
op
en

E
TC

S
O

E
TC

S
/W

P
3/

D
3.

5.
1

ITEA2 Project
Call 6 11025
2012 – 2015

Work-Package 3: “Modeling”

openETCS System Architecture and Design
Specification
First Iteration: ETCS Kernel Functions

Bernd Hekele, Peter Mahlmann, Peyman Farhangi, Uwe Steinke,
Christian Stahl and David Mentré

December 2014

This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing:

This page is intentionally left blank

OETCS/WP3/D3.5.1 i

Work-Package 3: “Modeling” OETCS/WP3/D3.5.1
December 2014

openETCS System Architecture and Design
Specification
First Iteration: ETCS Kernel Functions

Document approbation

Lead author: Technical assessor: Quality assessor: Project lead:

location / date location / date location / date location / date

signature signature signature signature

Bernd Hekele Uwe Steinke Izaskun de la Torre Klaus-Rüdiger Hase

(DB-Netz) (Siemens) (SQS) (DB Netz)

Bernd Hekele, Peter Mahlmann, Peyman Farhangi

DB-Netz AG
Völckerstrasse 5
D-80959 München, Germany

Uwe Steinke

Siemens AG

Christian Stahl

TWT-GmbH

David Mentré

Mitsubishi Electric R&D Centre Europe

Architecture and Design Specification

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 ii

Prepared for openETCS@ITEA2 Project

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 iii

Abstract: This document gives an introduction to the architecture of the first openETCS iteration,
the openETCS kernel functions. It has to be read as an add-on to the models in SysML, Scade
and to additional reading referenced from the document.

Disclaimer: This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing: European Union Public
Licence (EUPL v.1.1+) AND Creative Commons Attribution-ShareAlike 3.0 – (cc by-sa 3.0)

THE WORK IS PROVIDED UNDER openETCS OPEN LICENSE TERMS (oOLT) WHICH IS A DUAL LICENSE AGREEMENT IN-
CLUDING THE TERMS OF THE EUROPEAN UNION PUBLIC LICENSE (VERSION 1.1 OR ANY LATER VERSION) AND THE
TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE ("CCPL"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS OLT LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

