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1 Introduction

This verification evaluated in five different approaches that the design conforms to an excerpt of
Subset-026 [1] related to the specification [2] [3]. It is the first of three reports. It is performed
before a design or development process is available. The design used for verification in this report
is created and adapted to improve later results of verificatoin. Due to the applicable restrictions
the results of the first report focus on the verificatoin itself rather than to give a verdict about
conformity of design. All following reports will focus solely on the design provided by the work
package "Modelling – Code Generation".

To ensure the correctness and consistency of a design model and its implementation, the validation
and verification has to be performed alongside with the modeling process. As the model and
code of the EVC are produced by WP3, thus this task will be performed repeatedly during WP3
and will provide feedback to it.

This document presents the interim results of the first iteration of verification and validation of
formal model. Since the actual formal model of the ETCS system, provided by WP3, has not yet
been initiated, no “real” input is currently applied.

The following sections present the contributions of the partners:

• Institut Mines-Télécom: Verification of the Movement Authority (Subset-026 [1] chapter 3.8)

• TWT GmbH Science & Innovation: Verification of Procedures (Subset-026 chapter 5)

• University of Bremen: Verification of the Management of the Radio Comumunication
(Subset-026 chapter 3.5)

• University of Rostock: Verification of the Speed and distance Monitoring (Subset-026 chapter
3.13)

• Systerel: Verification of Procedure on-Sight (Subset-026 chapter 5) and the Management of
Radio Communication (Subset-026 chapter 3.5)

• LAAS and INPT: Verification of the Speed and Distance Monitoring (Subset-026 chapter
3.13)

This work is licensed under the "openETCS Open License Terms" (oOLT).
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2 Institut Mines-Télécom: Verification of the Movement Authority

2.1 Introduction

We focus on applying model-based formal methods on validation and verification (V&V) of the
ETCS system. An overview of our approach is depicted in Figure 1.

SRS Subset-
026.3.8

SysML model

IF formal model

Java simulator

Model 
checking 

(IFx)

Test cases 
generation 

(TestGen-IF)

Adaptive 
testing

Verdict

Verdict

Test cases

Model level

Execution level
S
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TE
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Figure 1. Overview of Institut Telecom-Mines’ Approach

In the openETCS project, the system requirement specifications are represented by using SysML
models. We validate and verify the models on two aspects, model-level and execution-level, by
using two model-based techniques: model-checking and model-based testing. At the model-
level, V&V is done through model-checking, by using IFx tool, of IF formal models which are
representations of the SysML models. As model-checking techniques check exhaustively models,
hence it may be expensive in some special cases where we intend to check some properties of
models in some explicit conditions. In such a case, model-based testing is a low-cost alternative.
At the execution-level, we encode the SysML models by Java simulators that are then used to
execute some tests. We also illustrate the consistency of two aspects by applying test cases, that
are generated by TestGen-IF tool at the model-level, on our Java simulators, i.e., all tests must
give pass verdict

The automatic translations from SysML models to IF models to Java simulators are being studied.
Furthermore, as the actual models provided by WP3 have not yet been initiated, we started with
a formal model that is a finite state machine augmented with continuous variables and guards.
This model can be considered as an abstract version of ETCS model and it can be refined in our
future steps, e.g., the MOVE function mode of the TRAIN can be refined to SHUNTING, TRIP
function modes of OBU in Subset-026.4.4.

2.2 Verification on IF model

This work is licensed under the "openETCS Open License Terms" (oOLT).
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2.2.1 Object of Verification

The object of verification is an IF model representing the Movement Authority of the train.

2.2.2 Available Specification

The Movement Authority is described in Subset-026, chapter 3.8. This chapter gives (1) the
definitions and structure of the movement authority, (2) the procedures of OBU to send a
Movement Authority request to the RBC and to receive a Movement Authority response from
the RBC; and (3) the use of Movement Authority on the OBU.

2.2.3 Detailed Verification Plan

Goal

We intend firstly to model the Movement Authority of OBU described in Subset-026-3.8. We
then use the model to validate the safety properties and to generate the test.

Method/Approach

Means

We consider an ETFSM (Extended Timed Finite State Machine) as a formal model from which
test cases for verifying the safety aspects of the developed implementations can be automatically
generated. Formally, an ETFSM is a tuple (S , s0, E,T,∆, v0) where: S is a non-empty finite
set of states with s0 ∈ S as the initial state, E is a finite set of events, T is a set of transitions,
∆ ⊂ S → S × (N ∪ {∞}) is timeout function, and ~v0 is the vector of initial values of the context
variables. The timeout function ∆ limits an interval by which a trigger of transition must occur
(thus the transition will be fired). When the interval ends, the transition will be automatically
fired in spite of its trigger has not yet occurred.

The formal model is then represented by IF descriptionin order to be checked by using IF
model-checker. Test cases are generated by using TestGen-IF.

Model Checking using IF. Model checking is an automatic technique for verifying finite-state
reactive systems. Using such techniques one could automatically check if the model specifies
most of the requirements of the system, such as the important safety properties described in Task
4.4. Similar to proof techniques, in order to use model checking to verify if the SFM (Semi-
formal model) and FFM (fully formal model) comply with the safety and function requirements,
the properties to be proven have to be identified and described. To implement the use model
checking, it is mandatory to specify the model using finite-state reactive systems, and they should
also provide an intuitive way to express the properties to be model checked. The language for
describing a formal model for which corresponding model checkers exist should be selected and
the set of critical requirements to be verified need to be clearly identified. The proposed model
checking techniques should be supported in the selected tool chain. As mentioned above, we are
using IF-based specification to perform the model checking of train safety properties.

2.2.4 Results

Summary

This work is licensed under the "openETCS Open License Terms" (oOLT).
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Figure 2. Extended Timed Finite State Machine of OBU
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We have provided a method to formally model the movement authority requirements of the
train using finite state machines augmented with continuous variables (train position, speed,
acceleration) and time constraints.

We have modeled OBU on Timed Extended Finite State Machine. We have then used IF model
checker to verify the proposed formal model.

During the modeling we discovered 3 inconsistencies, ambiguities and gaps in the specification
which we reported in [4].

Conclusions/Lessons Learned

Currently, the obtained model can be considered as an abstract representation of the system
specification provided by the standard, i.e., the MOVE function mode of the OBU can be refined
to SHUNTING, TRIP function modes of OBU in Subset-026.4.4.

2.2.5 Next Steps

On the one hand, we refine our formal model to take into account different function modes of
OBU. In the other hand, we complete the automatic translations from the SysML specification to
the IF specification or to our Java simulator.

2.3 Verification on Java simulator

2.3.1 Object of Verification

Model of the Movement Authority converted from IF language to the simulator.

2.3.2 Available Specification

Conversion of the IF model described on the previous section.

2.3.3 Detailed Verification Plan

Goal

We intend firstly to model the Movement Authority of OBU described in Subset-026-3.8. We
then use the model to validate the safety properties and to generate the test.

Method/Approach

Means

Test Generation using TestGen-IF. When using model checkers the criteria for the model to
be safe is that all the safety properties should be checked. This is impossible, since the number
of safety properties could be infinite and thus, only some of them can be checked through the
above step. For this reason, as a complementary approach, testing is commonly used. If the
corresponding model respects some requirements, i.e., only expected outputs are produced to
applied input sequences, to some extent, there is a confidence that the models is safe. In order
to derive ‘good’ tests a formal model should be involved. It is known that only the FSM model
where each input is followed by a corresponding output allows automatic deriving finite tests

This work is licensed under the "openETCS Open License Terms" (oOLT).
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with the guaranteed fault coverage where the races between inputs and outputs can be easily
avoided. Many authors for deriving finite tests with the guaranteed fault coverage turn their
model to some kind of an FSM (see, e.g., [5, 6, 7]).

We decided to use TestGen-IF to automatically extract a set of test cases from the formal model
described in the IF language. We have identified a set of basic requirements and we can describe
them as IF properties. Based on these properties, the TestGen-IF tool automatically generates
a set of test cases. These test cases can be used to test if the model follows the requirements
defined for the test generation.

Adaptive Testing of Java simulator. For simulation, the artifacts should provide means to
execute the model. The simulator must be automatically generated, so that, when run against
test scenarios (inputs/outputs for the model), we may conclude whether the model follows the
specification or not. In particular, it is important to define test scenarios for the safety critical
properties. The simulation should cover all states, transitions, data-flow, and paths in the model.
It would also be desirable to include graphical representation of the simulation/model and also
provide a report of the visited components. Being able to trace the requirements that are met
during a simulation is also advisable to allow simple requirement coverage.

Once we have a test suite generated by TestGen-IF, we execute them using our simulator. The
simulator provides a trace of the execution of each test and the expected trace. By comparing
both traces it is possible to identify problems with the model.

2.3.4 Results

Summary

We have provided a method to formally model the requirements of the European Train Control
System using finite state machines augmented with continuous variables (train position, speed,
acceleration) and time constraints.

We have modeled OBU on Timed Extended Finite State Machine. With TestGen-IF we automati-
cally generated a test suite that was used to verify our simulator.

Evidence Produced

By providing TestGen-IF with test objectives, we were able to automatically generate a test
suite capable of verifying the properties related to them. Currently we have four different test
objectives and with them we generated a suite of 22 tests. By providing more test objectives it
is possible to generate more tests. Each test constitutes a sequence of inputs (or period of time
without an input) and expected outputs.

