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4 Executive Summary  

Objective of the corresponding work task WT4.4 “Plug-in for safety and multi criteria architecture 
modeling and benchmarking” is the implementation and evaluation of conceptual results of especially 
work task WT3.4 “Safety and multi-criteria architecture benchmarking”. Therefore, this deliverable 
describes a first version of private prototype implementations and private plug-ins for model-based 
multi-criteria and safety evaluation. The implementations are based on the existing research CASE 
tool AUTOFOCUS3 (AF3). 

The implementation described in this deliverable focuses on the functionality: 

• Multi-criteria Deployment Generation, Scheduling Synthesis and Design Space Exploration 
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5 Introduction and Overview of the Document 

This deliverable D4.4b “Final version of plug-in for safety and multi criteria architecture modeling and 
benchmarking” is included in the work package 4 “Technology Platform” and describes the 
implementations of concepts and methodologies provided by work task of work package 3 “Model 
Based Development”. Especially WT3.4 is in focus.  

This document provides different selected methodologies to perform model-based assessment 
based on the SAFE Meta-model extensions. These assessments are facilitated on different level of 
abstraction and different level of granularity for safety multi-criteria benchmarking of automotive 
systems. Qualitative analysis regarding the impact of hardware failures on system behavior is 
specified. Formal consistency of the safety case is required for qualitative assessment of 
requirements. Additionally, a quantitative evaluation of hardware designs according to ISO 26262 is 
presented.  Combination of the analyses allows a benchmarking of different architectures regarding 
safety and different criteria. 

5.1 Links to SAFE and SAFE-E Work Tasks 

ISO 26262 [1] was analyzed and requirements specified in work task SAFE WT2.1 “ISO26262 
Analysis” [2] and work task SAFE WT2.3 “Use case scenario” [3] as well as to SAFE-E WT2.1 and 
WT2.2. Based on these requirements, the concept work task SAFE WT3.2.2 “Hardware description” 
[4] provides a description and a meta model for hardware modeling including failure extension, as 
shown in Figure 1. SAFE-E WT3.5 “Safety and Multi Criteria Architecture Benchmarking” [5] 
specifies the methodology and forms the basis for the plug-ins and implementations described in 
this deliverable. Additional Specifications for Safety Cases were carried out in SAFE-E WT3.4. 

 

Figure 1: Overview of essential WT4.4 links to SAFE/SAFE-E Work tasks 

5.1.1 Multi-criteria Design Space Exploration 

The prototype implementation supports a seam-less model based approach to Multi-criteria 
Deployment Generation, Scheduling Synthesis and Design Space Exploration. The approach is 
aided by the capability to visualize the design space as well as manipulate this visualization which 
facilitates the understanding of the otherwise complex multi-criteria design space and thus helps the 
design effort for a safe product.  
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5.2 Structure of the Document 

The next Section 5 presents the tool environment AutoFOCUS3, which was used for the 
implementations. An overview of AutoFOCUS3 including the relevant abstraction layers and artifacts 
for this deliverable is given. A detailed description of the plug-in for Multi-criteria Deployment 
Generation, Scheduling Synthesis and Design Space Exploration is described in Section 5, and the 
additional constraints developed for this project as well as their integration and interaction with the 
existing solution are described in detail in section 7. 
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6 Description of Technology Platform AutoFOCUS3 

AutoFOCUS3 (AF3) [9] is a model based development research CASE tool for distributed, reactive, 
embedded software systems. AF3 uses models in all development phases including requirements 
analysis, design of the logical architecture and the hardware architecture, implementation and 
deployment. Furthermore, AF3 features formal analyses and synthesis methods. 

AF3 and its tutorials are free for download at af3.fortiss.org. 

6.1 Main Features of AF3: 

 

Requirements Engineering (MIRA)  

 

Figure 2: Safety requirements support in AF3 

 

• Structure, analyze and validate requirements  

• Specify requirements in a rich model  

• Deeply integrate requirements with the architecture 

• Support for safety requirements and link to a Safety-Case View 

 

 

Modeling and simulation  

• Advanced and deeply integrated models for architecture, behavior and platform 

• Simulation and on the fly consistency checks 

• System Architecture Modeling 

• Data Modeling 
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Figure 3: Component Modeling in AF3 

 

• Behavior Modeling: 

- Code Specifications 

- State Automata 

- Mode Automata 

- Tabular Specifications 

• Hardware Architecture Modeling 

• Simulation 

• Operator Panels 

• Library of Components, Functions and Types 

• Holistic Pattern Libraries 

 

 Code generation and deployment  

 

• Flexible generation of C, Java, etc., code 

• Deployment on different hardware platforms  

• Generation of platform specific code  

 



Safe-E – a Eurostars project                       D4.4.b 

 

 2014 The SAFE-E  Consortium  12 (44) 

 

Figure 4: Code generation in AF3 

 

Testing and formal verification  

 

• Deep integration of the NuSMV model-
checker and Yices SMT solver 

• Both out-of-the-box and customizable 
analyses 

• On the Fly Constraints Checking 

• Model Checking 

• Model Checking (using C-Prover) 

• Non-determinism Analysis 

• Model Based Testing 

• Refinement Testing 

• Assume/Guarantee Reasoning 

• MSC Feasibility Checking 

  

 

Figure 5: Testing and Verification in AF3 

 

 

 

 

 

6.2 Installation details of SAFE plugin for Af3 developers 
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This section describes how the SAFE plugin can be installed in Af3. Af3 can be installed using the 
simple steps mentioned in the link 
“https://af3.fortiss.org/projects/autofocus3/wiki/Developer_Installation”. The steps to start AF3 and 
install SAFE plugin are described below. 

a) Double-click org.fortiss.af3.phoenix.product.top, then open af3_phoenix.product and 
select Launch an Eclipse Application. (Figure 6) 

b) On the first run, you will probably get an error “The application could not start. Would 
you like to view the log?”, press No. 

