

WP Leader / Task Leader DOCUMENT NUMBER PAGE
UCL / UND 61 566 104/179/16-1 1/46

 1 REVISION
Template UsiXML version 1.0  UsiXML Consortium 2013

WORKPACKAGE 2: METHOD ENGINEERING

D2.1 V2

USIXML METHOD SPECIFICATION

Project acronym: UsiXML

Project full title: User interface eXtensible Mark-up Language

ITEA label n° 08026

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 2/46
 UsiXML Consortium 2013

DOCUMENT CONTROL

Deliverable N° : D2.1

Due Date : 10/2011

Delivery Date : 10/2011

Short Description : The task 2.1 will bridge the gap between the UI modelling perspective and software
development processes used by the technology providers. Relevant characteristics of these processes will be
extended to address µ7-compatible applications and merged into a unified software engineering method for
interactive applications

Lead Partner : UND

Contributors: UND, UJF, ICI, UPV
Made available to :

Rev Date Author Checked by Internal
Approval

Description

0.1 15/09/10 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Initial version

1.0 30/09/10 Final
deliverable V1.0
-
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

Vincent
Englebert,
UND.

 Reviewed after the Meeting with
Vincent Englebert

1.1 06/10/10 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Minor revision – Eric Céret,
Sophie Dupuy- Chessa, UJF

1.2 16/10/10 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Reviewed after the Task 2.1
Audio Meeting

1.3 01/02/11 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Reviewed after the general
assembly of UsiXML

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 3/46
 UsiXML Consortium 2013

1.4 03/02/2011 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Reviewed after the review of
Costin Pribeanu (ICI)

1.5 04/06/2011 Draft –
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 Reviewed after the review of
Nathalie Aquino (UPV)

2.0 30/09/2011 Final -
deliverable V2.0
Mohamed
Boukhebouze,
Philippe Thiran,
UND.

 New version of the UsiXML
method meta-model
(SPEM4UsiXML);
New section introducing the
enactment of the UsiXML
methods is added

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 4/46
 UsiXML Consortium 2013

CONTENTS

1. Executive Summary ... 6

2. Documents .. 6

2.1. Reference ... 6

3. INtroduction .. 6

4. SPEM4UsiXML Meta-model ... 11

4.1. Core package... 12

4.2. Method Content .. 12

4.3. Process Structure .. 15

4.4. Process Behaviour ... 16

4.5. Process With Methods... 17

4.6. Managed Content ... 18

4.7. Method Plug-in ... 18

5. UsiXML method enactement .. 18

6. Conclusion and future work ... 19

7. Reference .. 19

A. Appendix: Comparative Analysis of Meta-Models for Development Methods 21

A1. INtroduction ... 21

A2. Background .. 21

A3. SPEM 2.0 Meta-Model Specification .. 24

A3.1. Core package ... 25

A3.2. Method Content .. 26

A3.3. Process Structure ... 28

A3.4. Process Behaviour .. 29

A3.5. Process With Methods ... 30

A3.6. Managed Content .. 30

A3.7. Method Plug-in .. 30

A4. OPEN Meta-Model .. 31

A4.1. Producer and Endeavour .. 32

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 5/46
 UsiXML Consortium 2013

A4.2. Work Products ... 33

A4.3. Work Units .. 34

A4.4. Stages .. 35

A4.5. Languages .. 36

A5. ISO 24744 Meta-model .. 36

A5.1. Producer Kind and Producer ... 39

A5.2. Work Unit Kind and Work Unit ... 39

A5.3. Work Product Kind and Work Product .. 40

A6. Comparison between the Method Meta-Models .. 42

A7. Appendix References ... 44

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 6/46
 UsiXML Consortium 2013

1. EXECUTIVE SUMMARY

The task 2.1 of the UsiXML project aims to provide a unified software engineering method for
User Interface based on UsiXML language. This method describes the process to follow during a
User Interface design. The method needs to be compliant with a well-defined meta-model so that
we formally define the core elements of the UsiXML method. In this document, we propose a
SPEM based meta-model for UsiXML method description.

2. DOCUMENTS

2.1. Reference

D2.1 UsiXML

3. INTRODUCTION

UsiXML (USer Interface eXtensible Markup Language) is a User Interface Description Language
(UIDL) that uses Model-Driven Engineering (MDE) for specifying a User Interface (UI) at an
implementation-independent level [1]. The UI specifications are usually specified in different
models. Each UI level is described by a model(s). UsiXML is based on the Cameleon reference
framework [2]. This framework describes a UI in 4 main levels of abstraction: task & domain level,
abstract UI level, concrete UI and final UI (see Figure 1). On the basis of these 4 levels, UsiXML
proposes a set of models (e.g. task model, domain model, abstract user interface model, etc.).
Note that the complete set of the UsiXML models is provided in [3]. The MDE approach allows
developing the UsiXML UI by transforming progressively the UsiXML models to obtain
specifications that are detailed and precise enough to be rendered or transformed into code [4].
For this reason, the UsiXML development method is a transformation process based on the
Cameleon reference framework. Figure 1 illustrates the different types of transformations in the
Cameleon framework [5]:

� Reification is a transformation of a high-level model into a low-level model.
� Abstraction is a transformation that extracts a high level model from a set of low-level

models.
� Translation is a same level models transformation based on a context of use change.

In this work, the context of use is defined as a triple of the form (E, P, U) where E is a
possible or actual environments considered for a software system, P is a target
platform, U is a user category.

� Code generation is a process of transforming a concrete UI model into a source
code.

� Code reverse engineering is the inverse process of code generation.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 7/46
 UsiXML Consortium 2013

Figure 1. Different kinds of transformations steps of UsiXML [5]

According to Vanderdonckt et al. in [5], the different transformation types are instantiated by
development steps. These development steps may be combined to form development paths. A
development path is the process to follow for developing a user interface based on UsiXML.
Several types of development paths are identified:

� Forward engineering (or requirement derivation) is a composition of reifications and
code generation enabling a transformation of a high-level viewpoint into a lower level
viewpoint.

� Reverse engineering is a composition of abstractions and code reverse engineering
enabling a transformation of a low-level viewpoint into a higher-level viewpoint.

� Context of use adaptation is a composition of a translation with another type of
transformation enabling a viewpoint to be adapted in order to reflect a change in the
context of use of a UI.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 8/46
 UsiXML Consortium 2013

Figure 2. Transformation path, step and sub-step

Figure 2 represents an overview of the UsiXML method meta-model. This meta-model assumes
that development paths are composed of development steps. In turn, development steps are
instances of transformation types. Development steps are decomposed into nested development
sub-steps. A development sub-step realizes a basic goal assumed by the developer while
constructing a system. It may consist, for instance, to select concrete interaction objects, defining
navigation, etc. Development sub-steps may be realized by a transformation system (e.g. graph
transformation [4, 5]) based on transformation rules [5]. Note that, a development step can be
composed of nested development steps. In another word, a development step can be
represented as a tree-structure with a set of development sub-steps as leafs and a development
step as root.

According to the several types of development paths, three major elements of the UsiXML based
User Interface development method can be considered (see Figure 3):
- The work represents what must be done. It is defined in terms of development step and

development sub step.
- The product represents the artefact that must be manipulated by development step and

development sub step (i.e. created, used or changed). It can concern models and code. In
turn, a model can be a UsiXML model that is used/generated by a development step or a
sub-step model that is used/generated by a development sub-step.

