

 (ITEA2 09011)

Optimize HPC Applications on Heterogeneous Architectures

•••

Deliverable: D<5.2.3.3>

Prototype of an algorithm to allocate resources based

on energy consumption

Version: V1.1

Date: 14/10/2013

Authors: CEA / M. Hautreux

Status: Final

Visibility: Public

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 2 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

HISTORY

Document
version #

Date Remarks Author

V1.0 08/10/2013 Hautreux

V1.1 14/10/2013 Modifications following Benoit Pradelle review. Hautreux

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 3 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

TABLE OF CONTENTS

1. Executive Summary .. 4

2. Objectives ... 5

3. Background ... 5

4. Solution design ... 6

5. Solution usage .. 8

1. Example 1 ... 8

2. Example 2 ..10

3. Example 3 ..11

6. Conclusion and future works ... 13

7. Abbreviations and acronyms ... 14

8. References ... 14

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 4 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

1. Executive Summary

The last decades have shown an ever growing requirement in terms of computing and storage

resources. This tendency recently puts the pressure on the ability to efficiently manage the power

required to operate the vast amount of electrical components associated with state-of-the-art

computing and data centers.

This deliverable presents the work performed on the resource and job management system

SLURM in order to provide a power capping mechanism enabling to limit the power budget

available to a computing cluster among time.

A working prototype providing the capability to autonomously adapt the executed workload to the

available or planned budget is detailed. Limitations and future works are presented and proposed

as following work of this task of the PerfCloud project.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 5 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

2. Objectives

The main objectives of the software prototype of dynamic power capping within SLURM are to

allow the definition of a power budget for a cluster as well as its variations among time. By

variations, we mean the ability to plan additional power cuts in a defined budget in order to further

reduce the amount of available power to the execution nodes at some points in time.

Use cases of the dynamic power capping are the ability to limit the instantaneous power

consumption of a cluster in order to cope with power supplier restrictions or to avoid using too

much power in a fluctuating power prices system when the price of the energy is too high to

afford a fully used system.

In order to stay in the defined or planned budget, the resource manager will have to arbitrate the

computing resources usage to enforce the targeted threshold. To do that, the resource manager

will compute the current maximum amount of required power, based on the executing workload,

and will only start jobs for which the selected resources usage will not prevent the system from

respecting the target.

3. Background

SLURM is a widely used open-source resource manager and batch scheduler. It enables to

efficiently manage large workloads on large systems, among the largest currently in production. It

is currently available in the BULL software stack as installed on the PerfCloud hardware prototype

Cirrus. SLURM offers a large variety of features but provides only a limited support of energy

saving mechanism within a cluster.

A power saving logic [PSV] enables to define a set of nodes, scripts, timeouts and ratios,

enabling to perform automated suspend/resume operations on idle nodes not yet necessary. In

spite of being interesting to reduce the total power bill of a system, this mechanism does not

enable to enforce the respect of a particular power cap. Furthermore, on systems where shutting

down nodes on demand is not possible or simply not desired, this logic has a limited benefit in

terms of real power savings.

BULL has recently enhanced the power awareness of SLURM by introducing the capability to

regularly capture the instantaneous consumed power of nodes. This information is used to

estimate the amounts of energy required to execute the different jobs [ENG]. Coupled with the

introduction of a DVFS logic, enabling to modify the maximum frequencies of the cores involved

in a parallel execution, this new feature helps to identify the behavior of applications in terms of

power consumption when varying the frequency. Thus, users can experiment different frequency

values to evaluate the behavior of their jobs and optimize their energy efficiency. This feature is

an important milestone in the power awareness road map of SLURM but does not help to work in

a limited power budget.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 6 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

SLURM offers a mechanism called advanced reservations [RES]. This mechanism enables to

plan reservations of resources, whether real computing nodes or virtual resources like ISV

licenses, in order to avoid their usages or restrict them to a predefined set of users on particular

time slots. Although being commonly used to anticipate full or partial maintenance or simply to

dedicate resources to training sessions, this mechanism is not of any help when it comes to plan

power cuts.

Introducing the dynamic power capping, as explained in the objectives of this deliverable,

therefore requires to implement a new power capping feature and to adapt the product

reservation logic.

4. Solution design

SLURM, in a nutshell, is designed as a client-server distributed application : a centralized server

daemon slurmctld, also known as the controller, communicates with a client daemon slurmd

running on each computing node. Users can request the controller for resources to execute

interactive or batch applications, referred as jobs. The controller dispatches the jobs on the

available resources, whether full nodes or partial nodes, according to a configurable set of rules.

To achieve the targeted goal of dynamic power capping, a new parameter, PowerCap is added to

the controller 's set of states. It represents the allowed power budget in watts of the cluster.