 

 

 

 

Figure 6: Installation step 1 

c) To fix this, go to Run->Run configurations..., select Eclipse Application-> 
af3_phoenix.product, go to the Plug-Ins tab and check the checkbox Workspace in the 
list of plugins (if not already checked). 

d) To the very right of the window (might even be hidden), press the button Add Required 
Plug-Ins. (Figure 7) 
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Figure 7: Installation step 2 

 

e) If the org.fortiss.af3.safe and org.fortiss.af3.safe.ui plugins are not checked 
automatically, check it manually. (Figure 8). Press Apply and then Run. Now AF3 will start 
correctly as RCP. 

 

Figure 8: Installation step 3 
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f) There might be a case that the org.fortiss.af3.safe and org.fortiss.af3.safe.ui plugins are 
not on the list. Since the plugins are not added to the master branch yet, they are needed to 
be checked out manually. For that, go to the SVN Repository Exploring view and check 
out these two plugins from URL https://orion.fortiss.org/svn/af3, as seen in Figure 9. 

 

Figure 9: Installation step 4 

 



Safe-E – a Eurostars project                       D4.4.b 

 

 2014 The SAFE-E  Consortium  16 (44) 

7 Multi-criteria Architecture Optimization and Design Space Exploration 

The presented methodology represents an efficient approach for generating suitable system 
architectures for embedded systems efficiently. The focus is on a joint generation of schedules and 
deployment for mixed-criticality multicore architectures using shared memory. The presented 
approach computes task and message schedules that are optimized with respect to a global discrete 
time base. As part of the solution, the approach generates an optimized assignment of tasks to 
computation resources (cores) concerning local memory constraints of cores and criticality 
constraints of tasks. This approach is integrated into the AUTOFOCUS 3 tool-chain [9], using a 
formally defined model of computation with explicit data-flow and discrete-time semantics to develop 
multi-criticality embedded systems [10].  

The approach relies on a symbolic encoding scheme, based on a system model that is derived from 
the system architecture. A formalization describing the scheduling problem as a satisfiability problem 
using boolean formulas and linear arithmetic constraints, which are the tackled by a state-of-the-art 
satisfiability modulo theory (SMT) solver in order to compute the joint schedule and deployment for 
such architectures, is presented in [10].  

Implementations are being carried out in the research CASE tool AutoFOCUS3 [9], presented in 
Section 6, and as shown in Figure 10, part of the tutorial referenced in [11], and will be presented in 
depth in the following subsections. 

 

 

 

Figure 10: Deployment Synthesis in AF3 [11] 

 

Using this approach we provide an efficient deployment for multi-criteria problems (e.g. timing, 
scheduling) as well as calculate (optimized) partitioning and mapping of systems according to ASIL 
levels in a mixed-criticality environment, and has been developed in the context of the SPES_XT 
Core project [12]. 
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As shown in Figure 10, the ASIL levels, which are propagated through the component links on the 
logical architecture, provide one criterion and we can freely select other criteria such as execution 
time, energy consumption or any other resource optimization. 

The deployment synthesis is based on rules definition carried out inside the solver in AF3, and is 
further explained in [10]. 

7.1 Initializing the Design Space Exploration Plug-In 

AutoFOCUS3 supports an approach for supporting the system designer by generating a deployment 
efficiently that is the allocation of logical components to platform architecture components. This can 
be done according to certain criteria like timing, safety constraints and memory consumption [9]. 

The Design Space Exploration Plug-In can be added to any AF3 component model as seen in the 
following example of an Adaptive Cruise Control [9], shown in Figure 11.  

 

Figure 11: Design-Space-Exploration Plug-In in AF3 

 

Selecting the Plug-In opens a user interface, seen in Figure 12, which allows for the generation of 
suitable deployments according to multiple optimization criteria. It is then possible to select a subset 
from the generated deployments and subsequently proceed to generate suitable schedules [9]. 
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Figure 12: DSE User Interface in AF3 

7.2 Multi-criteria Deployment Optimization 

Starting the Deployment Generation Wizard from the DSE User Interface a window appears that 
automatically lists all the components in the model and allows to select the component and 
component level for which the deployment should be generated, as well as selecting a filter 
mechanism, as shown in Figure 13.This feature has been developed in the context of the SPES XT 
project [12]. 
 

