	[image: D:\users\T0132574\Web of Objects\Docs signés\Logos\Logo-WoO-01.PNG]
		Document name: D5.3 Service orchestration and composition logic

	Reference: WoO-WP5-D53-ETRI
	Version: 1.0
	Status: draft

	[image: ITEA2-RGB]

	
	
	

	[image: D:\users\T0132574\Web of Objects\Docs signés\Logos\Logo-WoO-01.PNG]
		Document name: D5.3 Service orchestration and composition logic

	Reference: WoO-WP5-D53-ETRI
	Version: 0.1
	Status: draft

	[image: ITEA2-RGB]

	
	
	

WoO - Web of Objects Project
D5.3 Service orchestration and composition logic

••

	Contract Number:
	

	Starting date:
	01/01/2013
	Ending date:
	31/12/2013

	Title of the main deliverable:
	Service orchestration and composition logic management

	Title of the main deliverable:
	WoO-WP5-D53-ETRI

	 Work Package deliverable:
	D3.3

	Task related to the deliverable:
	T5.3

	Type (Internal / Restricted / Public):
	Internal

	LEADER
	CONTRIBUTORS:

	Lead Participant:
ETRI
Lead author:
E-mail: nklee@etri.re.kr, hkw06@etri.re.kr
	· Partners: Concordia
· Partner: ETIC
· Partner: ETRI
· Partner: Miksystem
· Partner: NMATec
· Partner Odonata
· Partner: TCF
· Partner: Telecom
· Partner: Visual Tools
· Partner Telespazio Ibérica

	REVIEWERS
	

	
	

HISTORY

NB: a status is associated to each step of the document lifecycle:
· Draft: this version is under development by one or several partner(s);
· Under review: this version has been sent for review;
· Issued: this version of the document has been submitted to EC.

	Version
	Status
	Date
	Author
	Main Changes

	0.10
	Draft
	25/09/2013
	Heo Kyoungwoo
	

	0.20
	Draft
	08/10/2013
	Heo Kyoungwoo
	

	0.30
	Draft
	20/12/2013
	Ander Zubizarreta,
M. Saornil
	Definition and description of RESTful Web Services

	0.40
	Draft
	03/02/2013
	M. Saornil
	Service composition with RESTful Web Services

	0.50
	Draft
	04/03/2013
	Marc Caballé
	Hypermedia-Driven RESTful Service Composition

TABLE OF CONTENTS

1.	References	5
1.1.	List of Figures	5
2.	Public Summary, and Purpose	6
2.1.	Public Summary	6
2.2.	Purpose	6
3.	Introduction	7
3.1.	Service-Oriented Architecture	7
3.2.	Web Services	8
3.3.	Web Service Description	9
3.4.	Web Service Composition	9
4.	Service composition in the functional architecture	11
5.	Web Services Description	12
5.1.	Web Services Description Language	12
5.2.	Semantic for WSDL	12
5.3.	Semantic Markup for Web Services	12
5.4.	Web Service Modeling Ontology	14
6.	Service composition models	16
6.1.	Services orchestration	16
6.1.1.	WS-BPEL	16
6.2.	Services choreography	18
6.2.1.	WS-CDL	19
6.3.	Service coordination	21
6.4.	Service component model	21
7.	Automated Web Service Composition	23
7.1.	Workflow-based Approaches	23
7.2.	Semantics-based Service Composition	25
8.	Semantic Context-aware Service Composition	28
8.1.	System architecture for building automation system	28
8.2.	DPWS Service Discovery	30
8.3.	Context-Awareness	31
8.4.	BUILDING ONTOLOGY AND GRAPH DATABASE	32
8.5.	SEMANTIC CONTEXT-AWARE SERVICE COMPOSITION	35
8.5.1.	Composition Plan Description Language (CPDL)	36
8.5.2.	Service Composition	36
9.	WoO platform service composition	39
9.1.	Architecture of WoO platform	39
9.2.	Concept of WoO platform service	41
10.	Service composition using RESTful Web Services	43
10.1.	Definition and description of RESTful Web Services	43
10.2.	Service composition with RESTful Web Services	47
11.	Hypermedia-Driven RESTful Service Composition	50
[bookmark: _Toc381707458][bookmark: _GoBack]References
[bookmark: _Toc381707459]List of Figures
Figure 1 Elements of SOA, by Dirk Krafzig, Karl Banke, and Dirk Slama	7
Figure 2 Web services architecture.	9
Figure 3. Functional view.	11
Figure 4 Top level of the OWL-S ontology	13
Figure 5 The four main WSMO components	15
Figure 6 Purchase Order Process - Outline	17
Figure 7 Purchase Order Process	18
Figure 8 Distinction between orchestration and choreography	19
Figure 9 The Framework Architecture in Majithia	24
Figure 10 The Processes with Adaptive Web Services architecture	25
Figure 11 A direction generator component in CoSMoS	26
Figure 12 System configuration.	28
Figure 13 System architecture	30
Figure 14 Service discovery.	31
Figure 15 Building Ontology graph.	33
Figure 16 Composition process.	37
Figure 17 Context matching algorithm.	37
Figure 18 Architecture of WoO platform	39
Figure 19 Functional view of WoO platform	40
Figure 20 Service flow of WoO platform	42
Figure 21 Guinard’s metamodel	43
Figure 22 Diagram of the main classes used for the description of web services	44
Figure 23 Extract of the OWL description of the Content Service object	47

[bookmark: _Toc381707460]Public Summary, and Purpose
[bookmark: _Toc381707461]Public Summary
Service composition operating on top of all the communication protocols and technologies implemented in the Web of Objects brings underlying services altogether to create a new generation of smart applications over intelligent networked devices. Service composition is crucial to actualize the vision of the WoO as it is the last missing piece for wrapping all the technologies to present new experiences to end users. By facilitating a framework for dynamic service composition in the domain of WoO, (1) relevant data such as context information can be easily collected and processed; (2) applications can be developed to take use of available data. Additionally, with the help of semantic modelling, requirements and descriptions of applications can be integrated into application at ease which means a new user-friendly way for communicating with WoO applications is on the way.
[bookmark: _Toc381707462]Purpose
The task will standardize service composition for embedded devices especially for building automation. This task will use the output of Task 3.3 and adding to its application-specific service definitions. It will also include model driven development for network composition language. Moreover, will also study the services that we need to add to the current SOA common services, and we will also define specific services for smart industrial buildings.
In addition, the task will adapt the most pertinent service orchestration language (after SOTA identification) to the particularities of the embedded domain (e.g., dynamicity, events, timing, and data streams). As an example, orchestration language should support node announcement of some node information like (fault diagnostics, battery status … etc.) from node to the other network nodes.
Finally, this task will create a runtime which executes composition logic on a central instance or distributed within the network. This project shall investigate how to establish a network of such smart devices from the application point of view. Therefore relations between offered services and consumed services of devices, taking part in a distributed application, must be established. This means, that such an application consists of a network of several devices and their communication paths. The project will investigate existing solutions, describing such networks, e.g. based on ontology or configuration rules.

[bookmark: _Toc381707463]Introduction
[bookmark: _Toc381707464]Service-Oriented Architecture
In the last few years, Computer Science has observed a paradigm shift in the way software becomes available to end-users. The emergent paradigm is based on abstracting away from software and considering all resources as services that are available on demand, forming what is called Service-Oriented Computing (SOC). SOC relies on services in order to facilitate the development of interoperable, dynamic, inexpensive and widely distributed applications.
Service-oriented architecture (SOA) is a software design and software architecture design pattern based on discrete pieces of software providing application functionality as services to other applications. This is known as Service-orientation. It is independent of any vendor, product or technology.
A service is a self-contained unit of functionality, such as retrieving an online bank statement. Services can be combined by other software applications to provide the complete functionality of a large software application. SOA makes it easy for computers connected over a network to cooperate. Every computer can run an arbitrary number of services, and each service is built in a way that ensures that the service can exchange information with any other service in the network without human interaction and without the need to make changes to the underlying program itself.

[image: http://upload.wikimedia.org/wikipedia/commons/d/d4/SOA_Elements.png]
[bookmark: _Toc368934419][bookmark: _Toc375315937]Figure 1 Elements of SOA, by Dirk Krafzig, Karl Banke, and Dirk Slama

SOA is a style of design that guides all aspects of creating and using services throughout their lifecycle. SOA enables an IT infrastructure to allow diferent applications to exchange data and participate in business processes, regardless of the underlying complexity of the applications, such as the exact implementation or the operating systems or the programming languages used to develop them.
One of the core characteristics of services developed using service-orientation design paradigm is that they are composition-centric. Services with this characteristic can potentially address novel requirements by recomposing the same services in different configurations. Service composition architecture is itself a composition of the individual architectures of the participating services. In the light of the Service Abstraction principle, this type of architecture only documents the service contract and any published service-level agreement (SLA). If a service composition is a part of another (parent) composition, the parent composition can also be referenced in the child service composition. The design of service composition also includes any alternate paths, such as error conditions, which may introduce new services into the current service composition.
[bookmark: _Toc368937607][bookmark: _Toc381707465]Web Services
A SOA can be implemented using several different technologies such as SOAP, REST, CORBA and Web services. Web services are considered the most promising service-oriented technology and are defined by the World Wide Web Consortium (W3C).
A Web service is a software system designed to support interoperable machine-to-machine interaction over a network. It has an interface described in a machine-process able format (especially WSDL). Other systems interact with the Web service in a manner prescribed by its description using SOAP messages, typically conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.
Web services make extensive use of the XML language. From the definition of the messages exchanged between services to the service description, everything is based on XML, which is quite advantageous. XML is a simple language, both machine- and human-readable, with an intuitive hierarchical structure. It is also self-describing, as each XML data structure contains both a description of its structure and the content itself. Web services communicate by exchanging XML messages encoded using SOAP. SOAP defines a general pattern for Web service messages, some message exchange patterns, how XML information can be encoded in such messages and how these messages can be transported over the Internet using existing protocols such as HTTP or SMTP.