The tests generated were executed by the simulator. When executing a test, the simulator provides
a file that compares the expected trace with trace that was simulated. If an inconsistency occurs,
the test is considered failed. On our first execution we found some inconsistencies between the
IF model and the model used by the simulator. After taking care of these inconsistencies we were
able to execute all the tests pass.

Conclusions/Lessons Learned

This work is licensed under the "openETCS Open License Terms" (oOLT).
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It is possible to find inconsistencies in a model using the Java simulator to execute tests. However,
further testing is needed to determine the completeness of our test suite.

2.3.5 Next Steps

We plan to verify the fault coverage of these tests by executing Java simulator against correspond-
ing traces and Java Mutants. For this stage we used an older version of the model. A newer
version is currently being updated and will be used on future activities.

This work is licensed under the "openETCS Open License Terms" (oOLT).
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3 TWT GmbH Science & Innovation: Verification of Procedures of Subset 026-5

This sections reports on the modeling of the procedures described in Subset 026, Chapter 5—that
is, the behavioral part of the ETCS. The goal of the activity is to validate the specification and to
support the modeling using SCADE and the verification of SCADE models on a higher1 level of
abstraction.

The activity is described in the Verification and Validation Plan (see Sect. 6.1.2.5). In short, we
provide feedback regarding ambiguities, inconsistencies and errors in the current ETCS standard
based on our formalization of the specification using mathematical modeling languages.

3.1 Object of verification

The object of verification is Subset 026-5 of the specification. We formally model parts of the
specification and use the resulting model to validate the specification. This design step has been
described in D2.3 (see Sect. 4.4).

3.2 Available specification

The specification is described in Subset 026-5. It describes procedures of ETCS entities (i.e.,
required reactions on events and received messages), thereby focusing on required change in
status and mode of entities considered.

3.3 Detailed verification plan

3.3.1 Goals

The goal is to model the the procedures described in Subset 026-5, thereby focusing on modeling
the system behavior—that is, the control flow of the on-board unit and the interplay with its
environment (e.g., the driver and the RBC). The model is then used to validate the specification.

3.3.2 Method/Approach

As a formal model, we use colored Petri nets (CPNs) [8], an extension of classical Petri nets [9]
with data, time, and hierarchy. CPNs are well-established and have been proven successful in
numerous industrial projects. They have a formal semantics and with CPN Tools [10], there exists
an open source tool for modeling CPNs. Moreover, CPN Tools also comes with a simulation tool
and a model checker, thereby enabling formal analysis of CPN models.

We focus on modeling the system behavior—that is, the control flow of the on-board unit and
the interplay with its environment (e.g., the driver and the RBC). Figure 3 depicts the CPN
representing the highest level of abstraction. It shows the decomposition of the overall system
into the on-board unit and its environment: the driver, the RBC, the RIU, the STM, and the GSM
module. Each component is modeled as a subpage (i.e., a component). Graphically, a subpage
is depicted as a rectangle with a double-lined frame. Furthermore, the model shows through
which message channels and shared variables the on-board unit is connected to its environment.
A channel or shared variable is modeled by a place which is graphically represented as an elipse.
As an example, the driver (i.e., subpage Driver) may send a message to the on-board unit (i.e.,
subpage On-board Unit) via the place msg from driver, and receives messages sent by the
on-board unit via the place msg to driver.

1in comparison to SCADE models
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Figure 3. Top level model

Zooming in subpage On-board Unit yields the CPN model in Fig. 4. This CPN model has two
subpages: Subpage Start models the states S0 and S1 of the specification (i.e., Subset 026-5.4)
and subpage Rest the remaining states. At this level of abstraction, we see on the left hand side
seven places (green frame). Each such place models (a part) of the state of the on-board unit,
for example, the mode and the train running number. The current model has 689 places, 173
transitions and 1,227 arcs.

Having a more detailed look at Fig. 4, we observe that our model does not represent all variables
of the on-board unit as given in the specification and also partially abstracts from data. We
abstract from those details, because the model is tailored to formalize the control flow of the on-
board unit and, in particular, the communication behavior with its environment. As a benefit, this
abstraction reduces the complexity of the model and improves its understandability. Additional
details, such as data and precise message values, can be added in a refinement step.

The modeled procedures have been manually modeled using CPN Tools. Thereby, each element
in the model has been reviewed against the respective requirement, as given in the specification.
To improve the confidence in the model, in a second step, a person other than the modeler checked
the model against the specification. In addition, we used the simulator to check whether the
modeled behavior of the CPN matched the intended behavior.

So far, the primary goal of modeling has been to validate the specification. During the modeling
we discovered 36 inconsistencies, ambiguities and gaps in the specification which we reported
in [11].

3.3.3 Means
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Figure 4. CPN model of the on-board unit

The input for our approach is the specification described in Subset 026-5. Our output is a CPN
model and a report describing inconsistencies, ambiguities and gaps in the Subset 026-5.

3.4 Results

3.4.1 Summary

We have modeled the following five procedures of Subset 026-5 as CPN:

• Start of Mission (Subset 026-5.4)

• End of Mission (Subset 026-5.5)

• Shunting Initiated by Driver (Subset 026-5.6)

• Override (Subset 026-5.8)

• Train Trip (Subset 026-5.11)

During the modeling we discovered 36 inconsistencies, ambiguities and gaps in the specification
which we reported in [11]. Our CPN models the system behavior—that is, the interplay between
the different entities of the ETCS—and partially abstract from data. Therefore, we complement
the work on SysML modeling, where the focus is on the connectivity of components and the data
types.

3.4.2 Conclusions/Lessons learned
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The numerous specification findings illustrate the need for validating the specification. CPNs
are well-suited to model the behavioral aspects described in Subset 026-5. The size of the
model clearly indicates the complexity of the procedures, even at the current level of abstraction.
Therefore, we expect that applying formal verification on the resulting CPNs will not be feasible
due to state-space explosion.

3.5 Future Activities

We shall continue our work by completing the model, contributing to the modeling of (parts
of) Subset 026-5 using SCADE, and verifying the SCADE model. In addition, we are planning
to exploit synergies by collaborating with the project partner LAAS who advocate the Petri
net model checker TINA [12]. In addition, we are working with the project partners from
Braunschweig University of Technology on generating test cases from the CPN model.

3.6 Modeling the Subset 026-5

We plan to model the remaining parts of Subset 026-5, thereby reporting possible additional
findings in the specification. The goal is to have a CPN modeling all procedures that are
described in Subset 026-5. We also want to compare our model with the (corresponding part of
the) ERTMSFormalSpec model [13].

3.7 SCADE Modeling

As the ETCS will be modeled using SCADE, we shall contribute to this modeling process. To
use the experience that we gained from modeling Subset 026-05 with CPN Tools, we want to
contribute to the SCADE modeling of (parts of) the Subset 026-5. The SCADE design flow starts
with modeling all components and their interplay using SysML block diagrams (with the tool
SCADE Designer). The resulting SysML diagrams provide a functional and an architectural
view. They are similar to the CPN model in Fig. 3. In a second step, the behavior of each block
has to be fully modeled on the system level using SCADE Suite. Currently, SCADE does not
support state machine models on the level of SysML. Our CPN model provides this level of
abstraction and will, therefore, be useful for the SCADE modeling.

3.7.1 Verification of the SCADE Model

Another task concerns the verification of the resulting SCADE model. Recently, researchers
reported on complexity problems already for medium-sized SCADE models that restrict the
verification using the SCADE prover [14, 15]. Given the complexity of the ETCS, we assume
that we will face similar challenges. To alleviate those complexity problems, we aim to apply the
following three techniques:

Abstraction: We will apply abstraction techniques on the SCADE model to prove safety prop-
erties on a higher level of abstraction whenever possible. On the one hand, we can apply
SCADE contracts to restrict the domain of the input values. This technique is known as
environment abstraction. On the other hand, we can transform the SCADE model into a
model of higher abstraction, thereby using different formalisms such as timed automata,
transition systems and Petri nets. (As SCADE has a formal semantics such transformations
are possible, but may take considerable effort.) We can then use verification tools that are
dedicated to the properties of interest and the chosen formalism. We see the chance that
our CPN model can be used for this task, too. For example, Uppaal [16] can analyze timed
automata, the Spin model checker [17] and NuSMV [18] can analyze transition systems, and
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TINA [12], LoLA [19], and CPN Tools [10] are tools for analyzing (different variants of)
Petri nets.

Compositional Reasoning: Another approach is to prove properties for individual components
and deduce from it the correctness of a property concerning the entire ETCS. Here we
think that we can, in particular, combine our model with the MoRC model [20] and apply
compositional reasoning.

Correctness by Design: The two previous approaches support correctness by verification; that
is, first the model is designed and in the next step it is verified. A different methodology is
correctness by design. The idea is to model on a higher level of abstraction and to prove that
certain safety properties hold. Then the model is iteratively refined. Each refinement step has
to guarantee that all properties that hold for the more abstract level also hold in the refined
model. The challenge is to find property-preserving refinement rules or a refinement relation
between an abstract model and a refined model that preserves the desired properties and to
verify that this relation holds. The results can be applied to validate the SCADE model and
the specification.