 

Figure 13: Component Selection for Deployment Generation in AF3 



Safe-E – a Eurostars project                       D4.4.b 

 

 2014 The SAFE-E  Consortium  19 (44) 

The next window allows the selection of the criteria and constraints of the design space, which will 
be used for the deployments generation. It is possible to use standard constraints, such as Safety 
Integrity Levels (SIL), as well as to employ user-defined constraints, such as Memory Consumption 
or any other constraint the user can express. The user then has the choice to simply generate all 
deployments which constitute valid solutions to the design space confined by the selected 
constraints, or to generate an optimized solution space, according to other criteria which can be 
defined, such as End-to-End (E2E) Latency or the allowable number of hardware resources (ECUs) 
and so on, as shown in Figure 14. 

 

 

Figure 14: Selecting Design Space Constraints for Deployment Generation in AF3 

 

The generation of the deployment leads to a list of viable configurations, constituting the design 
space of the possible deployments. It is then possible to select all or only a subset of these possible 
solutions and save them for use in the scheduling synthesis, as shown in Figure 15 [9]. 
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Figure 15: Selecting viable Deployment Design Solutions for Scheduling Synthesis in AF3 

7.3 Scheduling Synthesis 

The user can then proceed to generate the Schedule based on any given deployment and is again 
given the option to select the component level for performing the synthesis as well as the filter used, 
as shown in Figure 16. The constraints for the scheduling problem to be solved are described in 
detail in [10]. 

 

Figure 16: Component Selection for Deployment Generation in AF3 

The next window allows the selection of the criteria and solver used for the design space, which will 
be used for the scheduling synthesis.  
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It is possible to use any solvers integrated into AF3, such as Z3 [13] or YICES [14]. The user then 
has the choice to simply generate all deployments which constitute valid solutions to the design 
space confined by the selected constraints, or to generate an optimized solution space, using 
multiple methods, as shown in Figure 17. 

 

Figure 17: Selecting Design Space Constraints for Scheduling Synthesis in AF3 

The generation of the schedules leads to a list of viable configurations for each deployment, 
constituting the design space of the possible deployments. It is then possible to select all or only a 
subset of these possible solutions and save them for use in the scheduling synthesis [9], as shown 
in Figure 18. 

 

Figure 18: Selecting viable Scheduling Solutions for Design Space Exploration in AF3 
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7.4 Design Space Exploration 

Returning to the Design Space Exploration View after having synthesized schedules for the 
previously generated deployments, it is now possible to visualize the optimized design space and 
manipulate it, using the Visualization Tab in the main window, as shown in Figure 19. This work is 
currently under development and has been submitted in [15]. The presented parts are a result of 
work carried out in the context of the ARAMiS project [16].  

It is possible to assign different optimization criteria to the design space axes and visualize the 
representation. Slect each solution node, shown as black dots, will display the information related to 
that deployment design as well as visualize the corresonding schedule in the Scheduling View tab 
under the main modelling window, as shown in the figure. 

 

 

Figure 19: Visualization of Design Space Exploration in AF3 

 

To visually manipulate the design space, it is then possible insert a fourth dimension by coloring the 
design solutions, e.g. according to the E2E Latency. This is done by selecting an optimization 
variable and then enabling the color gradient option, as shown in Figure 20. This leads to the coloring 
of the solution points in the design space accordingly which facilitates a visual understanding of the 
design space. 

Next, it is possible to start solving the design space by constraining for any axis value using the 
“Planes” feature, where the following figure shows a plane threshold for E2E Latency for solution 
points with a value, e.g.,  above 42msec, set by manipulating the corresponding slider. The solution 
points not satisfying this criteria are no longer colored but grayed out, as shown in the figure, facilitate 
visual identification of the impact of the constraint on the design space. 
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Figure 20: Graphical Manipulation of the Design Space in AF3 

Finally it is possible to manually adjust the viewing angle of the design space in all directions as well 
as zooming in or out. Combined with solution planes for all dimensions, as shown in Figure 21, this 
provides a powerful visualization which helps in understanding and solving the design space leading 
to a multi-criteria optimization of the architecture [9][15]. 

 

Figure 21: Multidimensional Manipulation of Design Space Visualization in AF3 
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8 Safety Constraints for schedule and deployment generation  

In the previous chapter, we discussed a methodology representing joint generation of schedules and 
deployment for mixed criticality multicore architectures using shared memory and how this approach 
is integrated into the AUTOFOCUS3 tool-chain [9].  We now present a methodology that integrates 
safety metrics identified in the SAFE/SAFE-E project, such as hardware failure metrics, SIL 
compliance, and real time resource constraints, such as memory usage, power consumption, etc., 
into the DSE (Design space exploration) plugin of the AUTOFOCUS3. 

AUTOFOCUS3 currently features three major abstraction layers: a requirements engineering view, 
a logical architecture, and a technical architecture [17]. We are concerned with the latter two in this 
document, specifically with the mapping of logical components onto hardware architectures, and the 
flip-side of that coin, i.e. the analysis of logical architectures for their suitability or adherence to 
different conditions and constraints. The logical architecture defines a model of the system under 
development from an abstract point of view (as a set of communicating components) while the 
technical architecture describes the execution environment of the system by means of ECU 
(execution control units) and buses. Prior to this work, there was no support for generating 
deployments (mapping logical architecture to technical architecture) in AUTOFOCUS3 that takes 
safety, resource and cost constraints into account. 