To compute the maximum power amount required to operate a cluster, new parameters are

associated to the compute nodes definition to provide the different amounts of watts required to

operate them at different states. Thus, the IdleWatts, MaxWatts, PowerSaveWatts and

DownWatts will respectively correspond to the amounts of watts required to operate a node in

idle, fully used, power saved and down states. The down state corresponds to the state the

controller uses to characterize a node not being currently accessible within SLURM.

While computing the instantaneous maximum amount of power of the cluster, the controller will

use the known states of the nodes in order to sum up the individual maximum amounts of watts

and produce a single power value for the whole cluster.

An additional parameter PowerCapPriority, when set to the zero value, enables to specify nodes

for which the power capping logic must always consider the MaxWatts as the current maximum

amount of power required. Thus, these nodes will always have their power requirement

guarantee and will always be available for executions.

SLURM reservation characteristics are extended by a new Watts parameter in order to specify a

particular amount of power reserved for a particular time slot: this enables to define power

reservations corresponding to the previously discussed power cuts. The power reservations will

thus enable to dynamically cap the amount of available power among time.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 7 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

When evaluating the impact of the start of a pending job, the controller will temporary alter the

states of the candidate nodes, compute the resultant threshold and compare it with the defined

and planned caps. By planned caps, we mean the values corresponding to the current cap of the

cluster minus the different power reservations encountered during the estimated execution time of

the job.

Schematic view of the power capping mechanism

In case of power budget overflow, the evaluated job will stay pending and the next one of the list

will be tried instead. Thus, only the first n jobs of the pending list enabling to respect the budget

will be executed. As soon as jobs finish, associated nodes may return to the idle state, resulting in

a new power capacity available for other pending jobs.

Note that the current prototype does not make any difference in power requirements whether

nodes are fully or partially used. The evaluation of new jobs only filling partially used nodes will

always pass the power capping criteria as no extra power will be required. As a result, the

scheduler will tend to fill the compute nodes up to the targeted power budget.

The PowerSaveWatts is an important parameter in the implemented dynamic power capping

logic. By default, it corresponds to the same amount of watts as the IdleWatts parameter. This

means that the scheduler does not know if a configured power saving logic has an effect on the

power consumption nodes in the power saved state. In that case, the only lever of the capping

logic is to let nodes idle (or equivalent) to respect the cap, resulting in a potentially large amount

of unused active nodes.

However, when the dynamic power capping is used in combination with an efficient power saving

configuration (shutdown or deep-sleep) and the PowerSaveWatts value is set to the real amounts

of watts required by the power saved nodes, the reclaimed power can be used to keep a larger

number of nodes usable. In such a configuration, the system should tend to use the optimum

number of nodes over a power capped period.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 8 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

5. Solution usage

This section presents different utilization examples of the implemented dynamic power capping

mechanism to better understand its logic, benefits and possibilities.

In the different examples, an emulated cluster is used as the back-end platform running the

modified version of SLURM 2.6.2 (latest stable branch at the time of writing). The emulated mode

consists of running a modified nested SLURM cluster inside an allocation of resources in an

existing SLURM cluster. All the SLURM components required to operate a real cluster are

present in the emulated instance and communicate with each other, ensuring the validity of the

results in a real scenario.

The emulated cluster is made of 257 nodes with 32 cores per node, 256 being part of the main

partition. The power capping parameters are configured as follows:

• PowerCap = INFINITE : meaning that the power capping logic is enabled but without any

restriction on the available power budget.

• IdleWatts = 450 : the amount of watts considered for nodes in idle state

• MaxWatts = 950 : the amount of watts considered for nodes used by jobs

• DownWatts = undefined : meaning that we use the MaxWatts value by default

• PowerSaveWatts = undefined : meaning that we use the IdleWatts value by default

The following examples will precise the configuration changes when necessary.

1. Example 1

The first example illustrates the monitoring of the power capping logic counters.

[mat@leaf0 utilit]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

physical up infinite 1 idle leaf0

virtual* up infinite 256 idle leaf[1000-1255]

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=116150 CurrentWatts=116150 PowerCap=INFINITE AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$

While no nodes are used, the current maximum amount of watts required, provided by the
CurrentWatts parameter, equals the minimum amount MinWatts. In our case, it represents 257 *
450 = 116,15 kW.

While MaxWatts represents the maximum amount of watts required to operate the cluster having
all the nodes busy, the AdjustedMaxWatts is the maximum amount of watts required to operate
the cluster, taking into consideration down and power saved nodes. As no nodes are in these two
states in our first example, the two values are equal.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 9 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

Once a job is started, the values are updated to reflect the current usage of the power, as
illustrated below.