[image: http://upload.wikimedia.org/wikipedia/commons/4/4a/Webservices.png]
[bookmark: _Toc375315938]Figure 2 Web services architecture.

[bookmark: _Toc368937608][bookmark: _Toc381707466]Web Service Description
Web service description deals with specifying all the information needed in order to access and use a service. The description should be rich, containing both functional and non-functional aspects of the service while it may also contain information on the internal processes of the service, depending on whether the service provider or owner decides to exposes such information or not. Service descriptions should also be written in a formal, well-defined language, allowing for automated processing and verification of the produced description documents. These characteristics are also extremely useful when attempting to compose Web services.
[bookmark: _Toc368937609][bookmark: _Toc381707467]Web Service Composition
Web service composition involves combining and coordinating a set of services with the purpose of achieving functionality that cannot be realized through existing services. This process can be performed either manually or automatically (or semi automatically in some cases), while it can occur when designing a composite service, hence producing a static composition schema or at run-time, when that particular service is being executed, leading to dynamic composition schemas.
The process of creating a composition schema in order to satisfy a series of goals set by a requester is a really complex and multifaceted problem, since one has to deal with many different issues at once. First of all, it involves searching in an ever-growing global service repository in order to find matching services that may contribute to the complete satisfaction of the user's requirements. Assuming that these services have been found, one has to successfully combine them, resolving any conflicts and inconsistencies between them, since they most certainly will be created by different people using different implementation languages and systems. Since inconsistencies may occur at runtime, it may be necessary to predict such events so as to ensure that the system will run correctly. Finally, even after having overcome these issues, we have to be able to adapt to the dynamic characteristics of service-based systems, with services going offline, new services becoming online, and existing services changing their characteristics.
Attempting to overcome all these problems manually, will most certainly lead to a composition schema that is not fault-proof while the whole procedure will consume a lot of time and resources and cannot be considered scalable. Therefore, it is apparent that a certain degree of automation needs to be introduced to the composition procedure. Approaches that involve automation in the creation of the composition schema as well as during its execution constitute a major family known as automated service composition. Automated service composition has been a "silver bullet" in Web service research and has attracted a great deal of researchers worldwide. The main focus of this document is to analyze and compare the most representative efforts in the area of automated Web service composition and identify possible gaps and deficiencies that can be the focus of future research.
[bookmark: _Toc368937610][bookmark: _Toc381707468]Service composition in the functional architecture
Taken into account everything above and other ongoing works concerning IoT, the following figure depicts a functional overview of the WoO reference architecture.

[bookmark: _Toc353353074][bookmark: _Toc358809312][bookmark: _Toc375315939]Figure 3. Functional view.

In the service infrastructure, an open homogeneous distributed service infrastructure is introduced according to the functions and characteristics of the overall architecture. In addition, a context-aware service adaptation layer is formed targeting all the smart objects can collaborate together to accomplish assigned tasks. Within the service infrastructure, service & device registry, service discovery & look up, a semantic and adaptive service composition and service execution platform are introduced.
Service composition enables to construct complex and composite services from atomic services to achieve a speciﬁc task. Service composition models can be categorized into centralized and distributed ones. In other words, service composition can be classified in to service orchestration and services choreography. Services orchestration means that each player in the orchestra strictly follows instructions from the central conductor. Services choreography means different bricks of logic are deployed on each node to perform a global task following a global scenario without a single point of control.

[bookmark: _Toc368937611][bookmark: _Toc381707469]Web Services Description
[bookmark: _Toc368937612][bookmark: _Toc381707470]Web Services Description Language
Web service description deals with specifying all the information needed in order to access and use a service. The description should be rich, containing both functional and non-functional aspects of the service while it may also contain information on the internal processes of the service, depending on whether the service provider or owner decides to exposes such information or not. Service descriptions should also be written in a formal, well-defined language, allowing for automated processing and verification of the produced description documents. These characteristics are also extremely useful when attempting to compose Web services.
WSDL is an XML format for describing network services as a set of endpoints operating on messages containing either document-oriented or procedure-oriented information. The operations and messages are described abstractly, and then bound to a concrete network protocol and message format to define an endpoint. Related concrete endpoints are combined into abstract endpoints (services). WSDL is extensible to allow description of endpoints and their messages regardless of what message formats or network protocols are used to communicate, however, the only bindings described in this document describe how to use WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME.
[bookmark: _Toc368937613][bookmark: _Toc381707471]Semantic for WSDL
Semantic Annotations for WSDL is based on and shares the same design principles of previous work done by IBM and the LSDIS Lab of the University of Georgia and published as a W3C Member Submission with the title Web Service Semantics (WSDL-S). SAWSDL denes a way to semantically annotate WSDL interfaces and operations as well as XML Schema types, linking them to concepts in an ontology or a mapping document. The annotation mechanism is independent of ontology or mapping languages. The annotations are meant to help during Web service discovery, invocation and composition.
The SAWSDL extension can be applied to both WSDL 1.1 and WSDL 2.0 documents, although the latter case is more seamless than the first. Following from the ability of mapping WSDL 2.0 to RDF, SAWSDL-annotated WSDL documents can also be mapped to RDF. SAWSDL keeps the semantic model outside WSDL, making the approach independent from any ontology language. However, without describing how the use of annotations in different languages relate to one another, it is rather difficult, if not impossible to formally define requests, queries or matching between service requests and service descriptions. As a result, SAWSDL may be successful in annotating WSDL with semantic information, but does not other any support for automated service discovery and composition.
[bookmark: _Toc368937614][bookmark: _Toc381707472]Semantic Markup for Web Services
OWL-S is the result of a collaborative effort by researchers at several universities and organizations, including University of Toronto, Yale University, University of Maryland at College Park and Carnegie Mellon University, as well as SRI Inter- national and Nokia. The researchers' goal is to establish a framework within which these Web service descriptions are made and shared, employing a standard ontology, consisting of a set of basic classes and properties for declaring and describing services. The ontology structuring mechanisms of OWL provided them with an appropriate, Web-compatible representation language framework within which to realize their goal.

[image:]
[bookmark: _Toc375315940]Figure 4 Top level of the OWL-S ontology

In Figure 4, the structuring of OWL-S in sub-ontologies is shown. This structuring of the ontology aims to provide three essential types of knowledge about a service. Structuring of the ontology of services is motivated by the need to provide three essential types of knowledge about a service, each characterized by the question it answers:
What does the service provide for prospective clients? The answer to this question is given in the "profile2," which is used to advertise the service. To capture this perspective, each instance of the class Service presents a ServiceProfile.
How is it used? The answer to this question is given in the "process model." This perspective is captured by the ServiceModel class. Instances of the class Service use the property describedBy to refer to the service's ServiceModel.
How does one interact with it? The answer to this question is given in the "grounding." A grounding provides the needed details about transport protocols. Instances of the class Service have a supports property referring to a ServiceGrounding.
The class Service provides an organizational point of reference for a declared Web service; one instance of Service will exist for each distinct published service. The properties presents, describedBy, and supports are properties of Service. The classes ServiceProfile, ServiceModel, and ServiceGrounding are the respective ranges of those properties. Each instance of Service will present a ServiceProfile description, be describedBy a ServiceModel description, and support a ServiceGrounding description. The details of profiles, models, and groundings may vary widely from one type of service to another--that is, from one instance of Service to another. But each of these three service perspectives provides an essential type of information about the service.
The ServiceProfile provides the information needed for an agent to discover a service, while the ServiceModel and ServiceGrounding, taken together, provide enough information for an agent to make use of a service, once found.
The service profile tells "what the service does", in a way that is suitable for a service-seeking agent (or matchmaking agent acting on behalf of a service-seeking agent) to determine whether the service meets its needs. This form of representation includes a description of what is accomplished by the service, limitations on service applicability and quality of service, and requirements that the service requester must satisfy to use the service successfully.
The service model tells a client how to use the service, by detailing the semantic content of requests, the conditions under which particular outcomes will occur, and, where necessary, the step by step processes leading to those outcomes. That is, it describes how to ask for the service and what happens when the service is carried out. For nontrivial services (those composed of multiple steps over time), this description may be used by a service-seeking agent in at least four different ways: (1) to perform a more in-depth analysis of whether the service meets its needs; (2) to compose service descriptions from multiple services to perform a specific task; (3) during the course of the service enactment, to coordinate the activities of the different participants; and (4) to monitor the execution of the service.
A service grounding ("grounding" for short) specifies the details of how an agent can access a service. Typically a grounding will specify a communication protocol, message formats, and other service-specific details such as port numbers used in contacting the service. In addition, the grounding must specify, for each semantic type of input or output specified in the Service Model, an unambiguous way of exchanging data elements of that type with the service (that is, the serialization techniques employed).
The upper ontology for services specifies only two cardinality constraints: a service can be described by at most one service model, and a grounding must be associated with exactly one service. The upper ontology deliberately does not specify any minimum cardinality for the properties presents or describedBy. (Although, in principle, a service needs all three properties to be fully characterized, it is easy to imagine situations in which a partial characterization could be useful.) Nor does the upper ontology specify any maximum cardinality for presents or supports. (It will be extremely useful for some services to offer multiple profiles and/or multiple groundings.)
Finally, it must be noted that while we define one particular upper ontology for profiles, one for service models, and one for groundings, nevertheless OWL-S allows for the construction of alternative approaches in each case. Our intent here is not to prescribe a single approach in each of the three areas, but rather to provide default approaches that will be useful for the majority of cases.
[bookmark: _Toc368937615][bookmark: _Toc381707473]Web Service Modeling Ontology
WSMO is a conceptual model for describing various aspects related to Semantic Web services, produced by the ESSI WSMO working group which consists mainly of members of DERI and The Open University. The objective of WSMO and its accompanying efforts is to solve the application integration problem for Web services by defining a coherent technology for Semantic Web services. To formalize WSMO, the WSMO working group developed the Web service Modeling Language (WSML) and defined several variants of it, each one based on different formalisms. As illustrated in Figure 5, four main components are defined in WSMO.
[image:]
[bookmark: _Toc375315941]Figure 5 The four main WSMO components

