
op
en

E
TC

S
O

E
TC

S
/W

P
4/

D
4.

2.
2

ITEA2 Project
Call 6 11025
2012 – 2015

Work Package 4: “Validation & Verification Strategy”

Preliminary Validation and Verification Report on
Implementation/Code

Jens Gerlach and Izaskun de la Torre March 2015

This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing:



This page is intentionally left blank



OETCS/WP4/D4.2.2 i

Work Package 4: “Validation & Verification Strategy” OETCS/WP4/D4.2.2
March 2015

Preliminary Validation and Verification Report on
Implementation/Code

Document approbation

Lead author: Technical assessor: Quality assessor: Project lead:

location / date location / date location / date location / date

signature signature signature signature

Jens Gerlach Virgile Prevosto Abdelnasir Mohamed Klaus-Rüdiger Hase

(Fraunhofer FOKUS) (CEA LIST) (AEbt) (DB Netz)

Jens Gerlach

Fraunhofer FOKUS
Kaiserin-Augusta-Allee 31
10589 Berlin, Germany
jens.gerlach@fokus.fraunhofer.de
www.fokus.fraunhofer.de

Izaskun de la Torre

Software Quality Systems S.A.

Intermediate report

Prepared for openETCS@ITEA2 Project

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 ii

Abstract: This work package will comprise the activities concerned with verification and
validation within openETCS. This includes verification & validation of development artifacts,
that is, showing that models and code produced correctly express or implement what they are
supposed to. And also, methods and tools to perform such tasks will be evaluated with the goal
of assembling a suitable method and tool chain to support a full development.

Disclaimer: This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing: European Union Public
Licence (EUPL v.1.1+) AND Creative Commons Attribution-ShareAlike 3.0 – (cc by-sa 3.0)

THE WORK IS PROVIDED UNDER openETCS OPEN LICENSE TERMS (oOLT) WHICH IS A DUAL LICENSE AGREEMENT IN-
CLUDING THE TERMS OF THE EUROPEAN UNION PUBLIC LICENSE (VERSION 1.1 OR ANY LATER VERSION) AND THE
TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE ("CCPL"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS OLT LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl


OETCS/WP4/D4.2.2 iii

Table of Contents
Figures and Tables................................................................................................................... v

List of code examples ............................................................................................................. vii

List of Corrections ................................................................................................................. viii

1 Introduction....................................................................................................................... 1

Structure of this document ..................................................................................................... 3

2 An introduction to formal verification with Frama-C/WP .......................................................... 5

2.1 First steps .................................................................................................................. 6

2.2 Why can Frama-C/WP not verify such a simple function? ...................................................... 6

2.3 Sharpening the contract of abs_int .............................................................................. 7

2.4 Separating specification and implementation ...................................................................... 9

2.5 Modular verification ..................................................................................................... 10

2.6 Dealing with side effects ............................................................................................... 11

3 Formal verification of the Bitwalker core functionality ........................................................ 15

3.1 Verification method ...................................................................................................... 16

3.2 A first look on Bitwalker_Peek and Bitwalker_Poke ................................................. 18

3.2.1 Analyzing Bitwalker_Peek.............................................................................. 18

3.2.2 Analyzing Bitwalker_Poke.............................................................................. 21

3.3 Informal specifications.................................................................................................. 23

3.3.1 Basic concepts.................................................................................................. 23

3.3.2 Informal specification of Bitwalker_Peek ........................................................... 24

3.3.3 Informal specification of Bitwalker_Poke ........................................................... 25

3.4 Tests for Bitwalker_Peek and Bitwalker_Poke ........................................................ 27

3.5 Formal specification with ACSL ...................................................................................... 28

3.5.1 Formal specification of Bitwalker_Peek ............................................................. 28

3.5.2 Code annotations for Bitwalker_Peek ............................................................... 30

3.5.3 Formal specification of Bitwalker_Poke ............................................................. 32

3.5.4 Code annotations for Bitwalker_Poke ............................................................... 34

3.6 Results of formal verification with Frama-C/WP.................................................................. 36

3.7 Open issues............................................................................................................... 37

4 Static Analysis of Bitwalker ................................................................................................ 39

4.1 Introduction................................................................................................................ 39

4.2 Resource Standard Metrics -RSM- Results ....................................................................... 40

4.2.1 Quality Metrics .................................................................................................. 41

4.2.2 Complexity Metrics............................................................................................. 45

4.3 LocMetrics tool Results ................................................................................................ 52

4.4 Understand tool Results ............................................................................................... 52

4.5 Clang Static Analyzer tool Results .................................................................................. 62

4.6 CPPcheck tool Results ................................................................................................. 63

4.7 Testwell CMT++ Results ............................................................................................... 65

4.7.1 Complexity Metrics............................................................................................. 65

4.7.2 Maintainability Index ........................................................................................... 69

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 iv

4.8 MISRA and Mü8004 Rules Comparation .......................................................................... 70

4.9 Conclusions ............................................................................................................... 88

5 Conclusions ..................................................................................................................... 93

References............................................................................................................................. 95

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 v

Figures and Tables

Figures

Figure 1.1. Scope of formal methods with in OpenETCS .................................................................... 1

Figure 1.2. The place of Bitwalker with the OpenETCS software ..................................................... 2

Figure 3.1. Deductive verification of C code with Frama-C/WP............................................................ 16

Figure 3.2. Potential runtime errors in Bitwalker_Peek ............................................................... 20

Figure 3.3. Potential runtime errors in Bitwalker_Peek ............................................................... 22

Figure 3.4. Byte indices and bit indices in a bit stream ...................................................................... 23

Figure 3.5. A bit sequence within a bit stream ................................................................................. 24

Figure 4.1. Bitwalker_Poke Flow .................................................................................................. 51

Figure 4.2. MISRA-C Rules results ............................................................................................... 56

Figure 4.3. Clang Analysis results ................................................................................................ 63

Figure 4.4. cppcheck results ....................................................................................................... 65

Tables

Table 2.1. Test results for abs_int ............................................................................................. 7

Table 3.1. Verification results for Bitwalker_Peek and Bitwalker_Poke ...................................... 36

Table 4.1. Quality Notices........................................................................................................... 41

Table 4.1. Quality Notices........................................................................................................... 42

Table 4.1. Quality Notices........................................................................................................... 43

Table 4.1. Quality Notices........................................................................................................... 44

Table 4.2. User Defined Quality Notices......................................................................................... 44

Table 4.3. Quality Profile ............................................................................................................ 44

Table 4.3. Quality Profile ............................................................................................................ 45

Table 4.4. File Summary ............................................................................................................ 46

Table 4.5. Recommendations ...................................................................................................... 47

Table 4.6. Functional Summary ................................................................................................... 48

Table 4.7. Function Metrics ......................................................................................................... 49

Table 4.7. Function Metrics ......................................................................................................... 50

Table 4.8. Mc Cabe cyclomatic Complexity Reference table ............................................................... 50

Table 4.9. LocMetrics Tool Results ............................................................................................... 52

Table 4.10. Status of MISRA Rules............................................................................................... 55

Table 4.11. Summary of detected MISRA Violations......................................................................... 56

Table 4.12. Function Complexity metrics ........................................................................................ 57

Table 4.12. Function Complexity metrics ........................................................................................ 58

Table 4.13. File Metrics .............................................................................................................. 59

Table 4.14. Function code Metrics ................................................................................................ 59

Table 4.14. Function code Metrics ................................................................................................ 60

Table 4.14. Function code Metrics ................................................................................................ 61

Table 4.15. Unused Variables and Parameters ................................................................................ 61

Table 4.16. Uninitialized Items ..................................................................................................... 61

Table 4.17. Unused Program Units ............................................................................................... 62

Table 4.18. Aspects checked....................................................................................................... 62

Table 4.18. Aspects checked....................................................................................................... 63

Table 4.19. Lines of Code Metrics per file ...................................................................................... 66

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 vi

Table 4.20. Lines of Code Metrics per functions .............................................................................. 66

Table 4.21. Halstead metrics 1 per file........................................................................................... 67

Table 4.22. Halstead metrics 2 per file........................................................................................... 67

Table 4.23. Halstead metrics 1 per function .................................................................................... 67

Table 4.23. Halstead metrics 1 per function .................................................................................... 68

Table 4.24. Halstead metrics 2 per function .................................................................................... 68

Table 4.25. McCabe Cyclomatic Complexity ................................................................................... 68

Table 4.25. McCabe Cyclomatic Complexity ................................................................................... 69

Table 4.26. Maintainability Index .................................................................................................. 69

Table 4.26. Maintainability Index .................................................................................................. 70

Table 4.27. Maintainability Index Reference table............................................................................. 70

Table 4.28. File Size metrics comparation ...................................................................................... 89

Table 4.29. Functions Size metrics comparation .............................................................................. 89

Table 4.29. Functions Size metrics comparation .............................................................................. 90

Table 4.30. function Cyclomatic Complexity comparation................................................................... 90

Table 4.30. function Cyclomatic Complexity comparation................................................................... 91

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 vii

List of code examples
2.1 An implementation of the absolute value function ............................................ 6
2.2 A first attempt to formally specify abs_int ................................................... 6
2.3 Some simple test cases for abs_int ............................................................. 7
2.4 Taking integer overflows into account ............................................................ 8
2.5 Minimal contract to ensure the absence of runtime errors in abs_int .................. 9
2.6 Specifying a function prototype in a header file ............................................... 9
2.7 Implementation at a different location than the specification ............................... 9
2.8 A simple example of modular verification .................................................... 10
2.9 Another example of modular verification...................................................... 10
2.10 A more complex example of modular verification ........................................... 11
2.11 An implementation with side effects............................................................. 11
2.12 Calling a logging function from abs_int .................................................... 12
2.13 Specifying the absence of side effects .......................................................... 13
2.14 Finer control of side effects ....................................................................... 13
3.1 Original implementation of Bitwalker_Peek .......................................... 18
3.2 An alternative implementation of Bitwalker_Peek ................................... 19
3.3 Original implementation of Bitwalker_Poke ........................................... 21
3.4 Formal specification of Bitwalker_Peek in ACSL ................................... 28
3.5 Implementation of Bitwalker_Peek with ACSL loop invariants .................... 31
3.6 Formal Specification of Bitwalker_Poke ............................................... 32
3.7 Implementation of Bitwalker_Poke with loop invariants............................ 34
4.1 Bitwalker_Poke ....................................................................................... 51

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 viii

List of Corrections

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 1

1 Introduction

In this intermediate report we describe the activities to formally verify the correctness of parts of
the software developed in the OpenETCS project.

While major parts of the functionality of Subset 026 are modelled in higher-level languages, there
is also a substantial part of supporting software that is developed in the programming language C.

In this document we report about preliminary results on the verification of that C-code. In
particular, we report on the use of static analysis methods (including formal methods) on C code
that has been developed by the project partner Siemens.

Figure 1.1. Scope of formal methods with in OpenETCS

Figure 1.1 outlines the roles of formal methods within the OpenETCS project. Even a subsystem
such as described by Subset 026 of the ETCS specification is usually too complex to be completely
formally specified. Therefore, semi-formal modelling techniques and tests and simulations play
a crucial role to verify that the implementation satisfies its specification. However, for clearly
defined modules and select system properties, formal methods can well be applied to establish
the correctness of an implementation.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 2

Figure 1.2 gives an overview on the software that is in the focus of this report.

OpenETCS Decoder 
(Subset 026)

TrackToTrain
...

TrainToTrack
...

BothWays
...

  
  
  
  
  

Bitwalker

Bitwalker_IncrementalWalker_Poke_Finish
Bitwalker_IncrementalWalker_Poke_Next
Bitwalker_IncrementalWalker_Peek_Finish
Bitwalker_IncrementalWalker_Peek_Next
Bitwalker_IncrementalWalker_Init

T_Bitwalker_Incremental_Locals

Bitwalker_Poke
Bitwalker_Peek

Bitwalker (Core)

Figure 1.2. The place of Bitwalker with the OpenETCS software

The OpenETCS decoder is a large collection of functions dedicated to the reading of ETCS
messages. In order to fulfill their task these function rely on the relatively small software package
Bitwalker. The Bitwalker software, as seen by the OpenETCS decoder, is best understood
as a “class” with a handful of methods. Note that this class is implemented in C as a struct
where the methods are implemented as functions. The core functionality of this class, which
consists in converting bit sequences to integers and vice versa, depends on two more basic
function, namely Bitwalker_Peek and Bitwalker_Poke.

This software has been analyzed by the OpenETCS project partners SQS (Spain) and Fraunhofer
FOKUS (Germany). SQS used several static analysis tools to identify defects and to derive useful
metrics. Fraunhofer FOKUS, on the other hand, used the Frama-C tool set, which is developed
by the French project partner CEA LIST, in order to formally verify various properties of the
Bitwalker.

These analyses contribute to the ultimate verification goals, which are the following:

1. provide evidence that the Bitwalker software satisfies accepted quality standards

2. develop a formal specification for the Bitwalker software

3. verify that the Bitwalker software satisfies its formal specification

4. show that the Bitwalker software does not raise runtime errors

5. verify that OpenETCS decoder calls the Bitwalker software only according to its specification

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 3

We are confident that all these verification goals can be reached. For this preliminary verification
report, we provide partial answers to the first four topics. In order to achieve the last goal, more
development and verification work is currently conducted by Fraunhofer ESK and Fraunhofer
FOKUS.

Structure of this document

Chapter 2 gives a short overview on the Frama-C/WP tool that plays a central role in the
verification of the Bitwalker functions. Here we also try to rectify some misunderstandings about
formal verification that we have encountered in our work.

In Chapter 3 we analyze the functions Bitwalker_Peek and Bitwalker_Poke from the
Bitwalker core and

1. formally specify the expected functional behavior in the ACSL specification language of
Frama-C and

2. report on the formal proof that these C functions do not raise runtime errors when called
according to their formal specification, established using the Frama-C verification platform.

So far only a part of Siemens’ Bitwalker has been formalized and verified. In the process of
this work several enhancements for the Frama-C verification platform have been identified and
reported to the developers at CEA LIST.

In Chapter 4, we report about the results of SQS’ application of a broad range of static analysis
tools on the Bitwalker. In contrast to Frama-C, these tools cannot exhaustively detect all
potential defects of a given kind. Nevertheless, these they are very useful at finding well-known
quality deficiencies that might occur in C or C++ software.

In Chapter 5, we draw conclusions from this preliminary work and outline the next steps in our
verification efforts.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 4

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 5

2 An introduction to formal verification with
Frama-C/WP

Frama-C is a platform dedicated to source-code analysis of C software. It has a plug-in architec-
ture and can thus be easily extended to different kinds of analyses. The WP plugin of Frama-C
allows one to formally verify that a piece of C code satisfies its specification. This implies, of
course, that the user provides a formal specification of what the implementation is supposed
to do. Frama-C comes with its own specification language ACSL which stands for ANSI/ISO
C Specification Language. In order to help potential users to master ACSL we discuss in this
chapter a very simple C function abs_int that implements the computation of the absolute
value for objects of type int.

• In Section 2.1 we will present a straightforward specification of abs_int. We discuss
the reasons why Frama-C/WP is not able to verify that our implementation satisfies this
specification in Section 2.2.

• In Section 2.3 we provide a more precise specification that can be verified by Frama-C/WP.
In Section 2.4 we explain how Frama-C supports—by allowing the separation of the specifi-
cation from the implementation—good software engineering practices.

• Sections 2.5 and 2.6 discuss, respectively, how Frama-C/WP supports modular verification
and the formal treatment of side effects.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 6

2.1 First steps

We will consider the function that computes the absolute value |x| of an integer x. In order to
avoid name clashes with the function abs in C standard library we use the name abs_int.

The mathematical definition of absolute value is very simple

|x| =

 x if x ≥ 0

−x if x < 0
(1)

A straightforward implementation of abs_int is shown in Listing 2.1.

int abs_int(int x)
{

return (x >= 0) ? x : -x;
}

Listing 2.1. An implementation of the absolute value function

In order to demonstrate that this implementation is correct we have to provide a formal specifica-
tion. Listing 2.2 shows our first attempt for an ACSL specification of abs_int that is based on
the mathematical definition of the function x 7→ |x| in Equation 1.

/*@
ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x)
{

return (x >= 0) ? x : -x;
}

Listing 2.2. A first attempt to formally specify abs_int

The first thing to note is that ACSL specifications—or contracts—are placed in special C
comments (they start with /*@). Thus, they do not interfere with the executable code. The
ensures clause in the specification expresses postconditions, that is, properties that should be
guaranteed after the execution of abs_int. The ACSL reserved word \result is used to refer
to the return value of a C function. Note that we use the usual C operators == and <= to express
equalities and inequalities in the specification. There is also an additional operator ==> which
expresses logical implication.

2.2 Why can Frama-C/WP not verify such a simple function?

Although the specification and implementation in Listing 2.2 look perfectly right, Frama-C/WP
cannot verify that the implementation actually satisfies its specification.

The reason becomes clear if we look at some actual return values of abs_int. Listing 2.3 shows
our test code whose output is listed in Table 2.1.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 7

#include <stdio.h>
#include <limits.h>

extern int abs_int(int);

void print_abs(int x)
{

printf("%12d\t\t%12d\n", x, abs_int(x));
}

int main()
{

printf("\n");
print_abs(0);

printf("\n");
print_abs(1);
print_abs(10);
print_abs(INT_MAX);

printf("\n");
print_abs(-1);
print_abs(-10);
print_abs(INT_MIN);

}

Listing 2.3. Some simple test cases for abs_int

x abs_int(x) Remark

0 0 X

1 1 X

10 10 X

2147483647 2147483647 X

-1 1 X

-10 10 X

-2147483648 -2147483648  

Table 2.1. Test results for abs_int

The offending value is in the last line of Table 2.1 which basically states that abs_int(INT_MIN)
equals INT_MIN whereas it should equal -INT_MIN. The problem is that the type int only
present a finite subset of the (mathematical) integers. Many computers use a two’s-complement
representation of integers which covers the range [−231 . . . 231 − 1] on a 32-bit machine. On such
a machine -INT_MIN cannot be represented by a value of the type int.

In a specification, Frama-C/WP interprets integers as mathematical entities. Consequently, there
is no such thing as an arithmetic overflow when adding or multiplying them. In other words,
Frama-C/WP is perfectly right not being able to verify that abs_int satisfies the contract in
Listing 2.2. Indeed, the implementation does not respect the given specification.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 8

2.3 Sharpening the contract of abs_int

It is of course well known that the operation -x can overflow and it is the fact that Frama-C/WP
can detect such overflows that helps to prevent incorrect verification results.

The GNU Standard C Library clearly states that the absolute value of INT_MIN is undefined.1
Under OSX, the manual page of abs mentions under the field of “Bugs”:

The absolute value of the most negative integer remains negative.

Thus, our formal specification should exclude the value INT_MIN from the set of admissible
value to which abs_int can be applied. In ACSL, we can use the requires clause to express
preconditions of a function. Listing 2.4 shows an extended contract of abs_int that takes the
limitations of the type int into account.

#include <limits.h>

/*@
requires x > INT_MIN;

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x)
{

return (x >= 0) ? x : -x;
}

Listing 2.4. Taking integer overflows into account

Frama-C/WP is now capable to verify that the implementation of abs_int satisfies the specifi-
cation of Listing 2.4.

