is accomplished or not.

A RecommendationAssessmentMethod is specialized in Metrics or Practices. It can be

subjective or objective.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 124/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

� Attributes:
- name (String) : Defines the name of the Metric or Practice to be used.

- description (String) : Explains the Metric or Practice, describing the formula

and its different elements in the case of a Metric, or what does the Practice

involve and how to know if it has been followed or not.

- subjective (Boolean) : Explains whether the measurement is subjective (true)

or objective (false). Note that even subjective evaluations can be measured

quantitatively (for instance by Metrics) or qualitatively (for instance by a

Practice). The attribute subjective makes explicit this distinction and allows

quality experts to cover both dimensions as depicted in the next figure:

o Metric: Express how to compute a numerical value for a given Artifact. Metrics are

associated to NumericalResults.

� Attributes:
- author (String) : The author of the metric.

- numericalExpression (String) : Defines the associated formula for the metric.

o Limits: Holds the desired values for a given metric.

� Attributes:
- lower (Double) : Defines the minimum value the metric is desired to achieve.

- upper (Double) : Defines the maximum value the metric is desired to achieve.

- interpretation (String) : Explains how to interpret ate the limit values.

o Practice: The Practice meta-class represents Practices, i.e., proven processes or

techniques that organizations or persons have found to be productive and useful to

ensure a good level of quality (Good Practices), or unproductive and unusable (Bad

Quantitative Qualitative

Subjective

Objective

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 125/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Practices). “Design patterns” are an example of the first one, whilst “Spaguetti code”

is an example of the second one.

� Attributes:
- practiceType (PracticeType) : Defines if the Practice is applicable to a Process or
a Product.

� Possible values: process, product.

- patternType (PatternType) : Defines if the Practice represents a Pattern or an
Antipattern.

� Possible values: pattern, antipattern.

o LocalResult: Holds the result of an AssessmentMethod.

� Attributes:
- value (Float) : In the case of Metrics, the value represents the result of the

computation of the numericalExpression of the Metric. In the case of a Practice,

the value attribute represents the percentage in which a Practice is satisfied.

o AssessmentMethod: This meta-class specifies how to compute Metrics and Practices

together. The global quality of a SUS is computed through AssessmentMethods.

� Attributes:
- name (String) : Defines the AssessmentMethod name.

- formula (Metric U Practice) : Defines how the different Metrics and Practices are

combined to computed the result.

o GlobalResult: This meta-class holds the global quality of a given SUS. The result is

computed using the Results obtained from Metrics and Practices according to the

specific AssessmentMethod.

� Attributes:

- interpretation (String) : Express how the result of the AssessmentMethod must

be interpreted.

- result (Float) : Holds the global quality value of a SUS according to an
AssessmentMethod.

- timestamp (Date): Information regarding when the quality result has been

computed.

- version (Float) : Current version of the SUS on which the quality value has
been computed.

o Transformation: The Transformation meta-class refers to a TransformationUnit from the

Transformation Meta-Model. This TransformationUnit will manage all the necessary

TransformationUnits (if more than one is required) and it will establish the order in

which they must be triggered accordingly to the Transformation Meta-Model. Please,

refer to the Transformation Meta-Model section for more information about

Transformation Units.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 126/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

o Artifact: The Artifact meta-class refers to any element of the Software Development Life

Cycle, such as code, classes of a model or the model itself. In this case, it is

represented by the Meta-ModelElement from the Transformation Meta-Model. Please,

refer to the Transformation Meta-Model section for more information about Meta-

ModelElements.

o ContextModel: As a same Quality Criterion can have different quality interpretations

regarding the context in which the interaction is taking place, the Quality Meta-Model

needs to know exactly what the context is and how it is defined. Linking the Context

Model to the Recommendation meta-class will allow to the quality experts to define

different Recommendations regarding the different contexts in which the interaction

can occur.

Figure 49 - Subset of the Quality Model of Ergonomic Criteria

11.5. Quality perspectives

The proposed Quality Meta-Model (figures 50 and 51) has been designed to cover the needs of both Software
Engineering and HCI. Quality can be expressed according to four different perspectives [1]:

• Expected Quality, or the quality the client needs. It is defined through the specification of the System
under study (SUS).

• Wished Quality is the degree of quality that the quality expert wants to achieve for the final version of
the SUS. It is derived from the Expected Quality.

• Achieved Quality is the quality obtained for a given implementation of the SUS. Ideally, it must satisfy
the Wished Quality.

• Perceived Quality is the perception of the results by the client, once the SUS has been delivered.

