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3 Executive Summary 

This work task targets the topics of safety case modeling and documentation according to ISO 
26262. 

An overview of the relevant sections of ISO 26262 based on the requirements allocated to this work 
task is presented.  

Since it is the objective to develop a Meta-model extension for safety cases the current version of 
EAST-ADL is analyzed and gaps identified. Proposals for the extension of EAST-ADL are given. 

The proposed methodology for safety case documentation in accordance with ISO 26262 is pre-
sented. Methods of how to use the provided safety case capability in a generic as well as in a pattern-
based approach are explained.  

Finally, the contribution of this work task to the collective SAFE Meta-model, which is developed and 
used cooperatively with the affiliated ITEA2 SAFE Project and which is based on EAST-ADL, is 
presented.  
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4 Introduction and overview of document 

The document at hand provides information about a methodology for safety case modeling and doc-
umentation and a proposal for the extension of the collective SAFE Meta-model, which is developed 
and used cooperatively with the affiliated ITEA2 SAFE Project, which enables its use in a model-
driven development environment. In the following subsection the scope of the work task as well as 
the structure of the document is presented. 

4.1 Scope of WT 3.4 

Embedded in work package 3, work task 3.4 deals with the safety case modeling including the ability 
to describe artifacts of the SAFE Meta-model in a safety case relevant context, as well as an expres-
sion of relations between artifacts in that context. The basis for this work task is the structured argu-
mentation notation known as the Goal Structuring Notation (GSN) which is presented in section 6. 
WT 3.4 aims to provide a methodology for argumentation about safety cases and a Meta-model 
extension suitable for the collective SAFE Meta-model. Furthermore WT 3.4 explores how the pro-
vided methodology can be used in a pattern-based approach. In order to be able to do so, mainly 
the following artifacts and their interrelations are considered: 

 

Hazard 

Hazards represent the potential source of harm and form a key aspect of the hazard analysis and 
risk assessment and a focal point for safety activities. A concept to express hazards in formal as well 
as informal formulation is provided by a SAFE work task. 

Hazardous Event 

Hazardous events are relevant combinations of hazards and operational situations in a given oper-
ating mode. A SAFE work task develops a suitable representation including a concept for hazardous 
events shall enable the classification according to the parameters severity, probability of exposure, 
and controllability. Based on these parameters the ASIL classification is performed which is be sup-
ported by the Meta-model concept. Hazardous events can be categorized into general problem pat-
terns that, in their turn, result in general solution patterns which can be collected into libraries that 
include the corresponding safety case template. 

Safety Goal 

Safety goals are derived from hazardous events and enables the expressions and documentation of 
safety goals with their respective parameters and association with a safe state (“operating mode of 
an item without an unreasonable level of risk” [1]). The safety goal is the starting point for any safety 
case. 

Functional Safety Concept 

The functional safety concept details the approach that will be used to counteract or mitigate the 
effects of the hazardous event and satisfy the corresponding safety goal(s). Functional safety con-
cept can be categorized into known solution patterns, e.g., use redundancy to overcome the low 
reliability of a single channel or a source of common cause failures. 

Technical Safety Concept 

The technical safety concept describes the actual implementation details of the corresponding func-
tional safety concept. E.g., redundancy can be achieved by using a homogenous hardware redun-
dancy pattern, or a software logical redundancy pattern, according to the requirements of the situa-
tion. 
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4.2 Structure of document 

The document is structured as follows: 

Subsequent to this introduction an overview on the parts of ISO 26262, which are relevant for safety 
case modeling and documentation, is given in section 5. 

Within chapter 6, the methodology for safety case description is explained. To do this, in a first step 
some background information and motivation is given, followed by a general introduction to the meth-
odology used. Safety case description elements and their relations are discussed in section 6.2. An 
overview of testing of safety cases is given in section 6.3.  

Section 7 discusses safety argumentation within EAST-ADL. EAST-ADL is an architecture descrip-
tion language (ADL), which has been developed in various projects in which both automotive vendors 
and users cooperated, where the objective was to define an ADL tailored to the needs of the auto-
motive industry. On the one hand, the current version of EAST-ADL and in particular the dependa-
bility part is described und studied from a safety case perspective. On the other hand, some pro-
posed extensions from parallel research and industrial projects to this current version are explained 
which introduce or enhance the possibility to perform safety case documentation in compliance with 
ISO 26262. The version referenced in this document, published at the time of the first version of the 
deliverable at ( www.east-adl.info ), is EAST-ADL V2.1 [44]. 

The contribution of this work task to the collective SAFE Meta-model is described in section 8. Within 
this section an overview on the part of the Meta-model as well as a detailed description of the classes 
and links used to construct the Meta-model is presented. Moreover, an example for the application 
of the Meta-model for safety case documentation is presented. 

Section 9 gives an overview of pattern-based approaches and details the use of solution patterns for 
the generation of safety case skeletons or templates. It proposes a holistic approach to information 
encapsulation for design pattern documentation and the reuse of safety mechanisms. The approach 
is based on a modular library encompassing argumentation elements as well as development arti-
facts. The approach is supported by examples, generalizing the description of safety mechanisms, 
i.e. so-called tactics, within the scope of the SAFE Meta-Model. 

Finally, in section 10 a summary and conclusion are given. 
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5 Overview on ISO 26262 

Addressing the development process of electric / electronic components for passenger cars, the ISO 
26262 “Road vehicles – Functional safety” came into effect in November 2011. This standard intro-
duces a safety lifecycle which “encompasses the principal safety activities during the concept phase, 
product development, production, operation, service and decommissioning” ([1], part 2, p.3) and 
which can be seen as a guideline that demands a risk-assessment based development approach 
with seamless traceability.  

Within this section, an overview on the relevant parts of ISO 26262 with regard to safety case mod-
eling is given. The selection of the presented parts is based on the requirements allocated to this 
work task from the ISO26262 analysis activities in WP2.  

However, as the purpose of a safety case is, simply put, to link safety goals to the solution fulfilling 
them using clear lines of argumentation, it is clear that safety case modeling capability is relevant for 
virtually all aspects of the ISO26262 activities covered by the SAFE Meta-model, in order to provide 
the link between generated artifacts and the requirements driving them. 

In Figure 1 an overview on the different parts of ISO 26262 is given, with relevant parts directly 
derived from requirements allocation colored red and other safety case modeling relevant parts col-
ored blue. 

 

 

Figure 1: Overview on ISO 26262 (Relevant parts highlighted) 
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In the following, an overview on the relevant aspects from the respective ISO26262 parts is given. 

 

Part 3: Concept Phase 

The concept phase comprises mainly four different parts, namely the item definition, the initiation of 
the safety lifecycle, the hazard analysis and risk assessment, and the functional safety concept. 
These parts are explained in the following subsections. 

 

Item Definition 

The objective of the definition is to provide an overview on the item, the implemented functionalities 
and the dependencies as well as interactions of the item with the environment or other items of the 
vehicle. This information shall be provided in form of functional and non-functional requirements of 
the item. Moreover, the item definition includes a boundary description of the item as well as of 
elements of the item, i.e. a description of the interfaces and the expected as well as provided func-
tionalities and interactions. 

Initiation of the Safety Lifecycle 

During the sub-phase of the initiation of the safety lifecycle it is distinguished between new develop-
ments and modifications of existing items. Depending on this the entire safety lifecycle or a tailored 
version needs to be applied. 

Hazard Analysis and Risk Assessment 

In general, the hazard analysis and risk assessment takes place based on the item definition and 
evaluates present risks without taking into account internal safety mechanisms of the item. This 
serves as the basis for defining safety goals and deriving the functional safety concept and its re-
quirements, as shown in Figure 2. 

 

 

Figure 2: Concept phase activities after HA/RA carried out [1] 

 

In a first step of the analysis, possible operational situations that are scenarios which might occur 
during the vehicles lifetime are collected. In this step it is important also to cover situations that arise 
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through foreseeable misuse of the vehicle. Subsequent to the definition of operational situations 
hazards which are related to the item need to be determined. Although the hazards need to be 
related to the item and are associated with a malfunction of the item, the description takes place on 
vehicle level, i.e. the resulting behavior at vehicle level needs to be determined. After identifying the 
hazards, relevant combinations of both, hazards and operational situations, are captured as hazard-
ous events. These hazardous events are subject to classification according to the three parameters 
controllability, probability of exposure and severity. Based on the parameters the ASIL (Automotive 
Safety Integrity Level) is determined and assigned to the hazardous event. In case the determination 
of the ASIL leads to ASIL A, B, C or D, a safety goal has to be derived from the particular hazardous 
event. These safety goals are the top-level safety requirements for the item and serve as a basis for 
the later development of the functional safety concept. 

Functional Safety Concept 

Subsequent to the hazard analysis and risk assessment the functional safety concept is developed. 
The functional safety concept consists of functional safety requirements and preliminary architectural 
assumptions. The functional safety requirements which are derived from the safety goals are allo-
cated to the elements of the item. 

 

Part 4: Product Development – System Level 

During this phase the development of the item from the system level perspective takes place. The 
process is based on the concept of a V-model. Starting point (on the upper left side) is the specifi-
cation of the technical safety requirements which is followed by the development of the system ar-
chitecture and the system design. The way up to the upper right point of the V-model is built by the 
integration, verification, validation and functional safety assessment activities. 

 

Part 5: Product Development – Hardware Level 

During this phase the development of the item from the hardware perspective is performed. The 
process is again based on a V-model, going down with the specification of hardware safety require-
ments as well as hardware design and implementation and back upwards with hardware integration 
and testing. 

 

Part 6: Product Development – Software Level 

During this phase the development of the item from the Software perspective is performed. The 
process is again based on a V-model, going down with the specification of Software safety require-
ments as well as Software design and implementation and back upwards with Software integration, 
testing and validation. 

 

Part 8: Supporting Processes 

The relevant requirements for this work task arise from two sections of part 8 (supporting processes), 
namely “Verification” and “Documentation”, with the following overview limited to these sections. 