There is an important lesson that can be learned here:

Sometimes developers provide source code and imagine that a tool like Frama-C/WP can ver-
ify the correctness of their implementation. In order to fulfill its task, however, Frama-C/WP
needs an ACSL specification. Such a specification—which must be based on a reasonably
precise description of the admissible inputs and expected behavior—has to come from
the requirements of the software and is not magically discovered from the source code
by Frama-C/WP. The code does what it does. In order to verify that the code does what
someone expects, these expectations must be clearly expressed, that is, they must be formally
specified.

Of course, it might not always be the goal to verify the complete functionality of a piece of
software. Sometimes, it is enough to ensure that individual software components cause no
runtime errors, that is, arithmetic overflows or invalid pointer accesses. Frama-C/WP can also

1See http://www.gnu.org/software/libc/manual/html_node/Absolute-Value.html

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://www.gnu.org/software/libc/manual/html_node/Absolute-Value.html


OETCS/WP4/D4.2.2 9

be used in this situation. Under the terms of the following minimal specification in Listing 2.5,
Frama-C/WP can verify that no runtime error will occur.

#include <limits.h>

/*@
requires x != INT_MIN;

*/
int abs_int(int x)
{

return (x >= 0) ? x : -x;
}

Listing 2.5. Minimal contract to ensure the absence of runtime errors in abs_int

2.4 Separating specification and implementation

Before we continue exploring more advanced specification and verification capabilities of
Frama-C/WP we turn to a simple software engineering question.

It is common practice to put function prototypes into “.h” files and keep the implementation in
files ending in “.c”. Frama-C/WP supports this separation of specification and implementation.
Listing 2.6 shows the file abs2.h which contains a declaration of abs_int together with an
attached ACSL specification.

#include <limits.h>

/*@
requires x > INT_MIN;

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x);

Listing 2.6. Specifying a function prototype in a header file

Listing 2.7 shows the specification of abs_int in a .c file. Note that the file abs2.h with the
specification is included by this file. Frama-C/WP can verify that this implementation satisfies
the contract in Listing 2.6.

#include "abs2.h"

int abs_int(int x)
{

return (x >= 0) ? x : -x;
}

Listing 2.7. Implementation at a different location than the specification

We remark, that the definition of a very small function like abs_int would normally be placed
in a header file so that a compiler can inline the function definition at the call site.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 10

2.5 Modular verification

We now look at a simple example in which our function abs_int is used. More precisely, we
include in Listing 2.8 the header file from Listing 2.6 which contains an ACSL specification of
abs_int.

#include "abs2.h"

void use_1()
{

int a = abs_int(3);
int b = abs_int(-1);
int c = abs_int(INT_MAX);
int d = abs_int(INT_MIN);

// ...
}

Listing 2.8. A simple example of modular verification

When Frama-C/WP tries to verify the code in Listing 2.8, then it actually tries to establish
whether at each program location where it is called the preconditions of abs_int are satisfied.
Based on the specification of abs_int, Frama-C/WP can indeed verify that for the first three
calls the preconditions are fulfilled. For the last call this verification fails because the value
INT_MIN is explicitly excluded by the specification in Listing 2.6.

Note that the implementation of abs_int does not play any role in determining whether it is safe
to call the function in a particular context. This is what we call modular verification: a function
can be verified in isolation whereas code that calls the function only uses the function contract.

This also means that in a situation as in Listing 2.9, where nothing is known about the argument
of abs_int, Frama-C/WP cannot establish that the precondition of abs_int is satisfied or, in
other words, that x > INT_MIN holds.

#include "abs2.h"

void use_2(int x)
{

int a = abs_int(x);

// ...
}

Listing 2.9. Another example of modular verification

If, on the other hand, we have precise information on the arguments at call site, then Frama-C/WP
can exploit the specification of abs_int in order derive some interesting properties. As an
example, we consider the code fragment in Listing 2.10. Here, Frama-C/WP can verify that the
assertion after the call of abs_int is correct.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 11

#include "abs2.h"

/*@
requires (10 <= x < 100) || (-200 < x < -50);

*/
void use_3(int x)
{

int a = abs_int(x);
//@ assert 10 <= a < 200;

// ...
}

Listing 2.10. A more complex example of modular verification

Note that this assertion is a static one, that is, it is an ACSL annotation that resides inside a
comment and does not affect the execution of the code in Listing 2.10. Also note that unlike to
C code, relation chains can be used both in function contracts and assertions.

2.6 Dealing with side effects

Listing 2.11 shows an implementation of abs_int that writes as a side effect the argument x to
a global variable a. A natural question is to ask whether this implementation with a side effect
also satisfies the specification.

#include <limits.h>

extern int a;

/*@
requires x > INT_MIN;

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x)
{

a = x; // Is this side effect covered by the specification?
return (x >= 0) ? x : -x;

}

Listing 2.11. An implementation with side effects

Before we answer this question we consider various uses for side effects. There are of course
legitimate uses for side effects. The assignment to a memory location outside the scope of the
function might be meaningful because an error condition is reported or because some data are
logged as in Listing 2.12.

If Frama-C/WP attempts to verify the code in Listing 2.12, then it issues the following warning:

Neither code nor specification for function logging,
generating default assigns from the prototype

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 12

#include <limits.h>

extern void logging(int);

/*@
requires x > INT_MIN;

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x)
{

logging(x);
return (x >= 0) ? x : -x;

}

Listing 2.12. Calling a logging function from abs_int

Thus, it points out that the called function logging should have a proper specification that
clearly indicates its side effects.

There are, on the other hand, also good reasons to minimize or even forbid side effects:

• Imagine a malicious password checking function that writes the password to a global variable.

• Another reason is that side effects can make it harder to understand what the real consequences
of a function call are. In particular, one must be concerned about unintended consequences
that are caused by side effects The norm IEC 61508 therefore requests in the context of
software module testing and integration testing:

To show that all software modules, elements and subsystems interact correctly
to perform their intended function and do not perform unintended functions (see
also. [1, §7.4.7.2,§7.7.2.9])

Of course, it is quite difficult to ensure by testing alone that something does not happen.

To come back to our question about Listing 2.11 it is important to understand that Frama-C/WP
verifies that the implementation shown there satisfies the specification.

If one wishes to forbid that a function changes global variables one can use an assigns \nothing

clause as shown in Listing 2.13. Frama-C/WP will then point out that this implementation pre-
vents the verification of the assigns clause.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 13

#include <limits.h>

extern int a;

/*@
requires x > INT_MIN;

assigns \nothing; // forbid any side effects

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x)
{

a = x; // now illegal
return (x >= 0) ? x : -x;

}

Listing 2.13. Specifying the absence of side effects

Of course, an all-or-nothing-approach to side effects is not very helpful for the verification of
real-life software. Listing 2.14 shows how the assigns clause of a specification can name the
exact memory location that the function is allowed to modify.

// Side effects can be controlled on an individual basis.

#include <limits.h>

extern int a;

/*@
requires x > INT_MIN;

assigns a; // allow assignment to a (but only to a).

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/
int abs_int(int x)
{

a = x;
return (x >= 0) ? x : -x;

}

Listing 2.14. Finer control of side effects

Note however that assigns a does not imply that a write to a necessarily occurs during the
execution of abs. On the other hand, any other memory location must stay unchanged between
the initial state and the final state of abs.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 14

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 15

3 Formal verification of the Bitwalker core
functionality

In this chapter we describe in some detail our efforts on formally verifying the Bitwalker
using the verification tool Frama-C/WP. The Bitwalker shall read bit sequences from a bit
stream and convert them to an integer. Furthermore, it shall convert an integer into a bit sequence
and write it into a bit stream.

In Chapter 2 we had given an introduction into the most elementary features of Frama-C/WP. In
this chapter we use slightly more complex features of Frama-C/WP in order to verify key aspects
of the Bitwalker functions Bitwalker_Peek and Bitwalker_Poke. In particular, we
formally specify and (almost completely) verify the main operational modes of these functions.
In particular, we show that no runtime errors will occur if the preconditions of the operational
modes are satisfied.

After shortly describing our verification method in Section 3.1, we discuss in Section 3.2 the use of
Frama-C/WP to detect potential runtime errors in Bitwalker_Peek and Bitwalker_Poke.
In Section 3.3 we present an informal specification for both functions. This informal specification,
together with the knowledge about potential run time errors, serves two main purposes.

1. It allows us to quickly write tests for the Bitwalker functions (see Section 3.4).

2. It serves as a basis for the formal specification in the ACSL specification language of
Frama-C/WP (see Section 3.5).

In Section 3.5 we also discuss several modifications of the source code that simplify the verifica-
tion with Frama-C/WP.

Since our formal specification of Bitwalker is not yet complete, we present in Section 3.6 pre-
liminary verification results that we achieved with Frama-C/WP. Finally, we give in Section 3.7
an overview about the issues that are still open.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 16

3.1 Verification method

In Chapter 2 we have given an introduction to some of the capabilities of Frama-C/WP. In this
section we give a shorter, higher-level presentation of our verification approach.

We use deductive verification in order to formally prove that a function satisfies its specification.
The foundations for deductive verification are axiomatic semantics as formulated by Hoare [2].
Figure 3.1 shows the method with the involved verification tools.

Informal 
Specification of 

Function

Implementation
of Function

Formal Function 
Contract in ACSL 

Frama-C/WP

Interactive Theorem 
Provers (Coq)

Automatic Theorem 
Provers 

(Alt-Ergo, CVC4, ...)

Figure 3.1. Deductive verification of C code with Frama-C/WP.

Starting point is an informal specification of a function with which in mind an implementation is
written. This informal specification is then formalized using the specification language ACSL
(ANSI/ISO-C Specification Language) [3] that comes with Frama-C and is a formal language to
express behavioral properties of C programs. The formal specification of a function is a so-called
function contract which contains preconditions to express what a function expects from its caller
and postconditions to state the guarantees after the execution.

ACSL is the specification language associated with the verification platform Frama-C [4] which
we use along with its plug-in Frama-C/WP [5]. Within Frama-C, the WP plug-in supports
the deductive verification of C programs that have been annotated with ACSL. Frama-C/WP
generates verification conditions which are submitted to automatic or interactive theorem provers.
If each verification condition is discharged by at least one prover, then the implementation of the
function satisfies its contract.

Figure 3.1 shows that we apply the automatic theorem provers Alt-Ergo [6] and CVC4 [7]
and then, if necessary, apply the interactive theorem prover Coq [8] for remaining unproven

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 17

conditions. Moreover, unproven conditions motivate to give some extra information in the form
of axioms, lemmas, or assertions in ACSL, since these can ease the search of a proof. One needs
to be careful with axioms because they can yield contradictions and thus make the proof system
unsound.

In order to prove the absence of run time errors we use the rte option of WP which automatically
generates ACSL assertions for critical operations. If all these assertions can be proven, then the
absence of run time errors is guaranteed.

We received the source code only with a high-level description of what the Bitwalker is
supposed to do. In particular, no sufficient information about error conditions were provided. On
such a basis it is, as pointed out on Page 8, not possible to write meaningful test cases, let alone
to formally verify the functionality of the bitwalker functions.

In a first step, we therefore had to inspect the source code and derive from it an informal
specification. This informal specification is to be understood as a requirements document for the
bitwalker functions as it should have been available to both the programmer and the verifier in
advance.

There are several problems with this approach:

• The verifier could make an error while analyzing the source code and end up with a wrong
specification.

• If the verifier’s analysis is correct, there could still be an error in the implementation which
would then be present also in the specification. In any case, only the trivial claim “the code
works as implemented” can be verified.

In order to avoid these problems we submitted our informal specification for review by the project
partner Siemens.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 18

3.2 A first look on Bitwalker_Peek and Bitwalker_Poke

In this section, we analyze the implementations of Bitwalker_Peek and Bitwalker_Poke.
The goal is to devise a more precise specification than was originally provided. Of course, a
specification derived from the source code by the verifier must be subject to a review of the
domain experts.

At this point we are already using Frama-C/WP in order to identify potential run time errors in
the source code.

3.2.1 Analyzing Bitwalker_Peek

Listing 3.1 shows the original implementation of Bitwalker_Peek.

#include "Bitwalker.h"

uint64_t Bitwalker_Peek(unsigned int Startposition,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSizeInBytes)

{
if (((Startposition + Length - 1) >> 3) >= BitstreamSizeInBytes)

return 0; // error: index out of range

uint64_t retval = 0;

unsigned int i;

for (i = Startposition; i < Startposition + Length; i++)
{

uint8_t CurrentValue = Bitstream[i >> 3] &
BitwalkerBitMaskTable[i & 0x07];

retval = (retval << 1) + (uint8_t)(CurrentValue != 0);
}

return retval;
}

Listing 3.1. Original implementation of Bitwalker_Peek

Here are some remarks on this implementation.

• The implementation extensively uses bit operations. This is of course largely a matter of
taste. Nevertheless, it is questionable whether representing a division of an index i by 8 as
i >> 3 is better than writing it as i/8.

• The argument Bitstream represents an array that is only read. It is good programming
practice to qualify such arguments as const. Likewise, CurrentValue should be declared
as const.

• The cast of CurrentValue != 0 to uint8_t is unnecessary for the following reasons:

– The result of expression CurrentValue != 0 is of type int and has either the value 1
or 0.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 19

– According to the “usual arithmetic conversions”2 this value will be promoted to the
type of retval << 1 which is uint64_t.

Thus, the cast to uint8_t is pointless and removing it increases the clarity of the code.

At one point, an alternative to the implementation of Bitwalker_Peek in Listing 3.1 was
suggested. This alternative implementation, which is shown in Listing 3.2 attempts to limit the
use of bit operations to a minimum.

uint64_t Bitwalker_Peek (unsigned int Startposition,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSizeInBytes)

{
uint64_t retval = 0;
for (unsigned int i = Startposition +

BitstreamSizeInBytes*!((Startposition + Length) <=
BitstreamSizeInBytes*8);
i < Startposition + Length; i++)

retval = (retval*2) +
(uint8_t)((uint8_t)!!(Bitstream[i/8] &

BitwalkerBitMaskTable[i%8]));
return retval;

}

Listing 3.2. An alternative implementation of Bitwalker_Peek

Interestingly, this implementation also employs unnecessary casts to uint8_t. However, the
real problem with this alternative implementation is that it produces different results: Calling
Bitwalker_Peek from Listing 3.1 with the arguments

Startposition = 8
Length = 32
Bitstream[] = {254, 7, 13, 9}
BitstreamSizeInBytes = 4

produces 0 whereas the implementation from Listing 3.2 returns 118294784. Apparently, even
Bitwalker_Peek is not so simple that its functionality can be unambiguously understood
just by reading the code.

2This is indeed the heading of Section 6.3.1.8 of the C standard.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 20

Figure 3.2 shows a representation of Bitwalker_Peek, normalized and enhanced with static
ACSL assertions by Frama-C/WP. These assertions can be generated by Frama-C for all
operations where runtime errors, that is, illegal pointer accesses or arithmetic overflows, can
occur. Green bullets indicate potential runtime errors where Frama-C/WP can verify that they
will not occur.

Figure 3.2. Potential runtime errors in Bitwalker_Peek

The remaining potential runtime errors, marked yellow, are related to the facts that at this point
Frama-C/WP

• cannot exclude that Length can be greater then 64

• has to assume that Startposition + Length may overflow

• has no guarantee that BitstreamSizeInBytes is the length of the array starting at the
address Bitstream

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 21

3.2.2 Analyzing Bitwalker_Poke

Listing 3.3 shows the original implementation of Bitwalker_Poke.

#include "Bitwalker.h"

int Bitwalker_Poke (unsigned int Startposition,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSizeInBytes,
uint64_t Value)

{
// plausibility check: is last byte in range
if (((Startposition + Length - 1) >> 3) >= BitstreamSizeInBytes)

return -1; // error: index out of range

// plausibility check: is value in range
uint64_t MaxValue = (((uint64_t)0x01) << Length) - 1;

if (MaxValue < Value)
return -2; // error: value to big for bit field

// Everything ok, we can iterate bitwise from left to right
int i;

for (i = Startposition + Length - 1; i >= (int)Startposition; i--)
{

if ((Value & 0x01) == 0)
Bitstream[i >> 3] &= ~BitwalkerBitMaskTable[i & 0x07];

else
Bitstream[i >> 3] |= BitwalkerBitMaskTable[i & 0x07];

Value >>= 1;
}

return 0;
}

Listing 3.3. Original implementation of Bitwalker_Poke

Clearly visible in the code are various error conditions that are checked by Bitwalker_Poke.
No specifications for these error conditions have been provided.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 22

Figure 3.3 shows the normalized representation of Bitwalker_Poke with ACSL assertions
that indicate potential runtime errors.

Figure 3.3. Potential runtime errors in Bitwalker_Peek

Similarly to the potential runtime errors of Bitwalker_Peek, Frama-C/WP is faced with the
problem that it

• cannot exclude that Length is greater than 64

• has to assume that Startposition + Length may overflow

• has no guarantee that BitstreamSizeInBytes is the length of the array starting at the
address Bitstream

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 23

3.3 Informal specifications

In the following, we present the informal specification that Fraunhofer FOKUS derived from
analysing the implementation of Bitwalker.

3.3.1 Basic concepts

First we introduce various terms that we will use in our informal specifications. In particular, we
distinguish between bit streams and bit sequences.

• A bit stream is an array containing elements of type uint8_t.

• If a is the starting address of a bit stream and if all pointers a+[0..n-1] are valid in the
sense of the C standard (cf. [9, § 6.5.3.2(4)]), then we refer to a as a valid bit stream of length
n.

• A bit stream of length n contains 8n bits.

• A bit stream can be indexed both by array indices and bit indices.

Figure 3.4 shows the difference between array indices (bottom row) and bit indices (top row)
in a bit stream. The two bit indices, 0 and 14, mark bit positions in the first and second array
element, respectively.

01000011 11001000 ... 00101001

0 1 n-1

byte indices

bit indices

0 1 2 ... 7 8 9 10 ... 14 8n-8 ... 8n-1

Figure 3.4. Byte indices and bit indices in a bit stream

• The C programming language neither provides a type bit nor does it support random access
to the bits of a bit stream. In order to access the i-th bit of a bit sequence one typically has
to first access the byte with index j = i/8 and then access the bit k = i%8 within this byte.
Note that in Figure 3.4 bytes and bits are indexed in increasing order, starting from the left.
In big-endian mode, however, bits are indexed from the right. For example, to access the k-th
bit (from the left) of a byte a one can shift this byte to the right by 7 − k bits and then extract
the now rightmost bit by performing a bit-wise and with the value 1

(a >> (7-k)) & 1 // get the k-th left-most bit of a

• A bit sequence is a consecutive sequence of bits within a bit stream as represented in
Figure 3.5.

A bit sequence is given by the position of its first bit (a bit index in the bit stream) and its
length, that is, the number of bits it contains.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 24

01000011 11001000 ... 00101001

bit stream

bit sequence

01001100

Figure 3.5. A bit sequence within a bit stream

• A bit sequence that starts at bit index p and has length l ≥ 0 is considered valid (with respect
to a bit stream of length n) if the following conditions are satisfied

0 ≤ p < 8n

0 ≤ p + l ≤ 8n

Note that only the bits with indices p ≤ i < p + l are to be accessed but not the bit with
index p + l.

We assume that the C-types unsigned int and int, which are used in the implementation
to represent indices, counting and error codes, have a width of 32 bits. We point this out here
because we conducted the verification on a platform with these characteristics.

As an aside, MISRA-C discourages the use of “generic” integer types such as int and unsigned int
and recommends the use of integer types whose names contain the exact width.

3.3.2 Informal specification of Bitwalker_Peek

Now we specify Bitwalker_Peek based on the introduced auxiliary concepts. The function
Bitwalker_Peek reads a bit sequence from a bit stream and converts it to a 64-bit long
integer.