Following the key aspects identified in theWeb Service Modeling Framework, WSMO identifies four top-level elements as the main concepts which have to be described in order to define Semantic Web Services:
· Ontologies provide the terminology used by other WSMO elements to describe the relevant aspects of the domains of discourse. In contrast to mere terminologies that focus exclusively on syntactic aspects, ontologies can additionally provide formal definitions that are machine-processable and thus allow other components and applications to take actual meaning into account.
· Web services represent computational entities able to provide access to services that, in turn, provide some value in a domain; Web service descriptions comprise the capabilities, interfaces and internal working of the service. All these aspects of a Web service are described using the terminology defined by the ontologies.
· Goals describe aspects related to user desires with respect to the requested functionality; again, Ontologies can be used to define the used domain terminology, useful in describing the relevant aspects of goals. Goals model the user view in the Web service usage process, and therefore are a separate top-level entity in WSMO.
· Finally, Mediators decribe elements that handle interoperability problems between different WSMO elements. We envision mediators as the core concept to resolve incompatibilities on the data, process and protocol level, i.e., in order to resolve mismatches between different used terminologies (data level), in how to communicate betweenWeb services (protocol level) and on the level of combiningWeb services (process level).
[bookmark: _Toc368937616][bookmark: _Toc381707474]Service composition models
Web service composition involves combining and coordinating a set of services with the purpose of achieving functionality that cannot be realized through existing services.
[bookmark: _Toc368937617][bookmark: _Toc381707475]Services orchestration
Orchestration is a description of how the services that participate in a composition interact at the message level, including the business logic and the order in which the interactions should be executed. Thus, an orchestration should define which message is sent when and by which participating service. A service orchestration can be considered as being proactive, as it defines the interactions with the services it orchestrates, before any actual execution takes place. Several researchers differentiate between composition synthesis and orchestration. Composition concerns synthesizing a specification of how to coordinate the component services to fulfill the client request generating a plan that dictates how to achieve a desired behavior by combining the abilities of multiple services. On the other hand, orchestration is about executing the result of composition synthesis by coordinating the control and data flow among the participating services and also about supervising and monitoring that execution. Service orchestrations are typically described and executed using workflow languages.
[bookmark: _Toc368937618][bookmark: _Toc381707476]WS-BPEL
The most prominent and universally adopted language for describing service orchestration is Business Process Execution Language (WS-BPEL). BPEL is an XML-based language for representing the business logic, in other words the data flow and control flow of processes. The control flow may contain alternative execution paths, exception and fault handling, event handling and additional rules and constraints. Apart from that, BPEL processes contain participants (Web services) that are assigned to each activity contained in the process. In its official document, only WSDL descriptions may be associated with a BPEL process, which limits BPEL to static and syntactic (without semantics) service compositions. However, there have been research efforts that aim to address these deficiencies and provide support for dynamicity and semantics.
Figure 6 shows a simple example of a WS-BPEL process for handling a purchase order. The operation of the process is very simple: Purchase Order Process Outline. Dotted lines represent sequencing. Free grouping of sequences represents concurrent sequences. Solid arrows represent control links used for synchronization across concurrent activities. Note that this is not meant to be a definitive graphical notation for WS-BPEL processes. It is used here informally as an aid to understanding.
On receiving the purchase order from a customer, the process initiates three paths concurrently: calculating the final price for the order, selecting a shipper, and scheduling the production and shipment for the order. While some of the processing can proceed concurrently, there are control and data dependencies between the three paths. In particular, the shipping price is required to finalize the price calculation, and the shipping date is required for the complete fulfillment schedule. When the three concurrent paths are completed, invoice processing can proceed and the invoice is sent to the customer.
[image: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS_files/image002.png]
[bookmark: _Toc368934422][bookmark: _Toc375315942]Figure 6 Purchase Order Process - Outline

The WSDL port type offered by the service to its customers (purchaseOrderPT) is shown in the following WSDL document. Other WSDL definitions required by the business process are included in the same WSDL document for simplicity; in particular, the port types for the Web Services providing price calculation, shipping selection and scheduling, and production scheduling functions are also defined there. Observe that there are no bindings or service elements in the WSDL document. A WS-BPEL process is defined by referencing only the port types of the services involved in the process, and not their possible deployments. Defining business processes in this way allows the reuse of business process definitions over multiple deployments of compatible services.
The <partnerLinkType>s included at the bottom of the WSDL document represent the interaction between the purchase order service and each of the parties with which it interacts (see section 6. Partner Link Types, Partner Links, and Endpoint References). <PartnerLinkType>s can be used to represent dependencies between services, regardless of whether a WS-BPEL business process is defined for one or more of those services. Each <partnerLinkType> defines up to two "role" names, and lists the port types that each role must support for the interaction to be carried out successfully. In this example, two <partnerLinkType>s, "purchasingLT" and "schedulingLT", list a single role because, in the corresponding service interactions, one of the parties provides all the invoked operations: The "purchasingLT" <partnerLinkType> represents the connection between the process and the requesting customer, where only the purchase order service needs to offers a service operation ("sendPurchaseOrder"); the "schedulingLT" <partnerLinkType> represents the interaction between the purchase order service and the scheduling service, in which only operations of the latter are invoked. The two other <partnerLinkType>s, "invoicingLT" and "shippingLT", define two roles because both the user of the invoice calculation and the user of the shipping service (the invoice or the shipping schedule) must provide callback operations to enable notifications to be sent ("invoiceCallbackPT" and "shippingCallbackPT" port types).

[image: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS_files/image003.png]
[bookmark: _Toc375315943]Figure 7 Purchase Order Process

[bookmark: _Toc368937619][bookmark: _Toc381707477]Services choreography
Choreography is associated with the globally visible message exchanges, rules of interaction and agreements that occur between multiple business processes. This is their main defining characteristic, as they differ from orchestration, which typically specifies a business process executed by a single party. In choreographies, partners are in full control of their internal business processes and do not expose them to other partners, unless they are essential to the communication. Choreographies are conceptually related to conversations, which are defined as a message exchange between two partners that follows the rules of the overall choreography. The principal language for defining choreographies is Web services Choreography Description Language (WS-CDL). WS-CDL uses bi-lateral interactions with one or two messages to incrementally model any interaction. The basic building blocks are request-only, response-only, and request-response. There is a limited set of control flow constructs (sequence, parallel, choice and work-unit) in order to represent the composition of interactions. Although orchestration and choreography can be used separately to implement a service composition, their different viewpoints can be combined for a more complete representation. Orchestration can be used to describe participating services in the lower abstraction level and choreography can give a higher-level description of how these orchestrations interact with each other and capture the complex conversations between them in order to realize the goal set by the requester. Of course, one can argue that the higher level description can also be realized using an orchestration model, but this would automatically imply that composition synthesis is involved for the creation of the process description of the orchestration, which may not be what the partners want, hence leaving choreography as the most suitable choice.
The distinction between choreographies and orchestrations can be summarized as in the following figure:
[image: Image_1]
[bookmark: _Toc368934423][bookmark: _Toc375315944]Figure 8 Distinction between orchestration and choreography