Verification 

Within the section “Verification” requirements are given which need to be fulfilled in order to ensure 
that the work products comply with their requirements. 

Documentation 

Within the section “Documentation” requirements are given which need to be fulfilled in order to 
ensure that the work products and processes and all relevant links are properly documented. 
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Part 9: Automotive Safety Integrity Level (ASIL)-oriented and Safety-oriented Analyses 

The assigned and accepted requirements for this work task arise from one section of part 9 (auto-
motive safety integrity level (ASIL)-oriented and safety-oriented analyses), namely “Safety anal-
yses”. An overview of only this section of part 9 is given. 

Safety Analyses 

With the help of the safety analyses consequences of faults and failures on functions, behavior and 
design of items and elements shall be examined. Moreover, the analyses provide information on 
causes and conditions that could lead to the violations of a safety goal or safety requirement. Addi-
tionally, the analyses contribute to the identification of new hazards not discovered during the hazard 
analysis and risk assessment. 
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6 Methodology for Safety Case Description 

After presenting the relevant parts of ISO 26262 covered by the requirements from WP 2 allocated 
to this work task, we now present the methodology we propose to express safety cases. 

6.1 Introduction 

Although ISO 26262 requires looking at the risk emanating from the item without considering other 
elements of the vehicle architecture and without considering internal safety measures (cp. ISO 
26262:3-2011, requirement 7.4.1.2), this risk itself is determined by the role of the item in the vehicle 
architecture. An example for this is that an EPS (electric power steering) system can be realized in 
a way that it can be overruled in any case by the driver. This would lead to a totally different classi-
fication compared to the realization of an EPS which cannot be overruled by the driver due to a too 
strong impact [45]. 

Therefore the model-based development process foreseen by SAFE-E has to take into account not 
only the item features but also all other elements / attributes that potentially contribute to the risk on 
vehicle level. The architecture suitable for the consideration of these needs has to fulfill the following 
aspects: 

• there is a hierarchical architecture 

• environmental aspects have to be distinguished 

• functional / technical aspects have to be distinguished 

• within technical aspects the hardware and software aspects need to be distinguished 

The resulting architecture which is used in the SAFE Metamodel [48] is presented in the following 
figure. 

 

Figure 3: Overview on Structure of Architecture 

Due to the structure of the architecture matrix shown the ASIL allocation could be different. Moreo-
ver, ASIL decomposition could be applied on any horizontal level, which has influences to the lower 
horizontal levels. Analogous to this, safety requirements could be allocated to different elements 
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within the horizontal level; this implies that a safety mechanism could be implemented into a sensor 
or alternatively into the controller or the actuator. By applying graceful degradation also the technical 
behavior in case of failure could be different and again this would lead to different inheriting of safety 
requirements to lower horizontal level.  

As already depicted in the previous section 5, ISO26262 requires a detailed traceability linking re-
quirements and their fulfillment to the underlying architecture in a comprehensible manner. This link, 
between safety goals and the solutions fulfilling them, using clear lines of argumentation is, simply 
put, the purpose of a safety case. 

A common definition of a safety case is “a documented body of evidence that provides a convincing 
and valid argument that a system is adequately safe for a given application in a given environment”, 
whereby an argument is defined as “a connected series of claims intended to establish an overall 
claim.” In attempting to persuade others of the truth of an overall claim, we make supporting claims. 
These claims may themselves need further support. This gives rise to a hierarchy of claims (repre-
senting a logical chain of reasoning) by which an argument is established. 

Given the multitude of generated safety-critical artifacts, let alone non safety-critical ones, it is clear 
that establishing this link through tracing alone is not possible, especially since simple traceability 
does not provide the expressiveness required for adequately describing the relations of various arti-
facts within a safety case context. This gives rise to the need for a dedicated safety case specific 
view on the artifacts. 

6.1.1 Background and Motivation 

“A safety case should communicate a clear, comprehensive and defensible argument that a system 
is acceptably safe to operate in a particular context.” [13] 

The concept of the ‘safety case’ has already been adopted across many industries (including de-
fense, aerospace, nuclear and railways), see [1], [31], [34], [35], [36] and [37] and has been empha-
sized in numerous research works such as [33], [38], [39] and [40]. Studying the safety standards 
and guidance relating to these sectors, it is possible to identify a number of definitions of the safety 
case – some clearer than others. The definition given above attempts to cleanly define the core 
concept that is in agreement with the majority of the definitions we have discovered. 

According to [13], a commonly observed failing of safety assessments is that the role of the safety 
argument is often neglected. In such safety cases, many pages of supporting evidence are often 
presented (e.g. hundreds of pages of fault trees or Failure Modes and Effects Analysis tables), but 
little is done to explain how this evidence relates to the safety objectives. The reader is often left to 
guess at an unwritten and implicit argument. 

Both argument and evidence are crucial safety case elements that must go hand-in-hand. Argument 
without supporting evidence is unfounded, and therefore unconvincing. Evidence without argument 
is unexplained; it can be unclear how (or even if) safety objectives have been satisfied.  

Safety cases thus have to be supported by the SAFE Meta-model, with the following rationale: 

• The structured information management can be used as part of a safety argument in a safety 
case, and gives support to systematic safety/reliability analysis. 

• The ability to support a safety case at a software architecture description level is important 
since it addresses an expanding area of functionality where the complexity is high. 

• Traceability between the safety case and the design information is made possible, facilitating 
the work of the safety engineer, i.e. identifying the right information. 

• Facilitate the system development of safety critical systems, by providing a link to where in a 
safety argument a certain “Entity” or “Item” under change is used. (Impact analysis of safety 
related systems) 
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6.2 Safety Case Description Elements and Relations 

Within this section the description of the safety case description elements we use from GSN and 
their relations is given. 

In order that safety cases can be developed, discussed, challenged, presented and reviewed 
amongst stakeholders, and maintained throughout the product lifecycle, it is necessary for them to 
be documented clearly. The documented argument of the safety case should be structured to be 
comprehensible to all its stakeholders. It should also be clear how the evidence is being asserted to 
support this argument.  

GSN has been standardized into a first version since November 2011 and the specification docu-
ment is readily available for free download. It is the primary source of the following two subsec-
tions. 

The following subsection 6.2.1 gives a description of the standard elements used to describe artifacts 
while the subsequent section 6.2.2 details the types of relationships and the possible combinations 
used. Figure 4  depicts an example of the use of GSN [12]. 

 

Figure 4: Example Goal Structure 

 

 

6.2.1 Specification Elements 

GSN [12] uses the following basic elements to describe the role of artifacts within a safety case: 

Goal 

• rendered as a rectangle,  

• presents a claim forming part of the argument. 
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• One or more sub-goals may be declared for a given goal. This structure then asserts that if 
the claims presented in the sub-goals are true, this is sufficient to establish that the claim in 
the main goal is true. 

Strategies 

• rendered as a parallelogram,  

• describe the nature of the inference that exists between a goal and its supporting goal(s) 

• and are used to describe the nature of the inference which is asserted as existing between 
sub-goals and the parent goal. 

Solutions 

• A solution, rendered as a circle, presents a reference to an evidence item or items. 

• Multiple solutions may satisfy a goal. 

• Multiple goals may be satisfied by one solution. 

Contexts 

• Claims can only be asserted to be true in a specified context. Context elements are used to 
make this relationship clear.  

• A context, rendered as an oblong rectangle with rounded out sides, presents a contextual 
artifact. This can be a reference to contextual information, or a statement. 

• Where used, contexts define or constrain the scope over which the claim is made. 

Assumptions 

• An assumption is an intentionally unsubstantiated statement. The scope of an assumption is 
the entire argument. Having connected an assumption to a goal, the assumption is taken to 
be connected to the entirety of the argument supporting this goal. 

• Therefore, it is not necessary to restate the assumption in the supporting argument. 

• rendered as an oval with the letter ‘A’ at the bottom-right. 

Justifications 

• rendered as an oval with the letter ‘J’ at the bottom-right,  

• presents a statement of rationale, 

• and does not alter the meaning of the claim made in the goal, but provides rationale for its 
inclusion or its phrasing.  

• Should an equivalent justification be required elsewhere in the argument, it will need to be 
re-stated or re-linked. 

 

Furthermore it is possible to represent undeveloped entities, rendered as a hollow diamond applied 
to the center of an element, indicating that a line of argument has not been developed. It can apply 
to goals (as below) and strategies. 

A specific instance of undeveloped entities is an undeveloped goal, rendered as a rectangle with 
the hollow-diamond ‘undeveloped entity’ symbol at the center-bottom, presenting a claim which is 
intentionally left undeveloped in the argument. 
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6.2.2 Relations and possible expressions 

The core elements described in the previous section are linked using the following types of relation-
ships [12]: 

SupportedBy 

• rendered as a line with a solid arrowhead, allows inferential or evidential relationships to be 
documented.  

• Inferential relationships declare that there is an inference between goals in the argument. 
Evidential relationships declare the link between a goal and the evidence used to substantiate 
it.  

• Permitted connections are:  

o goal-to-goal,  

o goal-to-strategy,  

o goal-to-solution,  

o strategy to goal. 

 

InContextOf 

• rendered as a line with a hollow arrowhead, declares a contextual relationship.  

• Permitted connections are: 

o goal-to-context, 

o goal-to-assumption,  

o goal-to-justification,  

o strategy-to-context,  

o strategy-to-assumption 

o and strategy-to-justification. 

 

6.2.3 Steps for building a safety case goal structure 

Works of Kelly and McDermid, culminating in the GSN standard, base on well-revised argumentation 
works and suggest a multi-step approach to formulating goal structures and hence building safety 
cases, as seen in the following subsections. 