OETCS/WP3/D3.5.1 iv

Modification History

Version Section Modification / Description Author

0.1 all Initial document providing the structure Bernd Hekele

0.2 3.5.3 initial contribution and some pretty printing Christian Stahl

0.3 all
collecting feedback and completion on ini-
tial sections

Bernd Hekele

0.4 all
changed document style to openETCS re-
port improved pretty printing

Peter Mahlmann

0.4.1 all adding content Bernd Hekele

0.5 all
updated Version prepared for hand-over to
WP4

Bernd Hekele

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 v

Table of Contents
Modification History.. iv

Figures and Tables.. vii

1 Introduction... 1

1.1 Motivation... 1

1.2 Objectives .. 1

1.3 History ... 1

1.4 Goals of the openETCS Modelling Work ... 1

1.4.1 Functional Scope: The Minimum OBU Kernel Function ... 1

1.4.2 List of Release Deliverables, Requirements Used .. 2

1.4.3 Short Description of the functionality ... 3

1.4.4 Tools and Tools Versions in Use ... 3

1.5 Glossary and Abbreviations .. 4

2 The openETCS Architecture of the Initial Kernel Functions .. 5

2.1 The openETCS Tool Chain and its Impacts on the Actual Model ... 5

2.2 The openETCS Application Software Architecture ... 6

2.3 openETCS Data Dictionary .. 6

2.3.1 ETCS Language... 6

2.3.2 openETCS Interfaces .. 8

2.3.3 Data Dictionary Outlook ... 8

3 openETCS Kernel Functions.. 9

3.1 openETCS Model Runtime System .. 9

3.1.1 openETCS API .. 9

3.1.2 Model API .. 10

3.2 First Iteration: Model API and Model Runtime System ... 11

3.2.1 Short Description of Functionality .. 11

3.3 First Iteration: Interfaces to other Functions of the Application Software (not part of First Iteration) 11

3.3.1 Short Description of Functionality .. 12

3.4 F.1 Manage Balise Information ... 12

3.4.1 Short Description of Functionality .. 12

3.4.1.1 Input ... 12

3.4.1.2 Output... 12

3.4.1.3 Data ... 14

3.4.2 Reference to the SRS (or other requirements).. 14

3.4.3 Design Constraints and Choices ... 14

3.4.4 F.1.1 Receive Eurobalise From API.. 14

3.4.4.1 Short Description of Functionality .. 14

3.4.4.2 Reference to the SRS (or other requirements) ... 14

3.4.4.3 Design Constraints and Choices ... 16

3.4.5 F.1.2 Build BG Group Message... 16

3.4.5.1 Short Description of Functionality .. 16

3.4.5.2 Reference to the SRS (or other requirements) ... 16

3.4.5.3 Design Constraints and Choices ... 16

3.4.6 F.1.3 Check BG Consistency .. 16

3.4.6.1 Short Description of Functionality .. 16

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 vi

3.4.6.2 Reference to the SRS (or other requirements) ... 18

3.4.6.3 Design Constraints and Choices ... 19

3.4.7 F.1.4 Determine BG- Orientation and LRBG .. 19

3.4.8 F.1.5 Select Usable Info .. 19

3.4.8.1 Short Description of Functionality .. 19

3.4.8.2 Reference to the SRS (or other requirements) ... 19

3.4.8.3 Design Constraints and Choices ... 20

3.5 F.2 Manage Train Position ... 20

3.5.1 F.2.1 Validate Data Direction .. 20

3.5.1.1 Short Description of Functionality .. 20

3.5.1.2 Reference to the SRS (or other requirements .. 20

3.5.1.3 Design Constraints and Choices ... 20

3.5.2 F.2.2 Calculate Train Position.. 21

3.5.2.1 Short Description of Functionality .. 21

3.5.2.2 Reference to the SRS (or other requirements) ... 21

3.5.2.3 Design Constraints and Choices ... 23

3.5.3 Provide Position Report .. 23

3.5.3.1 Short Description of Functionality .. 23

3.5.3.2 Reference to the SRS (or other requirements .. 24

3.5.3.3 Design Constraints and Choices ... 24

3.5.3.4 Open Issues ... 24

Appendix: References ... 26

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 vii

Figures and Tables

Figures

Figure 1. Block Definition Diagram of the First Iteration Architecture ... 6

Figure 2. Internal Block Diagram of the First Iteration Architecture.. 7

Figure 3. openETCS software architecture ... 10

Figure 4. Structure of Manage Balise Information Block .. 13

Figure 5. Structure of ReceiveEuroBaliseFromAPI ... 15

Figure 6. Structure of BuildBGMessage... 17

Figure 7. Structure of BGConsistency ... 18

Figure 8. Structure of component ValidateDataDirection ... 20

Figure 9. Structure of calculateTrainPosition ... 22

Figure 10. Structure of component ProvidePositionReport ... 23

Tables

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 viii

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 1

1 Introduction

1.1 Motivation

The openETCS work package WP3 aims to provide the architecture and the design of the
openETCS OBU software as mainly specified in UNISIG Subset-026 version 3.3.0 [1].

The appropriate functionality has been divided into a list of functions of different complexity
(see the WP3 function list [2]).

All these functions are object of the openETCS project and have to be analysed from their
requirements and subsequently modelled and implemented. With limited manpower, a reasonable
selection and order of these functions is required for the practical work that allows the distribution
of the workload, more openETCS participants to join and leads to an executable function
providing a limited kernel functionality as soon as possible.

While the first version of this document focuses on the first iteration of work, i.e. the limited
kernel function, the document is intended to grow in parallel to the growing openETCS software.

1.2 Objectives

The first objective of WP3 software shall be

“Make the train run as soon as possible, with minimum functionality, and in the form of a
rapid prototype”.

Note that this does not contradict the openETCS goal to conform to EN50128. After a phase of
prototyping, the openETCS software shall be implemented in compliance to EN50128 for SIL4
systems. The major goals of this document can be summarized as follows:

• Identification of the functions required for a minimum OBU kernel.

• Give an architecture overview regarding the minimum OBU kernel.

• Description of the technical approach, i.e. the process and methods to be used.

• Description of the “road map” of the minimum OBU kernel functions and the road map
thereafter.

Note: This document will be extended according to the progress of WP3.

1.3 History

1.4 Goals of the openETCS Modelling Work

1.4.1 Functional Scope: The Minimum OBU Kernel Function

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 2

The objective “Make the train run with a very minimum functionality” (see Chapter 1.2) shall be
in terms of ETCS OBU translated into

• “The Train moves on a track equipped with balises and determines its position.”

That means, for this very first step, the train shall neither supervise the maximum speed nor
activate the brakes. The minimum function set shall be limited to:

• Receive, filter and manage balise information received from track (see https://github.
com/openETCS/SRS-Analysis/issues/12);

• Calculate the actual train position based on balise and odometry information (see https:
//github.com/openETCS/SRS-Analysis/issues/8);

• Calculate the distances between the actual train position to track elements in its front.

The activities of the first iteration are collected in the openETCS WP3 backlog for the first
iteration [3].

A more detailed architectural breakdown of these functions is available as a SysML model [4].
Diagrams used in the document at hand describing the architecture are taken from the model in
[4].

The functional design is implemented in the Scade Model [5]. Design documents are taken from
this model. Design diagrams used in this document are generated from the model. The design
documents produced from the scade model are provided in the design location on Github [6].

In addition, the work on this minimum functionality requires to be supported by

• The availability of the ETCS language as specified in Subset UNISIG Subset_026, chapters 7
and 8;

• The abiltiy to link intermediate and final results with the requirements of the ETCS specifica-
tion (subset_026, etc.).

These supporting prerequisites are under construction and therefore currently not completely
operable. How to deal with these restrictions, will be outlined in Chapter 2.

1.4.2 List of Release Deliverables, Requirements Used

The first iteration release covers the following deliverables:

• Architecture and Design Document
This document describing the architectrue in textual form.

• The High-Level Architecture Model
SysML models used in this document. You can find them in the modelling repository [4].
The architecture does not cover the behaviour.

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://github.com/openETCS/SRS-Analysis/issues/12
https://github.com/openETCS/SRS-Analysis/issues/12
https://github.com/openETCS/SRS-Analysis/issues/8
https://github.com/openETCS/SRS-Analysis/issues/8

OETCS/WP3/D3.5.1 3

• The Design Document [6]
This document is generated with the Scade Reporter Function and strictly represents the
model.

• The Scade model [5]
The release is tagged with the Release-Tag: D3.6.1.1 (Deliverable 3.6, first iteration, first
correction version)

• C-Code generated from the model
The code is part of the model on Github.

