
Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 1 (44)

Contract number: Eurostars 6095 Safe-E

Safe Automotive soFtware architEcture – Extension

(SAFE-E)

WP4

Deliverable D4.4b: Final version of plug-in for safety
and multi criteria architecture modeling and

benchmarking
Please note: This document is a direct input to the SAFE Project (Contract number: ITEA2 – 10039) as

Deliverable D4.2.6.b2

Due date of deliverable: 31/12/2014

Actual submission date: 28/11/2014

Start date of the project: 01/09/2011 Duration: 40 months

Project coordinator name: Andreas Eckel

Organization name of lead contractor for this deliverable: fortiss GmbH

Editors: Maged Khalil – fortiss GmbH

Contributors: Mayank Chaudhary, Maged Khalil, Sergey Zverlov – fortiss GmbH

Reviewers: Eduard Metzker – Vector Informatik (SAFE Partner)
Sergey Zverlov – fortiss GmbH

Deliverable type: PUBLIC

Safe-E

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 2 (44)

Revision chart and history log

Version Date Reason

0.1 17.12.2012 Initialization of document

0.2 23.04.2013 Update document structure

0.3 05.09.2013 Integration of content: optimization for deployment

0.4 20.09.2013 Integration of review comments

0.9 30.09.2013 Integration of updated content and review comments

1.0 17.10.2013 Finalization of first version of document D4.4.a

1.1 01.02.2014 Initialization of final version of document D4.4.b

1.2 01.05.2014 Update of document structure

1.3 17.11.2014 Integration of content: safety constraints for optimization

1.4 21.11.2014 Update of plug-in initialization description

1.5 28.11.2014 Integration of review comments

2.0 28.11.2014 Finalization of document

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 3 (44)

1 Table of Contents

1 Table of Contents ... 3

2 List of Figures ... 4

3 List of Tables .. 6

4 Executive Summary .. 7

5 Introduction and Overview of the Document .. 8

5.1 Links to SAFE and SAFE-E Work Tasks .. 8

5.1.1 Multi-criteria Design Space Exploration ... 8

5.2 Structure of the Document .. 9

6 Description of Technology Platform AutoFOCUS3 .. 10

6.1 Main Features of AF3: .. 10

6.2 Installation details of SAFE plugin for Af3 developers ... 12

7 Multi-criteria Architecture Optimization and Design Space Exploration ... 16

7.1 Initializing the Design Space Exploration Plug-In ... 17

7.2 Multi-criteria Deployment Optimization ... 18

7.3 Scheduling Synthesis ... 20

7.4 Design Space Exploration .. 22

8 Safety Constraints for schedule and deployment generation ... 24

8.1 Motivation ... 24

8.2 Safety and cost constraints .. 25

8.2.1 PMHF Constraint (ASIL constraint for ECU) .. 26

8.2.2 BUS Constraint (ASIL constraints for BUS) ... 28

8.2.3 Memory Constraint ... 29

8.2.4 Maximum Number of Nodes constraint .. 30

8.2.5 Cost constraint .. 32

8.3 Analysis of results ... 35

8.3.1 Cost Constraint ... 38

8.3.2 Number of nodes constraint ... 40

8.3.3 End to end latency vs Cost ... 41

8.3.4 Bus Load vs Cost.. 42

8.4 Conclusion .. 42

9 Acknowledgments .. 43

10 References ... 44

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 4 (44)

2 List of Figures

Figure 1: Overview of essential WT4.4 links to SAFE/SAFE-E Work tasks 8

Figure 2: Safety requirements support in AF3 ... 10

Figure 3: Component Modeling in AF3 .. 11

Figure 4: Code generation in AF3 .. 12

Figure 5: Testing and Verification in AF3 ... 12

Figure 6: Installation step 1 ... 13

Figure 7: Installation step 2 ... 14

Figure 8: Installation step 3 ... 14

Figure 9: Installation step 4 ... 15

Figure 10: Deployment Synthesis in AF3 [11] .. 16

Figure 11: Design-Space-Exploration Plug-In in AF3 ... 17

Figure 12: DSE User Interface in AF3 ... 18

Figure 13: Component Selection for Deployment Generation in AF3 ... 18

Figure 14: Selecting Design Space Constraints for Deployment Generation in AF3 19

Figure 15: Selecting viable Deployment Design Solutions for Scheduling Synthesis in AF3 20

Figure 16: Component Selection for Deployment Generation in AF3 ... 20

Figure 17: Selecting Design Space Constraints for Scheduling Synthesis in AF3 21

Figure 18: Selecting viable Scheduling Solutions for Design Space Exploration in AF3................. 21

Figure 19: Visualization of Design Space Exploration in AF3... 22

Figure 20: Graphical Manipulation of the Design Space in AF3 ... 23

Figure 21: Multidimensional Manipulation of Design Space Visualization in AF3 23

Figure 22: SAFE deployment constraint of Design Space Visualization in AF3 25

Figure 23: PMHF Annotations associated with ECUs and Bus .. 27

Figure 24: A SIL compliant component architecture .. 27

Figure 25: Memory Allocation in Platform Resource Table .. 29

Figure 26: Memory Allocation in Component Resource Table ... 30

Figure 27: Maximum number of nodes constraint .. 31

Figure 28: Power consumption annotation for ECUs in AF3 .. 33

Figure 29: Maximum energy consumption as deployment constraint ... 34

Figure 30: Maximum cost allowed as deployment constraint ... 35

Figure 31: Used logical architecture example .. 36

Figure 32: Technical architecture containing nodes of all possible ASIL levels 37

Figure 33: Effect of Cost Constraint (non-uniform cost) on deployment (ASIL-D BUS) 38

Figure 34: Effect of Cost Constraint (uniform cost) on deployment (ASIL-D BUS) 39

Figure 35: Effect of Cost Constraint (non-uniform cost) on deployment (ASIL-C BUS) 39

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 5 (44)

Figure 36: Effect of Cost Constraint (uniform cost) on deployment (ASIL-C BUS) 40

Figure 37: Number of nodes constraint (ASIL-D Bus) .. 40

Figure 38: Number of nodes constraint (ASIL-C Bus) .. 41

Figure 39: E2E latency vs cost .. 41

Figure 40: Bus load vs cost ... 42

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 6 (44)

3 List of Tables

Table 1: ASIL and PMHF mapping .. 26

Table 2: Alternate ASIL and PMHF mapping used in AF3 ... 26

Table 3: List of resources available per HW node .. 32

Table 4 ASIL allocation for components .. 37

Table 5 Cost, PMHF and ASIL-Capability Attributes of HW Nodes .. 37

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 7 (44)

4 Executive Summary

Objective of the corresponding work task WT4.4 “Plug-in for safety and multi criteria architecture
modeling and benchmarking” is the implementation and evaluation of conceptual results of especially
work task WT3.4 “Safety and multi-criteria architecture benchmarking”. Therefore, this deliverable
describes a first version of private prototype implementations and private plug-ins for model-based
multi-criteria and safety evaluation. The implementations are based on the existing research CASE
tool AUTOFOCUS3 (AF3).