As stated in [2], these four perspectives can be related to the Systems Development Life Cycle along three
dimensions. These dimensions are the Specification (related to the Expected and Wished Qualities),
Implementation (related to the Achieved Quality) and Use (related to the Perceived Quality). The Quality Meta-
Model expresses four perspectives as shown in figure 51. Here, the System entity represents the product to
consider. SysEval represents an evaluation instance for that product. The four quality perspectives are four

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 127/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

different uses of the same quality model. The attribute standard means that, when true, the quality model is not
linked to System and SysEval as it only represents a quality standard such as ISO9241-110 or QUIM. In other
words, the quality of these standards is not defined in terms of a product. Some internal parts of the Quality
Meta-Model are not necessarily defined when the attribute standard is true.

Figure 50. Quality perspectives in the Quality Meta-Model

11.6. The Meta-Model

Figure 51 shows the Quality Meta-Model in detail. A quality model is composed of criteria, that can be
recursively decomposed into subcriteria through the meta-class CriterionAssociation. Different
recommendations can be specified for each Criterion. A Recommendation is a positive assessment that
characterizes Criteria. We can specify a weight for each Recommendation to define which of them are more
important than others for the considered system. This allows designers to adjust the global quality precisely.
Evaluations can be performed through AssessmentMethods that are specified by Metrics and/or Practices . In
the first case, the measure is given by a Result that can be comprised between some Limits when defined. In
the case of Practices, the Result represents if a practice has been followed with a value of 100% or not (0%).
The value of the Result can be any intermediary percentage as well. Note that a Practice can be either
a pattern or an anti-pattern, applied at the process level, or on a product. Metrics and Practices are directly
evaluated on Artifacts through Recommendations. An Artifact can be no matter what element of the Software
Development Life Cycle, such as code, classes of a model or the model itself. A Recommendation is a positive
assessment that corresponds to one or more criteria. For instance, the Recommendation says that good quality
can be achieved by maximizing the number of criteria that are satisfied by a given UI. Figure 51 shows how
different Metrics are used for the same Recommendation. A Recommendation can be decomposed or rewritten
in sub-recommendations through the isRewrittenBy association.

Figure 51. Subset of the Quality Model of Ergonomic Criteria

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 128/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Once a quality standard has been defined through Criteria, the Quality Meta-model can be reused with the
association relatedTo, and extended with several classes such as AssessmentMethods, Transformations or
Artifacts, to represent the four quality perspectives. For instance, Metrics can be defined in order to obtain
some desired values (Wished Quality). The importance of every Recommendation can be customized using
Weights. Then, evaluations of the current quality of the SUS can be performed. When a Result of an evaluation
does not satisfy the expectations of the quality expert, this is, the Achieved Quality does not satisfy the Wished
Quality (for instance, the value for a Metric is not within the desired Limits), the designer needs to increase the
quality. This can be done by setting a Transformation or a set of Transformations. These Transformations are
performed on the related Artifacts on which the Result has been previously calculated. Iterations can be done
until the desired values defined by the quality expert (Wished Quality) are reached. GlobalResult holds the
general quality of a SUS at a given moment. The difference between GlobalResults and
LocalResults is explained in the next section.

11.7. Objects, Methods and Results. Global Quality vs Local Quality

Figure 52 shows the different subsets of the Quality Meta-model regarding Global and Local quality levels. To
explain these levels, three vertical columns make explicit what Objects are being measured at the current
level, which is the element responsible of the measurement Method , and the quality level of the Result for
such object. We define these levels as follows:

• The Global Quality Level is the group of Objects, Methods and Results directly focused on the general
quality of a SUS.

• The Local Quality Level is the group of Objects, Methods and Results focused on the quality of a
given Criterion (and then, all the associated Recommendations).

The global quality of a SUS at a given moment according to a Quality Model is represented by the GlobalResult
metaclass, and it is directly computed following the formula described in an AssessmentMehtod. At the Local
Quality Level, the LocalResult meta-class represents partial contributions to the quality of the SUS. Criteria is
evaluated through Recommendations by RecommendationAssesmentMethods, each of them providing one
Result. All these results are pondered later at the Global Level. The importance of each Recommendation is
specified by Weights that can be used by the quality expert in the AssessmentMethod formula.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 129/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 52. Global and Local Quality levels

 Global level . The global quality of a SUS at a given moment according to a Quality Model
is represented by the GlobalResult meta-class, and it is directly computed following an
AssessmentMehtod.