Its function signature reads as follows:

uint64_t Bitwalker_Peek(unsigned int Startposition,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSizeInBytes);

Arguments

The arguments of Bitwalker_Peek have the following purpose:

• Startposition is the bit index in the bit stream where the bit sequence starts.

• Length is the length of the bit sequence.

• Bitstream is the array which provides the bit stream.

• BitstreamSizeInBytes is the length of the array containing the bit stream.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 25

Preconditions

The following preconditions shall hold for the function arguments. Note that additional constraints
are implicitly expressed by the use of unsigned integer types.

• Bitstream is a valid array of length BitstreamSizeInBytes

• Length ≤ 64 and

• Startposition ≤ UINT_MAX - Length. This condition expresses that no arithmetic
overflows shall occur when evaluating Startposition + Length.

Description

As mentioned, the function Bitwalker_Peek reads a bit sequence from a bit stream and
converts it to a 64-bit unsigned integer.

For a bit sequence (b0, b1, . . . , bn−1) the function Bitwalker_Peek returns the sum

n−1∑
i=0

bi · 2(n−1)−i (2)

Note that is a higher-level description than what is done in the source code. There is, in our
opinion, not much point to reflect all of the low-level bit operations into the specification if a
clearer description is at hand.

If the bit sequence is not valid, then Bitwalker_Peek shall return 0 according to the Siemens
high-level description. We were wondering why the implementation maps both an illegal input
and a legal one to the same output. The code providers argued along the lines that this error
condition was not considered important enough to be properly reported. One can interpret this
design decision as an attempt to increase the robustness of the function against illegal values. In
general, we recommend to explicitly describe all error conditions and to devise a consistent error
detection and error recovery strategy.

3.3.3 Informal specification of Bitwalker_Poke

In this section, we examine the function Bitwalker_Poke in the same manner as we did it
for Bitwalker_Peek.

The function Bitwalker_Poke converts an integer to a bit sequence and writes it into a bit
stream. Its function signature reads as follows:

int Bitwalker_Poke(unsigned int Startposition,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSizeInBytes,
uint64_t Value);

Arguments

The arguments have the following purpose:

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 26

• Startposition is the bit index in the bit stream where the bit sequence shall start.

• Length is the length of the bit sequence.

• Bitstream is the array which provides the bit stream.

• BitstreamSizeInBytes is the length of the array containing the bit stream.

• Value is the integer to be converted into the bit sequence.

Preconditions

The following conditions shall hold for the function arguments:

• Bitstream is a valid array of length BitstreamSizeInBytes

• Startposition + Length is less than or equal to UINT_MAX.

Note that additional constraints are implicitly expressed by the use of unsigned integer types.

Description

Now we can specify Bitwalker_Poke as follows: The function Bitwalker_Poke converts
a 64-bit unsigned integer x to a bit sequence and writes it into a bit stream.

For 0 ≤ x, there exists a shortest sequence (b0, b1, . . . , bn−1) of 0es and 1s such that

n−1∑
i=0

bi · 2(n−1)−i = x. (3)

The function Bitwalker_Poke tries to store the sequence (b0, b1, . . . , bn−1) in the bit sequence
of Length bits that starts at bit index Startposition.

The return value of Bitwalker_Poke depends on the following three cases:

• If the bit sequence is not valid, then Bitwalker_Poke returns −1.

• If the bit sequence is valid, then there are two cases:

– If x is greater or equal than 2Length, then x cannot be represented as bit sequence
(b0, b1, . . . , bLength−1). Bitwalker_Poke returns then −2.

– If x is less the 2Length, then the sequence (

Length−n︷  ︸︸  ︷
0, . . . , 0, b0, b1, . . . , bn−1) is stored in the bit

stream starting at Startposition. The return value of Bitwalker_Poke is 0.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 27

3.4 Tests for Bitwalker_Peek and Bitwalker_Poke

In this section we show some tests for Bitwalker_Peek and Bitwalker_Poke. These
tests were derived from the informal specification in Section 3.3.

We use the C++ class boost::dynamic_bitset in order to represent bit sequences in our
tests. This class, which is part of the Boost libraries, provides a higher-level and easier to use
interface to bit sequences than is possible in C.3

Specifically, we use in our C++ test code the following typedefs

typedef std::vector<uint8_t> Bytestream;

typedef boost::dynamic_bitset<uint8_t> Bitstream;

to represent arrays of sequences of bytes and bits, respectively. An object of type Bitstream
can be initialized with an object of type Bytestream. The type Bitstream offers random
access to its stored bits. In addition, it allows to

• compute the unsigned value represented in the bit stream by calling the method to_ulong(),
thereby representing the functionality of Bitwalker_Peek

• create a bit stream from an unsigned integer value by a special constructor, thus representing
the functionality of Bitwalker_Poke

While testing the Bitwalker was not our main objective it proved useful for the following
reasons.

• It helped us formulating the formal specifications of Bitwalker_Peek and Bitwalker_Poke.

• It allowed us to quickly detect that the alternative implementation of Bitwalker_Peek in
Listing 3.2 is not equivalent to the original implementation in Listing 3.1.

3See http://www.boost.org/doc/libs/1_55_0/libs/dynamic_bitset/dynamic_bitset.
html

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://www.boost.org/doc/libs/1_55_0/libs/dynamic_bitset/dynamic_bitset.html
http://www.boost.org/doc/libs/1_55_0/libs/dynamic_bitset/dynamic_bitset.html


OETCS/WP4/D4.2.2 28

3.5 Formal specification with ACSL

In this section, we discuss formal contracts for Bitwalker_Peek and Bitwalker_Poke.
The contracts are written in ACSL. Note that they do not provide a full formal specification of
the functionality of the respective functions. As of now they describe the main operation modes
and are aimed at showing that no runtime errors can occur if the functions are called in a context
where their preconditions are satisfied.

3.5.1 Formal specification of Bitwalker_Peek

Listing 3.4 shows an ACSL contract with the main operation modes of Bitwalker_Peek. We
have labeled various clauses of the contract (by user-defined identifiers between initial keyword
and colon, e.g. “readable_bitstream”). This feature of ACSL allows us to refer to them
more easily. Note also that we sometimes use shorter names than in the original implementation.

#include "Bitwalker.h"

/*@
requires readable_bitstream:

\valid_read(Bitstream + (0..BitstreamSize-1));
requires valid_length: 0 <= Length <= 64;
requires no_overflow_1: Start + Length <= UINT_MAX;
requires no_overflow_2: 8 * BitstreamSize <= UINT_MAX;

assigns \nothing;

behavior invalid_bit_sequence:
assumes (Start + Length) > 8 * BitstreamSize;
assigns \nothing;
ensures \result == 0;

behavior normal_case:
assumes (Start + Length) <= 8 * BitstreamSize;
assigns \nothing;
ensures no_overflow_on_result: \result < (1 << Length);

complete behaviors;
disjoint behaviors;

*/
uint64_t Bitwalker_Peek(unsigned int Start,

unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSize);

Listing 3.4. Formal specification of Bitwalker_Peek in ACSL

The structure of this contract is as follows:

Default behavior

• The property readable_bitstream uses the built-in ACSL predicate \valid_read.
This expresses that all addresses in the range Bitstream[0..BitstreamSize-1]
can be safely dereferenced for reading, but not necessarily for writing.

• The property valid_length expresses the requirement that only bit sequences with a
length not larger than 64 are to be read.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 29

• The two overflow properties request that no arithmetic overflow shall occur for the
expressions Start + Length and 8 * BitstreamSize. In ACSL, an unbounded-
precision type integer is used as default, such that a contract formula can’t cause an
overflow by itself.
Given the operational context of the Bitwalker these overflows are unlikely to
happen. Nevertheless, a formal verification tool such as Frama-C/WP does not know
about the size of ETCS telegrams and therefore needs this information.

• The assigns clause expresses that Bitwalker_Peek will not change any memory
location outside its scope. This means in particular that Bitwalker_Peek will not
have any side effects.

Behavior for invalid bit sequences The behavior invalid_bit_sequence describes the sit-
uation where the specified bit sequence does not fit into the underlying bit stream.

• The assumes clause describes the conditions to which this behavior applies. Note that
we use the formulation

(Start + Length) > 8 * BitstreamSize

in order to describe an invalid bit sequence whereas the original implementation in
Listing 3.1 used the expression

((Start + Length - 1) >> 3) >= BitstreamSize

One difference is that we reformulate the division inherent in the shift operation as a
multiplication. Also, switching to a strict inequality saves us the trouble to deal with
a potential overflow in the term (Start + Length - 1) that occurs if both Start

and Length are 0. Last but not least, the new expression is also shorter.

• The postcondition of this behavior is that Bitwalker_Peek is expected to return 0.
Not surprisingly, we also request that no external memory locations are changed when
this behavior is active.

Behavior for valid bit sequences The behavior normal_case describes the normal operation
mode of Bitwalker_Peek.

• Note that the assumes clause is the negation of the assumes clause of the behav-
ior invalid_bit_sequence.

• Again we specify that no assignments are to occur.

• At this point the formalization of the behavior of Bitwalker_Peek is incomplete.
We only specify the rather weak postcondition that now overflow shall occur when
computing the result. The complete formalization, based on Formula (2) on Page 25,
will be part of a later release of this document.

Relationship of both behaviors The specification contains also statements about the relation-
ship of the behaviors normal_case and invalid_bit_sequence.

• The clause complete behaviors expresses that the assumptions of both behaviors
cover all admissible input values according to the general preconditions.

• The clause disjoint behaviors expresses that there are no input values that fit both
behaviors.

These clauses, which support the writing complete and non-contradictory specifications, will
be checked by Frama-C/WP.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 30

3.5.2 Code annotations for Bitwalker_Peek

Listing 3.5 shows our modified version of Bitwalker_Peek. There are several reasons for
these modifications:

• Loop invariants and static assertions had to be inserted into the source code to support the
verification.

• Some shift operations were rewritten as divisions/multiplications to be more similar to the
specification.

• The loop was rewritten so that loop index starts at 0.

• We felt that the shorter variable names make the source code more legible.

In order to ensure that the refactored code behaves as the original on we checked both with our
test cases (see Section 3.4).

Of course, rewriting the implementation while verifying it may appear odd. Ideally, the verifica-
tion tool should take the code as it is. However, as we have seen when discussing the specification,
the expression to check whether the bit sequence is valid could be reformulated so that it does
not raise unintended run time errors. Moreover, our refactoring removed an unnecessary cast
(see Section 3.2.1).

Here are some additional notes on Listing 3.5.

• We added a (static) ACSL assertion that indicates whether Frama-C/WP is “aware” that
UINT64_MAX equals 264 − 1.

• We added the following small helper function for converting a given “global” bit index into a
“local” bit index that is used for right shifts.

/*@
requires d > 0;

assigns \nothing;

ensures 0 <= \result < d;

*/
static inline
unsigned int inverse_modulo(unsigned int n, unsigned int d)
{

return d - 1 - (n % d);
}

• There are several loop invariants and one loop variant. The latter is necessary for Frama-C/WP
to decide whether the loop terminates.

We mention here only the loop invariant that asserts that in the i-th iteration the value
retval is less than 2i. This, together with the precondition that Length is less than 64, is
essential to ensure that no arithmetic overflow can occur when computing the return value of
Bitwalker_Peek.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 31

#include "Peek.h"

uint64_t Bitwalker_Peek(unsigned int Start,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSize)

{
if ((Start + Length) > 8 * BitstreamSize)
{

return 0;
}

//@ assert UINT64_MAX == (1 << 64) - 1;
uint64_t retval = 0;

/*@
loop invariant 0 <= i <= Length;
loop invariant 0 <= retval < (1 << i);
loop assigns i, retval;
loop variant Length - i;

*/
for (unsigned int i = 0; i < Length; i++)
{

unsigned int pos = Start + i;
unsigned int byte_index = pos / 8;
unsigned int bit_index = inverse_modulo(pos, 8);

// treat as unsigned int for Frama-C
unsigned int shifted = Bitstream[byte_index] >> bit_index;
unsigned int bit_as_byte = shifted & 1;
//@ assert bit_as_byte == 0 || bit_as_byte == 1;

retval = 2 * retval + bit_as_byte;
}

return retval;
}

Listing 3.5. Implementation of Bitwalker_Peek with ACSL loop invariants

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 32

3.5.3 Formal specification of Bitwalker_Poke

Listing 3.6 shows an ACSL contract for the main operation modes of Bitwalker_Poke.
Again we have labeled some properties of the contract and use for some variables shorter names
than the original implementation.

#include "Bitwalker.h"

/*@
requires writeable_bitstream:

\valid(Bitstream + (0..BitstreamSize-1));
requires valid_length: 0 <= Length < 64;
requires no_overflow_1: Start + Length <= UINT_MAX;
requires no_overflow_2: 8 * BitstreamSize <= UINT_MAX;

assigns Bitstream[0..BitstreamSize - 1];

behavior invalid_bit_sequence:
assumes (Start + Length) > 8 * BitstreamSize;
assigns \nothing;
ensures \result == -1;

behavior value_too_big:
assumes (1 << Length) <= Value &&

(Start + Length) <= 8 * BitstreamSize;
assigns \nothing;
ensures \result == -2;

behavior normal_case:
assumes Value < (1 << Length) &&

(Start + Length) <= 8 * BitstreamSize;
assigns Bitstream[0..BitstreamSize - 1];
ensures \result == 0;

complete behaviors;
disjoint behaviors;

*/
int Bitwalker_Poke (unsigned int Start,

unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSize,
uint64_t Value);

Listing 3.6. Formal Specification of Bitwalker_Poke

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 33

The contract is structured as follows.

Default behavior The default of Bitwalker_Poke behavior is very similar to that of Bitwalker_Peek.
The main difference is that Bitwalker_Poke writes into the array passed as argument.

• The property writeable_bitstream is formulated using the built-in ACSL predi-
cate \valid. This expresses that all addresses starting at Bitstream and with offsets
in the range 0..BitstreamSize-1 can be safely dereferenced for both reading and
writing.

• The property valid_length expresses the requirement that only bit sequences with a
length less than 64 are to be written.

• The two overflow properties request that no arithmetic overflow shall occur for the
expressions Start + Length and 8 * BitstreamSize.

• The assigns clause expresses that Bitwalker_Poke will write into a part of the array
passed as argument. Apart from this assignment Bitwalker_Poke will not have any
side effects.

Behavior for invalid bit sequences The behavior invalid_bit_sequence describes the sit-
uation when the specified bit sequence does not fit into the underlying bit stream.

The postcondition of this behavior is that Bitwalker_Poke is expected to return −1. We
also strengthen the default assigns clause by requesting that no external memory locations
are changed when this behavior applies.

Behavior for values that do not fit into the bit sequence The behavior value_too_big de-
scribes the case when the value to be converted into a bit sequence needs more bits than is
provided by the (otherwise valid) bit sequence.

Bitwalker_Poke is then expected to return −2. No external memory locations are to be
changed when this behavior is active.

Behavior for the normal case The behavior normal_case describes the normal operation
mode of Bitwalker_Poke. This behavior assumes that the value to be converted is less
than 2Length and, of course, that only valid bit sequences are considered.

Since we concentrate on the absence of run time errors we only specify the range in the
bit stream that is to be modified by Bitwalker_Poke. Note that the assigns clause
describes the bytes that are allowed to be changed by Bitwalker_Poke, not the exact bits.

Relationship of the behaviors The contract of Bitwalker_Poke consists of the three named
behaviors normal_case, invalid_bit_sequence, and value_too_big. These behav-
iors are complete, meaning that they cover all the input values of the default behavior. Another
verification goal is to show that these three behaviors exclude each other.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 34

3.5.4 Code annotations for Bitwalker_Poke

Listing 3.7 shows our modified version of Bitwalker_Poke.

#include "Poke.h"

int Bitwalker_Poke(unsigned int Start,
unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSize,
uint64_t Value)

{
if ((Start + Length) > 8 * BitstreamSize)
{

return -1; // error: invalid_bit_sequence
}

// compute pow2(Length)
const uint64_t MaxValue = (((uint64_t) 1) << Length);

if (Value >= MaxValue)
{

return -2; // error: value_too_big
}

/*@
loop invariant 0 <= i <= Length;
loop assigns i, Value, Bitstream[0..BitstreamSize-1];
loop variant i;

*/
for (unsigned int i = Length; i > 0; i--)
{

unsigned int pos = Start + i - 1;
uint8_t mask = 1 << inverse_modulo(pos, 8);

if ((Value % 2) == 0)
{

Bitstream[pos / 8] &= ~mask;
}
else
{

Bitstream[pos / 8] |= mask;
}

Value /= 2;
}

// assert Value == 0;
// We should prove this at one point because it would show
// that we have consumed all bits of Value.

return 0;
}

Listing 3.7. Implementation of Bitwalker_Poke with loop invariants

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 35

The reasons for modifications of Bitwalker_Poke are similar to those discussed in Sec-
tion 3.5.2.

• Loop invariants had to be inserted into the source code to support the verification.

• Most shift operations were rewritten as divisions/multiplications to be more similar to the
specification. In particular, we have omitted the helper array BitwalkerBitMaskTable.
This has the advantage, at least from a verification point of view, that we do not have to deal
with aliasing issues between this array and the array Bitstream.

• The loop was rewritten so that loop index starts at Length and that no casts to int are
necessary.

• Again we used the shorter variable names already introduced in Section 3.5.2.

• Instead of testing that Value is greater than 2Length−1 we use the briefer test that it is greater
or equal than 2Length.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 36

3.6 Results of formal verification with Frama-C/WP

In this section, we present the current state of the verification results for Bitwalker_Peek and
Bitwalker_Poke. Here is a list of options with which we called the Frama-C/WP analysis
in its version Neon 20140301.4 For a detailed description of these options we refer to the
documentation of Frama-C [10, 5].

-wp
-warn-signed-downcast
-warn-signed-overflow
-warn-unsigned-downcast
-warn-unsigned-overflow
-wp-rte
-wp-script ’wp0.script’
-wp-model Typed+ref
-wp-timeout 10
-wp-steps 2000
-wp-par 1
-wp-prover alt-ergo
-wp-prover cvc4

Table 3.1 lists how many of the generated proof obligations could be verified by theorem provers.

Function proof
obliga-
tions

verified
obliga-
tions

verifi-
cation
rate

Qed Alt-Ergo CVC4 Coq

Bitwalker_Peek 74 72 97% 52 18 2 0

Bitwalker_Poke 87 85 97% 53 26 6 0
Table 3.1. Verification results for Bitwalker_Peek and Bitwalker_Poke

In the case of Bitwalker_Peek, two out of 72 proof obligations could not be verified au-
tomatically and will have to be handled by the interactive theorem prover Coq. The unproven
obligations are related to the loop invariant that states that in iteration i the value retval is less
than 2i (see Listing 3.5). In the case of Bitwalker_Poke, the two unproven obligations are
related to an issue in how Frama-C treats bitwise-and operations.

Table 3.1 also lists how many proof obligations were discharged by the various provers.

