AMALTHEA

(ITEA 2 - 09013)

Model Based Open Source Development Environment for
Automotive Multi-Core Systems

Deliverable: D 4.4
Report on model and tool exchange

Work Package: 4
Continuous tool chain platform

Task: 4.4
Implementation /customization of tool chain elements

Document type: Deliverable Classification: Public
Document version: Final Contract Start Date: 01.07.2011
Document Preparation Date: 31.04.2014 Duration: 30.04.2014

N 1TEAZ

INFORMATION TECHNOLOGY FOR EUROPEAN ADVANCEMENT EURE KA

Contents

Executive Summary iv
1 Introduction 1
2 Technical Overview 2
2.1 Basic Information L 2
2.2 Installation 3
2.3 Examplesand Help 3

3 The AMALTHEA Model 5
4 Working on the AMALTHEA Model 7
4.1 OVerviewo, 7
4.2 Workflows 7
4.3 AMALTHEA sample 8
4.4 Industrial UseCase 9

5 Event Traces 11
5.1 OVerview 11
5.2 Trace Formats 11
5.2.1 BTFE . . . 11

5.2.2 HTF e 12

6 Extendibility of the AMALTHEA Tool Platform 14
6.1 Timing Architects Toolsuite 14
6.1.1 Interoperabilityo 14

6.1.2 Functionality 14

6.2 ETAS Ascet 15

ii

List of Figures

21
2.2
2.3
24

3.1
3.2

4.1
4.2
4.3
4.4

5.1
5.2
5.3

6.1

AMALTHEA Tool Platform 2
AMALTHEA Tool Platform - Splashscreen 3
AMALTHEA Tool Platform - Examples Wizard 4
AMALTHEA Tool Platform - Help 4
AMALTHEA Model in relation to existing tools and standards 5
Model editor 6
AMALTHEA Model and the information flow 7
Sample Workflow Screenshot 8
Sample Workflow Overview 9
Industrial Workflow 10
OSEK task states and transitions 11
Extended task states and transitions L. 12
HTF trace format conversions 13
AMALTHEA extendibility - Timing Architects Toolsuite 15

iii

Executive Summary

AMALTHEA is a ITEA 2 funded project that is developing an open and expandable tool
platform for automotive embedded-system engineering based on model-driven methodology.
Key features include the support for multicore systems combined with AUTOSAR compatibility
and product-line engineering. The resulting AMALTHEA Tool Platform is distributed under
an Eclipse Public License.

This document is the final deliverable of Work Package 4 “Continuous tool chain platform”
of AMALTHEA. It is produced within Task 4.4 “Implementation/customization of tool chain
elements”.

Content. This deliverable D 4.4 “Report on model and tool exchange” provides a very short
description of the AMALTHEA Tool Platform and shows how to use and extend the platform.
The document is classified as “Public”. It mainly serves as a summary and contains references
to more detailed information that is already published as part of the open source contributions
of the AMALTHEA project.

Intended readership. The target audience of this document are the project sponsors and
project members of the AMALTHEA project. Moreover, this document addresses also project-
external readers who are interested in the way how the AMALTHEA models can be used as
exchange format and how custom tools can be integrated. For this purpose, this document also
includes some introductional material about AMALTHEA and can be read without referring
to other documents.

Overview. The document is structured in the following main chapters:

Chapter 1 “Introduction” provides a short introduction to the results of WP4 and the relation
to other parts of the AMALTHEA project.

Chapter 2 “Technical Overview” provides an overview on the Eclipse based AMALTHEA im-
plementation, the prerequisites and the different installation possibilities.

Chapter 3 “The AMALTHEA Model” introduces the high level modeling of embedded multi-
core systems that contains several sub models to describe hardware, software behavior,
timing constraints, etc.

Chapter 4 “Working on the AMALTHEA Model” provides a brief overview on the possibilities
to execute customized tool chains. An example shows how existing tools can be reused
and additional tools can be integrated.

Chapter 5 “Event Traces” introduces an extended description of task states that allows to
characterize the software execution on multicore systems. It also introduces two event
trace format specifications (BTF and HTF) that are results of the AMALTHEA project.