This work is licensed under the "openETCS Open License Terms" (oOLT).
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4 University of Bremen: Verification of the Management of the Radio
Communication

This section reports the verification activity of SCADE-MoRC. The goal of this activity is, first,
to establish the compliance of the SCADE model to the SRS description via testing. Secondly,
we want to track the ambiguities within the specification. Finally we want to demonstrate the
efficiency of model based testing using the RT-tester tool for system integration testing.

The activity is described in the Verification and Validation Plan section 6.1.2.7 System Integration
Testing (Uni Bremen/DLR) [21] In short, we develop a test model from the specification, generate
tests and use the code generated from SCADE to perform software-in-loop testing. The test
model and the SCADE model used to generate code have been done independently to each other.
The generated tests w

4.1 Object of verification

Management of radio communication (MoRC) ERTMS function baseline 3.

The system under test (e.g. the verification object) is the C code generated from a SCADE model
and described here https://github.com/openETCS/model-evaluation/tree/master/
model/SCADE_Siemens/Subset_026_Chapt_3.5_ManagementOfRadioCommunication/Generated_
C_Code. It describes the Management of the radio communication at the software phase.

4.2 Available specification

The specification is described in the SUBSET-026[1] chap 3.5 [22]. It describes the communica-
tion protocol between the EVC and the RBC or balises. In particular, how the EVC initiates and
terminates a communication.

4.3 Detailed verification plan

4.3.1 Goals

To achieve what has been defined previously a test model in SysML has been developed. The
description of this verification artifact may be found here https://github.com/openETCS/
model-evaluation/blob/master/model/EA-SysML/new_version/doc/ea_sysml_report.
pdf

Our main goal is to verify the SCADE model by test simulation. The tests are produced by a
model of the subset-026 chap 3.5 described as a state machine.

4.3.2 Method/Approach

Figure 5 depicts our methodology. From the SRS specification, two models are designed: one
SCADE model that will be then used to produce C code and one SysML model for generating
tests.

Our test model contains the behavioral representation of the MoRC, the set of requirements of the
chap 3.5, and the link between the behavior and the requirement. Most of the requirements may
be represented as single transition or state in the test model state machine. Nevertheless, some of
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the requirements may be only modeled as a path of the state machine, we choose to represent
those as LTL formula, added as constraints of the test model. For example the REQ-3.5.10
describes the steps needed for the establishment of the radio communication order by the RBC.
This requirement explicits a particular path of the test model, thus this path should exists in our
test model. To ensure that this particular test will be generated a LTL formula has been added
(See [20] for more details).

REQ-3.5.3.10 "If the establishment of a communication session is initiated by the RBC, it shall
be performed according to the following steps ..."
Finally (MessageIn == INIT_SESSION_TRACK && setUp == 1 ->
Next (MessageOut == SESSION_ESTABLISHED && radioComSession == ESTABLISHED)

We need then to link the system under test and the test model. Since the two models are elaborated
independently, we need to ensure that the tests generated may be handled by the code generated
by SCADE and conversely we need to read the output of the C code back to the test generator to
compare the values with our oracles. This is achieve by defining a common interface that the two
models should respect. The inputs drive the tests and the outputs are the observational points to
state if a test pass or fail. Hence, the two models should respect the same interface.

After the modeling phase, starts the test generation phase. Two strategies have been used for
the tests generation. First, we generate a set of test following the common behavioral coverage
strategies ensuring the following coverage :

• Basic control state coverage (BCS): All state locations are covered.

• Transition coverage (TC): All transition of the statecharts are covered.

• Modified condition/decision coverage (MC/DC): Modified condtion/decision coverage.

• Hierarchic transition coverage (HITR): High-level transition of nested statecharts are covered.

• Basic Control states Pair coverage(BCPAIRS): For concurrent state machines pair states of
two different state machines.

More detailled explaination on the coverage may be found here [23].

We then apply a requirement coverage strategy that consists of generating tests that covers all
the requirements. As each requirement are linked to an artifact of the test model, part of the test
cases are generated as subset of the coverage mention above. In addition, test cases from the LTL
are also provided.

Finally the test engines run the SUT with the stimuli from the test model. In parallel, it runs the
test oracles that states if the test pass or fail.

4.3.3 Means

The Artifacts are produced as follow:

• C code comes from SCADE model.
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• Test model is a SysML model designed with Enterprise Architect.

• Test cases, tests data and test oracles are generated with RT-tester.

• Executable code compile with gcc.

• Code run within the RT-Tester engine.

SCADE is EN 50128 qualified at SIL 3/4, RT-tester is also certifiable T3 as shown in [24].

4.4 Results

Coverage strategies # tests generated

BCS 14

TC 40

MC/DC 79

BCPAIRS 33

HITR 12

LTL 2

Total Tests 180

Total Requirements cover 40
Table 1. Test cases generation summary

Table 1 resumes the set of automatically generated tests. The set of tests cover 40 of the
requirements from the chap3.5.

The simulation result of the C code is not yet finished and for the moment, all test failed. The
main reason was that the two models did not share the same starting condition. Hence, we need
to refined our test model to be able to handle SCADE modeling style correctly and be able to
have interesting result.

4.5 Summary

What we have done:

1. Created a test model in SysML.

2. Generated test cases.

3. Ran SCADE model against test procedure produces by RT-tester.

The next step:

1. Refined test model

2. Analyze the result of the test procedure.

3. Coordinate DLR/SIEMENS/Uni Bremen interfaces.

4. Run the test on the DLR lab.
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4.6 Conclusions/Lessons learned

Our first attempt to simulate the tests was not a success. All tests except the one covering
the initial states failed. Our two models have, at least, the same initial state. From our first
investigation, we could see that one chapter of the specification is not self-contained. This leads
to different interpretation in the modeling and thus some non equivalent behaviors.

Moreover some missing information in the specification leads to a under constraints test model.
It affects the test generation by providing some non realistic test cases. Some variable behavior
that were not mentioned in the specification are considered as free and may have any possible
value in their definition range. This can be solved by adding information into the test model.

More precisely, the test model is composed with a system under test and a test environment. In
our first model the test environment is empty, meaning that all inputs of the SUT are free. The
test enviroment may be described (and constrainted) by statecharts or LTL formula that restricts
the behaviors of the inputs. The test generator should then find test suites that realize the given
coverage and that respect the constraints given in the test environment.

4.7 Future Activities

4.7.1 Refine the test model

1. Analyze the test results of the SCADE C code

2. Enumerates specification ambiguitites: where the two parties did not undestand the specifica-
tion in the same way.

3. Refine the test model by adding a better test environment with the help of domain experts

4.7.2 New activities

We will also provide the ceiling speed monitoring function to enrich the test model and apply
new model based testing approach.
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5 University of Rostock: Verification of the Speed and Distance Monitoring

This section reports the verification activities of the Speed and Distance Monitoring with model
based simulation and virtual prototyping. The first activity pursues the goal of formalizing the
specification in the form of an executable model. This model provides a performance estimation
at an early stage of system level design and adduces evidence what hardware resources (hardware
platform) will be needed for the future OBU. Secondly, finding and reporting of unclarities,
inconsistencies, incompleteness and errors while implementing the specification by using tools
of the openETCS toolchain (Papyrus/SysML, Scade Suite). Furthermore, we are developing a
method of SystemC code generation from abstract and domain specific SysML models. Finally
we want to demonstrate the efficiency of model based simulation after transformation from
SysML to SystemC models.

The activity is described in the Verification and Validation Plan section 5.3.10 Verification with
Model-Based Simulation [21]. To sum up, we develop application models from the specification
of the Speed and Distance Monitoring, generate test scenarios and use the inherent simulation
environment of SystemC to do performance and scheduling analysis.

5.1 Object of verification

Speed and Distance Monitoring ERTMS function baseline 3. The system under test is the imple-
mented SystemC code which is described here: https://github.com/openETCS/model-evaluation/
tree/master/model/SystemC_TWT_URO/3.13_Speed_and_distance_monitoring. It de-
scribes the Speed and Distance Monitoring at the Software phase.

5.2 Available specification

The specification is described in the SUBSET-026 Chapter 3.13 [1]. It describes the realization of
both Train Interface (TI) and Driver Machine Interface (DMI) commands by calculating several
modules with inputs form train side, track side and odometry. The University of Rostock focuses
on the calculation of parts, which are used for safety critical cases using emergency brakes. This
especially includes the EBD (emergency brake deceleration) curves.

5.3 Detailed verification plan

5.3.1 Goals

On the one hand we are testing extra-functional aspects such as performance and scheduling
analyses to give evidence which hardware system is sufficient to meet the system requirements.
We want to discover which hardware resources (e.g. number of processors) will be needed for the
OBU. This is important to avoid excessive delays to ensure adequate response times in critical
situations. Therefore the University of Rostock will do model based simulation using the inherent
simulation environment of SystemC.

On the other hand we use the existing SystemC model to check against a reference model, such
as EFS braking curve model. Furthermore we use different tools and means to build additional
system models for comparison and verifying behavior.

5.3.2 Method/Approach
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Figure 6. University of Rostock VnV Approach

Figure 6 depicts our methodology. Three models will be created from the specification (SRS):
one SystemC model that is directly implemented (hand written) into executable code (finished),
one SysML model that will be used to produce (automatically) SystemC code to be executable
(not finished) and one Scade Suite model that will be used to produce C code (not finished). For
model verification we use test cases and data provided by WP4 and use the ERA excel datasheet
as reference implementation. The created test models will contain behavioral representation
of the Speed and Distance Monitoring such as state machines, activity diagrams and sequence
diagrams. There will be a link to the specification requirements to meet the needs of traceability
in terms of verification activities.