The remaining chapter is organized as follows. In section 8.1, we talk about the motivation behind 
the work. Section 8.2 talks about the different safety, resource and cost constraints in detail. And 
finally in section 8.3 we do an analysis of results of using these constraints in the deployment 
generation process. 

8.1 Motivation 

Mapping logical components to the hardware architecture is not just a simple task of mere allocation 
and de-allocation, but to generate a deployment that satisfies different constraints, be it related to 
safety, resource or cost.  

To illustrate it in a comprehensive way, let us consider different scenarios. One such scenario is the 
random hardware failure in hardware elements. As mentioned in SAFE-E Deliverable D3.5.b, “the 
hardware architecture of automotive systems needs a high reliability especially in context of random 
hardware failures. These failures occur unpredictably during the lifetime of electric systems due to, 
exemplarily, aging effects and can never be avoided” [18]. These random hardware failures can be 
assessed in two different ways. ISO26262 clause 8, “Evaluation of the hardware architectural 
metrics” describes the assessment of hardware architectures by applying hardware architectural 
metrics and ISO26262 clause9, “Evaluation of the safety goal violations due to random hardware 
failures” describes the assessment of hardware architectures in terms of residual risk of safety goal 
violation [1]. We presented a method that takes into account such random hardware failures while 
generating the deployments. For the purpose of ease of representation, we have decided to go with 
the “residual risk of safety goal violation” option. The evaluation of residual risk of safety goal violation 
can be performed using one of the alternative methods, the probabilistic metric for random hardware 
failure (PMHF) or the second method using failure rate classes (FRC).  

The second such scenario is generating a deployment that reduces the overall power consumption 
or cost of the hardware architecture on which the logical component are deployed.  Different SILs 
reflect different requirements stringencies and consequently different development costs. The 
allocation of safety requirements is not a simple problem of applying an allocation "algebra" as 
treated by most standards; it is a complex optimization problem, one of finding a strategy that 
minimizes cost whilst meeting safety requirements [19].  We propose a method that generates a 
deployment reducing the overall cost of the hardware architecture. 
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Other scenarios include generating deployments without violating the memory constraints of the 
hardware nodes and reducing the overall power consumption of hardware architecture. We will focus 
on each of those constraints in more detail in section 8.2.  
Hence, extending deployment and schedule generation of AUTOFOCUS3 with different safety, 
resource and cost constraints will enable us model complex embedded systems in much more 
effective and efficient manner. 

8.2 Safety and cost constraints 

This section talks about the different safety and cost constraints that are taken into consideration 
while generating the deployments and schedules of mixed criticality application. We have presented 
a novel approach to deployment generation by using a formalization that describes the scheduling 
problem as a satisfiability problem using Boolean formulas and linear arithmetical constraints. We 
used the Z3 solver, a state-of-the art theorem prover from Microsoft Research. It can be used to 
check the satisfiability of logical formulas over one or more theories [13].  

 

Figure 22: SAFE deployment constraint of Design Space Visualization in AF3 

   

Figure 22 shows the new deployment constraints that are now supported. These include SIL 
constraint for ECU and BUS, Memory Constraints, Power Consumption and Maximum number of 
nodes allowed constraint. Each of these constraints is discussed in detail below. 
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8.2.1 PMHF Constraint (ASIL constraint for ECU) 

The probabilistic metric for random hardware failure (PMHF) describes an overall probabilistic value 
for a top-level system failure. It is related to the probability of dangerous failure per hour (PFH) and 
probability of dangerous failure on demand (PFD) of IEC61508. The difference between PFH and 
PFD is explained in more detail in SAFE-E Deliverable D3.5.b [18]. The way a PMHF value is 
calculated is also explained in the deliverable. The following table shows the recommended target 
PMHF values for different ASIL classes.  

 

 

Table 1: ASIL and PMHF mapping 

According to ISO 26262, PMHF values are represented in units of FIT (failure in time). 1FIT means 
1 failure in a billion years. However, the focus here is not on the representation of PMHF values, but 
on how the random hardware failures can be used as deployment constraints. So for the ease of 
representation we have come up with our own target values. These are shown in the following table. 

 

ASIL Random hardware failure 

target values (PMHF) 

ASIL - D 0.00 – 0.25 

ASIL – C 0.26 – 0.50 

ASIL – B 0.51 – 0.75 

ASIL – A 0.76 – 0.99 

QM 1.00 

Table 2: Alternate ASIL and PMHF mapping used in AF3 

 

We have created PMHF values as annotation in AUTOFOCUS3. The PMHF values are associated 
with the Execution Unit (ECU) and Transmission Unit (BUS). Figure 23 shows an example where 
Generic_ECU_1, Generic_ECU_2 and Generic_Bus have a PMHF of 0.4, 0.6, and 0.6 respectively. 
In other words they fall under ASIL-C, ASIL-B and ASIL-B category respectively.   

 



Safe-E – a Eurostars project                       D4.4.b 

 

 2014 The SAFE-E  Consortium  27 (44) 

 

Figure 23: PMHF Annotations associated with ECUs and Bus 

 

AUTOFOCUS3, on the other hand, allows adding a “Safety Specification” model element to each 
component in the component architecture. This safety specification is a list of values ranging from 
QM to ASIL-D. For e.g., in Figure 24 component t2, t4, t5, t6, t3 are ASIL-C, ASIL-C, ASIL-B, ASIL-
A, ASIL-A compliant respectively.  

