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This document contains an overview of the State-Of-The-Art as is known to the partners in 

the ATAC consortium. It has been continuously updated during the course of the ATAC 

project with a) new external evolutions in the field of test automation and b) the 

improvements resulting from the R&D&I activities executed by the ATAC project partners. 

Only a concise treatment of the latter in given in this document. More in depth details on the 

obtained results can be found in the different publications listed on the ATAC project 

website: http://www.atac.testautomation.fi/index.php?page=publications 
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1. Introduction 

1.1. About this document 

This document is a work in progress that aims to present to project partners and the European industry 

the state of the art in test automation in the scope of the ITEA2/ATAC (Advanced Test Automation for 

Complex Software-Intensive Systems) project. The document will be updated periodically as our 

research advances and as we analyse new issues related to test automation. The authors welcome 

requests for new topics to be assessed in the document. 

 

1.2. Motivation 

In a typical commercial development organization, the cost of providing assurance that the program will 

perform satisfactorily in terms of its functional and non-functional specifications within the expected 

deployment environments via appropriate debugging, testing, and verification activities can easily range 

from 50 to 75 per cent of the total development cost [Halpern2002]. Many of these software testing 

activities can be automated and with the help of test automation reduce the time to market and increase 

the quality of the resulting systems.  

 

Although computing has got faster, smarter and cheaper, it has also become much more complex. 

Complexity seems to be unavoidably associated with software. Programming is said to be all about 

suffering from ever-increasing complexity [Hinchey2012]. There are various reasons for software 

complexity: software can be distributed, configurable, or it can be simply large. The two main activities 

against complexity are abstraction and decomposition [Hinchey2012]. Abstrac tion means hiding the 

complexity that is not relevant for the specific system or problem, and decomposition means breaking 

down the system or problem into parts that are easier to understand. Both abstraction and 

decomposition can be used also for enabling test automation for the complex systems. For example 

model-based testing (MBT) utilizes abstraction, and decomposition is used at many levels of testing.  

 

Test Automation should be thought of regarding all aspects of the software testing, verification and 

validation during the whole life-cycle of the software. It is not sufficient to view and automate only the 

test execution, even though it is often the first approach in industry to make testing more efficient for 

large complex systems. Equally important is to automate other aspects, such as test case generation, 

visualization of results, etc.   
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2. Model-Based Testing (MBT) 

Model-based testing (MBT) is a technique of generating test cases from models describing some 

relevant aspect of the system under test (SUT) at a chosen abstraction level. The idea is to provide more 

cost-effective means for extensive testing of complex systems. Instead of manually writing a large set of 

test cases, a smaller set of test models are built to describe generally the behaviour of the SUT and how 

it should be tested. A test generator tool is then used to automatically generate test cases from these 

models. There are several benefits, including easier test maintenance due to fewer artefacts to update, 

higher test coverage from the generated test cases, and documenting the SUT behaviour in higher level 

models which helps in sharing the information and understanding the system [Utting2006].  

  

MBT process can be divided into five main steps: modelling the SUT and/or its environmen t, generating 

abstract test cases from the models, concretizing the abstract tests into executable tests, executing the 

tests on the SUT and assigning verdicts, and analysing the test results [Utting2006]. MBT is heavily 

dependent on tools.  A wide variety of MBT tools exist, each with their own set of features and test 

generation algorithms [Utting2012]. Some may be better suited in their supported modelling approaches 

than others with respect to a chosen domain. Usually some kind of MBT tool is used to generate abstract 

test cases from a behavioural model of the SUT. Many of the MBT tools allow test engineer to control the 

focus and number of the test cases, and transforming the abstract tests into executable test scripts often 

requires some input from the test engineer [Utting2006]. 

  

MBT methodologies can be divided into two categories based on how the generated tests are executed: 

off-line testing and online testing [Utting2006]. In off-line testing the tests are first generated in their 

entirety, and the resulting test cases are then executed in a separate step. This approach fits well into 

traditional testing processes, with model-based testing simply replacing manual test creation. In contrast, 

online testing executes the tests as they are being generated. The advantage is that test generation can 

react to unexpected events in execution, making testing of non-deterministic systems easier. However, 

the lack of separate test cases necessitates greater changes to the entire testing process. Perhaps due 

to these difficulties, most work on MBT has focused on off -line testing. Examples of MBT tools capable 

of online testing include TorX [Tretmans2002] and TEMA [Jääskeläinen2009].  

  

While MBT has been a topic of research for a long time, and in the recent years  has started to see also 

more industrial adoption. Case studies in different domains include aerospace [Blackburn2002], 

automotive [Bringman2008], [Pretschner2005], medical [Vieira2008], communication protocols 

[Grieskamp2010], file systems [Miller2012], and information systems [Santos-Neto2008]. When dealing 

with large complex systems, MBT has been shown to be an efficiently scalable method.  

 

As a result of industrial adoption of model-based testing (MBT) and test automation in general, the 

challenges and the main part of manual effort in testing has shifted from test execution to test design 

and analysis of the results. This has also changed and increased the required expertise of test 

engineers. 

 

With modern test generation tools used in model-based testing (MBT) it is fairly easy to generate so 

large amount of test cases that even fully automated execution takes too long time to fit into modern 

agile development processes. Therefore generated test suites should to be automatically optimized by 

selecting the test cases that best satisfy the selected testing goals. Chapter 2.4 presents the approaches 

for evaluating and optimizing test suites. 
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2.1. Domain Specific Modelling for MBT 

As the systems built in the industry grow in complexity and size of the software, it gets more and more 

challenging to manage and test the systems. The usual way for abstracting the complexity of the system 

is through modelling. Even when using general purpose modelling languages, the way of using the 

language and possible extensions (for example UML and its profiles) to model real industrial systems is 

in practice specific to the system or the domain of the system. Therefore it is getting more common to 

use domain-specific modelling languages (DSML) to make the modelling easier and to avoid the 

overhead coming from the use of general purpose languages.  

 

There are varying reasons for the complexity of the system. The system can be large, distributed, 

configurable, or it can consist of many subsystems or different platforms and devices. S ince one model 

of the system would grow to be too large to comprehend and handle, the usual way is to divide the 

system into sub-systems that are defined into separate models of varying level of abstraction. Dividing 

the models into sub-models makes it more challenging to automatically generate executable tests from 

the separate models. A model used in test automation should include also inputs and expected outputs 

(test oracles). In complex systems the amount of possible inputs can be enormous, and therefo re it 

should be possible to generate or record the test data, as well as manually add the most relevant data.  

 

In the context of software testing, we can generally see various levels of domain -specific modelling 

[Kanstren2013]. At the basic level, scripting languages are commonly written to contain language 

elements from the domain, and parameterized into what can be described as textual domain -specific 

languages for testing. Means to combine this with model-based testing and to generate such languages 

from the test models have been described in [Kanstren2012b].  

 

Graphical domain-specific languages can be created with tools such as MetaEdit+. These can be used to 

build domain-specific test languages such as presented in [Puolitaival2011] and extended to mode l-

based testing in [Kanstren2012a].  

 

Using a suitable existing DSML or specifying a new DSML makes it possible to set the level of 

abstraction so high that a non-technical domain expert is able to use it to model systems or the expected 

behaviour of systems. When specifying a new DSML, a suitable generic meta-model can be re-used as 

template and re-parameterized for the current test instance. This kind of high-level modelling can be 

exploited also in test automation. The technical system expert can provide a set of "testing building 

blocks" (e.g., partial testing models or test script fragments) to the domain expert in a form that allows 

the domain expert to easily construct a test suite using these building blocks. One suitable form could be 

a domain-specific modelling (DSM) tool describing how the building blocks can be combined into realistic 

tests. 

 

Interesting future work remains in providing for more advanced support for specific domains, such as 

VoIP in telecommunications. The more specific these can be made, the easier it usually is for the end 

user (domain expert) to apply them, and the more powerful they can be. However, it is commonly a 

difficult goal to combine the required software engineering, domain modelling, and test modelling skills.  

The domain of protocol testing can be seen as potentially one of the most fruitful areas for this, as once 

an expert creates a test model, and combines it with suitable test generators, algorithms and test 

executors, these can be applied across the protocol implementations with high efficiency. An example of 
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such approach for the session initiation protocol is described in [Kanstren2014c].  

 

2.2. Model-Based GUI Testing (MBGT)  

Model-based GUI testing (MBGT) aims to automate and systemize the GUI testing process [Grilo2010]. 

There have been various attempts to develop models to automate some aspects of GUI testing. 

Although there are approaches that use general purpose modelling languages, such as UML, to model 

GUI application, a majority uses languages that are specific  to the domain of GUI applications. The most 

popular amongst them are state-machine models that have been proposed to generate test cases for 

GUIs. The key idea of using these models is that a test designer represents a GUI’s behaviour as a state 

machine; each input event may trigger an abstract state transition in the machine. A path, i.e. sequence 

of edges followed during transitions, in the state machine represents a test case. The state machine’s 

abstract states may be used to verify the GUI’s concrete state during test case execution [Memon2007]. 

  

Paiva developed an add-in to Spec Explorer, a model based testing tool developed by Microsoft 

research, in order to adapt it for GUI testing [Paiva2005]. She has developed a tool to map model 

actions with real actions over GUI controls. When the mapping information is defined for every model 

action, the tool generates automatically code that is needed to simulate user actions on the GUI for test 

execution. Conceptually, during test execution, related actions (model actions and concrete actions) run 

at the same time and after that results obtained are compared. Every time there is an inconsistency, it is 

reported. 

  

[Cunha2010] proposes a pattern-based approach and PETTOOL for semi-automated GUI testing of web-

based applications. User has to guide the tool during the modelling and testing. The approach identifies 

patterns of GUI behaviour and provides a generic solution for GUI testing. The proof -of-concept 

approach has been tested against web-based applications, such as Gmail. 

 

2.3. Model-based GUI testing of smartphone applications 

Smartphone applications are in several ways a challenging target for MBT. To begin with, they present 

the ordinary difficulties inherent in model-based GUI testing. Especially problematic is the fact that 

during the development the GUI tends to be quite volatile, which makes keeping the models up to date 

difficult. Design and maintenance workload is further increased by the fact that turnover on the market is 

typically very rapid. It is not uncommon to have multiple new products constantly under development. 

However, these products are often quite similar to each other. 

 

Another difficulty is the amount of concurrency involved. Modern smartphones have numerous different 

applications, from the mainstays like Messaging and Music Player to the more individual user-installed 

applications. The interactions between these applications can be highly complex as they communicate 

with each other (e.g. Messaging picking a recipient for a message from Contacts) or compete for 

hardware resources (e.g. both Gallery and Music Player seeking access to the speakers).  

 

One method to solving the issues of MBT in this domain is dividing the model into multiple components 

[Kervinen2005]. Instead of one monolithic test model which can be used to test a specific combination of 

applications on a specific product configuration, one creates multiple smaller model components, each 

modelling a specific aspect of the system under test (SUT). These components can then be com bined 

into a single test model for test generation. Apart from making individual models easier to understand, 

this approach enables variation in the test model, as the specific components that compose it can be 
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selected as needed. 

 

A more advanced version of the compositional method is a model library [Jääskeläinen2011], a 

collection of model components along with semantic meta-information that identifies their role in a test 

model and applicability to different products and configurations. Individual components in the library can 

be used for all SUT:s for which they are applicable, thereby reducing redundant design and maintenance 

work. 

 

There are some specific approaches that have been found helpful in building model libraries. First, 

testing concurrent systems can be facilitated by dividing the test model into components along the lines 

of the concurrent units in the SUT, such as modelling Messaging and Contacts as separate (collections 

of) components. Shared resources can be subjected to the same treatment: if the number of contacts 

stored on the phone is modelled in a separate component, then all the applications depending on it can 

access it independently of each other. To enable proper concurrency testing the model formalism must 

keep track of the state of each component separately, though on a smartphone where only a single 

application is active at a time their states can be updated individually. Furthermore, some mechanism to 

facilitate switches between applications is needed, as modelling them manuall y for all possible 

combinations of states is in practice infeasible. 

 

Second, further division of models into components within applications can not only make models 

simpler and easier to handle, but also improve their reusability on different products. Fo r example, one 

version of Messaging might support distinct audio messages, while another lacks such a feature. If audio 

messages are modelled as a separate component, they can be included into the test models built for 

products that support them, even though the rest of the Messaging models may be shared between both 

kinds of products. With the meta-information in the model library, the assembly of the test model for 

different products can be automated easily enough, and thus causes no extra work for the testers. 

 

Third, both reusability and maintainability of the models can be improved by designing separate models 

for functionality to be tested and its implementation on the GUI. This is important, because while different 

versions of the same product and even entirely different products often support the same functionality, 

such as basic message sending and reception in Messaging, their GUIs are rarely identical. When the 

two concerns are separated the abstract functional models can be more easily reused on m ultiple 

products, and require less maintenance since they are indifferent to changes in the GUI. The 

implementation models may need to be revised for new versions and products, but their creation is 

generally a far more straightforward task compared to functional modelling. 

 

Fourth, when it comes to testing devices with similar control schemes, such as touch screens, further 

improvements can be made with the use of suitable test execution frameworks. The framework can 

provide a unified interface based on the concepts of the control scheme and implement them by 

whatever means suit a specific product. For example, the interface for touch screen devices could 

provide methods for different gestures such as tap and swipe, and a particular product might be 

controlled through a specific testing interface or even a physical robot. The primary benefit of abstracting 

the details of the control scheme into the framework interface is to greatly improve the reusability of the 

models. In addition it makes models easier to understand and maintain, since they can be based on 

familiar high-level concepts. Existing high-level test execution frameworks include Selenium WebDriver, 

which allows testing in different browser environments, and Appium, which uses Selenium to test 

smartphone applications. Another one currently under development is OTRP, which is designed to test 
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touchscreen devices. 

 

2.4. Automatically Extracting Models for Testing 

Crafting models for effective MBT requires a great deal of expertise in formal modelling and a  deep 

understanding of the problem domain. Constructing the models manually from the scratch requires also 

a significant amount of effort [Grilo2010]. The effort and expertise required for manually crafting the 

models for MBT is a major obstacle slowing down its industrial adoption. For existing systems, model 

extraction (also referred to as model inference, specification mining, and reverse engineering)  can be 

used to automate some part or even the whole process of creating the models.  Generating models for 

testing can target either general system properties or specific domain-specific properties.  

