
SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 1 (38)

 Contract number: ITEA2 – 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP 5, WT 5.6

Deliverable D.5.6.c:

First prototype "Safety Code Generation" - Report

Due date of deliverable: 28/02/2014

Actual submission date: 28/02/2014

Start date of the project: 01/07/2011 Duration: 36 months

Project coordinator name: Stefan Voget

Organization name of lead contractor for this deliverable: ZF Friedrichshafen AG

Editor: Jürgen Lucas

Contributors: Helmut Miller, Christoph Ainhauser, Kazi-Khaled Al-Zahid, Raphael Trindade

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 2 (38)

Version Date Reason

0.1 2012-10-26 Initialization of document

0.2

0.9

2012-11-06

2012-12-19

Adapted document structure according to feedback from P. Cuenot

First Version for D5.6a (Ready for Review)

0.9.1 2012-12-22 Incorporated changes driven by review

1.0

1.1

2013-01-08

2013-12-09

Preparation of official deliverable D5.6a

First Version for D5.6b (Ready for Review)

1.2

1.3

2.0

2.1

2014-02-18

2014-02-24

2014-03-03

2014-10-10

Added some statements about qualitative evaluation

Added figures, added appendix

Preparation of official deliverable D5.6b

First Version for D5.6c

2.2 2014-10-28 Integration of Evaluation Results

2.3 2014-10-30 First Version for D5.6c (Ready for Review)

2.4 2014-11-18 First integration of Review Comments

2.5 2014-11-24 Pre-final Version

3.0 2014-11-26 Official Version for Deliverable D5.6c

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 3 (38)

1 Table of contents

1 Table of contents .. 3

2 Executive Summary ... 5

3 Evaluator “Safety Code Generation” .. 6

3.1 General description .. 6

3.1.1 Torque Vectoring Use Case .. 6

3.1.2 Technical safety concept (Overview) .. 7

3.1.3 Demonstrator Environment ... 9

3.2 Safety Measure “Gradient Checker”.. 10

3.2.1 Motivation and Argumentation ... 10

3.2.2 Implementation .. 11

3.3 Safety Measure “Program Flow Control” .. 22

3.3.1 Motivation and Argumentation ... 22

3.3.2 Implementation of Program Flow Control .. 23

3.4 Dependencies ... 24

3.5 Final Implementation State of the Evaluator ... 24

4 Evaluation Results .. 25

4.1 Qualitative Evaluation ... 25

4.1.1 Setup of Safety Case .. 25

4.2 Quantitative Evaluation ... 26

4.2.1 Integration effort vs. implementation effort... 26

4.2.2 Memory Consumption ... 27

4.2.3 Runtime Effects .. 27

4.2.4 Safety Case Effort .. 27

4.3 Fulfillment of WP 3 requirements ... 27

4.4 Final quantification of Safety Code Generation as evaluated in WT5.6: .. 30

5 Conclusion .. 31

6 References .. 32

7 Acknowledgments .. 33

8 Common Metrics for evaluation ... 34

9 Appendix .. 35

9.1 Tool prototype “control flow monitor” .. 35

9.1.1 Adapted SW architecture ... 36

9.1.2 Watchdog configuration .. 37

9.1.3 Task body .. 38

9.1.4 Source code for watchdog service ... 38

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 4 (38)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 5 (38)

2 Executive Summary

The objective of WP5 (see SAFE FPP [5]) is a) to refine requirements for, b) provide feedback on and c) evaluate

methods and tools developed in WP3 and WP4 as well as methodologies and application rules defined in WP6 in

context of realistic industrial case studies. Best practices established during the evaluation will be documented.

This document describes the prototype of the evaluation scenario implemented in WT5.6. It introduces the demonstrator

platform giving an overview of the architecture and of the technical safety concept. The experience with code

generation for SW Safety Components (SSC) is collected; the integration into the demonstrator platform is described

and evaluated.

In addition, it contains a reference to the addressed methods and tools developed in WP3 by evaluating how they fulfill

their associated requirements defined WP2 (as far as in the scope of the WP5.6).

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 6 (38)

3 Evaluator “Safety Code Generation”

3.1 General description

The evaluation environment is the torque vectoring system (QMVH) implemented first for BMW X6.

3.1.1 Torque Vectoring Use Case

The basic function of QMVH system is the improvement of agility and stability in a SUV application. This is achieved

by an active torque distribution on the rear axle by using 2 clutches (one on each side).

Figure 1 - Effect of QMVH

The gearbox itself consists of one classic differential and two actuators realizing the torque transmission function. If a

clutch is engaged, torque is transmitted from one wheel to the opposite, thus leading to a gear torque that may be used

to facilitate steering or add stability in case of over steering. The clutches are operated by electro motors with a ball

ramp mechanism.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 7 (38)

Figure 2 - Gearbox

As to its steering effect, the system is safety relevant. One safety goal is the detection and handling of an unintended

torque step of more than 400Nm at a wheel.

Safe state is identified as “open differential” (no e-motor torque is applied).

The QMVH system has been introduced to series production in 2008 and was developed according to IEC61508. The

Hazard & Risk Analysis (HARA) based on IEC61508 yielded a classification of SIL-3.

Base development of the system (2006 – 2009) has not been performed in compliance with AUTOSAR.

In a product update (2011-2013), the HW has been partially redesigned in order to cope with AUTOSAR and FlexRay

requirements, but most parts of the existing safety concept have not been changed, as they are not influenced by the

changes. Only minimal adaptations in the function of the SW have been introduced.

As to the introduction of ISO 26262, the system has been reclassified as ASIL D.

The requirements on the performance of the system (response time, accuracy) are high, leading to the need to

compensate various effects in the actuator (e.g. the change of friction in the clutch in case of a temperature increase,

mechanical extensions depending on oil temperature, …). A wrong step in a temperature may lead to a torque step that

conflicts with the safety goal mentioned above.

A rough overview of the safety measures is given in the next section.