 

Figure 24: A SIL compliant component architecture 
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For the example above, the possible deployments of each of the tasks are as follows: 

Task t4: Generic_ECU_1 

Task t2: Generic_ECU_1 

Task t6: Generic_ECU_1, Generic_ECU_2 

Task t5: Generic_ECU_1, Generic_ECU_2 

Task t3: Generic_ECU_1, Generic_ECU_2 

  

8.2.2 BUS Constraint (ASIL constraints for BUS) 

In the previous section we presented a constraint that takes into account the probability of random 
hardware failures (PMHF) of hardware nodes while generating a deployment. However, an 
application consisting of multiple components deployed on different ECUs needs to communicate 
with each other. Since the communication goes over a bus, it makes sense to take reliability of bus 
into consideration as well. Similar to the ECUs, the reliability of BUS is also measured in terms of 
PMHF values. Table 2 is used for the mapping of PMHF to ASIL values. 

 

  

 

 

 

 

 

 

 

 

 

Going with the technical architecture and the logical architecture in Figure 23 and Figure 24 
respectively, the following deployments are possible assuming the BUS is only ASIL-A compliant. 

 

PMHF Constraint: 

 

Let T be the set of tasks ‘n’ tasks i.e. T = {t1, t2, S., tn} and N be the set of ‘m’ nodes i.e. N = {n1, 
n2, S., nm}. We define a function ‘ASIL’ that takes as input a task or a node and gives its ASIL 
value as the output, i.e. ASIL: X -> Y where X ∈ T ∪ N and Y ∈ {QM, S.., ASIL-D}. 

A more stringent logical component needs to be deployed to a node with less probability of 
random hardware failures in order to generate a safe and reliable deployment [18]. Hence PMHF 
constraint ensures that a task (logical component) is deployed to a node with equal or more 
stringent ASIL value. 

   i.e. ASIL(T) ≤ ASIL(N)  

For e.g. an ASIL-C compliant component can be deployed to a hardware node that is either 
ASIL-C or ASIL-D compliant. 

BUS Constraint:  

 

A reliable communication is ensured when a component receives a message over a bus that is 
at least as reliable as the receiver itself. The BUS constraint, hence, ensures that for each 
message, if the sending and the receiving component are deployed on the different ECUs, the 
ASIL of the bus is at least as stringent as the ASIL of the ECU on which receiving component is 
deployed.   

Let ‘S’ be the sender and ‘R’ be the receiver. Let ‘m’ be the message sent from S to R. Let ‘B’ be 
the bus over which the message is transferred. Then:  

   ASIL(R) ≤ ASIL(B)   if S_node ≠ R_node   

This constraint needs to hold for all the messages that are exchanged between the logical 
components. 
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Task t4: Generic_ECU_1 

Task t2: Generic_ECU_1 

Task t6: Generic_ECU_1, Generic_ECU_2 

Task t5: Generic_ECU_1 

Task t3: Generic_ECU_1, Generic_ECU_2 

 

Note the difference between the deployments generated in this section and the previous section. 
Since the BUS is ASIL-A compliant, message ‘m9’ from task ‘t4’ to ‘t5’ is not allowed to travel over 
the bus because the receiving component i.e. ‘t5’ is ASIL-B compliant. Similar case holds for 
message ‘m12’. Hence the BUS constraints forces tasks ‘t4’, ‘t2’, and ‘t5’ to be deployed on the same 
ECU i.e. Generic_ECU_1. 

8.2.3 Memory Constraint 

So far we have focused on safety constraints. However there might be a case where many 
components are deployed on the same node and the node runs out of memory. Such constraints fall 
under the category of resource constraints. One such resource is memory per node which we present 
as a new deployment constraint in DSE plugin of AF3. Figure 25 shows how an ECU can be assigned 
a specific amount of memory in AF3. 

 

 

Figure 25: Memory Allocation in Platform Resource Table 

Each ECU can be allocated a specific amount of memory using the Platform Resource Table in the 
Platform Architecture view of an AF3 project. 

Figure 26 shows how each component in the component architecture can be allocated a memory by 
using the Component Resource Table in the Component Architecture view of an AF3 project. 
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Figure 26: Memory Allocation in Component Resource Table 

 

   

 

 

 

 

 

 

 

 

 

 

 

The Component Resource Table in Figure 26 shows that each component requires a memory of 10 
units. The Platform Resource Table in Figure 25 shows that Generic_ECU_1 has a RAM of 30 units 
and Generic_ECU_2 has a RAM of 20 units. So the memory constraint ensures that a maximum of 
3 logical components can be deployed on Generic_ECU_1 and a maximum of 2 logical components 
can be deployed on Generic_ECU_2. 

8.2.4 Maximum Number of Nodes constraint 

This is the second kind of resource constraint that ensures that the generated deployment do not 
use more number of nodes than the one given by the user. Its main purpose is to avoid the 
unnecessary usage of the nodes. This constraint is fed into the SMT (satisfiability modulo theorem) 

Memory Constraints: 

 

Let us define two attributes for the element ‘Node’. ‘ram’, which is the total amount of memory 
allocated to the ECU (platform resource table) and ‘used_Memory’, which is the total amount of 
memory used by all the tasks deployed onto the ECU. A task has an attribute ‘mem’, which is 
the total amount of memory needed by the task itself.  