[mat@leaf0 utilit]$ srun -n 10 -N 10 sleep 100 >/dev/null &

[1] 23819

[mat@leaf0 utilit]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

physical up infinite 1 idle leaf0

virtual* up infinite 10 mix leaf[1000-1009]

virtual* up infinite 246 idle leaf[1010-1255]

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=116150 CurrentWatts=121150 PowerCap=INFINITE AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$

Setting a power cap below the required amount of 121,15 kW then prevents from executing an
equivalent job, unless the number of involved nodes is reduced :

[mat@leaf0 utilit]$ scontrol update powercap=121000

[1]+ Done srun -n 10 -N 10 sleep 100 > /dev/null

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=116150 CurrentWatts=116150 PowerCap=121000 AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$ srun -n 10 -N 10 sleep 100 >/dev/null &

[1] 25975

srun: Required power not available now

srun: job 5 queued and waiting for resources

[mat@leaf0 utilit]$ srun -n 10 -N 9 sleep 100 >/dev/null &

[2] 25978

[mat@leaf0 utilit]$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 5 virtual sleep mat PD 0:00 10 (PowerNotAvail)

 6 virtual sleep mat R 0:05 9 leaf[1000-1008]

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=116150 CurrentWatts=120650 PowerCap=121000 AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 5 virtual sleep mat PD 0:00 10 (PowerNotAvail)

[2]+ Done srun -n 10 -N 9 sleep 100 > /dev/null

[mat@leaf0 utilit]$ scontrol update powercap=INFINITE

[mat@leaf0 utilit]$ srun: job 5 has been allocated resources

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 10 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

[mat@leaf0 utilit]$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 5 virtual sleep mat R 0:14 10 leaf[1000-1009]

2. Example 2

The second example illustrates the usage of the power saving mechanism with the
PowerSaveWatts parameter of the nodes to optimize the number of available nodes.

The configuration is modified to reduce the PowerSaveWatts parameter to 5 Watts, the supposed
amount of power required to enable the BMC of the nodes when the nodes are shutdown.

[mat@leaf0 utilit]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

physical up infinite 1 idle leaf0

virtual* up infinite 256 idle leaf[1000-1255]

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=2230 CurrentWatts=116150 PowerCap=INFINITE AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$ scontrol update powercap=121000

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=2230 CurrentWatts=116150 PowerCap=121000 AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$ srun -n 10 -N 10 sleep 100 >/dev/null &

[1] 1629

srun: Required power not available now

srun: job 2 queued and waiting for resources

[mat@leaf0 utilit]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

physical up infinite 1 idle leaf0

virtual* up infinite 256 idle leaf[1000-1255]

[mat@leaf0 utilit]$ # waiting for nodes to be shutdown

[mat@leaf0 utilit]$ srun: job 2 has been allocated resources

[mat@leaf0 utilit]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

physical up infinite 1 idle leaf0

virtual* up infinite 107 idle~ leaf[1010-1116]

virtual* up infinite 10 mix leaf[1000-1009]

virtual* up infinite 139 idle leaf[1117-1255]

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=2230 CurrentWatts=73535 PowerCap=121000 AdjustedMaxWatts=143035

MaxWatts=244150

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 11 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

[mat@leaf0 utilit]$

The listing illustrates that a job is first blocked, waiting for sufficient available power and then
started as soon as a first set of nodes is taken into account by the power saving mechanism. At
that moment, enough power was reclaimed from formerly idle nodes and starting the job is
possible.

Note that once nodes are reclaimed by the power saving logic, the power capping will prevent
them from being used again, ensuring that the remaining number of idle nodes is the optimal
number..

3. Example 3

The last example illustrates the usage of a power reservation in order to define in advance a
power cut. The SLURM configuration used in this example is the default configuration for ease of
understanding. However, the power saving logic could be used in combination too.

[mat@leaf0 utilit]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

physical up infinite 1 idle leaf0

virtual* up infinite 256 idle leaf[1000-1255]

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=116150 CurrentWatts=116150 PowerCap=INFINITE AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$ scontrol create res FLAG=LICENSE_ONLY

starttime=now+20minutes duration=3 Watts=123150 Users=root

Reservation created: root_1

[mat@leaf0 utilit]$ scontrol show res

ReservationName=root_1 StartTime=2013-10-02T23:57:26 EndTime=2013-10-

03T00:00:26 Duration=00:03:00

 Nodes= NodeCnt=0 CoreCnt=0 Features=(null) PartitionName=virtual

Flags=LICENSE_ONLY

 Users=root Accounts=(null) Licenses=(null) Watts=123150 State=INACTIVE

[mat@leaf0 utilit]$ scontrol show powercap

MinWatts=116150 CurrentWatts=116150 PowerCap=INFINITE AdjustedMaxWatts=244150

MaxWatts=244150

[mat@leaf0 utilit]$ srun --immediate -t 40 -n 10 -N 10 sleep 100 >/dev/null

srun: Force Terminated job 2

srun: error: Unable to allocate resources: Required power at least partially

reserved

[mat@leaf0 utilit]$ srun --immediate -t 15 -n 10 -N 10 sleep 60 &

[1] 10135

[mat@leaf0 utilit]$ scontrol show powercap

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 12 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