• Qed, which is a built-in simplifier of Frama-C/WP, discharges most of the obligations

• Alt-Ergo, which is the default theorem prover of Frama-C/WP, can deal with most of the
remaining obligations

• CVC4, which is one of many external theorem provers that can be used with Frama-C/WP,
discharges for Bitwalker_Poke two proof obligations that could be tackled neither by
Qed nor Alt-Ergo

• Coq, which is an interactive theorem prover has not been used so far but will be employed to
deal with the two remaining proof obligations of Bitwalker_Peek

4See http://frama-c.com/download/frama-c-Neon-20140301.tar.gz

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://frama-c.com/download/frama-c-Neon-20140301.tar.gz


OETCS/WP4/D4.2.2 37

3.7 Open issues

At this stage, only Bitwalker_Peek and Bitwalker_Poke have been formally specified
with ACSL. Even for these two functions, a detailed formalization of bit operations is missing.
This means, in particular, that we are not in the position to verify that for the normal operational
modes Bitwalker_Peek and Bitwalker_Poke are inverse to each other. On the other
hand, the specification covers already the main operational modes and provides a good foundation
to show under which circumstances no run time errors will occur. Yet, there remain several
unproven proof obligations for the Bitwalker functions. These obligations are also related to
an insufficient formalization of bit operations.

It is important to keep in mind that the source code was modified to some extent. The main
reasons for this were

• the need to rephrase some code constructs so that they are less susceptible to run time errors

• to simplify, from the point of view of Frama-C/WP, some bit operations

• to accommodate loop annotations and static assertions that are necessary for the formal
verification

Fraunhofer FOKUS and CEA LIST will continue to work together to improve Frama-C/WP’s
capabilities to deal with bit operations. Here is a list of issues that Fraunhofer FOKUS came
across while verifying the Bitwalker. The issues have been reported by Fraunhofer FOKUS
in Frama-C’s bug tracking systems.5

ID Description

0001750 Frama-C/WP fails to discharge simple bit operation for small
integer types

0001751 Frama-C/WP “forget” a proven assertion

0001761 Check that all occurrences of *p in assigns are guarded by a
\valid(p) in requires

0001769 Unproven rte assertions for bit complement

In this context, we are are also investigating the use of the interactive theorem prover Coq to
deal with unproven verification conditions. Using Coq’s rich support for proof manipulation will
very likely simplify the task of discharging the remaining proof obligations.

5See https://bts.frama-c.com

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://bts.frama-c.com


OETCS/WP4/D4.2.2 38

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 39

4 Static Analysis of Bitwalker

4.1 Introduction

In this chapter we describe our work on the static code analysis of the bitwalker code provided in
[validation repository]

Our aim is to discover programing errors, obtain code metrics (lines of code, lines of code/lines
of comments, cyclomatic complexity, Halsted metrics, class inherance tree and others) and verify
the C11 standard and some subset of rules defined in the MISRA C Standard. That is, we focus on
the different aspects of the source code to ensure the quality of the code in various perspectives.

The code metrics help understanding the complexity of the code and can lead to code changes.
The complexity metrics allows us to identify particularly complex program areas that it would
be desirable to redesign, and where problems that will appear in the maintenance phase are
likely focused. For example, the cyclomatic complexity or the number of paths, is a software
quality metric that quantifies the complexity of a program and also indicates the number of test
cases that would have to be written to execute all paths in a program. However, the cyclomatic
complexity only considers the decision structure of a program, and not the complexity of nesting.
There are more complexity metrics that takes into account the degree of nesting of a program or
that consider the volumen and the program level like the Halstead metrics. The conjunction of
the complexity metrics are an important indicator of the code readability, maintainability and
portability, and the more complex the code is, the more likely it contains masked bugs.

CENELEC Standard identifies techniques and measures for 5 levels of software safety integrity
and requires the use of a package of techniques and their correct application appropriate to the
software safety integrity level.

Six different static analysis tools have been used during the code verification activities in order to
assess the quality of the results, ensure code quality and cover different techniques and metrics
high recommended by CENELEC Standard. The selected tools are:

• Resource Standard Metrics (RSM): a source code metrics and quality analysis tool

• LocMetrics: a simple tool for counting lines of code in C#, Java, and C++

• Understand: a reverse engineering, documentation and metrics tool for C and C++ source
code. It offers code navigation using a detailed cross reference, a syntax colorizing "smart"
editor, and a variety of graphical reverse engineering views.

• Clang Static Analyzer: The Clang Static Analyzer consists of both a source code analysis
framework and a standalone tool that finds bugs in C and Objective-C programs.

• CPPcheck: a static analysis tool for C, C++ code. Unlike C, C++ compilers and many other
analysis tools it does not detect syntax errors in the code. Cppcheck primarily detects the
types of bugs that the compilers normally do not detect.

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://github.com/openETCS/validation/tree/master/Artifacts/Subset-026-7_XML/Subset026_7/Bitwalker
http://msquaredtechnologies.com/m2rsm/
http://www.locmetrics.com/
http://www.scitools.com/
http://clang-analyzer.llvm.org/
http://cppcheck.sourceforge.net/


OETCS/WP4/D4.2.2 40

• Testwell CMT++: Based on the static properties of the program code CMT++ gives esti-
mates how error prone the program source code is due to its complexity, how long it will take
to understand the code, what is the logical volume of the code, etc ...

Finally, according to the results obtained by using the tools, we will present some conclusions.

4.2 Resource Standard Metrics -RSM- Results

In this section we provide the results obtained with the [RSM] tool.

Resource Standard Metrics (RSM) is a source code metrics and quality analysis tool. This tool
provides standard metrics and a combination of features that allow to:

• Analyze source code for programming errors

• Analyze source code for code style enforcement

• Create an Inheritance tree from the code

• Collect Source Code Metrics by the function, class, file, and project

• Analyze Cyclomatic Complexity

Besides, RSM has intrinsic quality notices, can be extended by the end user with User Defined
Quality Notices using regular expressions to analyze code lines and it is mapped to the MISRA
C Standard.

RSM has been customized to obtain the below metrics and analysis and the corresponding reports
that are available into the [VnVUserStories folder]

• Project Functional Metrics and Analysis

• Project Class/Struct Metrics and Analysis

• Class Inheritance Tree

• Project Quality Profile

• Quality Notice Density

• Files Keywords and Metrics

• Project Keywords and Metrics

• Files Function Metrics

• Class/Struct Metrics

• Complexity Metrics

As mentioned previously CENELEC Standard requires the use of a package of techniques. With
the use of the RSM tool the following Cenelec Standard techniques have been covered:

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://www.verifysoft.com/en_cmtx.html
http://msquaredtechnologies.com/m2rsm/
https://github.com/openETCS/validation/tree/master/VnVUserStories/VnVUserStorySQS/04-Results


OETCS/WP4/D4.2.2 41

• Limited Size and Complexity in Functions, Subroutines and Methods (High Recommended)

• Coding Standard (Mandatory): At this point the fulfillment of some of the MISRA-C Standard
rules has been checked.

4.2.1 Quality Metrics

As well as having intrinsic and user defined quality notices, RSM tool is mapped to the MISRA
C Industry Standard. Taking into account the intrisic quality notice and the user defined quality
notices the RSM tool covers 40.16% of [MISRA C] rules.

The following table shows the intrinsic Quality Notices for C language that RSM tool checks.

Table 4.1. Quality Notices

Quality Notice No. 1
Emit a quality notice when the physical line length
is greater than the specified number of characters.
Rationale: Reproducing source code on devices
that are limited to 80 columns of text can cause
the truncation of the line or wrap the line. Wrapped
source lines are difficult to read, thus creating
weaker peer reviews of the source code.

Quality Notice No. 2
Emit a quality notice when the function name length is
greater than the specified number of characters.
Rationale: Long function names may be a portability
issue especially when code has to be cross compiled
onto embedded platforms. This difficulty is typically seen
with older hardware and operating systems.

Quality Notice No. 3
Emit a quality notice when ellipsis ’...’ are identi-
fied within a functions parameter list thus enabling
variable arguments.
Rationale: Ellipsis create a variable argument list.
This type of design is found in C and C++. It es-
sentially breaks the type strict nature of C++ and
should be avoided.

Quality Notice No. 4
Emit a quality notice if there exists an assignment opera-
tor ’=’ within a logical ’if’ condition.
Rationale: An assignment within an "if" condition is likely
a typographical error giving rise to a logic defect. How-
ever, some programmers place compound statements
into the "if" condition making the code difficult to read.

Quality Notice No. 5
Emit a quality notice if there exists an assignment
operator ’=’ within a logical ’while’ condition.
Rationale: An assignment within a "while" condi-
tion is likely a typographical error giving rise to a
logic defect. However, some programmers place
compound statements into the "while" condition
making the code difficult to read.

Quality Notice No. 6
Emit a quality notice when a pre-decrement operator ’–’
is identified within the code.
Rationale: The pre-decrement of a variable occurs be-
fore the remainder of the processing in the statement.
This can be difficult to comprehend or anticipate. There
are documented cases where the mathematical results
vary between the result of macros when different code
preprocessors expand the macros into a normal form.
Remember, there is no standard for the preprocessor,
just the language.

Quality Notice No. 7
Emit a quality notice when a pre-increment opera-
tor ’++’ is identified within the code.
Rationale: The pre-increment of a variable occurs
before the remainder of the processing in the state-
ment. This can be difficult to comprehend or an-
ticipate. There are documented cases where the
mathematical results vary between the result of
macros when different code preprocessors expand
the macros into a normal form.

Quality Notice No. 8
Emit a quality notice when the ’realloc’ function is identi-
fied within the code.
Rationale: Using realloc can lead to latent memory leaks
within your C or C++ code. The call to realloc reassigns
the pointer to the same memory address using a larger
or smaller space. However if realloc fails, a NULL pointer
is returned. No "free" was performed on the pointer so
if you don’t retain the pointer before the realloc call, a
latent memory leak could occur.

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://msquaredtechnologies.com/m2rsm/docs/QualityStandards/MISRA_C_Mapping.htm


OETCS/WP4/D4.2.2 42

Table 4.1. Quality Notices

Quality Notice No. 9
Emit a quality notice when the ’goto’ function is
identified within the code.
Rationale: The use of "goto" creates spaghetti
code. A "goto" can jump anywhere to the desti-
nation label. This type of design breaks the "one in
- one out" ideal of a function creating code which
can be impossible to debug or maintain.

Quality Notice No. 10
Emit a quality notice when the Non-ANSI function proto-
type is identified within the code.
Rationale: Older C code can be written in a style that
does not use function prototypes of the function argu-
ment types. This code will not compile on ANSI C and
C++ compilers because of this type of weakness. Identi-
fying this condition can help assess whether code can
be ported to a newer version of the language.

Quality Notice No. 11
Emit a quality notice when open and closed brack-
ets ’[ ]’ are not balanced within a file.
Rationale: This type of error is always caught by
the compiler as a syntax error. However, a compiler
can be told to ignore source code by using prepro-
cessor directives like #if ... #endif. This is a way to
"comment" out large blocks of code. However, the
code still looks like operational code to the main-
tainer as it is not a comment. Many hours can be
wasted working on dead code. This quality notice
serves to warn you of this dead code that should
be removed or converted to actual comment form.

Quality Notice No. 12
Emit a quality notice when open and closed parentheses
’( )’ are not balanced within a file.
Rationale: This type of error is always caught by the
compiler as a syntax error. However, a compiler can
be told to ignore source code by using preprocessor
directives like #if ... #endif. This is a way to "comment"
out large blocks of code. However, the code still looks
like operational code to the maintainer as it is not a
comment. Many hours can be wasted working on dead
code. This quality notice serves to warn you of this dead
code that should be removed or converted to actual
comment form..

Quality Notice No. 13
Emit a quality notice when a ’switch’ statement
does not have a ’default’ condition.
Rationale: A "switch" statement must always have
a default condition or this logic construct is non-
deterministic. Generally the default condition
should warn the user of an anomalous condition
which was not anticipated by the programmer by
the case clauses of the switch.

Quality Notice No. 14
Emit a quality notice when there are more ’case’ condi-
tions than ’break’, ’return’ or ’fall through’ comments.
Rationale: Many tools, including RSM, watch the use of
"case" and "break" to ensure that there is not an inad-
vertent fall through to the next case statement. RSM re-
quires the programmer to explicitly indicate in the source
code via a "fall through" comment that the case was
designed to fall through to the next statement.

Quality Notice No. 16
Emit a quality notice when function white space
percentage is less than the specified minimum.
Rationale: Source code must be easily read. A low
percentage of white space indicates that the source
code is crammed together thus compromising the
readability of the code. Typically white space less
than 10 percent is considered crammed code.

Quality Notice No. 17
Emit a quality notice when function comment percentage
is less than the specified minimum.
Rationale: A programmer must supply sufficient com-
ments to enable the understandability of the source code.
Typically a comment percentage less than 10 percent is
considered insufficient. However, the content quality of
the comment is just as important as the quantity of the
comments. For this reason you could use the -E option
to extract all the comments from a file. The reviewer
should be able to read the comments and extract the
story of the code.

Quality Notice No. 18
Emit a quality notice when the eLOC within a func-
tion exceeds the specified maximum.
Rationale: An extremely large function is very diffi-
cult to maintain and understand. When a function
exceeds 200 eLOC (effective lines of code), it typ-
ically indicates that the function could be broken
down into several functions. Small modules are
desirable for modular composability.

Quality Notice No. 19
Emit a quality notice when file white space percentage
is less than the specified minimum.
Rationale: Source code must be easily read. A low
percentage of white space indicates that the source code
is crammed together thus compromising the readability
of the code. Typically white space less than 10 percent
is considered crammed code.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 43

Table 4.1. Quality Notices

Quality Notice No. 20
Emit a quality notice when file comment percent-
age is less than the specified minimum.
Rationale: A programmer must supply sufficient
comments to enable the understandability of the
source code. Typically a comment percentage less
than 10 percent is considered insufficient. How-
ever, the content quality of the comment is just as
important as the quantity of the comments. For this
reason you could use the -E option to extract all
the comments from a file. The reviewer should be
able to read the comments and extract the story of
the code.

Quality Notice No. 22
Emit a quality notice when each if, else, for or while is
not bound by scope.
Rationale: Logical blocks should be bound with scope.
This clearly marks the boundaries of scope for the logical
blocks. Many times, code may be added to non-scoped
logic blocks thus pushing other lines of code from the
active region of the logical construct giving rise to a logic
defect.

Quality Notice No. 23
Emit a quality notice when the ’?’ or the implied
if-then-else construct has been identified.
Rationale: The ? operator creates the code equiv-
alent of an "if" then "else" construct. However the
resultant source is far less readable.

Quality Notice No. 24
Emit a quality notice when an ANSI C++ keyword is
identified within a *.c or a *.h file.
Rationale: In C source code it is possible to find variable
names like "class". This word is a key word in C++ and
would prevent this C code from being ported to the C++
language.

Quality Notice No. 25 (Deprecated RSM 6.70)
When analyzing *.h files for C++ keywords, assume
that *.h can be both C and C++.
Rationale: A *.h file can be either a C or C++
source file. If a *.h file is assumed to be from
either language, then RSM will not emit C keyword
notices in *.h file, only for *.c files.

Quality Notice No. 26
Emit a quality notice when a void * is identified within a
source file.
Rationale: A "void *" is a type-less pointer. ANSI C and
C++ strive to be type strict. In C++ a "void *" breaks the
type strict nature of the language which can give rise to
anomalous run-time defects.

Quality Notice No. 27
Emit a quality notice when the number of function
return points is greater than the specified maxi-
mum.
Rationale: A well constructed function has one en-
try point and one exit point. Functions with multiple
return points are difficult to debug and maintain.

Quality Notice No. 28
Emit a quality notice when the cyclomatic complexity of
a function exceeds the specified maximum.
Rationale: Cyclomatic complexity is an indicator for the
number of logical branches within a function. A high
degree of V(g), greater than 10 or 20, indicates that
the function could be broken down into a more modular
design of smaller functions.

Quality Notice No. 29
Emit a quality notice when the number of function
input parameters exceeds the specified maximum.
Rationale: A high number of input parameters to
a function indicates poor modular design. Data
should be grouped into representative data types.
Functions should be specific to one purpose.

Quality Notice No. 30
Emit a quality notice when a TAB character is identified
within the source code. Indentation with TAB will create
editor and device dependent formatting.
Rationale: Tab characters within source code create
documents that are print and display device dependent.
The document may look correct on the screen but it may
become unreadable when printed.

Quality Notice No. 31
Emit a quality notice when class comment percent-
age is less than the specified minimum.
Rationale: A programmer must supply sufficient
comments to enable the understandability of the
source code. Typically a comment percentage less
than 10 percent is considered insufficient.

Quality Notice No. 43
Emit a quality notice when the key word ’continue’ has
been identified within the source code.
Rationale: The use of ’continue’ in logical structures
causes a disruption in the linear flow of the logic. This
style of programming can make maintenance and read-
ability difficult.

Quality Notice No. 46
Emit a quality notice when function, struct, class or
interface blank line percentages are less than the
specified minimum
Rationale: The amount of blank lines in a file can
indicate the degree of readability in the file. It in-
dicates the author intended his work to be human
consumable.

Quality Notice No. 47
Emit a quality notice when the file blank line percentage
is less than the specified minimum
Rationale: The amount of blank lines in a file can indicate
the degree of readability in the file. It indicates the author
indented his work to be human consumable.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 44

Table 4.1. Quality Notices

Quality Notice No. 48
Emit a quality notice when a function has no logical
lines of code.
Rationale: This condition indicates a no-op or
stubbed out function with no operational code.
Many code generators create such no-op functions
which contribute to code bloat and unnecessary
resource utilization.

Quality Notice No. 49
Emit a quality notice when a function has no parameters
in the parameter list.
Rationale: A function should always specify the actual
parameter names to enhance maintenance and readabil-
ity. A programmer should always put void to indicate the
deliberate design in the code.

Quality Notice No. 50
Emit a quality notice when a variable is assigned to
a literal value. Configurable for literal 0 in rsm.cfg.
Rationale: A symbolic constant is the preferred
method for variable assignment as this creates
maintainable and understandable code.

Quality Notice No. 51
Emit a quality notice when there is no comment before a
function block.
Rationale: A function block should retain a preceding
comment block describing the purpose, parameters, re-
turns and algorithms.

Quality Notice No. 52
Emit a quality notice when there is no comment
before a class block.
Rationale: A class block should retain a preced-
ing comment block describing the purpose, and
algorithms.

Quality Notice No. 53
Emit a quality notice when there is no comment before a
struct block.
Rationale: A struct block should retain a preceding com-
ment block describing the data and purpose.

Quality Notice No. 55
Emit a quality notice when scope exceeds the spec-
ified maximum in the rsm.cfg file.
Rationale: A deep scope block of complex logic or
levels may indicate a maintenance concern.

Quality Notice No. 56
Emit a quality notice when sequential break statements
are identified.
Rationale: Repetitive and sequential breaks can be used
to fool RSM identification of case statement without
breaks.

In addition to this, some user defined quality notices are included in the rsm_udqn.cfg file. The
table below shows those that are active and defined for C language.

Table 4.2. User Defined Quality Notices

User Defined Quality Notice No. 102
Emit a quality notice when dynamic memory using
malloc is not initialized.

User Defined Quality Notice No. 103
Emit a quality notice when the realloc function has been
identified.

User Defined Quality Notice No. 104
Emit a quality notice when a line containing just a
semicolon has been identified.

User Defined Quality Notice No. 105
Emit a quality notice when a symbolic constant using
#define has been identified

User Defined Quality Notice No. 107
Emit a quality notice when a double ;; has been
identified.

User Defined Quality Notice No. 109
Emit a quality notice when a double pointer indirection
has been identified

User Defined Quality Notice No. 116
Emit a quality notice if Pointer variable uninitialized.

User Defined Quality Notice No. 125
Emit a quality notice when a data member in the header
file is not of the form m_*

Taking into account the quality notices mentioned above, a table that indicates the total quality
profile (Summary by notice type) for the bitwalker code is shown. This result is especially useful
for determining the overall internal code quality.