More generally, relying on choreographies helps dealing with scalability (e.g. in the number of users, service instances, composed services,), Heterogeneity (e.g. in the diversity of service types, technologies,), Mobility (leading to mobile and volatile services) and Awareness & Adaptability (overcoming the volatility of services).
[bookmark: _Toc368937620][bookmark: _Toc381707478]WS-CDL
The principal language for defining choreographies is Web services Choreography Description Language (WS-CDL). WS-CDL uses bi-lateral interactions with one or two messages to incrementally model any interaction.
The WS-CDL is an XML-based language that describes peer-to-peer collaborations of participants by defining, from a global viewpoint, their common and complementary observable behavior; where ordered message exchanges result in accomplishing a common business goal.
The Web Services specifications offer a communication bridge between the heterogeneous computational environments used to develop and host applications. The future of E-Business applications requires the ability to perform long-lived, peer-to-peer collaborations between the participating services, within or across the trusted domains of an organization.
The Web Services Choreography specification is targeted for composing interoperable, peer-to-peer collaborations between any type of participant regardless of the supporting platform or programming model used by the implementation of the hosting environment.
WS-CDL describes interoperable, peer-to-peer collaborations between participants. In order to facilitate these collaborations, services commit to mutual responsibilities by establishing formal relationships. Their collaboration takes place in a jointly agreed set of ordering and constraint rules, whereby information is exchanged between the participants.
The WS-CDL model consists of the following entities:
· roleType, relationshipType and participantType - Within a choreography, information is always exchanged between participants within or across trust boundaries. All interactions occur between roles being exhibited by participants, and are constrained by a relationship. Within WS-CDL, a participant is abstractly modeled by a participantType, a role by a roleType, and a relationship by a relationshipType:
· A participantType groups together those parts of the observable behavior that must be implemented by the same logical entity or abstract organization
· A roleType enumerates potential observable behavior a participantType can exhibit in order to interact
· A relationshipType identifies the mutual commitments that must be made for collaborations to be successful
· informationType, variable and token - A variable contains information about commonly observable objects in a collaboration, such as the information exchanged or the observable information of the roleTypes involved. A token is an alias that can be used to reference parts of a variable. Information exchange variables, state capturing variables and tokens have informationTypes that define the type of information the variable contains or the token references
· choreography - A choreography defines collaborations between interacting participantTypes:
· Choreography life-line - The choreography life-line expresses the progression of a collaboration. Initially, the collaboration is established between participants, then work is performed within it and finally it completes either normally or abnormally
· Choreography exception blocks - An exception block specifies what additional actions should occur when a choreography behaves in an abnormal way
· Choreography finalizer blocks - A finalizer block specifies additional actions that should occur to modify the effect of an earlier successfully completed choreography, for example to confirm or undo the effect

· channelType - A channel realizes a point of collaboration between participantTypes by specifying where and how information is exchanged. Within WS-CDL, channels are abstractly modeled as channelTypes

· workunit - A workunit prescribes the constraints that must be fulfilled for making progress, and thus performing work, within a choreography

· activities and ordering structures - Activities describe the actions performed within a choreography. Ordering structures combine activities with other ordering structures in a nested structure to express the ordering rules of actions performed within a choreography

· interaction activity - An interaction is the basic building block of a choreography. It results in an exchange of information between participants and possible synchronization of their observable information changes

· semantics - Semantics allow the creation of descriptions that can record the semantic definitions of every component in the model

A WS-CDL document is simply a set of definitions. Each definition is a named construct that can be referenced. There is a package element at the root, and the individual choreography type definitions inside.
A choreography package aggregates a set of WS-CDL type definitions, provides a namespace for the definitions and through the use of XInclude, MAY syntactically include WS-CDL type definitions that are defined in other choreography packages.
<package
 name="NCName"
 author="xsd:string"?
 version="xsd:string"?
 targetNamespace="uri"
 xmlns="http://www.w3.org/2005/10/cdl">

 <informationType/>*
 <token/>*
 <tokenLocator/>*
 <roleType/>*
 <relationshipType/>*
 <participantType/>*
 <channelType/>*

 Choreography-Notation*
</package>
[bookmark: _Toc368937621][bookmark: _Toc381707479]Service coordination
Service coordination involves temporarily grouping a set of service instances following a coordination protocols. This protocol dictates the way participating services interact and also the outcome of the interaction, whether it was successful or not. The defining characteristic of coordination is the existence of a third party, called the coordinator, who acts as the nexus between participants and ultimately is responsible for the upholding of the protocol and the decision and dissemination of the outcome, once the activity ends. The participating services typically do not communicate directly with each other in a coordination model, all communication involves the coordinator.
OASIS has developed the Web Services Composite Application Framework (WS-CAF) which includes, among others, Web Services Coordination Framework (WS-CF). In WS-CF, coordination is defined based on three components, the coordinator, the participants and the coordination service. The coordinator provides an interface for the participants to register coordinates the participants according to the protocol and disseminates the protocol outcome. The participants can be single Web Services or composite ones. The coordination service is merely the implementation of the coordination protocol.
[bookmark: _Toc368937622][bookmark: _Toc381707480]Service component model
The final model that we will examine is the Component model, which is sometimes referred to as service wiring. Service wiring involves the actual linking between inputs and outputs when services are being composed together. An indicative example of service wiring is Service Component Architecture (SCA). In this architecture, services components can be implemented in any programming language available and encapsulated so that all components share a similar description. Service components can be wired together to form a so-called Composite. Composites then can operate as service components themselves. The component model can be used together with an orchestration with the latter describing the control and data flow between participating services and the former implementing the actual input and output connections from one service to another.
[bookmark: _Toc381707481]Automated Web Service Composition
The process of creating a composition schema in order to satisfy a series of goals set by a requester is a really complex and multifaceted problem, since one has to deal with many different issues at once. First of all, it involves searching in an ever-growing global service repository in order to find matching services that may contribute to the complete satisfaction of the user's requirements. Assuming that these services have been found, one has to successfully combine them, resolving any conflicts and inconsistencies between them, since different people using different implementation languages and systems most certainly will create them. Since inconsistencies may occur at runtime, it may be necessary to predict such events so as to ensure that the system will run correctly. Finally, even after having overcome these issues, we have to be able to adapt to the dynamic characteristics of service-based systems, with services going online, new services becoming online, and existing services changing their characteristics.
Attempting to overcome all these problems manually, will most certainly lead to a composition schema that is not fault-proof while the whole procedure will consume a lot of time and resources and cannot be considered scalable. Therefore, it is apparent that a certain degree of automation needs to be introduced to the composition procedure. Approaches that involve automation in the creation of the composition schema as well as during its execution constitute a major family known as automated service composition. Automated service composition has been a "silver bullet" in Web service research and has attracted a great deal of researchers worldwide.
[bookmark: _Toc381707482]Workflow-based Approaches
Workflow organization and management have been a major research topic for more than twenty years. As a result, there has been a lot of effort on how to represent a sequence of actions. Drawing mainly from the fact that a composite service is conceptually similar to a workflow, it is possible to exploit the accumulated knowledge in the workflow community in order to facilitate Web service composition. Composition frameworks based on workflow techniques were one of the initial solutions proposed for automatic Web service composition. Initially, most works focused on static and manual compositions. More recent work, however, has attempted to realize automated Web service composition. Due to the popularity of BPEL, most approaches in this category employ BPEL in one way or another.
Majithia et al. present a framework that automatically constructs a Web service composition schema from a high-level objective. The input objective is fed to an abstract work flow generator that attempts to create an abstract work flow (written in BPEL) that satisfies the objective, either by using already generated work flows or subsets of them that are stored in a repository or by performing backtracking to find a chain of services that satisfy the objective. The abstract work flow is then concretized, either by finding existing services through a matchmaking algorithm that matches inputs and outputs and binding them to the work flow or by recursively calling the abstract work flow generator if no service can be found for an activity.
The framework architecture of Majithia is shown in Fig. 9. Everything is a service. Services are de-scribed and invoked based on their descriptions. The key bootstrap operation is the location of the Workflow Manager Service (WFMS). The WFMS puts together the framework required based on available services and user-specified preferences. The framework consists of two core and five supporting services: Abstract Workflow Composer (AWFC), Concrete Workflow Composer (CWFC), Reasoning Service (RS), Matchmaker Service (MMS), Abstract Workflow Repository (AWFR), Concrete Workflow Repository (CWFR) and the Rule base (RB). The WFMS coordinates the entire process and manages the flow of messages between the components. The AWFC is a service which accepts an incoming user-specified high-level goal and transforms this into an abstract workflow. At this level, all tasks and their inputs and outputs are referred to by their logical names. The AWFC will typically query the AWFR to ascertain if the same request has been processed previously. If so, the abstract workflow will be returned to the Manager Service. If not, a request will be made to the Reasoning Service to retrieve a process template from the Rule base which can satisfy the request. If a process template is not available, an attempt will be made to retrieve a combination of tasks that provide the same functionality based on the inputs, outputs, preconditions and effects. The same process will apply to all constituent services. An abstract workflow is generated and returned to the Manager Service. The CWFC Service accepts an abstract workflow and attempts to match the individual tasks with available instances of actually deployed services. If the matching process is successful, an executable graph is generated and returned to the Manager Service. If not, a request will be made to the Reasoning Service and the Matchmaker Service to retrieve a combination of services that can provide the required functionality. The AWFR and CWFR Services are domain specific services which wrap and provide access to the workflow repositories. The repositories store abstract and concrete workflows respectively.