- The producer represents the agent that has the responsibility to execute a work unit. It is
defined in terms of person, role, team, tool, etc.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 9/46
 UsiXML Consortium 2013

Figure 3. The Core elements of the UsiXML based User Interface method

Figure 4 shows an illustration of the forward engineering method. The detail of this method is fully
explained in [5]. The starting point of the forward engineering is a task and a domain model
(products). These models are then transformed (work) into an abstract UI (product) which is then
transformed (work) into a concrete UI model (product). Finally the code (product) is generated
(work). In order to achieve these transformations, a sequence of development steps (sequence of
reifications and code generation) are performed. Each development step may involve a set of
development sub-steps. For example, the first development step involves the development sub-
step: “Identification of Abstract UI structure”. This sub-step consists in the definition of groups of
abstract interaction (an element of the abstract user interface). Each group corresponds to a
group of tasks (in task model) tightly coupled together. To achieve its work, the sub-step can use
a sequence of rules. For example, the sub-step: “Identification of Abstract UI structure” uses the
sequence of two rules: R1 “For each leaf task of a task tree, create an Abstract Individual
Element”; and R2: “create an Abstract Container structure similar to the task decomposition
structure”. And so on, each development step takes as input a UsiXML model(s) and transforms it
(them) to another UsiXML model(s) by involving a set of development sub-steps, which in turn,
manipulate sub-steps models by using a set of rules. Note that, a development sub-step can use
templates of transformation instead of rules. For example, the step “generating the user interface
code” can use a template based approach [7] in order to generate the UI code. Another note is
that, each development step and development sub-step has a producer responsible of its
execution. For example, the first development step can have a human actor who verifies the
transformation done in this step. In turn, the sub-step: “Identification of Abstract UI structure” can
have a transformation tool that can execute the rules sequence of this sub-step.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 10/46
 UsiXML Consortium 2013

Figure 4. Forward Transformational Development of UIs

According to Henderson et al. in [8], a method meta-model needs to be generic enough so that
any conceivable method can be expressed. In addition, a method meta-model needs to be
concrete enough so that any methodological concepts can be treated with specific semantics. For
this reason, the UsiXML method engineers need to rely on robust and well-defined meta-models.
In the literature, several method meta-models have been introduced like SPEM [9], OPEN [10]
and ISO 24744 [11]. We have conducted a comparative study of the method meta-models (see
Appendix A). This study has shown that:

- SPEM 2.0 is an OMG standard. It reuses the UML diagrams to describe the elements of
a method. This provides a great usability of this standard. In addition, SPEM separates
the operational aspect of a method (Method Content), from the temporal aspect of a
method (Process Structure). This allows using any modelling language to describe the
process behaviour. However, the method engineer can define what elements will exist in
the method layer, but characterizing endeavour layer elements (e.g. a specific project,
organizational support activities, etc.) is not possible [12];

- OPEN provides a significant detail to describe the different elements of a method.
However, like SPEM, the OPEN standard does not allow exerting control on the
endeavour layer (e.g. a specific project, organizational support activities, etc.) from the
meta-model layer [12]. In addition, the OPEN standard does not support the abstract
generalization classes that allows to describe a customable method meta-model;

- ISO 24744 supports the dual-layer modelling that allows configuring the enactment of the
method (endeavour layer) from the meta-model level by using the Clabject and the
Powertype concepts (see Appendix A, Section A5). However, object-oriented
programming languages (like JAVA) do not support the dual-layer [13, 14]. This is an
issue since, in the UsiXML project, we plan to use Java based platforms (e.g. Eclipse,
GMF, EMF, etc.) in order to develop the UsiXML support tools [15].

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 11/46
 UsiXML Consortium 2013

These standard meta-models can be adopted to describe the UsiXML development
methodologies. But it is more suitable to have a specific method meta-model in order to support
the specific key elements of the UsiXML development methodologies (e.g. development path,
development step, and development sub-steps). For this reason, we propose in this document a
new meta-model for the UsiXML development methodologies. The proposed meta-model is
based on SPEM 2.0.This is justified by the following reasons:

• SPEM 2.0 provides a great usability, as well as, it is easier to implement since it is a UML
profile;

• SPEM 2.0 contains abstract generalization classes (e.g. Kind element) for refining the
vocabulary used to describe concepts or the relationship between concepts. These
abstract generalization classes allow creating customable method meta-models specific
to a certain domain (e.g. User Interface Development);

• SPEM 2.0 allows using any modelling language to describe the process behaviour. In
particular, the BPMN standard can be used in order to automate the development
process through a web services composition.

For this reason, the proposed meta-model is called SPEM4UsiXML. In the next section, we detail
the proposed meta-model.

4. SPEM4USIXML META-MODEL

SPEM4UsiXML (SPEM for UsiXML) is dedicated to UsiXML method modelling. The goal of this
meta-model is to propose the elements that are necessary to define any UsiXML method.
SPEM4UsiXML extends SPEM 2.0 ([9]) by adding new classes. Therefore, SPEM4UsiXML (like
SPEM) is a UML profile. In addition, SPEM4UsiXML (like SPEM) separates the operational
aspect of a method from the temporal aspect of a method. This means that SPEM4UsiXML
reuses the UML diagrams for the presentation of various UsiXML method concepts. As depicted
in Figure 5, the SPEM4UsiXML meta-model uses seven main meta-model packages inherited
from SPEM: Method Content describes the static aspect of a method; Process Structure and
Process Behaviour describe the dynamic aspect of a method, Process With Methods describes
the link between these two aspects; Core provides the common classes that are used in the
different packages; Method Plug-in describes the configuration of a method; Managed Content
describes the documentation of a method. Note that SPEM4UsiXML extends the classes of
Method Content and Process Structure as we will explain thereafter.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 12/46
 UsiXML Consortium 2013

Figure 5. Structure of the SPEM4UsiXML meta-model

In the following we will detail the packages of the SPEM4UsiXML meta-model.

4.1. Core package

SPEM4UsiXML uses the SPEM 2.0 Core meta-model package. This package contains abstract
generalization classes that are specialized in the other meta-model packages. These abstract
generalization classes are used to define common properties of their specialized classes. For
example, Work Definition is an abstract generalization class that represents the work being
performed by a specific role, or the performed work throughout a lifecycle. It is used to define
some default associations to Work Definition Parameter (e.g. owned Parameter) and Constraint
(pre- and post-condition). Another example is the Work Definition Parameter that represents
parameters for Work Definitions. Work Definition Performer is another example of the abstract
generalization classes that represents the relationship of a work performer (role) to a Work
Definition.

4.2. Method Content

The Method Content meta-model package defines the core elements of every method (producer,
work unit, and work product) independently of any specific processes and development projects.
In other words, the package defines how specific step development goals are achieved as well as

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 13/46
 UsiXML Consortium 2013

the involved roles, resources and results. However, the Method Content package does not
specify the placement of these steps within a specific development lifecycle.

Figure 6. SPEM4UsiXML Method Content meta-model package

As shown in Figure 6, SPEM4UsiXML adds new classes to the original SPEM method content
meta-model package in order to specify the several development steps and sub-steps and also
the different kinds of product and producer. The important classes of the SPEM4UsiXML Method
content meta-model are:
- Development Step Definition: defines the transformation being performed by Roles Definition

instances. A Development Step is associated to an input(s) and an output(s) Work Products.
A Development Step Definition can be:

• Reification Definition: defines the transformation of a Work Product
Definition of higher-level into a Work Product Definition of lower-level

• Abstraction Definition: defines the transformation of a Work Product
Definition of lower-level into a Work Product Definition of higher-level

• Translation Definition: defines the transformation a Work Product
Definition based on context

• Code generation Definition: defines the transformation of a Model
Definition into a Code Definition

• Code reverse engineering Definition: defines the transformation of a
Code Definition into a Model Definition

- Development Sub-Step Definition: defines the sub-steps of a Development Step. A sub-step
can be achieved using a service (Service Definition). Each service can be based on a set of
transformation rules, a program, the context or a template in order to enact the Development
Sub-Step.

- Step Definition: is an abstract generalization class that defines a set of properties that are
inherited by Development Step, and Development Sub-Step.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 14/46
 UsiXML Consortium 2013

- Work Product Definition: describes the product which is used, modified, and produced by
Development Steps. A Work Product Definition can be: a UsiXML model (Model Definition) or
UI code (Code Definition).

- Role Definition: defines a set of related skills, competencies, and responsibilities of an
individual or a set of individuals. Roles are used by Development Step or by Development
Sub-Step to define who performs them as well as to define a set of Work Product Definitions
they are responsible for. A Role Definition can be:

� Tool Definition: describes any automation unit (e.g. CASE tool, or general
purpose tool) that performs the Development Step or Development Sub-
Step.

� Human Actor Definition: describes any person, or organization that
performs the Development Step or Development Sub-Step.

The SPEM4UsiXML Method Content meta-model contains also some useful elements inherited
from SPEM 2.0, like:

- Default Responsibility Assignment: links Role Definitions to Work Product Definitions, by
indicating that the Role Definition has a responsibility relationship with the Work Product
Definition.