Top Down: When classically working from Safety Goals 

For a classic staged approach to safety arguments, Kelly [5] defines six steps in the top-down de-
velopment of a goal structure: 

1. Identify the goals to be supported; 

2. Define the basis on which the goals are stated; 

3. Identify the strategy used to support the goals; 

4. Define the basis on which the strategy is stated; 

5. Elaborate the strategy (and proceed to identify new goals – back to step 1), or step 6; 

6. Identify the basic solution. 
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Bottom-Up: When working from existing evidence 

When analyses evidence already exists or when an existing safety case needs updating, it is possi-
ble to adapt Kelly’s six steps for top-down GSN development, into a process which can be used to 
develop a goal structure from the bottom up [12]: 

1. Identify evidence to present as GSN solutions; 

2. Infer ‘evidence assertion’ claims to be directly supported by these solutions, and present these as 
GSN goals; 

3. Derive higher-level sub-goals that are supported by the evidence assertions; 

4. Describe how each layer of sub-goals satisfies the parent goal (i.e. strategy); 

5. Check that any necessary contextual information is included; 

6. Check back down the structure for completeness; 

7. Join the resulting goal structure to a known top goal or a set of sub-goals. 

Using these methods in conjunction with the steps explained in section [8.2], it is possible to generate 
and document safety cases from Model elements directly. An implementation for safety case docu-
mentation and assessment as part of the SAFE project was carried out by Vector inside its commer-
cial tool PreeVISION [59].  

6.3 Testing of safety cases 

Safety cases can have more than one role, depending on when and how they are generated and 
used. Each of these roles defines what types of tests can be performed and to which means. 

Descriptive Safety Cases 

Use: 

When goal structures are generated to argue about existing products or during products develop-
ment a safety case evolves which describes the safety of the system under development and the 
fulfillment of its safety goals. This safety case describes the status quo and aims at providing a clear 
and justifiable argument that the safety goals are met.  

Testing: 

Using the set of relation rules identified in Section 6.2.1 and 6.2.2, e.g., each Goal must resolve to 
a Solution, in a model-based development environment it is possible to perform completeness and 
consistency checks on this type of safety case. 

 

Prescriptive Safety Cases 

Use: 

In conjunction with the use of patterns, once a decision is made to solve a known problem or use a 
trusted solution pattern or purchase a COTS component, the developer can directly create an in-
stance of the (partial) safety case template or skeleton for the known pattern/component. It thus 
becomes possible to know what the safety case should look like and to use this as development 
guideline. 

Testing: 

Using the generated safety case skeleton as a reference, the developer can test existing solutions 
against it to see whether their arguments hold. 

The extent of the testing depth and automation rely on how high the integration of the safety case 
elements into the development artifact landscape is. 
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7 Safety Cases with EAST-ADL 

Within this section the current status of the architecture description language EAST-ADL V2.1 with 
regard to safety cases is described. Furthermore, proposals for an extension of the EAST-ADL con-
cept are described which could lead to an enhancement of the possibility to model and document 
safety cases according to ISO 26262. 

EAST-ADL introduces different levels of abstraction within a hierarchical modeling concept which 
facilitates controlling the complexity of systems. These levels are: 

• Vehicle level, 

• Analysis level, 

• Design level, 

• Implementation level, and 

• Operational level. 

7.1 Current status of EAST-ADL and other suggested extensions 

Besides the different abstraction levels EAST-ADL includes several packages like, for instance, the 
variability package, the timing package, and the dependability package which is of special interest 
for this work task. An overview on the dependability package [44] is given in Figure 5. 

 

Figure 5: EAST-ADL Dependability Package [44] 

As it can be seen in the figure, the basic artifacts needed for expressing safety activities, like for 
instance hazards, hazardous events and safety goals, are already included. For this work task it 
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should be the objective to reuse as much as possible the already existing content provided in EAST-
ADL. 

Furthermore, EAST-ADL (version 2.1.9.1) includes Safety Case description capability in the Safe-
tyCase Sub-Package [44], shown in Figure 6. 

 

 

Figure 6: EAST-ADL Safety Case [44] 

These various elements are described in the following subsection [EAST-ADL Domain Model Spec-
ification 2.1.9.1)] and their class relations are shown in detail in Figure 7: 

Claim:  

A Claim represents a statement, the truth of which needs to be confirmed and which has associations 
to the strategy for goal decomposition and to supported arguments. It also holds associations to the 
evidences for the SafetyCase. 

Ground:  

Claim is based on Grounds (evidences) - specific facts about a precise situation that clarify and make 
good the Claim. 

Ground represents statements that explain how the SafetyCase Ground clarifies and make good the 
Claim. 

Ground has associations to the entities that are the evidences in the SafetyCase. 

LifecycleStageKind:  

The SafetyCase should be initiated at the earliest possible stage in the safety program so that haz-
ards are identified and dealt with while the opportunities for their exclusion exist. 

The LifecycleStageKind is an enumeration meta-class with enumeration literals indicating safety 
case life cycle stage. 

SafetyCase:  

SafetyCase represents a safety case that communicates a clear, comprehensive and defensible 
argument that a system is acceptably safe to operate in a given context. 

Safety Cases are used in safety related systems, where failures can lead to catastrophic or at least 
dangerous consequences. 
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Figure 7: EAST-ADL Ground, Warrant and Claim Diagram [44] 

 

The structures shown in Figure 7 are in turn based on the Toulmin Model of Argumentation defined 
in Stephen Toulmin’s 1958 work “Uses of Argumentation” [2], the main concept of which is shown 
graphically in Figure 8. 

 

 

Figure 8: Toulmin Argumentation Concept Elements 

Expressing context, which is a central concept of safety argumentation, and differentiating assump-
tion from strategies or justifications are difficult or unclear using this scheme. Furthermore, Toulmin 
argumentations as described here follow a forward facing line of argumentation, i.e., the claim is 
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valid unless refuted, which may be useful when speaking of innocence in a court of law, but not 
conducive to good engineering in the safety critical engineering domain. We have chosen to expand 
this capability using GSN, to specifically offer a few extra elements such as context, assumption and 
justification elements, as will be seen in the following section. 

7.2 Proposed extensions to EAST-ADL 

Investigating the current capability to express safety cases in EAST-ADL, as shown in the previous 
section 7.1, showed that there is a potential need for extensions, according to the description given 
in Section 6. Our research into safety case modeling has favored the Goal Structuring Notation 
(GSN), which was introduced in Section 6, and has already been successfully used in the nuclear, 
aerospace and railway domains. Extension of EAST-ADL to include Elements of GSN has already 
been suggested in several ongoing research projects, such as the proposed safety case extensions 
for EAST-ADL2 in the ATTEST project. The approach followed in this project is most similar to our 
exploration and findings and will be used here where suitable to avoid repetition. The potential ex-
tensions together with their rationale are described in the following.  

Introduction of Safety Case Class with GSN Notations 

Instead of using the current SafetyCase we support the extension of EAST-ADL with a Safety Case 
class based on GSN as suggested in [3] and shown in Figure 9. 

 

Figure 9: Proposed EAST-ADL2 extension for modeling safety cases in ATESST Project[3] 
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The Safety Case class is centered on the Safety Goal, which can be decomposed directly into 2 or 
more goals or indrectly via the use of a strategy. Each goal shall resolve to at least one solution. 
This rule can be used in section 6.3 to test safety cases for completeness and consitency. Contexts 
and justification are presented and assumptions can be included as well, as seen in the internal class 
diagram, shown in Figure 10 with the safety goal forming the center of the safety case structure. The 
elements and relations shown in Figure 10 were previously explained in section 6.2.  

  

Figure 10: Internal Structure of proposed Class Safety Case 

 

Linking Safety Case Class to EAST-ADL Models 

An especially important element of the class Safety Case is the Solution entity, which represents 
any information that supports or, in its ultimate form, proves that the Goal it is connected to is 
achieved. As such, the information can be of many types. In Figure 11 a class diagram of Solution 
is presented which shows how the Solution entity can be specialized to hold the wide array of 
information that can support a claim. The second level in the hierarchy can consist of general EAST-
ADL classes that could supply this information, as shown. 

 

The safety case argument can be seen as consisting of two general branches; the product safety 
argument and the SAFE process argument. The later part of a safety case argument is considered 
to be out of scope of the EAST-ADL metamodel since it is supposed to be independent of 
methodology. However, such process parts as are covered in activities of WP6 can be used in this 
argumentation as well, i.e. support of assessment activities and application rules etc. 



Safe-E – a Eurostars project                       D3.4b 

 2014 The SAFE-E  Consortium  24 (58) 

 

Figure 11: Possible links from EAST-ADL to Solution Element 

 

There are several alternatives to integrate the safety case package to the EAST-ADL Meta-model: 

1- A collection of EAST-ADL entities are associated with the safety case entity. 

2- EAST-ADL2 entities are directly associated with the safety case entity. 

3- GSN entities are directly associated with EAST-ADL entities. 

While the first two alternatives seem easier the traceability they allow is also much limited. 
Traceability is a central as well as mandatory aspect of safety-critical development and as such we 
suggest following alternative 3 were possible. 

 

A potential first instance of this alternative would be to link many of the output results of the EAST-
ADL V&V (verification and validation) package to the Safety Case Solution element, as shown in 
Figure 9 and Figure 11 and discussed in section . 
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8 Contribution to the SAFE Meta-model 

Within this section the contribution of WT 3.4 to the collective SAFE/SAFE-E Meta-model is de-
scribed. At the beginning an overview about the model is given which is followed by the detailed 
description of the classes and interconnections for the simple class option.  

8.1 Overview 

The contribution of this work task is mainly captured in two class diagrams of the SAFE Meta-model 
created in Enterprise Architect. In the first diagram, which is shown in Figure 12, the artifacts needed 
for the hazard analysis and risk assessment and their interconnections are modeled [48].  

 

Figure 12: SAFE Meta-model Extensions Overview with SafetyCase highlighted 
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The internal structure of the SafetyCaseExpression Package [46] is shown in the following figure. 