• Process and Modelling rules
The process in [7] and [8] is in use. In addition, the guidelines described in [9]

• The Alstom API documents [10], [11] and [12] have taken as a logical description of the
interfaces used in the model. The physical layout of the interface is not taken in consideration.
This function is seen as a part outside the model (bit-walker in API)

1.4.3 Short Description of the functional scenario

Note: you find more details on the functionality in the sections of chapter 2. The model
is intended to receive balise telegrams, collect them to balise groups, generate balise group
messages according to SRS subset 26, section 3.4 (parts for level 1) .

On the balise interface only packages 5 "linking" are processed.

Checks of the input telegrams will generate the appropriate status indications. Those signals are
output of the model. Yet, the function to generate the appropriate reaction are not part of the first
iteration.

The validity of information according to the direction is checked and appropriate actions are
taken on the information elements.

Based on the input (balise telegrams, odometer) the model generates a location database and
calculates the position of the train according to section 3.6.3.

A train-position report is generated and generates output of the model. When generating the
message, neither the correct levels nor the actual status of the radio communication session are
respected due to the limited scope of the model. It is assumed those functions are part of the
radio communication manager (not in the scope of this exercise.).

1.4.4 Tools and Tools Versions in Use

The first iteration release covers the follwoing deliverables:

• openETCS Toolschain
The toolschain (kepler based version) is used for documenting references between Sysml
model and the SRS. In addition, the kepler based Papyrus version is in used for architectural
work.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 4

• Scade System
Version 15.2 of Scade System is as well a Kepler based version of Papyrus and is in use for
generating the SysML models.

Both Papyrus alternatives (Scade System as well as Eclipse Kepler) are compatible for the
WP3 work. For generation of references the openETCS tool has to be used.

• Scade Designer
Version 15.1 (or higher) is recommended to be used in the design. All Versions released after
6.4.2 (inclusive) are compatible regarding the used functionality for Scade Design.

• Git
Git is chosen as the platform for management of all deliverables of WP3. All results are
visible in the openETCS modeling repository. The issue tracker (repository modeling) is in
use for fault management.

The issue tracker and the milestone-planner of repository SRS-Analysis is in use for planning
purposes.

1.5 Glossary and Abbreviations

API Application Programming Interface
BTM Balise Transmission Module
EVC European Vital Computer
LRBG Last Relevant Balise Group
SRS System Requirements Specification

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 5

2 The openETCS Architecture of the Initial Kernel
Functions

2.1 The openETCS Tool Chain and its Impacts on the Actual Model

For understanding the modelling process and the modeling guidelines, we refer to [13].

To summarize the design process, the following rules are in use:

• Papyrus / SysML is used for modelling the architecture. Functions are visible on this SysML
level.

• No behaviour model is allowed on SysML level.

• For referencing the requirements, links from the SysML model to the requirements document
(in ProR) are being used.

• Details and especially behaviour is modelled in Scade.

• All interfaces (see also data-dictionary below) are available on bit-level.

• In the architecture model in SysML, all interfaces are available on a functional level for
interfaces inside and outside the model and for interfaces between dedicated functions. Due
to tool constrains the current model does not show all details for all interfaces (see the data
dictionary [14]).

The openETCS tool-chain for doing the modelling work consists of the following components:

Papyrus for modelling the architecture (Kepler version). In this phase only the Kepler version of
the tool can be used due to incompatibilities of the Kepler and the Luna version on the SysML
model. The SysML models are stored at https://github.com/openETCS/modeling/
tree/master/model/sysml.

ProR for keeping the requirements (REQIF). The subset 26 is converted into a REQIF-format
and also stored in the modeling repository on Github. The openETCS toolchain supports
the linking of SysML model parts to SRS-Requirements. These results are also part of the
architecture.

Scade for designing and formalising the functions Scade version 15.2 is used. The models
are stored at https://github.com/openETCS/modeling/tree/master/model/Scade.
With the component Scade System Scade also has a component for designing the architecture.

In principle, the synchronisation mechanism of Scade was planned to be used for synchronising
the SysML architecture and the Scade models. The idea is to automatically synchronise the
SysML types and blocks with the Scade type definitions and the Scade Operators. Unfortunately,
with the current set of tools this idea cannot be realised. Instead, we start developing a new

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://github.com/openETCS/modeling/tree/master/model/sysml
https://github.com/openETCS/modeling/tree/master/model/sysml
https://github.com/openETCS/modeling/tree/master/model/Scade

OETCS/WP3/D3.5.1 6

Papyrus plug-in which can be used for generating scade models according to the defined SysML
blocks

In addition, faults in the Kepler Papyrus version made it difficult for several members of the team
to work on different submodels of the openETCS model. The issue will be solved when changing
to the Luna version of Papyrus.

2.2 The openETCS Application Software Architecture

The following diagrams are taken from the SysML model [4].

Figure 1. Block Definition Diagram of the First Iteration Architecture

The diagram shows the hierarchy of the EVC model. The boundaries of the model are given with
the API (interfaces into and outside the EVC model), which actually is not part of the diagram.
The runtime system of the EVC is also seen as a part outside the model.

Green blocks in this diagram are seen as data collected by the “train” without making use of the
function in focus.

Input to the model is via the Model API (see section 3.1).

2.3 openETCS Data Dictionary

In the first iteration, the openETCS data dictionary gives some basic constructs for the project,
the definition of interfaces in a central place and the definition of the ETCS language [14].