Chapter 6 “Extendibility of the AMALTHEA Tool Platform” describes already existing tools
that provide import/export interfaces for the AMALTHEA models. These (commercial
or open source) tools provide additional editing, visualization or simulation features.

v

1 Introduction

AMALTHEA is a ITEA 2 funded project that is developing an open and expandable toolchain
for automotive embedded-system engineering based on model-driven methodology. Key fea-
tures include the support for multicore systems combined with AUTOSAR compatibility and
product-line engineering. The resulting AMALTHEA Tool Platform is distributed under an
Eclipse Public License.

The contributions to the AMALTHEA development approach were distributed over the dif-
ferent work packages. Work Package 1 was concerned with requirements engineering, Work
Package 2 provided a tool for variability modeling. These activities and some results of Work
Package 3 (e.g. architectural and behavioral modeling) were described in other deliverables.
Deliverable D3.4 “Prototypical Implementation of Selected Concepts”’ gives a good overview
and is also publicly available.

This document shows how to use and extend the AMALTHEA Tool Platform. It mainly
serves as a summary and contains references to more detailed information that is already
published as part of the open source contributions of the AMALTHEA project.

The main focus is the basic infrastructure of the platform that was contributed by Work
Package 4:

e a comprehensive data model (see Chapter 3)
e a generic execution environment / workflows (see Chapter 4)
e an extended state model for event traces (see Chapter 5)

The document also contains open source results from other work packages, e. g. the algorithms
for partitioning and mapping of multicore systems as part of the workflows or the “Hardware
Trace Format”.

The last chapter shows that the tool vendors in the AMALTHEA project are using the
AMALTHEA model as an exchange format. Timing Architects already integrated the import
and export capabilities in their commercial tools.

2 Technical Overview

2.1 Basic Information

The Eclipse Automotive Industry Working Group! (Auto-IWG) is a group of automotive com-
panies and tool developers that cooperate to provide an Eclipse automotive distribution. This
distribution is based on the regular Eclipse distribution and adds various tools like C/C-+-+ de-
velopment tools (CDT), XML editors, Eclipse Modeling Framework (EMF), and Xtext/Xtend
on top of it.

As the AMALTHEA project originally comes from the automotive domain, the AMALTHEA
Tool Platform is based on the Auto-IWG distribution. AMALTHEA further adds its own
models and tools to this distribution as depicted in Figure 2.1. Further third-party tools
are integrated into the AMALTHEA Tool Platform like Franca Interface Definition Language
(IDL), Eclipse Requirements Framework (RMF), Eclipse Damos, and YAKINDU Statechart
Tools (SCT).

»&ﬂmﬂmg. ez - cgA0e=®
A Do s o peran e e o .
Eclipse Downloads Navigation Projects

Top Level Projects
Poctages_Devsioper Bulkds —
Eetipss Kapier (40.2) 381 Pacasges v XY 3

ge==is =3 D:NiGE " Yakindu Statechart Tools

AMALTHEA

Moda Baved Opan Source Deveiopment Environmant Pistiom:

Figure 2.1: AMALTHEA Tool Platform

Thttp://www.eclipse.org/org/workinggroups/autowg.php

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

2.2 Installation

There are two possibilities to install the AMALTHEA Tool Platform. The first one is the rec-
ommended way. On the AMALTHEA Project website? complete AMALTHEA Tool Platform
distributions for various operating systems can be found. These distributions just need to be
downloaded, unzipped, and run.

AMALTHEA
N IiTEAZ

INFORMATION TECHROLOGY FOR DURDPEAN ADVANCEMENT EUREKA

Leading Workbench

Figure 2.2: AMALTHEA Tool Platform - Splashscreen

Another way to install the AMALTHEA Tool Platform is to integrate it into an existing
Eclipse distribution that might be already in use. On the same AMALTHEA Project website,
an Eclipse update site can be found that contains all AMALTHEA models and tools. Third-
party tools are linked from this update site. The update site can be used in the ordinary way
to add the AMALTHEA Tool Platform feature to an existing Eclipse installation. Such an
installation lacks the AMALTHEA branding but is still fully functional.

2.3 Examples and Help

The most detailed information about the AMALTHEA Tool Platform is maintained as part
of the open source distribution. The Eclipse Development Environment contains Wizards to
create new examples at runtime. A screenshot of the provided AMALTHEA examples is shown
in Figure 2.3.

The documentation is integrated as part of the Eclipse help system. It contains a User Guide,
a Developer Guide and a detailed model description. The help contents and one of the model
diagrams are depicted in Figure 2.4.