5.3.3 Means

The Artifacts are produced as follow:

• SystemC code which is directly implemented (hand written source code).

• One test model is the generated SystemC model. It’s code will be generated/transformed by
Acceleo from abstract SysML models designed with Enterprise Architect and/or Papyrus.
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• C code is produced by Scade using Scade Suite.

• Executable code is compiled with GNU-C-Compiler gcc.

• Reference model (for now because no other is available) delivered by ERTMS Formal Specs.

• Testdata and testcases are provided in corporation with ERTMS Formal Specs using the ERA
excel data sheet.

5.4 Results

Verification of extra-functional aspects is successfully done for the first iteration of application
models. The provided results consist of recommendations on how hardware resources shall be
allocated to the future OBU. The modeling activities are still in progress.

5.4.1 Summary

What we have done:

1. Created an executable model in SystemC.

2. Ran simulations on single, dual and multi core virtual prototypes.

3. Architecture SysML model of the Speed and Distance Monitoring.

4. Architecture Scade model of the Speed and Distance Monitoring.

5. Defined a reduced set of parameters for calculating braking Curves especially EBD curves.

The next step:

1. Finishing model activities on SysML and Scade.

2. Developing a model transformation/code generation from SysML models.

3. Defining an exchanges interfaces between different model approaches.

4. Run the tests.

5.4.2 Conclusions/Lessons learned

From the first results, we see that SysML is a very powerful graphical modeling language but to
perform code generation it is necessary to have restrictions to it. We will have a domain specific
SysML profile to get reliable results from code generation.

5.5 Future Activities

Simulink as a modeling tool is in our interest because there is a bridge to Scade. Simulink
provides code generation for hardware description languages such as VHDL. That enables new
hardware test scenarios.
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6 Systerel

Three approaches of VnV on formal models have been experimented and are presented in this
section:

1. VnV on classical B model that cover software design level, in the objective to provide an
open-source approach;

2. VnV on Event-B model that cover system level and support safety analysis;

3. VnV on Scade model that cover software design level.

Classical B and Scade model specify the same example of Subset 026 "§5.9 Procedure on-Sight",
Event-B model specifies the "Mangement of Radio communication" function.

6.1 Verification and Validation on Classical B model

The first section 6.1.1 describes usual verification and validation activities applied during the
design of industrial critical software using the B method. Second section 6.1.2 gives a description
of tools available.

Last section 6.1.3 describes the results on an example.

6.1.1 Verification processes applicable to a B model

A B model is a textual and formal specification covering the functional behaviour of a safety
critical software. It is usually written based on a high-level specification (informal or formal
specification, for example SysML or a natural language). It is gradually refined, starting at the
top with an abstract notation and ending at the bottom with sequential instructions — which are
then automatically translated in a target language such as C or Ada.
Thus, we define three objects of verification and validation: the specification, the B model and
the generated source code.

Validation consists of:

• guaranteeing the functional adequacy between the specification and the model (this can be
achieved, for example, through review and proofreading),

• building a test environment around the generated source code and test it.

Hence, this section will mainly focus on verification, i.e. the methods and tools required to assure
that B method is a consistent way of producing critical software.

In this section, we demonstrate the suitability of the B method towards the problematics encoun-
tered in the openETCS project by introducing the different verification processes applicable to a
B model.
Each of the verification process is presented and its contributions to the system security and
consistency are discussed.
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Type checking Static type checking (TC) is a basic form of program verification that ensures
type safety of the model. It is the first verification — after lexical and syntactic analysis — to be
performed on a B model, thus allowing an early detection of problems. It is also a pre-requisite
for the higher-level verifications.
Strong typing ensures a consistent use of data and is essential to writing correct formulae (predi-
cates or expressions).

The type checking process consists of two main activities: data typing and type verification.
Data typing is the activity of assigning a type to newly-encountered data in a predicate or a
substitution2. It is based on an inference mechanism, which is able to deduce the type of a
newly-encountered variable from the type of the other variables intervening in the predicate or
the substitution, and specific inference rules.
On the other hand, type verification is the activity of verifying typing rules between already-typed
variables. These rules are specific to their applying predicates, expressions or substitutions.

B0-check The B0 verification has the specific purpose of checking the respect of the rules that
the B model has to conform to in order to generate the translation to C or ADA. These rules
are called implementability rules and must be respected in order for the translation to process
properly. They also ensure that the resulting code is executable and respects a set of properties.

Well-definedness An expression is well-defined (WD) if its associated value or interpretation
exists and is unique, thus avoiding ambiguity.
Examples of ill-defined formulae include division by zero, function application to an argument
out of the domain, function application of a relation etc.

Well-definedness checking is thus an extra verification that helps strengthen the model.

Model checking Model checking is a static semantic check that searches for invariant or
assertion violations and deadlock states. It exhaustively explores the whole state space, i.e., is in
general limited to finite systems.
This type of verification animates the model, modifying the current state of the machine, starting
from the initialization. Operation calls are simulated and modify the internal state which is then
checked for various properties. Most of the time, an invariant or assertion violation is looked for.
This verification process, as opposed to the ones previously introduced, considers the semantics
of the model and aims at verifying properties dynamically. However, it has its limitations:

• inability to run through all of the states and transitions for models with infinitely many states

• difficulty to deal with very large models or large domains (e.g. 32 bit integers) often leading
to state-space explosion because of exponential growth of the state space size.

This means that potential erroneous states can be missed, and that this verification process is not
sufficient to ensure correctness, though satisfying as an additional verification tool.

2In B, a substitution is comparable to a set of instructions that modify variables. For more information, see [25].
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Constraint-based checking Constraint-based checking (CBC) is the process of finding a given
valid state, for which an operation call leads to an erroneous state. This is done by constraint
solving instead of — as seen for model checking — running through states from the initialization.
This technique will usually provide more counter-examples than model-checking, because it
ignores the initialization constraints and can thus reach a wider range of states.

Formal proof A proof obligation is a mathematical lemma generated by the proof obligation
generator (POG). It corresponds to a consistency property of the model, that has to be demon-
strated. These properties are either generated to ensure correctness of the model, e.g., refinement,
variable typing, well-definedness or they are specified manually as invariants of the system, e.g.,
dependent typing, safety invariants. A fully-proved model is said to be correct, in the sense that
every property (invariant, assertion) expressed is proved to hold for every state of the program. If
a proof obligation is not provable, it means that the B model is inconsistent and must be corrected.
In fact, the goal of any B development is to obtain a proved model.
In contrast to model-checking, formal proof does not require to make assumptions about the size
of the system (number of transitions). It is reliable and powerful, but it needs to be taken into
account that:

• some proofs can be very difficult to solve,

• the model needs to be written as to make it the simplest to prove, which demands experience
and skill.

A proved model will always meet the formalized safety and security qualifications ; however that
does not mean it will behave in regards to the informal specification! It must be validated that the
formalized specification (and in consequence the formalized model) correctly implements the
informal specification, in particular that the intended functioning is possible. This is the domain
of validation, as discussed in the introduction.

6.1.2 Tools for verification

In this section, we present the existing tools suitable for the verification processes defined in
Section 6.1.1.

Atelier B Atelier B3 is the main development tool associated with the B method and is produced
and distributed by ClearSy. It provides most of the needed tools.

B compiler
The B compiler performs syntax analysis, type checking, identifier scope resolution and B0-
checking. It is part of Atelier B as an open source tool.

Proof obligation generator
Atelier B’s POG is currently the only known fully operational POG for B, and is free of charge —
although proprietary software, which means closed-source. ClearSy is currently working on a
new proof obligation generator ; whether it will be open source or not is to be determined.

3See http://www.atelierb.eu/en
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Prover, proof assistant, user-defined rules
Atelier B provides a free of charge — although not open source — prover which discharges
proof obligations. Depending on the complexity of the model, a varying proportion of the proof
obligations is discharged automatically.
For the remaining proof obligations, Atelier B provides an interactive proof assistant allowing the
user to guide the prover in discharging the PO. The user may define theories (or rules) which have
in turn to be proved. The user-defined rules are organized in a database and can be automatically
verified and validated with the Rule Verifier of Atelier B.

Atelier B translators
Translators are an essential component of the industrial success of B. The translators take the B0
implementations as input and produce a target source code, typically Ada or C/C++, ready to be
compiled or integrated in an environment.
ClearSy provides an open source translator, but it does not reach the T3 level of qualification4.

ProB ProB is an animator and model checker for B models distributed under the EPL license
(open source) and mainly developed by Formal Mind5.
It performs model checking as well as constraint-based checking and searches for a range
of errors, with customizable search options and various graphical views. ProB also handles
automatic coverage reports generation.
ProB is a mature tool and is being used by several industrials such as Siemens and Alstom. This
makes it a precious tool for the verification processes described above.

Tool qualification Atelier B has been used for many years to develop railway critical software.
It is, for this exact reason, qualified by the main actors of the railway domain: SNCF, RATP,
Alstom, Siemens etc.

The CENELEC norm defines qualification levels for verification tools. Annex A 5 of the
norm specifies several verification techniques and for each of them, a recommendation level
(mandatory, highly recommended, recommended). Below are listed the different techniques
and measures along with their recommendation levels for SIL4 developments : Recommended,
Highly Recommended or Mandatory.