- Default Step Definition Performer: links Role Definition to Development Step, by
indicating that the Role Definition instances participate in the work defined by the Step
Definition.

Figure 7 shows a UML 2 use case diagram using a SPEM4UsiXML profile. This diagram
represents a development step of the forward engineering instantiated from the Method Content
meta-model package. The diagram presents the roles and products involved in the development
step “Reification”. Indeed, this development step is executed by the primary role “Human Actor”.
The task can be performed also by an additional role “Transformation Tool”. Finally, the diagram
shows that all the input and output products (e.g. Task and domain models) are mandatory.

Figure 7. An example of the SPEM4UsiXML profile use case diagram of the a Reification definition

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 15/46
 UsiXML Consortium 2013

4.3. Process Structure

The Process Structure meta-model package defines the structure of the method process. This
package represents a process through a static breakdown (decomposition) structure of
Development Step classes that are linked to Role classes and Work Product classes.

Figure 8. SPEM4UsiXML Process Structure package

As shown in Figure 8, SPEM4UsiXML adds new classes to the original SPEM process structure
package in order to specify the control flow of the development steps and sub-steps and also the
different products and producers used in the method process. The important classes of the
SPEM4UsiXML process structure package are:

- Development Path: Defines the properties of a UsiXML method.
- Breakdown Element: is an abstract generalization class that defines a set of properties

available to the elements of a UsiXML method (Product, Development Step and Producer).
- Work Breakdown Element: provides specific properties for Breakdown Elements that

represent Development Step and Development Sub-Step.
- Step Use: is an abstract generalization class that defines a set of properties available to

Development Step, and Development Sub-Step.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 16/46
 UsiXML Consortium 2013

- Development Step Use: defines the transformation steps of the method that are being
performed by Role Use instances. A Development Step Use is associated to an input and an
output Work Product Use. A Development Step Use can be: a reification (Reification Use), an
abstraction (Abstraction Use), a translation (Translation Use), a code generation (Code
generation Use) or a code reverse engineering (Code reverse engineering Use).

- Development Sub-Step Use: defines the sub-steps of a Development Step Use. As sub-step
can be achieved using a service (Service Use).

- Role Use: represents a performer of a Development Step Use or a Development Sub-Step
Use.

- Work Product Use: represents an input and/or output type for a Development Step. It can
concern a model (Model Use) or code (Code Use).

- Control Flow: represents a relationship between two Work Breakdown Elements in which one
Work Breakdown Element depends on the start or end of another Work Breakdown Element
in order to begin or end.

The SPEM4UsiXML Method process structure package contains also some useful elements
inherited from SPEM 2.0 like:
- Process Responsibility Assignment: links Role Uses to Work Product Uses by indicating that

the Role Use has a responsibility relationship with the Work Product Use.
- Process Performer : links Role Uses to Development Step Use by indicating that these Role

Use instances participate in the work defined by the Development Step Use.
- Work Sequence: represents a relationship between two Work Breakdown Elements in which

one Work Breakdown Elements depends on the start or finish of another Work Breakdown
Elements in order to begin or end. Indeed, a Work Sequence has 4 kinds:

• StartToStart expresses that a Work Breakdown Element (B) cannot start until a Work
Breakdown Element (A) start;

• StartToFinish expresses that a Breakdown Element (B) cannot finish until a Work
Breakdown Element (A) starts;

• FinishToStart expresses that a Work Breakdown Element (B) cannot start until a
Work Breakdown Element (A) finishes;

• FinishToFinish expresses that a Work Breakdown Element (B) cannot finish until a
Work Breakdown Element (A) finishes.

• ConditionToStart expresses that a Work Breakdown Element can be started only if
the condition is satisfied.

As explained above, the concepts of the Process Structure package represent a process as a
static breakdown structure, by allowing to define predecessor dependencies amongst them,
without defining the process modelling language that express the behaviour of the process. The
latter is expressed separately in the Process Behaviour package.

4.4. Process Behaviour

The SPEM4UsiXML uses the SPEM 2.0 Process Behaviour meta-model package. This package
allows extending these process structures with behavioural models. However, it does not
introduce the formalism for enacting a method process. It rather proposes to reuse an existing
externally-defined a behaviour model such as BPEL, UML 2 Activity diagram or BPMN (see
Figure 9). [9] argues that the separation of SPEM method structure from the behavior of the
method opens up the possibility to reuse existing externally-defined behavior models. Although,
the separation provides a flexible way to represent the behavioural aspects of SPEM processes,

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 17/46
 UsiXML Consortium 2013

this package does not define the mapping rules to link the elements of SPEM process with the
behavioural models. It rather proposes classes that help to define these mapping rules.

4.5. Process With Methods

As explained above, SPEM4UsiXML separates reusable core method content (expressed using
the Method Content meta-model, see Section 4.2) from its application in processes (expressed
using the Process Structure meta-model, see Section 4.3). The Process With Methods meta-
model package allows integrating the process definition with instances of the core method
content elements. This integration allows specifying how and which method elements will be
applied in which part of the process. For example, a Development Step Definition (Section 4.2)
can be invoked many times throughout a development path. Each invocation is defined with an
individual element of the Process With Methods meta-model which is called Development Step
Use. The Process With Methods meta-model package manages Development Step invocations
by changing for example the roles involved in performing the task or an omission of specific work
product input types. In other words, a Development Step Use represents a binding for a
Development Step Definition. This is also valid for Development Sub-Step Definition and
Development Sub-Step Use.

Figure 9. The process of the UsiXML forward engineering

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 18/46
 UsiXML Consortium 2013

Figure 9 represents a BPMN representation of the UsiXML forward engineering process. This
process is composed of three sub-processes of activities related to the three development steps
of the forward engineering development path. Each development step manipulates data objects
that are related to the work product use (model or code). Finally, each development step (sub-
process) is composed of a sequence of development sub-steps.

4.6. Managed Content

SPEM4UsiXML uses the SPEM 2.0 Managed Content meta-model package. This package
introduces concepts for managing the textual documentation of a method. These concepts can be
used independently (e.g. set of best practices) or they can be used in combination with the
process structure by associating guidance elements with process structure elements.

4.7. Method Plug-in

SPEM4UsiXML uses the SPEM 2.0 Method Plug-in meta-model package. This package defines
concepts for designing and managing repositories of method contents and processes. The
concepts allow extending and personalizing the instance of Method Content and Process
Structure by using plug-ins. This allows method configuration, where users select the process
capabilities that are appropriate for their specific needs.

5. USIXML METHOD ENACTEMENT

The enactment of the UsiXML methods needs to be supported by a tool. By enactment of a
UsiXML method we mean the ability of a tool to support the UsiXML models transformation
according to the method specification. In order to achieve the UsiXML method enactment with a
tool, the UsiXML method meta-model needs to be expressiveness to allow the execution of the
UsiXML transformation. Unfortunately, like SPEM, the SPEM4UsiXML meta-model cannot
support the enactment of a UsiXML method on a specific endeavor. Indeed, the SPEM4UsiXML
meta-model allows the description of a method process structure without introducing its own
formalism to precisely describe the process behavior models. The motivation behind this
separation is to give a method designer option to choose process behavior models that fits
his/her needs. But, as explained above, SPEM does not define the mapping rules to link its
elements process with the behavioral models. To deal with this limit, a set of mapping rules
should be defined to map SPEM4UsiXML model to an enactment model.

According to The UsiXML FPP [6], the transformation engine will be implemented as a set of
services. Each service enacts a specific development sub-step by using the associated
transformation rules. In this way, a UsiXML method can be seen as a Web services composition
that enacted by using a BPEL engine. For this reason, a set of mapping rules should be defined
in order to transform, in the deployment-time, the elements of SPEM4UsiXML process with the
OASIS standard BPEL [16]. In light of this, we will propose, in the deliverable of Task 2.4, a set of
mapping rules used by a BPEL transformation tool to map a subset of SPEM4UsiXML concepts
and the BPEL language.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 19/46
 UsiXML Consortium 2013

6. CONCLUSION AND FUTURE WORK

In this document, we proposed a new meta-model for UsiXML method description that is called
SPEM4UsiXML. This meta-model is based on the standard SPEM 2.0 which uses a UML profile
to define the elements of a method. The core elements of the SPEM4UsiXML are the
development steps that are instances of transformation types. Development steps are
decomposed into development sub-steps. A development sub-step can be performed by using a
set of rules, a program, or a set of templates encapsulated within a service. SPEM4UsiXML
separates the structural aspect of a method (Method Content) from the dynamic aspect of a
method (Process Structure). This allows using any modelling language to describe the process
behaviour like BPEL. Unfortunately, the SPEM4UsiXML meta-model cannot support the
enactment of a UsiXML method on a specific endeavour. To deal with this limit, we plan to
propose, in the deliverable of Task 2.4, a software architecture for supporting UsiXML methods
that allows to transform a SPEM4UsiXML model to a BPEL process so that a UsiXML method is
considered as a Web service composition where each Web service enacts a specific develop-
ment sub-step of the method. Consequently, a BPEL engine can be used to execute the
SPEM4UsiXML models.