The purpose of memory constraint therefore is to ensure that none of the ECU’s runs out of 
memory, which is explained by the notation below. 
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file and the z3 solver finds whether a deployment is feasible or not. Figure 27 shows the input field 
where the user can give maximum number of nodes to be used while generating the deployments. 

 

Figure 27: Maximum number of nodes constraint 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To define this constraint in a simple manner, we iterate over all the nodes and for each node we 
check if there is at least one task allocated to it. If yes, this node is categorized as a used node, 
otherwise, an unused node. Then we count all the used nodes and this number should be less than 
the number given by the user as input. 

Referring to the architectures in the Figure 23 and Figure 24 and assuming that all the constraints 
mentioned above are taken into consideration, there can be no solution possible if the user inputs 
maximum number of nodes as 1. Let’s understand this scenario. The following table lists the 
resources available per element. 

Number of nodes constraint: 

 

Let us define for each task in T a property named ‘node‘, which defines the node onto which 
the task is allocated. Let there be a Boolean property for each node in N, named ‘used’, which 
indicates whether there is at least one task allocated to it. The following set of equations defines 
how this constraint works.  

 

Here, max_nodes is the maximum number of allowed nodes that the user gives as a constraint 
for deployment generation. The formula for calculating the total number of nodes is given below. 

 

‘Used’ is a Boolean property that each node possesses, and is defined as follows. 
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Element ASIL Value Memory 

Generic_ECU_1 ASIL-C 30 

Generic_ECU_2 ASIL-B 20 

BUS ASIL-B N/A 

Table 3: List of resources available per HW node 

Going with the results of the previous 3 constraints, the only possible deployment is that tasks ‘t2’, 
‘t4’ and ‘t5’ are allocated to Generic_ECU_1 and tasks ‘t3’ and ‘t6’ are allocated to Generic_ECU_2. 
If the user wants to allocate all the tasks on a single ECU, one way is to relax the memory constraint 
of the ECUs. Increasing memory of Generic_ECU_2 will do no good, since tasks ‘t2’ and ‘t4’ are 
ASIL-C compliant and cannot be allocated to an ASIL-B node. The only option in that case is to 
increase memory of Generic_ECU_1 so that it can accommodate all the components.  

However this example does not make much sense when we see the complexity and functionality of 
the modern embedded systems. But it is quite useful for elaborating how improving one constraint 
can degrade other deployment criteria, a concept known as Pareto-efficiency. For e.g. restricting the 
number of nodes might lead to an increase in end-to-end latency, due to reduction in parallelism.  

8.2.5 Cost constraint 

Developing a component according to a given ASIL means that a set of development and validation 
activities needs to be undertaken. They are translated into time, efforts and in the end costs, which 
vary with the specific ASIL prescribed to a component [19]. There can be many deployments possible 
that satisfy safety constraints and resource constraints, but in order to find the most desired and 
advantageous one, the problem needs to consider different cost implications.  

To illustrate this fact, let us consider a simple example. A function with a safety goal (SG) that 
requires ASIL B can be implemented with an architecture of two components which, assuming that 
they fail independently, may inherit ASILs B and QM or A and A respectively. When such options 
exist, cost typically provides the deciding criterion. Assuming a simple cost heuristic which has a 
logarithmic scale (i.e. ASIL QM=0; A=10; B=100; C=1000; D=10000), the following are the possible 
decompositions with the second one optimizing the cost. 

 

C1 (ASIL QM) + C2 (ASIL B): 0 + 100 = 100; 

C1 (ASIL A) + C2 (ASIL A): 10 + 10 = 20; 

C1 (ASIL B) + C2 (ASIL QM) = 100. 

This ASIL Decomposition example directs towards the fact that how a cost heuristic can impact 
finding an optimal solution from multiple feasible ones. This is analogous to our case where cost is 
considered as a constraint while generating a deployment, respecting all the other constraints. We 
have divided cost constraint into two sub parts, i.e. power consumption and cost factor.   

8.2.5.1 Power Consumption 

Another constraint for generating a deployment is total energy consumed by the hardware 
architecture. We have used a very naïve approach of calculating the total energy. Each ECU in AF3 
platform architecture can be annotated with a power value. This is shown in the figure below. 
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Figure 28: Power consumption annotation for ECUs in AF3 

 

Power is defined as energy per unit time (eq. 1). 20W is analogous to 20 Joules of energy consumed 
per unit of time. So total energy consumed by each ECU is “Power” times “non-idle time” of that ECU 
(eq. 2). The non-idle time of an ECU is the sum of duration of all tasks allocated to it (eq. 3).  

These individual energy consumptions are summed up to calculate the total energy consumption of 
hardware architecture which is then used as a constraint to generate the power efficient deployments 
(eq. 4). 