[image:]
[bookmark: _Toc375315945]Figure 9 The Framework Architecture in Majithia

PAWS is a framework developed by Politecnico di Milano focusing on the adaptation and flexibility of service compositions modeled as business processes. Designers create a BPEL process, which is then annotated with global and local constraints that usually refer to QoS aspects. The constraints are expressed as Service-Level Agreements (SLAs). For each task in the created process, an advanced service retrieval module attempts to find services that have the required interface (expressed in WSDL or SAWSDL) and do not violate any constraints, by performing SLA negotiation. If no exact interface matches are found, a mediator is used to reconcile the interface discrepancies. For each task, more than one candidate services are selected. When the BPEL engine eventually executes the process, one candidate service is invoked for each task. PAWS also supports self-healing allowing for faulty services to be substituted by other candidate services and at the same time enabling recovery actions to undo the results of the faulty services.

[image:]
[bookmark: _Toc375315946]Figure 10 The Processes with Adaptive Web Services architecture

Figure 10 shows the design-time and runtime modules that constitute the PAWS framework. In PAWS, both service discovery and service selection are driven not only by functional aspects (what the service should do), but also by nonfunctional aspects (how the service should work). Regarding the latter, all PAWS modules rely on a shared QoS model5 to express global and local QoS constraints, to discover the set of candidate services, and to select the most suitable services.
[bookmark: _Toc381707483]Semantics-based Service Composition
Fujii and Suda propose architecture for semantics-based, context-aware, dynamic service composition inspired by the component model mentioned in a previous section. They introduce CoSMoS, a semantic abstract model for both service components and users, which is the basis for all required representations of their framework. Their composition approach, named SeGSeC, involves receiving a natural language request from the user, which is parsed using preexisting natural language analysis technologies into a CoSMoS model instance. This is fed to the workflow synthesis module, which creates an executable work flow by discovering and interconnecting components based on the request and the components' functional description. The work flow synthesis module is apparently limited to sequential and parallel composition schemas. Then a semantic matching module ensures that the selected components are semantically equivalent to the user request. If more than one component satisfies both functional and semantic properties for a given task, then context information is exploited, based on rules defined by the user or based on a history of previous decisions, in order to select the most suitable component. The final work flow is then executed and monitored. When a service failure is detected or a change in context is perceived, the work flow can be dynamically modified to adapt to these changes. In general, we can conclude that while work flow-based composition approaches have evolved from offering only manual and static composition methods to supporting automation and dynamicity, the resulting work flows are limited to simple schemas such as sequential and parallel execution, or in other cases, such as PAWS, automation is only supported during the execution and adaptation of the work flow, while the work flow design process is manual. This deficiency has been addressed by combining work flow-based methods with AI planning techniques. We will examine such works when we analyze planning-based composition approaches.
[image:]
[bookmark: _Toc375315947]Figure 11 A direction generator component in CoSMoS

CoSMoS represents the functional aspect of a component as a semantic graph. In CoSMoS, a component is represented as a Component node. An operation of a component is represented as an Operation node with an ‘implements’ link connected to a Component node. Similarly, a property of a component is represented as a Component node (representing the property) with a ‘hasPropertyOf’ link connected to another Component node (representing the owner of the property). The inputs and outputs of an operation are represented as Component nodes (representing the input or the output) with ‘inputs’ and ‘outputs’ links connected to an Operation node. The exception of an operation is represented as an Exception node with a ‘throws’ link connected to an Operation node. Each Component node may have a ‘representedBy’ link pointing toward a DataType node (or its subclass node such as Structure or Binary), representing the data type of the component.

Figure 11 shows an example of how CoSMoS represents the functional aspect of the direction generator component as a semantic graph. The functional aspect represents that ‘Component DirectionGenerator’ implements ‘Operation generate’, which accepts two inputs, ‘Component originComp’ and ‘Component destComp’, and generates one output, ‘Component dirImage’.
[bookmark: _Toc368937624][bookmark: _Toc381707484]Semantic Context-aware Service Composition
The idea of smart house or smart building has been around and well-known for years as highly-expected products. Building Automation System (BAS) residing at the heart of such smart environments interacts with all of its components including hardware, software, and the communication among them. It involves in several disciplines such as electronics, informatics, automation, or control engineering. BAS, since its debut, has been developed and promoted by a community of developers, technologists, and scientists with plenty of impressive prototypes and products. These products bring in comforts and conveniences to daily life, freeing people from tedious house-works or office-works. Use cases vary from very simple ones e.g., automatically turn on/off the lights to complex and critical situations e.g., security surveillance. Furthermore, BAS also provides value-added services by offering intelligent services such as customer tracking in shopping malls or elderly people healthcare services. All of those make it a very promising business attracting attention of the community to target not only organization customers but also individual end-users.
[image:]
[bookmark: _Toc375315948][bookmark: _Toc368934424]Figure 12 System configuration.

Typical four groups of devices which consist of Sensors/Actuators, DPWS devices, Android devices, and Context Collectors are deployed at the same time in a room of a building.
[bookmark: _Toc368937625][bookmark: _Toc381707485]System architecture for building automation system
System configuration shown in Fig. 12 depicts main components and a typical setup of equipment inside a room of a building. There are four groups of devices which are all Device Profile for Web Service (DPWS)-supported consisting of a wide range of building appliances including sensors/actuators, Radio Frequency Identification (RFID) readers, other appliances with TCP/IP stack and low power wireless protocols, and Android devices. The first group is Sensors/Actuators which are attached to devices to provide networked functionalities. They are implemented by uDPWS over the Contiki OS.

The second group is about DPWS devices which consists of devices natively support DPWS with full TCP/IP stack. These devices are developed using DPWS-gSOAP and can be connected directly to the IP network. Third group is new-born Android devices which are attracting much attention recently. In the year 2011 some big electronics like Panasonic or Archos released home appliances based on Android operating system. Google itself introduced the Android@Home at the 2011 Google’s annual I/O developer conference with the intention of turning home into a network of Android accessories. Along with that event, Google also announced that it had collaborated with a partner to launch Android-enabled LED light bulbs. Though there has been some delay in the launching of aforementioned Android home appliances but with the constant development of Android platform these days, Android-based home and building devices and appliances are very promising products in the near future. The fourth and last group is classified as Context Collectors consisting of sensors to provide sensing capacities and RFID readers to receive users’ identifiers. All hardware components are connected to Building Application Server (BApS) directly or indirectly via gateways to expose their services. BApS hosts the core functionalities of the system with the details to be discussed in the following sections.
System architecture shown in Fig. 7 consists of several subsystems and modules. The first subsystem DATABASE is composed by a Building Ontology, semantic Graph Database, another database for Composition Plan and a caching component of Service Cache to improve the operation of the service execution process. Building Ontology provides the description of concepts and their relationships in building environment. The second subsystem is COMMUNICATION which represents for functionalities over heterogeneous communication methods including TCP/IP and several other low power wireless protocols. There are different types of hardware devices ranging from sensor nodes, sensor/actuator nodes, DPWS devices, Android devices and RFID readers which are connected to the network by different types of communication protocols.
Note that there are two types of sensors: one attached to device to provide sensing functionality; the other used for collecting context information such as temperature or moisture level in building environment. The third subsystem DISCOVERY consists of two modules Service Discoverer and Service Cacher but they work closely to each other under the DPWS WS-Discovery specification. Service Discoverer plays the role as an interface between the core of BAS and devices. It sends request to the network to discover connected devices and accompanied services, then receives information of available devices/services. Service Cacher runs frequently to update the Service Cache and also carries out the update process whenever Service Discoverer is in operation.
COMPOSITION, the fourth and the central subsystem resides at the center of the architecture. Its six-phased composition process helps to realize and deliver appropriate composite services to user based on the context of user and environment. The subsystem can be functionally divided into selecting services, binding services and executing services which are reflected in three components of the COMPOSITION: Service Selector, Service Binder, and Service Executor respectively.
Among the other modules, Semantic Reasoner is also an important part playing as a link between Building Ontology, Graph Database and the software component of COMPOSITION. This module is described subsequently along with the Building Ontology and graph database in Section IV. Composition Plan Creator has access to Composition Plan database and provides functionalities for users to create, modify, and delete composition plans. The wrapping interface over this module can be a part of Web or smartphone applications providing typical graphical buttons or combo boxes for users to interact with the system. Context Processor receives raw context data from Context Collectors, removes headers and redundant packets to extract important information, and then sends them to the Composition Broker in form of structured data. Composition Broker decides whether to call the COMPOSITION or not with simple decision-making mechanism based on the received context information.
DPWS service discovery as the main content of DISCOVERY subsystem is going to be firstly introduced to explain the communication between devices and the core of the system. Then context-awareness in the context of BAS is also explained later on in this section to give the details of context data and how to process them for the composition process.

[image:]
[bookmark: _Toc368934425][bookmark: _Toc375315949]Figure 13 System architecture

System architecture consists of four main subsystems DATABASE, COMMUNICATION, DISCOVERY and COMPOSITION and four other modules Composition Plan Creator, Semantic Reasoner, Composition Broker and Context Processor
[bookmark: _Toc368937626][bookmark: _Toc381707486]DPWS Service Discovery
Different types of hardware components built over DPWS specification share the same dynamic mechanism of exposing and discovering in the network which is called DPWSDiscovery as part of DPWS specification. Therefore Service Discoverer module can universally detect and communicate with each service and all of their operators regardless of the origin of the hosting device, hardware or operating system.
[image:]
[bookmark: _Toc375315950]Figure 14 Service discovery.