Table 4.3. Quality Profile

Type Count Percent Quality Notice

1 38 9.57 Physical line length > 80 characters

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 45

Table 4.3. Quality Profile

Type Count Percent Quality Notice

2 4 1.01 Function name length > 32 characters

22 5 1.26 if, else, for or while not bound by scope

27 2 0.50 Number of function return points > 1

30 330 83.12 TAB character has been identified

50 7 1.76 Variable assignment to a literal number

51 8 2.02 No comment preceding a function block

53 1 0.25 No comment preceding a struct block

125 2 0.50 A data member in the header file is not of the form m_*

More detailed information regarding to in what line, function or file the quality notices have been
detected is provided in the [bitwalker_functional_quality_metrics file].

4.2.2 Complexity Metrics

Reflecting on elements that can contribute to increase the complexity of a program and influencing
in its maintenance, four elements are identified:

• Program Size

• Data Structure

• Data Flow

• Control Flow

4.2.2.1 Program Size Metrics

Very large programs are complex even if only be for the large amount of information to be
considered in order to understand them. So a first measure of the code complexity is given by its
size. This size can be determined using the following metrics:

• Number of lines

• Halstead metrics (See 4.7)

Counting the number of code lines in a program is a simple way to measure its size. The main
problem with this metric is to decide what we consider as line. The reason is that there is no
standard definition of what a line of code is. Do comments count? Are data declarations included?
What happens if a statement extends over several lines? – These are the questions that often arise.
According to the criteria that we follow a different metric will be obtained.

For example, in C language, a line of code can be:

• a statement, instruction finished in a jump line

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://github.com/openETCS/validation/blob/master/VnVUserStories/VnVUserStorySQS/04-Results/bitwalker_functional_quality_metrics.htm


OETCS/WP4/D4.2.2 46

• a statement, instruction terminated with a semi-colon

• any line of the program terminated with a new line (comments included)

As there is no standard definition and the definitions of these metrics are tied to specific computer
languages, a definition of how the RSM tool considers these code metrics is indicated below.

• An effective line of code is the measurement of all lines that are not comments, blanks or
standalone braces or parenthesis. RSM counts the instances of lines that contain a single brace
and parenthesis and creates a metric for effective lines of source code, eLOC. This metric is
the result of subtracting the single braces and parenthesis from the LOC measurement.

• Logical lines of code represent a metrics for those line of code which form code statements.
These statements are terminated with a semi-colon. The control line for the "for" loop contain
two semi-colons but accounts for only one semi colon.

• Comments: RSM counts a comment line as any physical line that contains a comment.

Taking into account these criterias the following size metrics are obtained:

Table 4.4. File Summary

Metrics Bitwalker.h Bitwalker.c opnETCS.h opnETCS
_Decoder.h

LOC6. 15 58 884 62

eLOC7 15 40 823 62

lLOC8 11 28 760 61

Comment 16 29 822 15

Lines 41 109 1249 84

The following table describes some recommendations for the lines-of-code measures:

6Lines of Code
7Effective Lines of Codes
8Logical Statements Lines of Code: represent a metrics for those line of code which form code statements. These

statements are terminated with a semi-colon. The control line for the "for" loop contain two semi-colons but accounts
for only one semi colon

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 47

Table 4.5. Recommendations

Measures Values Comments

Function length 4-40 program
lines

A function definition contains at least a prototype, one line of
code, and a pair of braces, which makes 4 lines.
A function longer than 40 program lines probably implements
many functions. Functions containing one selection statement
with many branches are an exception to this rule.
Decomposing them into smaler functions often decreases read-
ability.

File length 4-400 program
lines

The smallest entity that may reasonably occupy a whole source
file is a function, and the minimum length of a function is 4 lines.
Files longer than 400 program lines (10..40 functions) are usually
too long to be understood as a whole.

Comments Per-
centage

30%-75% If less than one third of a file is comments the file is either very
trivial or poorly explained.
If more than 75% of a file are comments, the file is not a program
but a document. In a well-documented header file percentage of
comments may sometimes exceed 75%

By analyzing the results, one can observe the Bitwalker.c file fulfills the recommendations in
relation to the file length. Although the comments percentage (26%) is a little bite under the
recommended value, this do not indicate a poor documentation of source code.

4.2.2.2 Control Flow Metrics

The possibility that the execution flow of a program follows different paths depending on whether
or not certain conditions are met, increases the difficulty to understand what the program do in
each of the situations that may occur.

One metric that addresses the complexity of the control flow is the Cyclomatic complexity.

The cyclomatic complexity metric measures the complexity of the code by counting the number
of independent paths through a piece of code-by counting the number of decision points. The
decision point is where a choice can be made during execution; this gives rise to different paths
through the code. Decision points arise through if statements and through while, do while and
for loops. A single switch or try statement can also add many more decision points. This metric
can either be determined by counting the regions, nodes and edges or number of predicate nodes
(branching points) with a flow graph.

The following equations defined McCabe Cyclomatic Complexity:

• The number of regions in a flow graph.

• V(g) = E - N + 2P, where E are the edges, N are the nodes and P nodes without outgoing
path.

• V(g) = P + n, where P are the predicate nodes and n the number of output.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 48

When the graph is strongly connected, a simplified formula to compute the cyclomatic complexity
is use: V(g) = P + 1, where P are the predicate nodes.

The result obtained in the calculation of the cyclomatic complexity also determines the upper
bound on the number of tests that must be performed to ensure that each statement is executed at
least once.

At following the results of some complexity metrics obtained by the RSM tool are shown:

Table 4.6. Functional Summary

Metrics Bitwalker.c

File Function Count 7

Total Function LOC 49

Total Function eLOC 31

Total Function lLOC 27

Total Function Params 20

Total Cyclo Complexity 13

Total Function Pts LOC 0.5

Total Function Pts eLOC 0.3

Total Function Pts lLOC 0.2

Total Function Return 10

Total Function Complex 43

Max Function LOC 16

Max Function eLOC 12

Max Function lLOC 9

Average Function LOC 7.00

Average Function eLOC 4.43

Average Function lLOC 3.86

Max Function Parameters 5

Max Function Returns 3

Max Interface Complex 8

Max Cyclomatic Complex 5

Max Total Complexity 13

Avg Function Parameters 2.86

Avg Function Returns 1.43

Avg Interface Complex 4.29

Avg Cyclomatic Complex 1.86

Avg Total Complexity 6.14

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 49

The interface complexity is defined by RSM as the number of input parameters to a function
plus the number of return states from that function. Class interface complexity is the sum of all
function interface complexity metrics within that class.

The Maximun total complexity is the addition of Maximun Interface and Cyclomatic complexities
and the total Cyclomatic complexity is calculated as the sum of the cyclomatic complexity of
each function of the file.

Knowing that a program has a high value of cyclomatic complexity (total Cyclomatic complex-
ity) does not provide us enough info to decide what actions to take to improve our software.
This occurs because there is not an approximate threshold reference value for total cyclomatic
complexity since not all software has the same size. However we can say that the cyclomatic
complexity of each function should not exceed a certain value.

Due to this, a more detailed Complexity analysis per function is provided at following.

Table 4.7. Function Metrics

Bitwalker_Peek

Cyclomatic Complexity Vg Detail:

Function Base 1

Loops for / foreach 1

Conditional if / else if 1

Param: 4 Return: 2 Cyclo Vg: 3 Comment: 5

LOC: 12 eLOC: 8 lLOC: 7 Lines: 19

Bitwalker_Poke

Cyclomatic Complexity Vg Detail:

Function Base 1

Loops for / foreach 1

Conditional if / else if 3

Param: 5 Return: 3 Cyclo Vg: 5 Comment: 6

LOC: 16 eLOC: 12 lLOC: 9 Lines: 23

Bitwalker_IncrementalWalker_Init

Param: 4 Return: 1 Cyclo Vg: 1 Comment: 0

LOC: 5 eLOC: 3 lLOC: 3 Lines: 5

Bitwalker_IncrementalWalker_Peek_Next

Param: 2 Return: 1 Cyclo Vg: 1 Comment: 1

LOC: 5 eLOC: 3 lLOC: 3 Lines: 6

Bitwalker_IncrementalWalker_Peek_Finish

Param: 1 Return: 1 Cyclo Vg: 1 Comment: 0

LOC: 3 eLOC: 1 lLOC: 1 Lines: 3

Bitwalker_IncrementalWalker_Poke_Next

Param: 3 Return: 1 Cyclo Vg: 1 Comment: 1

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 50

Table 4.7. Function Metrics

LOC: 5 eLOC: 3 lLOC: 3 Lines: 6

Bitwalker_IncrementalWalker_Poke_Finish

Param: 1 Return: 1 Cyclo Vg: 1 Comment: 0

LOC: 3 eLOC: 1 lLOC: 1 Lines: 3

After calculating the cyclomatic complexity the risk involved can be determined using the
following table:

Table 4.8. Mc Cabe cyclomatic Complexity Reference table

Cyclomatic
Complexity

Risk Evaluation

1-10 Low risk

11-20 More complex, Moderate risk

21-50 Complex, High Risk

>50 Not testable, Very High Risk

If we cross the values obtained in the analysis with the indicative table we can see that all
functions are under 10, so we speak of simple functions with little logic and with low risk.

In addition to the Limited Size and Complexity in Functions, Subroutines and Methods and
Coding Standard techniques, at following we can see that taking into account the modular
approach where one of its rule mentions that it shall specify a restriction for the number of
paramenters (normally 5) the Parameter Number Limit is fulfilled.

Furthermore, from the previous definition of recommended values for lines of code measures
(see 4.5), we can see there is not documentation for some functions.

Now, an example of the cyclomatic complexity calculation for the bitwalker_Poke function is
shown to compare the correctness of these results .

The control flow generated from the bitwalker_Poke function would look like figure 4.1.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 51

int Bitwalker_Poke (unsigned int Startposition, unsigned int Length,
uint8_t Bitstream[],
unsigned int BitstreamSizeInBytes,
uint64_t Value)

{
if (((Startposition + Length - 1) >> 3) >= BitstreamSizeInBytes)

return -1;

uint64_t MaxValue = (((uint64_t)0x01) << Length) - 1;

if (MaxValue < Value)
return -2;

int i;
for (i = Startposition + Length - 1;

i >= (int)Startposition; i--)
{

if ((Value & 0x01) == 0)
Bitstream[i >> 3] &= ~BitwalkerBitMaskTable[i & 0x07];

else
Bitstream[i >> 3] |= BitwalkerBitMaskTable[i & 0x07];

Value >>= 1;
}
return 0;

}

Listing 4.1. Bitwalker_Poke

Figure 4.1. Bitwalker_Poke Flow
This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 52

In this flow, 4 predicated nodes are displayed so, taking into account the equation V(g) = P +

1, where P are the predicate nodes, we see that the cyclomatic complexity of this function is
V(g)=5.

4.3 LocMetrics tool Results

[LocMetrics] tool counts total lines of code (LOC), blank lines of code (BLOC), comment
lines of code (CLOC), lines with both code and comments (C&SLOC), logical source lines of
code (SLOC-L), McCabe VG complexity (MVG), Header Comments (HCLOC), Header Words
(HCWORD) and number of comment words (CWORDS). Physical executable source lines of
code (SLOC-P) is calculated as the total lines of source code minus blank lines and comment
lines. Counts are calculated on a per file basis and accumulated for the entire project. LocMetrics
also generates a comment word histogram.

The results obtained by LocMetrics tool are the following:

Table 4.9. LocMetrics Tool Results

File LOC SLOC-
P

SLOC-
L

MVG BLOC C&SLOC CLOC CWORD HCLOC HCWORD

Bitwalker.h 42 15 12 0 8 1 19 102 0 0

Bitwalker.c 110 58 36 15 24 5 28 217 0 0

opnETCS.h 1250 884 883 0 181 637 185 3864 0 0

opnETCS
_Decoder.h

85 62 61 0 3 0 20 103 0 0

4.4 Understand tool Results

[Understand] is a cross-platform, multi-language, maintenance-oriented IDE (Interactive Devel-
opment Environment). It is designed to help maintain and understand large amounts of legacy
or newly created source code. Understand also provides a way to check the code using coding
Standard to avoid potential errors. With this tool SQS has checked MISRA-C:2004 and code
metrics (lines of code, complexity, object cross reference, invocation tree, Unused Items and
others). The highly recommended and mandatory techniques identified by CENELEC Standard
covered by the tool are:

• Coding Standard (Mandatory)

• Limited Size and Complexity in Functions, Subroutines and Methods (Highly Recommended)

• Data Flow Analysis technique (Highly Recommended)

• Control Flow Analysis technique (Highly Recommended)

The detailed static analysis report is available in the [VnVUserStories folder]

Below the MISRA-C tested rules are listed:

• Language extensions

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://www.locmetrics.com/
http://www.scitools.com/
https://github.com/openETCS/validation/tree/master/VnVUserStories/VnVUserStorySQS/04-Results


OETCS/WP4/D4.2.2 53

– 2.1 (req): Assembly language shall be encapsulated and isolated.

– 2.2 (req): Source code shall only use /*... */ style comments.

– 2.3 (req): The character sequence /* shall not be used within a comment.

– 2.4 (adv-): Sections of code should not be ’commented out’.

• Character sets

– 4.1 (req): Only those escape sequences that are defined in the ISO C standard shall be
used.

– 4.2 (req): Trigraphs shall not be used.

• Identifiers

– 5.1 (req): Identifiers (internal and external) shall not rely on the significance of more
than 31 characters.

– 5.2 (req): Identifiers in an inner scope shall not use the same name as an identifier in an
outer scope, and therefore hide that identifier.

– 5.3 (req-): A typedef name shall be a unique identifier.

– 5.4 (req): A tag name shall be a unique identifier.

– 5.5 (adv-): No object or function identifier with static storage duration should be reused.

– 5.6 (adv-): No identifier in one name space should have the same spelling as an identifier
in another name space, with the exception of structure and union member names.

– 5.7 (adv-): No identifier name should be reused.

• Types

– 6.3 (adv): typedefs that indicate size and signedness should be used in place of the
basic types.

– 6.4 (req): Bit fields shall only be defined to be of type unsigned int or signed int.

– 6.5 (req-): Bit fields of type signed int shall be at least 2 bits long.

• Constants

– 7.1 (req): Octal constants (other than zero) and octal escape sequences shall not be
used.

• Declarations and definitions

– 8.5 (req-): There shall be no definitions of objects or functions in a header file.

– 8.6 (adv): Functions shall be declared at file scope.

– 8.7 (req): Objects shall be defined at block scope if they are only accessed from within
a single function.

– 8.8 (req): An external object or function shall be declared in one and only one file.

– 8.9 (req): An identifier with external linkage shall have exactly one external definition.

– 8.10 (req): All declarations and definitions of objects or functions at file scope shall
have internal linkage unless external linkage is required.

– 8.11 (req): The static storage class specifier shall be used in definitions and declarations
of objects and functions that have internal linkage.

• Initialisation

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 54

– 9.3 (req): In an enumerator list, the = construct shall not be used to explicitly initialise
members other than the first, unless all items are explicitly initialised.

• Control statement expressions

– 13.3 (req): Floating-point expressions shall not be tested for equality or inequality.

• Control flow

– 14.1 (req-): There shall be no unreachable code.

– 14.3 (req-): Before preprocessing, a null statement shall only occur on a line by itself;
it may be followed by a comment provided that the first character following the null
statement is a white-space character.

– 14.4 (req): The goto statement shall not be used.

– 14.5 (req): The continue statement shall not be used.

– 14.7 (req): A function shall have a single point of exit at the end of the function.

– 14.10 (req): All if ... else if constructs shall be terminated with an ’else’ clause.

• Switch statements

– 15.3 (req): The final clause of a switch statement shall be the default clause.

• Functions

– 16.1 (req): Functions shall not be defined with variable numbers of arguments.

– 16.2 (req): Functions shall not call themselves, either directly or indirectly.

– 16.3 (req): Identifiers shall be given for all of the parameters in a function prototype
declaration.

– 16.4 (req-): The identifiers used in the declaration and definition of a function shall be
identical.

– 16.5 (req): Functions with no parameters shall be declared with parameter type void.

• Pointers and arrays

– 17.5 (adv): The declaration of objects should contain no more than 2 levels of pointer
indirection.

• Structures and unions

– 18.4 (req): Unions shall not be used.

• Preprocessing directives

– 19.1 (adv-): #include statements in a file should only be preceded by other preproces-
sor directives or comments.

– 19.2 (adv): Non-standard characters should not occur in header file names in include
directives.

– 19.3 (req): The #include directive shall be followed by either a <filename> or a
<filename> sequence.

– 19.4 (req-): C macros shall only expand to a braced initializer, a constant, a parenthesised
expression, a type qualifier, a storage class specifier, or a do-while-zero construct.

– 19.5 (req): Macros shall not be #defined or #undefd within a block.

– 19.6 (req): #undef shall not be used.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 55

• Standard libraries

– 20.4 (req): Dynamic heap memory allocation shall not be used.

– 20.5 (req): The error indicator errno shall not be used.

– 20.6 (req): The macro offsetof, in library <stddef.h>, shall not be used.

– 20.7 (req): The setjmp macro and the longjmp function shall not be used.

– 20.8 (req): The signal handling facilities of <signal.h> shall not be used.

– 20.9 (req): The input/output library <stdio.h> shall not be used in production code.

– 20.10 (req): The library functions atof, atoi and atol from library <stdlib.h>

shall not be used.

– 20.11 (req): The library functions abort, exit, getenv and system from library
<stdlib.h> shall not be used.

– 20.12 (req): The time handling functions of library <time.h> shall not be used.

• Run-time failures

– 21.1 (req-): Minimization of run-time failures shall be ensured by the use of at least
one of:

∗ static analysis tools/techniques;
∗ dynamic analysis tools/techniques;
∗ explicit coding of checks to handle run-time faults.

After a review of the subset of MISRA-C rules taking into account project requirements and
sector standard or best practices it is necessary to decide which of them are not to be implement-
ed/approved due to its application can get worse understandability of the code and which other
rules of other standard will be applied.

The table below shows the non approved MISRA-C rules.

Table 4.10. Status of MISRA Rules

MISRA Rule Status

Global 5.1 no recom-
mended

Global 5.6 no recom-
mended

The results of the MISRA Rules are the following:

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 56

Figure 4.2. MISRA-C Rules results

The files into the violations are found are listed in the below table.

Table 4.11. Summary of detected MISRA Violations

MISRA Rule Files

Global 5.1 Bitwalker.c/opnETCS.h/opnETCS_Decoder.h

Global 5.4 opnETCS.h

Global 5.6 Bitwalker.c/Bitwalker.h

Global 5.7 Bitwalker.c/Bitwalker.h/opnETCS.h

Global 8.9 opnETCS_Decoder.h

Global 8.10 main.c

Global 8.11 main.c

A detailed information about the file, entity, line, check, etc of all violations detected above can
be found in the index files of [Results] and [Results2] folders.

In addition to the MISRA-C compliance checking, we also run code metrics analysis in order to
ensure the correctness of the obtained results through the results comparation.

Below tables shows some different metrics per file and function. In order to understand the tables
and to be able to compare the results obtained with the different tools the definition of the specific
metrics is provided before the presentation of the corresponding table.