 

 

Figure 13: Internal structure of SafetyCaseExpression SAFE Meta-model 

As it can be seen there are various elements originating in the current EAST-ADL version that can 
be reused for the SAFE Meta-model. In case of referencing an element it is assumed that the attrib-
utes defined for the class in EAST-ADL are inherited.  

8.2 Proposed Interaction with SAFE Meta-model Elements for Documentation 

Aside from being useful for developing safe systems, a safety case’s original and ongoing purpose 
is to document the correct development of the safety-critical product and the fulfillment of all safety 
goals. 

By assigning the correct safety case element to each used artifact and joining the artifacts in the 
safety case context through the appropriate relations it is possible to generate safety case reports 
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encapsulating the information required for proving fulfillment of the safety goals in a comprehensible 
and defensible manner. The depth of the reports and the degree of automation depends on the level 
of integration of the safety case elements into the generated Meta-model artifacts as shown in sec-
tion 7.2. In the following it is explicitly not recommended using GSN on an “atomic level” on individual 
SAFE Meta-model artifacts, but rather to use GSN to explain the structure of a safety case report, 
based on the concepts of the SAFE Meta-model. 

 

Figure 14: Strategies of a safety case report modeled in GSN exploiting the SAFE MM 

 

Figure 14 illustrates the strategies of a safety case report exploiting the concepts defined in the SAFE 
Meta-model. The report would cover the following areas, as proposed in [5]: 

• Scope  

• System Description  

• System Hazards  

• Safety Requirements  

• Risk Assessment  

• Hazard Control / Risk Reduction Measures  

• Safety Analysis / Test  
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• Safety Management System  

• Development Process Justification  

The last two areas are out of the scope of this concept because the safety management system and 
the development process specification are not in the scope of the SAFE-E project..   

In the following sections we propose how these areas can be generated based on concepts of the 
SAFE Meta-model. 

8.2.1 Area: Scope 

The scope can be generated based on the items associated to the hazard and risk analysis. The 
following picture shows the relevant part of the SAFE Meta-model [46]: 

 

Figure 15: SAFE Meta Model Concepts for Scope 

The following SAFE Meta-model concepts should be provided in the scope area of the safety case 
report: 

• Requirements which support the scope of the safety case, e.g. in terms of unintended uses, 
misuses, limits or expected system life span 

• Operating Modes 

• Operational Situations 

8.2.2 Area: System description 

The system description should not provide full design detail but rather support the reader of the 
safety case report to make sense of the system hazards and requirements which are later described 
in the report. 

The following SAFE Meta-model concepts [46] should be provided in the system description area of 
the safety case report: 

• System descriptions 

• Component descriptions 

• System diagrams 
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Figure 16: Item Architecture of the SAFE Meta-model 

8.2.3 Area: System Hazards 

 

Figure 17: Hazards as defined in the SAFE Meta-model (Excerpt) 
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The system hazards area should list the key hazards posed by the system in order to summarize 
the identified hazards [5]. Hazards are an explicit part of the SAFE Meta-model as depicted in the 
previous figure. 

The following SAFE Meta-model concepts [46] should be provided in the system description area of 
the safety case report: 

• Hazard 

8.2.4 Area: Safety Requirements 

In the area safety requirements a number of sources for safety requirements must be taken into 
account [5] and are interpreted in the context of the SAFE Meta-model [46] as outlined in the follow-
ing points: 

1. Safety requirements derived from hazard analysis (including safety goals as top level safety 
requirements) 

2. Safety requirements which are the results of refinements from higher level safety 
requirements 

3. Safety requirements which have been given directly by the customer or safety standards 

 

The following picture shows the relevant excerpt of the SAFE Meta-model [46]. 

 

Figure 18: Safety Requirement Expression as defined in the SAFE Meta-model (Excerpt) 
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The following SAFE Meta-model concepts should be provided in the system description area of the 
safety case report: 

• Safety Goals 

• Functional Safety Requirements 

• Technical Safety Requirements 

• Hardware Safety Requirements 

• Software Safety Requirements 

8.2.5 Area: Risk Assessment 

The area risk assessment of the safety case report aims to describe the level of residual risk which 
is left after risk reduction measures have been applied [5]. 

The initial risk associated with a hazard is captured in the SAFE Meta-model in the hazardous event. 
However the residual risk after the implementation of risk reduction measures is not yet part of the 
SAFE Meta-model [46] and can therefore not provided in the safety case report. 

 

Figure 19: Initial risk description in the SAFE Meta-model 

The following SAFE Meta-model concepts should be provided in the system description area of the 
safety case report: 

• Hazardous Event 

8.2.6 Area: Risk Reduction Measures 

The area risk reduction measures describes means for reducing the probability of hazard occurrence 
or mitigation of hazard occurrence which have been integrated in the system design [5]. 

The following figures show excerpts of the SAFE Meta-model [46] which could be exploited for this 
information. 

The AnalysisLevelElement contributes to reducing or mitigating hazards by addressing the safety 
requirements which have been allocated to them. 
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Figure 20: Functional Safety Concept of the SAFE Meta Model (Excerpt) 

 

 

Figure 21: Technical Safety Concept of the SAFE Meta Model (Excerpt) 

The following SAFE Meta-model concepts [46] should be provided in the risk reduction measures 
area of the safety case report: 

• AnalysisLevelElements, which address one or more FunctionalSafetyRequirement, which 
have been created to reduce or mitigate risks from one or more Hazards 
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• SystemDesignElements, which address one or more TechnicalSafetyRequirements, which 
have been created to reduce or mitigate risks from one or more hazards 

8.2.7 Area: Safety Analysis 

The area safety analysis provides evidence that the risk reduction measures which have been re-
ported in the previous area are sufficient [5]. Examples for means to achieve this are safety analysis 
methods (e.g. FMEA), inspections or in-service evidence. As in the other areas of the safety case 
report only a summary is required while details can be maintained in other documents. 

The following figure shows an extract of the SAFE Meta-model [46] that support analysis such as 
fault tree analysis and FMEA. 

 

Figure 22: Concept for FTA and Failure Modeling in the SAFE Meta Model (Excerpt) 

A potential approach to document that the risk reduction measures defined previously are sufficient 
is to check if every failure which is identified in an FMEA can be associated with a risk reduction 
measure. 

The following SAFE Meta-model concepts [46] should be provided in the safety analysis area of the 
safety case report: 

• Failures identified in an FMEA together with the associated risk reduction measures (e.g. 
architecture elements or requirements as prevention measures or test cases as detection 
measures) 

However linking risk reduction measures with failures is not yet supported by the SAFE Meta-model. 
This is an obvious point for improvement of the SAFE Meta-model.  
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9 Safety Case Patterns 

The idea of design patterns was original proposed by Christopher Alexander [15], an architect who 
wrote several books on the field of urban planning and building construction, and who pioneered the 
notion that users know more about their needs and rationales than architects working abstractly. The 
concept of design patterns is a universal approach to describe common solutions to widely recurring 
design problems. A pattern is an abstract representation for how to solve a general problem which 
occurs over and over in many applications. Describing proven solutions as patterns provides a good 
documentation for these solutions and makes them more accessible for future use in new systems. 
Ever since, this concept has been applied to many different domains including hardware and soft-
ware design. 

Patterns support and help designers and system architects choose suitable solutions for design 
problems, and thus also found resonance in the development of safety-critical embedded systems, 
where a high level of confidence in the implemented solutions (in this case through repeated testing 
and use in field) is highly desirable. Reusing proven solutions also makes it possible to reuse the 
arguments originally used to prove the safety of these solutions and thus gives rise to the concept 
of safety case patterns, as discussed in [14] and [10]. A holistic approach to combine development 
artifacts and argumentation elements into a pattern library was introduced in [52] and further dis-
cussed in [58]. The latter work, by M.Khalil et al., forms the basis for the work presented here.  

Section 9.1 gives the necessary background and motivation. Section 9.2 explains our approach and 
gives an overview of the data model of the pattern library element as well as the usage process and 
most important attributes, supported by an example. In section 9.6 we summarize the approach and 
discuss the impact of this contribution. 

9.1 Introduction 

In practice, the reuse of architectural designs, development artifacts and entire code sequences is 
widely-spread, especially in well-understood domains. This also holds true for the development of 
safety-critical products, and extends to reusing the corresponding safety-cases aiming to document 
and prove the fulfillment of the underlying safety goals. This, however, is marred by several problems 
[52]: 

• Most analyses (FMEA, FTA, etc.) have to be performed at system level, yet the components/ 

measures / safety mechanisms themselves need to be reused independently, 

• and are not tied in any structured manner to other elements needed to provide the relevant 

context. 

• Safety-cases in the automotive domain are not well integrated into architectural models and 

as such  

• they do not provide comprehensible and reproducible argumentation 

• nor any evidence for the correctness of the used arguments. 

Reuse in a safety-critical context, and particularly the reuse of safety cases, is mostly ad-hoc, with 
loss of knowledge and traceability and lack of consistency or process maturity being the most widely 
spread and cited drawbacks [14], [52].  

The use of patterns in the development of safety-critical products is already in wide spread use. 
Catalogues exist [43], [32] that discuss highly organized and well-known safety mechanisms, such 
as comparators or “1outof2” voters. Safety case templates can be generated, stored and reused for 
many categories of patterns.  Some of these patterns are truly abstract and tackle higher system 
description levels, such as the “High Level Software Safety Argument Pattern Structure” presented 
in [8], while some can target a certain context, such as the use of Commercial-Off-The-Shelf (COTS) 
Components in a safety-critical context [7]. Patterns of safety cases for well-known problems have 
been suggested in academic literature [14], [41], [16], [6], [8], [7] and [43]. Further discussion is 
provided in [49] and [52].  
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The reuse of safety mechanisms can be made both simpler and more robust through the encapsu-
lation of all information into a consistent structured package, which can then be stored in a library 
element, along with the corresponding safety case to support it [52]. Dealing with non-functional 
requirements, especially safety, at later development stages is difficult and highly costly [47]. Front-
loading these aspects into an integrated solution environment and properly leveraging the added 
value of a model-based approach to solving this problem requires automation using adequate tool 
support. This does not yet exist, despite these activities and analyses having mostly become part of 
the day-to-day business of safety-critical development [16]. The structure and usage of this reusable 
comprehensive library element concept in a seamless model-based development tool is the focus of 
this chapter. 