3.1.2 Technical safety concept (Overview)

So, as to the safety requirements identified in HARA, the technical safety concept has (besides other means) introduced

in the SW:

- E2E-protection of communication on CAN/FlexRay

- Checkers for all input data that may influence the E-Motor torque that is applied to a clutch

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 8 (38)

- Dual controller system the redundant execution of critical portions of the code

- Binary comparison of results

- Redundant evaluation of environment data (sensors and CAN/FlexRay)

- Tolerant comparison of input data

- Program flow control

- Plausibility checks on input data and calculated results

- Actuator monitoring (diverse programming)

- RAM checks, ROM checks

- WD-Tests

- Independent check of operating modes

- Independent check of fault reactions

When a safety relevant error has been detected, an error handling procedure is triggered, leading to a switch off (fail

safe).

Figure 3 - Abstract Technical Safety Concept

Identification of validation items

As to the classification of the system, a set of safety mechanisms have been integrated into the SW (see previous

section).

In WT5.6 only a subset of these safety mechanisms will be used to validate the code generation concepts defined in

WT3.6. As the SW architecture is not adhering to AUTOSAR (e.g. no RTE is present), it is necessary to make some

adaptation to the SW architecture (and also to the SW realization) to allow the SAFE concepts to get in good contact

with the existing SW. In order to keep the effort for this preparation as low as possible, the mechanisms that are subject

to replacement by means of code generation are identified with respect to these criteria: can be a) easily isolated from

the rest of the system and b) replaced by components generated by means of code generation as identified in WT3.6.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 9 (38)

As a result of this analysis, the following use cases for analysis of code generation for software safety components

(SSC) have been identified:

- Gradient checkers required for temperatures (both measured and calculated) according to the technical

principles (a temperature may not increase with more than X °C per 10ms).

- Program flow control checking that SW components are called in the correct order

3.1.3 Demonstrator Environment

This section will describe the testing and demonstration environment. The testing and demonstration environment is

built up for validation of the SW measures to show the effects in a way that is easily understandable in a presentation to

a wider audience.

Figure 4 - Overview of Evaluation Environment

The Evaluation Environment consists of the following main components:

– Power Supply

– Simulation PC

– PCI-Expansions-Box

– 2 IXXAT-Karten

– 1 FlexRay-Gateway (TTTech)

– ZGW (Central Diagnostic Gateway)

– Relais-Box (HW Fault Introduction)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 10 (38)

– ECU

– Gearbox (TV-HAG)

– Cabling

SW Fault Injection:

SW Fault Injection is used to enter faults inside the ECU, where it is not possible to introduce faults by HW means.

This is used, for instance, to emulate an internal signal being corrupted by a SW-error or RAM fault.

The SW Fault Injection uses an additional CAN message. A set of error hooks in the code is defined and a set of error

models is defined (stuck at, gradient, jump, …). Via the additional CAN message, the error hook and the error model is

selected.

3.2 Safety Measure “Gradient Checker”

3.2.1 Motivation and Argumentation

3.2.1.1 Development approach before SAFE

During product development in 2008, the gradient checkers have been developed manually using C programming

language. As to the need to check two temperatures simultaneously, an instance concept has been introduced. So, data

and function are separated using data containers with access via pointers.

One important component in the existing gradient checkers is a filter mechanism. A wrong gradient will trigger an error

only if it is present consecutively for > x ms.

The behavior of the output signal in case of a detected gradient error is specified in a way that the value is ramping to

the new input value with the gradient that is the specified as maximum gradient.

Figure 5 – Gradient Checker: Limitation of gradient, fault handling

The red line describes the faulty raw signal, the green line describes the gradient limited (safe) signal. The blue line

shows the error reaction.

3.2.1.2 New approach

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 11 (38)

The new approach takes the technical safety concept as given and focuses on the implementation of identified and

required safety mechanisms by means of code generation. Based on an abstract model of the evaluator SW, the

necessary software safety component (here: gradient checker) is modeled and integrated into the existing SW while

replacing the original, manually coded gradient checker component.

The generated artifacts have software interfaces according to the AUTOSAR Virtual Function Bus (VFB) principle

Fehler! Verweisquelle konnte nicht gefunden werden.. Thus, the pre-existing software architecture has been

restructured to communicate with the generated artifacts via the AUTOSAR RTE Fehler! Verweisquelle konnte nicht

gefunden werden..

The newly introduced software elements realize section 6.4.3 (gradient checker) as well as section 6.4.6 (filter

mechanism) in D3.6 [6].

Figure 6 - Generation workflow for gradient checker

3.2.1.3 Benefits / drawbacks of new approach compared to current approach

Given the necessary infrastructure, the interaction with the generated software safety components is easy. This holds for

the specification phase as well as for code integration. No major drawbacks are identified. Details of the evaluation are

given in the evaluation section 4.

3.2.2 Implementation

As the existing software is a pre AUTOSAR SW (no SWC´s, no RTE), the work had to be structured as follows:

- Preparing of the SW environment: Modeling of the existing SW in SWC´s, introduction of a prototype RTE.

This is necessary to allow the usage of new components generated with the means of SAFE (See section

3.2.2.1)

- Specification of the Gradient Checker with the means of SAFE and replacement of the old checker component

(See section 3.2.2.2)

As a conclusion, in section 3.2.2.3 key work products can be found representing both approaches. The key work

products that are generated using the SAFE approach (with automated code generation) can be easily compared with the

corresponding work products of classic development approach (manual design and coding).

3.2.2.1 Preparation of the SW environment

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 12 (38)

Based on the analysis of the existing SW system, an abstract model of the SW system has been developed. This model

adheres to the principles of AUTOSAR conventions and is based on the SAFE meta model. Within this model, the main

components of the system are modeled:

- OperationManager: it has the task to manage detected malfunctions of the system, degrade the actuators if

needed and perform finally a restart of the ECU.

- RestECU: this component is an abstraction of the concrete SW architecture dealing with the access to the

sensors and actuators. One of its tasks is to provide the information needed by the safety mechanisms.

Temperature Models and sensors are modeled in this component.

- TorquePosCalculation: functional component performing the actual torque distribution on the rear axle.