Table 2 shows, for each of the verification processes presented in 6.1.1 (specification and source
code were added as artifacts which support the activity), the corresponding item in the CENELEC
norm annex table.

A B model proof provides a formal proof in the form of a proof tree that can be inspected by
humans and is machine-checkable, i.e., an automated program can replay the proof steps and
verify the correct application of the proof rules.
Static type checking, B0 compliance for programming language translation and constraint based
checking do not require any dynamic, i.e., state-space information to detect problems. Therefore
these representing static analysis approaches of B model.
Model checking analyzes the dynamic behavior of the model by generating and exploring the
state-space. Very often, model checkers can generate counter-examples for violated properties

4For additional information on qualification, see subsection 6.1.2 or the CENELEC norm.
5See http://www.formalmind.com
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level spec TC B0C MC CBC proof source code

A 5.1 Formal Proof HR X

A 5.2 Static Analysis HR X X X

A 5.3 Dynamic Analysis and Testing HR X

A 5.4 Metrics R

A 5.5 Traceability M X X

A 5.6 Software Error Effect Analysis HR

A 5.7 Test Coverage for code HR

A 5.8 Functional/ Black-box Testing M X

A 5.9 Performance testing HR

A 5.10 Interface testing HR

Table 2. Correspondence between CENELEC norm recommendations and the presented verification
processes

and can therefore be applied as a testing method.
The specification in the B model represents a formalized version of the specification, the proof
trees use formalized properties as proof steps. These can be traced in the informal specification.
Finally the translated source code can be compiled and tested using various testing methods,
including functional tests and black-box testing.

Conclusion on tools Table 3 summarizes the presentation of the tools in subsections 6.1.2 and
6.1.2.
Atelier B and ProB are both mature tools that have proved their worth. They are the core tools
for validation processes of B models. However, key components of Atelier B are not open source
and this issue is not completely compensated by ProB’s model checking and CBC.
An ongoing research project named BWare6 and conducted by ClearSy, Inria, LRI and others
aims at providing a framework from proof obligation generation to proof discharge by the means
of SMT solvers. This promising project started in September 2012 and is funded for a period of
four years. It opens perspectives for the near future in terms of open source B model verification.

TC B0 model check. CBC proof

B Compiler X X

POG and provers X

ProB X X

Table 3. Comparison of the tools available for B verification processes

6.1.3 Application: Procedure On-Sight

6See http://bware.lri.fr/index.php/BWare_project
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The Procedure On-Sight, as described in System Requirements Specification, Chapter 5, has been
modelled in B7 to show the feasibility of the task and the credibility of the method. This appendix
briefly presents the model, then applies the verification processes to this example.

Presentation of the B model As shown in figure 7, the model is split into three main processing
modules, one of which corresponds to the actual on-sight procedure, and the two others being
used as data conditioning:

• os_mode_level: determines the ETCS level and the mode. Contains the on-sight procedure
algorithm,

• os_consist: checks data consistency, provides adaptation to the current ETCS level (BTM
or radio),

• os_train_info: elaborates the location and the speed of the train.

Figure 7. Architecture of the B model for the Procedure On-Sight example

These three modules are imported by the main sequencer, os_main_1, which calls their respec-
tive operations. The main sequencer also imports the input module os_in, and the output module
os_out.
The typing machine, os_typ, and the constant machine, os_cte_conf_bs, are both imported
by os_main, the entry point of the software, which also imports os_main_1.

This “IMPORTS”-based vertical layout is complemented by a horizontal aspect: the “SEES”
clause, which enables a component to access another component’s data. It is possible for a
component to see the components to its left, but not to its right. Thus, a cycle-free graph is
maintained.

Model checking results ProB has been used on the example model and has shown through
model checking that no invariant was violated, and no deadlock state was found. However, for
some machines, only a minority of states and nodes have been visited (because of infinite sets in
particular) and thus no formal conclusion can be drawn.

7The model is available at github.com/openETCS/validation/tree/master/VnVUserStories/
VnVUserStorySysterel/02-DAS2V/c-ClassicalBModel/ProcedureOnSight.
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Additionally, constraint-based checking has also been run and stated, for every operation of every
abstract machine, the non-violation of the invariant.

Formal proof results 6.1.4 Project status

Project status illustrated in figure 8 shows the fully-proved model in Atelier B.

Figure 8. Overview of the B model in Atelier B, showing type check, B0 check and proof status

This model was proved almost entirely automatically, using the provers with force 0 and force 1
(on 427 proof obligation generated, only 3 need the interactive prover to define cases). Proving
the model results in the certainty of its correctness wrt. the formal specification. In this case,
only typing invariants and constraints were expressed, because more complex safety properties
have not been identified to be sepcified as invariant. However, for each function, its behaviour is
specified and the implementation is verified according this specification.

6.1.5 User-defined theories

When automatic proof fails, the user must provide a manual proof and uses theories for this
purpose. Theories are rules that are used to discharge specific goals.
In this example, the only module for which interactive proof was required is os_consist_i.
Below is presented a very simple theory (among several others) used for the proof of this
component:

a < 0 ∧ 0 ≤ b ∧ 0 < c⇒ a ≤
b
c

(User theory 1)
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This theory is automatically verified by Atelier B and therefore ensures full consistency of the
proof.

6.1.6 Conclusion

The B method, along with its verification processes and tools, meets the goals and activities of
the openETCS project in terms of quality, rigor, safety and credibility.
There is yet to develop open-source POG and build a framework for proving, but this is com-
pensated by the fact that work on the subject is ongoing, and ProB is an effective tool for
verification.

6.2 Verification and Validation on Event-B models

The Event-B method share the same language than the classical B method. Besides both
approaches are based on a pre/post -condition mechanism to describe the evolution of the system.
Thus similar verification mechanisms can be defined.

6.2.1 Verification Processes Applicable to Event-B

An Event-B model is a formal specification that describes the functional behavior of a system
from a global point of view. In general, an Event-B model comprises a set of state variables,
parametrized events that can modify these state variables and invariants that describe logical
properties thereof. The invariants are in first-order predicate logic and can be discharged using
different proof engines, e.g., automatic modern open source SMT solvers and manual predicate
provers.

In general, one starts with a rather abstract description of the model which is iteratively refined
until the desired level of detail is reached. Event-B supports this refinement by creating the
necessary proof obligations that ensure correct refinement in each step, both for behavioral
refinement of events as well as for data refinement of state variables.

Thanks to the integration into the Eclipse platform, there are many plug-ins available as extensions.
There is a plug-in to use graphical modeling in UML state machines to describe Event-B models.
There is a tight connection to the ProR requirements engineering plug-in. To facilitate modeling,
there are plug-ins to decompose a model into several sub-models and to facilitate proving by
supporting external formal theories.

Together with the Rodin tool, the Event-B approach was developed in the European research
projects RODIN (2004–2007) and DEPLOY (2008–2012). Since 2011 it is further developed in
the European project ADVANCE.

Verification of Type Safety Static type checking is a technique that allows the verification of
correct typing for variables at compile / modeling time. It is performed after lexical and syntactic
correctness of the Event-B model have been verified. Static type checking prevents all type errors
at run-time, which eliminates many possible sources of program errors.

The type system of Event-B is much more expressive than the one of most other languages, as
Event-B also allows the usage of dependent types for variables. In this case, the type of a variable
is dependent of its value, e.g., one can define the type of all even integers. Event-B can define
such types and verify that events respect the correct dependent typing of variables
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In Event-B, every new variable gets a type assigned via a typing invariant. Such an invariant is
either an explicit type assignment or an implicit one, e.g., by specifying a dependence to another
variable which is typed. The integrated type interference can then deduce the static type of the
new variable.

Every event that changes the value of a variable via substitution must also respect the variable
typing. For each event that modifies a variable, proof obligations are created that ensure this in a
rigorous formal way.

In almost all cases, the proof obligations for type verification are discharged automatically by the
Rodin provers.

Verification of Well-Definedness After type checking, one or more well-definedness (WD)
proof obligations are created. This ensures that the expression has a unique meaning and prevents
the usage of expressions that make no sense or are ambiguous.

One prominent example for WD proof obligations in Event-B is the cardinality of sets. The set
of natural numbers N has countable infinitely many elements, exactly as many as the set of all
even natural numbers N2 := {2 · n | n ∈ N}. This means that both sets have the same cardinality,
although N2 is a strict subset of N.

Therefore, while sets of countable infinite cardinality can be used without any problem in Event-B
models, the usage of cardinality of a set requires the set to be of finite size which gets verified by
an appropriate WD proof obligation.

In almost all cases, the proof obligations for well-definedness are discharged automatically by
the Rodin provers.

Model Simulation A correctly typed Event-B model can be simulated or animated using
different plug-ins like AnimB or ProB. At each step, one of the activated events can be executed
and if applicable parameters for that event can be defined. This allows for stepping through the
formal model, observing the state variables and the invariants. Using model animation, it is
possible to validate the correct functioning of the model.

Figure 9 shows a ProB simulation session. The activated events are marked green, clicking on
them allows for selection of parameters and to execute the events with the chosen parameters.