The implementation described in this deliverable focuses on the functionality:

• Multi-criteria Deployment Generation, Scheduling Synthesis and Design Space Exploration

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 8 (44)

5 Introduction and Overview of the Document

This deliverable D4.4b “Final version of plug-in for safety and multi criteria architecture modeling and
benchmarking” is included in the work package 4 “Technology Platform” and describes the
implementations of concepts and methodologies provided by work task of work package 3 “Model
Based Development”. Especially WT3.4 is in focus.

This document provides different selected methodologies to perform model-based assessment
based on the SAFE Meta-model extensions. These assessments are facilitated on different level of
abstraction and different level of granularity for safety multi-criteria benchmarking of automotive
systems. Qualitative analysis regarding the impact of hardware failures on system behavior is
specified. Formal consistency of the safety case is required for qualitative assessment of
requirements. Additionally, a quantitative evaluation of hardware designs according to ISO 26262 is
presented. Combination of the analyses allows a benchmarking of different architectures regarding
safety and different criteria.

5.1 Links to SAFE and SAFE-E Work Tasks

ISO 26262 [1] was analyzed and requirements specified in work task SAFE WT2.1 “ISO26262
Analysis” [2] and work task SAFE WT2.3 “Use case scenario” [3] as well as to SAFE-E WT2.1 and
WT2.2. Based on these requirements, the concept work task SAFE WT3.2.2 “Hardware description”
[4] provides a description and a meta model for hardware modeling including failure extension, as
shown in Figure 1. SAFE-E WT3.5 “Safety and Multi Criteria Architecture Benchmarking” [5]
specifies the methodology and forms the basis for the plug-ins and implementations described in
this deliverable. Additional Specifications for Safety Cases were carried out in SAFE-E WT3.4.

Figure 1: Overview of essential WT4.4 links to SAFE/SAFE-E Work tasks

5.1.1 Multi-criteria Design Space Exploration

The prototype implementation supports a seam-less model based approach to Multi-criteria
Deployment Generation, Scheduling Synthesis and Design Space Exploration. The approach is
aided by the capability to visualize the design space as well as manipulate this visualization which
facilitates the understanding of the otherwise complex multi-criteria design space and thus helps the
design effort for a safe product.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 9 (44)

5.2 Structure of the Document

The next Section 5 presents the tool environment AutoFOCUS3, which was used for the
implementations. An overview of AutoFOCUS3 including the relevant abstraction layers and artifacts
for this deliverable is given. A detailed description of the plug-in for Multi-criteria Deployment
Generation, Scheduling Synthesis and Design Space Exploration is described in Section 5, and the
additional constraints developed for this project as well as their integration and interaction with the
existing solution are described in detail in section 7.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 10 (44)

6 Description of Technology Platform AutoFOCUS3

AutoFOCUS3 (AF3) [9] is a model based development research CASE tool for distributed, reactive,
embedded software systems. AF3 uses models in all development phases including requirements
analysis, design of the logical architecture and the hardware architecture, implementation and
deployment. Furthermore, AF3 features formal analyses and synthesis methods.

AF3 and its tutorials are free for download at af3.fortiss.org.

6.1 Main Features of AF3:

Requirements Engineering (MIRA)

Figure 2: Safety requirements support in AF3

• Structure, analyze and validate requirements

• Specify requirements in a rich model

• Deeply integrate requirements with the architecture

• Support for safety requirements and link to a Safety-Case View

Modeling and simulation

• Advanced and deeply integrated models for architecture, behavior and platform

• Simulation and on the fly consistency checks

• System Architecture Modeling

• Data Modeling

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 11 (44)

Figure 3: Component Modeling in AF3

• Behavior Modeling:

- Code Specifications

- State Automata

- Mode Automata

- Tabular Specifications

• Hardware Architecture Modeling

• Simulation

• Operator Panels

• Library of Components, Functions and Types

• Holistic Pattern Libraries

 Code generation and deployment

• Flexible generation of C, Java, etc., code

• Deployment on different hardware platforms

• Generation of platform specific code

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 12 (44)

Figure 4: Code generation in AF3

Testing and formal verification

• Deep integration of the NuSMV model-
checker and Yices SMT solver

• Both out-of-the-box and customizable
analyses

• On the Fly Constraints Checking

• Model Checking

• Model Checking (using C-Prover)

• Non-determinism Analysis

• Model Based Testing

• Refinement Testing

• Assume/Guarantee Reasoning

• MSC Feasibility Checking

Figure 5: Testing and Verification in AF3

6.2 Installation details of SAFE plugin for Af3 developers

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 13 (44)

This section describes how the SAFE plugin can be installed in Af3. Af3 can be installed using the
simple steps mentioned in the link
“https://af3.fortiss.org/projects/autofocus3/wiki/Developer_Installation”. The steps to start AF3 and
install SAFE plugin are described below.

a) Double-click org.fortiss.af3.phoenix.product.top, then open af3_phoenix.product and
select Launch an Eclipse Application. (Figure 6)

b) On the first run, you will probably get an error “The application could not start. Would
you like to view the log?”, press No.

Figure 6: Installation step 1

c) To fix this, go to Run->Run configurations..., select Eclipse Application->
af3_phoenix.product, go to the Plug-Ins tab and check the checkbox Workspace in the
list of plugins (if not already checked).

d) To the very right of the window (might even be hidden), press the button Add Required
Plug-Ins. (Figure 7)

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 14 (44)

Figure 7: Installation step 2

e) If the org.fortiss.af3.safe and org.fortiss.af3.safe.ui plugins are not checked
automatically, check it manually. (Figure 8). Press Apply and then Run. Now AF3 will start
correctly as RCP.