 Local level . The LocalResult meta-class represents partial contributions to the quality of
the SUS. Criteria is evaluated through Recommendations by
RecommendationAssesmentMethods, each of them providing one Result. All these
results are pondered later at the Global Level.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 130/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

11.8. How to build a Quality Model

We describe the steps that the quality expert must follow to define a Quality Model. This description involves
identifying which classes of the Quality Meta-Model (Figure 52) are instantiated for each quality perspective.

1. Firstly, the quality expert must identify which quality standard is the more appropriate to fit the product
requirements, i.e., identify the relevant elements in the specification of the SUS that are related to
Quality. These requirements are the Expected Quality. Once the Expected Quality is extracted from the
SUS specification, the quality expert can select the best Quality Model for such requirements (for
instance an ISO standard, or any other standard such as a customized Quality Model developed by the
quality expert).

2. The Quality Meta-Model can be instantiated now to represent the desired Quality Model for the

particular product. For this, the Criterion meta-class is instantiated using the CriterionAssociation meta-
class to structure the Criteria conforming to the selected Quality Model. Once all the Criteria has been
defined, specifying attributes and linking Criteria through the CriterionAssociation meta-class, the
attribute standard from the Quality-Model meta-class is set to true. This indicates that only a standard
is represented at this point and no other classes are instantiated yet (such as metrics or
transformations). This allows the quality expert to re-use different quality models for other projects.

3. Thirdly, the quality expert can define the necessary recommendations based on different metrics and

practices, as well as AssessmentMethods to allow the system to perform automatic quality evaluations.
To do this, the quality expert will turn the standard attribute to false and will extend the Quality Model
with all the necessary Recommendations, Metrics, Practices and AssessmentMethods. This new
extended version of the Quality Model is able to compute the Achieved Quality through
AssessmentMethods. For those Practices that cannot be automatically evaluated such as Antipatterns,
the quality expert can express the necessary LogicalResults (for instance if an Antipattern is present or
not).

4. The next step involves the definition of Limits of values for the desired metrics in case the system has

some. This is done instantiating the Limits meta-class for each desired metric. This part of the Quality
Model holds the Wished Quality, i.e., the values the metrics must ideally reach.

5. The last step consists in defining the TransformationUnits and Meta-ModelElements to increase the

quality when the Achieved Quality is not enough.

Note that different iterations can be done in order to achieve the expected quality. For instance, if the result of a
metric is not achieved, i.e., the value of the NumericalResult is not between the limit values, a transformation
can be launched (if it has been specified) and performed on one or more Artifacts trying to achieve the desired
value. Then, the global quality can be recalculated again and compared to the previous quality before
transformation.

11.9. Example

The following example uses the QOC Meta-Model to evaluate the quality of an User Interface based on the
Quality Meta-Model. Please, refer to the QOC Meta-Model section for more information regarding this meta-
model. Figure 53 shows an instance of a QOC model in which designers propose several interactors to let the
user enter a date. The first interactor is composed of three text fields for the day, month and year respectively,
and a label indicating format notations. The second interactor is a calendar. We want to systematically evaluate

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 131/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

what option is the best in terms of quality. For this, the quality expert choose the ISO 9241-110 standard as the
Quality Model. Figure 54 shows an instantiation of this standard representing Ergonomic Criteria in HCI [9]. We
explain only the three criteria that are relevant for this example:

• Suitability for the task: A dialog is suitable for the task if the dialog helps the user to complete her/his
task in an effective and efficient manner.

• Self descriptiveness: A dialog is self descriptive if every single dialog step can immediately be
understood by the user based on the information displayed by the system.

• Error tolerance: A dialog is fault tolerant if a task can be completed without erroneous inputs with
minimal overhead for corrections by the human user.

Regarding the figure 53, the first interactor does satisfy the three criteria whilst the text fields interactor does
not. In this example, we are going to quantify this knowledge using the instance of the Quality Meta-Model
depicted in figure 51.

To quantify the quality of both alternatives, link both the QOC Model and the Quality Model. The comparison
between the two design options (Text fields versus calendar) is based on evaluation methods depicted in figure
52. The AssessmentMethod instances (left part of figure 54) use the following formulas for computation:

• Eval1 = Number of satisfied criteria - Number of unsatisfied criteria

• Eval2 = Number of satisfied criteria

The computation is based on the number of satisfied vs unsatisfied criteria in figure 56:

• Eval1(Calendar) = 3 - 0 = 3

• Eval1(Text fields) = 3 - 3 = 0

and for the second evaluation method:

• Eval2(Calendar) = 3

• Eval2(Text fields) = 0

which concludes that the calendar option has a better quality than the text fields, accordingly to:

• The three criteria from the ISO 9241-110.