Model-Checking of Predicates Model-checking is a static analysis of the semantics of a
model. In general, a model-checker will create a representation of the whole possible state space
of a model and verify logic properties on this state space. There are many different possibilities
for properties that are verified by model-checkers, some are listed here:

• Equivalence Checking The equivalence between two models is verified given a certain
equivalence relation. Often, a specification is compared to its (distributed) implementation
using bisimulation modulo some reduction techniques, e.g., only the externally observable
behavior is compared and the internal details of the different systems are ignored.
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Figure 9. ProB Model Animation

• Deadlock Freeness A deadlock represents a state where the system that the system cannot
leave as no event is enabled. For a reactive system this is always an unwanted state that must
be avoided.

• Temporal Properties The evolution of the system over time is analyzed, i.e., the admissible
event sequences that can lead to different states. Roughly, temporal properties comprise safety
properties which describe a set of states that should never be reached and liveness properties
which describe states that should always be reachable. There are different temporal logic
languages, like LTL and CTL, which allow to describe temporal properties of systems.

In general, model-checkers suffer from the state space explosion problem. This means that
creating the whole state space becomes often infeasible due to memory limitations. In general it
is also not possible to model-check systems with infinite state space, like many Event-B models.

In practice, tools like ProB which allow for model-checking of Event-B models, limit the size
of the possible values for variables to a finite subset. While this means that a complete proof is
not possible, it allows for fully automatic error detection in the model. For any violated property
or a deadlock, ProB provides a counterexample that can be analyzed and therefore allows for
correction of the associated modeling problem.

Figure 10. Model-Checking for Deadlocks
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Figure 10 shows the model checking dialog of the Rodin plug-in for ProB. The currently selected
options would check for deadlocks, i.e., a sequence of events that leads to a situation where no
event can be selected anymore.

Formal Proof of Predicates Formal proof techniques provide a much more powerful way to
verify predicates than model-checking. Instead of the creation of the full state-space, they use
a proof calculus to iteratively simplify predicates and to reduce them onto known lemmas or
axioms, thus discharging them.

In contrast to model-checking, formal proof is applicable to models of infinite size and can cope
with undecidable problems. Although this means that there sometimes will be a manual step in a
proof, there are many automated tools that support formal proofs and can often discharge proof
obligations without any manual intervention.

The Rodin platform natively supports manual construction of formal proofs by allowing easy
access and manipulation of the proof tree and predicate hypotheses. It also provides access
to different automated provers, i.e., the free of charge AtelierB provers, an open source SMT
plug-in that supports several solvers8 as well as an open source plug-in that connects Rodin to
the Isabelle/HOL proof assistant.

Figure 11. Rodin Proof Tree

Figure 11 shows a part of a Rodin proof tree for an invariant. Its green color signals that the
proof is finished, at each node in the tree, the applied proof rule is shown. This allows for easy
inspection of the proofs and allows both for humans and for machines to verify the correctness of
the proof steps.

8supported open source SMT solvers include: verIT, Alt-Ergo, CVC3, Z3
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Verification of Refinement Correctness Rodin provides extensive support for a top-down
development approach and allows for an iterative refinement of models. The model is developed
using different levels of detail, starting from a rather abstract view, refining the details where
necessary or desired. This refinement process can either be applied to the events or the variables.

6.2.2 Data Refinement

In general, a data refinement replaces a variable with another one, or multiple other ones. For
example a Boolean variable in the abstract model is replaces by an enumeration with different
possible values. To ensure a correct refinement, one has to manually supply a “gluing” invariant
that describes the connection of the refined and the abstract variable. For example one subset
of the possible values for the enumeration in the refined model would correspond to a value of
“True” in the abstract model, the remaining values of the enumeration to a value “False”. The
abstract variable is then deleted from the refined model, and the necessary proof obligations are
created automatically by Rodin.

6.2.3 Code Refinement

For event (or code) refinement, Rodin automatically creates the necessary proof obligations that
ensure that the abstract system is correctly refined by the more detailed model. This includes the
verification that each refining event only modifies variables that are also modified by the abstract
event and that the modification is equivalent. It also includes verification of guard strengthening,
i.e., the guards of a refining event must be at least as constraining as of the refined abstract
event. A common code refinement is to split an event in several more specialized ones, where the
additional guards ensure mutual exclusion of the activation conditions.

Figure 12. Event Refinement

Figure 12 shows a refining event with guard strengthening and an additional variable that is
modified. The pale blue colored guards and actions are derived from the refined event, the darker
colored guard and action are the additional ones for the refining event.

Verification of Design Step Requirements This section reports on the verification activities
of the correct implementation of the design step requirements. The goal of the activity is to
establish a correct formal representation of the design step requirements.

The activity is described in the Verification and Validation Plan [26]. In short, it consists of
formalizing and proving the identified requirements of a preceding phase, to ensure their correct
implementation of the requirements. To achieve this, we use the direct connection of the Event-B
model with the ProR based on an EMF model of the Event-B model.
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Verification of Safety Requirements A safety analysis identifies additional requirements
which guarantee the safety of a system. It must be verified that the system model correctly
implements these non-functional requirements. Not every safety requirement is applicable on the
system development level. Many are on the implementation level, e.g., they demand that certain
safety-critical functions are done in a redundant way to reduce the risk of malfunctioning or loss
of that function.

In the safety analysis [27], a list of safety requirements was identified using an FMEA analysis
of the communication system. A ReqIf file captures all these safety requirements within ProR,
the concerned functional requirements are traced in the ReqIf file for SS 026 section 3.5.

Each of the safety requirements is examined for applicability in the system level model, the
identified ones are formalized. Most often, the safety requirements are represented as one or
more additional invariants in the system model. These invariants are linked to the ReqIf file that
describes the safety requirements, ensuring traceability in the model.

Figure 13. Safety Requirements

Figure 13 shows a ReqIf document in Rodin (via the ProR plug-in) which holds the safety require-
ments defined by the safety analysis. For each requirement, there are references to the concerned
elements of SS 026 and to Event-B elements where applicable, e.g., REQ_FMEA_ID_005 which
is linked to the invariants, inv6, inv7 and inv8.

Verification of Requirements Coverage This section reports on the verification activities of
the coverage of the design step requirements. The goal of the activity is to establish the coverage
degree of the formal representation of the design step requirements.

The activity is described in the Verification and Validation Plan [26]. In short, in consists of
analyzing the coverage of the identified requirements of a preceding phase, to ensure their
completeness of implementation of the requirements wrt. the refinement level of the model. To
achieve this, we use the direct connection of the Event-B model with the ProR based on an EMF
model of the Event-B model.

6.2.4 Object of Verification
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The object of verification is the Event-B model for the communication establishing9. It is from
the strictly formal modeling phase and represents the communication session management of the
OBU.

Available Specification The model implements the requirements for the communication ses-
sion management as described in SS 026, section 3.5 [1].

This section describes the establishing, maintaining and termination of a communication session
of the OBU with on-track systems.

Goals One goal is the development of a strictly formal, fully proven model of the communi-
cation session management and to provide evidence of covering the necessary requirements of
SS 026 as well as proving correctness of the model wrt. the requirements and attaining a good
coverage of the model wrt. the requirements.

The second goal is to correctly implement the applicable safety requirements identified by the
safety analysis. Both functional and safety requirements should be traced in the model and a
requirement document in a standardized format.

The formal model will represent the described functionality on the system level, the correct
functioning can be validated by step-wise simulation and model-checking of deadlock-freeness.

Method/Approach At first, the basic functionality described in the section 3.5 that are identi-
fied. These serve as basis for a first abstract model, which is refined iteratively, adding the desired
level of detail. The elements of SS 026 are traced using links from Event-B to the ProR file in
ReqIf format. Requirements are formalized as invariants and proven where applicable.

Means The means used are:

• open source Rodin tool (http://www.event-b.org/), including plug-ins (for details
see https://github.com/openETCS/model-evaluation/blob/master/model/Event_
B_Systerel/Subset_026_comm_session/latex/subset_3_5.pdf)

• ProR requirements modeling tool http://www.pror.org

• open source ProB model checker and B model simulator http://www.stups.uni-duesseldorf.
de/ProB/index.php5/Main_Page

• open source CVC3 (http://www.cs.nyu.edu/acsys/cvc3/), verIT (www.verit-solver.
org) and Alt-Ergo (http://alt-ergo.lri.fr) SMT solvers

Results
9https://github.com/openETCS/model-evaluation/tree/master/model/Event_B_Systerel/

Subset_026_comm_session
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• The result is a fully formal model of the communication session management as described in
section 3.5 of SS 026.

• Each implemented element of this section is linked to the ProR requirements file, both
specification elements that describe how something has to be done, as well as requirements
that describe what must be achieved.

• The model can be simulated / animated, either with the AnimB or the ProB plug-in, validating
the functional capabilities.

• The safety requirements are formalized as invariants in predicate logic, their proofs are for
the most part fully automatic.

• It was found that while the SS 026 communication management explicitly allows multi-
ple communication partners (see RBC handover), there is no explicit limit of established
communication connections given in section 3.5.

• A complete covering of the elements of SS 026 was not realized, e.g., there is a representation
of the contents of a message, but its explicit format is not implemented. This is considered
an implementation detail without influence for a system level analysis. In general, Event-B
models will not be refined up to the implementation level.

Summary The created fully formal functional model allows for formalization and proof of
SS 026 requirements. The integration of Rodin into Eclipse provides easy access to extensions
like the ProR requirements tool which allows for validation of coverage of requirements.

The integration of various provers, in particular the SMT plug-in automates a large part of the
formal verification. For the model of the communication management, from 382 non-trivial10

proof obligations, only 12, i.e., 3.2% require any manual intervention.