7. REFERENCE

1. UsiXML, (2010), User Interface eXtensible Markup Language, Available online:
http://www.usixml.org.

2. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.,
(2003), A Unifying Reference Framework for Multi-Target User Interfaces, Interacting with
Computers, 15(3), June 2003, pp.289–308UsiXML, (2010), User Interface eXtensible
Markup Language, Available online: http://www.usixml.org

3. UsiXML Project, (2011), T1.3: UsiXML definition (Elicitation of the models requirements,
contents, semantics, abstract and concrete syntaxes, and stylistics). In the deliverable of
the Work package 1: Task 1.3, February 2011.

4. Stanciulescu, A., (2008), A Method for Developing Multimodal User Interfaces of
Information System, Ph.D. thesis, Université catholique de Louvain, Louvain-la-Neuve,
Belgium, 25 June 2008

5. Q. Limbourg, J. Vanderdonckt, 2009. “Multipath Transformational Development of User
Interfaces with Graph Transformations”. In Human-Centered Software Engineering,
Human-Computer Interaction Series, Volume . ISBN 978-1-84800-906-6. Springer
London, 2009, p. 107

6. ITEA2, (2009), UsiXML Full Project Proposal, December 23, 2009.

7. Czarnecki K, Eisenecker UW (2000) Generative Programming. Methods, Tools, and
Applications, Addison-Wesley, Reading.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 20/46
 UsiXML Consortium 2013

8. B. Henderson-Sellers and C. Gonzalez-Perez, 2005, “Metamodelling for Software
Engineering”. ISBN-13: 978-0470030363Wiley (October 14, 2008)

9. OMG, 2008 “Software & Systems Process Engineering Meta-Model Specification version
2.0”, In OMG Document Number: formal/08-04-02. Standard document URL:
http://www.omg.org/spec/SPEM/2.0/PDF

10. International Organization for Standardization / International Electrotechnical
Commission, 2007. “ISO/IEC 24744. Software Engineering - Metamodel for Development
Methodologies”, JTC 1/SC 7, 2007

11. OPEN Consortium, 2010, “OEPN”, http://www.open.org.au/

12. B. Henderson-Sellers and C. Gonzalez-Perez, 2005, “A comparison of four process
metamodels and the creation of a new generic standard”. Information and Software
Technology. Volume 47, Issue 1, 1 January 2005, Pages 49-65

13. T. Kuhne; D. Schreiber; 207, “Can Programming be Liberated from the Two-Level Style?:
Multi-Level Programming with DeepJava” in OOPSLA'07 International Conference on
Object-Oriented Programming, Systems, Languages, & Applications No22, Montréal ,
CANADA (21/10/2007)

14. M. Gutheil, B. Kennel, C. Atkinson, 2008, “A Systematic Approach to Connectors in a
Multi-level Modeling Environment”. Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems (MoDELS 2008): 843-857

15. Defimedia, 2010, “UsiXML Software tools requirements specification”. In the deliverable
of the Work package 3: Task 3.1, September 2010

16. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M., Goland, Y.,
Guнzar, A., Kartha, N., Liu, C.K., Khalaf, R., Koenig, D., Marin, M., Mehta, V., Thatte, S.,
Rijn, D., Yendluri, P., Yiu, A.: Web services business process execution language version
2.0 (OASIS standard). WS-BPEL TC OASIS, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html (2007)

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 21/46
 UsiXML Consortium 2013

A. APPENDIX: COMPARATIVE ANALYSIS OF META-MODELS
FOR DEVELOPMENT METHODS

In this appendix, we propose a comparative study of method meta-model standards in order to
select the most appropriate meta-model for the UI method development based on UsiXML
language.

A1. INTRODUCTION

The task 2.1 of the UsiXML project aims to provide a unified software engineering method for
User Interface based on UsiXML language. This method describes the process to follow during a
User Interface design. The method needs to be compliant with a well-defined meta-model so that
we formally define the core elements of the UsiXML method.

In the literature, three major method meta-model standards have been proposed: SPEM 2.0
[OMG 2008], OPEN [OPF 2005] and ISO 24744 [ISO 2007]. These standards describe, in
different ways, the core elements of a method (work unit, work product, and producer). Each
standard is built on different main principles:

• SPEM [OMG 2008] separates the operational aspect of a method from the temporal
aspect of a method;

• OPEN [OPF 2005] defines an industry-standard for software method modelling;
• ISO 24744 [ISO 2007] uses a dual-layer modelling to allow the method engineer to

configure the enactment of the method from the meta-model level.

In this document, we propose a comparative study of these three meta-model standards in order
to select the most appropriate meta-model for the UI method development based on UsiXML
language.

The rest of this appendix is organized as follows. In Section A2, we describe the different
approaches for the collaborative design of meta-models. In Section A3, Section A4 and Section
A5 we describe respectively the SPEM 2.0 standard, OPEN standard, and ISO 24744 standard.
We conducted a comparative study of these approaches based on different comparison criteria.
In Section A6 we present the comparative study of the method meta-model standards.

A2. BACKGROUND

In this section, background definitions for method and meta-modelling for development methods1
are given. A method is a systematic way of doing things in a particular discipline [ISO 2007]. It
specifies the process to follow together with the work products to be used and generated by the
involved people and tools, during a development effort [Hen 2008]. According to this definition,
three major aspects of a method can be considered (Figure A.1):

- The process aspect represents the work that must be done. It is defined in terms of tasks,
steps, activities, etc. This process is usually called Work Unit.

- The product aspect represents the artefact that must be manipulated (i.e. created, used
or changed). It can concerns model, document, hardware, software, etc. These artefacts
are usually called Work Products.

1 In this document we consider that the terms “methodology” and “method” are synonymous [Hen 2008]

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 22/46
 UsiXML Consortium 2013

- The organization aspect represents the agent that has the responsibility to execute a
work unit. It is defined in terms of person, role, team, tool, etc. This agent is usually called
Producer.

Figure A.1. The major aspects of a method [Hen 2008]

Figure A.2 represents an example of a development method of the User Interface (UI). The
starting point of this UI development method is the construction of a task model and a domain
model by a designer. These two models are then transformed into an abstract UI model which is
then transformed into a concrete UI model by a transformation tool. Finally, the concrete UI model
is used to generate UI code.

Figure A.2. An example of the User Interface development method [Lim 2009]

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 23/46
 UsiXML Consortium 2013

To be useful, a method needs to be designed and evaluated by describing formally its content
(the semantics of the method) and its form (the abstract/concrete syntax of the method). In
addition, a method and its enactment need to be supported by tools. The content of a method
refers to the prescription of the process to follow, the work products to be used and the
responsible of the work performed in a particular domain. The form of a method refers to the
expression of the three major aspects of a method (work unit, work product, and producer) and
the relationships between them. In this document, we focus on the form of the method. Indeed,
the method must be expressed using a specialized modelling language, so that, minimizing
ambiguity, the method can easily be processed by a computer. For this reason, the meta-
modelling approach can be used in order to deal with the expression of method. From the point of
view of a meta-modelling approach, a method is seen as a model of the future scenario of its
enactment. In addition, a method meta-model defines an explicit description of how the method
model is built.

Figure A.3. Three levels of the method meta-modelling

As directed in Figure A.3, the meta-modelling approach describes a development method in three
levels of abstraction (see Figure A.3).