 

 

 

 

 

This constraints hence ensures that the total energy consumed by the hardware architecture (eq. 4) 
is less than or equal to the value given by the user at the time of deployment generation, as input in 
Figure 29. 
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Figure 29: Maximum energy consumption as deployment constraint 

Assuming each task has duration of 10 time units, and Generic_ECU_1 gets 3 tasks (t2, t4, t5) and 
Generic_ECU_2 gets 2 tasks (t3, t6), the total non-idle time Generic_ECU_1 and Generic_ECU_2 
is 30 and 20 time units respectively. Consequently, the total energy consumed by them is 600J and 
200J respectively. The total energy consumed by the hardware architecture is 800J, which satisfies 
the deployment constraint given by the user. 

Note: the ECU does consume energy while being in the idle state, but we consider this to be 
negligible in comparison with the energy consumed processing tasks and thus ignore it in our 
calculations.       

8.2.5.2 Cost factor 

The second constraint in this category is the “cost factor”, where each ECU is annotated with a cost 
value. Higher the ASIL, higher the development cost and efforts. This constraint is similar to 
“Maximum no. of nodes constraint” in a way, since it tries to avoid the unnecessary usage of the 
hardware nodes by reducing the maximum cost allowed during deployment generation. But the main 
difference is optimizing the overall technical architecture cost by trying to move out the hardware 
nodes with higher development cost, as opposed to kicking any node out of the development 
process. Figure 30 shows this constraint. 
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Figure 30: Maximum cost allowed as deployment constraint 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8.3 Analysis of results 

 

Cost Constraint: 

 

Similar to the power consumption annotation used for ECUs (Figure 28), we can annotate them 
with Cost Factor as well. The main purpose of cost constraint is to reduce the overall 
developmental cost of the technical architecture by reducing the usage of the higher ASIL 
nodes.  

Let “used” be a Boolean property of an ECU indicating whether the ECU has been included in 
the deployment or not. Let “cost” be a property of an ECU that represents its developmental 
cost. Then, the “total_cost” is formulated as below: 
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Figure 31: Used logical architecture example 

    

So far we have seen an example that is good enough to explain how all the constraints work. 
Considering the complexity of modern safety critical systems, the trend is for these architectures to 
become systems of systems, where multiple functions are delivered by complex networked 
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architectural topologies and where functions can share components [19].  Figure 31 shows a 
complex logical architecture having 48 components, each with their own safety and memory 
requirements. The technical architecture used to deploy these components is shown in Figure 32. 

 

Figure 32: Technical architecture containing nodes of all possible ASIL levels 

 

The safety requirement of all the components in the technical architecture is shown in the table 
below. The memory required by each component is assumed to be 10 units.  

ASIL Level Components 

ASIL-D c1, c2, c3, c4, c5 

ASIL-C c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17 

ASIL-B c18, c19, c20, c21, c22, c23, c24, c25, c26, c27 

ASIL-A c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39  

QM c40, c41, c42, c44, c45, c46, c47, c48 

Table 4 ASIL allocation for components 
 

The cost, PMHF and ASIL of each ECU is given in the table below. 

Model 
Element 

ECU1 ECU2 ECU3 ECU4 ECU5 ECU6 ECU7 ECU8 ECU9 

PMHF 0.1 0.1 0.3 0.4 0.6 0.6 0.8 0.9 1.0 

ASIL D D C C B B A A QM 

Cost 10 10 8 8 5 5 3 3 1 

Table 5 Cost, PMHF and ASIL-Capability Attributes of HW Nodes 

Each ECU has been allocated a memory of 100 units. This means, an ECU can carry at most 10 
logical components, since each of them require a memory of 10 units.  
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In the following section we analyze the effects of reducing the overall cost of technical architecture 
on the generated deployment. Also, we analyze the effects of using “Maximum number of nodes” 
constraint in deployment generation and how it is different from the “Cost Constraint”. Section 8.3.1 
shows the results of using “Cost constraint” constraint and section 8.3.2 shows the results of using 
“Maximum number of nodes”. Section 8.3.3 shows the effect of cost on E2E latency and section 
8.3.4 shows the effect of optimizing for cost on Bus load (# Bus signals). 

8.3.1 Cost Constraint 

For analyzing the effects of Cost Constraint on the generated deployment, we assume two different 
cases, one where the cost is non-uniform and the other where the cost is uniform. The first case 
entails a staggered cost distribution reflecting real world scenarios, i.e., the fact that developing a 
node for higher ASIL capability means more stringent development and higher grade components, 
requiring more development effort and time as compared to developing a less stringent node. This 
translates to higher cost. The second case, where the cost is uniform, makes for an interesting 
thought exercise, allowing us to analyze which nodes are kicked out of the deployment first, when 
different ASIL capability nodes are priced the same. This highlights the difference and importance of 
setting a relevant cost distribution functionality to the nodes. 

Reducing the maximum cost allowed will lead to reduction in number of nodes used, but which nodes 
are removed from the deployment generation is worth analyzing. Assuming the PMHF constraint, 
BUS constraint and Memory constraint hold, we now analyze the effect of cost reduction.  