Evidence produced The formal Event-B model, including a ReqIf document for section
3.5 of SS 026 and a pdf documentation of the model can be found at https://github.com/
openETCS/model-evaluation/tree/master/model/Event_B_Systerel/Subset_026_comm_
session

6.2.5 Conclusions/Lessons learned

Having an abstract formal model of the implemented functionality which can be simulated,
allows for interesting insights into the overall functioning of a system. Formalized requirements
are very helpful in both the identification of ambiguous requirements and in their clarification.

The elements of SS 026 are of very different nature. Some describe rather low-level specification
details, other describe “real” requirements. Without an analysis as done with this Event-B model,
it can be difficult to decide which elements must be considered on a system level analysis and
which on the lower implementation level.

6.2.6 Future Activities

For other sections of SS 026, that describe a functionality in a way that can be captured in an
iteratively refined model and which has interesting requirements on a rather high level, creating

10many WD proof obligations are so trivial that they will not be shown in Rodin
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an Event-B model can provide insight into the functioning, identify ambiguous or erroneous
elements in the specification and can provide the basis for logical pre- and post conditions of the
later implementation.

6.3 Verification processes applicable to a SCADE model

The verifier shall be independent and shall neither be Requirements Manager, Designer nor
Implementer as defined in the safety standards EN 50128 v2011.

The input documents needed are all the necessary System and Software Documentation used for
the SCADE design activity and all the documentation produced during this phase, such as the
SCADE Design Description, the SCADE Design Test Specification and the SCADE Design Test
Report.

6.3.1 Respect of modelling rules

Syntactic rules of SCADE language are verified with the Quick Check tool available in the
publisher. If an error is detected it must be corrected or justified in the SCADE Design Description
document by the designer. The verifier shall ensure that no error remains or the justification
associated is correct.

For specific modelling rules the verification has to be made manually by the verifier and described
in the Verification Report. A grid of verification may be created in order to prove the compliance
of the model with the rules. On some cases, dedicated tools can be developed.

Some modelling rules and constraints on Scade language can be defined and justified according
CENELEC standard. Then these rules can be verified.

6.3.2 Specification traceability check

The verification of the compliance of the SCADE model with each requirement has to be made
manually, by the verifier.

The Scade model shall be correct according to the informal requirements and the informal
specification shall be completely covered : each specification requirement must be traced in the
SCADE model. The specification requirements which are not covered by the SCADE model
must be listed and justified in the SCADE Design Description document by the designer.

6.3.3 Testing and Validation of the model

The verifier shall control the activity of software testing performed by the tester.

The software testing uses the Model Test Coverage (MTC) and the Generic Qualified Testing
Environment (QTE) tools from SCADE. Five steps are performed.

• Establish the Test Specification document.

• Writing scenarios in order to test the different functions independently.

• Running scenarios on the SCADE model.
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• Extraction and analysis of results and the associated coverage (nodes, branches, branch
conditions,...).

• Establish the Test Report.

6.3.4 Results

All these different verifications activities shall be described in the Verification and Validation
Plan, and their results shall be record in a Verification Report. Each disparity must be corrected
or justified.

Verification report content The verifier shall produce a Verification Report containing the
proof of the compliance of the SCADE model. It shall include the following points:

• the identity, version and configuration of SCADE model;

• the verifier name;

• the goal of the Verification Report;

• the result of each verification process with:

- items which do not conform to the specifications;

- components, data, structures and algorithms poorly adapted to the problem;

- detected errors or deficiencies.

• the fulfilment of, or deviation from, the Software Verification Plan;

• assumptions if any;

• a summary of the verification results.

6.3.5 Conclusion

The use of SCADE with its verification processes is compliant with the CENELEC norm but as
it is not developed as open-source it is not compliant with the goal of openETCS project.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.1 43

7 LAAS and INPT: Verification of the Ceiling Speed Monitoring

This section reports the verification activity of the Ceiling Speed Monitoring (CSM) function
provided by the University of Bremen using the Tina model-checking toolbox11. The goal of this
activity is to use an automatic transformation from SysML to Time Petri Net (TPN) to this model
and check several temporal logic formulas on the resulting system.

7.1 Object of verification

We study the SysML model of CSM function using the Tina model-checking toolbox. We base
our analysis on a model provided by the University of Bremen that was slightly extended with
information on the environment of the system. The same function was studied by the University
of Rostock using a software testing approach.

The cornerstone of our approach is an automatic transformation from SysML models to TPN
models. We can then use the resulting formal model to check several temporal logic formulas.

7.2 Available specification

The CSM function supervises the observance of the maximal speed allowed according to the
current most restrictive speed profile (MRSP). The model was edited, and later extended, using Pa-
pyrus. The specification of the system under test is described in [28] and available here: https://
github.com/openETCS/validation/tree/master/VnVUserStories/VnVUserStoryUniBremen.

To provide executable models for the CSM function, an environment model needs to be defined;
mainly the possible actions on the current speed of the train resulting from acceleration or
deceleration orders.

The combination of a test environment model and an optional test driver model provides a
deterministic model.

7.2.1 Description of the Environment Model

The environment model is defined in the TestEnvironment block. It is described using a state
machine diagram as shown in Fig. 14.

The system under test is activated with an initial speed (SimulatedTrainSpeed) and may enter
into the composite state Running. The Running state encapsulates three possible behavior. Either
the speed remains unchanged (state Normal), or the train accelerates (state Acc), or the train
decelerates (state Dec). The guards defined on the transitions found inside the composite state
Running are described in Table 4. The DriveCommand is the command sent by the driver which
contains three modes: keeping speed (DriveCommand = 0), acceleration (DriveCommand = 1)
and Deceleration (DriveCommand = 2).

The actions on each transition (the "do behaviors") are described in Table 5. At the moment we
use dummy values for the acceleration and braking parameters of the train. We have chosen a fix
acceleration of 2 km/h per 100 units of time (t.u.) and a constant braking factor of 2 km/h per
400 t.u.

11http://projects.laas.fr/tina/
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Figure 14. CSM Test Environment Model

Table 4. Transitions between Running States

To \ From Normal Acc Dec

Normal DriveCommand != 1 DriveCommand != 2

Acc DriveCommand == 1

Dec DriveCommand == 2

Table 5. Do Behaviors in Running States

Normal

Acc SimulatedTrainSpeed = SimulatedTrainSpeed + 2;

Dec SimulatedTrainSpeed = SimulatedTrainSpeed - 2;

The effect of the environment on the system is described by the transitions between states Running,
EBrake (emergency brake), SBrake (service brake) and STOP (simulatedTrain Speed <= 1).
The transition guards between environment states are described in Table 6. The transitions are
controlled by the commands EmergencyBrakeCommand and ServiceBrakeCommand generated
from the train control system.

Table 6. Transitions between Environment States

To \ From Running EBrake SBrake STOP

Running
ServiceBrakeCommand == 0 &&

EmergencyBrakeCommand == 0

ServiceBrakeCommand == 0 &&

EmergencyBrakeCommand == 0

EBrake EmergencyBrakeCommand == 1
ServiceBrakeCommand == 0 &&

EmergencyBrakeCommand == 1

SBrake
ServiceBrakeCommand == 1 &&

EmergencyBrakeCommand == 0

ServiceBrakeCommand == 1 &&

EmergencyBrakeCommand == 0

STOP SimulatedTrainSpeed <= 1
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The do behaviors in environment states are described in Table 7. The deceleration of emergency
brake is set at 10 km/h per 200 t.u.. The deceleration of service brake is set at 5 km/h per 200 t.u..

Table 7. Do Behaviors in Environment States

Running

EBrake SimulatedTrainSpeed = SimulatedTrainSpeed - 10;

SBrake SimulatedTrainSpeed = SimulatedTrainSpeed - 5;

STOP

7.2.2 Description of the Driver Model

In addition to the model of the train behavior we have added a model of the driver (and of the
track description) that can be used to force a particular scenario. In this context, a scenario is a
timed annotated sequence of acceleration and deceleration orders. One possible scenario can
be obtained using the model defined in the TestDriver block of Fig. 15. This test describes a
situation where the driver accelerates for a time T1 (DriveCommand = 1) before decelerating for
a time T2.

Figure 15. Test Driver Model

7.3 Detailed verification plan

7.3.1 Goals

Our main goal is to reuse the existing CSM model and extend the environment model with
the driver model. These SysML models are then transformed to TPN models to validate the
specification by model-checking.

7.3.2 Method/Approach

We first provide some background information on the transformation from SysML to TPN used in
our study. This transformation is based on a mapping from UML (Unified Modeling Language)
to TPN described in the PhD thesis of Ning Ge [29]. The transformation can also take into
account real-time properties defined using the MARTE profile (Modeling and Analysis of Real
Time and Embedded systems).

By nature, UML is intended to be a general purpose modeling language and, as such, it integrates
different modeling viewpoints through the definition of a large class of diagram elements. In
the work of Ge, they select a core subset of UML diagrams and diagram elements for modeling
real-time software architecture and behavior, and focus on the semantic mapping from the UML
model to the verification model.
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We briefly describe the different elements supported in our translation.