Zhttp://amalthea-project.org/

D 4.4 — Final

Report on model and tool exchange

ITEA 2 - 09013

-

File

il

I 1
I 1
4 [

£~ AMALTHEA - AMALTHEA Tool Platform

<+ New Example

Select a wizard

Create projects that contain the Democar Example

- | =

E]@ Damos

(=]

= 8

Wizards:

4 [= AMALTHEA Examples
1% Democar Examples
fﬁ Hwmeodel Examples
1% Modeling Examples

H <

4 (= XML

@

< Back

Finish

Cancel

Figure 2.3: AMALTHEA Tool Platform - Examples Wizard

= Help - AMALTHEA Tool Platform

Search: E

Scope: All topics

[E=H Bl =)

Contents B B a]

Sl e

g

[Introduction to AMALTHEA
3 User Guide
= [A Data Models
(4 Data Model Overview
[Hardware model
I Common Madel
5c] Configuration Model
4 Constraints Model
5c) Mapping Model =
2 05 Model
5c] Propertyconstraints Model
Bl stimuli Model
[Software Model
5c] Compenents Model
= [Developer Guide
i Overview of Features and PI\
[Model Workflow
34 validation L4
[AMALTHEA Trace Database
B Reoadmap
@ Autotools Plug-in User Guide
@ (/C++ Development User Guide
@ Damos Documentation

« 11 3

B [B8 [¥ [@

@ Plug-in Development Environme: ‘ events ‘L 0.x il
= Bl AMALTHEA Documentation H Event

= name : EString
= description : EString

B customEvent

= eventType : EString

H stimulusEvent
]

H semaphoreEvent

T eventType : SemaphoreEventType

H LabelEvent

=

T eventType : LabelEventType

B ProcessEvent

E RunnableEvent

T eventType : ProcessEventType

T eventType : RunnableEventType

< <enumeration » <<enumeration> > <<enumerations > <<enumeration> >
£ ProcessEventType 2 RunnableEventType | | £ LabelEventType | | £ SemaphoreEventType
= activate = start = read = lock
= deadline = suspend = write — unlock
= start = resume
= resume - terminate
= preempt
= poll
= run
= wait
= poll_parking
= park

1

m

Figure 2.4: AMALTHEA Tool Platform - Help

3 The AMALTHEA Model

Yakindu Requirements Model
Components P (RMF)
Commercial Tools
« Timing Architects
Toolsuite / v K \
«ASCET (" D
o € AMALTHEA
AMALTHEA Variant Model
\ J/

System Model

Open Source Tools

Interface Definition
« Eclipse Damos (Franca)
« Yakindu SCT R ~ 4

_

1 LY
i LY
LY

i \

t* I’u‘\\
> Import/ Export r") L
——3 Reference AT EAST-ADL
£=% Mapping (ARTOP) (el

Figure 3.1: AMALTHEA Model in relation to existing tools and standards

One of the main results in the AMALTHEA project was to create a meta model representing
the software structure and additional requirements like timing information. This model is
implemented using Eclipse EMF [3] and Xcore [4].

The AMALTHEA model itself is split into several parts, each representing one main aspect
of the model. These parts are described in more detail in Table 3.1.

Additional information about structure and the contained elements can be found in the
Eclipse AMALTHEA platform in the provided help system (in the main toolbar under Help ->
Help Contents). There you can find one section named “AMALTHEA Documentation”, which
should be the first place to get further information about AMALTHEA.

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

= default.amxmi i3 = O
AMALTHEA Contents Tree
default.amxmi Contents [D] -

This section enables the contents of this element to be edited.

4 ie~ AMALTHEA:

» g Software
. = Hardware
» | Operating System
s Stimuli
» |@| Constraints
> it Events
» |@ Property Constraints
+ [E2 Mapping
> #' Configuration
. |ﬂ§i Components
Figure 3.2: Model editor
Name Description
Central Container for all other model parts to store them in one file
Common Provides basic object definitions for other model to reuse
Components Definition of Components and a hierarchy of them
Config Contains definitions and configurations relevant for simula-
tion or hardware tracing
Constraints Provides definitions for EventChains, TimingConstraints,
AffinityConstraints and RunnableSequencingConstraints
Events Event definitions to reuse at EventChains
Hardware Abstract structure definition of the target Hardware
Mapping Mapping definitions of Software elements to Hardware com-
ponents
Operating System Abstract information of the OS, like Scheduler and Schedul-
ing Algorithms
PropertyConstraints Constraints of Software to Hardware mappings
Stimuli Stimulus definitions for activations
Software Structure of software components like Tasks, Runnables and
Tasks