This work is licensed under the "openETCS Open License Terms" (oOLT).

https://github.com/openETCS/validation/blob/master/VnVUserStories/VnVUserStorySQS/04-Results/results
https://github.com/openETCS/validation/blob/master/VnVUserStories/VnVUserStorySQS/04-Results/results2


OETCS/WP4/D4.2.2 57

• Cyclomatic: The measure of the complexity of a function’s decision structure. The cyclomatic
complexity is also the number of basis, or independent, paths through a module.

• Modified Cyclomatic: cyclomatic except each case statement is not counted; the entire switch
counts as 1.

• Strict: Cyclomatic complexity except each short-circuit operator adds 1 to the complexity.

• Essential Complexity: cyclomatic complexity after structured programming constructs have
been removed.

• Nesting: maximum nesting level of control constucts (if, while,etc.)

• Count Path: Number of unique paths through a body of code (not counting gotos or abnormal
exits

Table 4.12. Function Complexity metrics

Bitwalker_Peek

Cyclomatic: 3

Modified Cyclomatic: 3

Strict Cyclomatic: 3

Essential: 1

Max Nesting: 1

Count Path: 3

Bitwalker_Poke

Cyclomatic: 5

Modified Cyclomatic: 5

Strict Cyclomatic: 5

Essential: 3

Max Nesting: 2

Count Path: 5

Bitwalker_IncrementalWalker_Init

Cyclomatic: 1

Modified Cyclomatic: 1

Strict Cyclomatic: 1

Essential: 1

Max Nesting: 0

Count Path: 1

Bitwalker_IncrementalWalker_Peek_Next

Cyclomatic: 1

Modified Cyclomatic: 1

Strict Cyclomatic: 1

Essential: 1

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 58

Table 4.12. Function Complexity metrics

Max Nesting: 0

Count Path: 1

Bitwalker_IncrementalWalker_Peek_Finish

Cyclomatic: 1

Modified Cyclomatic: 1

Strict Cyclomatic: 1

Essential: 1

Max Nesting: 0

Count Path: 1

Bitwalker_IncrementalWalker_Poke_Next

Cyclomatic: 1

Modified Cyclomatic: 1

Strict Cyclomatic: 1

Essential: 1

Max Nesting: 0

Count Path: 1

Bitwalker_IncrementalWalker_Poke_Finish

Cyclomatic: 1

Modified Cyclomatic: 1

Strict Cyclomatic: 1

Essential: 1

Max Nesting: 0

Count Path: 1

Here are some remarks about how the Understand tool defines and take into account the following
code metrics:

• Lines: total lines (in a function or file or project)

• Comment Lines: total lines that have comments on them

• Blank Lines: total lines without any code/comment

• Code Lines: total lines that have any code on them

• Executable Lines: total lines that have executable code on them

• Declarative Lines: total lines that have declarative code on them

• Execution Statements: total statements in executable code

• Declaration Statements: total statements in declarative code

• Ratio Comment/Code: comment lines / code lines

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 59

Table 4.13. File Metrics

Metrics Bitwalker.h Bitwalker.c opnETCS.h opnETCS
_Decoder.h

Lines: 41 109 1249 84

Comment Lines: 20 33 822 20

Blank Lines: 7 23 180 2

Preprocessor Lines: 4 1 1 1

Code Lines: 11 57 883 61

Inactive Lines: 0 0 0 0

Executable Code Lines: 0 30 0 0

Declarative Code Lines: 11 15 822 61

Execution Statements: 0 28 0 0

Declaration Statements: 11 15 760 61

Ratio Comment/Code: 1.82 0.58 0.93 0.33

Units 0 7 0 0

Table 4.14. Function code Metrics

Bitwalker_IncrementalWalker_Init

Lines: 6

Comment Lines: 0

Blank Lines: 0

Code Lines: 6

Inactive Lines: 0

Executable Code Lines: 3

Declarative Code Lines: 1

Execution Statements: 3

Declaration Statements: 0

Ratio Comment/Code: 0.00

Bitwalker_IncrementalWalker_Peek_Finish

Lines: 4

Comment Lines: 0

Blank Lines: 0

Code Lines: 4

Inactive Lines: 0

Executable Code Lines: 1

Declarative Code Lines: 1

Execution Statements: 1

Declaration Statements: 0

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 60

Table 4.14. Function code Metrics

Ratio Comment/Code: 0.00

Bitwalker_IncrementalWalker_Peek_Next

Lines: 7

Comment Lines: 1

Blank Lines: 0

Code Lines: 6

Inactive Lines: 0

Executable Code Lines: 3

Declarative Code Lines: 2

Execution Statements: 2

Declaration Statements: 1

Ratio Comment/Code: 0.17

Bitwalker_IncrementalWalker_Poke_Finish

Lines: 4

Comment Lines: 0

Blank Lines: 0

Code Lines: 4

Inactive Lines: 0

Executable Code Lines: 1

Declarative Code Lines: 1

Execution Statements: 1

Declaration Statements: 0

Ratio Comment/Code: 0.00

Bitwalker_IncrementalWalker_Poke_Next

Lines: 7

Comment Lines: 1

Blank Lines: 0

Code Lines: 6

Inactive Lines: 0

Executable Code Lines: 3

Declarative Code Lines: 2

Execution Statements: 2

Declaration Statements: 1

Ratio Comment/Code: 0.17

Bitwalker_Peek

Lines: 20

Comment Lines: 5

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 61

Table 4.14. Function code Metrics

Blank Lines: 4

Code Lines: 13

Inactive Lines: 0

Executable Code Lines: 7

Declarative Code Lines: 4

Execution Statements: 7

Declaration Statements: 3

Ratio Comment/Code: 0.38

Bitwalker_Poke

Lines: 24

Comment Lines: 6

Blank Lines: 4

Code Lines: 17

Inactive Lines: 0

Executable Code Lines: 11

Declarative Code Lines: 3

Execution Statements: 12

Declaration Statements: 2

Ratio Comment/Code: 0.35

Taking into account control flow and data flow techniques some Uninitialized Items (items such
as variables that are not initialized in the code), Unused Variables and Parameters items (items
that are declared (and perhaps initialized) but never referenced other than that) and Unused
Program Units have been identified. The Unused Program Units Report identifies program units
that are declared but never used. However note that this listing in this report doesnt mean the
system doesnt need this program unit.

Table 4.15. Unused Variables and Parameters

File Item Type of Item Location

Bitwalker.c Bitwalker_IncrementalWalker_Peek_Finish Function line 91

Bitwalker.c Bitwalker_IncrementalWalker_Peek_Next Function line 82

Bitwalker.c Bitwalker_IncrementalWalker_Poke_Finish Function line 106

Table 4.16. Uninitialized Items

File Item Location

Bitwalker.c i line 35

Bitwalker.c i line 60

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 62

Table 4.17. Unused Program Units

File Item Location

Bitwalker.c Bitwalker_IncrementalWalker_Peek_Finish line 91

Bitwalker.c Bitwalker_IncrementalWalker_Peek_Next line 82

Bitwalker.c Bitwalker_IncrementalWalker_Poke_Finish line 106

4.5 Clang Static Analyzer tool Results

The [Clang Static Analyzer] is a source code analysis tool that finds bugs in C, C++, and
Objective-C programs.

The analyzer is 100% open source and is part of the Clang project. Like the rest of Clang, the
analyzer is implemented as a C++ library that can be used by other tools and applications.

With this analysis SQS has checked the following:

Table 4.18. Aspects checked

core.AdjustedReturnValue Check to see if the return value of a function call is
different than the caller expects (e.g., from calls through
function pointers).

core.CallAndMessage Check for logical errors for function calls and Objective-C
message expressions (e.g., uninitialized arguments, null
function pointers).

core.DivideZero Check for division by zero.

core.NonNullParamChecker Check for null pointers passed as arguments to a func-
tion whose arguments are known to be non-null.

core.NullDereference Check for dereferences of null pointers.

core.StackAddressEscape Check that addresses to stack memory do not escape
the function.

core.UndefinedBinaryOperatorResult Check for undefined results of binary operators.

core.VLASize Check for declarations of VLA of undefined or zero size.

core.builtin.BuiltinFunctions Evaluate compiler built-in functions (e.g., alloca()).

core.builtin.NoReturnFunctions Evaluate "panic" functions that are known to not return
to the caller.

core.uninitialized.ArraySubscript Check for uninitialized values used as array subscripts.

core.uninitialized.Assign Check for assigning uninitialized values.

core.uninitialized.Branch Check for uninitialized values used as branch conditions.

core.uninitialized.CapturedBlockVariable Check for blocks that capture uninitialized values.

core.uninitialized.UndefReturn Check for uninitialized values being returned to the caller.

deadcode.DeadStores Check for values stored to variables that are never read
afterwards.

security.FloatLoopCounter Warn on using a floating point value as a loop counter
(CERT: FLP30-C, FLP30-CPP).

security.insecureAPI.UncheckedReturn Warn on uses of functions whose return values must be
always checked.

security.insecureAPI.getpw Warn on uses of the ’getpw’ function.

security.insecureAPI.gets Warn on uses of the ’gets’ function.

security.insecureAPI.mkstemp Warn when ’mkstemp’ is passed fewer than 6 X’s in the
format string.

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://clang-analyzer.llvm.org/


OETCS/WP4/D4.2.2 63

Table 4.18. Aspects checked

security.insecureAPI.mktemp Warn on uses of the ’mktemp’ function.

security.insecureAPI.rand Warn on uses of the ’rand’, ’random’, and related func-
tions.

security.insecureAPI.strcpy Warn on uses of the ’strcpy’ and ’strcat’ functions.

security.insecureAPI.vfork Warn on uses of the ’vfork’ function.

unix.API Check calls to various UNIX/Posix functions.

unix.Malloc Check for memory leaks, double free, and use-after-free
problems involving malloc.

unix.MallocSizeof Check for dubious malloc arguments involving sizeof.

unix.MismatchedDeallocator Check for mismatched deallocators (e.g. passing a
pointer allocating with new to free()).

unix.cstring.BadSizeArg Check the size argument passed into C string functions
for common erroneous patterns.

unix.cstring.NullArg Check for null pointers being passed as arguments to C
string functions.

Taking into account the features checked by the tool, the following Cenelec Standard techniques
have been covered:

• Boundary Value Analysis (High Recommended)

• Data Flow Analysis (High Recommended)

After run this analysis no violation has been found.

Figure 4.3. Clang Analysis results

4.6 CPPcheck tool Results

Bitwalker folder has been analyzed statically by [CPPcheck] tool (Complying with the standard
C11).

Cppcheck supports the following languages: C89, C99, C11 and a wide variety of static checks.
The following features are provided:

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://cppcheck.sourceforge.net/


OETCS/WP4/D4.2.2 64

• Out of bounds checking

• Check the code for each class

• Checking exception safety

• Memory leaks checking

• Warn if obsolete functions are used

• Check for invalid usage of STL

• Check for uninitialized variables and unused functions

• Check input/output operations

• Null pointer dereferencing

C11 (formerly C1X) is an informal name for ISO/IEC 9899:2011, the current standard for the C
programming language. It replaces the previous C standard, informally known as C99. This new
version mainly standardizes features that have already been supported by common contemporary
compilers, and includes a detailed memory model to better support multiple threads of execution.
Due to delayed availability of conforming C99 implementations, C11 makes certain features
optional, to make it easier to comply with the core language standard.

With the use of this tool the following techniques recommended by CENELEC Standard are
covered:

• Coding Standard (mandatory) (checked C11 standard)

• Boundary Value Analysis (High Recommended)

• Data Flow Analysis (High Recommended)

The results of the tool show that there are some verbose errors in the main file and some errors in
the bitwalker.c file.

• repetitive verbose error regarding to Testwort variable is reassigned value before the old one
has been used (lines 119, 120 and 121 in main.c)

• one error about the Testwort variable is assigned a value that is never used (line 122 in
main.c).

• the funtions Bitwalker_IncrementalWalker_Peek_Finish (line 91 in bitwalker.c), Bitwalker_IncrementalWalker_Peek_Next
(line 82 in bitwalker.c) and Bitwalker_IncrementalWalker_Poke_Finish (line 106 in bit-
walker.c) are never used,

The below figure shows the results commented previously:

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 65

Figure 4.4. cppcheck results

4.7 Testwell CMT++ Results

CMT++, Complexity Measures Tool for C/C++, is an easy-to-use code metrics tool for C and
C++ languages. Also assembly code, either inlined in a C/C++ source file or separate assembly
file, can be measured.

Based on the static properties of the program code CMT++ gives estimates how error prone
the program sorce code is due to its complexity, how long it will take to understand the code,
what the logical volume of the code is, how much code you have: physical lines, comment lines,
program lines, statements, etc

CMT++ helps to estimate the overall maintainability of the code base and easily locate the
complex parts of it.

In this case CMT++ is used to calculate:

• Basic code complexity metrics

– McCabe’s cyclomatic number

– Halstead’s metrics

– Lines of code metrics

– Some other metrics like: number of semicolons, number of function parameter, depth
of control structure nesting

• Maintainability Index

4.7.1 Complexity Metrics

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 66

4.7.1.1 Program Size Metrics

As it was mentioned in 4.2.2.1 the number of lines and the Halstead metrics can be used to
determine the program size.

Number of lines

The lines of code measures are the most traditional measures used to quantify software
complexity. They are simple, easy to count, and very easy to understand. However, they do
not take into account the intelligence content and the layout of the code.

CMT++ calculates the following lines-of-code metrics:

• LOCphy: number of physical lines

• LOCbl: number of blank lines (a blank line inside a comment block is considered to be
a comment line)

• LOCpro: number of program lines (declarations, definitions, directives, and code)

• LOCcom: number of comment lines

Following the analysis conducted within the tool, the tables below summarizes the results:

Table 4.19. Lines of Code Metrics per file

File LOCphy LOCpro LOCcom LOCbl

Bitwalker.c 109 58 33 23

Table 4.20. Lines of Code Metrics per functions

Function LOCphy LOCpro LOCcom LOCbl

Bitwalker_Peek 20 13 5 4

Bitwalker_Poke 24 17 6 4

Bitwalker_IncrementalWalker_Init 6 6 0 0

Bitwalker_IncrementalWalker_Peek_Next 7 6 1 0

Bitwalker_IncrementalWalker_Peek_Finish 4 4 0 0

Bitwalker_IncrementalWalker_Poke_Next 7 6 1 0

Bitwalker_IncrementalWalker_Poke_Finish 4 4 0 0

Halstead metrics

Halstead complexity metrics were developed by the late Maurice Halstead as a mean of
determining a quantitative measure of complexity directly from the operators and operands in
the module to measure a program module’s complexity directly from source code.

Halstead’s metrics are based on interpreting the source code as a sequence of tokens and
classifying each token to be an operator or an operand. There are based on four basic
measures:

• number of unique (distinct) operators (n1)

• number of unique (distinct) operands (n2)

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 67

• total number of operators (N1)

• total number of operands (N2).

Taking into account these measures the following metrics will be obtained:

• Program Vocabulary: n = n1 + n2

• Program Length: N = N1 + N2

• Program Difficulty: D = (n1/2) ∗ (N2/n2)

• Program Volume: V = N ∗ log2(n)

• Program Length: L = 1/V

• Effort to implement: E = V * D

• Time to implement: T = E / 18

• Number of delivered bugs: B = (E2/3)/3000

So Halstead metrics provide several metrics that focus on different aspects of software
complexity. Furthermore, they allow the estimation of development and testing times (with
parameter L*V), and difficulty of understanding (with parameter E).

Software complexity is usually analyzed with the indicators L, V and E due to:

• the volume is intended being a more accurate measure of the difficulty of understanding
a program, taking into account not only its length but also the vocabulary. Halstead’s
volume (V) describes the size of the implementation of an algorithm.

• the program level gives an idea of the level of detail that it has been encoded

• effort can be used as a measure of program clarity since the effort required to produce a
piece of software is primarily related to the difficulty to understand and implement it.

In the tables below are presented the results obtained per file and per function:

Table 4.21. Halstead metrics 1 per file

File L n n1 n2 N N1 N2

Bitwalker.c 0.014 72 31 41 378 185 193

Table 4.22. Halstead metrics 2 per file

File B E T D V

Bitwalker.c 1.024 170167.578 02:37:33 72.963 2332.232

Table 4.23. Halstead metrics 1 per function

Function L n n1 n2 N N1 N2

Bitwalker_Peek 0.041 35 18 17 89 43 46

Bitwalker_Poke 0.028 42 23 19 120 62 58

Bitwalker_IncrementalWalker_Init 0.143 20 8 12 37 16 21

Bitwalker_IncrementalWalker_Peek_Next 0.116 20 9 11 39 18 21

Bitwalker_IncrementalWalker_Peek_Finish 0.278 11 6 5 12 6 6

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 68

Table 4.23. Halstead metrics 1 per function

Function L n n1 n2 N N1 N2

Bitwalker_IncrementalWalker_Poke_Next 0.111 21 9 12 44 20 24

Bitwalker_IncrementalWalker_Poke_Finish 0.278 11 6 5 12 6 6

Table 4.24. Halstead metrics 2 per function

Function B E T D V

Bitwalker_Peek 0.166 11117.269 00:10:17 24.353 456.506

Bitwalker_Poke 0.267 22715.846 00:21:01 35.105 647.078

Bitwalker_IncrementalWalker_Init 0.036 1119.379 00:01:02 7.000 159.911

Bitwalker_IncrementalWalker_Peek_Next 0.043 1448.042 00:01:20 8.591 168.555

Bitwalker_IncrementalWalker_Peek_Finish 0.009 149.447 00:00:08 3.600 41.513

Bitwalker_IncrementalWalker_Poke_Next 0.048 1739.358 00:01:36 9.000 193.262

Bitwalker_IncrementalWalker_Poke_Finish 0.009 149.447 00:00:08 3.600 41.513

The volume of a function should be at least 20 and at most 1000. The volume of a parameter
less one-line function that is not empty; is about 20. A volume greater than 1000 tells that the
function probably does too many things.

The volume of a file should be at least 100 and at most 8000. These limits are based on volumes
measured for files whose LOCpro and v(G) are near their recommended limits. The limits of
volume can be used for double-checking.

Halstead’s delivered bugs (B) is an estimate for the number of errors in the implementation.
Delivered bugs in a file should be less than 2. Experiences have shown that, when programming
with C or C++, a source file almost always contains more errors than B suggests. The number of
defects tends to grow more rapidly than B.

By analyzing the results, one can observe that all the Halstead metrics obtained in relation to
functions and file are inside the recommendations.

4.7.1.2 Control Flow Metrics

Table 4.25. McCabe Cyclomatic Complexity

Function ECC

Bitwalker_Peek 3

Bitwalker_Poke 5

Bitwalker_IncrementalWalker_Init 1

Bitwalker_IncrementalWalker_Peek_Next 1

Bitwalker_IncrementalWalker_Peek_Finish 1

Bitwalker_IncrementalWalker_Poke_Next 1

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 69

Table 4.25. McCabe Cyclomatic Complexity

Function ECC

Bitwalker_IncrementalWalker_Poke_Finish 1

As a first conclusion, taking into account the reference table shown in Section 4.2.2.2 the values
from the above table indicate a low risk functions and the matching with the results obtained with
the previous tools.

4.7.2 Maintainability Index

Maintainability Index (MI) is a single-number value for estimating the relative maintainability of
the code.

Maintainability Index is calculated with certain formulae from lines-of-code measures, McCabe
measure and Halstead measures.