• The evaluation formulas Eval1 and Eval2

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 132/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

 Figure 53. QOC Model example for choosing interactors

 Figure 54. Quality Model linked to the QOC Model

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 133/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 55 - Quality Model linked to the previous QOC Model (graphical version)

12. MAPPING META-MODEL

The Mapping meta-model is the mapping aimed at describing the relationships allowing relating the different
models.

12.1. Overview

Figure 59 shows the Quality Meta-Model.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 134/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Figure 59. Mapping model example

12.2. Modeling through the Eclipse Plug-in

Not applicable to this kind of meta-model.

12.3. Classes of the Quality Meta-model

� MappingModel: Is a model containing a serie of related mappings between models or elements of models. A

mapping model serves to gather a set of inter-model relationships that are semantically related.

� Source: Designates one or several source(s) of a relationship whose it is part of.

o Attributes:

- id (String) : Identification string of the Source.

� Target: Designates one or several target(s) of a relationship whose it is part of.

o Attributes:

- id (String) : Identification string of the Target.

� MappingDefinition: Is any type of relationship established between one or many source models and one or

many target models. A typical MappingDefinition is established between one source model and one target model, but
it can be easily imagined that such a relationship can start from one source model to many target models, but from
many source models to many target models. The mappings between the different models are of the types of the
subtypes of the class MappingDefinition. It is expected to come up with a catalog of canonical relationships
containing both the basic relationships and the one-to-many and many-to-many relationships expressed as a linear
combination of the basic ones. Examples of such relationships are: - a task model is achieved in a dialog model - a
task model is carried out by a user stereotype - a task model manipulates domain concepts - a task model is
rendered through a particular interaction object - ... A MappingDefinition is the superclass of all possible

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 135/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

relationships between models and elements of models. Consists of: one to many sources Consists of: one to many
targets Constraint: the source should not necessarily be different from the target.

o Attributes:

- id (String) : Identification string of the Source.

- name (String) : name of the MappingDefinition.

- mappingType (MappingType) : type of the mapping relationship.

� MappingType:

o Attributes:

- triggers: Indicates a connection between a method of the domain model and a UI individual component

(either at the abstract or at the concrete level).

- observes: Is a mapping between any UI component (at abstract or concrete level) and a domain attribute or

instantiated attribute (at run time). Observes enables to specify that a UI component observes a value from

the related domain concept.

- updates: Is a mapping between any UI component (at abstract or concrete level) and a domain attribute or

instantiated attribute (at run time). Updates enables to specify that a UI component provides a value for

the related domain concept.

- isReifiedBy: Is a model relationship involving a source model that is reified into a target model. This

relationship is the inverse of isAbstractedInto. Maps the elements of an abstract user interface onto

elements of a concrete user interface. In other words, this relationship specifies how any AbstractIU can be

reified by a ConcreteIU. Constraint: the level of abstraction should be immediately superior to the one of

the target model Constraint: the source model cannot be a model belonging to the Final User Interface.

- isAbstractedInto: Maps a concrete user interface element onto an abstract element.

- isExecutedIn: Indicates that a task is performed through one or several Abstract Compound IU and

Abstract Elementary IU.

- isTranslatedInto: Enables to provide a trace of the adaptation of one component in another. IsAdaptedInto

can be used while defining a transformation called translation.

- manipulates: Maps a task onto a domain concepts i.e., a class, an attribute, an operation or any

combination of these types. This relationship has an attribute 'centrality' which specifies the relative

importance of a domain concept to the execution of its corresponding task. This item is evaluate on a scale

of 1 to 5. 1 meaning that the concept is not central, 5 that is completely central (i.e., essential to the

execution of the task).

- hasContext: Relates any UI model or, in some cases, model elements to the context(s) for which it is

supposed to apply.

- isShapedFor: Allows to associate a plasticity domain to a CUI.

- isGraftedOn: A task is grafted on another one.

- isAllocatedTo: A task is assigned to a resource. There are some allocation relationships for this

assignment.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 136/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

- isDelegatedTo: A resource who is assigned to a task allocates it to another resource. Example: The

Chemist passed all of the work items allocated to him onto the Chemist Assistant.