9.1.1 Background and related work 

While the Gang of Four book [17] has been the most popular work on design patterns over the last 
two decades, there have been several attempts in the literature to adapt this concept in many fields 
of system design. In 1987 Cunningham and Beck presented five patterns for designing windows-
based user interfaces with Smalltalk [18]. Around the same time, Jim Coplien began to document 
C++ Idioms that represent specific constructs like patterns for C++, which were first published in a 
book in 1991 [19], with newer additions as a paper in 1997 [20]. 

From 1990 to 1993, several papers addressing the use of design patterns in object oriented pro-
gramming were published at the OOPSLA (Object-Oriented Programming Systems, Languages, and 
Applications) conference. In 1994, the Hillside group (see http://hillside.net) organized the first PLoP 
(Pattern Languages of Programs) annual conference. The revised papers from PLoP are normally 
published in the book series “Pattern Languages of Program Design” (see e.g. [21]). Meanwhile, 
Buschmann et al. published the book “Pattern-oriented software architecture: a system of patterns” 
[22] which includes a collection of relatively independent solutions to common design problems rep-
resented as a catalog of design patterns. 

Another well-known work is the catalog presented by Bruce Douglass in [23]. This catalog includes 
a set of patterns for real-time embedded systems. The presented patterns deal with real-time design 
issues like concurrency, resource sharing, distribution, and SAFE and reliable architecture. 

The concept of design pattern has become an important area of research in many fields like: fault 
tolerance [24], telecommunications [25], embedded systems [26], [27], security [28], [29], and many 
other fields. Each of these fields has its own patterns and sometime its own representation, but all 
follow the basic principle of design patterns. Works seeking to structure and facilitate the selection 
of architectural patterns and measures adequate for safety-critical requirements have already been 
presented [32], but the selection process is still highly manual and case dependent, and focuses on 
individual patterns as a guideline with no link to a holistic view. 

On the other hand, there is extensive work on formalized reasoning about safety cases and safety 
concept argumentation [38], [42], [13], as well as the use of patterns for safety cases [14], which 
culminated in a standardization of the structured notation known as GSN [12]. An analysis of indus-
trial safety cases yielded a finite set of patterns [41] from which it is possible to construct a pattern 
library of problem types and their respective solutions and use it to automate the generation of and 
argumentation about safety concepts as well as safety cases, for which a proof-of-concept was im-
plemented in the research CASE tool AutoFOCUS3 [30, as discussed in section 9.4. Safety case 
pattern catalogues and the capability for compositional argumentation is suggested in several re-
search works such as [6], [7], [8], [9], [10], [11] and [16]. 

9.1.2 Safety case pattern templates 

Safety case templates can be generated, stored and reused for many categories of patterns, such 
as: 

• Strategy (Problem solving) patterns 
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• Design patterns 

• Constraint patterns and Safety Mechanisms 

• COTS – Commercial Off The Shelf Components 

9.1.2.1 Problem solving strategy patterns 

As discussed in [41] the range of problems developers in a domain face and subsequently the algo-
rithms they favor in solving them are not unlimited. By identifying recurring paradigms and analyzing 
them it is possible to generate templates of their safety cases. The strategy node is the core element 
of the actual argumentation in a problem pattern safety case template, supporting the justification of 
goals being fulfilled by sub-goals. By applying strategy patterns, it is possible to build argumentations 
using only accepted justifications. This way confidence in the correctness of the argument can be 
increased. Still the appropriateness and correct use of a pattern has to be evaluated before trusting 
a safety case, but the question of the fundamental validity of each single argumentation step itself 
need not be argued. On the long run, it is desirable to establish general and domain-specific patterns 
as a pattern library for a faster and easier creation of safety arguments [41]. 

Example Pattern: Logical transformation 

The goal is a logical combination leading to desirable or undesirable situations. It is possible to gen-
erate a safety case skeleton that represents the pattern of avoiding a situation in which the constraint 
is violated, e.g. to keep the gap to the forward car larger than or equal to a minimum safe distance 
in an adaptive cruise control. This is simplified by transforming the goal into avoiding a gap which is 
smaller than the safe distance [41], as shown in Figure 23. 

 

Figure 23: An example usage of the logical transformation pattern [41]  

9.1.2.2 Design Patterns 

The ISO 26262 safety standard [1] requires that component architectures, independently of their 
functionalities, display certain characteristics or adhere to constraints. Some of these such as mod-
ularity, simplicity, and an adequate level of granularity and encapsulation are simply good engineer-
ing practices aimed at avoiding failures arising from unnecessary complexity.  
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Other requirements, such as freedom from interference, which is the absence of dependent failures 
(cascading and common cause failures) in safety-critical components, are aimed at guaranteeing 
correct operation of safety-critical functions. 

Furthermore, the ISO26262 [1] dictates that “if the embedded software has to implement software 
components of different ASILs, or safety-related and non-safety-related software components, then 
all of the embedded software shall be treated in accordance with the highest ASIL, unless the soft-
ware components meet the criteria for coexistence in accordance with ISO 26262-9:2011, Clause 
6.” This latter clause mentions freedom from interference and component independence as being 
the central requirements for such co-existence.  

According to ISO26262, there are several ways for components to have freedom from interference, 
such as: 

• be functionally diverse (the use of totally different approaches to achieve the same results); 

• be based on diverse technologies (the use of different type of equipment to perform the same 
result) 

• not share common parts or services whose failure could result in a dangerous mode of failure 
of all systems 

• be designed so that the predominant failure mode for common support systems (e.g. power 
supply) is in a safe direction (i.e. fail-safe) 

• not share common operational or maintenance or test procedures 

• be physically separated such that foreseeable failures do not affect redundant safety-related 
systems. 

Example Pattern: Redundancy 

The guidelines above have in turn matured into various design patterns, many of which revolve 
around redundancy and partitioning, which is the separation of functions or component elements to 
achieve a design, which can be used for fault containment to avoid cascading failures. The design 
patterns vary in their addressed context, structure, and presented solution and can be categorized 
in many ways. For example for redundancy there exist [32]: 

 

• Hardware Patterns: Includes the patterns that contain explicit hardware redundancy. This 
group contains the following patterns: 

o Homogeneous Duplex Pattern 

o Heterogeneous Duplex Pattern. 

o Triple Modular Redundancy Pattern 

o M-Out-Of-N Pattern 

o Monitor-Actuator Pattern 

o Sanity Check Pattern 

o Watchdog Pattern 

o Safety Kernel Pattern 

 

• Software Patterns: Includes the patterns that use software diversity (redundancy) to tolerate 
software faults. This group contains the following patterns: 

o N-Version Programming Pattern 

o Recovery Block Pattern.  
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o Acceptance Voting Pattern 

o N-Self Checking Programming Pattern 

o Recovery Block with Backup Voting Pattern 

• Combination of Hardware and Software Patterns: Include the following patterns that do 
not contain explicit hardware redundancy or software diversity: 

o Protected Single Channel Pattern 

o 3-Level Safety Monitoring Pattern 

All the above patterns fall under one general paradigm, i.e. redundancy, and as such can be covered 
by a general safety case pattern template as shown in Figure 24, namely that of solving the lack of 
confidence in the safety-critical channel using a redundancy strategy. This general template can in 
turn be instantiated and subsequently further specified and extended to suit the specific case and 
used solution, for example using context elements. 

Decision trees to provide assistance in selecting the suitable pattern have been developed and dis-
cussed in [32]. 

 

Figure 24: Safety case template for channel redundancy patterns 

9.1.2.3 COTS Components 

These pattern category targets the re-use of previously developed hardware and software compo-
nents, including COTS products. The safety cases for these may be built around proofs of validity or 
the proven in use argumentation in case of sufficient field data. Similarly to safety mechanisms, 
COTS components can also be accompanied by safety case snippets or templates that can be in-
stantiated as needed and integrated into the safety case at the insertion point of the COTS product.  

9.1.2.4 Safety Mechanisms 

Safety mechanisms are trusted solutions to repeated engineering problems facing designers and 
developers of safety-critical systems which have developed to patterns commonly used in the reali-
zation of technical safety concepts. A collection of safety mechanisms has been discussed in [43].  
Safety mechanisms, their integration into the SAFE Meta-model and the generation of their code 
have been covered in WT3.6. Similarly to Strategy patterns and design patterns, safety mechanisms 
can also be accompanied by safety case snippets or templates that can be instantiated as needed 
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and integrated into the safety case at the generation point. The reuse of safety mechanisms is the 
focus of the approach discussed in the following sections. 

9.1.3 Using safety case patterns 

Combining the parts explained in the previous subsections a 5-step approach could be suggested 
using which it would be possible to quickly construct safety cases from a pattern library. 

Step 1: Definition of Safety Goals  

Step 2: Identification of problem type 

Step 3: Selection of suitable paradigm or design pattern / safety mechanism / COTS Component 

Step 4: Creation of safety goal instances  

Step 5: Generation of safety case skeleton(s) 

Step 6: Link Elements to Safety Case and do a Top-Down Check 

Step 7: Testing for safety case / concept completeness and consistency  

Step 8: Integration into existing safety cases (with compositional argumentation) 

9.1.4 Problem 

In our context, a typical reuse scenario would involve broadly reusing an architectural measure or 
design pattern, e.g., homogenous (hardware) duplex redundancy, in which a vulnerable single chan-
nel carrying a critical signal is duplicated to increase reliability, or more precisely one or more of the 
logical development artifacts employed, such as a comparator function. If the previous safety case 
is at all reused, it serves as a detached guide of what needs to be provided to close the case, i.e. 
serving a prescriptive role, which is arguably better than nothing [52]. Yet be it a design pattern or 
development artifact, a single item does not tell the entire story. For example, to correctly deploy 
homogenous redundancy, many other aspects have to be covered: 

• one has to define the requirements the pattern fulfills,  

• refine the requirements and draw up a specification,  

• detail a (logical) component architecture,  

• and optimize a deployment strategy that guarantees the duplicate components will not run 

on the same hardware resource.  