 

Machine-learning techniques, such as [Bowring2004, Haran2007, Jin2008], build models that classify a 

system into categories such as “pass” or “fail” in the context of software testing. Typically such 

techniques focus on building models based on low-level information such as program points covered and 

branches taken through the code. 

 

For modelling higher-level software behaviour the basic approaches start from describing the generic 

control- and data-flow aspects of the system. For example, Daikon [Ernst2000] is a tool intended for 

providing invariants over observed program traces. That is, it looks at a set of recorded executions over 

chosen program points and provides invariants describing the observed variable data value at those 

points such as X always greater than 0. At the simplest level, this can be used as input in software 

testing to provide information when the software changes and these invariants become violated in the 

changes [Ernst2000].  

 

Combining invariants with control-flow observations brings the produced models again slightly higher in 

the level of complexity and abstraction that can be described. For example, the data invariants can be 

combined with observations of what paths they have been associated to as a way to produce 

compatibility tests for assessing potential component compatibility [Mariani2007]. Such models can 

further be applied in test automation by forming state-machines that generalize the observed flows. 

These can be used e.g. for optimizing a test suite by choosing which set of test cases to execute in order 

to achieve desired coverage of this model [Lorenzoli2008].  

 

GUI Models 

State-based models, such as Finite State Machine (FSM), have been commonly used for modelling 

Graphical User Interfaces. Miao et al. [Miao2011] propose a finite-state machine (FSM) based GUI Test 

Automation Model (GUITAM). In GUITAM, a state of the GUI is modelled as a set of opened windows, 

GUI objects (widgets) of each window, properties of each object, and values of the properties. Events or 

GUI actions performed on the GUI may lead to state transitions and a transition in GUITAM is modelled 

with the starting state, the event or GUI action performed, and the resulting state. To reduce the amount 

of states into computationally feasible level, not all different property values are considered for 

distinguishing different states of GUITAM.  

 

Aho et al. [Aho2011_ITNG] use a state based GUI model to capture the behavior of the GUI application 

into state machine, and hierarchical tree models to capture the structure and context of the GUI in each 

state. The structural models, as well as screenshots of the GUI, are automatically mapped to the 

corresponding states in the behavioral GUI state model. Events or GUI actions are modeled as 
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transitions between the states, and part of the context information is captured into transitions of the 

behavioral GUI state model. To avoid the state space explosion, Aho et al. [Aho2011_ITNG] disregard 

data values, such as texts in text fields or selected values of lists or drop-down boxes, when 

distinguishing new GUI states from the already visited states. Instead, the data values of the GUI are 

captured into properties of GUI actions or events. Therefore, the generated GUI state models may have 

usually an infinite number of transitions, but a reasonable number of GUI states.  

 

Paiva [Paiva2003] used specification language based on ISO/VDM-SL standard to model the UI. Then 

they started writing the formal models in Spec# and using Microsoft Spec Explorer tool to convert the 

models into finite state machines (FSMs) [Paiva2005_ASM]. Then the FSMs are converted to 

Hierarchical Finite State Machines (HFSMs) to reduce the number of states in models. 

 

Memon et al. propose event flow graph (EFG) to model the behavior of the GUI [Memon2001_PhD], 

based on events instead of GUI states. In EFG, each node represents an event, and all events that can 

be executed immediately after this event are connected with directed edges from it [Memon2001_PhD]. 

The EFG has evolved to a more compact GUI model called event interaction graph (EIG) [Xie2005] that 

can be automatically transformed from an EFG. EIG includes only system-interaction events and with the 

smaller set of events it better suits rapid testing, such as smoke regression testing. EIG was integrated 

also into DART to obtain smoke test cases for GUIs to be used for stabilizing daily software builds 

[Memon2005_IEEE]. After EFG and EIG models, Memon and his team have introduced event-based 

models, e.g., Event-Flow Model [Memon2004_OOPSLA], [Memon2007], event-space exploration 

strategies (ESES) [Memon2007], and Event Semantic Interaction (ESI) relation modeled as a graph 

called the ESI Graph (ESIG) [Yuan2007_ASE], [Yuan2010_IEEE]. 

 

Arlt et al. have proposed event dependency graph (EDG) [Arlt2012_CoRR], [Arlt2012_ISSRE] to capture 

more information to the created models or make the modeling or test case generation based on the 

models more efficient. In the recent research they have combined static analysis to improve the dynamic 

GUI ripping and testing process [Arlt2012_ISSRE]. 

 

Automated Extraction of GUI Models 

In the area of graphical user interface (GUI) software, there are a few approaches using static analysis 

of the source code for automatically constructing GUI models, such as [Silva2010]. Campos and his 

research group have numerous publications on static reverse engineering of GUI models [SilvaJC2006], 

[SilvaJC2006_ATEM], GUIsurfer tool [SilvaJC2009], [SilvaCE2012_EICS] and using the generated 

models for usability analysis and GUI testing.  

 

The dynamic approaches that involve executing the GUI application and observing the application during 

the run-time are better suited for extracting the behaviour of GUI applications [Grilo2010]. Memon and 

his research group have extensively published their research results on GUITAR GUI testing framework 

[GUITAR], [Nguyen2014] that has been the main platform for their research on automated GUI testing. 

Their approach for reverse engineering GUI models is called GUI ripping [Memon2003_WCRE].  GUI 

ripping is a dynamic process for automatically analyzing the structure of GUI [Memon2003_SM] and 

using the captured GUI structure to create event-flow graphs and an integration tree. GUI ripping was 

introduced with a framework called DART (Daily Automated Regression Tester) [Memon2005_SME]  that 

automates everything from structural GUI analysis, test case generation, test oracle creation, to code 

instrumentation, test execution, coverage evaluation, regeneration of test cases, and their re -execution. 

The goal has been to develop fully automated modeling and testing approaches.  



 

 
Page 12 of 57  

 

 

The GUI Ripper was initially implemented for Java SWT-based GUIs, but it has been extended to 

support Web-based GUIs, iOS, Android, Java JFC, Eclipse and UNO (Open Office) frameworks. The 

testing process with GUITAR consists of 4 main steps [GUITAR]: 

1. GUI ripping: Using a crawler-like tool called GUI Ripper to automatically launch and execute 

the application under testing (AUT). The GUI Ripper tries to expand hidden GUI elements 

and all the possible GUI windows, and capture the structure of the GUI into an XML-based 

model called GUI Tree (or GUI Forest). Each node of the GUI Tree represents a window and 

encapsulates all the widgets, properties and values in that window [Memon2003].  

2. Model construction: Using gui2efg or another model converter to construct an event -flow 

graph (EFG) or another event-based graph model from the GUI Tree. In EFG, each node 

represents an event, and all events that can be executed immediately after this event are 

connected with directed edges from it [Memon2003]. 

3. Test case generation: Using graph traversal algorithms to generate test cases or event 

sequences by walking on the event-based graph model with a given coverage criteria, such 

as covering all events or all edges. 

4. Replaying: Using Replayer tool to execute test cases and verify the results.  

 

Various tools have been integrated into the GUITAR framework, such as a profiler tool to dynamically 

capture actual event-level software usage information while the GUI is being used in the field and 

employ the information to support refactoring [Nagarajan2003] or to test GUI components [Memon2006], 

[Brooks2007]. GUITAR has been extended also to support automated GUI testing in open source 

software projects [Xie2006_ICSM] and agile development processes [Memon2007_agile], and iteratively 

improve GUI test cases by run-time feedback from executed test cases [Yuan2007_ICSE], [Yuan2008], 

[Yuan2009], [Yuan2010_IST] or a genetic algorithm to evolve new test cases that increase test suite’s 

coverage while avoiding infeasible sequences [HuangS2010]. GUITAR and GUI ripping has been used 

also for evaluating and improving usability of GUI applications [Memon2009]. 

 

Memon’s team has extensively published their research results also in the areas of coverage and 

effectiveness of GUI testing [Memon2001_ESEC], [Xie2006_ICSE], [Xie2006_ISSRE], [Strecker2007], 

[Strecker2008], [Xie2008], [Yuan2011], [Strecker2012], and test suite reduction and prioritization for 

automated GUI testing [McMaster2005], [McMaster2006], [Bryce2007], [McMaster2007], 

[McMaster2008], [Brooks2009_ICSM], [Elsaka2010], as well as characteristics of industria l GUI systems 

[Brooks2009_ICST]. 

 

Ana Paiva and her team in University of Porto (Porto, Portugal) have extensively researched GUI 

modelling and testing. They reverse engineered formal GUI models using semi-automated dynamic 

technique, mixing manual and automatic exploration to access parts of the GUI that are protected by a 

key or are in some other way difficult to access automatically [Paiva2007_FMICS]. The goal of the 

approach and presented REGUI2FM tool is to reduce the modeling effort and provide mapping 

information for executing abstract test cases on a concrete GUI during model -based GUI testing 

process. The extracted partial as-is Spec# model is validated and completed manually into “should-be” 

model, including also expected outputs to be used as test oracles. During the exploration process, the 

intermediate code of the AUT is instrumented with Aspect-Oriented Programming (AOP) techniques in 

order to be able to recognize and capture a wider range of GUI controls and events, beyond native ones. 

Spec Explorer tool is used for transforming Spec# model into FSM, and generating and executing test 

cases. Paiva et al. [Paiva2007_notes], [Moreira2008] have also provided UML based modeling tool 
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VAN4GUIM for abstracting the complexity and visualizing the textual Spec# models.  

 

With J.L. Silva and Campos [SilvaJL2007] Paiva combined dynamic GUI reverse engineering with 

manual GUI modeling to improve the test oracles of the created models. In this approach they used 

ConcurTaskTrees (CTT) task models to describe UI interactions and TERESA tool [Teresa] to generate 

FSM models from the CTT. They developed TOM (Task to Oracle Mapping) tool to generate Spec# 

models with test oracles from these FSM models, reverse engineered the mappings between model and 

concrete GUI objects into another Spec# model, combined the two Spec# models, and then used Spec 

Explorer to generate a new FSM model that is used for model-based GUI testing. 

 

The reverse engineering approach was further developed with Grilo [Grilo2009] by implementing the 

dynamic reverse engineering algorithm on top of Microsoft UI Automation library [MsUI] and saving the 

GUI model in XML based format before generating the Spec# specification for testing purposes, and the 

tool was renamed to REGUI [Grilo2010]. The approach combines automated and manual exploration to 

access all parts of the GUI, but the user has to guide the tool during the creation of the model, and the 

generated model has to be validated and completed manually. 

 

The ReGUI tool was developed further into version 2.0 with Morgado [Morgado2011] using a different, 

fully automatic reverse engineering approach. The generated models include a structural model of the 

GUI, saved into XML based ReGUITree model, and behavioral models saved into four GraphML models 

and one Spec# specification. The approach is extended by generating a Symbolic Model Verification 

(SMV) model for model checking purposes [Morgado2012_AiS], and generating UML 2.0 FSM model 

and using Inductive Logic Programming (ILP) machine learning technique to solve ambiguous situations, 

e.g., when the same event may lead to multiple different target states. Together with R. Ferreira they 

have researched also test coverage analysis [FerreiraR2010_QUATIC], [FerreiraR2010_ICSTW]. 

 

In the recent research Silva et al. [SilvaCE2013] combined dynamic analysis with static source code 

analysis for reverse engineering Web applications. First, a state based model of the Web UI is obtain ed 

using dynamic reverse engineering, and then the relevant conditions over the input values in the UI are 

determined by static analysis of the event handlers attached to each UI control. An Abstract Syntax Tree 

(AST) is created for each event listener. 

 

Amalfitano et al. have been recently extremely active in publishing their research on dynamic reverse 

engineering of rich internet applications (RIAs) and mobile applications. Their approach for reverse 

engineering client-side behavior of RIAs [Amalfitano2008] is based on dynamic analysis of the RIA 

execution traces and employing clustering techniques for solving the problem of state explosion of the 

generated finite state machine (FSM) models. The developed RE-RIA tool creates an instantiation of a 

Mozilla Firefox Browser inside its Java GUI and the approach is used to model AJAX based Web 

applications [Amalfitano2009_ICSM]. 

 

In the domain of web-applications, models have been generated by crawling through the various 

possible navigation paths of the system [Mesbah2012]. This can then be combined with user defined 

invariants over the model (such as information in table should match given observed constraints) when 

the tool in future re-crawls the same application to produce test cases. These can be further refined 

using various domain-specific criteria such as web-application navigational elements, exploration history, 

and GUI structural coverage [Fard2013]. 

 



 

 
Page 14 of 57  

 

Using Extracted Models for Testing 

In general, going from an automatically generated test model to meaningful test cases is a challenge and 

always only able to address only specific generalized aspects. In going from such models to higher level 

and more powerful models with test oracles and test data tailored for the system under test, one needs 

to augment these models. One is to add specific checks for tailored invariants such as done in 

[Mesbah2012]. In general a procedure for such modelling is described in [Kanstren2010]. In this 

procedure, one starts with the generated model, augments it with expert domain knowledge, generates 

test cases, evaluates the results, refines the model again with help of domain experts, and iterates this 

process [Kanstren2010]. This is an application of specification mining to model -based testing. Further 

input for this process could be generated by applying various data generation, crawling and other similar 

approaches to refine the observed invariants and to build a more explicit feedback loop for the domain 

experts. Some initial work in such direction for web-applications is shown in [Fard2013], although still 

missing the domain-expert in the loop. 

 

Amafitano et al. used the generated models for testing RIAs [Amalfitano2010_ICSTW] and use test 

reduction techniques test suites to ensure scalability. Execution traces used for the test case generation 

can be obtained either from user sessions, automated crawling of the application or by combining both 

approaches. Combining both manually and automatically obtained execution traces increased the 

effectiveness of testing. [Amalfitano2010_ICSTW] introduces tools developed for the process: an AJAX 

crawling tool CrawlRIA, a dynamic RIA analysis tool CreRIA, Test Case Generator and Test Case 

Reducer tool TestRIA, and DynaRIA [Amalfitano2010_ICPC], [Amalfitano2010_QUATIC], 

[Amalfitano2013_Springer], a tool for dynamic analysis and testing of RIAs. The approach can be used 

also in agile processes [Amalfitano2010_ICIW], and CReRIA tool has been extended to support semi -

automatic generation of user documentation for Web 2.0 applications [Amalf itano2011_WSE]. 