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 137/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

REFERENCES

[A03]
Agrawal, A., "Graph Rewriting And Transformation (GReAT): A Solution For The Model Integrated
Computing (MIC) Bottleneck," ase, pp.364, 18th IEEE International Conference on Automated Software
Engineering (ASE'03), 2003

[Ca83]
Card, S.K., Moran, T.P., Newell, A.: The Psychology of Human-Computer Interaction. Lawrence Erlbaum
Associates (1983)

[Jou05]
Frédéric Jouault, Ivan Kurtev. Transforming Models with ATL, presented at MODELS, 2005., vol
3844/2006, pages 128-138

[KWB03]
Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model Driven Architecture:
Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[LMR09]
López-Jaquero, V., Montero, F., Real, F. Designing User Interface Adaptation Rules with T:XML. In
Proceedings of the 14th international Conference on intelligent User interfaces (Sanibel Island, USA,
February 08-11, 2009). IUI '09. ACM, New York, NY.

[LP07]
Xavier Lacaze and Philippe A. Palanque. DREAM & TEAM: A Tool and a Notation Supporting
Exploration of Options and Traceability of Choices for Safety Critical Interactive Systems. In Maria
Cecilia Calani Baranauskas, Philippe A. Palanque, Julio Abascal, and Simone Diniz Junqueira Barbosa,
editors, Human-Computer Interaction - INTERACT 2007, 11th IFIP TC 13 International Conference, Rio
de Janeiro, Brazil, September 10-14, 2007, Proceedings, Part II, volume 4662 of Lecture Notes in
Computer Science, pages 525–540. Springer-Verlag, Berlin, 2007.

[LPB+07]
Xavier Lacaze, Philippe Palanque, Eric Barboni, Rémi Bastide, and David Navarre. From DREAM to
Realitiy: Specificities of Interactive Systems Development with respect to Rationale Management. In
Allen H. Dutoit, Raymond McCall, Ivan Mistrik, and Barbara Paech, editors, Rationale Management in
Software Engineering, pages 155–172. Springer-Verlag, 2007.

[LVM+04]
Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López Jaquero, V. UsiXML: a Language
Supporting Multi-Path Development of User Interfaces, 9th IFIP Working Conf. on Engineering for
Human-Computer Interaction. EHCI-DSVIS’2004, Springer, 2005, pp. 200-220.

[MCG04]
Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. 04101 Discussion - A Taxonomy of Model
Transformations. In Jean Bézivin and Reiko Heckel, editors, Language Engineering for Model-Driven
Software Development, volume 04101 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2004.

[MYBM96]
Allan MacLean, Richard M. Young, Victoria M. E. Bellotti, and Thomas P. Moran. Questions, options, and
criteria: elements of design space analysis. pages 53–105, 1996.

[OMG08]
Object Management Group, (2007), Unified Modeling Language 2.0, in formal/2007-02-03, 2007.

[OMG09]
OMG, "Unified Modeling Language: Superstructure", version 2.2, February 2009. OMG Document
Number: formal/2009-02-02

[OMG10]
Object Management Group, (2010), Business Process Modeling Notation 2.0, in formal Document --
 dtc/10-06-04

[SCF05]

This document and the information it contains are property of Thales and confidential. They shall not be reproduced nor disclosed to any person without prior written consent of Thales.

WP Leader / Task Leader THALES INTERNAL DOCUMENT NUMBER PAGE
UCL / BIL 61 566 104/179/25 138/138

 Revision 2
Template UsiXML version 1.0 UsiXML Consortium 2013

Jean-Sebastien Sottet, Gaëlle Calvary, and Jean-Marie Favre. Towards Model-Driven Engineering of
Plastic User Interfaces. In Andreas Pleuß, Jan Van den Bergh, Heinrich Hußmann, and Stefan Sauer,
editors, MDDAUI '05, Model Driven Development of Advanced User Interfaces 2005, Proceedings of the
MoDELS'05 Workshop on Model Driven Development of Advanced User Interfaces, Montego Bay,
Jamaica, October 2, 2005, volume 159 of CEUR Workshop Proceedings. CEUR-WS.org, 2005.

[Seo06]
Hong-Seok Na, O-Hoon Choi, Jung-Eun Lim. A Metamodel-Based Approach for Extracting Ontological
Semantics from UML Models. WEB INFORMATION SYSTEMS – WISE 2006: 411-422, Volume
4255/2006.

[Sta08]
Adrian Stanciulescu. A Methodology for Developing Multimodal User Interfaces of Information Systems.
PhD thesis, Université catholique de Louvain, June 2008.

[T00]
Taentzer, G. 2000. AGG: A Tool Environment for Algebraic Graph Transformation. In Proc. of the Int.
Workshop on Applications of Graph Transformations with industrial Relevance. LNCS, vol. 1779.
Springer, London, 481-488.

[UsiXML07]
UCL, (2007), UsiXML V1.8 Reference Manual, February 2007.