These steps have to be preceded by feasibility checks or making explicit assumption about the sys-
tem, e.g., that a second hardware channel is allowed, which is a contextual bit of information. This 
is not all; to justify reusing this pattern, one would also have to include any tests or information 
proving that this particular pattern is suitable for the goal it targets, as well as perhaps why this 
method and not another was chosen, e.g., why just use 2 channels and not a 2-out-of-3 pattern in 
our example.  

Finally, all parts comprising this information, as well as their relations, which are more complex than 
simple traces, must be captured in a comprehensive and comprehensible manner which should also 
provide a suitable interface to the environment the reused element will be deployed in. Thus, the 
reuse of trusted design patterns or safety mechanisms cannot be confined to reusing the central 
artifact alone. Much of the information, in this case highly critical information, remains trapped in the 
heads of the developer and if mentioned at all most details remain implicit [52]. 

This gives rise to the need of some kind of encapsulation of the reusable safety mechanism (with 
requirements, specification, components, etc.), along with a minimum set of guarantees that can be 
achieved at that level and support via a solid argumentation. The encapsulation has to be structured, 
defining a minimum set of necessary information for correct reuse. 
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9.2 Approach  

Using a simplified description of safety mechanisms according to the most common error manage-
ment subtypes (avoidance/ detection/ handling) we define a pattern library covering known solution 
algorithms and architectural measures/constraints in a seamless holistic model-based approach with 
corresponding tool support. The pattern library comprises the minimum set of elements needed for 
correct reuse, i.e. the requirement the pattern covers, the specification of how one plans to imple-
ment it and the architecture elements/ measures / constraints required as well as the supporting 
safety case template and may include deployment or scheduling strategies, which would then be 
integrated into existing development environments. This enables an early analysis of hazards and 
risks, as well as the early adoption of multiple measures at the architectural design level during the 
concept phase, which is recommended (if not dictated) by many safety standards, e.g.,[1]. 

Subsequently, fault types can be matched both to probable hazards but more importantly to the 
problem categories they fall into or are most similar to, from a system architecture design viewpoint. 
Combining this with known architectural constraints and patterns for solving them, we can thus rea-
son about which types of architectural patterns are relevant for the system under analysis. The fault 
types, along with their requirements, are bundled with solution arguments, comprising components, 
their (sub-) architectures, deployment plans and schedules, into pattern libraries, which are rounded 
up by the corresponding safety-case templates or skeletons to provide argumentation for achieving 
the goals. Because our scope is safety mechanisms, the artifacts used here for safety argumentation 
all fall into the product information category of safety evidence [56]. 

Underlying the approach is the consistent use of patterns, as described in [49], [16], [50],  from the 
categorization of hazard types, over the abstract modeling of the respective safety concepts, and 
down to their implementation in the system architecture description, with a focus on providing argu-
ment chains in a seamless model-based environment. A simple overview is shown in Figure 25. 
More details are given in [52]. Our proof-of-concept implementation leverages preexisting capabili-
ties in our research CASE tool AUTOFOCUS3 (AF3) [30] (such as logical architecture description, 
model-based requirements engineering, model-checking, optimized deployments, safety case ex-
pression, among many others) [50], [51] to generate the artifacts for the safety mechanism libraries. 

 

Figure 25: Pattern Library Approach: Overview of artifact relations [52] 
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In this section, we mainly focus on the structure and usage of elements from a library of reusable 
patterns, including the data models and workflow required to support seamless integration into a 
model-based development environment. Automation via tool-support is essential to achieve the in-
tended advantages. 

9.3 Structure Model of Library Element 

 

Figure 26: Structure Model for Safety Mechanism Library Element [58] 

Figure 26 shows the basic structure model of a pattern library element. The right hand side is a 
safety case structure linked to the corresponding development artifacts on the left hand side, which 
in turn support each argumentation element. We use the Goal Structuring Notation (GSN) - in its 
Community Standard Version 1.0 [12] – for the graphical expression of safety cases as it was the 
most mature option suited to our needs. GSN is a structured (yet not formal) notation, which provides 
graphically differentiated basic safety case element types, such as goals, evidence, strategy, justifi-
cation and so on, as well as a clear description of necessary and allowed connection types between 
these elements. Our decision to employ GSN is detailed in section 7.  

The library elements were chosen to cover the most basic building blocks of any systems-engineer-
ing approach, such as [53], as well as the minimum requirements for information expressed in safety 
standards, such as [1]. Extending the model to capture more information, as well as testing the 
existing model for soundness using numerous varied mechanism examples, was started in this doc-
ument and is the focus of our ongoing work. 

While the left part of the model, which contains development artifacts, can entirely originate in one 
seamless tool (as will be shown in our implementation example in Section 9.4.1), this is not neces-
sary. The development artifacts may reside in multiple repositories and be in varying formats; the 
binding element is the safety case shown on the right hand side, which gives the story and rationale 
behind the reusable pattern, organized by its relation to the StructureModel entities. This aspect is 
particularly important for a real world development context, which almost always entails a heteroge-
neous tool-chain. 

9.3.1 Structure Model Elements  

Figure 27 provides a closer look at the left hand side of Figure 26, detailing the development artifacts 
library structure part. The definition and scope of these fundamental building blocks are in line with 
the system engineering view provided in the SPES2020 Project [53].  
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Figure 27: Pattern Library Element: Structure Model for Development Artifacts [58] 

 

The entities of the safety mechanism pattern data model seen in Figure 27 are: 

• SafetyMechanismPattern: is a container object collecting information necessary for reuse, which 
is listed as a catalogue of attributes and adapted to the context of safety mechanism patterns. The 
majority of these attributes originated in the works of the Gang of Four [17] and were further con-
solidated for use in the safety field in Tim Kelly’s works [5], [43]. Two clear exceptions are the 
attribute Implications, taken from [32], which describes how using a safety mechanism pattern 
affects other non-functional requirements such as reliability, modifiability, cost & execution times, 
and the attribute Related Patterns, which typically contains a purely nominal list of similar or 
affiliated patterns, but in our case is used to link related safety mechanism classes. This provides 
direct traceability and allows for a quick propagation and adaptation of changes across related 
patterns, increasing confidence in reuse as well as the maintainability of the library. 

• SafetyRequirement: details the requirement the pattern fulfils, as well as any safety related at-
tributes, e.g., Safety Integrity Level.  

• SafetySpecification: a concrete description of the safety mechanism’s functional behavior and 
its interaction with the environment, and serves as a basis for the implementation in a logical 
component. It can be formal, e.g., in AF3 the behavior of safety mechanisms can be captured in 
state automata.  

• LogicalComponent: is the implementation or concrete representation of a safety mechanism at 
software level, whose definition includes transfer behavior, e.g., code specification or a state au-
tomaton. It can be a composition of logical components which collectively determine the safety 
mechanism’s behavior.  

• LogicalArchitecture: defines the context of the safety mechanism pattern, by describing the 
boundaries / interface of the LogicalComponent implementing the mechanism as well as giving a 
description of any other components involved. 

9.3.2 Structure Model Relations 

The relationships between the model’s entities are as follows: 

• fulfils: The use of the pattern fulfils the stated safety requirement(s).  

• specifiedBy: this relation shows that a safety requirement is specified or brought to a more con-
crete representation by one or more specifications of the implementation, providing the “how” to 
the “what”. This relation is also bidirectional, because it could be that a solution specification spec-
ifies one or more safety requirements. 

• definedBy: a safety mechanism’s behavior is defined by its specification. Can also give a descrip-
tion of the architectural context of the safety mechanism.  

• determinedBy: the safety mechanism pattern is determined by a unique structure or logical ar-
chitecture.  
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• implementedBy: the safety mechanism belonging to the pattern is implemented by a logical com-
ponent at software level. 

• composedOf: a logical component can be composed of other logical components or simply direct 
descriptions, e.g., a code specification or a state automaton. 

• composedBy: this relationship shows that a logical architecture or context of a safety mechanism 
is composed by at least two logical components, which interact with the safety mechanism’s logical 
component. In its simplest form, one is an input and the other is an output component. 

• includes: this relationship indicates that a safety mechanism pattern can include other patterns 
within its structure. This entails inheritance of the respective safety requirements, safety specifi-
cation, logical component and the logical architecture of the related or reused safety mechanism 
patterns. The form and structure of inclusion has to be defined in a case-by-case manner. 

9.3.3 Pattern Catalogue Attributes  

Contrary to the typically purely verbose nature of capturing pattern attributes, our use of a model-
based approach means that we are able to integrate this information and capture most of it into the 
elements of the structure model. This is a particularly important feature, as verbose lists have a 
tendency to be overlooked, misused or misinterpreted and we consider them to constitute an obsta-
cle to pattern reuse. The captured attributes are: 

• Name: captured in the name of the safety mechanism pattern itself. 

• Classification: states to which category of safety mechanisms (Failure Avoidance, Failure Detec-
tion and Failure Containment/ Handling) [43] the pattern belongs, and is captured in the structure 
of the library itself. 

• Intent: this attribute is captured in the SafetyRequirement entity. 

• Motivation: this attribute provides the rationale behind using the pattern and is captured in the 
safety requirement entity, with any additional, implementation-specific information being captured 
in the SafetySpecification entity. 

• Applicability: describes the architectural context of the safety mechanism as well as instantiation 
information and is captured by the LogicalArchitecture entity and augmented by the workflow de-
scribed in section 9.4 of this document. 

• Structure: this attribute is captured by the entities LogicalComponent and LogicalArchitecture and 
their relation. 