Figure 8: Installation step 3

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 15 (44)

f) There might be a case that the org.fortiss.af3.safe and org.fortiss.af3.safe.ui plugins are
not on the list. Since the plugins are not added to the master branch yet, they are needed to
be checked out manually. For that, go to the SVN Repository Exploring view and check
out these two plugins from URL https://orion.fortiss.org/svn/af3, as seen in Figure 9.

Figure 9: Installation step 4

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 16 (44)

7 Multi-criteria Architecture Optimization and Design Space Exploration

The presented methodology represents an efficient approach for generating suitable system
architectures for embedded systems efficiently. The focus is on a joint generation of schedules and
deployment for mixed-criticality multicore architectures using shared memory. The presented
approach computes task and message schedules that are optimized with respect to a global discrete
time base. As part of the solution, the approach generates an optimized assignment of tasks to
computation resources (cores) concerning local memory constraints of cores and criticality
constraints of tasks. This approach is integrated into the AUTOFOCUS 3 tool-chain [9], using a
formally defined model of computation with explicit data-flow and discrete-time semantics to develop
multi-criticality embedded systems [10].

The approach relies on a symbolic encoding scheme, based on a system model that is derived from
the system architecture. A formalization describing the scheduling problem as a satisfiability problem
using boolean formulas and linear arithmetic constraints, which are the tackled by a state-of-the-art
satisfiability modulo theory (SMT) solver in order to compute the joint schedule and deployment for
such architectures, is presented in [10].

Implementations are being carried out in the research CASE tool AutoFOCUS3 [9], presented in
Section 6, and as shown in Figure 10, part of the tutorial referenced in [11], and will be presented in
depth in the following subsections.

Figure 10: Deployment Synthesis in AF3 [11]

Using this approach we provide an efficient deployment for multi-criteria problems (e.g. timing,
scheduling) as well as calculate (optimized) partitioning and mapping of systems according to ASIL
levels in a mixed-criticality environment, and has been developed in the context of the SPES_XT
Core project [12].

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 17 (44)

As shown in Figure 10, the ASIL levels, which are propagated through the component links on the
logical architecture, provide one criterion and we can freely select other criteria such as execution
time, energy consumption or any other resource optimization.

The deployment synthesis is based on rules definition carried out inside the solver in AF3, and is
further explained in [10].

7.1 Initializing the Design Space Exploration Plug-In

AutoFOCUS3 supports an approach for supporting the system designer by generating a deployment
efficiently that is the allocation of logical components to platform architecture components. This can
be done according to certain criteria like timing, safety constraints and memory consumption [9].

The Design Space Exploration Plug-In can be added to any AF3 component model as seen in the
following example of an Adaptive Cruise Control [9], shown in Figure 11.

Figure 11: Design-Space-Exploration Plug-In in AF3

Selecting the Plug-In opens a user interface, seen in Figure 12, which allows for the generation of
suitable deployments according to multiple optimization criteria. It is then possible to select a subset
from the generated deployments and subsequently proceed to generate suitable schedules [9].

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 18 (44)

Figure 12: DSE User Interface in AF3

7.2 Multi-criteria Deployment Optimization

Starting the Deployment Generation Wizard from the DSE User Interface a window appears that
automatically lists all the components in the model and allows to select the component and
component level for which the deployment should be generated, as well as selecting a filter
mechanism, as shown in Figure 13.This feature has been developed in the context of the SPES XT
project [12].

Figure 13: Component Selection for Deployment Generation in AF3

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 19 (44)

The next window allows the selection of the criteria and constraints of the design space, which will
be used for the deployments generation. It is possible to use standard constraints, such as Safety
Integrity Levels (SIL), as well as to employ user-defined constraints, such as Memory Consumption
or any other constraint the user can express. The user then has the choice to simply generate all
deployments which constitute valid solutions to the design space confined by the selected
constraints, or to generate an optimized solution space, according to other criteria which can be
defined, such as End-to-End (E2E) Latency or the allowable number of hardware resources (ECUs)
and so on, as shown in Figure 14.

Figure 14: Selecting Design Space Constraints for Deployment Generation in AF3

The generation of the deployment leads to a list of viable configurations, constituting the design
space of the possible deployments. It is then possible to select all or only a subset of these possible
solutions and save them for use in the scheduling synthesis, as shown in Figure 15 [9].

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 20 (44)

Figure 15: Selecting viable Deployment Design Solutions for Scheduling Synthesis in AF3

7.3 Scheduling Synthesis

The user can then proceed to generate the Schedule based on any given deployment and is again
given the option to select the component level for performing the synthesis as well as the filter used,
as shown in Figure 16. The constraints for the scheduling problem to be solved are described in
detail in [10].

Figure 16: Component Selection for Deployment Generation in AF3

The next window allows the selection of the criteria and solver used for the design space, which will
be used for the scheduling synthesis.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 21 (44)

It is possible to use any solvers integrated into AF3, such as Z3 [13] or YICES [14]. The user then
has the choice to simply generate all deployments which constitute valid solutions to the design
space confined by the selected constraints, or to generate an optimized solution space, using
multiple methods, as shown in Figure 17.

Figure 17: Selecting Design Space Constraints for Scheduling Synthesis in AF3

The generation of the schedules leads to a list of viable configurations for each deployment,
constituting the design space of the possible deployments. It is then possible to select all or only a
subset of these possible solutions and save them for use in the scheduling synthesis [9], as shown
in Figure 18.

Figure 18: Selecting viable Scheduling Solutions for Design Space Exploration in AF3

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 22 (44)

7.4 Design Space Exploration

Returning to the Design Space Exploration View after having synthesized schedules for the
previously generated deployments, it is now possible to visualize the optimized design space and
manipulate it, using the Visualization Tab in the main window, as shown in Figure 19. This work is
currently under development and has been submitted in [15]. The presented parts are a result of
work carried out in the context of the ARAMiS project [16].

It is possible to assign different optimization criteria to the design space axes and visualize the
representation. Slect each solution node, shown as black dots, will display the information related to
that deployment design as well as visualize the corresonding schedule in the Scheduling View tab
under the main modelling window, as shown in the figure.

Figure 19: Visualization of Design Space Exploration in AF3

To visually manipulate the design space, it is then possible insert a fourth dimension by coloring the
design solutions, e.g. according to the E2E Latency. This is done by selecting an optimization
variable and then enabling the color gradient option, as shown in Figure 20. This leads to the coloring
of the solution points in the design space accordingly which facilitates a visual understanding of the
design space.