2.3.1 ETCS Language

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 7

Figure 2. Internal Block Diagram of the First Iteration Architecture

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 8

The type definitions of Subset 26 chapters 7 and 8 (called the ETCS language) are provided as
SysML resp. Scade types to the openETCS model. For the SysML model the types have been
generated based on tools and provided as <>package<> imported to the openETCS toolschain.

2.3.2 openETCS Interfaces

Interfaces used between submodels and interfaces from outside and to outside the EVC kernel
are defined as types in the data dictionary.

In the Scade model the ETCS language is available in the oETCS projects S026-7 and S026-8.

2.3.3 Data Dictionary Outlook

In the first iteration the use of the data dictionary concept is reduced to a minimum. The full
openETCS process is tailored for a bigger team to cooperate and make use of tools to collect
data and generate code.

In the Scade model the types needed to build the interface between models are defined in the
projects Obu_Basic_Types.etp, BG_Types.etp, and TrainPosition_Types.etp.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 9

3 openETCS Kernel Functions

3.1 openETCS Model Runtime System

The openETCS model runtime system also provides:

• Input Functions from other Units. In this entity messages from other connected units are
received.

• Output Functions to other Units
The entity writes messages to other connected units.

• Conversation Functions for Messages (Bitwalker)
The conversion function are triggered by Input and Ouput Functions. The main task is to
convert input messages from an bit-packed format into logical ETCS messages (the ETCS
language) and Output messages from Logical into a bit-packed format. The logical format of
the messages is defined for all used types in the openETCS data dictionary.
Variable size elements in the Messages are converted to fixed length arrays with an used
elements indicator.
Optional elements are indicated with an valid flag. The conversion routines are responsible
for checking the data received is valid. If faults are detected the information is passed to the
openETCS executable model for further reaction.

• Model Cycle
The executable model is called in cycles. In the cycle

– First the received input messages are decoded.
– The input data is passed to the executable model in a predefined order(Details for the

interface to be defined). item Output is encoded according to the SRS and passed to the
buffers to the units.

The openETCS system contains two APIs:

1. openETCS API: the interface specification between the EVC platform and the openETCS
application;

2. Model API: the interface between the model itself written in SCADE and the surrounding
runtime. Both the SCADE model and the runtime are making the openETCS application.

Figure 3 shows both openETCS API and model API on the software stack.

3.1.1 openETCS API

The openETCS API is currently defined by two documents, one written by Alstom [10] and a
more abstract specification written by openETCS members [15].

The openETCS API defines the interfaces between the EVC platform and the openETCS applica-
tion for the following units surrounding the EVC:

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 10

EVC

openETCS executable model

openETCS model run-time system

ERSA
API

adapter

Siemens
API

adapter

GE
API

adapter

ERSA
simulator

Siemens
specific

platform

GE
specific

platform

model interface

openETCS API

Vendor specific
API

ODO

Application
software

Basic
software

…

Alstom
API

adapter

Alstom
specific

platform

Figure 3. openETCS software architecture

• TIU (Train Interface Unit),

• ODO (Odometry),

• DMI (Driver Machine Interface);

• STM (Specific Transmission Module, up to 8 units),

• BTM (Balise Transmission Module),

• LTM (Loop Transmission Module),

• EURORADIO,

• JRU (Juridical Recording Unit), and

• zero or more vendor specific units.

Note: in the scope of the first iteration the following interfaces are used: BTM, ODO,

The presence of intefaces to TIU, DMI and EURORADIO is visible in the interfaces, but not
coded.

3.1.2 Model API

The model API is currently defined by the inputs and outputs of the SCADE model.FIXME

FIXME: How to give a precise pointer within the SCADE model? Reference to a specific
block within the model?

For the proper working of the SCADE model, a set of assumptions are assumed:

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 11

• Eurobalise (BTM): It is assumed that at most one “telegram” is provided per call of the
SCADE model. This “telegram” is the merge of the telegrams of the balises making a balise
group.

3.2 First Iteration: Model API and Model Runtime System

Note: The basic functions and the API is not implemented in the first iteration. Instead, the Scade
test environment is used for demonstration. However, the interface used in the model is described
as if they were available.

3.2.1 Short Description of Functionality

• Runtime System
The Runtime System calls the openETCS kernel model in a cyclic way. Input parameters are
updated with every cycle. We have to differentiate between cycles in the application software
and clock cycles imposed by Scade. For the first iteration we assume both are identical.

• Input

– Control Interface
The control interface triggers the reset of the application software. The reset is modelled
as reset flag in the Scade model.

– BTM Services
The BTM service passes decoded telegrams to the executable model. The telegram
is handed over to the API_balise parameter of the model (see Chapter 3.4.4). In each
cycle only one telegram is expected to be passed.

– Odometry
The input from the odometry is updated with every cycle. The information from the
odometry is updated in the parameter actual_odometry of the executable model.

– System Time
The system time is made available to the EVC executable model at the beginning of
each cycle. It is not changed in the model while the cycle is not finished.

• Output

– DMI
The application may indicate errors at the balise group interface to the driver. The
trigger needs to be passed to a corresponding function inside the application software
(not part of the kernel).

– Train Interface Unit (TIU)
The application may need the service brake function. The trigger needs to be passed to
a corresponding function inside the application software (not part of the kernel).

– EuroRadio
The application may trigger the position report via radio interface. The message needs
to be passed to a corresponding function inside the application software (not part of the
kernel).

3.3 First Iteration: Interfaces to other Functions of the Application Software (not
part of First Iteration)

This section mainly refers to interfaces replaced by data implemented in the model.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 12

3.3.1 Short Description of Functionality

Train-Info
The parameters of the train are seen as a constant to the kernel model. The data re not changed
by any function of the kernel model. Only data used in the kernel are listed here. Used
Information: level and mode.