Figure 7 - SWC´s and Source Modules

The list reflects the mandatory components deployed on one concrete ECU. Driven by the safety concept, the system

architecture consists of two instances of the same ECU. Each ECU has the task to manage one single actuator and

monitor possible malfunction on the redundant ECU driven by random HW failures.

3.2.2.2 Replacement of the existing Gradient Checker Component

The WT3.6 work result under consideration is the gradient checker. Implementation was performed as follows:

(1) Definition of SW structure and interfaces within the existing SW.

(2) Definition and implementation of an RTE realizing the communication between ZF application SW modules

and the planned gradient checker module.

(3) Interfaces are specified in the style of AUTOSAR.

(4) Based on the definition of a Gradient-Checker using the SAFE exchange format, a C-Code module is

generated according to the specified interfaces.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 13 (38)

(5) The threshold values (gradient boundaries and filter values) are taken from the existing implementation and

used as parameters in the SAFE model of the gradient checker.

(6) The old filter and gradient checker code has been removed.

Figure 8 - RTE with Data and Control Flow

3.2.2.3 Development of Gradient Checker: Classic Approach vs. SAFE Approach

For the purpose of comparison, this section gives an overview of the different work products as far as they are

influenced by the code generation approach. First, the different work products are sketched, then in Figure 9, Figure 10

and Figure 11 the work products of the classic development approach are presented. Further, from Figure 12 to Figure

17, and the corresponding work products of the SAFE development approach are presented.

 Classic Development Approach

(Manual Implementation)

SAFE Development Approach

(Automated Generation)

Hazard and

Risk Analysis

• …

• A Torque Step > 400Nm can lead to a undesired driving behaviour.

• …

Safety-

Requirements
• …

• A temperature step of > x °C must be detected and controlled

• …

Technical Safety

Concept
• …

• The gradient in temperature value shall be limited to the physical possible value

(Delta(Oiltemp)/10ms < x °C).

• If the maximum gradient is exceeded for more than y ms, an error shall be raised

• This error shall trigger a switchoff reaction.

• …

Design Result Usually some semi formal notation including

graphic elements (See Figure 9)

Specification of the Software Safety

Requirement in ARTEXT (See Figure 12)

Implementation

Result

Manually developed Source Code in C

(See Figure 10 and Figure 11)

Automatically generated Source Code in C

(See from Figure 13 to Figure 17)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 14 (38)

Test Automated Test shall make sure that (with each release) the reaction is performed. As the

temperature signal under consideration is an internal calculated signal, a potential misbehaviour

of this signal shall be elicitated via fault introduction into the software.

No difference between both approaches.

Validation The result shall be validated in a driving event, with fault injection facility.

No difference between both approaches.

3.2.2.3.1 Development of Gradient Checker: Classic Approach

First, the Safe Engineer defines the signals that need to be subjected to gradient checking. The parameters and the

output signals are specified in conventional, not strictly formal “language” resulting in a design as can be seen in Figure

9.

Figure 9 – Design in Classic Development Approach

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 15 (38)

The SW developer then takes this specification and elaborates the necessary code.

First, a structure is defined containing all data needed per gradient checker.

typedef struct
{
 ui8 werte_ungueltig;
 ui8 bit_maske; // Fault Flag
 ui8 fehler_zaehler; // Error Counter
 si16 voriger_wert; // Last Value
 ui16 max_gradient; // Maximum Gradient
 ui8 entprellung; // Debounce time
} gradient_struct;

Figure 10 – Definition of Gradient Checker Structure (Classic Development Approach)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 16 (38)

Second, the SW developer implements the required behaviour in a suitable routine, which is called cyclic every 10ms:

static si16 prx_limit_gradient(si16 wert, gradient_struct *parameter)
{
 si16 return_wert = wert;

 if (parameter->werte_ungueltig == (ui8) 0)
 {
 ui8 gradienten_fehler = (ui8) 0;
 const ui8 gradient_state = GetVal_prx_gradient_state();
 const si16 differenz = wert - parameter->voriger_wert;
 const si16 differenz_absolut=((differenz < (si16) 0)?(0-differenz):differenz);

 if (parameter->max_gradient < (ui16) differenz_absolut)
 {
 /* Threshold value exceeded*/
 parameter->fehler_zaehler++;
 if (parameter->fehler_zaehler > parameter->entprellung)
 {
 gradienten_fehler = (ui8) 1;
 /* avoid overflow */
 parameter->fehler_zaehler--;
 }

 /* Limit to maximum allowed gradient */
 if (differenz >= 0)
 { return_wert = parameter->voriger_wert + (si16)parameter->max_gradient; }
 else
 { return_wert = parameter->voriger_wert - (si16)parameter->max_gradient; }
 }
 else
 {
 /* Gradient OK, decrement error counter */
 if (parameter->fehler_zaehler > (ui8) 0)
 {
 parameter->fehler_zaehler--;
 }
 }

 /* Handling of Error Flag */
 if (gradienten_fehler)
 { /* Set Error flag */
 SetVal_prx_gradient_state(side, gradient_state | parameter->bit_maske);
 }
 else
 { /* Reset Error flag */
 SetVal_prx_gradient_state(side, gradient_state & (ui8)~(parameter->bit_maske));
 }
 }
 /* Save value for next cycle */
 parameter->voriger_wert = return_wert;

 …

 return return_wert;
}

Figure 11 – Runnable (Cyclic Routine) (Classic Development Approach)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 17 (38)

Main sections of the cyclic routine are:

Check whether gradient is ok

Error debouncing, setting of error flag

Limitation of output value to maximum allowed gradient

Start of error propagation

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 18 (38)

3.2.2.3.2 Development of Gradient Checker: SAFE Approach

Remark: Long identifiers, that tend to wrap around into the next line, are concatenated using “\\”.