Next, it is possible to start solving the design space by constraining for any axis value using the
“Planes” feature, where the following figure shows a plane threshold for E2E Latency for solution
points with a value, e.g., above 42msec, set by manipulating the corresponding slider. The solution
points not satisfying this criteria are no longer colored but grayed out, as shown in the figure, facilitate
visual identification of the impact of the constraint on the design space.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 23 (44)

Figure 20: Graphical Manipulation of the Design Space in AF3

Finally it is possible to manually adjust the viewing angle of the design space in all directions as well
as zooming in or out. Combined with solution planes for all dimensions, as shown in Figure 21, this
provides a powerful visualization which helps in understanding and solving the design space leading
to a multi-criteria optimization of the architecture [9][15].

Figure 21: Multidimensional Manipulation of Design Space Visualization in AF3

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 24 (44)

8 Safety Constraints for schedule and deployment generation

In the previous chapter, we discussed a methodology representing joint generation of schedules and
deployment for mixed criticality multicore architectures using shared memory and how this approach
is integrated into the AUTOFOCUS3 tool-chain [9]. We now present a methodology that integrates
safety metrics identified in the SAFE/SAFE-E project, such as hardware failure metrics, SIL
compliance, and real time resource constraints, such as memory usage, power consumption, etc.,
into the DSE (Design space exploration) plugin of the AUTOFOCUS3.

AUTOFOCUS3 currently features three major abstraction layers: a requirements engineering view,
a logical architecture, and a technical architecture [17]. We are concerned with the latter two in this
document, specifically with the mapping of logical components onto hardware architectures, and the
flip-side of that coin, i.e. the analysis of logical architectures for their suitability or adherence to
different conditions and constraints. The logical architecture defines a model of the system under
development from an abstract point of view (as a set of communicating components) while the
technical architecture describes the execution environment of the system by means of ECU
(execution control units) and buses. Prior to this work, there was no support for generating
deployments (mapping logical architecture to technical architecture) in AUTOFOCUS3 that takes
safety, resource and cost constraints into account.

The remaining chapter is organized as follows. In section 8.1, we talk about the motivation behind
the work. Section 8.2 talks about the different safety, resource and cost constraints in detail. And
finally in section 8.3 we do an analysis of results of using these constraints in the deployment
generation process.

8.1 Motivation

Mapping logical components to the hardware architecture is not just a simple task of mere allocation
and de-allocation, but to generate a deployment that satisfies different constraints, be it related to
safety, resource or cost.

To illustrate it in a comprehensive way, let us consider different scenarios. One such scenario is the
random hardware failure in hardware elements. As mentioned in SAFE-E Deliverable D3.5.b, “the
hardware architecture of automotive systems needs a high reliability especially in context of random
hardware failures. These failures occur unpredictably during the lifetime of electric systems due to,
exemplarily, aging effects and can never be avoided” [18]. These random hardware failures can be
assessed in two different ways. ISO26262 clause 8, “Evaluation of the hardware architectural
metrics” describes the assessment of hardware architectures by applying hardware architectural
metrics and ISO26262 clause9, “Evaluation of the safety goal violations due to random hardware
failures” describes the assessment of hardware architectures in terms of residual risk of safety goal
violation [1]. We presented a method that takes into account such random hardware failures while
generating the deployments. For the purpose of ease of representation, we have decided to go with
the “residual risk of safety goal violation” option. The evaluation of residual risk of safety goal violation
can be performed using one of the alternative methods, the probabilistic metric for random hardware
failure (PMHF) or the second method using failure rate classes (FRC).

The second such scenario is generating a deployment that reduces the overall power consumption
or cost of the hardware architecture on which the logical component are deployed. Different SILs
reflect different requirements stringencies and consequently different development costs. The
allocation of safety requirements is not a simple problem of applying an allocation "algebra" as
treated by most standards; it is a complex optimization problem, one of finding a strategy that
minimizes cost whilst meeting safety requirements [19]. We propose a method that generates a
deployment reducing the overall cost of the hardware architecture.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 25 (44)

Other scenarios include generating deployments without violating the memory constraints of the
hardware nodes and reducing the overall power consumption of hardware architecture. We will focus
on each of those constraints in more detail in section 8.2.
Hence, extending deployment and schedule generation of AUTOFOCUS3 with different safety,
resource and cost constraints will enable us model complex embedded systems in much more
effective and efficient manner.

8.2 Safety and cost constraints

This section talks about the different safety and cost constraints that are taken into consideration
while generating the deployments and schedules of mixed criticality application. We have presented
a novel approach to deployment generation by using a formalization that describes the scheduling
problem as a satisfiability problem using Boolean formulas and linear arithmetical constraints. We
used the Z3 solver, a state-of-the art theorem prover from Microsoft Research. It can be used to
check the satisfiability of logical formulas over one or more theories [13].

Figure 22: SAFE deployment constraint of Design Space Visualization in AF3

Figure 22 shows the new deployment constraints that are now supported. These include SIL
constraint for ECU and BUS, Memory Constraints, Power Consumption and Maximum number of
nodes allowed constraint. Each of these constraints is discussed in detail below.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 26 (44)

8.2.1 PMHF Constraint (ASIL constraint for ECU)

The probabilistic metric for random hardware failure (PMHF) describes an overall probabilistic value
for a top-level system failure. It is related to the probability of dangerous failure per hour (PFH) and
probability of dangerous failure on demand (PFD) of IEC61508. The difference between PFH and
PFD is explained in more detail in SAFE-E Deliverable D3.5.b [18]. The way a PMHF value is
calculated is also explained in the deliverable. The following table shows the recommended target
PMHF values for different ASIL classes.

Table 1: ASIL and PMHF mapping

According to ISO 26262, PMHF values are represented in units of FIT (failure in time). 1FIT means
1 failure in a billion years. However, the focus here is not on the representation of PMHF values, but
on how the random hardware failures can be used as deployment constraints. So for the ease of
representation we have come up with our own target values. These are shown in the following table.