3.4 F.1 Manage Balise Information

3.4.1 Short Description of Functionality

"ManageBaliseInformation" manages information related to balise telegrams received via the
API when the train passes a balise. Balise telegrams are collected to build balise group messages.
Finally, the message is checked for consistency, the train direction is calculated and the balise
group message is passed to the other functions.

Information of the odometer is used to control for the train leaving the expectation window of
the balises.

3.4.1.1 Input

• reset (bool) Request a reset of the data in the function. If reset=true no other input to the
model is valid.

• API Telegram
The telegram is build from

– a present flag (bool)
Indicates the input decoded telegram parameter is “present”, i.e., the input has been
updated by the API. Only if the telegram is present the position information (incen-
terOfBalise) is to be used.

– the decoded telegram including optional packets received from the balise.

– the centerOfBalisePosition parameter. This parameter is used to give the position where
the BTM has recognised the center of the balise telegram.

• inActualOdometry
Actual Information giving the odometry of the train.

• LRBG
The Last Relevant Balise Group. The information has been collected before by the train
position function.

3.4.1.2 Output

• BG-Message
Information describing the actual balise group just received.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 13

Figure 4. Structure of Manage Balise Information Block

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 14

• ApplyServiceBreak
The flag indicates the balise group the train just passed could not be processed correctly. The
check results in the request for a service break.

• BadBaliseMessageToDMI
Information to be passed to the DMI to indicate the reception of a "bad balise" to the driver.

3.4.1.3 Data

• The function makes use of internal data for collecting and checking the balise telegrams.

3.4.2 Reference to the SRS (or other requirements)

• Definition of the Balise Telegram: subset 26 section 7 and 8

• Interface to the BTM: Subset 36, section 4.2.2, 4.2.4, 4.2.9

• Handling of Balise Telegrams: Subset 26, sections 3.4.1 - 3.4.3, 3.16.2

• Check of the balise group Subset 26, section 3.16.2

• Determining the Orientation: 3.4.2

3.4.3 Design Constraints and Choices

3.4.4 F.1.1 Receive Eurobalise From API

3.4.4.1 Short Description of Functionality

This function defines the interface of the OBU model to the openETCS generic API for Eurobalise
Messages. On the interface, either a valid telegram is provided or a telegram is indicated which
could not be received correct when passing the balise. The function passes the telegram without
major changes of the information to the next entity for collecting the balise group information.

3.4.4.2 Reference to the SRS (or other requirements)

• Definition of the Balise Telegram: subset 26 section 7 and 8

• Interface to the BTM: Subset 36, section 4.2.2, 4.2.4, 4.2.9

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 15

Figure 5. Structure of ReceiveEuroBaliseFromAPI

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 16

3.4.4.3 Design Constraints and Choices

1. The decoding of balises is done at the API. Also, packets received via the interface are already
transformed into a usable shape.

2. Only packets used inside the current model are passed via the interface:
Packet 5: Linking Information.
Linking Information is added to the linking array starting from index 0 without gaps. Used
elements are marked as valid. Elements are sorted according to the order given by the
telegram sequence.

3.4.5 F.1.2 Build BG Group Message

3.4.5.1 Short Description of Functionality

This entity collects telegrams received via the interface into Balise Group Information.

3.4.5.2 Reference to the SRS (or other requirements)

• Interface to the BTM: Subset 36, section 4.2.2, 4.2.4, 4.2.9

• Handling of Balise Telegrams: Subset 26, sections 3.4.1 - 3.4.3, 3.16.2

3.4.5.3 Design Constraints and Choices

1. Telegrams received as invalid are passed to the “Check-Function” to process errors in com-
munication with the track side according to the requirements and in a single place. Telegrams
are added to the telegram array starting from index 0 without gaps. Used elements are marked
as valid. Elements are stored according to the order given by the telegram sequence.

2. This function does not process information from the packets. The information is passed to
the check without further processing of the values.

3.4.6 F.1.3 Check BG Consistency

3.4.6.1 Short Description of Functionality

This function has the task to verify the completeness and correctness of the received messages
from balis-groups.
A message consists of at least a telegram and a maximum of 8 telegrams.

• A message is still complete and correct, if a telegram is missing (or not decoded or incomplete
decoded), and this telegram is duplicated within the balise group and the duplicating one is
correctly read.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 17

Figure 6. Structure of BuildBGMessage

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 18

• By more than one telegram, the order of the telegrams must be either ascending (nominal) or
Descending(reverse).

• A message is correct, if all message counters (M MCUNT) do not equal 254 (that means:
The telegram never fits any message of the group).
A message counter can be equal 255 (that means: The telegram fits with all telegrams of the
same balise group) and all other values must be the same.

Figure 7. Structure of BGConsistency

3.4.6.2 Reference to the SRS (or other requirements)

• Check of the balise group Subset 26, section 3.16.2

• Determining the Orientation: 3.4.2

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 19

• Active Functions Table: 4.5.2

3.4.6.3 Design Constraints and Choices

This function is active in certain modes and the output and reactions are dependent on if the
linking information is used.
The orientation of the BG will also be calculated in this block. The check, if the message has been
received in due time and the right at the right expected location, will be performed in "Calculate
Train Position".
The checks on the validity of the data in the packets and the validity with respect to the direction
of motion will be performed in other modules, e.g. "Validate Data Direction" .