Table 3.1: Model Overview

4 Working on the AMALTHEA Model

4.1 Overview

AMALTHEA Simulation AMALTHEA

System Trace
Model

System Modeling
- Hardware
- Constraints

Optimization
- Task distribution
- Memory mapping

Figure 4.1: AMALTHEA Model and the information flow

4.2 \Workflows

The AMALTHEA toolchain provides the possibility to automate working steps or the execution
of algorithms as workflows. The sequence of steps in a workflow can be defined and executed in
the AMALTHEA runtime environment. This offers the possibility to add user-specific workflows
that reuse workflow elements. The purpose of this is to make it easier for the user to work with
recurring steps in a convenient way (e.g. if only some parameters are changing).

To achieve this, AMALTHEA uses an already existent framework to define these steps and
their relevant parameters. This framework is the Modeling Workflow Engine 2 (MWE2) [1],
which is orignal provided and implemented in the context of the Xtext [2| framework.

The principle of this workflow concept is to separate each working step in different implemen-
tations and to gather them in one defined workflow. This makes it flexible enough for different
requirements and to build your own workflow based on available steps. AMALTHEA provides

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

one sample in Section 4.3 which is a gathered workflow of different steps to perform the actions
from the AMALTHEA sample in a more automated way.

The central concept of the MWE2 is also to use the provided Context object in the imple-
mentation. This Context object consists in general of a HashMap with key/value pairs. As
values the processed root model objects can be stored to make them available for the other
defined steps. The different steps can access them using the proper key, which can be defined
in the workflow definition. The sample in Section 4.3 is showing this principle in more detail.

In addition, AMALTHEA provides some already available steps to integrate in your own
workflow definition. These elements are available in the Eclipse plugin org.itea2.amalthea.-
workflow.base. The following overview explains these elements:

e Model Reader: The implementation in org.itea2.amalthea.workflow.util. AmaltheaReader
provides the ability to read different AMALTHEA model files, gather them to one model
in the memory and store this result to the workflow context.

e Model Writer: The implementation in org.itea2.amalthea.workflow.util. Amalthea Writer is
responsible to write a current model available in a given slot of the workflow context to
a defined file. This can be either one file containing all model elements or split files with
one model part in one file.

e Add Schedule Points: The implementation org.itea2.amalthea.workflow.util. AddSchedule-
Points adds to all Tasks, which are marked as cooperative in the preemption attribute,
so called SchedulePoints to their call graph between all included elements. This has the
effect to provide information for a simulation that at this step the current task can be
interrupted.

4.3 AMALTHEA sample

The AMALTHEA workflow sample can be accessed through the provided Democar samples
and is located in the mapping example project org.itea2.amalthea.example.democar.mapping in
the folder workflow. There you can find a file named sample workflow.mwe2, which contains
a configuration ready to run.

[F] sample_workflow.mwe2 &2 = O |/ 3% Outline 5 @ laz ¥ = o

/fcreate tasks based on initial model - .) declared properties
component = CreateTasks { 4 O Workflow : Workflow

//result is saved in modelslot createtasks

> @ bean:x

} > @ component: component
component = Amaltheawriter { 4 @ component: component

ode : = "createtasks" © CreateTasks : CreateTasks

fileName = "createtasks” 4 @ component: component

singleFile = true

AmaltheaWriter : ArmaltheaWriter
outputDir = "${base}/workflow-output™ 4 © AmaltheaWriter: Amalthealiriter

3 @ modelSlot : slot
@ fileName: fileMame
//generate mapping based on initial medel @ singleFile: singleFile
compenent = GenerateMapping { @ outputDir: cutputDir
modelSlot = "createtasks"

m

4 @ component: component

f/result is sav in m slot m i
esult model 1s savec in modelslot mapping 0@ GenerateMapping : GenerateMapping

mappingAlg = mapping dfg
enablelog = true @ modelSlot : slot
} - @ mappingAlg : mappingAlg
Fl T 3 @ enablelog: enablelog

Figure 4.2: Sample Workflow Screenshot

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

Figure 4.3 shows a graphical overview of the steps on the left side and the elements stored
in the context of the right side (the name of the context elements is the corresponding key to
access the elements).