ASIL Random hardware failure

target values (PMHF)

ASIL - D 0.00 – 0.25

ASIL – C 0.26 – 0.50

ASIL – B 0.51 – 0.75

ASIL – A 0.76 – 0.99

QM 1.00

Table 2: Alternate ASIL and PMHF mapping used in AF3

We have created PMHF values as annotation in AUTOFOCUS3. The PMHF values are associated
with the Execution Unit (ECU) and Transmission Unit (BUS). Figure 23 shows an example where
Generic_ECU_1, Generic_ECU_2 and Generic_Bus have a PMHF of 0.4, 0.6, and 0.6 respectively.
In other words they fall under ASIL-C, ASIL-B and ASIL-B category respectively.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 27 (44)

Figure 23: PMHF Annotations associated with ECUs and Bus

AUTOFOCUS3, on the other hand, allows adding a “Safety Specification” model element to each
component in the component architecture. This safety specification is a list of values ranging from
QM to ASIL-D. For e.g., in Figure 24 component t2, t4, t5, t6, t3 are ASIL-C, ASIL-C, ASIL-B, ASIL-
A, ASIL-A compliant respectively.

Figure 24: A SIL compliant component architecture

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 28 (44)

For the example above, the possible deployments of each of the tasks are as follows:

Task t4: Generic_ECU_1

Task t2: Generic_ECU_1

Task t6: Generic_ECU_1, Generic_ECU_2

Task t5: Generic_ECU_1, Generic_ECU_2

Task t3: Generic_ECU_1, Generic_ECU_2

8.2.2 BUS Constraint (ASIL constraints for BUS)

In the previous section we presented a constraint that takes into account the probability of random
hardware failures (PMHF) of hardware nodes while generating a deployment. However, an
application consisting of multiple components deployed on different ECUs needs to communicate
with each other. Since the communication goes over a bus, it makes sense to take reliability of bus
into consideration as well. Similar to the ECUs, the reliability of BUS is also measured in terms of
PMHF values. Table 2 is used for the mapping of PMHF to ASIL values.

Going with the technical architecture and the logical architecture in Figure 23 and Figure 24
respectively, the following deployments are possible assuming the BUS is only ASIL-A compliant.

PMHF Constraint:

Let T be the set of tasks ‘n’ tasks i.e. T = {t1, t2, S., tn} and N be the set of ‘m’ nodes i.e. N = {n1,
n2, S., nm}. We define a function ‘ASIL’ that takes as input a task or a node and gives its ASIL
value as the output, i.e. ASIL: X -> Y where X ∈ T ∪ N and Y ∈ {QM, S.., ASIL-D}.

A more stringent logical component needs to be deployed to a node with less probability of
random hardware failures in order to generate a safe and reliable deployment [18]. Hence PMHF
constraint ensures that a task (logical component) is deployed to a node with equal or more
stringent ASIL value.

 i.e. ASIL(T) ≤ ASIL(N)

For e.g. an ASIL-C compliant component can be deployed to a hardware node that is either
ASIL-C or ASIL-D compliant.

BUS Constraint:

A reliable communication is ensured when a component receives a message over a bus that is
at least as reliable as the receiver itself. The BUS constraint, hence, ensures that for each
message, if the sending and the receiving component are deployed on the different ECUs, the
ASIL of the bus is at least as stringent as the ASIL of the ECU on which receiving component is
deployed.

Let ‘S’ be the sender and ‘R’ be the receiver. Let ‘m’ be the message sent from S to R. Let ‘B’ be
the bus over which the message is transferred. Then:

 ASIL(R) ≤ ASIL(B) if S_node ≠ R_node

This constraint needs to hold for all the messages that are exchanged between the logical
components.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 29 (44)

Task t4: Generic_ECU_1

Task t2: Generic_ECU_1

Task t6: Generic_ECU_1, Generic_ECU_2

Task t5: Generic_ECU_1

Task t3: Generic_ECU_1, Generic_ECU_2

Note the difference between the deployments generated in this section and the previous section.
Since the BUS is ASIL-A compliant, message ‘m9’ from task ‘t4’ to ‘t5’ is not allowed to travel over
the bus because the receiving component i.e. ‘t5’ is ASIL-B compliant. Similar case holds for
message ‘m12’. Hence the BUS constraints forces tasks ‘t4’, ‘t2’, and ‘t5’ to be deployed on the same
ECU i.e. Generic_ECU_1.

8.2.3 Memory Constraint

So far we have focused on safety constraints. However there might be a case where many
components are deployed on the same node and the node runs out of memory. Such constraints fall
under the category of resource constraints. One such resource is memory per node which we present
as a new deployment constraint in DSE plugin of AF3. Figure 25 shows how an ECU can be assigned
a specific amount of memory in AF3.

Figure 25: Memory Allocation in Platform Resource Table

Each ECU can be allocated a specific amount of memory using the Platform Resource Table in the
Platform Architecture view of an AF3 project.

Figure 26 shows how each component in the component architecture can be allocated a memory by
using the Component Resource Table in the Component Architecture view of an AF3 project.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 30 (44)

Figure 26: Memory Allocation in Component Resource Table

The Component Resource Table in Figure 26 shows that each component requires a memory of 10
units. The Platform Resource Table in Figure 25 shows that Generic_ECU_1 has a RAM of 30 units
and Generic_ECU_2 has a RAM of 20 units. So the memory constraint ensures that a maximum of
3 logical components can be deployed on Generic_ECU_1 and a maximum of 2 logical components
can be deployed on Generic_ECU_2.

8.2.4 Maximum Number of Nodes constraint

This is the second kind of resource constraint that ensures that the generated deployment do not
use more number of nodes than the one given by the user. Its main purpose is to avoid the
unnecessary usage of the nodes. This constraint is fed into the SMT (satisfiability modulo theorem)

Memory Constraints:

Let us define two attributes for the element ‘Node’. ‘ram’, which is the total amount of memory
allocated to the ECU (platform resource table) and ‘used_Memory’, which is the total amount of
memory used by all the tasks deployed onto the ECU. A task has an attribute ‘mem’, which is
the total amount of memory needed by the task itself.

The purpose of memory constraint therefore is to ensure that none of the ECU’s runs out of
memory, which is explained by the notation below.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 31 (44)

file and the z3 solver finds whether a deployment is feasible or not. Figure 27 shows the input field
where the user can give maximum number of nodes to be used while generating the deployments.

Figure 27: Maximum number of nodes constraint

To define this constraint in a simple manner, we iterate over all the nodes and for each node we
check if there is at least one task allocated to it. If yes, this node is categorized as a used node,
otherwise, an unused node. Then we count all the used nodes and this number should be less than
the number given by the user as input.

Referring to the architectures in the Figure 23 and Figure 24 and assuming that all the constraints
mentioned above are taken into consideration, there can be no solution possible if the user inputs
maximum number of nodes as 1. Let’s understand this scenario. The following table lists the
resources available per element.