MinWatts=116150 CurrentWatts=121150 PowerCap=INFINITE AdjustedMaxWatts=244150

MaxWatts=244150

[1]+ Exit 1 srun --immediate -t 20 -n 10 -N 10 sleep 60

[mat@leaf0 utilit]$ srun -t 20 -n 10 -N 10 sleep 60 &

[1] 12270

[mat@leaf0 utilit]$ srun: Required power at least partially reserved

srun: job 12 queued and waiting for resources

[mat@leaf0 utilit]$ srun --immediate -t 30 -n 10 -N 9 true >/dev/null

[mat@leaf0 utilit]$ scontrol delete reservation=root_1

[mat@leaf0 utilit]$ srun: job 12 has been allocated resources

[1]+ Done srun -t 20 -n 10 -N 10 sleep 60

[mat@leaf0 utilit]$

The listing shows that jobs finishing before the start of a limiting power reservation are executed
properly. However, jobs overlapping the reservation time and requiring more power than available
are blocked. Those requiring an allowed amount of power are started as usual.

As soon as the reservation is removed, the blocked jobs are started if the power is then available.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 13 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

6. Conclusion and future works

A first software prototype for dynamic power capping within SLURM is now operational. It

should help to autonomously enslave the load of clusters with the power supply capacity of the

computing and data centers.

It is noteworthy that the current power capping logic is a conservative approach. It needs the

definition of empirical values associated with the different amounts of power required by the

nodes in their various states. These empirical values need to be estimated based on hardware

characteristics and fully-loaded stress-tests. Optimizations could be performed and result in the

autonomous definition of some of these values to adapt the internal capping counters to the real

power usage of the resources.

The prototype still needs further evaluations and enhancements to optimize its behavior with real

heterogeneous workloads. Indeed, applying a new power constraint in SLURM showed that some

scheduling behaviors, like the back-fill mechanism, are modified in depth and need to be adapted.

For example, the current prototype tends to follow a first-fit scheduling mechanism as soon as the

power is capped. This ensures a good utilization of the power resource but potentially delays large

jobs having higher priorities but not being eligible because of insufficient available power.

The scheduling logic of SLURM was not altered to search for the best trade-off between resources

and power when selecting resources. The introduced mechanism only considers the selected

resources and validates that the associated power requirements can be satisfied. Properly

supporting multi-objectives scheduling in SLURM requires complex additional adaptations.

Additional enhancements in the power capping mechanism are planned. The current logic does not

take into account the possibilities offered to users of using DVFS to limit the amount of power

required per node. Handling this feature properly, it could be possible to further optimize the

number of usable nodes reclaiming the extra free power of nodes used at lower frequencies.

Hardware capabilities to specify a power cap per node, like the one offered by the HP Proliant

servers [HPP] or using the Intel Intelligent Power Node Manager [ITL], could be used in

combination with the allowed amounts of watts to enforce the amount of watts usable per node

running at intermediate levels of power.

These possibilities will be studied in the following months. The most interesting and applicable

ones will be introduced in the next version of the prototype. The result of these studies will be

detailed in the next deliverable D5-2.3.5 planned for June 2014.

 D<5.2.3.3> - Prototype of an algorithm to allocate resources

 based on energy consumption

 V1.1 - 14/10/2013 - - Public

CEA Page 14 / 14

 F

i

g

u

r

e

E

r

r

e

u

r

!

D

o

c

u

m

e

n

t

p

r

i

n

c

i

p

a

l

s

e

u

l

e

m

e

n

t

.

7. Abbreviations and acronyms

BMC Baseboard Management Card, the embedded hardware in charge among others of
powering on/off the node

DVFS Dynamic Voltage/Frequency Scaling : mechanism enabling to reduce the voltage or
frequency of an electrical component in order to reduce its consumption and/or
temperature

ISV Independent Software Vendor

8. References

[PSV] http://slurm.schedmd.com/power_save.html

[RES] http://slurm.schedmd.com/reservations.html

[ENG] http://slurm.schedmd.com/acct_gather_energy_plugins.html

[HPP] http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01549455/c01549455.pdf

[ITL] https://communities.intel.com/docs/DOC-4766

http://slurm.schedmd.com/power_save.html
http://slurm.schedmd.com/reservations.html
http://slurm.schedmd.com/acct_gather_energy_plugins.html
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c01549455/c01549455.pdf
https://communities.intel.com/docs/DOC-4766