- The meta-model level defines a meta-model that describes how the method model can
be constructed by using a set of classes to formally specify the concepts of the method
and the relationships between them. According to Henderson et al. in [Hen 2008], a
method meta-model needs to be generic enough so that any conceivable method can be
expressed. In addition, method meta-model needs to be concrete enough so that any
methodological concepts can be treated with specific semantics. For this reason, the
method engineers need to rely on robust and well defined meta-models. In the literature,
several method meta-models have been introduced like SPEM [OMG 2008], OPEN [OPF
2005] and ISO 24744 [ISO 2007]. In this document, we will focus on this level by
conducting a comparison study of the method meta-models.

- The model level defines the method model that describes the prescription of the work
units to perform, the work products to be manipulated and the agents who have the
responsibility of performing the work (e.g. XP [XP 2010], Scrum [Scrum 2010] and
OpenUP [OpenUP 2010]). The method model classes are obtained by creating instances

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 24/46
 UsiXML Consortium 2013

(i.e. objects) of the method meta-model classes. Note that, the method models content is
out of scope of this document.

- The endeavour level represents the organizational scenario of a method enactment (e.g.
a specific project, organizational support activities, etc.). In this level, the method model
classes are instantiated in order to describe the application of a method in a specific
endeavour.

The meta-modelling approach for development methods offers a flexible way to describe a
method. The purpose of this approach is to use a method meta-model to increase productivity of
method engineers and to improve the quality of the method models. As explained above, three
major method meta-model standards have been proposed: SPEM [OMG 2008], OPEN [OPF
2005] and ISO 24744 [ISO 2007]). These standards describe, in different ways, the core
elements of a method (work unit, work product, and producer). In the following sections, we detail
these standards.

A3. SPEM 2.0 META-MODEL SPECIFICATION

The SPEM (Software & Systems Process Engineering Meta-Model) [OMG 2008] is an OMG
standard dedicated to software method modelling. The goal of SPEM is to propose minimal
elements necessary to define any software and systems development method, without adding
specific features to address particular domains. As a result, this meta-model supports a large
range of development methods of different styles, levels of formalism, and lifecycle models.

SPEM is a UML profile. This means that SPEM reuses the UML wherever possible.
Consequently, the SPEM uses the UML profile for the presentation of various software method
concepts.

The current version of SPEM (version 2.0 [OMG 2008]) was completely reformulated (from SPEM
1.0 [OMG 2002]) in order to separate the operational aspect of a method from the temporal
aspect of a method. As depicted in Figure A.4, the SPEM 2.0 meta-model uses seven main meta-
model packages: Method Content package describes the static aspect of a method; Process
Structure and Process Behaviour packages describe the dynamic aspect of a method, Process
With Methods package describes the link between these two aspects; Core package provides the
common classes that are used in the different packages; Method Plug-in package describes the
configuration of a method and Managed Content package describes the documentation of a
method.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 25/46
 UsiXML Consortium 2013

Figure A.4. Structure of the SPEM 2.0 meta-model [OMG 2008]

In the following, we detail the SPEM 2.0 meta-model packages

A3.1. Core package

The Core meta-model package contains abstract generalization classes that are specialized in
the other meta-model packages. These abstract generalization classes are used to define
common properties of their specialized classes. The Core meta-model mainly defines several
important elements like:

- The Kind class that expresses a refined vocabulary specific to a method (e.g. Phase,
Iteration, and Increment can be used as a kind for Breakdown Elements (see Section
A5.3).

- Three abstract generalization classes that define the common properties of the three key
concepts of a method: work unit, product and producer.

• Work Definition is an abstract generalization class that represents the work being
performed by a specific role, or the work performed throughout a lifecycle. It is
used to define some default associations to Work Definition Parameter (e.g.
owned Parameter) and Constraint (pre- and post-condition).

• Work Definition Parameter is an abstract generalization class that represents
parameters for Work Definitions.

• Work Definition Performer is an abstract generalization class that represents the
relationship of a work performer (role) to a Work Definition.

The Core elements are principally specialized in the packages Method Content and Process
Structure.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 26/46
 UsiXML Consortium 2013

A3.2. Method Content

The Method Content meta-model package defines the core elements of every method (producer,
work unit, and work product) independently of any specific processes and development projects.
In other words, describes the specific development steps that are achieved by which roles with
which resources and results, without specifying the placement of these steps within a specific
development lifecycle.

Figure A.5. SPEM 2.0 Method Content meta-model package [OMG 2008]

Figure A.5 illustrates the Method Content meta-model package. The main classes of the Method
content meta-model are:

- Task Definition: defines the work being performed by Roles Definition instances.
A Task is associated to input and output Work Products.

- Step: describes a meaningful and consistent part of the overall work described for
a Task Definition. The collection of Steps defined for a Task Definition represents
all the work that should be done to achieve the overall development goal of the
Task Definition.

- Work Product Definition: describes the product which is used, modified, and
produced by Task Definitions.

- Role Definition: designs a general reusable definition of an organizational role. It
defines a set of related skills, competencies, and responsibilities of an individual
or a set of individuals. Roles are used by Task Definitions to define who performs
them as well as to define a set of Work Product Definitions they are responsible
for.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 27/46
 UsiXML Consortium 2013

The Method Content meta-model contains also useful elements like:
- Three relationships between the core method concepts can be expressed. The

type of these relationships needs to be defined by using kind class instances
(Section A3.1).

• Default Responsibility Assignment: links Role Definitions to Work Product
Definitions, by indicating that the Role Definition has a responsibility
relationship with the Work Product Definition.

• Work Product Definition Relationship: expresses a general relationship
among Work Products Definitions.

• Default Task Definition Performer: links Role Definition to Task
Definitions, by indicating that the Role Definition instances participate in
the work defined by the Task Definition.

- Additional classes design special elements like:
• Tool Definition: describes any automation unit (e.g. CASE tool, or general

purpose tool) that supports the associated instances of Role Definitions
in performing the work defined by a Task Definition. A Tool Definition can
identify a resource as useful, recommended, or necessary for a task’s
completion.

• Default Task Definition Parameter: represents a special Work Definition
Parameter that uses Work Product Definitions as well as adds an
optionally attribute.

• Qualification: documents the required qualifications, skills, or
competencies for Role and/or Task Definitions.

Figure A.6 shows a UML 2 use case diagram using a SPEM 2.0 profile. This diagram represents
a method model instantiated from the Method Content meta-model package. This model designs
the UI development method which is presented in Section A2. The model of Figure A.6 presents
the roles and products involved in the task “Creating the Abstract User Interface model”. Indeed,
this task is executed by the primary role “Transformation tool”. The task can be performed also by
an additional role “designer”. The model shows that all the input products (Task and domain
models) are mandatory. Finally, the task “Creating the Abstract User Interface model” returns the
output product “Abstract User Interface model”.

Figure A.6. An example of the SPEM 2.0 profile use case diagram of a task definition

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 28/46
 UsiXML Consortium 2013

A3.3. Process Structure

The Process Structure meta-model package defines the structure of the method process. This
package represents a process through a static breakdown (decomposition) structure of Activity
classes that are linked to Role classes and Work Product classes. This structure is useful to
express for example the fact that a life-cycle is composed by set of phases, and each phase is
composed by set of activities.

Figure A.7. Overview of the main classes and associations of Process Structure package [OMG 2008]

Figure A.7 illustrates the Process Structure meta-model package. The important classes of the
Process Structure meta-model are:

- A WorkDefinition (coming from the Core package) is performed by a Work
Definition Performer, which is a role, and, through this role, by a process
performer. It can be submitted to Constraints, i.e. pre and post-conditions.

- Breakdown Element: is an abstract generalization class that defines a set of
properties available to all of its specializations.

- Work Breakdown Element: provides specific properties for Breakdown Elements
that represent work.

- Activity: defines basic units of work within a process as well as a process itself. In
other words, every activity can represent a process in SPEM 2.0. It relates to
Work Product Use instances via instances of the Process Parameter class and
Role Use instances via Process Performer instances. An activity can be used by
another activity (by using the usedActivity relationship), so that the structure of
the source activity is copied into the target activity. This copy can be modified or
completed.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 29/46
 UsiXML Consortium 2013

- Role Use: represents a performer of an Activity or a participant of the Activity. A
Role Use is only specific to the context of an Activity. It is not a general reusable
definition of an organizational role like the Role Definition of the Method Content
package (Section A3.2). Here too, a role has responsibilities on a product
(ProcessResponsibilityAssignment).