Number of nodes constraint:

Let us define for each task in T a property named ‘node‘, which defines the node onto which
the task is allocated. Let there be a Boolean property for each node in N, named ‘used’, which
indicates whether there is at least one task allocated to it. The following set of equations defines
how this constraint works.

Here, max_nodes is the maximum number of allowed nodes that the user gives as a constraint
for deployment generation. The formula for calculating the total number of nodes is given below.

‘Used’ is a Boolean property that each node possesses, and is defined as follows.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 32 (44)

Element ASIL Value Memory

Generic_ECU_1 ASIL-C 30

Generic_ECU_2 ASIL-B 20

BUS ASIL-B N/A

Table 3: List of resources available per HW node

Going with the results of the previous 3 constraints, the only possible deployment is that tasks ‘t2’,
‘t4’ and ‘t5’ are allocated to Generic_ECU_1 and tasks ‘t3’ and ‘t6’ are allocated to Generic_ECU_2.
If the user wants to allocate all the tasks on a single ECU, one way is to relax the memory constraint
of the ECUs. Increasing memory of Generic_ECU_2 will do no good, since tasks ‘t2’ and ‘t4’ are
ASIL-C compliant and cannot be allocated to an ASIL-B node. The only option in that case is to
increase memory of Generic_ECU_1 so that it can accommodate all the components.

However this example does not make much sense when we see the complexity and functionality of
the modern embedded systems. But it is quite useful for elaborating how improving one constraint
can degrade other deployment criteria, a concept known as Pareto-efficiency. For e.g. restricting the
number of nodes might lead to an increase in end-to-end latency, due to reduction in parallelism.

8.2.5 Cost constraint

Developing a component according to a given ASIL means that a set of development and validation
activities needs to be undertaken. They are translated into time, efforts and in the end costs, which
vary with the specific ASIL prescribed to a component [19]. There can be many deployments possible
that satisfy safety constraints and resource constraints, but in order to find the most desired and
advantageous one, the problem needs to consider different cost implications.

To illustrate this fact, let us consider a simple example. A function with a safety goal (SG) that
requires ASIL B can be implemented with an architecture of two components which, assuming that
they fail independently, may inherit ASILs B and QM or A and A respectively. When such options
exist, cost typically provides the deciding criterion. Assuming a simple cost heuristic which has a
logarithmic scale (i.e. ASIL QM=0; A=10; B=100; C=1000; D=10000), the following are the possible
decompositions with the second one optimizing the cost.

C1 (ASIL QM) + C2 (ASIL B): 0 + 100 = 100;

C1 (ASIL A) + C2 (ASIL A): 10 + 10 = 20;

C1 (ASIL B) + C2 (ASIL QM) = 100.

This ASIL Decomposition example directs towards the fact that how a cost heuristic can impact
finding an optimal solution from multiple feasible ones. This is analogous to our case where cost is
considered as a constraint while generating a deployment, respecting all the other constraints. We
have divided cost constraint into two sub parts, i.e. power consumption and cost factor.

8.2.5.1 Power Consumption

Another constraint for generating a deployment is total energy consumed by the hardware
architecture. We have used a very naïve approach of calculating the total energy. Each ECU in AF3
platform architecture can be annotated with a power value. This is shown in the figure below.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 33 (44)

Figure 28: Power consumption annotation for ECUs in AF3

Power is defined as energy per unit time (eq. 1). 20W is analogous to 20 Joules of energy consumed
per unit of time. So total energy consumed by each ECU is “Power” times “non-idle time” of that ECU
(eq. 2). The non-idle time of an ECU is the sum of duration of all tasks allocated to it (eq. 3).

These individual energy consumptions are summed up to calculate the total energy consumption of
hardware architecture which is then used as a constraint to generate the power efficient deployments
(eq. 4).

This constraints hence ensures that the total energy consumed by the hardware architecture (eq. 4)
is less than or equal to the value given by the user at the time of deployment generation, as input in
Figure 29.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 34 (44)

Figure 29: Maximum energy consumption as deployment constraint

Assuming each task has duration of 10 time units, and Generic_ECU_1 gets 3 tasks (t2, t4, t5) and
Generic_ECU_2 gets 2 tasks (t3, t6), the total non-idle time Generic_ECU_1 and Generic_ECU_2
is 30 and 20 time units respectively. Consequently, the total energy consumed by them is 600J and
200J respectively. The total energy consumed by the hardware architecture is 800J, which satisfies
the deployment constraint given by the user.

Note: the ECU does consume energy while being in the idle state, but we consider this to be
negligible in comparison with the energy consumed processing tasks and thus ignore it in our
calculations.

8.2.5.2 Cost factor

The second constraint in this category is the “cost factor”, where each ECU is annotated with a cost
value. Higher the ASIL, higher the development cost and efforts. This constraint is similar to
“Maximum no. of nodes constraint” in a way, since it tries to avoid the unnecessary usage of the
hardware nodes by reducing the maximum cost allowed during deployment generation. But the main
difference is optimizing the overall technical architecture cost by trying to move out the hardware
nodes with higher development cost, as opposed to kicking any node out of the development
process. Figure 30 shows this constraint.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 35 (44)

Figure 30: Maximum cost allowed as deployment constraint

8.3 Analysis of results

Cost Constraint:

Similar to the power consumption annotation used for ECUs (Figure 28), we can annotate them
with Cost Factor as well. The main purpose of cost constraint is to reduce the overall
developmental cost of the technical architecture by reducing the usage of the higher ASIL
nodes.

Let “used” be a Boolean property of an ECU indicating whether the ECU has been included in
the deployment or not. Let “cost” be a property of an ECU that represents its developmental
cost. Then, the “total_cost” is formulated as below:

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 36 (44)

Figure 31: Used logical architecture example

So far we have seen an example that is good enough to explain how all the constraints work.
Considering the complexity of modern safety critical systems, the trend is for these architectures to
become systems of systems, where multiple functions are delivered by complex networked

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 37 (44)

architectural topologies and where functions can share components [19]. Figure 31 shows a
complex logical architecture having 48 components, each with their own safety and memory
requirements. The technical architecture used to deploy these components is shown in Figure 32.

Figure 32: Technical architecture containing nodes of all possible ASIL levels

The safety requirement of all the components in the technical architecture is shown in the table
below. The memory required by each component is assumed to be 10 units.