 

Amalfitano et al. [Amalfitano2009_ASEA] have presented a Web page classification technique and WPC -

CA (Web Page Classifier) tool based on the deduction of classification rules that allow the reliable 

classification of the pages of a Web application. A reliable classification of Web pages can be useful for 

supporting various engineering activities, such as re-engineering, analysis and testing. They have 

proposed a classification framework that characterizes existing RIA testing techniques 

[Amalfitano2010_WSE]. 

 

In more recent research [Amalfitano2011_ICSTW] they presented a technique and A2T2 (Android 

Automatic Testing Tool) for dynamic reverse engineering and automated testing of Android applications. 

The tool has been developed in Java and is composed of three main components: a Java code 

instrumentation component, the GUI Crawler and the Test Case Generator. It supports rapid crash 

testing and regression testing of Android applications. Amalfitano wrote also his PhD thesis 

[Amalfitano2011_PhD] on reverse engineering and testing of RIA and Android applications.  

 

Together with Memon, Amalfitano et al. [Amalfitano2012_ASE] presented AndroidRipper approach for 

dynamic reverse engineering of GUI models of Android mobile applications. The approac h uses a high-

level automation library called Robotium [Robotium] and GUI ripper whose behavior can be configured 

according to application specific testing aims. While dynamically exploring the GUI, the tool detects run -

time crashes of the application. The goal of the approach is not to develop a model of the application, 

but automatically and systematically traverse the GUI, generating and executing test cases as new 

events are encountered. Test case generation is based on the automatic dynamic analysis of  the GUI 

that is executed in order to find and fire events in the GUI. The approach is further automated 
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[Amalfitano2012_ICSM] to reduce the manual intervention during the testing process.  

 

Their approach for testing Android mobile applications is further extended [Amalfitano2013_ICSTW] to 

support a broader set of events. As the earlier focus had been only on user events produced through the 

GUI, now they considered also context events, e.g., events coming from the external environment, 

events generated by the device hardware platform, events typical of mobile phones, and events from 

other Internet connected applications. The proposed testing techniques involve the manual definition of 

reusable event patterns including context events. Event patterns may be used to manually generate test 

cases, to mutate existing test cases, and to support the systematic exploration of the behavior of an 

application using the GUI Ripping technique. 

 

As the generated models are based on the behaviour of the observed implementation, instead of the 

specifications or expected behaviour, it is challenging to automatically generate meaningful test oracles. 

In most of the dynamic GUI reverse engineering approaches for testing, the test oracle is based on the 

observed behaviour of an earlier version of the GUI application. Using this kind of test oracle, changes 

and inconsistent behaviour of the GUI can be detected, but validation and verification against the 

specifications is problematic. Although using implementation based models in testing has restrictions 

and requires special consideration, the generated models can be used in automated testing and 

supporting various manual testing actions. 

 

Aho et al. present GUI Driver tool. During the automated model extraction, the GUI is dynamically 

traversed or crawled through by interacting with all the detected widgets of the GUI [Aho2011_ITNG]. As 

the number of possible event or interaction sequences is enormous, GUI Driver attempts to drive the 

software into as many different states as possible, aiming for state coverage, instead of transition 

coverage [Aho2011_ITNG].   

 

Testing of the application begins already during the modeling, as crashes, unhandled exceptions and 

some usability issues are detected and reported [Aho2011_ITNG]. 3rd party MBT tools are used for 

generating tests from the models. GUI Driver uses model transformation to save the GUI state model 

into GraphML, to allow the use of external graph traversal algorithms for generating test sequences with 

given coverage criteria [Aho2011_ITNG]. The generated test sequences can be executed with GUI 

Driver and test oracles are based on an earlier, presumably correct version of the GUI application, 

allowing the regression testing [Aho2011_ITNG]. 

 

The fully automated reverse engineering approach [Aho2011_ITNG] was extended into semi-automated 

iterative process [Aho2011_ICOS] of automated reverse engineering and manually providing valid input, 

such as username and password, when the reverse engineering algorithm does not find any m ore new 

states from the GUI application. The user provides the input combinations into the GUI that is being 

modeled and then allows the GUI Driver tool to continue automated reverse engineering 

[Aho2011_ICOS]. 

 

Aho et al. [Aho2013_CoDIT] have highlighted the importance of diverse GUI automation and interacting 

with all enabled widgets of the GUI during the dynamic reverse engineering in order to produce more 

comprehensive models of the dynamic behavior of GUI applications. Therefore they proposed a widget 

classification to support GUI automation strategies for effective model extraction [Aho2013_CoDIT] and 

presented some easy-to-implement strategies to demonstrate the feasibility of the classification. The 

goal of the GUI automation strategies is to reach as many states as possible with as few events or 
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interactions as possible [Aho2013_CoDIT], in similar way as in test suite prioritization.  

 

During this project, VTT and F-Secure collaborated on Murphy, a dynamic GUI reverse engineering and 

testing toolset developed as internal tool at F-Secure [Aho2013_EESSMod]. The idea of Murphy tool is 

similar to GUI Driver: traversing or crawling through all the possible states of the GUI application and 

automatically constructing a state based GUI model of the behavior observed during the execution. Most 

of the model extraction approaches have limitations and restrictions on the GUI applications that can be 

modeled, but Murphy is more platform independent, supporting most GUI platforms regardless of the 

implementation language [Aho2013_EESSMod]. Murphy provides also a variety of tools to use the 

extracted GUI models for automated testing and supporting manual testing activities, supports virtualized 

test execution environment, and integrates to other tools in automated test environment, e.g., Jenkins 

[Jenkins] open-source continuous integration tool. 

 

Murphy tool [Aho2013_EESSMod] uses state based directed graph for capturing the behavior of the GUI 

application and models events or interactions as transitions between the s tates. During the UI crawling, 

screenshots of the GUI are automatically captured after each interaction and used for visualization of the 

resulting graph models [Aho2013_EESSMod]. In addition to using the traditional means of dynamically 

observing the GUI, such as UI Automation library [MsUI], Murphy provides its own window scrapping 

libraries. One of the libraries innovatively uses image recognition and comparison to provide platform 

independent way to detect widgets for interaction and changes in the GUI for observing the state 

changes and possible defects [Aho2013_EESSMod]. 

 

As the extracted models are based on the observed implementation, instead of requirements of the 

system, visual inspection and manual approval of the models is required to make sure t hat the modeled 

application behaves as expected [Aho2014_TAIC-PART]. Using screenshots of the modeled GUI 

application to visualize each state of the model helps in reading the models and understanding the 

behavior of the modeled application [Aho2014_TAIC-PART]. In addition to detecting crashes and 

unhandled exceptions during model extraction and testing, test oracles are based on approved behavior 

of an earlier version of the GUI application [Aho2013_EESSMod]. The extracted models of a new version 

are compared with the models of the previous version using model comparison functionality, and Murphy 

reports deviations, showing screenshots of both versions and highlighting the changes in the images. 

Then the user has to decide which changes were desired features and which are deviations from the 

expected behavior [Aho2014_TAIC-PART]. 

 

One of the main contributions of Aho and Suarez [Aho2013_EESSMod], [Aho2014_TAIC-PART] was 

presenting experiences from using the Murphy tool to automatically extract models from commercial GUI 

software products and using the models to automate and support GUI testing activities in highly 

automated industrial development and testing environment. 
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3. Test Evaluation and Optimization 

With modern test generation methods such as model-based testing, building large test suites becomes 

quite simple, since test case construction is easily automated. The problem with this is that a large 

number of test cases do not automatically imply that all these test cases are indeed useful or nec essary. 

Indeed, it is quite likely that many of the selected test cases are redundant, or that their results can be 

derived from earlier test phases. Also, automated test case generation does not usually lend itself to 

guaranteeing a given kind of coverage unless the test case generation method is specially built for this.  

  

Also, redundant generated test cases often remain hidden until test case execution. If we consider the 

case of model-based testing, the process is started promptly at design, and therefore enabling early fault 

detection. Test suites generated with redundancy at test case level can be detected and removed earlier 

in the testing process. From all testing activities test suite generation is the most crucial part 

[Bertolino2003]. Evaluating the test suite based on some given criteria, i.e. coverage and fault-based 

criteria, is demanding and has multiple theoretical aspects. Based on the chosen generation mechanism 

one can find that evaluating the test suite in a systematic way is not a simple  task. 

  

Evaluation and optimization of test suites has a direct impact on the costs and effort of software testing. 

In order to deal with these issues several questions need to be addressed.  First of all, one needs a 

suitable test suite optimization technique suitable for model-based testing. Current amount of evaluation 

is insufficient to identify a single superior technique with regards to whatever criterion and therefore it is 

not necessary to decide on a single technique. In fact it can be the case to use a combination of several 

different techniques. 

  

The process of identification, removal, prioritization of test cases that finally can lend an optimal test 

suite with regard to some criterion, can be defined as test suite optimization. As redundancy of a test 

case can be relative, the optimization techniques need to deal with all possible combinations of the test 

cases in a test suite. The process of manual optimization is both overwhelmingly complex and not 

desirable. Also, exhaustive optimization even with an automated technique would give results only in toy 

example and is impractical for industrial integration. We can assume that the complexity of any test suite 

optimization technique is exponentially related to the test suite cardinality.  

 

Any type of test suite optimization, minimization or similar activity requires initially one to define what the 

test suite is being optimized in relation to. Typically this is considered as a form of test coverage. In 

general software testing, we can see this as code coverage and traditional measures for this include 

code coverage, path coverage, and decision coverage. Other measures may be necessary in different 

fields of test automation. For example, model-based testing is commonly applied as a black-box 

approach and in this case the coverage criteria typically become criteria over the test model. While the 

test model can be seen as code, the coverage criteria are different from the traditional generic ones for 

systems under test as there is generally more information in the models tailored for testing purposes 

only, while at the same time the black-box view excludes the availability of source code for the system 

under test (or at least require consideration for cases where this is true). Specific coverage crit eria for 

test models then include structural model coverage (e.g., model states and transitions), data coverage 

(e.g., model variable values), requirements coverage (represented e.g., as function points in the model), 

test case specifications (e.g., user defined scenarios over the model paths), random walks (e.g., to de-

emphasize pure expert bias), and fault-based (such as history or mutation coverage) [Utting2012]. 
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3.1. Model-checking Tailored Test Generation, Evaluation and Optimization  

Model-based testing by model-checking is a technique introduced almost fifteen years ago [Engels1997] 

as an efficient way of using a model-checker to interpret traces as test cases. More details and 

references on testing with model-checkers can be found in the work of Fraser et al. [Fraser2009]. Within 

the last decade model-checking has turned out to be a useful technique for generation of test cases from 

finite-state models [Engels1997]. However, the main problem in using model-checking for testing 

industrial software systems is the potential combinatorial explosion of the state space and its limited 

application to models used in practice. 

 

A model checker has been used to find test cases to various criteria and from programs in a variety of 

formal languages [Hong2002],[Ammann2002]. In addition, Black et al. [Black2000] discuss the problems 

encountered in using a model-checker for test case generation for full-predicate coverage and explain 

why logic coverage criteria is not directly applicable for model-checking. Rayadurgam et al. 

[Rayadurgam2003] present an alternative method that modifies instead the system model and are 

obtaining MC/DC adequate test cases using a model-checking approach. 

 

Using Logic Coverage to Improve Test Generation and Evaluation 

In model-driven development, testers are often focusing on functional model-level testing, enabling 

verification of design models against their specifications. In addition, in safety-critical software 

development, testers are required to show that tests cover the structure of the implementation. Testing 

cost and time savings could be achieved if the process of deriving test cases for logic coverage is 

automated and provided test cases are ready to be executed. The logic coverage artifacts, i.e., 

predicates and clauses, are required for different logic coverage, e.g., MC/DC. One way of dealing with 

test case generation for ensuring logic coverage is to approach it as a model -checking problem, such 

that model-checking tools automatically create test cases. There have been a number of testing 

techniques used for defining logic coverage using model-checkers, e.g., [Black2000, Rayadurgam2003, 

Rayadurgam2001]. 

 

Logic-based Coverage Criteria 

In the literature, there are many similar criteria defined, but with different terminology [AmmannOf futt]. 

Also, some definitions of coverage criteria (e.g., MC/DC) have some ambiguities. In order to eliminate 

the ambiguities and conflicting terminologies, Ammann et al. [Ammann2003] abstracted logic criteria with 

a precise definition and formal representation. A predicate is an expression that evaluates to a Boolean 

value. It consists of one or more clauses. A clause is a predicate that does not contain any logical 

operators and can be a Boolean variable, non-Boolean variables used for comparison, or a call to a 

Boolean function. Clauses and predicates are used to introduce a variety of coverage criteria. This paper 

presents three different test criteria, each of which requires a different amount of test cases:  

 

(1) Predicate Coverage (PC) 

(2) Clause Coverage (CC) 

(3) Correlated Active Clause Coverage (CACC).  

 

These are defined in the next sections in terms of the FBD program. We note that CACC relies on its 

original definition and it is similar to that of modified condition/decision coverage (MC/DC). 

 

Automated Test Generation 
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In this project, our goal is to help testers automatically develop tests for safety critical software systems 
modeled in Function Block Diagram. One example includes logic coverage, which needs to be demonstrated 
on the developed programs. There has been little research on using logic coverage criteria for Function Block 
Diagram programs in an industrial setting. In some cases logic coverage is analyzed at the code level. Even if 
at the code level, logic coverage is used, it would be difficult to standardize the code generation scheme for 
different PLC tool vendors in order to map directly the criteria to the original Function Block Diagram program. 
Hence, in this model-driven environment it is advantageous to move as much testing activity from code level 
to Function Block Diagram program level as possible. 
 

We developed a framework suitable for transforming Function Block Diagram programs to a formal 
representation of both its functional and timing behavior. For this, we implement an automatic model–to–
model transformation to timed automata, a well-known model introduced by Alur and Dill. The choice of timed 
automata as the target language is motivated primarily by its formal semantics and tool support for simulation 
and model checking. Our goal is not to solve all testing issues (e.g., robustness, schedulability, etc.), but to 
allow the usage of a framework for formal reasoning about testing Function Block Diagram programs. The 
transformation accurately reflects the data-flow characteristics of the Function Block Diagram language by 
constructing a complete behavioral model, which assumes a read-execute-write program semantics. The 
translation method consists of four separate steps. The first three steps involve mapping all the interface 
elements and the existing timing annotations. The latter step produces a formal behavior for every standard 
component in the Function Block Diagram program. These steps are independent of timed automata and 
thus are generic in the sense that they could also be used when translating an Function Block Diagram 
program to another target language. This allowed us to investigate further test case generation techniques 
based on model checking. 
 