In the SAFE approach, the safety engineer first specifies the necessary software safety requirements in the tool

prototype based on ARText (see below). In our example, it specifies the expected gradient properties, the error filtering

(to mask the error for a limited time interval) and the final error reaction (call the OperationManager).

filter lamellenTempFilter {

 previous prev

 current cur

 value = cur

}

SSR ssr1

safeguard sg1 system tvhag2System {

 ssm ssm2 satisfies ssr1 through {

 limit gradient of compTotal :: ptRestECU :: ppSensorTPCFlipSide -> lamellenTemp {

 min := -20.0,

 max := 20.0,

 tolerance := 0.0

 period := 10

 } handle

 {

 GRADIENT_TOO_HIGH -> lamellenTempFilter()

 GRADIENT_N_TIMES_TOO_HIGH(5) -> call compTotal :: ptTVHAG2 ->

 ptBetriebskoordinator :: spBetriebskoordinator ->

 error_gradient_swcRestECU_ppSensorTPCOwnSide_lamellenTemp

 GRADIENT_TOO_LOW -> call compTotal :: ptTVHAG2 ->

. ptBetriebskoordinator :: spBetriebskoordinator ->

. error_gradient_swcRestECU_ppSensorTPCOwnSide_lamellenTemp

 }

 }

}

Figure 12 – Safety Requirement Specification (SAFE Development Approach)

Based on the semi-formal SSR specification, the safety code generator produces required C code pieces a shown in the

figures below (struct for filters and gradient properties, filter routine, gradient check routine,

typedef struct filter_state_t {
 SInt16 tolerance;
 SInt16 previousValue;
 SInt16 currentValue;
}filter_state;

#define FILTER_EXPRESSION(prev,cur) prev / 5 + cur

Figure 13 – Definition of Filter Structure and Filter Expression (SAFE Development Approach)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 19 (38)

static filter_state filter;

void swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp_lamellenTempFilter_init () {
 filter.tolerance = FILTER_TOLERANCE;
 filter.previousValue = FILTER_PREVIOUS_VALUE;
 filter.currentValue = FILTER_CURRENT_VALUE;
}

SInt16 swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp_lamellenTempFilter (SInt16 value) {
 SInt16 _filterResult =FILTER_EXPRESSION(filter.previousValue,filter.currentValue);
 return _filterResult;
}

Figure 14 – Filter Routines (SAFE Development Approach)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 20 (38)

typedef struct
 swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_gd_state_t {
 SInt16 last_value;
 SInt16 min_value;
 SInt16 max_value;
 int tolerance;
 int time_delta;
 int gradient;
 int error;
}swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_gd_state;

Figure 15 – Definition of GradientChecker Structure (SAFE Development Approach)

boolean b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_gcError
 = FALSE;

static swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_gd_state state;

int swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_\\
 calculate_gradient (SInt16 current_value,int time_delta) {
 state.gradient = (current_value-state.last_value)*time_delta;
 return state.gradient;
}

int swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_check_gradient
 (SInt16 current_value) {
 int ret = TRUE;
 int res = swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp_calculate_gradient(current_value,state.time_delta);
 if ((res * 1000)> (state.max_value * 1000)+state.tolerance) {
 ret = FALSE;
 state.error = ERROR_GRADIENT_TOO_HIGH;
 }
 else if ((res * 1000) < (state.min_value * 1000)-state.tolerance) {
 ret = FALSE;
 state.error = ERROR_GRADIENT_TOO_LOW;
 }
 return ret;
}

/*** init runnable */
void swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp_init () {
 state.max_value = MAX_VALUE;
 state.min_value = MIN_VALUE;
 state.tolerance = (TOLERANCE * 1000);
 state.time_delta = 1000/TIME_DELTA;
}

Figure 16 – GradientChecker: Service Routines (SAFE Development Approach)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 21 (38)

/*** runnable for autosar */
void swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp () {
 //read current value
 SInt16 currentValue;
 int res;
 Rte_Read_swcGradientChecker_rp_ptRestECU_ppSensorTPCOwnSide_lamellenTemp\\
 (¤tValue);
 res = swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp_check_gradient(currentValue);
 if (res == FALSE){
 //set error
 b_swcGradientChecker_check_rp_ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp_gcError = TRUE;
 if (state.error & ERROR_GRADIENT_TOO_HIGH) {
 SInt16 _filterReturnValue = swcGradientChecker_check_rp_\\
 ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp_lamellenTempFilter
 (currentValue);

 Rte_Write_swcGradientChecker_pp_ptRestECU_\\
 ppSensorTPCOwnSide_lamellenTemp(_filterReturnValue);
 }

 if (state.error & ERROR_GRADIENT_TOO_LOW) {
 Rte_Call_swcGradientChecker_cp_ptTVHAG2_\\
 ptBetriebskoordinator_spBetriebskoordinator_\\
 error_gradient_swcRestECU_ppSensorTPCOwnSide_lamellenTemp();
 }
 }
 else {
 if (b_swcGradientChecker_check_rp_ptRestECU_\\
 ppSensorTPCOwnSide_lamellenTemp_gcError) {
 //reset all handling mechanisms used
 b_swcGradientChecker_check_rp_ptRestECU_\\
 ppSensorTPCOwnSide_lamellenTemp_gcError = FALSE;
 }
 Rte_Write_swcGradientChecker_pp_ptRestECU_ppSensorTPCOwnSide_\\
 lamellenTemp(currentValue);
 }
 state.last_value = currentValue;
}

Figure 17 – GradientChecker: Runnable (Cyclic Routine) (SAFE Development Approach)

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 22 (38)

3.3 Safety Measure “Program Flow Control”

3.3.1 Motivation and Argumentation

3.3.1.1 Development approach before SAFE

In the original product development, the program flow control has been developed manually using C programming

language. A set of checkpoints has been defined. The checkpoints are distributed in the code. When a checkpoint is

passed, a value is transmitted to a program flow control checker, which calculates a checksum for each 10ms cycle. At

the end of a cycle, the actual value is compared to a predefined target value. In case of a deviation, an error handling

procedure is triggered, leading to a switch off (fail safe).

Figure 18 - Architecture of existing PFC

The checker function is implemented in a dedicated safety task that is (by means of task scheduling) activated at the end

of a 10ms cycle. In case of a deviation, a WD-Reset is triggered.