Actually there are three measures:

• MIwoc: Maintainability Index without comments

• MIcw: Maintainability Index comment weight

• MI: Maintainability Index = MIwoc + MIcw

The general formulae for MI are the following:

MIwoc = 171 - 5.2 * ln(aveV) -0.23 * aveG -16.2 * ln(aveLOC)

MIcw = 50 * sin(sqrt(2.4 * perCM))

MI = MIwoc + MIcw

where:

• aveV = average Halstead Volume per Module

• aveG = average extended cyclomatic complexity per Module

• aveLOC = average count of lines per Module

• perCM = average percent of lines of comments per Module

Table 4.26. Maintainability Index

Function MIwoc MIcw MI

Bitwalker_Peek 90 35 125

Bitwalker_Poke 85 35 120

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 70

Table 4.26. Maintainability Index

Function MIwoc MIcw MI

Bitwalker_IncrementalWalker_Init 115 0 115

Bitwalker_IncrementalWalker_Peek_Next 113 28 140

Bitwalker_IncrementalWalker_Peek_Finish 129 0 129

Bitwalker_IncrementalWalker_Poke_Next 112 28 140

Bitwalker_IncrementalWalker_Poke_Finish 129 0 129

After calculating the Maintainability Index the maintainability involved can be determined using
the following reference table:

Table 4.27. Maintainability Index Reference table

Maintainability
Index

Maintainability Evaluation

85 and more good maintainability

65-85 moderate maintainability

< 65 difficult to maintain with really bad pieces of
code (big, uncommented, unstructured) the
MI value can be even negative

As a first conclusion, the values from the tables above indicate the functions and file have a good
maintanability.

4.8 MISRA and Mü8004 Rules Comparation

This section analyses the requirements designed in MISRA-C : 2004 standard and Mü8004
standard and makes a comparison between rules they might have in common and describes the
most important features of the ones they don’t have in common.

ENVIRONMENT:

MISRA –C Environment Rule 1.1

MISRA-C Rule 1.1 All code shall conform to ISO/IEC 9899:1990 “Programming languages
— C”, amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/AMD1:1995, and
ISO/IEC 9899/COR2:1996.

This rule is not included in Mü8004 standard. It never mentions which version of C is applied.

MISRA –C Environment Rule 1.2

MISRA-C Rule 1.2 No reliance shall be placed on undefined or unspecified behaviour.

This rule is not included in Mü8004 standard. No requirement on behaviour is specified

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 71

MISRA –C Environment Rule 1.3

MISRA-C Rule 1.3 Description: If a module is to be implemented in a language other than C, or
compiled on a different C compiler, then it is essential to ensure that the module will integrate
correctly with other modules.

This rule is not included in Mü8004 standard. Mü8004 standard establishes in rule 0.2.22 that it
is not allowed to change the programming language inside a program module, but not between
different modules.

MISRA –C Environment Rule 1.4

MISRA-C Rule 1.4 Description: The compiler/linker shall be checked to ensure that 31 character
significance and case sensitive are supported for external identifiers. If the compiler/linker is not
capable of meeting this limit, then use the limit of the compiler.

This rule is not included in Mü8004 standard, although in 0.2.9 rule it is referred that names and
identifiers must be chosen in a way that differs significantly in the first 31 positions. This rule
should be added.

MISRA –C Environment Rule 1.5

MISRA-C Rule 1.5 Description: Floating-point implementations should comply with a defined
floating-point standard.

This rule is not included in Mü8004 standard and it would be useful adding it to overcome a wide
range of problems associated with the use of floating-point arithmetics.

LANGUAGE EXTENSION:

MISRA –C Language extensions 2.1

MISRA-C Rule 2.1 Description: Where assembly language instructions are required it is recom-
mended that they be encapsulated and isolated in either (a) assembler functions, (b) functions or
(c) macros.

This rule is included in Mü8004 Rule 0.2.22, as it establishes that assembler implemented
subroutines can be called from C and vice versa. It would be useful to point out that assembler
language should not be embedded in normal code.

MISRA –C Language extensions 2.2

MISRA-C Rule 2.2 Description: Source code shall only use /*. . . */ style comments.

This is less restrictive in Mü8004 standard, as // comments are allowed in Mü8004 Rule 0.2.8 if
it is supported by compiler. This is correctly focused as this way consistency is not in danger.

MISRA –C Language extensions 2.3

MISRA-C Rule 2.2 Description: The character sequence /* shall not be used within a comment.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 72

This rule is included in Mü8004 Rule 0.2.8, as it establishes that comments must not be nested.
This is an important requirement whose omission would cause critical errors otherwise.

MISRA –C Language extensions 2.4

MISRA-C Rule 2.4 Description: Sections of code should not be “commented out”

This rule is not included in Mü8004 standard. It would be useful to use conditional compilation
(#if or #ifdef) for sections of source code not to be compiled, as start and end comment markers
for this purpose is dangerous because C does not support nested comments.

CHARACTER SETS:

MISRA –C Character sets 4.1

MISRA-C Rule 4.1 Only those escape sequences that are defined in the ISO C standard shall be
used.

Mü8004 standard does not include this rule. This rules is useful for code portabiliy.

MISRA –C Character sets 4.2

MISRA-C Rule 4.2 Trigraphs shall not be used

Mü8004 standard does not include this rule. This rules is useful for code understanding. This
rule should be mandatory.

IDENTIFIERS:

MISRA –C Identifiers 5.1

MISRA-C Rule 5.1 Description: Identifiers (internal and external) shall not rely on the signifi-
cance of more than 31 characters.

This rule is included in Mü8004 Rule 0.2.9, as it establishes that names and identifiers must be
chosen in a way that they differ significantly in the first 31 positions.

MISRA –C Identifiers 5.2

MISRA-C Rule 5.2 Description: Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

This rule is not included in Mü8004 standard, but it would be useful adding it to avoid confusion
between identifiers in the code.

MISRA –C Identifiers 5.3

MISRA-C Rule 5.3 Description: A typedef name shall be a unique identifier.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 73

This rule is not included in Mü8004 standard, but it would be useful adding it to avoid the reuse
these names within a program.

MISRA –C Identifiers 5.4

MISRA-C Rule 5.4 Description: A tag name shall be a unique identifier.

This rule is not included in Mü8004 standard. Although Mü8004 Rule 0.2.9 establishes that same
variables should not serve different purposes and it would be useful to avoid the reuse of names
within a program for same purposes. This would be useful adding it to avoid confusion.

MISRA –C Identifiers 5.5

MISRA-C Rule 5.5 Description: No object or function identifier with static storage duration
should be reused.

This rule is not included in Mü8004 standard. It would be useful adding it because the possibility
exists for the user to incorrectly associate unrelated variables with the same name.

MISRA –C Identifiers 5.6

MISRA-C Rule 5.6 Description: No identifier in one name space should have the same spelling
as an identifier in another name space, with the exception of structure member and union member
names.

This rule is not included in Mü8004 standard. It extends the avoidance of using same names for
same or different purposes. It could be an advisory request to avoid confusion.

MISRA –C Identifiers 5.7

MISRA-C Rule 5.7 Description: No identifier name should be reused (across any files in the
system).

This rule is not included in Mü8004 standard. It incorporates the Rules 5.2, 5.3, 5.4, 5.5 and 5.6.
It would be an extremely severe requirement to avoid confusion between names.

Mü8004 Identifiers 0.2.9

Some points of this section, as the following ones, are very important to avoid confusion between
names and are not included in Identifiers section in MISRA-C standard:

• Uppercase and lowercase letters, numbers from 0 to 9, and the sign $ and _ are allowed for
defining names. ‘_’ must not be the first character

• Identifiers that differ only in uppercase/lowercase characters must not have different meaning

• Identifiers for macros shall be written in uppercase letter

TYPES:

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 74

MISRA –C Types 6.1

MISRA-C Rule 6.1 Description: The plain char type shall be used only for the storage and use of
character values

This rule is not included in Mü8004 standard. This rule could be useful to set the restriction in
the work with this type of data.

MISRA –C Types 6.2

MISRA-C Rule 6.2 Description: signed and unsigned char type shall be used only for the storage
and use of numeric values. Plain char type shall be used for character data.

This rule is not included in Mü8004 standard. This rule could be useful to make a difference
between the work with numeric and character data.

MISRA –C Types 6.3

MISRA-C Rule 6.3 Description: Typedefs that indicate size and signedness should be used in
place of the basic numerical types

Mü8004 standard does not show how to use typedef with different data types. However, it shows
in Rule 0.2.6 that float and double data types are not supported. This could be a drawback for the
precision of variables and operations between them.

MISRA –C Types 6.4

MISRA-C Rule 6.4 Description: Bit fields shall only be defined to be of type unsigned int or
signed int.

This rule is not included in Mü8004 standard, although Mü8004 Rule 0.2.6 establishes that
bitfields are permitted. This rule could be useful for the correctness in the work with bitfields.

MISRA –C Types 6.5

MISRA-C Rule 6.5 Description: Bit fields of signed type shall be at least 2 bits long.

This rule is not included in Mü8004 standard

CONSTANTS:

MISRA –C Types 7.1

MISRA-C Rule 7.1 Description: Octal constants (other than zero) and octal escape sequences
shall not be used

This rule is not included in Mü8004 standard for the definition of constants. Although it defines
how to create constants using “const” keyword, it could be interesting not to mix constants and
octal, because of potential errors when working with fixed length constants

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 75

Mü8004 – 0.2.10 Constants

Mü8004 – 0.2.10 Constants Rule: Although MISRA-C adds 7.1 Rule that describes the work
with octal constants in the standard, Mü8004 - 0.2.10 Constants rule specifies better which is the
way to define constants of different type, and the way to use them along the code.

DECLARATIONS AND DEFINITIONS:

MISRA –C Types 8.1

MISRA-C Rule 7.1 Description: Functions shall have prototype declarations and the prototype
shall be visible at both the function definition and call

Mü8004 standard includes at Rule 0.2.15 that function prototypes shall be used for every function
whenever the compiler supports it. It would be useful to set the visibility of prototypes for the
integrity of function definitions and calls.

MISRA –C Declarations and Definitions 8.2

MISRA-C Rule 8.2 Description: Whenever an object or function is declared or defined, its type
shall be explicitly stated

Mü8004 standard includes at Rule 0.2.15 that function header have to define the function type.

MISRA –C Declarations and Definitions 8.3

MISRA-C Rule 8.3 Description: For each function parameter the type given in the declaration
and definition shall be identical, and the return types shall also be identical

Mü8004 standard does not include this rule, but this rule should be necessary for the proper
operation of the function.

MISRA –C Declarations and Definitions 8.4

MISRA-C Rule 8.4 Description: If objects or functions are declared more than once their types
shall be compatible

Mü8004 standard does not include this rule. It might be good to add this rule to the proper
functioning of the code, even though it would be recommendable not to declare objects or
functions more than once in order to reduce the number of mistakes made.

MISRA –C Declarations and Definitions 8.5

MISRA-C Rule 8.5 Description: There shall be no definitions of objects or functions in a header
file

Mü8004 standard does not include this rule. Although Mü8004 Rule 0.2.5 establishes that
function prototypes shall only be used in header files, there is no reference to the definition of
objects and functions. To prohibit the definition of objects and functions in the header file would
be a good programming rule.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 76

MISRA –C Declarations and Definitions 8.6

MISRA-C Rule 8.6 Description: Functions shall be declared at file scope

There is a restriction in Mü8004 standard Rule 0.2.5 when declaring functions at file scope,
because it establishes that function prototypes shall only be used in header files.

MISRA –C Declarations and Definitions 8.7

MISRA-C Rule 8.7 Description: Objects shall be defined at block scope if they are only accessed
from within a single function

Mü8004 standard Rule 0.2.14 establishes that global definitions of structures shall be defined in
header files. It would be interesting to add MISRA-C Rule 8.7 for objects that are only used in
functions or in block scope.

MISRA –C Declarations and Definitions 8.8

MISRA-C Rule 8.8 Description: An external object or function shall be declared in one and only
one (external) file

This rule can be added to Mü8004 standard to improve 0.2.14 Rule, as it defines that global
definition of structures shall be defined in header files

MISRA –C Declarations and Definitions 8.9

MISRA-C Rule 8.9 Description: An identifier with external linkage shall have exactly one
external definition

Mü8004 does not include this rule. It is necessary to add this rule to fix the work with extern
parameter.

MISRA –C Declarations and Definitions 8.10, 8.11

MISRA-C Rule 8.10 Description: All declarations and definitions of objects or functions at file
scope shall have internal linkage unless external linkage is required

MISRA-C Rule8.11 Description: The static storage class specifier shall be used in definitions
and declarations of objects and functions that have internal linkage

Mü8004 does not include these rules. It would be useful to avoid confusion between objects with
internal scope and objects with external scope.

MISRA –C Declarations and Definitions 8.12

MISRA-C Rule 8.12 Description: When an array is declared with external linkage, its size shall
be stated explicitly or defined implicitly by initialization

Mü8004 does not include this rule. It could be interesting to add this rule to Mü8004 standard to
establish the work with arrays when they are declared with external linkage.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 77

INITIALIZATION:

MISRA –C Initialization 9.1

MISRA-C Rule 9.1 Description: All automatic variables shall have been assigned a value before
being used

Mü8004 standard includes at Rule 0.2.12 that all variables and fields shall be initialized before
they are used the first time.

MISRA –C Initialization 9.2

MISRA-C Rule 9.2 Description: Braces shall be used to indicate and match the structure in the
non-zero initialization of arrays and structures

The use of braces is included in Mü8004 standard Rule 0.2.6, as it establishes that for clearness,
the initialization shall be put in curly brackets.

MISRA –C Initialization 9.3

MISRA-C Rule 9.3 Description: In an enumerator list, the “=” construct shall not be used to
explicitly initialize members other than the first, unless all items are explicitly initialized

Mü8004 does not include this rule. It is necessary to avoid making mistakes when initializing
enumerators.

CONVERSIONS:

MISRA -C Conversions 10.1

MISRA-C Rule 10.1 Description: The value of an expression of integer type shall not be
implicitly converted to a different underlying type if:
(a)it is not a conversion to a wider integer type of the same signedness, or
(b)the expression is complex, or
(c)the expression is not constant and is a function argument, or
(d)the expression is not constant and is a return expression

Mü8004 includes this rule. It is a precision of the third phrase of the chapter 0.2.18.

MISRA -C Conversions 10.2

MISRA-C Rule 10.2 Description: The value of an expression of floating type shall not be
implicitly converted to a different type if:
(a) it is not a conversion to a wider floating type, or
(b) the expression is complex, or
(c) the expression is a function argument, or
(d) the expression is a return expression

Mü8004 includes this rule. It is a precision of the thrid phrase of the chapter 0.2.18.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 78

MISRA -C Conversions 10.3

MISRA-C Rule 10.3 Description: The value of a complex expression of integer type shall only be
cast to a type of the same signedness that is no wider than the underlying type of the expression.

Mü8004 includes this rule. It is a precision of the third phrase of chapter 0.2.18.

MISRA -C Conversions 10.4

MISRA-C Rule 10.4 Description: The value of a complex expression of floating type shall only
be cast to a floating type that is narrower or of the same size.

Mü8004 includes this rule. It is a precision of the third phrase of the chapter 0.2.18.

MISRA -C Conversions 10.5

MISRA-C Rule 10.4 Description: If the bitwise operators ˜ and << are applied to an operand
of underlying type unsigned char or unsigned short, the result shall be immediately cast to the
underlying type of the operand.

Mü8004 does not include this rule. This operators in this small type then it is a source bug. When
type forcing allow the good comportement.

MISRA -C Conversions 10.6

MISRA-C Rule 10.6 Description: An “U” suffix shall be applied to all constants of unsigned
type.

Mü8004 does not include this rule. This rule is for the maintenability and code review.

MISRA -C Conversions 11.1

MISRA-C Rule 11.1 Description: Conversions shall not be performed between a pointer to a
function and any type other than an integral type.

Mü8004 does not include this rule. If this rule was not respected, the code has an undefined
behavior. This rule must be mandatory. In addition, the code becomes independent of the
compiler.

MISRA -C Conversions 11.2

MISRA-C Rule 11.2 Description: Conversions shall not be performed between a pointer to object
and any type other than an integral type, another pointer to object type or a pointer to void.

Mü8004 does not include this rule. This rule is for the cast system is determinist. And this rules
indicates which does not mix pointer and object.

MISRA -C Conversions 11.3

MISRA-C Rule 11.3 Description: A cast should not be performed between a pointer type and an
integral type.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 79

Mü8004 does not include this rule. This rule is used for not mixing data and pointer. These two
objects are different.

MISRA -C Conversions 11.4

MISRA-C Rule 11.4 Description: A cast should not be performed between a pointer to object
type and a different pointer to object type.

Mü8004 does not include this rule. This rule is used for not mix different pointer types for data
alignement. This rule prevents safety issues that may occur if misaligned pointers are used.

MISRA -C Conversions 11.5

MISRA-C Rule 11.5 Description: A cast shall not be performed that removes any const or
volatile qualification from the type addressed by a pointer.

Mü8004 does not include this rule. This rule is used for not modified a constant data or a volatile.
This rule prevents safety issues that may occur if writing to a const location, or accessing a
volatile location without proper qualification.

EXPRESSIONS:

MISRA –C Expressions 12.1

MISRA-C Rule 12.1 Description: Limited dependence should be placed on C’s operator prece-
dence rules in expressions

Mü8004 does not include this rule. This could be a good advisory rule for the developer that has
to be careful with made mistakes because of precedence rule of C. Parentheses should be used to
reduce mistakes.

MISRA –C Expressions 12.2

MISRA-C Rule 12.2 Description: The value of an expression shall be the same under any order
of evaluation that the standard permits

Mü8004 standard makes reference to the importance of the influence of evaluation order in
expressions. That’s why Mü8004 Rule 0.2.13 establishes that assignments inside expressions are
forbidden and Mü8004 Rule12.2 establishes that post increment and post decrement operators
are only allowed if they are placed in a separate expression. However, an advice should be made
to the influence of access order in expressions where functions calls, access to volatile objects. . .
are used.

MISRA –C Expressions 12.3

MISRA-C Rule 12.3 Description: The sizeof operator shall not be used on expressions that
contain side effects

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 80

Mü8004 Rule 0.2.4 establishes that sizeof operator must not be used after #if. This operator
cannot be used to evaluate an expression. It shall only be applied to an operand which is a type
or object.

MISRA –C Expressions 12.4

MISRA-C Rule 12.4 Description: The right-hand operand of a logical && or || operator shall not
contain side effects

Mü8004 standard does not include this rule. This could be a good rule for the developer that has
to be careful with side effects when working with these operators.

MISRA –C Expressions 12.5

MISRA-C Rule 12.5 Description: The operands of a logical && or || shall be primary-expressions
Mü8004 standard does not include this rule. This could be a good rule for both readability of
code and for ensuring that the behavior is as the programmer intended.

MISRA –C Expressions 12.6

MISRA-C Rule 12.6 Description: The operands of logical operators (&&, || and !) should be
effectively Boolean. Expressions that are effectively Boolean should not be used as operands to
operators other than (&&, ||, !, =, ==, != and ?:)

Mü8004 Rule 0.2.4 establishes the difference between logical operators (&&, ||, !, =, ==, != and
?:) and bitwise (&=, |, ˆ, -, >>, <<) operators

MISRA –C Expressions 12.7

MISRA-C Rule 12.7 Description: Bitwise operators shall not be applied to operands whose
underlying type is signed

Mü8004 Rule 0.2.4 establishes that bitwise operators and right shift operators shall only be used
with unsigned variables.

MISRA –C Expressions 12.8

MISRA-C Rule 12.8 Description: The right-hand operand of a shift operator shall lie between
zero and one less than the width in bits of the underlying type of the left-hand operand

Mü8004 standard does not include this rule. It could be useful to add this rule and others that
talk about the limitations in the work with different operands.