3.4.7 F.1.4 Determine BG- Orientation and LRBG

The orientation of the Balise Group is already determined in the check procedure. Due to the
relocation of functions this block is not used any more.

3.4.8 F.1.5 Select Usable Info

Remark 1 This function has to be seen as a separate part of the system, since the filter of this
function is not limited to balise messages but also filters radio messages. Thus, the architecture
design will be corrected accordingly in the next iteration of the modelling activities.

3.4.8.1 Short Description of Functionality

The function Select Usable Info filters information received from balises that have been passed,
radio messages, and EUROLOOP messages. Filtering is done depending on the mode of the
train, the current ETCS level, the type/content of the information, and the transition media of the
information. As neither radio messages nor EUROLOOP are part of the first iteration of work,
not all functionality of the filter described in the specification is currently implemented.

3.4.8.2 Reference to the SRS (or other requirements)

The functionality of Select Usable Info is described in Chapter 4.8 of subset-026 [1]. The
following list gives an overview of the most important sections for each of the blocks in the
model.

First filter The first filter, i.e. the filter on the level, is described in [1, Chapter 4.8.3].

Second filter The second filter, i.e. the filter on the transition media, is described in[1, Chap-
ter 4.8.3].

Third filter The third filter, i.e. the filter on the modes, is described in [1, Chapter 4.8.4].

Transition buffers Details on the handling of the transition buffers used in the first and the
second filter are described in [1, Chapter 4.8.5].

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 20

3.4.8.3 Design Constraints and Choices

The first iteration of the model takes only balise group messages into account. This implies
that a large part of the specification of this function described in subset-026 [1] is not relevant
for the first iteration. This in particular applies to the second filter, i.e. filter on the transition
media, because radio messages are not part of the model so far. Moreover, the functionality of
the first filter, i.e. filter on the level, is currently limited because the first iteration of the model
implements ETCS level 1 only.

3.5 F.2 Manage Train Position

3.5.1 F.2.1 Validate Data Direction

Figure 8. Structure of component ValidateDataDirection

3.5.1.1 Short Description of Functionality

This function determines for direction information of the LRBG or an (ordinary) balise group
whether this information is valid or not. The function takes as an input the train position, the
LRBG and the balise group passed. It outputs the balise group passed extended with validity
information. The model consist of two operations and is shown in Figure ??:

DetermineBG_Orientation This operation determines the direction in which a BG has been
passed.

modifyLinkedBG This operation iterates through all LinkedBGs that have announce the BG
passed. For each LinkedBG it is checked whether the direction information encoded in
Q_DIR is valid w.r.t. the determined BG direction. The special cases described in [1, Chap-
ter 3.6.3.1.3.1, 3.6.3.1.4] are taken into account using input singleDirectionInvalid.

3.5.1.2 Reference to the SRS (or other requirements

The functionality is mainly described in [1, Chapter 3.6.3].

3.5.1.3 Design Constraints and Choices

Operation DetermineBG_Orientation is implemented as a package and will be moved to
different block in the next iterations. The special case for National Systems as described in [1,
Chapter 3.6.3.1.4.1] has not been modeled yet.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 21

3.5.2 F.2.2 Calculate Train Position

3.5.2.1 Short Description of Functionality

The main purpose of the function is to calculate the locations of linked and unlinked balise groups
(BGs) and the current train position while the train is running along the track.

Functional Structure in Stages

The function calculateTrainPosition is divided into the following four functions, which are being
performed sequentially:

1. calculateBGLocations: Calculate the balise group locations
The first stage is triggered each time the train passes a balise group (input passedBG). It takes
the balise group header with the BG identification, the linking information (Subset 26, packet
5) and the current odometry values as inputs and calculates the location of the the passed
balise group. If the passed BG has been announced via linking information previously, it
takes into account the linking as well as the odometry information. If the passed BG does not
meet the tolerance window announced by linking, an error flag is set. If the passed BG is an
unlinked BG, its location is determined by odometry only, but related to the next previously
passed linked BG, if there is one.
Then, if the passed BG is a linked BG comprising linking information for BGs ahead, the
linking information is evaluated by creating the announced BGs and computing their locations
from the linking distances.
The passed and the announced BGs are stored in a list BGs, ordered by their nominal location
on the track.
Afterwards the locations of all BGs are further improved by re-adjusting their locations with
reference to the just passed BG. This optimizes the BG location inaccuries around the current
train position (= location of the passed BG).

2. delDispensableBGs: Delete dispensable balise groups
The second stage removes balise groups supposed not to be needed any longer from the list
of BGs.
If the number of stored passed linked BGs exceeds the maximum number of eight as specified
in [1, Chapter 3.6.2.2.2 c], all BGs astern are deleted. If only (passed) unlinked BGs are in
the list and exceed the number of cNoOfAtLeast_x_unlinkedBGs, all passed BGs astern to
those are removed from the list.

3. calculateTrainPositionInfo: Calculate train position information.
This stage take the list of stored BGs and the current odometry values as inputs and steadily
provides the current train position.

4. calculateTrainpositionAttributes: Calculate train position attribute information.
This stage provides several additional position related attributes that might conveniently be
used by subsequent consumers in the architecture.

3.5.2.2 Reference to the SRS (or other requirements)

The component calculateTrainPosition determines the location of linked and unlinked balise
groups and the current train position during the train trip as specified mainly in [1, Chapter 3.6].