We developed a testing technique based on model checking, tailored for logic coverage of Function Block 
Diagram programs. There have been a number of testing techniques used for defining logic coverage using 
model-checkers. However, these techniques are not directly applicable to Function Block Diagram programs 
and semantics. Our main goal with this project was to define logic coverage for Function Block Diagram 
programs based on the transformed timed automata model. This copes with both functional and timing 
behavior of a Function Block Diagram program. We also found that a formal definition is necessary for the 
approach to be applicable to model checking. We show how a model-checker can be used to generate test 
cases for covering a Function Block Diagram program. 
 

We developed a testing tool for safety critical applications and applied it on a large-scale case study. We 
applied the tool in a large case study and found that it is efficient in terms of time required to generate tests 
that satisfy logic coverage and scales well for most of the programs. 
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Figure 3.1.1. Testing Methodology Roadmap 

 

In this report, we describe an approach to automatically generating tests for FBD programs. Logic coverage 
criteria are used to define what test cases are needed and we use a model checker to generate test traces. In 
addition, the methodology presented in this report is tailored for FBD programs, and is composed of the 
following steps, mirrored in the figure above: 

1. Model Transformation: To test an FBD program we map it to a finite state system suitable for model 
checking. In order to cope with timing constraints we have chosen to map FBD programs to timed 
automata. 

2. Logic Coverage Annotation: We annotate the transformed model such that a condition describing a 
single test case can be formulated. This is a property expressible as a reachability property used in 
most model checkers. 

3. Test Case Generation: We now use the model-checker to generate test traces. To provide a good 
level of practicality to our work, we use a specific model-checker called UPPAAL which uses timed 
automata as the input modeling language. The verification language supports reachability properties. 
In order to generate test cases for logic coverage of FBD programs using UPPAAL, we make use of 
UPPAAL’s ability to generate test traces witnessing a submitted reachability property. Currently 
UPPAAL supports three options for diagnostic trace generation: some trace leading to a goal state, the 
shortest trace with the minimum number of transitions, and fastest trace with the shortest time delay. 

 
While UPPAAL  is a viable tool for model checking, it is not directly tailored to test case generation in practice. 
We demonstrate how to work around this by automatically generating traces for logic coverage of the control 
flow of FBD programs described in timed automata and how we transform these traces to actual test cases. 
 

The basic approach to generating test cases for logic coverage using model-checking is to define a test as a 
finite execution path. By characterizing a logic coverage criterion as a temporal logic property, model-
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checking can be used to produce a path for the test obligation. By using a translated FBD program, we use 
logic coverage to directly annotate both the model and the temporal logic property to be checked. We 
propose the annotation with auxiliary data variables and transitions in such a way that a set of paths can be 
used as a finite test sequence. In addition, we propose to describe the temporal logic properties as logic 
expressions satisfying certain logic coverage criteria. Informally, our approach is based on the idea that to get 
logic coverage of a specific program, it would be sufficient to (i) annotate the conditions and decisions in the 
FBD program, (ii)  formulate a reachability property for logic coverage, and (iii)  find a path from the initial 
state to the end of the FBD program. To apply the criteria, necessary properties for the integration of logic 
coverage need to be fulfilled. 
 

Experimental Evaluation of Automated Test Generation 

 
Our goal in this report is to evaluate the automated test generation technique on industrial FBD programs and 
to acquire experience regarding its efficiency and usability. We therefore conduct a set of analyses using 
programs developed by Bombardier Transportation AB in Sweden. The system has been in development for 
more than two years and uses processes influenced by safety critical requirements and regulations including 
the EN 50128 Standard, which requires different logic coverage levels (e.g., DC and MC/DC). The industrial 
system studied in this paper is the TCMS (Train Control and Management System), developed by 
Bombardier Transportation AB engineers, which has been deployed to the field. In this research we, have 
used all TCMS programs written in the FBD standard language resulting in a total of 157 artifacts. Each of the 
programs is sizable and representative of industrial programs used in the train system’s development. 
 

We investigate the following questions regarding the method’s performance: 

 Q1, Efficiency:  What is the time required for the tool to generate tests that satisfy the DC, CC and 
MC/DC logic coverage criteria? 

 Q2, Coverage:  How close does the tool come to generating tests that achieve 100% coverage of 
each of the criteria? 

 

To answer Q1 and Q2, the tool generates tests aimed at achieving maximum logic coverage. Since we are 
using a model checker for generating tests, the toolbox simply produces the maximum achievable coverage 
with a proof that uncovered test obligations are not coverable. For 123 of the 157 programs (78%) the tool 
provided tests that covered 100% of the required entities for each of the three coverage criteria. The 
generation time for MC/DC averaged approximately twice as long as for DC. The results are summarized as 
boxplots in the figure below with the kernel density distribution of the generation time shown also below. The 
kernel densities estimates for the generation time for DC (red), CC (green) and MC/DC (blue) are plotted on 
the same graph. It is quite clear on the graph that the distribution of generation times is more variable for 
MC/DC. It is also worth noting that the generation time modes (i.e., most frequent values in the generation 
time data set) of a distribution are close to each other for all criteria. We can observe that a few outliers 
caused the average generation time to greatly exceed the median generation time for all coverage criteria. 
For 34 of the 157 programs, the tool did not terminate after running for a substantial period of time. After 
discussions with engineers from Bombardier Transportation AB regarding the needed time for a tester to 
provide a set of tests for a desired coverage, we concluded that 10 minutes was a reasonable cut-off point for 
the model checker to terminate. 
 

For 78% of the programs in this report, the tool automatically generated tests achieving 100% DC, CC and 
MC/DC. For the other 22% of the programs, the results were less satisfactory. As can be seen from the data, 
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Figure 3.1.2. Experimental results: Generation Time Distributions 

 

 
Figure 3.1.3. Generation Time Distribution by Coverage Criteria. 

 

the tool generated tests with 82% DC on average. We conclude that we have provided evidence that this is a 
suitable tool for test generation tailored to FBD programs; it scaled well for most of the programs in this report 
and it is fully automated. 



 

 
Page 23 of 57  

 

There are, however, some drawbacks. Most importantly, for 22% of the programs, even though the tests 
generated for the coverage criteria achieved on average at least 65% coverage, we cannot determine 
whether the remaining test requirements are actually achievable, or if tests satisfying the requirements are 
longer that the search depth. This is an issue particularly for MC/DC where a fair number of test obligations 
were not satisfied. From these experiments, it is clear that the toolbox can be sensitive to the number of 
decisions and as a consequence to the length of the tests required to achieve the desired coverage. 
 

3.2. Test Suite Minimization  

Test suite minimization implies the use of methods to reduce the size of a given test suite such that a 

given coverage criterion is satisfied. A test suite that contains a large number of redundant test cases 

can be considered inefficient. A lot of research effort was put into tackle this problem. Formally 

Rothermel et al. [Rothermel2002] defined test suite minimization as follows: a test suite T, a set of test 

requirements Rs, that must be satisfied in order to provide adequate testing of the system, with the 

problem of finding a representative set T’ of test cases from T that satisfies all Rs.  

  

Previous work has been done on test case minimization with regard to different heuristics techniques for 

the minimal hitting set problem [Chen1996, Offutt1995]. Others, like Horgan and London applied linear 

programming to test case minimization problem [Horgan1991]. Harrold, Gupta and Soffa described a 

heuristic based technique at code level in order to remove redundant test cases from an initial test suite 

[Gupta1993]. Chen and Lau [Chen 2003] described a minimization approach based on divide -and-

conquer method that uses a random technique. Xie et al. [Xie2004] described a method for optimization 

of object oriented unit tests by eliminating redundant test cases. Jeffrey and Gupta formulated a 

technique for minimizing a test suite with selective redundant test cases [Jeffrey2005]. Bertolino 

described test suite minimization as a problem of finding a spanning set over a graph [Bertolino2003]. 

The representation of the system under test used by Bertolino is described as a decision -to-decision 

graph (ddgraph). The results of data-flow analysis are used into ddgraph for requirements testing, and 

therefore the test suite minimization can be regarded as the problem of finding the minimal spanning set. 

Except of the research done on test suite minimization techniques with regard to some coverage criteria, 

there are other approaches. Harder et al. are using operation abstraction as the formal model of the 

dynamical system behavior [Harder2003]. 

  

Other work has focused on model-based test suite minimization [Vaysburg2002, Korel2002, Black2001, 

Hong2003, Heimdahl2004]. Vaysburg et al. described a minimization method for model -based test suites 

that uses dependence analysis of Extended Finite State Machines (EFSMs) [Vaysburg2002]. By using 

dependence analysis, testing transitions in the model can be seen as testing the set of dependent 

transitions. With this method it is considered to be a redundant test case, the one that contains the same 

set of transitions of some other test case. Korel exploited test suite minimization  by using this technique 

in combination with an automatic way of dealing with changes in the models [Korel2002] that is very 

useful in model-based regression testing. Therefore, test cases with modified transitions are optimized 

with the dependence analysis-based minimization techniques. Others like Black and Ranville 

[Black2001] introduced several methods to shrink the size of test suites, such as removal of redundant 

test cases using model checkers. The problem of finding the minimal subset of test cases is NP-hard 

[Hong2003]. Using model checkers for minimization is briefly considered in the work of Zeng et al 

[Zeng2007]. Nevertheless, removing test cases from a test suite has been shown to affect the overall 

fault detection capability [Heimdahl2004]. 
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3.3. Test Suite Selection  

Following the formal definition of Rothermel and Harrold [Rothermel1996], the test suite selection 

problem is defined as follows: The model, M, the modified version of M, M’ and a test suite, T, with the 

problem of finding a subset of T, T’, with which to test M’. This problem fits to test suite optimization 

problem in the context of regression testing. In the literature the test suite selection techniques are 

aimed at also reducing the size of a test suite, as the test suite minimization. The majority of the 

techniques we have looked on are focused on regression testing. Therefore, the test suite selection is 

not specific to the current version of the system under test, and is focused on the identification of the 

modified parts. As a direct consequence test suites are optimized with regard to selection of changes in 

the system under test. 

  

Based on Rothermel’s formal definition [Rothermel1996], various approaches are focusing on identifying 

test case specific to modified parts of the system under test. The specific techniques differ according 

from one method used to another in terms of definition and identification of the modified parts. 

Substantial research results have been reported in the literature that are using different techniques and 

criteria including integer programming [Fischer1977, Fischer1981], data-flow analysis [Gupta1992, 

Harrold1989], symbolic execution [Yau1987], CFG graph-walking [Rothermel1994], or SDG slicing 

[Bates1993]. Nevertheless, some studies including [Grindal2006] are reporting a gap between test suite 

selection techniques and their deployment in industry, which is substantiated by the manual test 

selection and expert knowledge used nowadays in software industries. 

 

3.4. Test Suite Prioritization  

An optimization technique used to improve a given test goal (e.g. fault detection capability) is the test 

suite prioritization [Rothermel1999], which is used for ordering test cases of a given test suite for early 

maximization of some desirable properties. It can be defined as the optimal permutation of a certain set 

of test cases. Following the definition of Rothermel [Rothermel1999] it assumes that all the initial test 

cases of a test suite may be executed in the produced permuted order with the mention that the testing 

process during prioritization can be finished at any arbitrary time. Test case prioritization concerns 

ordering test cases for early maximization of some desirable properties, such as the rate of fault 

detection. It seeks to find the optimal permutation of the sequence of test cases. It does not involve 

selection of test cases, and assumes that all test cases may be executed in the order of the permutation 

it produces, but that testing may be terminated at some arbitrary point during the testing process. 

Therefore, test suite prioritization can be used to maximize the optimal path and time in which the given 

test goal is reached. 

  

One of the most used metrics/criterion in test suite prioritization is the structural coverage 

[Rothermel1999, Elbaum2001] with the evident goal of maximizing fault detection by maximizing 

structural coverage. Rothermel et al. studied several test suite prioritization techniques [Rothermel1999] 

by using the same algorithm with different fault-detection rates (e.g. branch, statement, fault explosion 

potential). Leon and Podgurski introduced test suite prioritization based on the distribution of profiles of 

test cases in a multi-dimensional space [Podgurski2003]. This technique aim is to use test profiles 

resulted from applying the dissimilarity metric in order to determine the degree of dissimilarity between 

two input profiles. Kim and Porter described a history-based technique for test suite prioritization of test 

cases [Kim2002]. The main achievement is the usage of test suite selection in combination with test 

suite prioritization. If the test suite is too large, then the test suite are prioritized until is sufficient.  
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Other work was directed on model-based test suite prioritization, and was introduced by Korel et al 

[Korel2005, Korel2007], with the initial goal of using this technique with test suite selection [Korel2005]. 

Initially the test suite prioritization is done randomly. The test cases were divided into two categories, a 

high priority set and a low priority set. A test case is assigned into a category based on their relevance to 

the modification made to the system under test. Usually the test suite optimization starts with the 

analysis of each test case with regard to its coverage criterion and ends with an arrangement in 

decreasing order according to their coverage value. Others like Fraser and Wotawa described a model -

based prioritization approach [Fraser2007a] based on the notion of property relevance [Fraser2006]. 

This relevance is defined in the context of using a model checker to a model property and is defined as 

the test case capability to violate this property. They showed that test suite prioritization based on a 

model property could be advantageous to be used in comparison with test suite prioritization based on 

coverage. It should be noted that this advantage has a direct relation with how the model is specified.  

 

3.5. Optimal Test Suite Generation  

Optimal test suite generation refers to test suite generation with respect to optimality in terms of ordering 

and checking the test goals during the test case generation and execution. In comparison to test suite 

minimization techniques, optimal test suite generation tries to overcome the problem of assuming that all 

test cases are generated accordingly to a specific technique, and as a consequence to optimize only the 

number of test cases that have to be executed. If we take into consideration complex systems used in 

software industry, then it could be beneficially to optimize test suites at generation. This technique is 

becoming very popular as a research area, especially in model-based optimal test suite generation. 

Hyoung et al [Hyoung2005], Zeng et al. [Zeng2007], and Fraser and Wotawa [Fraser2007b] have done 

work on optimal test suite generation with regard to both coverage- and mutation-based approaches. 

They identified the influence of a model-checker when called for test suite generation. Usually, the model 

checkers is used for each test property, and as a consequence too many redundant or subsumed test 

cases are generated [Fraser2007b]. Therefore, when generating test suites with a model checker, the 

order in which test properties are ordered and selected has a direct relation with the size of the resulting 

test suite. Hong and Ural [Hyoung2005] are using a model checker to define subsumption relations 

between test properties described by a coverage criterion in order to reduce the cost of test suite 

generation. 