- Work Product Use: represents an input and/or output type for an Activity or
represents a general participant of the Activity.

- Work Sequence: represents a relationship between two Work Breakdown
Elements in which one Work Breakdown Element depends on the start or finish
of another Work Breakdown Elements in order to begin or end. The attribute
linkKind refers to the enumeration WorkSequenceKind that defines four types of
sequences between two Work Breakdown Elements.

The Process Structure meta-model contains also useful elements like:
- Three relationships between the core method concepts can be expressed. The

type of these relationships needs to be defined by using kind class instances
(Section A3.1).

• Process Responsibility Assignment: links Role Uses to Work Product
Uses by indicating that the Role Use has a responsibility relationship with
the Work Product Use.

• Work Product Use Relationship: expresses a general relationship among
work products.

• Process Performer: links Role Uses to Activities by indicating that these
Role Use instances participate in the work defined by the activity.

- Additional classes design special elements like:
• Activity Use Kind: provides mechanisms for dynamically linking Activities

for reuse to other Activities or Processes
• Process Parameter: defines input and output meta-types to be Work

Product Uses.
• Milestone: describes a significant event in a development project, such as

a major decision, completion of a deliverable, or meeting of a major
dependency (like completion of a project phase.

However, the concepts of the Process Structure package represent a process as a static
breakdown structure, by allowing defining predecessor dependencies amongst them, without
defining the process modelling language that express the behaviour of the process. The latter is
expressed separately in the Process Behaviour package.

A3.4. Process Behaviour

The Process Behaviour meta-model package allows extending these process structures with
behavioural models. However, it does not introduce its own formalism for behaviour models, but
instead provides 'links' to existing externally-defined behaviour models, enabling reuse of these
approaches from other OMG or third party specifications. For example, a process defined with the
Process Structure concepts can be linked to UML 2 Activity diagram or BPMN that allow
representing a process or to UML 2 State Machine diagram that allows representing the product
states (see Figure A.8).

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 30/46
 UsiXML Consortium 2013

A3.5. Process With Methods

As explained above, SPEM 2.0 separates reusable core method contents (expressed using the
Method Content meta-model, see Section A3.2) from its temporal aspect (expressed using the
Process Structure meta-model, see Section A3.3). The Process With Methods meta-model
package allows integrating the process definition with instances of the core method content
elements. This integration allows specifying how and which method elements will be applied in a
particular part of the process. For example, a Task Definition (Section A3.2) can be invoked many
times throughout a development process. Each invocation is defined with an individual element of
the Process With Methods meta-model which is called Task Use. The latter manages the Task
Definition invocation by changing for example the roles involved in performing the task or an
omission of specific work product input types. In other words, a Task Use represents a binding for
a Task Definition in the context of one specific Activity. Therefore, one Task Definition can be
represented by many Task Uses; each within the context of an Activity with its own set of
relationships [OMG 2008].

Figure A.8 represents the life-cycle of the User Interface development method. The life-cycle is
composed of a set of activities: Firstly, two activities of the definition of the task model and the
domain model are performed in parallel way. Secondly, the transformation activities of the
abstract UI model and the concrete UI model are performed in sequence way. Finally, generating
UI code activity is performed. Each activity of this life-cycle is an element of type Task Use which
reuses the element of type Task Definition. Note that the method process behaviour is expressed
using the BPMN (see Section A3.4).

Figure A.8. The life-cycle of the User Interface development method

A3.6. Managed Content

The Managed Content meta-model package introduces concepts for managing the textual
documentation of a method. These concepts can be used independently (e.g. set of best
practices) or can be used in combination with the process structure, by associating guidance
elements with process structure elements.

A3.7. Method Plug-in

The Method Plug-in meta-model package defines concepts for designing and managing
repositories of method content and processes. These concepts allow extending and personalizing

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 31/46
 UsiXML Consortium 2013

the instances of Method Content and Process Structure by using plug-ins. This allows method
configuration, where users select the process capabilities that are appropriate for their specific
needs.

Note finally that SPEM 2.0 is now stable and several editors have adopted it in their tools. For
example, Eclipse Foundation hosts a project that aims at providing an extensible framework for
software method engineering [EPF 2010]. This project is called Eclipse Process Framework
(EPF) and allows offering method and process authoring, library management, configuring and
publishing a process. In addition, EPF proposes several method libraries (Method Plug-in, see
Section A3.7) like XP [XP 2010], Scrum [Scrum 2010] and OpenUP [OpenUP 2010]. Figure A.9
depicts the interface of the EPF in which we can define the core elements of a method. Another
example is the No Magic company that adopts the SPEM 2.0 to specify software method
engineering in its commercial CASE tool called MagicDraw [NoMagic 2010].

Figure A.9. The interface of the Eclipse Process Framework

A4. OPEN META-MODEL

Object-oriented Process, Environment, and Notation (OPEN) is an industry-standard for software
method modelling [OPF 2005]. OPEN was developed and is maintained by an international
consortium, which regroups several experts in method, universities, CASE tool vendors and
developers [OPEN 2010]. As illustrated in Figure A.10, the OPEN meta-model uses six main
meta-model packages to describe: the element that is developed during a project of a method
(Work Product), the element that produces a work product (Producer), the element that is

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 32/46
 UsiXML Consortium 2013

performed by producers when developing work products (Work Unit), the time interval of work
units (Stage), the element that is used to document work products (Language), and the
organization or project under which the producer performs the work unit (Endeavour).

Figure A.10. OPEN Meta-Model packages [OPF 2005]

In the following, we detail the OPEN meta-model packages.

A4.1. Producer and Endeavour

A Producer is someone or something that performs Work Units and produces (i.e., creates,
evaluates, iterates, or maintains), either directly or indirectly, versions of one or more Work
Products (see Figure A.11):

- Direct Producers: consists of persons as well as roles played by the people and
tools that they use;

- Indirect Producers: consists of teams of people (the membership of teams strictly
being roles), organizations (the membership of which are teams) and
endeavours.

An Endeavour is staffed by one or more organizations. It may be classified as projects,
programmers or enterprises.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 33/46
 UsiXML Consortium 2013

Figure A.11. OPEN Producer Meta-Model Package [OPF 2005]

A4.2. Work Products

A Work Product models anything that is produced, used, modified, or destroyed during the
performance of one or more Work Units by one or more collaborating Producers. A work
product is any significant thing of value (e.g., document, diagram, model, class, application, etc.)
that is developed during a project (see Figure A.12). The Work Product meta-model defines also
two important elements:

- Work Product Set: a set of work products (e.g., products produced by the tasks of
a single activity)

- Work Product Version: a unique identification of a work product at a specific point
in time that is created during an incremental or iterative development process

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 34/46
 UsiXML Consortium 2013

Figure A.12. OPEN Work Product Meta-Model Package [OPF 2005]

A4.3. Work Units

A Work Unit models a functional operation that may be performed by one or more Producers as
part of one or more endeavour-specific processes. The Work Unit package is refined by up to 300
sub-classes. Figure A.13, depicts important elements of the Work Unit meta-model like:

- Activity: consists of a collection of tasks that produce a related set of Work
Products.

- Work Flow: consists of a collection of tasks that produce a single work product.
- Task: consists of a single assigned job that may be performed by one or more

Producers.
- Technique: models a way of performing a task (i.e., an implementation of a task

using the Strategy Pattern).

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 35/46
 UsiXML Consortium 2013

Figure A.13. OPEN Work Unit Meta-Model Package [OPF 2005]

A4.4. Stages

A Stage models the intended timing of the performance of a set of work units during the
enactment of a method. As depicted in Figure A.14, the Stage meta-model defines several
important elements like:

- Stage with Duration: models a period of time during which one or more work
units are to be performed. It is part of the following inheritance elements:

• Cycle: consists of one or more related phases. It can concern a Life-
Cycle during which a single product is produced, used, and retired or a
Development Cycle during which a single product is developed and
delivered.

• Phase: is a major logical partition of a cycle.
• Build: is a component part of a phase.

- Stage without Duration: models a point in time in which one or more Work
Products are to be produced or in which one or more Work Units are to be
performed. It is part of the following inheritance elements:

• Milestone: models a point in time during the delivery process in which a
set of significant objectives is to be achieved (e.g., set of tasks
completed, set of work products delivered).