Devices in different types send Hello/Bye messages to the network to join/leave the network. A client sends Probe message to request for the service of a specific device, a matching service returns Probe Match message to confirm its existence.
Fig. 14 shows the process of discovering devices. DPWS devices send “Hello” and “Bye” message to join and leave the network. When a DPWS client wants a DPWS device, e.g., with the identifier as a printer ns:ExamplePrinterDevice, it sends a Probe:ExamplePrinterDevice message to know if one is connected on the network. A DPWS printer receives this probe and answers back information that it is a printer (by sending a ProbeMatch). Other DPWS devices also receive this probe but they don’t answer (as not ExamplePrinterDevice printer). Listing 1 shows typical Java codes used to search for the device with information described in SearchParameter. The DPWS device asks directly to the printer its services metadata and the printer sends its metadata back. In case of discovering all the devices available in the network, the client puts null in the device identifier parameter to get a set of connected devices. A callback function or a handler is called when there’s a matching service found.
Information about each service associated with each device is collected through the service discovery process and is frequently updated to a data structure called Service Cache. Listing 2 shows an example of a light service in the room 803 stored in the Service Cache with three pieces of information Service Type, Endpoint Reference Address and WSDL.
[bookmark: _Toc368937627][bookmark: _Toc381707487]Context-Awareness
Context-awareness plays an important role in the pervasive computing architectures to enable the automatic modification of the system behavior according to the current situation with minimal human intervention. Context has become a powerful and longstanding concept in human-machine interaction. As human beings, we can more efficiently interact with each other by fully understanding the context in which the interactions take place.
Listing 1. Service Search.
[image:]

Listing 2. Service Cache.
[image:]

It is difficult to enable a machine to understand and use the context of human beings. Therefore the concept of context-awareness becomes critical and is generally defined by those working in ubiquitous/pervasive computing, where it is a key to the effort of bringing computation into daily lives. One major task in context-aware computing is to acquire and utilize information about the context of participating entities of a system in order to provide the most adequate services. The service should be appropriate to the particular person, place, time, event, etc. where it is required. In the scope of this building automation, user, device and environment context are considered in order to bring more efficient service composition.
Context information is collected by Sensors and RFID Readers which are classified as Context Collectors. There are two types of context including User (U) and Environment (E). The raw data are sent to and processed by Context Broker to yield the structured data in the format of {Type, Location, and Source}, here are two examples of context.

1) {U, Room803, Smith}
2) {E, Room803, TempSensor803}

The processed data then are sent to Composition Broker which plays the role as a composition decision maker. It decides whether to call the COMPOSITION or not. For example, if the context information of room temperature is over 10 degree Celsius, no composition will be carried out otherwise Composition Broker checks the temperature with current status of the system to launch the COMPOSITION in case the situation is labeled as context change.
[bookmark: _Toc368937628][bookmark: _Toc381707488]BUILDING ONTOLOGY AND GRAPH DATABASE
Building Ontology defines concepts and relationships between entities within the building environment. It provides a schema to build up semantic database in form of graph data. This is a new concept of database for Semantic Web which consumes RDF to present the domain knowledge. RDF is a common acronym within the semantic web community as it creates one of the basic building blocks for forming the Web of semantic data. A graph consists of resources related to other resources, with no single resource having any particular intrinsic importance over another. RDF database includes of RDF statements, or sometimes called an RDF triples. The term triple is used to describe the components of a statement with three constituent parts: the subject, predicate, and object of the statement.
The primary purpose of this ontology is to classify things in terms of semantics, or meaning and especially for describing policies used in composition process. A class in Web Ontology Language (OWL) is a classification of individuals into groups which share common characteristics. If an individual is a member of a class, it tells a machine that it falls under the semantic classification given by the OWL class. This provides the meaning of the data that helps reasoning engine to draw inferred information from the database. Listing 3 shows a part of Building Ontology document in OWL by Protégé-OWL editor. The listing consists of document header and the declaration of the class Policy with two properties of applyFor and hasCondition. These properties also reflex the relationship of class Policy with other classes including Building, User and Condition. Fig. 4 shows the classes of Building Ontology and their hierarchical relationship. An example of the hierarchy between classes of User and Director can be seen in the figure with the arrow starting from User pointing to Director which means Director is a subclass of User and inherits all the properties of User.

[image:]
[bookmark: _Toc375315951][bookmark: _Toc368934427]Figure 15 Building Ontology graph.

The highlighted blocks in the graph show the hierarchy among class Service and its subclasses. The dotted line with a label presents a property called locatedIn which takes class Room as object meaning a service is located in a room.

[image:]
Listing 3. Building Ontology Document.

[image:]
Listing 4. HeatingCondition Rule Data.

The above Building Ontology acts as a schema to define the data among the domain of building automation semantically which is part of the inferring processes. The data are presented in N3 format, a non-XML serialization of RDF. A piece of data is shown in the Listing 4 containing a policy called UniversalHeatingPolicy which is an instance of OperationPolicy (Building Ontology class). It applies for all users, instances of User (Building Ontology class) and has condition HeatingCondition (data). HeatingCondition is later on described as an instance of Condition (Building Ontology class) with “Heating” type and taking the value 10. Previously, two name spaces were defined at the header, one for the data and the other for the ontology.
This kind of graph database built around the Building Ontology enables Semantic Reasoner to infer additional information from existed data and relationship. A simple example of the reasoning from the data shown in the Listing 4 is explained as follows. In this case, a fact is stated as UniversalHeatingPolicy rule applies for instances of User class. A reasoner with basic capacity can be used to demonstrate the use case, e.g., Jena natively-supported reasoner. An inference model is created which takes the reasoner, Building Ontology and the Graph Database as input parameters. Data in form of resources and properties are then created from database. A simple code line can be used to generate an entailed relationship. Specifically, user Smith who is an instance of Director (Building Ontology class, subclass of class User) would be applied by the UniversalHeatingPolicy rule as well. This reasoning model helps to reduce the database size and quickly collect all related data of an event or user which are all necessary for the service composition process.

[bookmark: _Toc368937629][bookmark: _Toc381707489]SEMANTIC CONTEXT-AWARE SERVICE COMPOSITION
Residing at the heart of the proposed BAS, the COMPOSITION subsystem is in charge of answering composition requests from Composition Broker with regard to collected context information. It then gets access to all related resources to coordinate appropriate devices/services to serve the request. Previously, Building Ontology and Graph Database have been discussed to provide the semantic database. Also, context information processed by the Context Processor is passed to the composition process as the input data. In addition to that, a description language is designed to describe the composition plans and a six-phased composition process is proposed to efficiently and accurately carry out service composition.

[image:]
Listing 5. Composition Plan Description Language (CPDL).

[bookmark: _Toc368937630][bookmark: _Toc381707490]Composition Plan Description Language (CPDL)
A language called Composition Plan Description Language (CPDL) has been designed to describe composition plans associating with each context. An example of a CPDL document is shown in the Listing 5. This document describes a composition plan with the type of U or User and for user Smith with the context of his presence in the room 803. It also describes the composite service consisting of three component services Window, Light and CoffeeMaker.

[bookmark: _Toc368937631][bookmark: _Toc381707491]Service Composition
Six-phased service composition process is shown in Fig. 16 which visually depicts six phases of the composition as follows:

· Phase 1: Collect and process context information
· Phase 2: Make decision to call COMPOSITION
· Phase 3: Query semantic data
· Phase 4: Select services
· Phase 5: Bind services to their operations
· Phase 6: Execute operations of services

The process starts with signals from Context Collectors when they detect changes in context and send context information in the building environment to Context Processor. Context Processor processes this information to meaningful and machine readable data. These processed and well-structured contextual data are sent to the Composition Broker to decide whether to move on by calling the COMPOSITION or not. In case no action needs to be carried out, the system switch to the sleep mode, otherwise the COMPOSITION is called. Then, resources are collected in the database to support the composition process. Service Selector uses provided context information, CPDL data of the user at that context and inferred policies from the Semantic Reasoner to select appropriate services and create a concrete description of the required composite service. Service Binder follows up by binding with operations of selected services and Service Executor gets access to Service Cache to execute that operations. Fig. 17 explains one implemented algorithm for service matching based on the location context of the user.

[image:]
[bookmark: _Toc368934428][bookmark: _Toc375315952]Figure 16 Composition process.

Six phases of the composition process are highlighted in the triangle signs.

[image:]
[bookmark: _Toc375315953][bookmark: _Toc368934429]Figure 17 Context matching algorithm.
For each abstract service in the composition plan extracted from CPDL document associated with the User, if the service matches one of the services in Service Cache by location, it is added to the execution plan.
[bookmark: _Toc368937632][bookmark: _Toc381707492]WoO platform service composition
[bookmark: _Toc368937633][bookmark: _Toc381707493]Architecture of WoO platform
[image:]
[bookmark: _Toc375315954]Figure 18 Architecture of WoO platform

Fig 18 shows architecture of WoO platform for supporting service composition. There are two type of objects: general objects and converged objected which is like services. WoO platform consider all of things to objects means sensor, actuator, service enabler, user, and module can be objects. For managing, pet care service, auto ventilation service, etc. sensor objects are cooler/heater, radiator, CCTV, humidifier, sprinkler, and ventilator. We put a number to all objects for converging it easily. Converged objects converges objects in the WoO platform and makes objects group. Then, the object group becomes application. The objects group #1 composed with cooler sensor, radiator, CCTV, humidifier, Pet care module, and user Park, all the objects are using for pet care application.