  

Researchers are describing test case generation from abstract models by casting the test case 

generation problem as a model-checking problem. While this is the main focus of research on testing 

with model checkers, other applications have been considered in the past. Therefore, model -checking 

techniques have been used in other ways to derive test cases. In contras t to this work, Hessel et al. 

[Hessel2004] are proposing time optimal test suite generation for timed automata models using UPPAAL 

model-checker [Larsen1997]. In this approach a variant of CTL, named Timed-CTL, is used to formalize 

test purposes or coverage criteria. The generation of test suites with either test purposes or properties 

created for coverage criteria is of particular interest for systems modeled with time, because the method 

supports optimal test suite generation of not only shortest but also quickest traces. 

 

Similar techniques are also widely applied in offline model-based test generation. The techniques 

commonly use static analysis based techniques such as symbolic execution and constraint solving on 

the test models to generate test cases optimized for specific purposes. Examples of this includes Spec 

Explorer [Veanes2008] and above mentioned Uppaal [Mikucionis2004]. In the context of online MBT 

generation faster response times are required with less resources to perform analysis, which comm only 
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leads to applying various randomization based approaches augmented with heuristics such as weights 

and scenarios [Veanes2005]. Combinations of these include using input from separate offline analysis as 

input for online testing [Ahman2012]. 

 

These optimization approaches for MBT typically target specific coverage targets in the test model, such 

as manually tagged coverage requirements. As one of the key benefits of automated test generation is 

the ability of a test generator to create and execute large scale variation, more complex coverage and 

optimization criteria are useful to make better use of such tools. [Kanstren2014a] presents a coverage 

criteria for covering general variation over the test model, as well as integrating user -defined domain-

specific coverage criteria into the optimization process. [Kanstren2014a] also provides algorithms for 

applying optimization to both offline and online model-based test generation using this criteria. Tests are 

either generated fast at a large scale and a subset best fulfilling the coverage criteria is chosen (offline 

optimization) or the impact on the coverage criteria is continuously evaluated for the next paths through 

the test model in parallel to test generation and execution (online optimization). As such optimizations 

are commonly computationally expensive, while the local test generation and execution environment can 

be resource limited, techniques for offloading some of this computation to external computation nodes 

and clusters (e.g., cloud type) have been presented for both online and offline test generation and 

optimization in [Kanstren2013b]. 

 

Beyond optimizing a test set before execution, optimizing it for dynamically evolving targets such as 

failure location is important. Generated tests have the potential to be very large, and finding the root 

cause in such large execution and data traces can be an exhaustive task. It is not possible to optimize 

for such properties beforehand as they are only known after the tests have been generated, executed 

and failures have been observed. Thus, this requires a different type of an optimization approach that 

uses feedback from the test generation and execution back to the test generator. [Kanstren2014b] 

presents such an algorithm for minimizing the test trace length required to reach the failure, as well as 

extracting patterns from the results to describe the conditions under which the failure can occur.  
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4. Automated testing of highly configurable systems 

Many modern systems are highly configurable, meaning that several features of the system can be 

configured depending on the customers' needs. For example, in software applications running on mobile 

phones, features can be represented by the type of phone, operating system, installed applications, etc. 

Each configuration represents a different product. In industrial systems, there can be millions of possible 

configurations. The availability of composed services in a distributed system, including the types of 

services, may also change during operation leading to constantly varying configurations. Software 

failures might appear only with a specific combination of features present in the product. Due to the large 

number of possible combinations, it is infeasible to manually test all of them. 

  

The two main challenges are: (1) how to represent the variability in an expressive and easy to use way 

and (2) how to use such variability description to automate the generation of test cases that are effective 

in revealing failures. Variability can be expressed with several formalisms, as for example models in 

UML notation or domain specific languages. 

 

4.1. Software Product Lines  

There are various ways in which software can be highly configurable. One aspect of configurability is the 

construction of families of software systems. The best-known approach for this is software product lines 

(SPL), which can lead to “drastically increasing the productivity of IT -related industries” 

[Sugumaran2006]. SPL have received particular attention from the research community, with dedicated 

special issues in Communications of the ACM [Sugumaran2006] and in IEEE Software [McGregor2010]. 

How to model variability in SPL has been recently surveyed in [Sinnema2007], in which six types of 

modelling techniques are described. An overview of testing methods for SPL is given in [McGregor2001], 

[Pohl2006]. Regarding the verification of SPL systems, recent surveys have been carried out to assess 

the current state of the art [Tevanlinna2004], [Lutz2007], [Lamancha2009]. There are two main 

conclusions that are drawn in these surveys: (1) very little existing research related to testing of SPL 

compared to other aspects of SPL (e.g., management and modelling), and (2) empirical analyses on 

actual industrial systems are particularly rare. This means that, not only there are not many results in 

testing of SPL, but also for most proposed techniques in the literature there is no evidence to claim their 

applicability in real-world industrial scenarios, such as the case studies provided by the industrial 

partners of ATAC. If we consider the situation of year 2012, still many publications in important research 

venues lack empirical studies on actual industrial systems, as for example [Uzuncaova2010], 

[Perrouin2010], [Cabral2010], [Mccaffrey2010]. 

  

Verifying product lines with model-based testing (MBT) has been introduced in [Kamsties2002], 

[Kamsties2003], [Kamsties2004]. It describes how to represent use cases with UML extensions and 

consider the variability of software product lines. This method supports derivation of test cas es from 

these models. The MBT approach ScenTED-method [Reuys2005] provides the derivation of application-

specific test scenarios and test cases from use cases and activity charts on the domain level, which 

contain the variations of the different products. Variation points and variants of the product line are 

annotated in the use cases. Variant-specific test cases can be automatically generated from the activity 

diagrams. The FMT approach [Schürr2010] combines feature models with the classification tree meth od 

(a black-box testing approach). Feature models are used to describe commonalities and variability in 

software product lines. Product lines whose products have different feature sets can be tested effectively 

by modeling individual features separately and then combining the right models for each product 

[Jääskeläinen2008]. UI-level variance, on the other hand, can be handled by modeling the UI details 
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separately from the functionality of the products [Katara2006]. Both of these techniques require a highly  

modular modeling approach and support for managing the resulting model components 

[Jääskeläinen2011]. Other approaches include [Bertolino2003], [Kolb2003], [Kolb2006], [McGregor2001], 

[Nebut2002], [Olimpiew2005], [Uzuncaova2010]. Scheidemann [Scheidemann2006] describes 

techniques to select representative configurations in product line testing. An approach that has shown 

some promise in connection with testing complex and highly-configurable systems is the use of domain-

specific languages to construct test models [Kloos2009]. 

 

4.2. Service Oriented Architectures  

Complex and highly configurable systems are composed of various components and services, and are 

highly dynamic and distributed from their architectural composition viewpoint. Distribution in practice ca n 

be of different types, such as physical distribution over a network or logical distribution inside an 

embedded system into cohesive and decoupled components and services. A common approach in 

architecting such systems is the use of service oriented archi tectures. These systems can be composed 

of different components and the final configuration is often only known during runtime, it is not static and 

keeps evolving over time. One approach to address this issue is the generation of models from the 

runtime system based on information captured using dynamic analysis techniques [Kanstren2010]. For 

example, previously behavioural models have been (semi-)automatically generated based on observing 

the runtime behaviour of the implementation. This model has been used as a starting point with the help 

of a MBT tool to refine an initial generated model, to encode the existing assumptions and understanding 

of the system behaviour and test them for correctness against the implementation. Bertolini et al. 

describe approaches to test service-oriented software including [Bartolini2008], [Bartolini2009], 

[Bertolino2008], [Bertolino2008a-c] an approach to test web services from a WSDL description. An 

application of their approach is described in [Pascale2009]. Other approaches include [Brenner2007], 

[Brenner2007a], [Canfora2006], [Greiler2009], [Heckerl2005], [Kaschner2009], [Looker2004], 

[Offutt2004], and [Papazoglou2007]. 

 

4.3. Parametrized Models  

Some systems under test may be based on a small number of known components, but these 

components can be combined into a working system in a variety of ways. For example, a system may 

consist of variable number of buses, each of which can be connected to a variable number of actuators. 

Even if tests for an individual component are simple to create, having to create them separately for each 

different configuration to be tested is hardly sensible. 

 

Test generation may be automated with the use of model-based testing. In fact, with compositional test 

models it is possible to model different types of components separately and combine the results into a 

test model for the entire system, thus mimicking the actual structure of the SUT. However, the essential 

problem remains: a model for a bus connected to three actuators may not work with four, an actuator 

model hard-coded to connect to bus number one cannot be reused with other buses, and a generic 

actuator model has to be connected to the correct bus somehow. 

 

Parametrized models provide a practical solution. The model components are created to correspond to 

specific types of system components and given formal parameters to represent possible variation, such 

as the connecting bus for an actuator. When the test model is composed, each formal parameter is given 

a number of values according to the desired configuration. Actual model components are instantiated 

from the generic ones according to the given values, and the formal parameters within each instance are 
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replaced with the corresponding values. With the formal parameters correctly placed into the parts of the 

generic model components that define its communication with other components, model composition will 

connect the right instantiated model components together in the test model. Thus, different 

configurations can be tested with minimal increase in modelling effort. 

 

4.4. Combinatorial Testing  

One field of research in dealing with configurable software is combinatorial testing. The challenge is to 

find an optimal set of configurations that satisfies maximal coverage criteria for each test case 

[Grindal05],[Cohen2006]. For example, in pair-wise testing, the goal is to generate a test suite for which 

each pair of feature values is present at least once in a test case. A generalization of this criterion is t -

wise testing. The number of test cases needed to satisfy those criteria is significantly lower than the 

number of all possible test case combinations. The motivation behind these criteria is that, often, failures 

are revealed only if just some small combinations of feature values are present in a test case regardless 

of the value of the other features. Unfortunately, generating minimal test suites satisfying those criteria is 

a difficult task. 

  

The approach REDUCE combines model-based and combinatorial approaches [Bauer2009]. It aims at 

reducing the complexity of the test problem represented by the large number of configurations and 

possible test cases. Combinatorics is used to restrict the number of system configurations and to select 

a small and valid set of test configurations. Model-based techniques are applied to build a test model 

that describes the relevant stimulation sequences of the test object. A case study showing potential 

efficiency improvements using combinatorial test design approaches is described in [Cohen1996]. 

[Kuhn2006] provides empirical information on the interaction of faults, giving weight to test design 

approaches that focus on small numbers of interactions, while [Kuhn2008] discusses advanced 

combinatorial design methods useful for testing. [Perrouin2010] presents a technique to scale constraint 

solvers to generate t-wise test suites. [Mccaffrey2010] makes comparisons of techniques for pair -wise 

test suite generation. 

 

  



 

 
Page 30 of 57  

 

5. Search-Based Testing  

Apart from combinatorial testing, other approaches that may be useful in dealing with large configuration 

spaces need to be considered as well. In particular, configuration parameters may in themselves come 

from large or complicated spaces that are too large to test exhaustively. This problem is also important in 

normal testing when choosing test data. One of the major challenges associated with choosing test data 

is that of finding test cases that are effective at finding flaws without requiring an excessi ve number of 

tests to be carried out. Formal analytical and classical test generation methods often fail because of the 

combinatorial explosion of possible interleaving in the execution or functional specification of several 

properties. Search techniques (as for example genetic algorithms) are designed to find good 

approximations to the optimal solution in large complex search spaces [DeMillo1991], [McMinn2004]. 

Moreover, these general-purpose search techniques make very few assumptions about the underlying  

problem they are attempting to solve. As a consequence, they are useful during the automated 

generation of effective test cases because they avoid one of the most difficult obstacles with which the 

software tester is confronted: the need to know in advance what to do for every situation which may 

confront a program.  

 

For example, in service-oriented architectures, these have been used to test for different input and 

configuration combinations to produce combinations of inputs, service bindings, and network 

configurations and server load [DiPenta2007]. This addresses non-functional topics such as response 

time, throughput and reliability, using goals (fitness functions) such as driving the tests towards 

producing quality of service violations. However, the application of search algorithms in MBT is still 

limited in industrial contexts. They have been recently applied for system level MBT of industrial 

embedded systems [Arcuri2010], [Hemmati2010a], [Hemmati2010b], but there are practically no results 

in the literature regarding the testing of industrial SPL and service oriented architectures [Harman2009]. 

Another line of work concerns the usage of constraint-based techniques to master the exploration of a 

search space in automatic test data generation. In the context of unit testing, several prototype tools 

such as Euclide [Gotlieb2009] and PathCrawler [Williams2009] were built to demonstrate the interest of 

innovative constraint-based exploration. However, several challenges remain to demonstrate that these 

techniques can be applied at system testing level to address the testing problem of highly-configurable 

systems. 

 

Search-based software testing (SBST) is based on translating testing tasks into optimization problems, 

and using meta-heuristic search algorithms to achieve these tasks. There are quite many studies 

showing that the search-based methods in testing are useful (e.g., superior to random testing), but most 

of these studies are focused on small to medium sized open-source software. This leads to doubts on 

scalability and applicability of search-based testing to industrial software. Moreover, we are interested in 

applying these methods on embedded software, which raises further applicability concerns. We 

hypothesize that SBST can be useful for complex software for embedded systems in the industry, as 

well. Furthermore, SBST can be enhanced with other methods to form hybrid methods, in order to 

overcome performance or other limitations. 

  

In their seminal paper, Miller and Spooner published an approach for  generating test data in 1976 

[Miller1976], which has become known as search-based software testing. Their approach is based on a 

straight-line variant of a given program that represents the desired execution path. Later in 1990, Korel 

[Korel1990] extended the idea and introduced the branch distance, which removes the need for the 

straight-line variant and the problems associated with it.  
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Search-based software testing efforts are primarily focused on test data generation for the following 

purposes: 

 

 Structural testing: coverage of specific program structures, e.g., branch coverage  

 Functional testing: to find inputs that the software fails to achieve required functionality  

 Non-functional testing: for example worst-case execution time 

 Grey-box testing: disprove certain intermediate properties of the program, e.g., by exercising 

assertions in the code 

 

5.1. Structural testing  

Most focus in search-based software testing has been in structural testing. Significant work has been 

published that led to fitness functions for path coverage, branch coverage, dataflow coverage and other 

types of structural coverage. A common fitness function for branch coverage is the normalized sum of 

approach level and branch distance, devised by Wegener et al. [Wegener2001]. Consider thr ee nested if 

statements, where the search is trying to reach the True branch of the innermost conditional, as seen in 

Figure 5.1.1. Approach level shows how many more conditionals need to be satisfied to reach the target. 