• Participants: are captured at an interaction level by the LogicalArchitecture entity and at a struc-
tural level by the structure of the safety mechanism library. 

• Collaborations: this attributed is captured by the structure of the safety mechanism library and 
the safety case supporting it.  

• Consequences: the parts of this attribute describing which components in the logical architecture 
or inside the safety mechanism’s component have to be instantiated or further developed upon 
usage are captured in the structure model as well as in the workflow described in section 9.4. 

• Implementation: is partially captured in the SafetySpecification entity as well as the entities Log-
icalComponent and LogicalArchitecture and their relation. 

• Related patterns: this attribute is captured in the data model for inclusion relations by the recur-
sive aggregation relation of the SafetyMechanismPattern entity. 

9.3.4 Mapping to SafetyCaseModel 

Having defined the development artefacts part of the structure model, a quick explanation of their 
mapping to the corresponding elements in the SafetyCaseModel seen on the right hand side of Fig-
ure 26 is given next. 

• SafetyRequirement – supportedby – Goal: the entry point to any reuse problem is a goal or 
requirement that has to be fulfilled.  

• SafetyMechanismPattern – supportedby – Strategy: the information captured in the safety 
mechanism pattern and the information it contains lays out a plan for solving the problem, i.e. a 
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strategy, and helps explains the relation between the elements of the pattern, most importantly 
their refinement and decomposition.  

• SafetySpecification – supportedby – Goal: a safety specification is mapped to the (sub-)goal 
entity in the safety case data model, as it describes a refinement and decomposition of the higher 
level goals towards implementing a solution.  

• LogicalComponent – supportedby – Solution: the logical component is the solution for the 
stated goal.  

• LogicalArchitecture – supportedby – Context: the logical architecture provides context to the 
safety pattern and the logical component and its implementation, without which the pattern is either 
meaningless or cannot be described concisely. 

9.4 Tool implementation and usage workflow 

Our approach and the implementation support in AF3 envision two roles: a safety mechanism De-
veloper and a safety mechanism User. To support the Developer role a comprehensive analysis of 
many safety mechanisms was carried out, which identified three archetypes of structure models for 
capturing safety mechanisms in AF3. To save a new safety mechanism, the Developer has to decide 
which archetype best fits his need. The developer is aided in this task by a wizard, which also assures 
that library elements cannot be created without the mandatory information. These AF3 categories 
and the Developer role are not the focus of this specification. 

For the User role, we must differentiate between using the library element in an already existing 
project or in a green field one, i.e. I need a redundant design for my function/application/system and 
wish to start with a comprehensive structure model that includes all the necessary artefacts and then 
fill in details later.  

The analysis of the safety mechanisms and the usage roles, led to the identification of three catego-
ries for the usage of the artefacts captured in the library element. Taking the usage scenario into 
account, these categories define how each artefact in the library element will be added into the 
development environment. These are: 

• Copy: Artefacts are copied into the environment as is. SafetyRequirements, and SafetySpecifica-
tion elements, along with all the SafetyCaseModel artefacts, are treated in this manner, as they 
are clearly defined static elements that do need to be changed upon usage. 

• Instance: artifacts are to be instantiated upon usage. This may include the input of some param-
eters by the users. LogicalComponent entities are always used in this manner. LogicalArchitecture 
elements are treated in this manner if and only if the usage mode is “green-field”.  

• Replace: Artefacts are replaced by ones existing in the model. This mode applies to LogicalArchi-
tecture elements and is obviously only usable when deploying the library element into a preexisting 
model. E.g., logical components stored in the library element to describe the interaction of the 
central safety mechanism component with its environment are replaced by existing components 
from the model, to which the library pattern / safety mechanism is to be applied. 

The deployment of the library elements is guided by a wizard, whose function it is, among others, to 
ensure that library elements are deployed seamlessly. To that end, the wizard prompts the user at 
each step to link / map the components of the inserted library to their counterparts in the existing 
model. E.g., a comparator deployment prompts the user to select the two components whose outputs 
are to be compared, as well as the original requirement, which prompted the deployment of the 
comparator safety mechanism from the library in the first place. The development process still has 
to be monitored and approved at key decision points by a human expert. 

The implementation carried out in AF3 currently covers four safety mechanisms, 1oo2Voting, Com-
parison, RangeCheck, and HomogeneousDuplexRedundancy [43]. Continuing with the redundancy 
example introduced in section 9.1.4, the following section illustrates the implementation using 
screenshots.   
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9.4.1 Implementation example in AF3 

 

Figure 28: Proof-of-concept implementation for Duplex Redundancy Pattern [52] 

Figure 28 shows an illustrative overview of the pattern library implementation. On the left are snap-
shots of screen grabs of functionalities for the generation of library artifacts in AF3 and on the right 
is an example for a simplified corresponding safety case, thus encapsulating all the information re-
quired to reuse the pattern.  

 

Figure 29: Implementation Example HDR: LogicalArchitecture [58] 

The interaction of the HomogeneousDuplexRedundancy (HDR) implementation example safety 
mechanism with its environment is captured in the LogicalArchitecture element shown in Figure 29, 
with the corresponding safety case shown collapsed in Figure 30. Using the relations described in 
the GSN standard [12] and implemented in AF3, it is possible to perform completeness and con-
sistency checks on the safety case, such as “solutions must stem from goals and no other elements” 
or “no open goals remain”. Not shown but implemented with AF3, are the corresponding require-
ments or specification of any of the central LogicalComponent elements, e.g., the Comparator. Also 
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possible but not shown, is a formal specification of mechanism behavior, allowing automatic test 
suite generation, as discussed in WP4.3 [57]. 

 

Figure 30: Implementation Example HDR: SafetyCaseModel [58] 

9.4.2 Extended Structure Model 

The library element is, however, incomplete for the HDR example without capturing the deployment 
rules, which determine how the software components are assigned to hardware units. This is a new 
piece of information and gives rise to the need to extend the structure model with optional elements 
beyond the basic ones previously shown in Figure 26. To encapsulate more information, such as the 
deployment rule, or facilitate a refinement of the specification, such as the categories provided by 
ISO26262 in its functional and technical safety concepts, we extended the structure model as shown 
in Figure 31. Other elements could also be introduced to capture any other information pertaining to 
the suitability of the safety mechanism, e.g., tests or analyses. 

 
Figure 31: Extended Structure Model for Development Artifacts [58] 
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9.4.3 Modular and compositional argumentation 

The use of patterns as a way of documenting and reusing successful safety argument structures 
was pioneered by Kelly [5], who developed an example safety case pattern catalogue providing a 
number of generic solutions identified from existing safety cases. This was further developed by 
Weaver [6], who specifically developed a safety pattern catalogue for software. A software safety 
pattern catalogue was also developed by Ye [7], specifically to consider arguments about the safety 
of systems including COTS software products. Further discussion of these approaches’ strengths 
and drawbacks is given in [8], [52]. 

These approaches all focused on generating safety case templates for known patterns, whereas the 
safety case templates themselves are the focus. Our approach encourages the encapsulation of the 
reusable development artifacts along with the supporting safety cases to enable correct and speedy 
reuse in a safety-critical context. The ARRL approach presented in the OPENCOSS project [55] 
offers a similar but more generalized workflow, yet our approach differs in that it catalogues existing 
information, targets a specific use case, and does not force a new framework or language on to the 
user. 

Using our approach does give rise to at least three interesting questions: 

• What is an adequate boundary interface for modular compositional argumentation? 

• How do we guarantee that all goals (and sub-goals) have been identified? 
and more importantly, 

• How do we guarantee that the introduced pattern or component has no negative impact on 
the system? 

As previously discussed in [52] and supported by our implementation results, the safety goal pre-
sents a very adequate boundary interface to the system, whose problems the pattern solves. This is 
alignment with common practice in engineering projects, where “requirements catalogues” are the 
standard mode of exchanging information about needs and evaluating results. To illustrate this, im-
agine that the comparator we choose to employ in the example shown in Figure 28 is a COTS 
HW/SW unit we buy from a trusted supplier who also provides the corresponding detailed safety 
case for the arbitrator. That (sub-) safety case snaps on to the collapsed safety case, shown in Figure 
30, at the safety sub-goal (Comparator) it satisfies. The entire safety case in Figure 30 would then 
itself snap into the parent (system) safety case at the top-level goal boundary defining its purpose, 
and this process would repeat itself hierarchically and cumulatively. As such, satisfying all the sys-
tem’s goals at the interface would enable not only modular but also a cumulative argumentation.  

The answer to questions 2 and 3 is partially given in the usage description in section 9.4. We do not 
think that a human expert can be totally taken out of the loop, especially if a deterministic behavioral 
description is not included into the library, as in our case. Thus key approval is delegated to the 
expert at all integration nodes and supported by automated tool checks, such as the one shown in 
Figure 28, where the undeveloped safety goal G1.3, which leads to no solution and will as such be 
detected by the tool checks, serves as a reminder to carry out an impact analysis after integrating 
the safety mechanism (and its safety case) into the existing model. Similarly, we propose that as-
sumptions made in library safety cases require the approval of the system integrator before ac-
ceptance. This check is easily implemented. 

To achieve true compositionality, the underlying framework used to describe the behavior of each 
safety mechanism should support temporal logic, and the descriptions of both the components and 
the safety cases supporting them would have to be deterministic. Such descriptions lie outside the 
scope of this specification, which focuses on structural as opposed to behavioral models, and could 
be the subject of future work. 
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9.5 Mapping onto SAFE Meta-Model 

As was seen in WT3.6 [60], safety mechanisms or tactics, play an important part safety-critical de-
velopment and have to be correctly and precisely specified. Mapping the approach presented in the 
previous section and tailoring it onto the SAFE Meta-model, a detail rich and context specific envi-
ronment, presents a high advantage potential for information encapsulation for this class of solutions.  