[image:]
[bookmark: _Toc375315955]Figure 19 Functional view of WoO platform

Figure 19 shows functional view of WoO platform consisted of service orchestration, service composition, objects, sensor data support, and service support functions. Sensors and actuators are divided into web-supported and not web-supported objects and sensor gateway is used for supporting not web-supported objects.
Service composition consists of follwoing basic functions as illustrated in the Figure 19.
· Registry : Registry function describes and publish the offered functionality of the services to potential consumers (clients). A service registry allows you to organize information about services and provide facilities to publish and discover services.

· Discovery & Selection : Service discovery & selection function is the process of locating and gaining access to provided services that satisfy a set of requirements (whether it is capabilities or non-functional aspects).
· Deployment : Service deployment function involves concretely associating services to devices in the real world system that is used as the infrastructure

· Exposure : Depending on whether the service provider or owner decides to exposes such information or not.

· Security : Providers have to guarantee the delivered service to respect a given security policy, in any interaction with the operational environment, and regardless who actually called the service.

· Session Control : Session control function deals with the network call control interactions.

· Service Management : Service management function comprises all the mechanisms that are required for capturing and processing several attributes of a service execution (related but not limited to quality aspects) to determine whether predefined agreements (such as Service-Level Agreements) are abided by and the execution goes as planned.

Service orchestration define which message is sent when and by which participating service. Service orchestration is about executing the result of composition synthesis by coordinating the control and data flow among the participating services and also about supervising and monitoring that execution.
[bookmark: _Toc368937634][bookmark: _Toc381707494]Concept of WoO platform service
WoO platform consider 4 planes, user, service, control, physical plane. The service flow of WoO platform is described in Fig 20.

· User plane: The user plane consider service orchestration. They describe the services that participate in a composition interact at the message level. They receive service request from the user and deliver service response to the user. They deliver service request and context information to the control plane. Also, they receive service allocation from the control plane.

· Service plane: They combine and coordinate a set of services with the purpose of achieving functionality that cannot be realized through existing services. In this scenario, we have pet care, auto ventilation, plant water supply, and home security service.

· Control plane: They control sensor object, actuator object, and service enabler. They deliver service response to the user plane.

· Physical plane: They manage physical sensors like CCTV, humidifier, sprinkler, ventilator, cooler, heater, and radiator. Also, they manage actuators like motion, temperature, pet temperature, window, door, and humidity sensor.
[image: C:\Users\Admin\Pictures\그림1.png]
[bookmark: _Toc375315956]Figure 20 Service flow of WoO platform

[bookmark: _Toc381707495]Service composition using RESTful Web Services
[bookmark: _Toc381707496] Definition and description of RESTful Web Services
A common approach to describe RESTful services significantly simplifies the composition and orchestration tasks. In the Open Smart Neighborhood demonstrator a semantic approach has been used in order to provide a description of RESTful services.
This description of the objects providing RESTful web services is based on the ontology for object's services developed in task T3.2 Domain modelling, but also taking into account the model used to describe the objects in Open Smart Neighborhood demonstrator (Guinards' metamodel). Thus, the template used for the description of the objects' main properties and services is also inspired from the OWL-S ontology, and it is a first approach to facilitate the discovery and the access to the objects’ services.
[image: C:\Users\azubizarreta\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Captura de pantalla 2013-03-27 a les 11.37.25.png]
[bookmark: _Toc375315957]Figure 21 Guinard’s metamodel

The template used for the description of RESTful web services is composed of the following main classes:
· Object: represents the object itself that can be classified in four groups as mentioned in D3.2 (static, active, information object and movable object). An object has the following properties:
· hasUniqueID: string indicating a unique identifier for the object.
· hasName: string with the name of the object.
· hasDescription: brief text description of the object functionalities.
· ownedBy: object's owner.
· manufacturedBy: object's manufacturer.
· hasLocation: which relates the Object with a certain Location instance with information of the place where the object is installed.
· hasResources: this property links the Object with the set of services provided by the object and described as a Service instance.
· Services: global class for all the services. A service can be described by the following properties:
· hasDescription: brief text description of the service.
· hasURI: identifier for the resource.
· hasInputParameters: for the services requiring input information. This property links the service with one or several instances of the class Input.
· hasOutputParameters: for the services returning information. This property links the service with one or several instances of the class Output.
· Input: class for the inputs of the services.
· Output: class for the outputs of the services.
· Location: class for indicating the position of an object. This class is composed by two subclasses:
· Absolute_Location: refering to geo-spatial coordinates (hasLatitude, hasLongitude).
· Relative_Location: refering to any other description of the location, which can be in turn classified as address (i.e.: street, city, country...) or abstract (i.e.: area, establishment...).
· Quality of Service: class for the parameters measuring the quality of the service provided.
· Policies: class for any policy required by the service, such as security and privacy policies.
 (
Figure
22

Diagram of the main classes used for the description of web services
)[image:]
The described approach has been used to describe all the RESTful services implemented in the Open Smart Neighborhood demonstrator. As an example, the following sample describes the Content Service Object used on the Step9&10 of the Open Smart Neighborhood demonstrator:
This is a summary of the object's properties and capabilities:
	Object's properties

	UID
	hasUniqueID
	d8500b30-b97f-4734-ad38-c385a5ee275d

	Name
	hasName
	Content Service object

	Description
	hasDescription
	Provide content according to user preferences in different scenarios of WoO demonstrator

	Manufacturer
	manufacturedBy
	ETIC

	Owner
	ownedBy
	ETIC

	Object's resources

	Resource_1
	Car_Content_Service
	hasURI
	/Car

	
	
	hasDescription
	Total number of people that have entered and left the area in the selected hour

	
	
	hasInputParameters
	Recommendation_DB_Output (Array<id>)

	
	
	hasOutputParameters
	Car_Content_Output

	Resource_2
	Elevator_Content_Service
	hasURI
	/Elevator

	
	
	hasDescription
	Total number of people that have entered and left the area in the selected date

	
	
	hasInputParameters
	Recommendation_DB_Output (Array<id>)

	
	
	hasOutputParameters
	Elevator_Content_Output

	Other elements

	Object's Address
	Relative_Location_Address
	City
	Donostia

	
	
	Country
	Spain

	Object's Abstract location
	Relative_Location_Abstract
	Area
	Shopping mall

	
	
	Establishment
	Urbil

	QoS
	Quality_of_Service
	-

	Policies
	Policies
	-

The following picture shows a template example for the services provided by the Content Service object.
[image: E:\AnderZubizarreta\proiektuak\WoO\Descripcion_semantica\Captura_35_Content.png]
	<Active_Object rdf:ID="Content_Service_Object">
 <hasResources>
 <Elevator_Content_Service rdf:ID="Elevator_Content_Service_19">
 <hasOutputParameters>
 <Elevator_Content_Output rdf:ID="Elevator_Content_Output_12"/>
 </hasOutputParameters>
 <hasInputParameters>
 <Recommendation_DB_Output rdf:ID="Recommendation_DB_Output_9"/>
 </hasInputParameters>
 <hasURI rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >/Content/Elevator</hasURI>
 <hasDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Content related to elevator, based on recommendation system output</hasDescription>
 </Elevator_Content_Service>
 </hasResources>
 <hasLocation>
 <Relative_Location_Abstract rdf:ID="Relative_Location_Abstract_16"/>
 </hasLocation>
 <hasUniqueID rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >d8500b30-b97f-4734-ad38-c385a5ee275d</hasUniqueID>
 <hasLocation>
 <Relative_Location_Address rdf:ID="Relative_Location_Address_53">
 <City rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Donostia</City>
 <Country rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Spain</Country>
 </Relative_Location_Address>
 </hasLocation>
 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Content Service object</hasName>
 <ownedBy rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >ETIC</ownedBy>
 <manufacturedBy rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >ETIC</manufacturedBy>
 <hasDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Provide content according to urser preferences in different scenarios of WoO demonstrator</hasDescription>
 <hasResources>
 <Car_Content_Service rdf:ID="Car_Content_Service_13">
 <hasInputParameters>
 <Recommendation_DB_Output rdf:ID="Recommendation_DB_Output_8"/>
 </hasInputParameters>
 <hasDescription rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >Content related to the car, based on recommendation system output</hasDescription>
 <hasOutputParameters>
 <Car_Content_Output rdf:ID="Car_Content_Output_11"/>
 </hasOutputParameters>
 <hasURI rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >/Content/Car</hasURI>
 </Car_Content_Service>
 </hasResources>
</Active_Object>
<!-- Created with Protege (with OWL Plugin 3.5, Build 663) http://protege.stanford.edu -->

[bookmark: _Toc375315959]Figure 23 Extract of the OWL description of the Content Service object