3.3.1.2 New Approach

The new approach takes the technical safety concept as given and focuses on the implementation of identified and

required safety mechanisms by means of code generation. Based on an abstract model of the evaluator SW, the

necessary software safety component (here: PFC checker component) is modeled and integrated into the existing SW

while replacing the existing PFC checker component. In AUTOSAR, the control flow is monitored by the watchdog

manager service. Thus, the code generation approach derives appropriate configuration for the watchdog manager based

on the control flow requirements as specified according to the SAFE meta-model. The AUTOSAR watchdog manager

can be accessed via standardized AUTOSAR interfaces by the application software. Thus, the pre-existing software

architecture has been restructured to use the AUTOSAR RTE API of the watchdog manager.

The newly introduced software elements realize section 7.1 (Control-Flow Monitor) as well as section 6.4.6 (Filter) in

D3.6 [6].

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 23 (38)

Figure 19 - Architecture of SAFE PFC

The ZF Torque Control components are taken as present, the task schedule (ZF_Applikation.c) is moved to the RTE

and generated using the SAFE Control Flow Specification. In this task body, the PFC checkpoint calls are performed,

by calling the Client-Server interface of the watchdog service before and after applications RunnableEntities executions.

In the evaluation scenario, the newly generated software component “Safety_Safe.c” provides the implementation of the

watchdog service. On the one side, this component provides an AUTOSAR compliant API, on the other side it uses

existing mechanisms of the ECUs HW/SW stack to implement the expected functionality. In this component, the

checker routine is responsible for the detection of deviations from a proper control flow. An asynchronous, periodic

main function (in 10ms safety task) of the Safety_Safe.c component triggers a watchdog reset if there is an error

observed, by using a new port to the already existing component “Safety.c”. This is necessary to keep the interfaces to

pre-existing SW modules unchanged.

3.3.1.3 Benefits / drawbacks of new approach compared to current approach

In this use case, the preparatory work to restructure the pre-existing SW according to AUTOSAR interfaces has been

substantial. Analysis and implementation of the interfaces where estimated to 20h. But, given the necessary

infrastructure, the interaction with the generated software safety components is easy. This holds for the specification

phase as well as for code integration. So far, no drawbacks are identified. Details of the evaluation are given in the

evaluation section 4.

3.3.2 Implementation of Program Flow Control

Based on a formal specification of the expected execution order of executable entities, the code generator generates the

following elements required for the evaluation scenario:

• AUTOSAR watchdog configuration, including the expected checkpoints and transitions to conduct the logical

supervision

• Task body, to trigger a) the executable entities in the correct order and b) the watchdog manager with the

respective checkpoints (executable entity started/stopped)

• Adapted software architecture, including the required AUTOSAR interfaces to access the watchdog manager

via the RTE

• Rudimentary implementation of the AUTOSAR watchdog service (called Safety_Safe.c), as the used basic

software stack does not provide an AUTOSAR compliant watchdog implementation.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 24 (38)

For more information about the implementation, please refer to the user manual included in the appendix of this

document (see 9.1).

3.4 Dependencies

WT 5.6 depends on WT3.6. The artifacts and concepts that are produced in WT3.6 are evaluated in this WT5.6.

3.5 Final Implementation State of the Evaluator

The work task has been organized into 3 steps:

1. Integration Prototype: limited functionality, SW fault injection only. Set up of demonstration environment.

(M12 – M18)

2. Extended Prototype: broader functionality, first evaluation of results (M19-M30)

3. Final evaluation of results (M31 – M36)

Main activities in Step 1 and 2 are:

No Subtask Status

(fulfillment)

1 Generate an understanding of the AUTOSAR style of modeling SW systems at the

engineering team at ZF.

100%

2 Generate an understanding of the existing safety concepts and establishment of a

conceptual model of the system (FAA) at the research team at Car IT. Result of this

activity is a list of building blocks giving an abstract view of the system that makes it

accessible for modeling according to SAFE Meta Model.

100%

3 Identification of possible safety mechanisms to be replaced by code generated SW

components

100%

4 Specification of communication pattern to integrate the generated SW components into the

existing SW running, establishment of contracts and interface specifications.

100%

5 Relevant properties of the system and its subcomponents, i.e. safety requirements,

functional components, and applied safety mechanisms are modeled according to the

SAFE system meta model.

100%

6 The model is used as input to generate assets necessary to integrate the functional

subcomponents.

80%

7 The existing SW will not be rearranged to meet the structure of the model. However the

components that are to be replaced by the generated SW components have to be isolated

and taken out in order to offer enough resources for the new components.

80%

8 Implementation of communication layer according to the specification identified above. 100%

9 Finally, the system is reintegrated using those generated assets.

Test on PC and ECU-HW

100%

10 Identification of resource impacts of the code generated SW components. 100%

Further, the infrastructure necessary for cooperation has been prepared:

- Establishment of a build environment enabling the cooperation between the partners

- Setup of validation environment at BMW Car IT

- Setup of demonstration and test environment at ZF

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 25 (38)

4 Evaluation Results

In this chapter, the evaluation results of the individual WP3/4/6 deliverables are described.

4.1 Qualitative Evaluation

This section covers the evaluation of the code generation concept with respect to the methodologies already defined in

AUTOSAR and the new concepts found in SAFE Project. Furthermore, the more practical aspects are considered when

such components are integrated into the surrounding code context.

Evaluation criteria Qualitative statement Rationale

Correct and

comprehensible

documentation

good User manual for the tool prototype compliant with the

SAFE method defined in WT3.6 has been attached to

this appendix.

Compliant with SAFE

meta-model

perfect Tool prototype is fully aligned with the SAFE method

defined in WT3.6, incl. SAFE meta-model.

Correct implementation of

SAFE methods

good Tool prototype implements a selected list of the SAFE

methods defined in WT3.6 (range checker, gradient

checker, control-flow monitoring, filtering).

Stability and robustness

against incorrect input

not applicable The tooling is a prototype and thus not developed to be

robust against incorrect usage.