WorkflowContext

StandaloneSetup

AmaltheaReader

—
Create@ﬁ

amalthea

createtasks

AmaltheaWriter

GenerateMapping DFG F—

mappin

AmaltheaWriter &
GenerateMapping ILP

mappingdilp

Amalthea\Writer

Figure 4.3: Sample Workflow Overview

As shown in the picture, in this workflow configuration every step stores its result in an own
slot, which is afterwards accessed by its successor. Using this kind of configuration it is very
flexible to access a specific result and to store it in a file, which is also shown in the sample
workflow.

4.4 Industrial UseCase

The Industrial UseCase describes a current implementation to build an AMALTHEA model
based on different sources in an automated way. To build such a model for a target platform,
it is necessary to concat data from different data sources. Figure 4.4 shows this way from a
high level view.

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

External
tools —
Software Hardware

tools

AMALTHEA

oo

Figure 4.4: Industrial Workflow

As a first step it is needed to have all the data, containing structure of the software like
Tasks, Runnables and Labels. Another important point is runtime information, which can
come from a measurement on real hardware. Last but not least the information and structure
of the Hardware must be available.

All these data is read by a defined workflow, which contains different steps to read all the
data and building up the target AMALTHEA model. The result of this workflow is a model
containing all information, which can then be further analyzed, either using additional work-
flow steps or a 3rd party tool like the Timing Architects Toolsuite using the available import
mechanisms and then simulate it.

10

5 Event Traces

5.1 Overview

Automotive applications are characterized by hard real-time requirements. In that domain the
ideas of the OSEK operating system and its task definition are widely used. The OSEK /VDX!
portal provides further information.

% terminate OSEK Statemachine for Extended Tasks
preemptl l;ggg

OSEK — Offene Systeme und deren Schnittstellen
T fur die Elektronik in Kraftfahrzeugen;

release Ready S (English: Open Systems and their Interfaces
for the Electronics in Motor Vehicles)

Suspended

Figure 5.1: OSEK task states and transitions

To better characterize the behavior of a multicore system we extended the task states and
transitions. Events that indicate the change between these extended task states are part of the
new trace format specifications (see Figure 5.2).

5.2 Trace Formats

In the AMALTHEA project we defined two trace formats: BTF and HTF. Both format spec-
ifications are published under an open format license. The royalty-free terms ensure that the
format remains accessible to everyone free of charge. The formats are documented in all its
details and are free for all to implement. The license also requires that extensions have to be
integrated and published under the same free license.

The specifications are published on the Eclipse Auto IWG (Industry Working Group) web-
site?. The PDF versions of the documents are availabe for download.

5.2.1 BTF

The Best Trace Format (BTF) is based on the Better Trace Format, initially defined by Con-
tinental Automotive GmbH, and was extended in the context of the AMALTHEA project. It
allows analyzing the behavior of a system in a chronologically correct manner in order to ap-
ply timing, performance, or reliability evaluations. In general, it assumes a signal processing
system, where one component of the system notifies another component of the system. These

Thttp:/ /osek-vdx.org/
Zhttp:/ /wiki.eclipse.org/Auto TWG#Publications

11

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

wait /—N

_—w

terminate

TERMINATED

park poll_parking preempt resume start

activate

release_parking .
release ¥/

Figure 5.2: Extended task states and transitions

notifications are realized by events, stored in the BTF file. In comparison with compact trace
formats from debugger traces, a BTF log of an event includes the entire information, namely:
which component interacts with which component by an event. A BTF-file consists of two
parts: a header-section and a data-section. The header-section contains meta-information on
objects of the trace and optional comments. The data-section contains the trace-data of the
simulation or measurement with optional comment-lines. Each line represents one event of the
traced system in CSV format. The columns of the event-line describe the time, entities, and
event. The BTF specification is published on the Eclipse Auto IWG (Industry Working Group)
website.

5.2.2 HTF

The Hardware Trace Format (HTF) is a result of the AMALTHEA project. It is a compact
trace format for the tracing of events on embedded systems, including multicore systems. Its
binary representation shortens the execution time of the tracing instructions and improves the
storage efficiency of the tracing data on the target system, compared to other trace formats.
On the host system, the target traces can be saved in an ASCIT *htf file without the need
for any extra conversion. Still, it is compatible to other trace formats (e.g. BTF, OT13), so a
conversion into these formats is possible.