9.5.1 Safety Tactics in SAFE 

 

Figure 32: Tactics classification in SAFE Meta-model [60] 
 

Figure 32 gives a high level class description of the derivation and traceability as well as classification 
of safety tactics, according to the type of error management they offer (avoid-detect-handle) [43]. 
The Tactic provides a container for the classification, through which a dysfunctional view encom-
passing malfunction modes for each tactic are captured, as well as the connection to malfunction 
instances which are meant to be covered by the tactic. 

Traceability is guaranteed by the SAFE Meta-model satisfy mechanism linking hazard description 
and subsequent analysis to the corresponding top level safety goal and onto the concept to which 
the tactic and the requirements it fulfills belong. 

On the other hand, the requirements are then refined through the multiple abstraction layers sup-
ported in the SAFE Meta-model (through a mapping analogy from EAST-ADL to ISO26262, for more 
details see the SAFE Meta-model description D3.5d [48]) to the specification of Software Safety 
Requirements (SSR), which holds the tactic fine description and carries the same name. This then 
links to implementation descriptions, configurations and actual instances. As specified in [60], and 
demonstrated in [61], it is possible to automatically generate code for the tactics, based on this 
structured description. The lower half of Figure 33 shows the tactic descriptor and the implementation 
artifacts for both an AUTOSAR conforming generator as well as CHROMOSOME, our research mid-
dleware [62], for a Voter.  
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Figure 33: Voter Tactic in SAFE Meta-model [60] 
 

The instantiation of the tactic classification mechanism from Figure 32, is seen in the upper half of 
Figure 33, as well as in the right hand side of Figure 34, which presents a simpler tactic, HealthMon-
itor, with CHROMOSOME implementation only, as shown on the left hand-side of the figure.  

 

Figure 34: HealthMonitor Tactic in SAFE Meta-model [60] 
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The previous figure can be rearranged and, the link between the classification aspects and the re-
quirements specification and implementation description be made explicit, through the inclusion of 
the SAFE Meta-Model requirements structure representation. It is noteworthy that no direct link ex-
ists between the classification branch and the implementation specification branch, which are con-
nected only at the apex through specialization of the requirements artifacts. To prevent model am-
biguity through loss of information and assure conformity between the two branches, a further cate-
gorization of the functionality of the tactic was added to the tactic classification mechanism. This is 
then matched to the tactic description SSR via OCL. 

 

Figure 35: Alternate View on HealthMonitor Tactic in SAFE Meta-model  
 

9.5.2 Structured pattern attribute encapsulation in SAFE Meta-model elements 

If we regroup the artifacts from Figure 35 into abstract categories in analogy to the approach pre-
sented in section 9.2, we get the following main high level categories. 

• Requirements 

• Tactic Description 

• Tactic Classification 

• Tactic Implementation 

If these categories are then supported by safety case arguments (supported in the SAFE Meta-
model as seen in section ) in a structured approach as shown in Figure 36, it would be possible to 
capture most pattern attributes within the model elements, as discussed in section 9.3.3. 
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Figure 36: Abstract artefact structure for tactic library in SAFE Meta-model 
 

Contrary to the typically purely verbose nature of capturing pattern attributes, our use of a model-
based approach means that we are able to integrate this information and capture most of it into the 
elements of the structure model. This is a particularly important feature, as verbose lists have a 
tendency to be overlooked, misused or misinterpreted and we consider them to constitute an obsta-
cle to pattern reuse. The captured attributes are: 

• Name: captured within the Tactic Description category. 

• Classification: captured in great detail in the Tactic Classification. 

• Intent: captured in the Requirements category. 

• Motivation: captured in the Requirements category and supported by the SafetyCase argumen-
tation. 

• Applicability: captured in the Tactic Classification category, as well as in the implementation lay-
ers of the Requirements category and the Implementation category. 

• Structure: captured in the Implementation category. 

• Participants: captured at an interaction level by the Implementation category and at a structural 
level by the structure of the tactic library. 

• Collaborations: this attributed is captured by the structure of the tactic library and the SafetyCase 
supporting it.  

• Consequences: captured in the tactic library structure as well as by the Implementation category. 
• Implementation: captured by the Implementation category. 
• Related patterns: captured in the Tactic Classification category. 

9.6 Conclusion 

The design of functional safety systems is largely driven by best practices – like the use of fault 
monitors, safe states, or redundant paths. These best practices can often be presented in the form 
of patterns – both to describe a possible solution, but also to document an argumentation about their 
contribution to a safety case. The provision of a library of such patterns allows the identification and 
comprehensive (re-)use of suitable architectural measures and of corresponding components along 
with their safety cases, facilitating a cumulative if not compositional argumentation about the 
achieved safety goals. 
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The approach defines the structure of such a library, encapsulating all necessary information for a 
correct reuse of safety mechanisms. The approach not only adds new attributes to the ones known 
in pattern catalogue literature but also captures most of the information from these attributes into the 
model itself. This decreases reliance on the hitherto typically verbose attribute catalogue and we 
consider it to be a major bonus for the approach, as textual lists have a tendency to be overlooked, 
misused or misinterpreted and we consider them to constitute an obstacle to pattern reuse. 

Furthermore, the approach features an explicit model-based representation of safety mechanisms 
within the context of their usage and the problems they solve. This has several advantages, including 
1) a better characterization of the problem space addressed by the pattern – better than the textual 
description otherwise used in pattern templates, 2) a more natural representation of the transfor-
mations embodied in the application of the pattern, and 3) a better handle on the selection, rationale 
and application of the patterns [54].  

Thus, the approach contributes to the optimization of development with respect to system safety in 
general, and specifically to safety-critical component reuse. We also believe the paradigm to be 
extensible to COTS (Commercial Of-The Shelf) components, as well as providing support for the 
“Safety Element out of Context” clause cited in safety standards, such as the ISO26262 [1].  

This section presents the structure and workflow of an approach which facilitates the reuse of safety 
mechanisms by encapsulating relevant information in a pattern library with tool support. We further-
more explored the possibilities and showed the opportunities supported by this approach. A holistic 
pattern-based approach to the construction of safety-cases in a seamless model-based development 
of safety-critical systems requires several elements, the main constituents of which are: 

• A library of reusable argumentation patterns – both in form of problem patterns (e.g., faults like 
early, late, or wrong sensor information; temporal or spatial interference between functions) and 
solution patterns (e.g., error avoidance, detection, mitigation; sensor fault detection and correction 
mechanisms; partitioning mechanisms) – built from elements of a model-based description of the 
system under development (e.g., requirements, functions, SW-/HW-components, channels, bus-
ses, deployment strategies) as well as GSN safety cases (e.g., goals, solutions, justifications, 
contexts) 

• A mechanism for the instantiation (e.g., stuck at-/noise-like faults; different filter for fault detection) 
and application (e.g., linking to the corresponding HW- and SW-elements) of those patterns in a 
compositional fashion. 

• A mechanism to check the soundness of the constructed argumentation (e.g., no open sub-goals; 
all context are covered by corresponding system elements) w.r.t. to its structure. 

 

Using the approach presented here and a proof-of-concept implementation in our research CASE 
tool AF3, we have shown the feasibility of handling all three of the above points to varying degrees. 
Most importantly, the quality of the captured attributes increases greatly with the domain adequacy 
and content richness of the modeling framework used, as seen in section 9.5. 
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10 Conclusions and Discussion 

This document provides information about the safety case concept as adopted by many safety critical 
industries describes the proposed methodology for safety case modeling and documentation as well 
as for an extension of the collective SAFE/SAFE-E Meta-model for hazard and environment model-
ing. 

Besides giving an overview on the relevant parts of ISO 26262 the requirements arising from WT 
2.1 (ISO 26262 Analysis), a focal part of this deliverable lies in the presentation of the methodology 
for safety case modeling and documentation. This methodology is compliant to the requirements 
given in ISO 26262 and in addition comprises aspects arising from experiences in the development 
of automotive systems as well as other safety critical industries (such as defense, railways and aer-
ospace). However, the ability to describe and link development artifacts in a safety case relevant 
context is only half the story. How this capability is employed is the other half of this document. The 
concepts of solution and design patterns are introduced, along with the concept of compositional 
argumentation. These concepts are far from fully matured and therefore, the initial concepts pre-
sented in this document can be seen as a basis for further development. 

The initial contribution to the SAFE Meta-model presented in this deliverable provides the possibility 
to link safety-critical artifacts together to form an ISO 26262 compliant safety case. At the same time 
the requirements coming from the methodology are considered. In case the methodology is extended 
there might also arise the need to adapt the corresponding part of the SAFE Meta-model, including 
those developed in other work tasks.  

Since it is an objective to reuse EAST-ADL as much as possible the status of the current version of 
EAST-ADL is presented and initial proposals for extensions are formulated. However, these pro-
posals need to be further elaborated in future. For the proposed extension of the SAFE Meta-model 
EAST-ADL references are used whenever possible. 

The specification described in this work is further supported by proof-of-concept implementations. 
Most promising among these is the support for pattern libraries and the capability of modular and 
compositional argumentation introduced in section 9. This work could be expanded to include new 
concepts as well, such as the concept of assured safety arguments, a new structure proposed by 
Hawkins and Kelly in [4] for introduces a confidence argument that documents the confidence in the 
structure and evidence of the safety argument. 
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11 List of Abbreviations 

 

AF3 AUTOFOCUS 3 – A research CASE tool developed by fortiss GmbH 

ASIL Automotive Safety Integrity Level 

ATESST Advancing Traffic Efficiency and Safety through Software Technology 

COTS Commercial Off The Shelf 

EPS Electric Power Steering 

GSN Goal Structuring Notation 

EAST-ADL Electronic Architecture and Software Tools- Architecture Description Language 

HA Hazard Analysis 

RA Risk Analysis 

FMEA Failure Mode and Effect Analysis 

FTA Fault Tree Analysis 

HW Hardware 

OCL Object Constraint Language 

SAFE Safe Automotive soFtware architecture – the affiliated ITEA2 Project 

SSR Software Safety Requirement 

SW Software 

WT Work Task 
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