Correct and seamless

interoperability with other

SAFE work products

good Tool prototype is prepared to link the specification of

software safety requirements with technical safety

requirements. Generated artifacts of the tooling are

completely in line with the AUTOSAR software

architecture.

Reasonable support for

manual or semi-automated

activities

perfect The main driver of the safety code generation concept is

to liberate the safety engineer from manual and error

prone activities, by automatically generating safety

relevant assets like code, adapted software architecture

or argumentation.

Training level and

expertise required for

usage

not applicable As the developed tool is only in a prototypic state and

solely implemented for the purpose of the evaluation

scenario, a qualitative statement is not possible.

Tailoring capabilities sufficient The output of the code generator can be configured

depending on the required strategy (e.g. how to handle

detected errors). Further improvement could be realized

(e.g. allowing the safety engineer to judge whether a

safety mechanism shall be isolated in a separate software

component or be integrated together with other

mechanisms into on “safety component”.

Ease of Integration good The output of the code generator can be easily integrated

into the existing code environment via well known

interface structures (.h-files)

Implementation

complexity

good The complexity of gradient checker is now hidden to the

SW engineer.

4.1.1 Setup of Safety Case

For each safety relevant project, a proper argument must be given that the product is safe enough. This argument must

be elaborated during development and must cover (among other aspects) all the different measures that are defined in

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 26 (38)

functional / technical safety concept. In our case, it must be found an argument why the generated components are

operating safely and fulfill the requirements of the technical safety concept.

For this argument, two approaches are possible

Approach 1: Validation of the generated result

• The generated code is reviewed.

• Testing on Code Level

• Check of Code coverage according to ISO26262 Requirements

Approach 2: Validation on Model level

• Validation of Code Generator

• The model (input to the generator) is reviewed

• Testing on Model level

Within WT5.6, approach 1 is evaluated.

4.2 Quantitative Evaluation

In this section, the measurable effects coming with the integration of code generation are evaluated. Focus is set on the

critical components in embedded automotive SW development: memory consumption and runtime (processor load).

Further, the effort needed to integrate the generated components into the evaluation environment is roughly evaluated

and compared to the effort that was necessary in a classic pre-code-generation development approach.

This evaluation tries to elaborate the consumption only for the new concept, not compromised with the effort necessary

to make the integration of the generated components possible. This implies that the interface layer emulating an RTE in

the evaluation environment is not taken into account.

4.2.1 Integration effort vs. implementation effort

The integration of the generated component was an “ordinary” SW engineering task. According to the different process

steps, the effort can be characterized as follows:

Process Step Remark Classic Development

Approach

SAFE Development

Approach

Requirement

Analysis

Technical Safety Concept No difference observed.

(Not covered in WT5.6)

Specification of SW interfaces, allocation,

scheduling, …

Definition of the technical details

for Gradient Checker

2h

Effort increased due to

frontloading: specification

in semi-formal language

4h

Design 2h 2h

Implementation /

Integration

 20h 4h

Review 4h 1h

Test Module test based on actual

threshold values, must be

performed on target ECU-.

No deviation observed.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 27 (38)

4.2.2 Memory Consumption

Evaluation of Memory consumption:

 Classic Approach SAFE-Approach Remark

RAM – consumption

(static variables)

8 21 SAFE Approach is without

optimization

Stack 21 10

4.2.3 Runtime Effects

It has been found that it is not possible to compare the two approaches thoroughly. The integration of the generated

Gradient Checker has made it necessary to restructure the infrastructure (Introduction of RTE-based communication

and SW-Components). But it can be stated that no negative effect has been observed.

4.2.4 Safety Case Effort

As defined above, validation method 1 (validation of the generated source code) is chosen. The review effort of the

generated code seems to be higher, as the code is more difficult to read and understand than the manually implemented

code.

The main problem for a reviewer without AUTOSAR experience is the length of the identifiers (of variables, functions

and macros). Identifiers are up to 90 characters long with the significant difference sometimes well hidden in the center

of the string. Redundancy in naming is high, but is not facilitating the understanding.

Reading must be very carefully, which is tedious and time consuming and can easily lead to errors.

AUTOSAR experience reduces this problem, but does not avoid it fully.

The overall size of the generated code is 2 – 3 times the size of the manually implemented Code.

Testing and Code Coverage Check is done as usual on application level (re-use of existing fault injection possibilities)

The effort for generating test cases may be smaller as the values from the formal specification may be used to generate

test cases.

4.3 Fulfillment of WP 3 requirements

This section summarizes the fulfillment of requirements from work tasks of work packages 3.

Evaluated
Requirement

Qualitative Statement Rationale

WT36_REQ_1 Not evaluated Not in the scope of the evaluation.

WT36_REQ_2 Not evaluated Not in the scope of the evaluation

WT36_REQ_3 Complete The meta-model provides a gradient check element and this has

been used to model the gradient check software safety requirement

of the evaluation scenario.

WT36_REQ_4 Complete The meta-model provides the attributes and these have been used to

define properties of the gradient check requirement.

WT36_REQ_5 Complete The meta-model provides means to specify the periodicity of the

gradient check and this has been used to define this attribute in the

evaluation scenario.

WT36_REQ_6 Complete The meta-model provides this element and it has been used to model

the range check software safety requirement of the evaluation

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 28 (38)

scenario.

WT36_REQ_7 Complete The meta-model provides this element and it has been used to model

the necessary information for the range check.

WT36_REQ_8 Complete The meta-model provides this element and it has been used to define

the necessary information for the range check.

WT36_REQ_9 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_10 Complete The meta-model provides the necessary attributes and the range

check ranges have been defined using these attributes.

WT36_REQ_11 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_12 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_13 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_14 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_15 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_16 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_17 Complete The requirement is being evaluated in the context of a control-flow

monitor. A control-flow monitor has been modeled using the

available meta-model elements.

WT36_REQ_18 Complete The necessary checkpoints have been defined using the available

meta-model elements.

WT36_REQ_19 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_20 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_21 Complete The attributes regarding tolerances for arriving at checkpoints have

been defined using the meta-model elements and are used for

monitoring by the control-flow monitor.