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 36/46
 UsiXML Consortium 2013

Figure A.14. OPEN Stage Meta-Model Package [OPF 2005]

A4.5. Languages

A Language consists of a vocabulary and a set of grammatical rules used to document a Work
Product. For example, documents are mostly written in a natural language such as English and
models are written using a modelling language such as UML.

Note finally that several commercial OPEN CASE tools are proposed like: eTrack tool [eTrack
2010], ArcStyler tool [ArcStyler 2010] and Myriad tool [Myriad 2010].

A5. ISO 24744 META-MODEL

ISO/IEC 24744 is an international standard meta-model for software method modelling [ISO
2007]. This standard, which is also called Software Engineering Meta-model for Development
Methodologies (SEMDM) [Hen 2005], defines three major aspects to describe methodologies: the
process to follow, the products to use and generate, and the people and tools involved. The
standard proposes also graphical notations to represent concepts to help method engineers to
easily design their methods.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 37/46
 UsiXML Consortium 2013

Figure A.15. Dual-Layer Modelling Approach of ISO 24744 [ISO 2007]

As explained in Section A2, the method meta-modelling approach supposes to use a meta-model
to describe how the method model is built. The classes of the meta-model are instantiated (i.e.
creation of objects), by method engineers, to generate a method model. In turn, classes of the
method model are instantiated, by developers, to describe the method application in a specific
endeavour. However, the instantiated objects in the method level are used as classes by
developers to create elements in the endeavour level (i.e. the method enactment). Therefore,
elements in the method level act as objects and classes at the same time. This apparent
contradiction, not solved by any of the existing meta-modelling approaches [Hen 2005], is
addressed by the ISO 24744 [ISO 2007]. For this reason, this standard uses a dual-layer
modelling to allow the method engineer to configure the enactment of the method from the meta-
model level (see Figure A.15). Indeed, the dual-layer modelling is based on two new modelling
patterns [Hen 2005]:

- PowerType pattern: models two classes in which one of them represents the class
“kinds” (called partitioned type class) of the other class (called a powertype class)
[Ode 1994]. In order words, the pattern models the possibility to define each sub-kind
(i.e. subtype) of a powertype class as a proper class (called partitioned type class)
that should be defined in meta-model level. By convention, the powertype class takes
the suffix “kind”. For example, in the ISO 24744 meta-model, the Document class
represents documents managed by developers (partitioned type class), while the
DocumentKind class in the meta-model represents different kinds of documents that
can be managed by developers (powertype class). In this Standard, the notation
Document/*Kind is used to refer to the powertype pattern formed by the powertype
DocumentKind and the partitioned type Document [ISO 2007].

- Clabject pattern: models a dual entity that is a class and an object at the same time
[Atk 2000]. In other words, the pattern models a special element that has two facets
in the same level: a class facet that contain typed attributes and an object facet that
contain valued properties. This class/object hybrid concept addresses the issues of
using an element as object and class at the same time.

Within the standard ISO 24744 [ISO 2007], these two modelling patterns are combined to
construct a method from the meta-model by making the object facet of the clabject an instance of
the powertype class, and the class facet of the clabject a subclass of the partitioned type. For
example, a method engineer can define, in the method level, the clabject requirements

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 38/46
 UsiXML Consortium 2013

specification document as an instance of DocumentKind and as a subclass of Document. By
using clabjects at the method level, every single element susceptible of being instantiated during
enactment is represented by a class, which is appropriate for instantiation, and by an object,
which is appropriate for automated manipulation by tools [ISO 2007].

Figure A.16. ISO 24744 Meta-Model [ISO 2007]

As illustrated by Figure A.16, the meta-model ISO 24744 is divided into two groups of core
classes:

- A Resource is a method element that is directly used at the endeavour level,
without an instantiation process. Indeed, any method element that serves as a
reference or guideline during an endeavour is represented by Resource. This
class is specialized into:

• Language which represents a structure of model unit kinds that focuses
on a particular modelling perspective.

• Notation which represents a concrete syntax, usually graphical, which
can be used to depict models created with certain languages.

• Guideline which represents an indication of how some method elements
can be used.

• Constraint which represents a condition that holds or must hold at a
certain point in time.

• Outcome which represents an observable result of the successful
performance of a work unit.

- A Template is a method element that is used at the endeavour level through an
instantiation process. Any method element that acts as a class to be instantiated
during enactment as an endeavour element is represented by Template. The
powertype pattern formed by Template is refined into more specialized
powertype patterns formed by subclasses of these two, namely: WorkUnitKind

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 39/46
 UsiXML Consortium 2013

and WorkUnit (the element that is performed by producers when developing work
products), WorkProductKind and WorkProduct (the element that is developed
during an endeavour of a method), and ProducerKind and Producer (the element
that produces a work product).

 In the following we will focus on details of the ISO meta-model template element.

A5.1. Producer Kind and Producer

Producer/*Kind represents an agent that has the responsibility to execute work units. Producers
are usually people or groups of people, but can also be tools. As depicted in Figure A.17, the
Producer/*Kind meta-model defines several important elements like:

- A role/*Kind is a collection of responsibilities that a producer can take. Roles are
often used to declare what responsibilities must be addressed without deciding
on how they will be implemented.

- A team/*Kind is an organized set of producers that collectively focus on common
work units.

- A tool/*Kind is an instrument that helps another producer to execute its
responsibilities in an automated way.

- A person/*Kind is an individual human being involved in a development effort.

Figure A.17. ISO 24744 Producer/*Kind Meta-Model package [ISO 2007]

A5.2. Work Unit Kind and Work Unit

The WorkUnit/*Kind is a job performed, or intended to be performed, within an endeavour.
Indeed, a work unit is characterized by a start time (the point in time at which the work unit is
started), an end time (the point in time at which the work unit is finished) and a duration (the span
of time between the start time and the end time). As depicted in Figure A.18, the WorkUnit/*Kind
meta-model defines several important elements like:

- A task/*Kind is a small-grained work unit that focuses on what must be done in
order to achieve a given purpose.

- A technique/*Kind is a small-grained work unit that focuses on how the given
purpose may be achieved.

- A process/*Kind is a large-grained work unit that operates within a given area of
expertise.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 40/46
 UsiXML Consortium 2013

- A work performance/*Kind is an assignment and responsibility association
between a particular producer and a particular work unit.

Figure A.18. ISO 24744 Work Unit/*Kind Meta-Model package [ISO 2007]

A5.3. Work Product Kind and Work Product

A Work Product/*Kind is an artefact of interest for the endeavour. Work products can be
documents, physical things or information collections that are created, or modified during the
endeavour. As depicted in Figure A.19, the Work Product/*Kind meta-model defines several
important elements like:

- A Composite Work Product/*Kind is a work product composed of other work
products.

- An Action/*Kind is a usage event performed by a task upon a work product.
Actions represent the fact that specific tasks use specific work products.

- A Document/*Kind is a durable depiction of a fragment of reality. Documents
often represent models, but they can also represent other subjects.

- A Software/*Kind item is a piece of software of interest to the endeavour.

Figure A.19. ISO 24744 Product/*Kind Meta-Model package [ISO 2007]

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 41/46
 UsiXML Consortium 2013

Note that the ISO 24744 standard defines also additional method elements like (see Figure A16
and Figure A.19):

- A Stage/*Kind which represents a managed time frame within an endeavour.
- A Model Unit/*Kind which represents an atomic component of a model. Model

units are usually linked to each other to form the semantic network that
comprises the model. Furthermore, each model unit can appear in multiple
models, thus achieving model connectivity.

The ISO 24744 standard uses different diagrams that help to describe the elements of a method
according to different perspectives. For example, the Lifecycle Diagram represents the overall
structure of a method specified with stage elements and work unit elements. The Figure A.20
shows the ISO 24744 lifecycle diagram of the User Interface development method. This diagram
presents the stage of the method by using a pentagon symbol (Task and domain construction
phase, transformation phase, and generation phase). The activities of each stage are defined
within the pentagon. If the activities can be performed in parallel, then a hexagon symbol is used.
Finally, a diamond symbol is used to represent the event of the end of a stage. This event allows
launching the next stage.