HTF files are divided into three sections. The first part is the header where meta data can be
found. Exemplary parameters are the creation date, a description and the target system name.
In the second section, reference tables are defined. These tables represent the association
between the recorded events and the AMALTHEA software components. Every table entry
consists of a specific hex value and a textual description. Subsequently, reference tables allow

Shttps://gliwa.com /ot1

12

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

AMALTHEA
N HTFH_ = | OT1 | oy i

Database

Figure 5.3: HTF trace format conversions

the interpretation of the binary trace data. The last section of the HTF file contains the
recorded trace datasets. Each HTF trace dataset consists of a timestamp, an entity, and an
event. When tracing single core systems, this part has one data section, whereas the trace of
multicore systems can produce additional data sections. The HTF specification is published on
the Eclipse Auto IWG (Industry Working Group) website. More detailed information on the
HTF is given in the deliverable 3.4 (Prototypical Implementation of Selected Concepts).

13

6 Extendibility of the AMALTHEA Tool
Platform

The AMALTHEA Tool Platform can also benefit from so called external tools, which are not
build upon the AMALTHEA Tool Platform, in multiple ways. For that reason, this section
focuses on the possibility of the AMALTHEA Tool Platform to interconnect with such external
tools and describes a variety of benefits. All that is necessary for an external tool to commu-
nicate with the AMALTHEA Tool Platform and thus to be able to exchange information is
a well defined interface. Since the AMALTHEA Tool Platform is Open Source, the required
information is freely available and well documented.

6.1 Timing Architects Toolsuite

For this consideration, the proprietary discrete-event simulation, the Timing Architects Tool-
suite [5] is taken into account. Figure 6.1 gives an overview on some of the benefits that can
be achieved by interconnecting the AMALTHEA Tool Platform with the Timing Architects
Toolsuite.

6.1.1 Interoperability

The first benefit that can be achieved by interconnecting the AMALTHEA Tool Platform with
the Timing Architects Toolsuite is the gain of additional interoperability. Interoperability in
this case means that it is possible to exchange information with different modeling languages
and formats.

The Timing Architects Toolsuite for example, has its own model for internal data processing
that contains all the information about the system under development. In addition to that it
also provides an interface to AUTOSAR. So by building an interface from the AMALTHEA
Tool Platform to the Timing Architects Toolsuite it is then possible to interchange information
not only with the proprietary data model but also with the AUTOSAR model by using their
AUTOSAR interface.

6.1.2 Functionality

In addition to the gained interoperability, the AMALTHEA Tool Platform can also benefit
from additional functionality. A few examples are given in the following:

e Editing
Although the AMALTHEA Tool Platform provides a basic functionality for editing a
model, additional and more professional functionality can be gained by interconnecting
to the Timing Architects Toolsuite.

14

D 4.4 — Final

EDIT

AUTOSAR
Partitioning
HW model ki Mapping
os =s= —>m
2 >
Components

0S-Model SW Behavio

Report on model and tool exchange

THL M W] wh]
| I T
| 1 N 1 1 N -
[

Wmlan's
LX)
R [

AT
[W] m]
Gt e [m]]] (et |
0 (I -

VISUALISE

cuow,
(<0$ olq(/))’
/
Y a &

OPERM®

TA Timing
Architects
Partitioning
HW model 25 Mapping
: Sl
Components

0S-Model :I SW Behavior

PRt A -

ITEA 2 - 09013

ANALYSE

AMALT H E A

Partitioning
HW model 25 Mapping
2 = >
Components

0S-Model : SW Behavior

Figure 6.1: AMALTHEA extendibility - Timing Architects Toolsuite

e Visualization

Currently, just a visualization of the individual model elements is available. Professional
tools however provide more extensive functionality. such that for example the data de-
pendencies between functions are displayed.

e Analysis

Last but not least, the AMALTHEA Tool Platform does not provide thus far any pos-
sibility to analyse the system under development based on the model. An external tool
like the Timing Architects Toolsuite however makes this possible. Thereby a system can
be simulated based on a model.

As it can be seen, the AMALTHEA Tool Platform can highly benefit from so external tools
like the Timing Architects Toolsuite. And since it is Open Source, the hurdle to create such a

required interconnection is very low and easy to implement.