ASIL Level Components

ASIL-D c1, c2, c3, c4, c5

ASIL-C c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17

ASIL-B c18, c19, c20, c21, c22, c23, c24, c25, c26, c27

ASIL-A c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39

QM c40, c41, c42, c44, c45, c46, c47, c48

Table 4 ASIL allocation for components

The cost, PMHF and ASIL of each ECU is given in the table below.

Model
Element

ECU1 ECU2 ECU3 ECU4 ECU5 ECU6 ECU7 ECU8 ECU9

PMHF 0.1 0.1 0.3 0.4 0.6 0.6 0.8 0.9 1.0

ASIL D D C C B B A A QM

Cost 10 10 8 8 5 5 3 3 1

Table 5 Cost, PMHF and ASIL-Capability Attributes of HW Nodes

Each ECU has been allocated a memory of 100 units. This means, an ECU can carry at most 10
logical components, since each of them require a memory of 10 units.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 38 (44)

In the following section we analyze the effects of reducing the overall cost of technical architecture
on the generated deployment. Also, we analyze the effects of using “Maximum number of nodes”
constraint in deployment generation and how it is different from the “Cost Constraint”. Section 8.3.1
shows the results of using “Cost constraint” constraint and section 8.3.2 shows the results of using
“Maximum number of nodes”. Section 8.3.3 shows the effect of cost on E2E latency and section
8.3.4 shows the effect of optimizing for cost on Bus load (# Bus signals).

8.3.1 Cost Constraint

For analyzing the effects of Cost Constraint on the generated deployment, we assume two different
cases, one where the cost is non-uniform and the other where the cost is uniform. The first case
entails a staggered cost distribution reflecting real world scenarios, i.e., the fact that developing a
node for higher ASIL capability means more stringent development and higher grade components,
requiring more development effort and time as compared to developing a less stringent node. This
translates to higher cost. The second case, where the cost is uniform, makes for an interesting
thought exercise, allowing us to analyze which nodes are kicked out of the deployment first, when
different ASIL capability nodes are priced the same. This highlights the difference and importance of
setting a relevant cost distribution functionality to the nodes.

Reducing the maximum cost allowed will lead to reduction in number of nodes used, but which nodes
are removed from the deployment generation is worth analyzing. Assuming the PMHF constraint,
BUS constraint and Memory constraint hold, we now analyze the effect of cost reduction.

Figure 33: Effect of Cost Constraint (non-uniform cost) on deployment (ASIL-D BUS)

Figure 33 shows a plot of maximum cost allowed vs no. of nodes used in the deployment. The BUS
is kept as ASIL-D compliant. By specifying the maximum cost allowed for a deployment generation,
Cost Constraint forces the Z3 solver to find a deployment that does not exceed this cost. The graph
shows that by reducing the max cost, we have been able to find a deployment that do not violate
any of the constraints and reduces the node usage, hence optimizing the overall development cost
of the hardware architecture. For e.g. for a maximum cost of 53 we have a deployment consisting of
1 QM, 2 ASIL-A, 2 ASIL-B, 2 ASIL-C and 2 ASIL-D ECUs, whereas for a maximum cost of 37, we
have a deployment consisting of 1 QM, 1 ASIL-A, 1 ASIL-B, 1 ASIL-C and 2 ASIL-D ECUs.

Figure 34 illustrates the scenario where the development costs of nodes with different stringencies
are assumed to be same (In our case, 6). Since the cost is uniform, the Cost constraint can kick out
any node from the deployment generation process. For e.g. for maximum cost of 37, the deployment
we got has 1 ASIL-A, 2 ASIL-B, 1 ASIL-C, and 2 ASIL-D nodes. But if we compare it with Figure 33,

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 39 (44)

we have a deployment containing 1QM, 1 ASIL-A, 1 ASIL-B, 1 ASIL-C and 2 ASIL-D. This shows
the impact of different cost heuristics in generating a deployment that optimizes the development
cost and efforts. Similar analysis has been done by Azevedo et al in [19].

Figure 34: Effect of Cost Constraint (uniform cost) on deployment (ASIL-D BUS)

Figure 35: Effect of Cost Constraint (non-uniform cost) on deployment (ASIL-C BUS)

Figure 35 and Figure 36 show the similar analysis for ASIL-C Bus. There is no deployment possible
if the Bus is kept as ASIL-B compliant or lower. This is because, an ASIL-B bus forces the component
c1-c17 to be deployed on the same ECU, but the memory constraints do not allow any ECU to carry
more than 10 tasks on it.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 40 (44)

Figure 36: Effect of Cost Constraint (uniform cost) on deployment (ASIL-C BUS)

8.3.2 Number of nodes constraint

To illustrate the effect of this constraint on the deployment generation process, we have kept
Maximum cost allowed to a fixed value say 54. Instead of reducing the max cost allowed, we will
reduce the maximum no. of nodes in each iteration. Figure 37 shows the effect of this constraint on
the generated deployment. Comparing with Figure 33, for 6 nodes, the best deployment that it can
find contains 1 ASIL-A, 2 ASIL-B, 1 ASIL-C and 2 ASIL-D leading to a cost of 41, whereas the best
deployment found by “cost constraint” for 6 nodes includes 1 QM, 1 ASIL-A, 1 ASIL-B, 1 ASIL-C and
2 ASIL-D, yielding a cost of 37. So “cost constraint” can find a deployment using as many nodes as
used by “max no. of nodes” constraint, but with a lower technical architecture development cost.

Figure 37: Number of nodes constraint (ASIL-D Bus)

Figure 38 shows the similar analysis for ASIL-C bus. Comparing it with Figure 35, the best
deployment found by “maximum no. of nodes” constraint for 6 nodes includes 1 QM, 1 ASIL-A, 2

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 41 (44)

ASIL-C and 2 ASIL-D yielding a cost of 40, whereas the best deployment found by “Cost constraint”
for 6 nodes includes 1 QM, 2 ASIL-A, 1 ASIL-C and 2 ASIL-D, yielding a cost of 35.

Figure 38: Number of nodes constraint (ASIL-C Bus)

This indicates how “Cost constraint” can outdo the “Number of nodes” constraint by not only finding
a deployment that avoids unnecessary usage of the nodes, but also by finding a deployment that
optimizes the cost by using less stringent ASIL nodes wherever necessary.