 

Figure 33: Effect of Cost Constraint (non-uniform cost) on deployment (ASIL-D BUS) 

Figure 33 shows a plot of maximum cost allowed vs no. of nodes used in the deployment. The BUS 
is kept as ASIL-D compliant. By specifying the maximum cost allowed for a deployment generation, 
Cost Constraint forces the Z3 solver to find a deployment that does not exceed this cost. The graph 
shows that by reducing the max cost, we have been able to find a deployment that do not violate 
any of the constraints and reduces the node usage, hence optimizing the overall development cost 
of the hardware architecture. For e.g. for a maximum cost of 53 we have a deployment consisting of 
1 QM, 2 ASIL-A, 2 ASIL-B, 2 ASIL-C and 2 ASIL-D ECUs, whereas for a maximum cost of 37, we 
have a deployment consisting of 1 QM, 1 ASIL-A, 1 ASIL-B, 1 ASIL-C and 2 ASIL-D ECUs.  

Figure 34 illustrates the scenario where the development costs of nodes with different stringencies 
are assumed to be same (In our case, 6). Since the cost is uniform, the Cost constraint can kick out 
any node from the deployment generation process. For e.g. for maximum cost of 37, the deployment 
we got has 1 ASIL-A, 2 ASIL-B, 1 ASIL-C, and 2 ASIL-D nodes. But if we compare it with Figure 33, 
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we have a deployment containing 1QM, 1 ASIL-A, 1 ASIL-B, 1 ASIL-C and 2 ASIL-D. This shows 
the impact of different cost heuristics in generating a deployment that optimizes the development 
cost and efforts. Similar analysis has been done by Azevedo et al in [19]. 

  

 

Figure 34: Effect of Cost Constraint (uniform cost) on deployment (ASIL-D BUS) 

 

 

Figure 35: Effect of Cost Constraint (non-uniform cost) on deployment (ASIL-C BUS) 

Figure 35 and Figure 36 show the similar analysis for ASIL-C Bus. There is no deployment possible 
if the Bus is kept as ASIL-B compliant or lower. This is because, an ASIL-B bus forces the component 
c1-c17 to be deployed on the same ECU, but the memory constraints do not allow any ECU to carry 
more than 10 tasks on it.  
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Figure 36: Effect of Cost Constraint (uniform cost) on deployment (ASIL-C BUS) 

8.3.2 Number of nodes constraint 

To illustrate the effect of this constraint on the deployment generation process, we have kept 
Maximum cost allowed to a fixed value say 54. Instead of reducing the max cost allowed, we will 
reduce the maximum no. of nodes in each iteration. Figure 37 shows the effect of this constraint on 
the generated deployment. Comparing with Figure 33, for 6 nodes, the best deployment that it can 
find contains 1 ASIL-A, 2 ASIL-B, 1 ASIL-C and 2 ASIL-D leading to a cost of 41, whereas the best 
deployment found by “cost constraint” for 6 nodes includes 1 QM, 1 ASIL-A, 1 ASIL-B, 1 ASIL-C and 
2 ASIL-D, yielding a cost of 37. So “cost constraint” can find a deployment using as many nodes as 
used by “max no. of nodes” constraint, but with a lower technical architecture development cost.    

 

 

Figure 37: Number of nodes constraint (ASIL-D Bus) 

Figure 38 shows the similar analysis for ASIL-C bus. Comparing it with Figure 35, the best 
deployment found by “maximum no. of nodes” constraint for 6 nodes includes 1 QM, 1 ASIL-A, 2 
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ASIL-C and 2 ASIL-D yielding a cost of 40, whereas the best deployment found by “Cost constraint” 
for 6 nodes includes 1 QM, 2 ASIL-A, 1 ASIL-C and 2 ASIL-D, yielding a cost of 35.   

 

 

Figure 38: Number of nodes constraint (ASIL-C Bus) 

This indicates how “Cost constraint” can outdo the “Number of nodes” constraint by not only finding 
a deployment that avoids unnecessary usage of the nodes, but also by finding a deployment that 
optimizes the cost by using less stringent ASIL nodes wherever necessary. 

8.3.3 End to end latency vs Cost 

 

Figure 39: E2E latency vs cost 

 

Figure 39 shows a plot between the E2E latency and the maximum cost allowed. Since the reduction 
in the cost, reduces the number of the nodes used in the deployment generation, this, therefore, 
leads to a rise in latency as there will be more tasks scheduled to run on a single ECU. In other 
words, the degree of parallelism to task scheduling will be reduced. 
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8.3.4 Bus Load vs Cost 

 

Figure 40: Bus load vs cost 

Figure 40 shows a plot between the cost and the bus load. Currently in AUTOFOCUS3, the bus load 
is measured in terms of number of bus signals that are sent between the components over the bus. 
More the bus signals, more the bus load. The plot indicates that the bus load reduces with the 
number of nodes since more components are deployed to the same ECU, but this might not hold 
true always. It depends on the distribution of the components onto the nodes. If the communicating 
components are allocated to same ECU, the number of bus signals reduces. If the communicating 
components are allocated to different ECUs, the number of bus signals increases. Hence, there can 
be an anomaly where the communicating components are deployed to different ECUs even with the 
reduction in the number of nodes used.    

 

8.4 Conclusion 

The previous chapter has shown the varying results obtainable by manipulating different constraints 
in a multi-criteria optimization approach, as well as the interactions between the criteria, enabling 
optimization of constraint values by various optimization approaches. 
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