Architecture Model The purpose of architecture model is to connect different sub-system
behavior models and create a system-level model, by means of communication media. The
objective of the mapping is to replace each architecture model’s entities by its relevant behavior
model. We rely on the composite structure diagram as the architecture model. Composite
structure diagrams specify the internal structure of a class, including its interaction points to
other parts of the system, and the architecture of all parts managed by this class. They are used to
explore run-time instances of interconnected instances collaborating over communications links.

Behavioral Model The mapping semantics for behavioral model covers both activity and state
machine diagrams.

Activity diagrams express the coordination between lower-level behaviors using constraints on
the possible sequence of actions. In this context, actions can be triggered because other actions
finish executing; because objects and resources become available; or because external events
occur. The main elements in UML activity diagram behavior model are control nodes, actions,
objects, and connection elements.

Principles of Semantic Mapping

The mapping from UML-MARTE to TPN preserves the semantics of the input language. A
particularity of the approach is that, for efficiency reason, the transformation is driven by the set
of real-time properties that should be checked on the resulting model. For instance, in order to
reduce the size of the state space explored during the verification phase, the behavior of some
elements irrelevant to the target property can be abstracted. The transformation conforms to the
following principles:

• The resulting TPN models should be easy to analyze, meaning that the semantics mapping
should allow the use of high-level abstraction methods during model-checking.

• In order to keep the transformation simple, we use a compositional approach where the
resulting system is obtained by composing the interpretation of all its elements. Then, to
optimize the result, we apply a state space reduction phase that eliminates the elements
irrelevant to the verification.

7.3.3 Means

Instead of the thirteen diagrams available in UML 2, the SysML includes only nine diagrams,
including:

• the Block Definition Diagram (BDD), replacing the UML 2 class diagram

• the Internal Block Definition Diagram (IBDD), replacing the UML 2 composite structure
diagram

• the Parameter diagram, a SysML extension to analyze critical system parameters

• the Package diagram remained unchanged.

The behavior diagrams includes:
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• the activity diagram, slightly modified from UML 2

• the sequence, state machine, and use case diagrams remain unchanged.

The requirement diagram is a SysML extension to describe functional, performance, and interface
requirements.

In order to reuse the existing transformation form UML to TPN [29] to build a mapping from
SysML, we have redefined the mapping semantics for the block diagram as structure models.
The mapping semantics for the activity and state machine diagrams are left unchanged. Some
of the semantics mapping have also been modified in order to take into account some of the
modeling convention adopted in the OpenETCS project.

Also, the target model is now an extension of TPN with priorities and typed variables called TTS,
for Time Transition System. The data handling ability of TTS is used to model the guards and
actions on integer and float variables found in a SysML diagram.

7.4 Results

We provide two verification scenarios for testing the formal system obtained from the transfor-
mation of the CSM model. Each scenario is available as a TTS "file" (actually a folder called
tpn.tts) inside the 05-Work folder.

Scenario 1 Scenario 1 includes the following initial values for the parameters:

• SimulatedTrainSpeed = 110

• V_mrsp = 120

• SBAvailable = true

• DriveCommand = 1. The initial drive command is acceleration.

• T1 transition in Driver model has an effect behavior DriveCommand = 1. The time duration
for the initial behavior (acceleration) is 20000.

• T2 transition in Driver model has an effect behavior DriveCommand = 0. The time duration
for the behavior before keeping speed (acceleration) is 10000.

We give in the table below the number of reachable states (or markings) of the resulting TPN. A
marking is defined by a particular value for each system variable and for each internal state of
the blocks. This gives a rough idea of the complexity of checking reachability properties on the
system. "Classes" take into account timing constraints on top of the markings; hence there is
always more classes than markings. The generation of the whole state space takes for Scenario 1
takes less than 24 seconds (system time: 23.350s).

Scenario 2 Scenario 2 includes the following initial values of parameters:

• SimulatedTrainSpeed = 0

• V_mrsp = 160
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Table 8. State Space of Scenario 1

markings domains classes transitions

399 455880 456926 978970

• SBAvailable = true

• DriveCommand = 1. The initial drive command is acceleration.

• T1 transition in Driver model has an effect behavior DriveCommand = 2. The time duration
for initial behavior (acceleration) is 200000.

• T2 transition in Driver model has an effect behavior DriveCommand = 0. The time duration
for the behavior before keeping speed (deceleration) is 100000.

The size of the state graph for scenario 2 is shown in the table below. The generation of the whole
state space takes less than 26s (system time of 25.912s).

Table 9. State Space of Scenario 2

markings domains classes transitions

474 700129 700472 1201679

Verification of Requirements We have used our model-checking toolbox to check the properties
stated in the work by Univ. Bremen [28]. These properties are a direct translation into temporal
logic of the requirements found on the Subset 026 documents. Since the CSM model does not
take into account the possible activation and de-activation of the CSM, we have not dealt with
three requirements. (By default, the CSM is always activated.) We provide an interpretation of
the nine remaining requirements using LTL, see Table 10. To simplify the the LTL formula, we
have used simple names for naming the relevant variables. Full names, integrating information
on the hierarchy, should be used when model-checking the actual systems in Tina.

7.5 Summary

What we have done:

1. Extended an environment model and a driver model in SysML for the CSM function.

2. Transformed SysML models to TPN models.

3. Verified LTL properties using Tina model-checking toolset on the TPN models.

7.6 Conclusions/Lessons learned

To provide deterministic verification scenarios, we have extended the CSM models defined
by Uni Bermen with an environment model and a driver model. s The transformation from
semi-formal SysML model (including block, activity and state machine diagrams) to the TPN
model is automatic. The resulting TPN models are then used to validate system specification
written by LTL.
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Table 10. LTL

Requirement LTL Formula

req_01 EmergencyBrakeCommand ∧ SBAvailable=0 ∧ SimulatedTrainSpeed <=

V_mrsp ∧ RevocationEmergencyBrake=0

req_02 ServiceBrakeCommand ∧ SBAvailable=0 ∧ SimulatedTrainSpeed <= V_mrsp

req_03 ServiceBrakeCommand ∧ SBAvailable=0 ∧ SimulatedTrainSpeed gt (V_mrsp +

dV_sbi) ∧ SimulatedTrainSpeed lt (V_mrsp + dV_ebi)

req_08 � ((NORMAL ∧ SimulatedTrainSpeed <= V_mrsp) U (NORMAL ∧ Simulat-
edTrainSpeed gt V_mrsp + dV_warning ∧ SimulatedTrainSpeed <= V_mrsp +

dV_sbi))

req_09 � ((NORMAL ∧ SimulatedTrainSpeed <= V_mrsp) ∧ ((NORMAL ∧ Simulat-
edTrainSpeed <= V_mrsp) U (NORMAL ∧ SimulatedTrainSpeed gt V_mrsp +

dV_sbi ∧ SimulatedTrainSpeed <= V_mrsp + dV_ebi)))

req_10 � ((NORMAL ∧ SimulatedTrainSpeed <= V_mrsp) ∧ ((NORMAL ∧ Simulat-
edTrainSpeed <= V_mrsp) U (NORMAL ∧ SimulatedTrainSpeed gt V_mrsp +

dV_sbi)))

req_11 � ((OVERSPEED ∧ SimulatedTrainSpeed <= V_mrsp) ∧ ((OVERSPEED ∧
SimulatedTrainSpeed <= V_mrsp) U (NORMAL ∧ SimulatedTrainSpeed gt
V_mrsp + dV_sbi ∧ SimulatedTrainSpeed <= V_mrsp + dV_ebi)))

req_12 � ((OVERSPEED ∧ SimulatedTrainSpeed <= V_mrsp) ∧ ((OVERSPEED ∧
SimulatedTrainSpeed <= V_mrsp) U (NORMAL ∧ SimulatedTrainSpeed gt
V_mrsp + dV_sbi)))

req_13 � ((WARNING ∧ SimulatedTrainSpeed <= V_mrsp) ∧ ((WARNING ∧ Simulat-
edTrainSpeed <= V_mrsp) U (WARNING ∧ SimulatedTrainSpeed gt V_mrsp +

dV_ebi)))

For now, there is still no state space explosion problem in this case study. We intend to verify the
Speed and Distance Monitoring function model to further evaluate our method.

7.7 Future Activities

1. Refine the environment model by describing desired test scenarios using the test scenarios
defined by Uni Bremen.

2. Model and verify the calculation of train position either by using the existing SCADE model
or by refining the SysML model.

3. Encapsulate the transformation tool as an independent eclipse plugin.

8 Conclusion

This Deliverable presented the formal verification & validation of Institut Mines-Telecom, TWT
GmbH Science & Inovation, University of Bremen, University of Rostock, Systerel, LAAS-
CNRS and INPT. The V&V activities are focused on the System Requirement Specifications
in Subset-026 such as the Movement Authority (chap. 3.8), the Procedures (chap. 5), the
Management of the Radio Communication (chap. 3.5), the Speed and Distance Monitoring (chap.
3.13), the Procedure on-Signt (chap. 5), and the Ceiling Speed Monitoring (part of the Speed and
Distance Monitoring).

These SRSs have been formalized in formal models such as Extended Timed Finite State Machine,
Colored Petri-Net, SCADE, Classical B, Event B and Time Petri Net. The V&V have been
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done on these models. They resulted the correctness of the SRS but also some inconsistencies,
ambiguities and gaps in SRS being repported in the Specification Findings.

The next steps are to refine the formal models and then to do the V&V. The specification findings
will be updated during this process. The test generation and then execution against the simulators
will be also focused.
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