Assume the variable count is zero. Then the first conditional would evaluate to False, diverting from the 

target. There are two more conditionals that did not evaluate, so the approach level is 2. If the variable 

count is bigger than 10, then first conditional would be satisfied but not the second, giving an approach 

level of 1. 

 
Figure 5.1.1: Approach level and branch distance for three nested if statements.  

The example is taken from [McMinn2011]. 

 

The branch distance is calculated when execution diverts from the target, at any approach level. It is a 

measure of how wrong were the variable values to satisfy the conditional. If the first conditional 

(count < 4) is not satisfied, then the branch distance would be 4 – count + K. Branch distance formula 

depends on the type of the relational predicate. Tracey et al. [Tracey1998] provides the full list of 

corresponding formula for different relational predicates (Table 5.1.2).  
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Relational predicate Objective function 

Boolean if True then 0 else K 

a = b  if |a–b|= 0 then 0 else |a–b| + K  

a ≠ b  if |a–b|≠ 0 then 0 else K  

a < b  if a – b <  0  then 0 else ( a – b ) + K  

a ≤ b  if a – b ≤  0  then 0 else ( a – b ) + K  

a > b  if b – a <  0  then 0 else ( b – a ) + K  

a ≥ b  if b – a ≤  0  then 0 else ( b – a ) + K  

a ∨ b  min(cost(a), c ost(b)) 

a ∧ b  cost(a) + cost(b) 

¬a Negation is moved inwards and propagated over a 

 

Table 5.1.2: Branch distance formula for different types of relational predicates,  

as devised by Tracey et al. [Tracey1998]. 

Before approach level and branch distance are summed to form the fitness function, the branch distance 

needs to be normalized to the range of 0 to 1. As the maximum branch distance is usually not known, a 

number of different normalization formulas have been suggested. A common one is 1  – α–x, α = 1.001. 

Arcuri [Arcuri2010] discusses how different normalization formula may affect the search. 

 

5.2. Functional testing  

The automated parking system of DaimlerChrysler [Buhler2003, Buhler2008] is probably the most known 

case study in search-based functional testing. The software for the logical part of automated parking is 

tested in a simulated environment. Initial conditions of the parking scenario, such as size of the parking 

space and relative position of the car, are the inputs to the program. The fitness function is the shortest 

distance to any collision point during the parking manoeuvre. The search algorithm tries to minimize this 

fitness value (distance to collision), to find a possible input that leads to the car colliding to an object, 

and hence failing at its function. As in this example, fitness functions are dependent on the functionality 

that is being tested. 

 

5.3. Temporal testing  

Temporal testing refers to running a component and measuring its execution time, to find the worst -case 

or best-case execution times (WCET/BCET). The maximum and minimum limits of the execution time 

have great importance for some real-time systems (especially if it is safety critical), as the components 

not only need to function correctly but also in timely fashion. Search-based software testing has been 

successfully applied to find test cases that yield higher (or lower) execution times [Wegener1997, 

Puschner1998]. As opposed to the static timing analysis, search-based methods under-estimates the 

WCET or over-estimates the BCET. Static analysis tends to be very conservative, so it can be beneficial 

to use both search-based methods and static analysis to find both upper and lower bounds to WCET or 

BCET [Puschner1998, Mueller1998]. 
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5.4. Assertion and exception testing  

Assertion testing is a form of grey-box testing where structural and functional elements are combined. 

Programmers may insert assertions into the code, that specify conditions that have to be satisfied at that 

point in the code. Some assertions can be added automatically, such as division by zero. Korel and Al-

Yami [Korel1996b] explain how to translate an assertion into statement coverage. Consider the following 

assertion code: 

assert(i > 0 and not (i > x and x > 10)); 

 

As the search is aimed at finding a test case that falsifies it, the assertion is  negated and translated into 

executable code: 

/* i <= 0 or (i > x and x > 10) */ 

if (i <= 0) 

ReportViolation(); 

if (i > x) 

if (x > 10) 

ReportViolation(); 

 

After the above translation, the problem of exercising the assertion is reduced to executing one of the 

ReportViolation() statements, i.e., statement coverage. 

 

Tracey et al. [Tracey2000] applies the same ideas to raise exceptions that are handled in the code. They 

generate test data for both raising the exception and structural coverage of the exception handling code. 

Similar to the assertions mentioned above, these problems also get reduced to statement coverage.  

 

5.5. Challenges in Search-Based Software Testing 

 

Testability transformation 

In certain cases, the fitness function may not serve as enough guidance for the search. The classical 

example is the flag problem. When a condition is translated into a boolean variable, and later this 

boolean is used in the conditional statement, instead of the original predicate, e.g.,  

bool flag = a > b; 

if (flag) { ... 

 

In this case, the branch distance will be either 0 or 1, which is not useful for guiding the search. Harman 

et al. [Harman2002] discusses testability transformation for these cases. Such transformations create a 

variant of the original problem that is easier to tackle. In the above example, if(flag) is replaced with if(a 

> b), which leads to a more useful branch distance for the search. The input vector that covers the target 

branch of the variant, would also reach the same branch in the original program. However, the variant do 

not need to be functionally equivalent to the original (although it was in this simple example). 

 

Another use of testability transformation is when nested conditionals lead to many local optima, as in the 

following code: 

if (a == b) { 

c = b + 1; 

if (c == 0) 

... // target branch 

} 
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The search algorithm, guided by the sum of approach level and normalized branch distance as a fitness 

function, first tries to satisfy the initial condition of a == b. Due to the second branch, the target can be 

reached only if b is equal to -1. At this point the search would mutate b, but that is very likely to break the 

initial condition of a == b. So each value pair of (a,b) that satisfies this equality would be a local optima. 

In the presence of too many local optima, the search becomes inefficient, in this case as bad as random 

search. McMinn et al. [McMinn2005] apply a testability transformation that combines the two branch 

distances, as follows: 

double dist = 0; // extra variable 

dist += branch_distance(a, b, “==”); 

c = b + 1; 

dist += branch_distance(c, 0, “==”); 

if (dist == 0.0) 

// target branch 

 

The transformed version, by accumulating all the relevant branch distances, does not suffer from the 

extremely high number of local minima. On the contrary, it leads to a very smooth fitness landscape. An 

important drawback is that the transformed version is not equivalent to the original code. If the second in 

the original has some code that should not run when the first conditional is false (e.g., code checking for 

inequality to zero, to avoid division by zero), this may lead to run time errors. Apart from such problems, 

McMinn et al. also demonstrates that the nesting testability transformation is speculative, and sometimes 

may not improve the search efforts. 

 

State-based programs 

Most of the work in search-based software testing is focused on procedural code with clear input to 

output relation, in the form of stateless functions. However, functions, class objects or other components 

of the program may store data, and behave differently based on this internal state. For example, a 

particular branch in the code can be infeasible with a global variable’s current value. Then the branch 

coverage problem extends to getting the required value to the global variable, in other words putting the 

program into the correct state. This becomes an additional challenge, as the branch distance does not 

give guidance for finding the parts of code that needs to run for setting the global variable with a suitable 

value. 

 

Baresel et al. [Baresel2003] uses a chaining approach for a single function, where a test case consists of 

calling the function N many times, rather than once. The f itness value for such sequence is basically the 

minimum of fitness of each function call. Tonella [Tonella2004] devises a similar approach, but for 

classes in object-oriented programs. 

 

Another technique used to tackle this problem is the Chaining Approach, which was developed by 

Ferguson and Korel [Ferguson1996]. The chaining approach is based on analysing the source and 

finding the nodes in the control flow graph with internal variables that may need to run to put the program 

in the correct state. McMinn and Holcombe use chaining approach as a fail over mechanism when the 

normal evolutionary algorithm fails to reach the target branch [McMinn2004].  

 

Execution environment 

Often, the program under test interacts with the environment in certain ways. For examp le, it may read 

data from a file, the network, or the I/O Bus. The execution may depend on the content of the data read 

from these sources. Therefore, to be able to divert the program into target branches/paths, relevant 

elements of the environment need to be simulated or manipulated in some way. In unit testing a common 
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approach is to use mock objects, which mocks the behaviour of an environment structure (e.g., a 

mockFile object which mocks the original file object of the system library). Automatically generating 

these mock objects is an important challenge [McMinn2011]. 

 

Oracle cost 

Even though desirable, in many cases it is very difficult create automated oracles that will tell if the 

output of running a test case is correct. Instead, human oracles are used, which is costly. Reducing the 

cost associated with the human oracle is an important research topic. Primarily, this translates to 

reducing the number of test cases that the human must evaluate while satisfying the test adequacy 

criteria. In a recent paper, Harman et al. [Harman2010] explain their approach on minimizing the number 

of test cases while not compromising on the branch coverage. 

 

A second aspect is the length of a single test case. Fraser and Arcuri [Fraser2011] discuss and suggest 

ways to overcome the problem of test length abnormally growing over time, for testing object oriented 

software. Lietner et al. [Leitner2007] present a combination of static slicing and delta debugging to 

efficiently minimize unit test cases. 

 

Proposed solutions 

Even though SBST have received reasonably good attention in academia in recent years, it is far from 

being adopted by the industry as part of the regular testing efforts. In order to gain visibility and 

acceptance by the industry, experiments of search-based techniques on real-world industrial software 

should be conducted, so that applicability of SBST in the industrial context can be better understood.  

 

Doganay et al. [Doganay2013] discuss application and performance of search-based techniques on 

hundreds of unit level test artefacts that are part of industrial embedded software in the railways domain. 

The particular software under test is written in function block diagrams, a programming language mostly 

used in embedded control systems. In a related paper, Eduard et al. argue for using both model-based 

and search-based techniques in parallel for improved structural coverage of function block diagrams, 

and explain a tooling structure trough a case study [Eduard2013].  

 

In another industrial case study, Doganay et al. explain the difficulties that arise when applying SBST for 

a complex embedded system in the telecom domain [Doganay2014]. They discuss the special 

adaptations made to accommodate the specific execution environment. Nested input structures, 

uninitialized pointers, and other non-trivial input variables are handled by parsing relevant information 

from existing test cases created by test engineers, which is a novel approach. In general, such 

problematic input structures remain largely unsupported in the SBST literature [Baars2011]. 
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6. Complex test data generation  

Test data generation takes place in various stages of the software development lifecycle and is relevant 

to all types of testing (black-box, white-box, unit test, integration test, functional test, etc.). This data 

generation can take different forms, where at the basic level the test and domain experts create test data 

manually based on analysis of the system under test (SUT). Automated approaches use computers and 

algorithms to generate test data automatically based on various models of the SUT. These models can 

take different forms such as using the SUT itself as the model (e.g., source code or interface definitions), 

using SUT specifications as the model (e.g., UML specifications), creating specific test models (e.g., 

model programs for a model-based tester), or hybrids of these. 

 

6.1. Basic Approaches 

Software is composed of various units and their interrelations. These units are defined by objects such 

as classes, possible/required relations between classes, and methods defining functions that can be 

performed by the objects. Data types include the basic primitive types (integers, floats, strings, etc.), and 

more complex structures such as arrays, lists, classes, and their combinations. Additional p roperties to 

consider in test data generation include methods arguments and their combinations, and interactions 

between software units.  

 

The value generation algorithm depends on the parameter type. For example, if the parameter is of type 

signed short int (in C++), the tests generator has to create a value from the interval starting with –32,768 

and ending with 32,767. The generated value has to be the whole number. Data generation for such 

primitive types is straightforward – the generated value has to be selected from the given range. For 

more complex data types different approaches need to be applied. For example, a character string can 

be any length (although practically limited by the computing environment). Similar approaches as for 

primitive types can be applied by choosing a string length and generating characters as values from the 

allowed alphabet. For composed elements such as lists and arrays, the number of elements needs to be 

similarly defined and a matching generation algorithms applied for each element. 

 

The test data generation for class type structures is more complicated. This entity can be viewed as 

composed of other simple or complex types, recursively. One approach for this is to use data flattening 

technique [Meyer1997]. in such approach, one parameter of a complex type is converted into a set of 

parameters which are of simple types. For example, there is the class Triangle, presented in Figure 6.1 

as a part of the 3D renderer software. The class Triangle consists of three attributes: a, b and c. Each 

attribute represents the triangle edge length and is of a float type. There also is the class Rasterizer with 

the method Render. The method accepts two input parameters: the triangle and the texture and returns 

the array of Pixel objects. The triangle class is a complex type. 
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Figure 6.1. The 3d renderer software class diagram 

 

The tests generator cannot generate input values for the parameter triangle. To overcome this, the type 

flattening is performed and method Render is transformed into the one which accepts 4 parameters: 

triangle_a, triangle_b, triangle_c and texture. 

 

6.2. White-Box Data Generation 

In white-box test data generation we make use of information about the implementation of the SUT, 

and/or execute the tests directly against the SUT implementation units (vs its external interface). The 

simplest such test data generation is random test data generation against specific units or modulse. Test 

data are created by selecting input values randomly [Duran1984] for software under test me thods and 

checking if generator has reached the defined coverage criterion. When this random generation is not 

guided in any way, the test data contains mostly some meaningless data (from software domain 

perspective). Various ways to guide the test generation are then used to provide more relevant results. 

 

Feedback analysis based random test generation approaches have been presented by different authors, 

e.g. [Pacheco2007, Patrice2005]. In these approaches, randomly generated tests are executed and the 

coverage is calculated after each test execution. Feedback from these executions is used to guide the 

generation of new values. Choice of new values is randomization based but influenced by how the used 

values impacted the coverage of the SUT testing as compared to previous tests. The advantage of this 

approach is that the generation algorithm is quite simple and easy to implement. The drawback of this 

approach is that the generation is a time consuming process, especially when the software unit under 

test is quite complex. 