WT36_REQ_22 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_23 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_24 Complete The requirements modeled for the evaluation scenario can be traced

to the realization of the requirement.

WT36_REQ_25 Complete Gradient checker and range check code has been generated

automatically and has been integrated into the validation

environment of the evaluation scenario.

WT36_REQ_26 Complete (see WT36_REQ_25)

WT36_REQ_27 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_28 Complete Attributes from the gradient check and range check requirements,

e.g., periodicity, are modelled using value-pair elements of the

meta-model.

WT36_REQ_29 Complete (see WT36_REQ_28)

WT36_REQ_30 Complete (see WT36_REQ_24)

WT36_REQ_31 Complete (see WT36_REQ_24)

WT36_REQ_32 Complete (see WT36_REQ_24)

WT36_REQ_33 Complete (see WT36_REQ_24)

WT36_REQ_34 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_35 Complete The software safety requirements can define error handling

requirements and the relation between detection scenarios and

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 29 (38)

handling scenarios.

WT36_REQ_36 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_37 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_38 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_39 Complete The software safety requirements can define which errors are

produced by the detection procedure.

WT36_REQ_40 Complete The software safety requirements can define which reactions shall

be executed in case errors are detected.

WT36_REQ_41 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_42 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_43 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_44 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_45 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_46 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_47 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_48 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_49 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_50 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_51 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_52 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_53 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_54 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_55 Complete (see WT36_REQ_40)

WT36_REQ_56 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_57 Not evaluated The requirement is not in the scope of the evaluation scenario.

WT36_REQ_58 Not evaluated The requirement is not in the scope of the evaluation scenario.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 30 (38)

4.4 Final quantification of Safety Code Generation as evaluated in WT5.6:

Performance:

- Level: 3

- Rationale: A significant improvement has been achieved, but not all criteria are met

Interest:

- Level: 3

- Rationale: Software Safety Measures can be generated automatically. Using this approach, the overall

complexity of safety engineering measures is not reduced (specification effort is similar or even slightly

increased). But the approach significantly reduces the complexity of the implementation. Further, the tracing of

measures is supported.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 31 (38)

5 Conclusion

The results of WT 5.6 indicate that the effort in implementation is reduced by the introduction of code generation, so

the effect is positive. It is also possible to extend the approach to legacy systems that have solved safety requirements

without MBSE, AUTOSAR, and code generation. However, the mere generation of software safety mechanisms is not

the main effort driver in the development of a safety relevant SW system. The automation of such higher-level activities

has been investigated in a thought-experiment described in [21] where not only mechanisms could be generated but also

suggested to safety engineers in order to realize system safety based on the system architecture. Such an approach can

be investigated in future research projects.

The generated components can be integrated into the pre-existing source code. The effort for the preparation of the

environment depends on the complexity of the measures under consideration, Single check routines are easy to replace.

If AUTOSAR is already in place, the infrastructure will allow an easier integration of the generated code, as the

structure (SWCs, RTE) is present. This situation was not validated in WT5.6.

In general, approaches involving the use of new tools or technologies - such as the semi-formal specification language

used during this evaluation - require learning efforts from engineers. This might slow down development throughput

during this learning phase. However, given that the approach can be applied to legacy and new projects, the effort can

be distributed over the lifecycle of safety activities for all projects to which the approach is applied. Furthermore, once

the safety requirements for safety mechanisms are formally defined, this information can be used to support other

engineering steps such as validation activities and test-case generation.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 32 (38)

6 References

[1] SAFE Requirements

https://safe.offis.de/svn/svndav/40_Deliverables/SAFE_D2.1.a/SAFE_D2.1.a.pdf

[2] SAFE Report of WT3.6

https://safe.offis.de/svn/svndav/33_WP3_Model_Based_Development/WT3_6_Safety_Code_Generation/Delive

rables/SAFE_WT3.6_Report.doc

[3] Classification of safety mechanisms

https://safe.offis.de/svn/svndav/33_WP3_Model_Based_Development/WT3_6_Safety_Code_Generation/Docum

ents/safetymechanismclustering/safetymechanismclustering.eap

[4] SAFE Risk List

https://safe.offis.de/svn/svndav/10_Project_Management/SAFE_Plus-Minus-Risks.xlsx

[5] SAFE FPP

https://safe.offis.de/svn/svndav/10_Project_Management/FPP/!Actual_Official_Version/SAFE_FPP.docx

[6] SAFE Deliverable D3.6.b: Safety Code Generator Specification

https://safe.offis.de/svn/svndav/33_WP3_Model_Based_Development/WT3_6_Safety_Code_Generation/Delive

rables/D3.6.b/SAFE_D3.6.b.doc

[7] SAFE_D2.1.a-ISO-Part_2.pdf (Management of functional safety)

[8] SAFE_D2.1.a-ISO-Part_3.pdf (Concept Phase)

[9] SAFE_D2.1.a-ISO-Part_4.pdf (Product development at the system level)

[10] SAFE_D2.1.a-ISO-Part_5.pdf (Product development at the hardware level)

[11] SAFE_D2.1.a-ISO-Part_6.pdf (Product development at the software level)

[12] SAFE_D2.1.a-ISO-Part_7.pdf (Production and operation)

[13] SAFE_D2.1.a-ISO-Part_8.pdf (Supporting Processes)

[14] SAFE_D2.1.a-ISO-Part_9.pdf (Automotive Safety Integrity Level (ASIL)-oriented safety-oriented analysis

[15] ISO/FDIS 26262 parts 2-9: 2011.