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 22

Figure 9. Structure of calculateTrainPosition

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 23

3.5.2.3 Design Constraints and Choices

The following constraints and prerequisites apply:

1. The input data received from the balises groups must have been checked and filtered for
validity, consistency and the appropriate train orientation before delivering them to calculate-
TrainPosition.

2. The storage capacity for balise groups is finite. calculateTrainPosition will raise an error flag
when a balise group cannot be stored due to capacity limitations.

3. calculateTrainPosition will raise an error flag if a just passed balise group is not found where
announced by linking information. It will not (yet) detect when an announced balise group is
missing.

4. calculateTrainPosition is not yet prepared for train movement direction changes.

5. calculateTrainPosition does not yet consider repositioning information.

3.5.3 Provide Position Report

Figure 10. Structure of component ProvidePositionReport

3.5.3.1 Short Description of Functionality

This function takes the current train position and generates a position report which is sent to the
RBC. The point in time when such a report is sent is determined by events, on the one hand,
and position report parameters—which are basically triggers—provided by the RBC or a balise

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 24

group passed, on the other hand. The functionality is modeled using three operations, as shown
in Figure 10, which are explained below.

CalculateSafeTrainLength Calculates the the safeTrainLength and the MinSafeRearEnd ac-
cording to [1, Chapter 3.6.5.2.4/5].
safeTrainLength = absolute(EstimatedFrontEndPosition - MinSafeRearEnd),
where MinSafeRearEnd = minSafeFrontEndPosition - L_TRAIN.

EvaluateTriggerAndEvents Returns a Boolean modelling whether the sending of the next
position report is triggered or not. This value is the conjunction of the evaluation of all
triggers (PositionReportParameters, i.e., Packet 58) and events (see [1, Chapter 3.6.5.1.4]).

CollectData This operation aggregates data of Packet 0, . . . , Packet 5 and the header to a
position report.

3.5.3.2 Reference to the SRS (or other requirements

Most of the functionality is described in [1, Chapter 3.6.5].

3.5.3.3 Design Constraints and Choices

1. The message length (i.e., attribute L_MESSAGE) is by default set to 0; the actual value will be
set by the Bitwalker/API.

2. The attribute Q_SCALE is assumed to be constant; that is, all operations using this attribute do
not convert between different values of that attribute.

3. PositionReportHeader: The time stamp (i.e., attribute T_TRAIN) is not set; this should be
done once the message is being sent by the API.

4. Packet 4: When aggregating data for this packet, an error message might be overwritten by
a succeeding error message. Because the specification allows only to sent one error in one
position report, errors are not being stored in a queue, for instance.

5. Packet 44: This packet is currently not contained in a position report as it is not part of the
kernel functions.

6. The usage of attributes D_CYCLOC and T_CYCLOC as part of the triggers specified by the
position report parameters (i.e., Packet 58 sent by the RBC) may lead to unexpected results if
a big clock cycle together with small values for the attributes is used. The cause is that at
every clock cycle the current model increments the reference value for the distance and time
by at most D_CYCLOC and T_CYCLOC, respectively and not a factor of it.

3.5.3.4 Open Issues

1. The specification requires to store the last eight balise groups for which a position report has
been sent (see [1, Chapter 3.6.2.2.2.c]).

2. For all reports that contain Packet 1 (i.e., report based on two balise groups), the RBC sends
a coordinate system. It is unclear where this has to be stored (i.e., somehow the balise groups

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 25

have to be stored in a database which has then to be updated), see [1, Chapter 3.4.2.3.3.6].
Moreover, such a coordination system can be invalid and then has to be rejected (see [1,
Chapter 3.4.2.3.3.7-8]). On a more abstract level, we need to think about the interface
between the RBC and the OBU or a proper abstraction thereof.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.1 26

Appendix: References

[1] ERA. System Requirements Specification, SUBSET-026, v3.3.0 edition, March 2012.

[2] openETCS WP3-team. openETCS Working Result: List of ETCS Functions, November 2013.
https://github.com/openETCS/SRS-Analysis/blob/master/System%20Analysis/
List_Functions.xlsx.

[3] openETCS Product Owner. WP3 Product Backlog, Selection of First Iteration. https://github.
com/openETCS/SRS-Analysis/labels/backlog%20item.

[4] openETCS. openETCS SysML model, 2014. https://github.com/openETCS/modeling/tree/
master/model/sysml/WP3-Initial-Architecture.

[5] openETCS. openETCS SCADE model, 2014. https://github.com/openETCS/modeling/
tree/master/model/Scade/System.

[6] openETCS WP3. WP3 Design Documents: First Iteration. https://github.com/
openETCS/modeling/blob/master/openETCSDesignDocuments/firstIteration/WP3_
InitialArchitecture_DesignDescription.pdf.

[7] David Mentre Marielle Petit-Doche and Mathias Guedemann. D2.4 openETCS Methods, 1.1
edition, January 2014. https://github.com/openETCS/requirements/blob/master/D2.4/
D2_4.pdf.

[8] Matthias Guedemann Marielle Petit-Doche. D2.3 openETCS Process, 2.0 edition, June 2013.
https://github.com/openETCS/requirements/blob/master/D2.3/D2_3.pdf.

[9] Uwe Steinke. openETCS SCADE Modelling Guide, March 2014. https://github.com/
openETCS/modeling/blob/master/ModelingRules/SCADE_Modelling_Guide.pdf.

[10] Nicolas Boverie. API Requirements for OpenETCS. Alstom Transport, v1.4 edition, September
2014. https://github.com/openETCS/requirements/blob/master/D2.7-Technical_
Appendix/OETCS_API%20Requirements_v1.4.pdf.