  

Path based tests generation is a white-box test generation strategy aiming to cover different execution 

paths through the program code. A control-flow graph of the possible execution flows through the SUT is 

generated, typically using static analysis based tools. Based on approaches in graph theory, test inputs 

are generated to drive the SUT execution through the different possible paths. To achieve this, 

techniques such as constraints solving [Gotlieb1998] and relaxation are used [Gupta1998]. These 

approaches best work when analysing programs with simple data types (float, integer, etc..). More 

complex data structures and program structures are problematic, such as calling other program units 

and using variables of complex types (arrays, pointers, data structures, etc..). Some approaches to 

address these issues have been proposed such as for pointers [Gotlieb2005], calls procedures and/or 

functions [Sy2003, Korel1996]. For software which uses complex data types, data transformation into 

equivalent but easier to analyse data types have been proposed [Korel1996, Aleksandar2007]. The 

advantage of path based tests generation is the possibility to generate the minimal needed tests data set 
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which would satisfy the selected coverage criterion. Also during code analysis the unreachable paths of 

code could be detected and marked as failures [Beyer2004]. The disadvantage of path based test 

generation algorithms is that they are quite complex and not always guarantee a full code coverage. In 

path-based generation, feedback from execution can be also used similar to random testing 

[Patrice2005]. 

 

Beyond using static analysis as input for generation, or combining it with some dynamic execution 

information, also approaches to white-box test data generation without initial static analysis phase have 

been developed. The chosen SUT unit is executed with some input data and during its execution runtime 

parameters are observed: executed paths, executed branches, executed operators. Based on 

observations, new additional input data are generated in order to drive execution by selected control flow 

path [Ferguson1996].  Authors are proposing various methods for improving code coverage by tests, 

such as chaining approach [Ferguson1996], program slicing by diving so ftware unit into separate 

branches [Hierons1999]. The main drawback of these approaches is that the execution of software has 

to be performed, which requires the preparation of the whole software infrastructure (environment) – that 

could not be performed automatically. The advantage is the fast tests generation. 

 

6.3. Model-Based Data Generation 

Besides using the SUT implementation as a basis for test data generation, a common approach is to use 

different types of models of the SUT for test generation. A benefit  of such approaches can also be that 

the implementation is not required for generating the test data as the data can be modelled separately. 

These models can be expressed at different levels of formalism. Model based tests generation is 

increasingly becoming more and more important due to the emergence of model driven engineering 

[Uhl2003] and model driven development [ Mellor2003] approaches based software development 

methods. 

 

A potential source of information for such models is the SUT requirements speci fication. While these 

models are commonly created manually, some approaches have been presented to generate them as 

transformations from requirements specification, even from the textual ones [Gargantini1999]. Data 

generation in such cases can make use of traditional test data generation techniques such as boundary 

values analysis and average values analysis.  

  

Formal specifications, such as those expressed in Z notation [Spivey2008] and others 

[Packevičius2006], strictly define the software functionality.  Based on the software formal specification it 

is possible to generate tests for that software. The formal specifications allow generating not only test 

data but can also provide an oracle which would be able to determine if software works correctly with 

given test data. Due to the fact that formal specifications are used for defining critical systems and real 

time systems, their testing can be alleviated by generated tests from formal specifications [Xin2005]. The 

disadvantage of such tests creation is that creating formal specifications is expensive and only a few 

projects are developed using such strategy. 

  

The Unified Modelling Language (UML) [Fowler2003] is semi-formal modelling language. These informal 

models have some features which could be useful during tests generation. These models are called 

tests-ready models [Olimpiew2005]. They are usually extended to some extent in order to be suitable for 

tests generation, For example, UML has testing profile [Baker2007], or an Object Constraint Language 

(OCL) [Clark2002] model besides UML models could be used for tests generation. Informal models are 
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actively used for testing software developed using product lines approach [Olimpiew2005].  

 

Tests generated using software models usually try to examine such cases as: missing action, incorrect 

data manipulation by overrunning buffers, incorrect data manipulation between class boundaries, 

incorrect code logic, incorrect timing and synchronization, incorrect program code sequence execution. 

During software based on models testing, it is possible to transform models into graphs, such as state 

graphs. For example, UML diagrams, such as state or sequence can be used for tests generation by 

transforming them into graphs. For created graphs the usual test generation techniques can be used, the 

same techniques as for testing software when its code is available [Paradkar2005]. Authors are also 

proposing to transform models from one language into other ones. Target languages are more suitable 

for tests generation, for example, the UML models are transformed into SAL models and SAL models are 

used to generate tests [Kim2005]. 

  

Some authors have proposed Jartege tool and a method for random generation of unit tests for Java 

classes defined in JML (Java Modelling Language) [Oriat2005]. JML allows writing invariants for Java 

classes and pre and post-conditions for operations. JML specifications are used as a test oracle and for 

the elimination of irrelevant test cases. Test cases are generated randomly. Proposed method constructs  

test data using constructors and methods calls for setting state. 

 

6.4. Hybrid Data Generation 

The mix of code based and model based tests generation. It is not always possible to have the full 

specification of software under test. In order to test this software the mix of code based tests generation 

and model based test generation can be used. For example, such as path finding tool is proposed in 

[Visser2004]. Data structures are generated from a description of method preconditions. Generalized 

symbolic execution is applied to the code of the precondition. Test input is found by solving the 

constraints in the path condition. This method gives full coverage of the input structures in the 

preconditions. When the code of a system under test is available it is executed symbolically. A number of 

paths are extracted from the method. An input structure and a path condition define a set of constraints 

that the input values should satisfy in order to execute the path. Infeasible structures are eliminated 

during input generation. That is, we can define test models using similar programming language 

constructs as regular computer programs (such as the SUT), and use the same techniques to analyse 

and generate data for the models as for the SUT code in a white-box version (e.g, [Veanes2008]). 

  

Another such hybrid approach is discussed in [Beyer2004]. Test data is generated based on code based 

generation techniques, software is executed with generated test data and it is checked if software has 

entered the undefined state in the model, or has exceeded restrictions for its variables values 

[Hessel2006]. Based on code and specification it is possible to verify if code paths executed during 

testing are defined in the model and allow to check if software has not changed its state to  the undefined 

in the model or has performed illegal transition from one state to another one, thus violating specification 

[Beyer2004]. 
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7. Automated testing of distributed systems  

For distributed system testing there are several methods. Some of the methods are dedicated for almost 

any distributed systems while others are only dedicated for service oriented architecture and web 

services or other particular cases. In case of non distributed systems there are a big number of 

researches taking advantage of SUT (system under test) model checking. Model checking task is to 

cover all paths through an application. This is also valid for concurrent (multithreaded) applications as 

displayed by Figure 7.1. This technique is very useful in software testing. It allows detecting and 

explaining defects, collecting “deep” runtime information like coverage metrics, deducing interesting test 

vectors and creating corresponding test drivers and many more. 

 
Figure 7.1. State space in the model checker [Artho2009] 

 

In case of distributed systems testing model checking advantage cannot be taken straight forward 

because the parts of the system are not under control of the same model checker so backtracking 

becomes unavailable. In this context the term “backtracking” denotes the restoration of a previous state. 

There are researches covering this topic. One of them proposes using cache-based model checking 

[Artho2009]. As the name of the article spoils authors suggests using cache while communicating with 

distributed system parts like distributed servers. Authors of the article call them peers. Authors let SUT 

be an application executing inside the model checker. Execution of the SUT is subject to backtracking. 

As authors states the effects of input/output (I/O) operations with some peers cannot be reversed by 

backtracking because of different scope. So peers cannot be backtracked because of the two following 

problems: 

1) SUT will re-send data to peer after backtracking. So the peers will become interfered. 

2) After backtracking, the SUT will expect external input again from peer but the peer does not re -

send previously transmitted data. 

 

As a solution authors suggests execute a single process inside the model checker and run all peers 

externally. The approach uses I/O cache to relay data between the model checker and it’s environment 

as shown by Figure 7.2. All the actions between I/O operations with peers are treated as atomic actions. 

All the external I/O operations between SUT and peers are stored to the cache. After backtracking to an 

earlier program state, data previously received by the SUT is replayed by the cache when requested 

again. Data previously sent by the SUT is not sent again over the network.  
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Figure 7.2. Cache layer architecture [Artho2009] 

 

The cached-based model checking of networked applications approach has three main problems 

(drawbacks): 

1) It can only be used for the systems where every unique request sent to any peer gives the same 

response. In other words requests do not have effect on each other. This is not true in many 

distributed systems so none of such systems could be tested using proposed method. Let us 

take registration to an event system as an example. Clients (users who want to register to the 

event) send persons data (Name/Surname) to system server (peer). Server responds with 

SUCCESS/FAILURE message. SUCCESS if registration succeeded, FAILURE in other case 

(allowed number or users have been exceeded etc). So each request sent to the server changes 

internal state of the server. It could be database, local variable or anything else. So in this 

situation proposed method could not be used as each new (excluding first one) registration 

request would not change the internal state of the server as it should. 

2) Data from the cache is replayed by the same process as model checker one while the peers runs 

on different processes (or even machines). So the I/O operation time may be totally different and 

parallelism (distribution) factor is destroyed. 

3) Proposed method cannot detect defects related to client racing for resources issues. Issues 

related to resource competition tent to happen when few client instances communicate with the 

same peers in a distributed system. Proposed method only works/tes ts one client working with its 

peers and has no ability to imitate more clients competing for the same resources (peers).  

 

Another model checking based methods uses specification-based verification and validation approach 

[36]. In this paper authors addresses 3 main web services (WS) testing challenges: 

1) When testing third party WS the source code is not available for the tester willing to use the WS. 

Often only the WS developer has the access to the source code, while the other parties are only 

interested in the quality of the WS. 

2) WS runtime is unknown for the tester. This is one of the major challenges. “This issue is 

especially serious in WS orchestration, which involves multiple organizations rather than one” 

states [Tsai2005a]. In this case the number of clients accessing the WS simultaneously is 

unknown. The way the WS is invoked is unknown as well. “WS testing includes all of the 

performance, scalability, reliability, availability, security, and stress/load testing aspects for 

traditional software, but the specialty and distributed property of WS also make WS testing 

difficult and complicated, and the entire V&V of WS also becomes critical for practical 

applications”. 

3) Testing scope is large because WS consumer may need to choose a WS from hundreds of 

candidate WS available. 

Authors of the article suggest the following development of WS procedure shown by Figure 7.3. 
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Figure 7.3. Development process of Web Service [Tsai2005a] 

 

Having this, authors suggest specification-based test case generation method. Authors assume that the 

given WS specification is written in OWL-S. The specifications written in other specification languages 

should be translated in OWL-S first. First authors suggest doing the verification and validation of the 

given specification. Authors provided 3 methods for the V&V: Completeness and Consistency (C&C) 

analysis, model-checking technique based on BLAST [Beyer2004] and verification patterns [Tsai2004].  

When the specification passes the test the next step is to use Boolean expression analysis method to 

extract the full scenario coverage of Boolean expressions [Tsai2003], which are then applied as the input 

the Swiss Cheese Automated Test Case Generation Tool [Tsai2005b], which, in turn, generates both 

positive and negative test cases. Positive test cases are used to test if the WS output meets the 

specification for the legitimate inputs, while negative test cases are used to test the robustness, i.e., the 

behaviour of the WS if unexpected inputs are applied. Then the test cases are stored in the test case 

database. Then the following technologies are used in WS unit testing: C&C, model checking and test 

case generation. Described WS unit testing procedure is shown by Figure 7.4. 
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Figure 7.4. WS unit testing [Tsai2005a] 

 

Although the proposed method used few methodologies combining them together the method still has 

some drawbacks: 

1) Completeness and consistency analysis checks the specification only. In many cases the 

software has the bugs/issues or even inconsistencies with the specif ication so this technique 

doesn’t actually test the WS but only the specification. So the correctness of the WS itself is not 

actually tested. This is only good in case one need to filter out the WSs that doesn’t meet the 

given requirements when choosing third party WS to use. 

2) In model checking technique case the source code is not used again so the model checker check 

OWL-S specification rather than the source code. Model checking procedure relies on the 

conditional or unconditional output, effect and precondition of each atomic/primitive WS to 

construct their essential inner control logic, which again may not be consistent with actual WS 

implementation. 

3) Test case generation part doesn’t provide mechanisms for input data generation in case when 

data model is relatively large (data model consists of several or more classes that has relations 

between each other). 

4) Only WSs are tested by this method. The clients and WS communication issues are not tested. 

Also the issues related to concurrency when few clients communicate with the same WS at the 

same time are not tested at all by suggested method. 

 

Apart from model checking based researches there are other methods on distributed systems (DS) or 

service-oriented architectures (SOA) testing. One of them is called “An Efficient Formal Testing 

Approach for Web Service with TTCN-3” [Xiong2012]. Authors of the paper state that often client 

application and web service itself are developed using different languages or even runs on totally 

different systems. So in this case the techniques that are designed for some specific language or system 

cannot be used for such a system testing. To avoid that, authors proposes formal testing approach that 
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uses TTCN-3. TTCN-3 is an international standard test specification and implementation language. It 

has been developed by ITU and ETSI (European Tele-communication Standards Institute). TTCN-3 

intends to support black box testing for reactive and distributed systems. Typical areas of application for 

TTCN-3 are protocols, services, APIs, and software modules. TTCN-3 specifies test suites at an abstract 

level [40]. In proposed testing process both server side and client sides should be involved in testing 

activities as shown by Figure 7.5. Test case analysis and design that is based on models and/or source 

code of WSs, and ATS specification that is based on WSDL files and test cases, are conducted at server 

side. The abstract test suite (ATS) will be published via Internet/Intranet, and then it will be retrieved at 

client sides. The ATS compiling and implementation by developing Test Adapter (TA) and 

Encoder/Decoder (CoDec) in a native language are performed at client sides. Finally, the t est is 

executed at client sides [Xiong2012]. 

  

 
Figure 7.5. Process if Testing Web Services with TTCN-3 [Xiong2012] 

 

Proposed method has the following advantages: 

1) “Test case design can be conducted systematically by applying proper methods at server side” 

[Xiong2012]. This can definitely increase the quality of test case comparing to the ones 

developed as client sides. Using this method WS actually indicates how it should be tested.  

2) Test logic and test implementation are separated, also it is simpler to specify ATS than the 

platform specific test.  

3) Test case itself is done on the server side. So we get maintainability advantage as well as 

efficiency. We only have to implement the test case once as all clients share the same ATS.  

4) The last advantage is related to the third one. Testers at client sides only need to c ompile ATS, 

develop test adapter (TA) and Encoder/Decoder (CoDec) in native language. This also works the 

same for all ATSs. 

 

Although the method has great advantages we can also find few drawbacks of this method:  

1) Security is one of the issues. In those cases when ATS is accessible for all the WS users 

someone with bad intensions can find weak spots of the WS and use them. 