Figure A.20. The ISO 24744 lifecycle diagram of the User Interface development method

Another example of the ISO 24744 standard diagrams is the Process Diagram that describes the
details of the processes used in a method. It depicts the relationships between work product kind,
work unit kind, and producer kind. The Figure A.21 shows the ISO 24744 process diagram of the
User Interface development method. In this diagram, a work product is represented by an oval
symbol. In turn, a work unit is represented by a process flowchart symbol; finally, a producer is
represented by a delay flowchart symbol.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 42/46
 UsiXML Consortium 2013

Figure A.21. ISO 24744 Process Diagram of the User Interface development method

A6. COMPARISON BETWEEN THE METHOD META-MODELS

In the previous sections, we presented three meta-model standards for method development.
Each of them has its key features, and describes the core elements of a method in a specific way.
In this section, we compare these method meta-models according to their key features and their
support to method concepts.

The table 1 represents a synthesis of the key features and the limitations of the three meta-model
standards for method development.

 Key features Limitations

SPEM [OMG
2008]

1- SPEM 2.0 is a UML profile. This
means that SPEM reuses UML
diagrams to describe the elements of a
method, which provides a great
usability of this standard.

2- SPEM 2.0 separates the operational
aspect of a method (Method Content)
from the temporal aspect of a method
(Process Structure). This allows using
any modelling language to describe
the process behaviour.

3- SPEM 2.0 contains abstract

1- SPEM does not allow the method engineer
having a control on the endeavour layer from
the meta-model layer. The method engineer
can define what elements will exist in the
method layer, but characterizing endeavour
layer elements is not possible [Hen 2005].

2- SPEM proposes several generic and
abstract classes. This leads to have a complex
meta-model that can be difficult to understand.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 43/46
 UsiXML Consortium 2013

generalization classes (e.g. Kind
element, see Section A3.1) for
refinement of the vocabulary used to
describe concepts or the relationships
between concepts. Another advantage
of these abstract generalization
classes is the fact that they allow
creating a customable method meta-
model (UML stereotype mechanism)
specific to a certain domain (e.g. User
Interface Development). The
customized meta-models can be
associated with OCL constraints in
order to ensure the methods
coherence.

OPEN [OPF
2005]

OPEN provides significant details to
describe the different elements of a
method.

1- Like SPEM, the OPEN standard does not
allow having control on the endeavour layer
from the meta-model layer [Hen 2005].

2- The OPEN standard does not support the
abstract generalization classes that allow
describing how to create customizable method
meta-models.

ISO 24744
[ISO 2007]

The ISO 24744 standard uses a dual-
layer modelling to allow the method
engineer to configure the enactment of
the method from the meta-model level.

Object-oriented programming languages (like
JAVA) do not support the dual-layer modelling
[Kuh 2007, Gut 2008]. This is an issue since, in
the UsiXML project, we plan to use Java based
platforms (e.g. Eclipse, GMF, EMF, etc.) in
order to develop the UsiXML support tools [Def
2010].

The table 2 represents a synthesis of the support to method concepts in the three meta-model
standards for method development.

Method concepts SPEM 2.0 [OMG 2008] OPEN [OPF
2005]

ISO 24744 [ISO 2007]

Work Unit
(WU)

WU definition
WorkDefinition,
TaskDefinition, Step, Task
Use

Work Unit

Work Unit

WU type Activity, Milestone

Activity, Task,
Work Flow,
Technique

Process, Task,
Technique

Time unit WorkBreakdownElement Stage Stage

Time unit
type

Kind (Core)

Phase, Build,
Cycle,
Milestone, Inch
Pebble

Phase, Life-Cycle

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 44/46
 UsiXML Consortium 2013

Work Product
(WP)

WP definition
WorkProductUse,
WorkProductDefinition

Work Product

Work Product

WP type Kind (Core)

Document,
diagram, model,
class,
application, …

Composite Work
Product, Document,
Model, Software, …

Producer

Producer
definition

WorkDefinitionPerformer,
ProcessPerformer,
RoleDefinition

 Producer Producer

Producer
type Kind (Core)

Organization,
team, role,
person, tool

Team, role, tool, person

Relationships
between
concepts

Relationships
between WU

and WP

Default task definition
parameter, Process
parameter

Represented as
a “manipulate”
association
relationship
between the two
concepts

Action

Relationships
between WU
and Producer

Default task definition
performer, Process
performer

Represented as
a “Perform”
association
relationship
between the two
concepts

Work performance

Relationships
between

Producer and
WP

Default responsibility
assignment, process
responsibility assignment

Represented as
a “Produce”
association
relationship
between the two
concepts

--

Additional
elements

Constraint Constraint, Precondition,
Post condition

Constraint,
Precondition,
Goal

Constraint, Precondition,
Post condition

Relationships
between

Work
products

Work products definition
relationship

-- --

A7. APPENDIX REFERENCES

[ArcStyler 2010] http://www.interactive-objects.com/

[Atk 2000] C. Atkinson, T. Kuhne, “Meta-level independent modeling”. In International Workshop on

Model Engineering at 14th European Conference on Object-Oriented Programming, Sophia Antipolis
and Cannes, France, 2000.

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 45/46
 UsiXML Consortium 2013

[Def 2010] Defimedia, 2010, “UsiXML Software tools requirements specification”. In the deliverable of

the Work package 3: Task 3.1, September 2010

[EPF 2010] Eclipse Foundation, 2010, “Eclipse Process Framework version 1.5.1”,

http://www.eclipse.org/epf/

[eTrack 2010] http://www.etrack.com.au/

[Gut 2008] M. Gutheil, B. Kennel, C. Atkinson, 2008, “A Systematic Approach to Connectors in a Multi-

level Modeling Environment”. Proceedings of the 11th international conference on Model Driven
Engineering Languages and Systems (MoDELS 2008): 843-857

[Hen 2005] B. Henderson-Sellers and C. Gonzalez-Perez, 2005, “A comparison of four process

metamodels and the creation of a new gen@eric standard”. Information and Software Technology.
Volume 47, Issue 1, 1 January 2005, Pages 49-65

[Hen 2008] B. Henderson-Sellers and C. Gonzalez-Perez, 2005, “Metamodelling for Software

Engineering”. ISBN-13: 978-0470030363Wiley (October 14, 2008)

[ISO 2007] International Organization for Standardization / International Electrotechnical Commission,

2007. “ISO/IEC 24744. Software Engineering - Metamodel for Development Methodologies”, JTC 1/SC
7, 2007

[Kuh 007] T. Kuhne; D. Schreiber; 2007, “Can Programming be Liberated from the Two-Level Style? :

Multi-Level Programming with DeepJava” in OOPSLA'07 International Conference on Object-Oriented
Programming, Systems, Languages, & Applications No22, Montréal , CANADA (21/10/2007)

[Lim 2009] Q. Limbourg, J. Vanderdonckt, 2009. “Multipath Transformational Development of User

Interfaces with Graph Transformations”. In Human-Centered Software Engineering, Human-Computer
Interaction Series, Volume . ISBN 978-1-84800-906-6. Springer London, 2009, p. 107

[Myriad 2010] http://myriadinc.net/

[NoMagic 2010] No Magic, 2010, “MAGICDRAW”, https://secure.nomagic.com/spem_plugin

[Ode 1994] J.J. Odell, 1994, “Power types”. In the Journal of Object-Oriented Programming 7 (2), (1994)

8–12.

[OMG 2002] OMG, 2002 “Software & Systems Process Engineering Meta-Model Specification version

1.0”, In OMG Document Number: formal/02-11-14. Standard document URL: http://www.omg.org/cgi-
bin/doc?formal/02-11-14.pdf

[OMG 2008] OMG, 2008 “Software & Systems Process Engineering Meta-Model Specification version

2.0”, In OMG Document Number: formal/08-04-02. Standard document URL:
http://www.omg.org/spec/SPEM/2.0/PDF

[OPEN 2010] OPEN Consortium, 2010, “OEPN”, http://www.open.org.au/

[OpenUP 2010] http://epf.eclipse.org/wikis/openup/

UsiXML WORKPACKAGE 2: METHOD ENGINEERING 46/46
 UsiXML Consortium 2013

[OPF 2005] OPEN Process Framwork, 2005, “OPF Meta-Model”,
http://www.opfro.org/index.html?Overview/Metamodel.html~Contents

[Scrum 2010] http://www.scrum.org

[XP 2010] http://www.extremeprogramming.org/