[16] ARTop www.artop.org

[17] AUTOSAR Specification of Timing Extensions

http://www.autosar.org/download/R4.0/AUTOSAR_TPS_TimingExtensions.pdf

[18] ARText www.artop.org/artext

[19] AUTOSAR – Specification of RTE http://www.autosar.org/download/R4.0/AUTOSAR_SWS_RTE.pdf

[20] AUTOSAR – Virtual Function Bus http://www.autosar.org/download/R4.0/AUTOSAR_EXP_VFB.pdf

[21] Trindade, R., Bulwahn, L. and Ainhauser, C. (2014). Automatically Generated Safety Mechanisms from Semi-

Formal Software Safety Requirements. Computer Safety, Reliability, and Security, pp.278-293.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 33 (38)

7 Acknowledgments

This document is based on the SAFE project in the framework of the ITEA2, EUREKA cluster program Σ! 3674. The

work has been funded by the German Ministry for Education and Research (BMBF) under the funding ID 01IS11019,

and by the French Ministry of the Economy and Finance (DGCIS). The responsibility for the content rests with the

authors.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 34 (38)

8 Common Metrics for evaluation

For each work product, a metric performance will be setup rating how well the expectations given in the work product

description have been met.

Level 5: beyond expectations described in the Full Project Proposal and evaluation criteria

Level 4: expectation from Full Project Proposal and good level evaluation criteria met

Level 3: expectations not fully met or some evaluation criteria not reached sufficient level but significant improvement

achieved

Level 2: no significant improvement achieved or some evaluation criteria are rated incomplete

Level 1: negative impact (performance degraded) and all evaluation criteria are incomplete

This evaluation will be crossed with a metric industrial interest qualifying the relevance of the method (or tool or

methodology, respectively) covered by the corresponding evaluation scenario.

Level 4: Interesting for evaluation scenario and ready for application in the field

Level 3: Interesting for evaluation scenario but needs to be slightly matured for application in the field

Level 2: Interesting for evaluation scenario but needs to be significantly matured for application in the field

Level 1: Not of interest for the specific evaluation scenario but interesting anyway for application in the field (not

considered further for project evaluation – no detailed evaluation result available)

Level 0: Out of scope of evaluation scenario, not of interest for application in the field.

Thus, a graphical representation can be provided for each evaluated work product which gives an interpretation of the

industrial potential of the latter.

Performance

1 2 3 4 5

4 4 8 12 16 20

3 3 6 9 12 15

Interest 2 2 4 6 8 10

1 1 2 3 4 5

0 0 0 0 0 0

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 35 (38)

9 Appendix

9.1 Tool prototype “control flow monitor”

This section provides a basic user manual for the tool prototype used to generate the software part for the Program

Control Flow as described in section 3.3.2

In order to deal with safety requirements to detect and handle improper control flow in the safety relevant application

code, the tool prototype documented here allows the specification of software safety requirements for control flow

monitoring and generates required artifacts to automatically satisfy the specified requirements.

The software safety requirements (SSR) ensuring the correct behavior of the safety relevant application software can be

specified equivalent to the means of the SAFE meta-model. An exemplary code snippet to capture such a SSR by the

safety engineer is shown in Figure 20:

Figure 20 - Control flow specification based on RunnableEntity execution chaining

The definition of such a requirement consists of three main elements: an application SW architecture using the

rudimentary tree editor in Artop [16], a textual modeling language and a generation engine. A snippet of example SW

architecture is shown in Figure 21[17].

Figure 21 - Software modeled in Artop

Figure 22 - RunnableEntity execution order modeled in Artop

Figure 20 shows safety requirement for control flow monitoring using textual language. A software safety requirement

statement has the syntax: ssr <name> satisfies <link to technical safety requirement (tsr)> using { <expectation >

handle <reaction>}. The <expectation> describes the behavior of control flow monitoring of a given element. Inside

<expectation> AUTOSAR package “timing” holds the ExecutableEntity execution order constraint “debugging” that

specifies an expected sequence of ExecutableEntities. Figure 22 shows, how the referenced AUTOSAR execution order

constraint is defined via the means of Artop [16]. The <reaction> handles the error in case of failure. Please refer to the

documentation of the AUTOSAR Timing Extensions [17] for more information how to specify execution order

constraints.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 36 (38)

According to this information, the tool prototype is able to perform code generation required for the purpose of the TV-

HAG2 evaluation scenario. During code generation tool prototype generates different things such as adapted SW

architecture, watchdog configuration, task body and necessary code to reach BSW (in this case watchdog manager)

from the SWC to query if a certain checkpoint is already reached. Through this code the SWC itself can trigger some

mechanism such as debounce or reset for the TV-HAG2 system.

Figure 23 - Autosar SWC described in ARText [18]

Once the requirement for generation is ready the following generated artifacts will follow using the tool platform.

9.1.1 Adapted SW architecture

During this phase Service Software Component is generated. The component provides the required API to initialize the

watchdog manager and to invoke the watchdog manager with reached checkpoint. Based on this information, the RTE

generator is able to generate the RTE API for the watchdog manager and based on the assembly connectors wiring the

port prototypes of the watchdog manager (in this case, port “providerPortFor_appComposition_app1”), the RTE does

the wiring between application software and watchdog manager.

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 37 (38)

Figure 24 - Adapted SW architecture for control flow monitoring

9.1.2 Watchdog configuration

It generates a watchdog manager configuration where the right checkpoint definition is contained automatically, based

on the control flow software safety requirement. A list of transition is also generated based on the execution order of the

executable entities related with the SSR. A code snippet for watchdog manager configuration is shown in Figure 25.

Figure 25 - Generated watchdog configuration using SAFE tool for Control flow monitoring

SAFE – an ITEA2 project First prototype "Safety Code Generation" - Report

 2011 The SAFE Consortium Version 0.1 38 (38)

9.1.3 Task body

It is a contract between the application software and the basic software running inside the ECU that is triggered by the

OS. An example Task body is shown in Figure 26.

This is an optional generator output for the purpose of the TV HAG2 evaluation scenario. To free the application

software from watchdog manager calls (i.e. checkpointReached calls), the task body invokes the watchdog manager

before starting the RunnableEntities and after its termination.

Figure 26 – Task body for Control flow monitoring

9.1.4 Source code for watchdog service

As the TV-HAG2 evaluation scenario does not provide a compliant AUTOSAR watchdog manager, the tool prototype

generates a simple AUTOSAR watchdog manager implementation which a) complies with the AUTOSAR standard

interface of the watchdog manager and b) provides the rudimentary features required by the evaluation scenario. It does

not claim to be a full-featured AUTOSAR watchdog manager implementation.