[11] Alstom Transport. Appendix application layer, v1.2 edition, 2014. https://github.
com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%
20Requirements_appendix_application_layer_v1.2.pdf.

[12] Alstom Transport. Appendix Functional Data Dictionary, v1.1 edition, 2014. https:
//github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/
OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf.

[13] Uwe Steinke Marielle Petit-Doche and Bernd Hekele. WP3 Description of Work, Jan-
uary 2014. https://github.com/openETCS/modeling/blob/master/DescriptionOfWork/
NewModelingDescriptionOfWork.pdf.

[14] openETCS. openETCS Model for the dataDictionary, 2014. https://github.com/openETCS/
modeling/tree/master/model/sysml/dataDictionary.

[15] Nicolas Boverie, Pierre-Yves Le Morvan, David Mentré, and Nicolas Van Landeghem.
openETCS API description, 2014. https://github.com/openETCS/modeling/blob/master/
API/description/api-description.pdf.

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://github.com/openETCS/SRS-Analysis/blob/master/System%20Analysis/List_Functions.xlsx
https://github.com/openETCS/SRS-Analysis/blob/master/System%20Analysis/List_Functions.xlsx
https://github.com/openETCS/SRS-Analysis/labels/backlog%20item
https://github.com/openETCS/SRS-Analysis/labels/backlog%20item
https://github.com/openETCS/modeling/tree/master/model/sysml/WP3-Initial-Architecture
https://github.com/openETCS/modeling/tree/master/model/sysml/WP3-Initial-Architecture
https://github.com/openETCS/modeling/tree/master/model/Scade/System
https://github.com/openETCS/modeling/tree/master/model/Scade/System
https://github.com/openETCS/modeling/blob/master/openETCSDesignDocuments/firstIteration/WP3_InitialArchitecture_DesignDescription.pdf
https://github.com/openETCS/modeling/blob/master/openETCSDesignDocuments/firstIteration/WP3_InitialArchitecture_DesignDescription.pdf
https://github.com/openETCS/modeling/blob/master/openETCSDesignDocuments/firstIteration/WP3_InitialArchitecture_DesignDescription.pdf
https://github.com/openETCS/requirements/blob/master/D2.4/D2_4.pdf
https://github.com/openETCS/requirements/blob/master/D2.4/D2_4.pdf
https://github.com/openETCS/requirements/blob/master/D2.3/D2_3.pdf
https://github.com/openETCS/modeling/blob/master/ModelingRules/SCADE_Modelling_Guide.pdf
https://github.com/openETCS/modeling/blob/master/ModelingRules/SCADE_Modelling_Guide.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_v1.4.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_v1.4.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_application_layer_v1.2.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_application_layer_v1.2.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_application_layer_v1.2.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf
https://github.com/openETCS/modeling/blob/master/DescriptionOfWork/NewModelingDescriptionOfWork.pdf
https://github.com/openETCS/modeling/blob/master/DescriptionOfWork/NewModelingDescriptionOfWork.pdf
https://github.com/openETCS/modeling/tree/master/model/sysml/dataDictionary
https://github.com/openETCS/modeling/tree/master/model/sysml/dataDictionary
https://github.com/openETCS/modeling/blob/master/API/description/api-description.pdf
https://github.com/openETCS/modeling/blob/master/API/description/api-description.pdf

	Modification History
	Figures and Tables
	Introduction
	Motivation
	Objectives
	History
	Goals of the openETCS Modelling Work
	Functional Scope: The Minimum OBU Kernel Function
	List of Release Deliverables, Requirements Used
	Short Description of the functionality
	Tools and Tools Versions in Use

	Glossary and Abbreviations

	The openETCS Architecture of the Initial Kernel Functions
	The openETCS Tool Chain and its Impacts on the Actual Model
	The openETCS Application Software Architecture
	openETCS Data Dictionary
	ETCS Language
	openETCS Interfaces
	Data Dictionary Outlook

	openETCS Kernel Functions
	openETCS Model Runtime System
	openETCS API
	Model API

	First Iteration: Model API and Model Runtime System
	Short Description of Functionality

	First Iteration: Interfaces to other Functions of the Application Software (not part of First Iteration)
	Short Description of Functionality

	F.1 Manage Balise Information
	Short Description of Functionality
	Input
	Output
	Data

	Reference to the SRS (or other requirements)
	Design Constraints and Choices
	F.1.1 Receive Eurobalise From API
	Short Description of Functionality
	Reference to the SRS (or other requirements)
	Design Constraints and Choices

	F.1.2 Build BG Group Message
	Short Description of Functionality
	Reference to the SRS (or other requirements)
	Design Constraints and Choices

	F.1.3 Check BG Consistency
	Short Description of Functionality
	Reference to the SRS (or other requirements)
	Design Constraints and Choices

	F.1.4 Determine BG- Orientation and LRBG
	F.1.5 Select Usable Info
	Short Description of Functionality
	Reference to the SRS (or other requirements)
	Design Constraints and Choices

	F.2 Manage Train Position
	F.2.1 Validate Data Direction
	Short Description of Functionality
	Reference to the SRS (or other requirements
	Design Constraints and Choices

	F.2.2 Calculate Train Position
	Short Description of Functionality
	Reference to the SRS (or other requirements)
	Design Constraints and Choices

	Provide Position Report
	Short Description of Functionality
	Reference to the SRS (or other requirements
	Design Constraints and Choices
	Open Issues

	Appendix: References