2) ATS also describe the test oracle which can already be incorrect. First of all this is a manual task 

to generate test oracles. Secondly usually it is better to generate test oracles from some 

specifications or models just for the correctness of the test oracle.  

3) The quality of the test cases depends only on the WSs developer. If the test case coverage is 

low the WS user has no ability to extend or improve this. 
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4) This technique cannot be applied to existing third party WSs if the WS developer doesn’t support 

this methodology. 

 

None of the above approaches takes advantage of Unified Modeling Language. UML diagrams can be 

great benefit when testing software. We can find articles that use UML for distributed system testing. 

One of the articles combines UML and OCL for distributed component based systems testing 

[Brucker2001]. This method is only suitable for component based distributed systems. Au thors describes 

such a system as follows: “In our setting with the J2EE/EJB middleware and UML/OCL, we have to 

consider that the EJB standard requests a split in the interface of the component into two parts: The 

home interface describing the functions for life–cycle management (such as object creation and 

destruction) of the EJB and the remote interface describing the functional behaviour. The home interface 

and remote interface are implemented by the bean implementation. Together, these three parts build an 

Enterprise Java Bean (EJB), the distributed component in the J2EE model. As we will see later, this 

interface splitting has a great impact on the organization of the specification and the black–box testing of 

the EJB.” [Brucker2001].  

 

Authors analyse one of the most important UML diagrams: class diagrams. The diagram shows the static 

structure of the software design: dependencies of classifiers used in the system. In the context of class 

diagrams, OCL is used for specifying class invariants, preconditions and post conditions of class 

methods. Authors give banking class diagram as an example which is shown in Figure 7.6. Authors 

presents concept of associations with multiplicities as relations with certain constraints made explicit by 

appropriate OCL formulae. In the example authors the multiplicities transformed to the following OCL 

formulae [Brucker2001]: 
“context Customer  

 inv: (1 <= self.accounts.size()) 

  and (self.accounts.size() <= 99) 

context Account  

 inv: (1 = self.owner.size()) 

 

Using invariants for associations, we can also describe if such a relation is partial, injective, surjective or 

bijec- tive. In our example we would like to express that the associations belongsTo is surjective:  
context Customer  

 inv: self.accounts.forall(a | a.owner = self) 

context Account  

 inv: self.owner.accounts->includes(self) 

 

This guarantees that every account a customer controls (particularly, which is in the set accounts) is 

owned by this customer.” [Brucker2001]. 
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Figure 7.6. Modeling a simple bank scenario with UML [Brucker2001] 

 

Here we have the collection of OCL constraints so the custom code generation scheme for constraint 

checking code of individual EJB needs to be developed. Authors suggest a solution for that. Authors 

suggest using abstract and concrete view of EJB. Also authors choose to use only a very simple data 

refinement notion. The notion requires that any formula of the abstract view is implied by the formulae of 

the concrete view. Authors generate code for runtime checking the formulae both on abstract and the 

concrete view. Having this, authors provide two rules for coding constraint checks:  

1) “if only violations against abstract view constraints (but not concrete ones) occur, we can 

conclude that the abstract view is not a refinement (as it should be)” [Brucker2001]. 

2) “if only violations against the concrete view constraints occur (but not the abstract ones) the 

specification of I is too tight for its purpose” [Brucker2001].  

An example of abstract and concrete views is given in Figure 7.7. 
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Figure 7.7. Abstract view and concrete view [Brucker2001] 

 

This method has few drawbacks: 

1) Only the static UML structure is used in this method. So the dynamic view is not analyzed at all. 

This is obviously less efficient than checking both structures. 

2) The approach is only suitable for J2EE systems. 

3) The approach cannot be taken for the existing systems. 

4) OCL constraints should be written manually so this testing technique is not fully automatic.  

 

So far we have analyzed Service Oriented Architecture as the architecture with single Web Service. In 

many real life situations Web Services are combined to create new services by a mechanism called Web 

Service Composition (WSC). This type of problem is well analyzed by [Endo2008]. “WSC testing is not a 

trivial task; features like distribution, synchronization and concurrency must be considered during the 

testing activity” [Endo2008]. Authors of the article propose a test method that applies the Parallel Control 

Flow Graph (PCFG) model to test Web Services Composition represented in Business Process 

Execution Language (BPEL). Also authors provide mechanism to analyze test coverage.  

 

Authors at al [Endo2008] analyzes orchestration WSC development paradigm. In this paradigm a central 

coordinator possesses the control of involved WSs and coordinates the execution of different WS 
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operations, according to pre-established orchestration requirements. The involved WSs should not know 

that they are part of composition. BPEL is used to define the orchestration of WSs. “In BPEL, the result 

of a composition is called process, participant WSs are called partners and control structures or 

commands are called activities” [Endo2008]. BPEL composition can be represented by Figure 7.8. 

  

 
Figure 7.8. BPEL composition [Endo2008] 

 

Graphical WSC example called Loan process presented by Figure 7.9. 
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Figure 7.9. Loan Process Example [Endo2008] 

 

When testing using proposed methodology “the first step is to model each BPEL process instance using 

a traditional CFG. The only difference is that the Receive, Reply, Invoke and Pick activities are modelled 

as send and/or receive nodes in the PCFG model. For each of these activities, useful information about 

operation and PartnerLink is recorded and related to the respective created nodes in order to create 

inter-processes edges in a next step” [Endo2008]. 

“After this step, inter-processes edges are determined. Using information about PartnerLink and 

operations of each message passing BPEL activity, we create inter- processes edges between sends 

and receives of the PCFG model” [Endo2008]. 

Figure 7.10 represents PCFG of Loan Process Example. 

  

flow. A start activity createsanew instanceof aBPEL pro-

cess. There must exist a control dependency between the

start activity andother activities, i. e., thestart activity must

beexecuted beforeother activities. Thetwo kindsof start

activities are Receive and Pick. Each BPEL process must

containat least onestart activity. InaPickstart activity, all

eventsmust beof onMessagetype.

An Invokeactivity of BPEL processcan berelated to a

Receiveactivity inanother process, usinginformationabout

their PartnerLinks and operations. The same relationship

occurstotheother messagepassingactivities. For instance,

anInvokeactivity canberelatedtoaPickone.

Variablesalsoplay animportant roleinaBPEL process.

A variable is usually used to identify a specific data ex-

changed inamessageflow. WhenaBPEL processreceives

a message, this message is assigned to a variable, so that

subsequent activitiescanaccessthedata[13].

Figure2 presentsan exampleof WSCcalled Loan Pro-

cess(adapted from[12]). Thisexampleisgraphically pre-

sentedtoillustratetherelationtoBPEL code. Weintroduce

ashort descriptionof theexample:

(1) the main process receives information about cus-

tomer anddesiredvalueto loan.

(2) theCredit RatingServiceWSiscalled torecover in-

formation related to customer credit. Among thesepieces

of information, themost relevant isreputation. Thereputa-

tionvariesbetweenzeroandtenand iscalculatedbasedon

customer data. Thisfirst callingisasynchronousoperation.

(3) The WSs of two loan agencies are invoked using

asynchronous calls. UnitedLoan offers low rates for loan

values below ten thousands and with reputation equal or

greater than five. StarLoan offers low rates for customers

that ask valuesbelowfifteen thousandsandwith reputation

equal or greater thaneight.

(4) In the main process, after receiving messages from

bothWSs, adecision istaken.

(5) thebest offer (lowest rate) ischosen and an interest

confirmation issent tothechosenagency.

(6) Thebest offer issent tocustomer.

3 Test Strategy for WSC

Wepresent astrategy totest WSCinthissection. Firstly,

thebasicconceptsof Parallel Control FlowGraph(PCFG)

model [16, 15] aredescribed. Themodel isdefined tocap-

ture thecontrol, dataand communication flowsof parallel

programsinmessagepassingenvironment. Themodel con-

siders afixed and known n number of processes, denoted

by theset Prog = {p0,p1, . . .pn− 1} . Thecommunication

amongtheseprocessesiscarriedout using thesend andre-

ceive primitives. Each process p has a respective control

flowgraphCFGp [14, 20].

Figure 2. Loan Process Example.

A PCFGconsistsof CFGprocessesandarepresentation

of communication among processes. N and E represent

thesetsof nodesandedges, respectively. Eachnodeni ina

processp isrepresentedby thenotationn
p
i . Twosubsetsof

N aredefined: Ns andNr , composedby nodesthat arere-

latedtosendandreceiveprimitives, respectively. Theset E

canalsobepartitioned into twosubsets: E
p
i containsintra-

processedges(internal) of aprocessp,whereasEs contains

inter-processes edges(representing thecommunication) of

PCFG.

A pathπp in aCFGp is called intra-process path. An

inter-processes path contains at least one inter-processes

edge and is given by Π = (π0,π1, . . .πk ,S), where S is

thesequenceof inter-processesedgesthat wereexecuted.

A variable is usually defined in assignments and input

commands. In the context of message passing environ-

ments, avariablecanalsobedefined incommunication ac-

tivities, likeReceive. Thesefunctionsset oneor morevari-

ables with values received in the message. A set of vari-

ablesthat aredefined innoden
p
i isrepresentedby def (n

p
i ),

i.e., def (n
p
i ) = {x | x isavariabledefined inn

p
i } . A path

π = (n1,n2, ...,nj ,nk) isdefinition-clear with respect to

a variable x from node n1 to node nk or edge (nj ,nk),

if x ∈ def (n1) and x ∈ def (ni ), for i = 2..j . In ad-

dition of traditional predicateuse(p-use) and computation

use(c-use) of variables, thePCFG model addscommuni-

cation use(s-use). Ans-useoccurswhenavariableisused

inacommunicationstatement, relatedtoaninter-processes

edge. Thesetypesof associationaredefinedbelow:

A c-use isdefined by atriple (n
p
i ,n

p
j ,x) such that x ∈

def (n
p
i ) and, n

p
j hasac-useof x and, thereisadefinition-

clear pathwithrespect tox fromn
p
i ton

p
j .

A p-useisdefinedby atriple(n
p
i , (n

p
j ,n

p
k),x) suchthat

!!
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Figure 7.10. PCFG Loan Process Example [Endo2008] 

 

Having PCFG specification we now have all the information about the nodes and edges and so can do 

the app testing (have all the information about all the paths through the parallel applications). Also the 

coverage criteria can be provided from this method.  

 

Obviously this methodology has few drawbacks that come out from the information provided earlier: 

1) This is only suitable for Web Services Composition. It’s not an actual drawback of the method as 

it is dedicated for this purpose, but in our case it’s a drawback.  

2) This method doesn’t actually solve the Oracle problem. It does provide a mechanism for WSC 

part execution but for testing additions methods are still required. It can be unit tests of each WS 

of something similar. 

Figure 4. PCFG of Loan Process Example.

n = 4

Prog = {p0,p1,p2,p3}

N = {10,20,30,40,50,60,70,80,90,100,110,120,130,

140,11,21,31,12,22,32,42,52,62,72,13,23,33,43,53,

63,73}

Ns = {20,31,40,50,62,63,100,120}

Nr = {11,30,60,70,12,72,13,73}

E = E
p
i ∪ Es

E0
i = {(10,20), (20,30), (30,40), (40,50), (50,60),

(60,70), (70,80), (80,90), (90,100), (100,130), (80,110)

(110,120), (120,130), (130,140)}

E1
i = {(11,21), (21,31)}

E2
i = {(12,22), (22,32), (32,52), (22,42), (42,52),

(52,62), (62,72)

E3
i = {(13,23), (23,33), (33,53), (23,43), (43,53),

(53,63), (63,73)

Es = {(20,11), (31,30), (40,12), (50,13), (62,60),

(63,70), (100,72), (120,73)}

Table 1. Values for the PCFG sets of example

presented in the Figure 4.

parallel programs, duetothefact that inter-processesedges

arecreatedusing information about operationandPartner-

Link, which is obtained statically. A PCFG with several

inter-processes edges increases the cost of covering some

criteria. Withamorecompact PCFGgraph, theapplicabil-

ity of PCFGmodel for testingof WSCisimproved.

Other possibility that can be exploited by the model is

thedefinition of abstraction level of testing. For example,

supposethat oneof theWSsisaproprietary component and

its source code is not available. In this situation, the test

engineer can abstract thisWS, considering that invokeand

receivenodesdonot haveinter-processesedgestothisWS.

Although we lose information about coverage in this WS,

criteria likeall-nodes-s and all-nodes-r (presented in Sec-

tion3.1) canbeusedfor requiringthat communicationwith

thisWSiscoveredby thetests.

3.1 Test ing Coverage Criteria of WSC

During the testing activity, it is essential to assess the

quality of thetests. A testingcriteriondefinespropertiesor

requirementsthat need tobetested for ensuring thequality

of software testing [20]. Thesepropertiesor requirements

are called required elements. Testing criteria are used to

evaluate systematically test cases and guide the test cases

selection. Based on PCFG model, Vergilio et al. [16] de-

finedaset of coveragecriteria. Thesecriteriacan beused

inthecontext of WSCandaresummarizedbelow:

All-nodes-s: the test suites must exercise each node

n
p
i ∈ Ns, i.e., test casesmust executeat least onetimeeach

InvokeandReplyactivity.

All-nodes-r: the test suites must exercise each node

n
p
i ∈ Nr , i.e., test casesmust executeat least onetimeeach

Receive, PickandsynchronousInvokeactivity.

All-nodes: test cases must exercise all activities in all

processes.

All-edges-s: test cases must exercise at least one time

eachcommunicationamongtheWSs.

All-edges: test cases must exercise all execution

branchesandcommunicationsamongtheWSs.

All-s-uses: test cases must exercise all s-use associa-

tions.

All-s-c-uses: test casesmust exerciseall s-c-useassoci-

ations.

All-s-p-uses: test casesmust exerciseall s-p-useassoci-

ations.

Considering the Loan Process example (Figure 4),

if we use as test case a customer with reputation equal

to five and loan value equal to 5000, we obtain the

following path: Π1 = (π0,π1,π2,π3,S1), where

π0 = {10,20,30,40,50,60,70,80,90,100,130,140} ,

π1 = {11,21,31} , π2 = {12,22,32,52,62,72} ,

π3 = {13,23,43,53,63} and S1 =

{(20,11), (31,30), (40,12), (50,13), (62,60), (63,70),

(100,72)} . Due to the decision that occurs in node

80, the execution of this test case does not cover the

inter-processes edge (120,73). With the addition of

!!
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