8.3.3 End to end latency vs Cost

Figure 39: E2E latency vs cost

Figure 39 shows a plot between the E2E latency and the maximum cost allowed. Since the reduction
in the cost, reduces the number of the nodes used in the deployment generation, this, therefore,
leads to a rise in latency as there will be more tasks scheduled to run on a single ECU. In other
words, the degree of parallelism to task scheduling will be reduced.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 42 (44)

8.3.4 Bus Load vs Cost

Figure 40: Bus load vs cost

Figure 40 shows a plot between the cost and the bus load. Currently in AUTOFOCUS3, the bus load
is measured in terms of number of bus signals that are sent between the components over the bus.
More the bus signals, more the bus load. The plot indicates that the bus load reduces with the
number of nodes since more components are deployed to the same ECU, but this might not hold
true always. It depends on the distribution of the components onto the nodes. If the communicating
components are allocated to same ECU, the number of bus signals reduces. If the communicating
components are allocated to different ECUs, the number of bus signals increases. Hence, there can
be an anomaly where the communicating components are deployed to different ECUs even with the
reduction in the number of nodes used.

8.4 Conclusion

The previous chapter has shown the varying results obtainable by manipulating different constraints
in a multi-criteria optimization approach, as well as the interactions between the criteria, enabling
optimization of constraint values by various optimization approaches.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 43 (44)

9 Acknowledgments

This document is based on the SAFE and SAFE-E projects. SAFE is in the framework of the ITEA2,
EUREKA cluster program Σ! 3674. The work has been funded by the German Ministry for Education
and Research (BMBF) under the funding ID 01IS11019, and by the French Ministry of the Economy
and Finance (DGCIS). SAFE-E is part of the Eurostars program, which is powered by EUREKA and
the European Community. The work has been funded by the German Ministry of Education and
Research (BMBF) and the Austrian research association (FFG) under the funding ID E!6095. The
responsibility for the content rests with the authors.

The AF3 project is a long term ongoing tools development effort led by the fortiss department of
“Software and Systems Engineering". The functionality provided currently by the tool is mainly the
result of the joint work of the following persons:

• Florian Hölzl (mailto:hoelzl@fortiss.org): long-term project lead, tooling infrastructure for
developing views and modular languages

• Dr. Vincent Aravantinos (mailto:aravantinos@fortiss.org): current AF3 coordinator, formal
methods for model checking

• Sabine Teufl (mailto:teufl@fortiss.org): MIRA - model-based requirements engineering

• Mou Dongyue (mailto:mou@fortiss.org): MIRA - model-based requirements engineering
(partly under the IMES project), model based testing, refinement modelling

• Dr. Sebastian Voss (mailto:voss@fortiss.org): design space exploration, GSN-based
modelling of safety cases, ASIL allocation, and optimized (safety-oriented) deployment and
schedule generation under the SPES XT, RECOMP and ARAMiS projects

• Dr. Daniel Ratiu (mailto:ratiu@fortiss.org): user friendly formal specification and verification

Many thanks also to the other members of the AF3 team.

Safe-E – a Eurostars project D4.4.b

 2014 The SAFE-E Consortium 44 (44)

10 References

[1] International Standards Organization, ISO 26262 Standard, Road Vehicles - Functional Safety,
http://www.iso.org/, 2011.

[2] SAFE project: SAFE Deliverable D2.1.b: “Needs description to apply ISO26262 with
architecture and component modeling”, http://www.safe-project.eu/SAFE-Download.html,
2012.

[3] SAFE project: SAFE Deliverable D2.3.2b: “Detailed description of use case scenarios and list
of requirements from industrial practice”, http://www.safe-project.eu/SAFE-Download.html,
2013.

[4] SAFE project: SAFE Deliverable D3.2.2: “Proposal for extension of meta model for hardware
modeling”, http://www.safe-project.eu/SAFE-Download.html, 2013.

[5] SAFE project: SAFE Deliverable D3.3.3a: “Initial specification for comparison of architecture”,
2013.

[6] Vector Informatik GmbH, “PREEvision User Manual Version 6.5”, 2013.

[7] N. Adler, S. Otten, P. Cuenot, and K. D. Müller-Glaser, “Performing Safety Evaluation on
Detailed Hardware Level according to ISO 26262,” SAE Int. J. Passeng. Cars Electron. Electr.
Syst., vol. 6, no. 1, pp.102–113, 2013.

[8] ATESST2 Consortium, "EAST-ADL Domain Model Specification - Deliverable D4.1.1," Rev.
June 2010.

[9] AutoFOCUS3. Fortiss GmbH. 2014, af3.fortiss.org.

[10] Sebastian Voss, Bernhard Schätz, “Deployment and Scheduling Synthesis for Mixed-Critical
Shared-Memory Applications”. Proceedings of the 20th Annual IEEE International Conference
and Workshops on the Engineering of Computer Based Systems (ECBS) 2013.

[11] Sebastian Voss, Antoaneta Kondeva, Daniel Ratiu, Bernhard Schätz, “Seamless Model-based
Development of Embedded Systems with AF3 Phoenix”. Tutorial at the 20th Annual IEEE
International Conference and Workshops on the Engineering of Computer Based Systems
(ECBS) 2013.

[12] SPES-XT Project Consortium. spes2020.informatik.tu-muenchen.de/spes_xt-home. 2013.

[13] Z3 SMT Solver, Microsoft Research, Microsoft Corportation. research.microsoft.com/en-
us/um/redmond/projects/z3. 2013.

[14] YICES SMT Solver, SRI Tools, Stanford Research Institute. yices.csl.sri.com. 2013.

[15] Sebastian Voss, Johannes Eder, Florian Hölzl, Bernhard Schätz. “An integrated Design Space
Exploration Approach”. Submitted.

[16] Automotive, Railway and Avionics Multicore Systems – ARAMiS Project Consortium..
www.projekt-aramis.de. 2013.

[17] Florian Hölzl and Martin Feilkas. “AutoFocus 3 – A Scientific Tool Prototype for Model-Based
Development of Component-Based, Reactive, Distributed Systems”.

[18] SAFE-E project consortium: SAFE-E Deliverable D3.5b: “Final specification for architecture
comparison”, 2013.

[19] Luís Silva Azevedo, David Parker, Yiannis Papadopoulos, Martin Walker, Rui Esteves Araújo,
Ioannis Sorokos, and Rui Esteves Araújo. “Exploring the Impact of Different Cost Heuristics in
the Allocation of Safety Integrity Levels”, 2014.