6.2 ETAS Ascet

The AMALTHEA Tool Platform enables the hardware/software co-design. Therefor it provides
data structures and services which are to be instrumented to create hardware and software pro-
files. Based on this profiles AMALTHEA enables to perform services such as e. g. requirements
collection and analysis, scheduling, optimization of deployment scenarios, etc. The ETAS Ascet

15

D 4.4 — Final Report on model and tool exchange ITEA 2 -09013

tool enables to create software descriptions which are conform to the AUTOSAR standard. As
a contribution to the AMALTHEA tool platform ETAS developed an AMALTHEA adapter
which enables to integrate software models developed in ASCET into the AMALTHEA plat-
form and to use ASCET software models in the context and together with the integrated
AMALTHEA services.

For the ASCET/AMALTHEA adapter ETAS decided for an innovative integration technol-
ogy based on OSLC (Open Services for Lifecycle Collaboration). The intention of this speci-
fication is to couple different lifecycle tools from different vendors in an open approach. This
is done by implementing a tool specific adapter to provide an interface for OSLC. In general
there are different topics, which are covered by corresponding OSLC standardization working
groups, so called domains. The EU project CESAR! (Cost-efficient methods and processes
for safety relevant embedded systems) and the follow-up project CHRYSTAL have the goal to
provide a tool chain for different use cases and topic areas. Therefore there are a lot of tools
existent for the different steps of the development life cycle. Every characteristic of the tool
chain has the problem to make an integration to the other chosen existent tools. CESAR has
specified an Interoperability Specification, which covers this topic. The intention is to have a
guideline on which technologies the tool chain is build on. One technology CESAR is using and
specify is OSLC to couple the chosen tools. The reason for this is that there is a lean coupling
of the tools by following the linked data approach. For the ASCET/AMALTHEA adapter
implementation ETAS followed the recommendation of CESAR/CHRYSTAL. The open API
of the AMALTHEA allowed to implement the OSLC adapter.

The import of ASCET software models into the AMALTHEA tool chain allows to perform
complex scenarios for software/hardware development. Once imported the software description
can be analyzed regarding its deployability, hardware/software profiles can be generated, and
scheduling algorithms can be derived with inherent optimality criteria (see Section 6.1). Such
software development services in the AMALTHEA environment can be easily extended by in-
volving external tools and services. For this intend the OSLC technology—as utilized for the
ASCET/AMALTHEA adapter—can be adapted to a broad range of services and tools to be
integrated into the AMALTHEA environment. E.g. specific ETAS tools for AUTOSAR soft-
ware stack development such as ETAS ISOLAR-A for authoring software component interface
definitions and ETAS ISOLAR-EVE for real-time execution of software in a virtual environ-
ment can be integrated in the AMALTHEA platform. Such tools can assist and complement
the software/hardware profile development in the AMALTHEA environment to perform an
efficient development following the AMALTHEA methodology.

Thttp://www.cesarproject.eu

16

Bibliography

1]

2]

3]

[4]
[5]

CONTRIBUTORS, Various open-source: MWEZ2. April 2014. — http://www.eclipse.org/
Xtext/documentation.html#MWE2

CONTRIBUTORS, Various open-source: Xtext. April 2014. — http://www.eclipse.org/
Xtext/

EcLipsE: Eclipse Modeling Framework Project (EMF). December 2012. — URL http:
//www.eclipse.org/modeling/emf/?project=emf#emf

EcLIPSE: Xcore. December 2012. — URL http://wiki.eclipse.org/Xcore

TIMING-ARCHITECTS: TA Toolsuite Version 13.09.0. TA Academic & Research License
Program. |Online|. Available: http://www.timing-architects.com

17

http://www.eclipse.org/Xtext/documentation.html#MWE2
http://www.eclipse.org/Xtext/documentation.html#MWE2
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/
http://www.eclipse.org/modeling/emf/?project=emf#emf
http://www.eclipse.org/modeling/emf/?project=emf#emf
http://wiki.eclipse.org/Xcore

	Executive Summary
	Introduction
	Technical Overview
	Basic Information
	Installation
	Examples and Help

	The AMALTHEA Model
	Working on the AMALTHEA Model
	Overview
	Workflows
	AMALTHEA sample
	Industrial UseCase

	Event Traces
	Overview
	Trace Formats
	BTF
	HTF

	Extendibility of the AMALTHEA Tool Platform
	Timing Architects Toolsuite
	Interoperability
	Functionality

	ETAS Ascet