[bookmark: _Toc381707497]Service composition with RESTful Web Services
This section summarizes the service composition implemented in the Open Smart Neighborhood (OSN) demonstrator, in particular in the Step 7 Smart Vehicle Verification, were all the objects provide Web services through a RESTful paradigm.
These are the main elements involved in the service composition in this case:
· Object's Description: Every object of this type includes a service providing a description of its properties and resources in order to facilitate the search for suitable objects in the Web of Objects, that is based on the Guinard's metamodel as explained in the previous section. In the OSN demonstrator, this description was implemented in JSON format but the a semantic description of the main objects has also been specified to facilitate the automatic search based on semantics.
· WoO Registry: In the scenario, a central Registry collects information from all the available objects in the Web of Objects and provides their description through RESTful Web Services.
[image:]
· Discovery module: This module allows the different smart surveillance objects to be discovered in the Web of Objects and to describe their properties and available services.
[image: WP4_modules_autoconfig3]
· Selection module: This element allows to decide automatically which is the most suitable object to be chosen at a certain time based on a set of pre-defined rules.
The Vehicle Verification object (VVO) requires different types of objects to compose the vehicle verification service, but in the implementation of the service for the OSN, only the OCR object was dynamically selected for each vehicle verification request (1-4). In this case, the Selection Model of the VVO takes into account the availability, the syntax accepted and the confidence of the results provided by each OCR object to decide which should be used. All this information is provided in the object's description.
[image: WP4_modules_autoconfig]
The whole process of the composition of the Vehicle Verification service can be summarized as follows:

1. All the objects in the scenario register themselves in the WoO Registry by using the Discovery module.
2. Anytime a vehicle verification request is received, the vehicle verification object uses the OCR selection module to decide which OCR object to choose.
3. The Selection Module consults the available OCR objects in the WoO Registry, and based on the rules defined in its Selection Model, the objects are filtered, and the most suitable OCR is selected.
4. The Vehicle Verification object uses the object selected. In case of failure, the information of the available objects in the selection module is updated and the search is repeated.

[bookmark: _Toc381707498]Hypermedia-Driven RESTful Service Composition
SOA services provide an endpoint that exposes a set of operations on entities that are out of the reach of clients. Operations are described in a standard WSDL document; semantics are not explicit and are usually specified in additional documents so that client designers understand the scope, effects, pre-conditions and assumptions made by service designers and program the clients accordingly.
Clients interact with servers following the description (they are tightly coupled), if it changes clients fail, clients cannot be notified about changes and failure semantics and its recovery are ad-hoc. Client-server interaction state is kept by the server (stateful), which negatively impacts service scalability and increases the complexity of coarse grained operations.
The REST architectural style has been characterized as a restricted subset of SOA. Unlike WSDL operations, in REST the central elements are the resources, which are abstract entities identified by URIs that can be manipulated through a uniform interface, that is, a reduced set of standard operations whose semantics are well known in advance and are defined by standard transport protocols such as HTTP. Resource's state is transferred to/from the clients as a consequence of executing the standard operations. The state is portrayed to the clients by means of representations, which are documents serialized according to specific media types (e.g. XML), and contain hyperlinks to related resources, and controls that allow clients to perform operations and change resources' state (e.g. <link=URI rel="service.POST">, <form ...>, etc.). There is no guarantee that the operations, the resources or even the network remain available or unchanged; however, there is a uniform failure interface (i.e. standard protocol error codes) with well known semantics that allow clients to recover accordingly.
A REST service is not an endpoint but a web of interconnected resources, with an underlying hypermedia model that determines not only the relationships among resources but also the possible net of resource state transitions. REST clients discover and decide which links/controls to follow/execute at run-time. This constraint is known as HATEOAS (Hypermedia as the Engine of Application State). It requires service responses to link to the next valid application states. This frees clients from having to know about all the service's URLs and the details of its domain application protocol.
The benefits of applying the HATEOAS constraint will improve the service composition when using REST services loosing coupling between client & server (reduce the assumptions made from the client) and allowing each to evolve independently.

Page 3 of 50

image1.png
SOA

Application
frontend

Service

Service repository

Service bus

Contract

Implementation

Interface

Business logic

Data

image2.png
Service

Service Service
Requester Provider

image3.emf
Application

Device

ManagementSecurity

Service

Communication

Configuration

Energy

Optimization

Publish/Subscribe

Fault

Gateway

Addressing

Service&Device

Registry

Service discovery

&Look-up

Service

Composition

Web of Object

Service

Context

QoS

Authorisation

Key Exchange &

Management

Trust

Authentication

Identity

Management

oleObject1.bin
�

Application

Device

Management

Security

Service

Communication

Configuration

Energy Optimization

Publish/Subscribe

Fault

Gateway

Addressing

Service&Device Registry

Authorisation

Service discovery &Look-up

Key Exchange & Management

Service Composition

Web of Object Service

Context

QoS

Trust

Authentication

image4.emf

image5.emf

image6.png
Receive

Prchos
ot
:
h
e = s
Price (o Producti
Calculation n Sched
2 suer
:
a
v
v N v
Compios Lot Py] Comics
e oo
caaaion et

v

Invoice
Processing

image7.png
Process
purchaseOrderProcess

purchaseOrer PT

PartnerLink

purchasing

computePricsP T

invoiceCallack?T

stippingP T

shippingCallbackP T

scheckling?T

image8.png
P

v

Orchestration: Choreography:
» Local / centralized » Global / distributed
perspective perspective

» "Each player in the orchestra
strictly follows instructions from ; - .
the conductor” global scenario, without a single

> SOA: Refers to a business poclcenicl
process, with a specific » SOA: describes a protocol for
(business) goal peer-to-peer interactions

» ‘Dancers dance following a

image9.emf

image10.png
7
7z

||
L
z
z
z

" Candidates
for task 1

~
~
- ~ ’
~
~
~
~
-
-
-
-

Candidate
for task 2

-
-

Process model

BPEL editor
Designer

1. Design 3. Deploy anhotated process
EE—

2. Retrieve
services

Design-time modules

=
~
///
= |

Candidates
for task 3

I User
context
Candidates for task 4

4. Enact

BPELengine

Runtime modules

image11.emf

image12.emf

image13.emf

image14.emf

image15.emf

image16.emf

image17.emf

image18.emf

image19.emf

image20.emf

image21.emf

image22.emf

image23.png
Aemoajeg Josuag

poddng ejeq Josuag

(4) Humidifier

(10)
Window Sensor

(5) Sprinkler

(6) Ventilator

Pet Temperature
— Sensor

s

Temperature

(.
Objects
13
(Sensor / Actuator pe(t C;re
Objects Objects %
A U] Service Auto
__Cooler/Heater _ Motion Sensor Enablers Ven(t:l;)tion
(2) Radiator (8) Plant Water
Humidity Sensor Supply
16
(3) ccTv 9) H(orn)e
Door Sensor Security

Module
Objects

WoO Platform\

Converged
Objects

Object Group #1
(1,2,3,4,13,19)

Object Group #2
(1,6.14,19)

Object Group #3
(3,5,15,19)

Object Group #4
(3,16)

.
ke Auto Ventilation

ature
Sensor

Sensor

A

pplications

1 Home Security

-

image24.png
Application Service I

rWoO Platform

Service Orchestration l

Service Composition

N l Discovery l l l
Registry & Selection Deployment Exposure
s . Session Service
ecurity Control Management
Objects I

Service Support
Sensor Data Support I

Sensor Gateway (web-supported)

(not web-supported)

ture
Sensors

image25.png
4 o o
1 1 1
\J] A Yy
- e . N
__ - - - -
User Plane "-—-—_-—'—. 0 " 0 —
1 [[
Service Orchestration : : :
Recca i Ve:t::ion 'I:':‘::;v -y Home Securtty

Service Plane

se0o0om OOm ogoo oonm

Service Composition n : n

Control Plane

Actuators

Physical Plane

—» Service Request = Context Information
= Service Response ~# Service Allocation

image26.png

image27.png

image28.png
CLASS BROWSER
For Project: @ Content_Service.

Class Hierarchy [Annotations

@ owlThing Asserted Instances ‘ Lang ‘ ‘

¢ @ nput Content_Senvice_Object =
® Recommendation_DB_Output (2)

4 @ Location
¢ @ Relative_Location (2)

® Relative_Location_abstract (3)

® Refatie_Location_Address (1) E

+ @ otiect —

® Active_Object (1) hasDescription ‘manufacturedBy | nasResources R4

o ® outpt fin iferent scenarios orWa0 demons| [ETIC: [@ car_Gortent_seniss_13

® Car_Content_Output (1) =

® Elevator_Content_Output (1) hasName ownedBy L%

+ @ Policies [Contemt Senice otject | [enc

@ Security_and_Privacy_Policies

® aualiy_of_Senice hasUniqueld 2] %] hastocation ¢le4

¢ @ senices [08500030-0971-4734-a038-c385a5ee| [@ Relative_Location_Abstract_16

® Car_Content_Senice (1) & Relative_Location_Address_53
® Elevator_Content_Senvice (1)

Asserted Types
|® Active_Object

image29.png
Smart surveillance objects
in the WoO network r— %% "

woo
ngmry

e

image30.jpeg
© register

register (object description) WoO

© unregister

WoO0

unregister (regiD) Registry

© consult information

Wo0
Registry

Get object (regID)

object description

Wo0
Registry

i

Get all objects()

List of object descriptions

image31.jpeg
'VEHICLE VERIFICATION server

Human OCR
object

Auto-
configuration

Module

Parking
Information
object

>

Vehicle Blacklist
object

image32.png
web of objects

image33.emf