MISRA –C Expressions 12.9

MISRA-C Rule 12.9 Description: The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

Mü8004 Rule 0.2.6 explains the problematic of combining signed and unsigned variables in
arithmetic operations. However, this should be extended to explain the problems generated when
doing operations as applying operators like unary minus to unsigned variables.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 81

MISRA –C Expressions 12.10

MISRA-C Rule 12.10 Description: The comma operator shall not be used

Mü8004 Rule 0.2.4 establishes that Mü8004 standard does not support the work with comma
operator.

MISRA –C Expressions 12.11

MISRA-C Rule 12.11 Description: Evaluation of constant unsigned integer expressions should
not lead to wrap-around

Mü8004 standard does not include this rule. This could be a helpful rule to avoid the overflow of
unsigned integer expressions.

MISRA –C Expressions 12.12

MISRA-C Rule 12.12 Description: The underlying bit representations of floating-point values
shall not be used

Mü8004 standard does not include this rule. This could be an interesting rule to avoid the errors
caused by the way floating-point values are stored, in case this data types would be supported by
the compiler.

MISRA –C Expressions 12.13

MISRA-C Rule 12.13 Description: The increment (++) and decrement (--) operators should not
be mixed with other operators in an expression

Mü8004 Rule 0.2.4 establishes the restrictions when working with these operators. Post increment
and post decrement operators are only allowed if they are placed in a separate expression.

CONTROL STATEMENT EXPRESSIONS:

MISRA –C Control statement expressions 13.1

MISRA-C Rule 13.1 Description: Assignment operators shall not be used in expressions that
yield a Boolean value

Mü8004 Rule 0.2.13 establishes that assignment operators shall not be used inside expressions
that are considered to have a Boolean value.

MISRA –C Control statement expressions 13.2

MISRA-C Rule 13.2 Description: Tests of a value against zero should be made explicit, unless
the operand is effectively Boolean

Mü8004 standard does not include this rule. It could be useful to add this rule for the appropriate
work with “not equal” operator.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 82

MISRA –C Control statement expressions 13.3

MISRA-C Rule 13.3 Description: Floating-point expressions shall not be tested for equality or
inequality

Mü8004 standard does not include this rule. This could be an interesting rule if floating-point
values are allowed.

MISRA –C Control statement expressions 13.4

MISRA-C Rule 13.4 Description: The controlling expression of a for statement shall not contain
any object of floating type

Mü8004 standard does not include this rule. This could be an interesting rule to avoid making
mistakes with for statement, if floating-point values are allowed.

MISRA –C Control statement expressions 13.5

MISRA-C Rule 13.5 Description: The three expressions of a for statement shall be concerned
only with loop control

Mü8004 standard does not include this rule. This is a necessary rule that explains how to work
correctly with for statement.

MISRA –C Control statement expressions 13.6

MISRA-C Rule 13.6 Description: Numeric variables being used within a for loop for iteration
counting shall not be modified in the body of the loop

Mü8004 standard does not include this rule. This is a basic rule for the correct work of for loop.

MISRA –C Control statement expressions 13.7

MISRA-C Rule 13.7 Description: Boolean operations whose results are invariant shall not be
permitted

Mü8004 standard does not include this rule. This could be a good rule to avoid the propagation
of errors in the program due to wrongly implemented Boolean operations.

CONTROL FLOW:

MISRA –C Control flow 14.1

MISRA-C Rule 14.1 Description: There shall be no unreachable code

Mü8004 standard does not include this rule, but it is a necessary to avoid mistakes due to code
that it is never executed.

MISRA –C Control flow 14.2

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 83

MISRA-C Rule 14.2 Description: All non-null statements shall either: (a) have at least one
side-effect however executed, or (b) cause control flow to change

Mü8004 standard does not include this rule. This is a necessary rule to avoid making errors when
creating statements.

MISRA –C Control flow 14.3

MISRA-C Rule 14.3 Description: Before preprocessing, a null statement shall only occur on a
line by itself; it may be followed by a comment provided that the first character following the
null statement is a white-space character

Mü8004 standard does not include this rule. This is a necessary rule if null statements are allowed
to be used. However, the safest way would be not to permit embedding null statements in the
code.

MISRA –C Control flow 14.4

MISRA-C Rule 14.4 Description: The goto statement shall not be used

Mü8004 standard does not include this statement in the list of permitted statements.

MISRA –C Control flow 14.5

MISRA-C Rule 14.5 Description: The continue statement shall not be used

Mü8004 Rule 0.2.3 includes this statement in the list of permitted statements, even though it is
recommended to avoid working with it, if possible.

MISRA –C Control flow 14.6

MISRA-C Rule 14.6 Description: For any iteration statement there shall be at most one break
statement used for loop termination

Mü8004 Rule 0.2.3 establishes that every case branch must contain a statement and end with
break. This rule is in the interest of good structured programming.

MISRA –C Control flow 14.7

MISRA-C Rule 14.7 Description: A function shall have a single point of exit at the end of the
function

Mü8004 Rule 0.2.3 includes this restriction, as it establishes the use, once per function, of the
return statement as the exit point of the function.

MISRA –C Control flow 14.8

MISRA-C Rule 14.8 Description: The statement forming the body of a switch, while, do . . .
while or for statement shall be a compound statement.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 84

Mü8004 Rule 0.2.3 establishes that to facilitate the examination, the program shall be structured
with brackets and indentation of lines. This rule should be extended to mention specific cases as,
switch, while, do . . . while and for cases.

MISRA –C Control flow 14.9

MISRA-C Rule 14.9 Description: An if (expression) construct shall be followed by a compound
statement. The else keyword shall be followed by either a compound statement, or another if
statement

Mü8004 Rule 0.2.3 defines the construction of if expression. However, it is less restrictive as for
an if expression with a single statement, braces are not required.

MISRA –C Control flow 14.10

MISRA-C Rule 14.10 Description: All if . . . else if construct shall be terminated with an else
clause

Mü8004 Rule 0.2.3 defines the construction of if expression. However, it does not establish how
it is the work with this advanced structure.

SWITCH STATEMENTS:

MISRA –C Switch Statement 15.0

MISRA-C Rule 15.0 Description: The MISRA C switch syntax shall be used

Mü8004 Rule 0.2.3 includes, in a less detailed way, how the construction of a switch statement is.

MISRA –C Switch Statement 15.1

MISRA-C Rule 15.1 Description: A switch label shall only be used when the most closely-
enclosing compound statement is the body of a switch statement

Mü8004 Rule 0.2.3 includes how switch, case and default labels have to be used in a switch
statement.

MISRA –C Switch Statement 15.2

MISRA-C Rule 15.2 Description: An unconditional break statement shall terminate every
non-empty switch clause

Mü8004 Rule 0.2.3 establishes that every case branch in a switch statement must contain a
statement and end with break.

MISRA –C Switch Statement 15.3

MISRA-C Rule 15.3 Description: The final clause of a switch statement shall be the default
clause

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 85

Mü8004 Rule 0.2.3 establishes that a default case must be defined in a switch statement, and that
this is the last statement in the switch block.

MISRA –C Switch Statement 15.4

MISRA-C Rule 15.4 Description: A switch expression shall not represent a value that is effectively
Boolean

Mü8004 standard does not include this rule. It could be a useful rule to know which data types
can be used with switch statement, and avoid making mistakes when the switch statement is

MISRA –C Switch Statement 15.5

MISRA-C Rule 15.5 Description: Every switch statement shall have at least one case clause

Mü8004 standard does not include this rule. It could be useful to add this rule to clarify the
necessity of adding at least one case clause in every switch statement.

POINTERS AND ARRAYS:

MISRA –C Pointers and Arrays 17.1

MISRA-C Rule 17.1 Description: Pointer arithmetic shall only be applied to pointers that address
an array or array element

Mü8004 standard does not include this rule. This is a necessary rule to determine how pointers
arithmetic has to be applied in order to have an expected behaviour.

MISRA –C Pointers and Arrays 17.2

MISRA-C Rule 17.2 Description: Pointer subtraction shall only be applied to pointers that
address elements of the same array

Mü8004 standard does not include this rule. This is a necessary rule if the result we want to get
is the number of elements separating the pointers.

MISRA –C Pointers and Arrays 17.3

MISRA-C Rule 17.3 Description: >, >=, <, <= shall not be applied to pointer types except
where they point to the same array

Mü8004 standard does not include this rule. This is a necessary rule if the behavior we want to
obtain after the comparison of the pointers it is a well-defined behavior.

MISRA –C Pointers and Arrays 17.4

MISRA-C Rule 17.4 Description: Array indexing shall be the only allowed form of pointer
arithmetic

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 86

Mü8004 standard does not include this rule. This rule would help to avoid making mistakes like
accessing to invalid memory addresses after manipulation of pointers.

MISRA –C Pointers and Arrays 17.5

MISRA-C Rule 17.5 Description: The declaration of objects should contain no more than 2
levels of pointer indirection

Mü8004 standard does not include this rule. Although this would not be a required rule, it would
help to improve the readability of the code and avoid making mistakes because of the complexity
of instructions.

MISRA –C Pointers and Arrays 17.6

MISRA-C Rule 17.6 Description: The address of an object with automatic storage shall not be
assigned to another object that may persist after the first object has ceased to exist

Mü8004 Rule 0.2.17 does include this rule, as it establishes that addresses of auto variables shall
only be stored in auto variables of the same visibility.

Mü8004 – 0.2.17 Pointer

Mü8004 – 0.2.17 Pointer Rule: Although MISRA-C includes rules about Pointers, it is necessary
to establish the limitation of the relation between pointers and the functions, and pointers and the
definition of some variables.

STRUCTURES AND UNIONS:

MISRA –C Structures and Unions 18.1

MISRA-C Rule 18.1 Description: All structure and union types shall be complete at the end of a
translation unit

Mü8004 standard does not include this rule. This is a basic rule that shows how the definition of
structures has to be made.

MISRA –C Structures and Unions 18.2

MISRA-C Rule 18.2 Description: An object shall not be assigned to an overlapping object

Mü8004 standard does not include this rule. Although this rule refers to low-level programming,
it could be useful in case it is permitted to create two objects having some overlap in memory.

MISRA –C Structures and Unions 18.3

MISRA-C Rule 18.3 Description: An area of memory shall not be reused for unrelated purposes

Mü8004 standard does not include this rule. This could be an interesting rule to avoid making
mistakes by storing unrelated data in the same piece of memory. However, exceptions should be
made for requirements of memory efficiency.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 87

MISRA –C Structures and Unions 18.4

MISRA-C Rule 18.4 Description: Unions shall not be used

Mü8004 Rule 0.2.6 contradicts this rule. Unions could be used in situations in which the use of
unions is advisable for an implementation that has to be efficient in terms of memory.

DOCUMENTATION:

MISRA –C Documentation 3.1

MISRA-C Rule 3.1 Description: All usage of implementation-defined behavior shall be docu-
mented

Mü8004 standard does not include this rule. This could be a useful rule to guarantee that the
standard’s behavior is completely documented and covered by the defined rules.

MISRA –C Documentation 3.2

MISRA-C Rule 3.2 Description: The character set and the corresponding encoding shall be
documented

Mü8004 standard does not include this rule. As standard’s requirements have to be documented,
same thing should be made with encoding of permitted character sets.

MISRA –C Documentation 3.3

MISRA-C Rule 3.3 Description: The implementation of integer division in the chosen compiler
should be determined, documented and taken into account

Mü8004 standard does not include this rule. It should be documented the way arithmetic
operations are done, and what are the limitations of operators and the expected behavior.

MISRA –C Documentation 3.4

MISRA-C Rule 3.4 Description: All uses of #pragma directive shall be documented and explained

Mü8004 standard does not include this rule. Although Mü8004 Rule 0.2.5 establishes that the use
of the #pragma command requires a special explanation in the proof of functionality, it doesn’t
require documenting its use.

MISRA –C Documentation 3.5

MISRA-C Rule 3.5 Description: If it is being relied upon, the implementation defined behavior
and packing of bitfields shall be documented

Mü8004 standard does not include this rule. It could be a useful rule to settle how the work with
bit fields has to be done.

MISRA –C Documentation 3.6

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 88

MISRA-C Rule 3.6 Description: All libraries used in production code shall be written to comply
with the provisions of this document, and shall have been subject to appropriate validation

Mü8004 standard does not include this rule. It could be a useful rule to document what libraries
have been used in the production of the code, or the ones supplied by the compiler.

Mü8004 – 0.2.3 Coding of Basic Structures

Mü8004 – 0.2.3 Coding of Basic Structures Rule: Although MISRA-standard includes the way
of working with basic structures like if-else, switch-case and do-while, Mü8004 standard defines
clearly how this structures have to be defined.

Mü8004 – 0.2.4 Operators

Mü8004 – 0.2.4 Operator Rule: Although MISRA-standard includes explanation for the most
important operators, it is helpful to have a general overview of them within a table.

Mü8004 – 0.2.11 Variables

Mü8004 – 0.2.11 Variables Rule: Mü8004 - 0.2.11 Variables rule explains the correct way of
defining variables. Although the content of this rule has been treated in MISRA-C standard, it is
appropriate to use a specific section to explain the work with variables.

Mü8004 – 0.2.19 Data References

Mü8004 – 0.2.19 Data References Rule: Although MISRA-C includes rules about Documentation,
it is necessary to make a reference to the documentation of data related and not related to the
project planning, and not only to the data and to the libraries used along the code.

Mü8004 – 0.2.20 Cross Reference List

Mü8004 – 0.2.20 Cross Reference List Rule: MISRA-C doesn’t include the necessity of using
cross reference list for the data of the code. It also could be useful to add the characteristics that
need to have the development tools used for this purpose.

Mü8004 – 0.2.21 Assembler Coding

Mü8004 – 0.2.21 Assembler Coding Rule: MISRA-C doesn’t include the necessity of justifying
the use of assembler coding. It is helpful to specifying that assembler could be useful in time
critical programming.

Mü8004 – 0.2.25 Optimization

Mü8004 – 0.2.25 Optimization Rule: Although MISRA-standard includes the importance of
the characteristics of compiler used in the development environment, it is useful to explain the
influence of optimization in the compiler.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 89

4.9 Conclusions

Static analysis tools are very good due to the detection of several problem/errors at code level
that are usually difficult to detect by manual inspection. Furthermore, they help enforce coding
standards and keep code complexity low.

However, these tools sometimes report false positives so it is necessary review them and decide if
they are related with problems or not. Nonetheless, it is recommended to complement the static
analysis tools with manual code inspections (not thought of by the original coder) and dynamic
analysis.

In order to ensure the correctness of the obtained results mentioned in the previous sections, a
comparison of them was executed.

Table 4.28. File Size metrics comparation

Bitwalker.c

Metric RSM LocMetric Understand CMT++

Total lines: 109 110 109 109

Code/program lines: 58 58 58 58

Comment lines: 29 28+5 = 33 33 33

Blank lines: - 24 23 23

As a result of this comparison we obtain that between the tools there are some small deviations
regarding some code metrics like total lines, comments or blank lines. Thus it was necessary to
check how each aspect/metric is defined into each tool.

A manual inspection was done and the source of inconsistency is due to LocMetricss counts
the last blank line of the file and RSM tool does not count the blank lines that are inside one
commented section.

In addition to code size metrics of file, size code metrics per function were compared.

Table 4.29. Functions Size metrics comparation

Metric RSM LocMetric Understand CMT++

Bitwalker_Peek

Total lines: 19 - 20 20

Code/program lines: 12 - 13 13

Comment lines: 5 - 5 5

Blank lines: - - 4 4

Bitwalker_Poke

Total lines: 23 - 24 24

Code/program lines: 16 - 17 17

Comment lines: 6 - 6 6

Blank lines: - - 4 4

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 90

Table 4.29. Functions Size metrics comparation

Bitwalker_IncrementalWalker_Init

Total lines: 5 - 6 6

Code/program lines: 5 - 6 6

Comment lines: 0 - 0 0

Blank lines: - - 0 0

Bitwalker_IncrementalWalker_Peek_Next

Total lines: 6 - 7 7

Code/program lines: 5 - 6 6

Comment lines: 1 - 1 1

Blank lines: - - 0 0

Bitwalker_IncrementalWalker_Peek_Finish

Total lines: 3 - 4 4

Code/program lines: 3 - 4 4

Comment lines: 0 - 0 0

Blank lines: - - 0 0

Bitwalker_IncrementalWalker_Poke_Next

Total lines: 6 - 7 7

Code/program lines: 5 - 6 6

Comment lines: 1 - 1 1

Blank lines: - - 0 0

Bitwalker_IncrementalWalker_Poke_Finish

Total lines: 3 - 4 4

Code/program lines: 3 - 4 4

Comment lines: 0 - 0 0

Blank lines: - - 0 0

The total lines and program lines counts produced by some of the tool for the same product differ
a little bit. The results clearly demonstrate the effects of existing ambiguities in code counting
methodology and a variety of interpretations.

McCabe cyclomatic complexity was another complexity metric calculated by different of the
selected tools.

Table 4.30. function Cyclomatic Complexity comparation

Function RSM Understand CMT++

Bitwalker_Peek 3 3 3

Bitwalker_Poke 5 5 5

Bitwalker_IncrementalWalker_Init 1 1 1

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 91

Table 4.30. function Cyclomatic Complexity comparation

Function RSM Understand CMT++

Bitwalker_IncrementalWalker_Peek_Next 1 1 1

Bitwalker_IncrementalWalker_Peek_Finish 1 1 1

Bitwalker_IncrementalWalker_Poke_Next 1 1 1

Bitwalker_IncrementalWalker_Poke_Finish 1 1 1

According to McCabe a value of 10 is a practical upper limit for the cyclomatic complexity of
a given module. When the complexity exceeds this value, it becomes very difficult to prove,
understand and modify the module. However, in some circumstances, it may be appropriate to
relax the restriction and permit modules with a complexity as high as 15.

Analyzing the cyclomatic complexity metric measured one can observe the low risk of each
function and all tools measured it in the same way.

In relation to the MISRA-C rules, as each tool verifies a subset of the rules defined in this
standard, the results are different. However, the violations relationed with rules that are included
in both RMS and Understand tool have been detected by both tools.

The accepted values for the metrics are defined based on the specific project requirements, project
quality criteria or sector best practices. Depending on the metrics required for a project, one or
more tools can be used. By this reason a selection of some MISRA-C and other standard to be
applied shall be done and each specific violation and quality notice shall be analysed to check
the suitability of applied the rule or not.

Taking into account all the obtained results, we can concluded that:

• the functions and file have a good maintanability due to the maintainability Index is >85 in
both of them

• the functions have little logic and low risk regarding to the cyclomatic complexity values

• the functions and file have an appropiate size and inside the recommendations due to line
metrics and Halstead metrics.

• there are some misra-c rules violations and quality notice although these shall be taken into
account only in case they are related to the selected ruled to be applied.

• there are some functions never used

In addition to these, as each existing static analysis tool implements different and very specific
techniques (code metrics analysis, semantic analysis, context analysis -interactions between
multiple functions calls-, creation of new rules, support coding rules/standard rules, ...) to achieve
the required assessment or verification objectives, it is recommended to select different static
analysis to cover all the commom areas where problems can occur.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 92

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 93

5 Conclusions

This report presents experiments with various static analysis techniques:

1. formal verification with Frama-C/WP (see Chapters 2 and 3)

2. static analysis methods (see Chapter 4)

Deductive verification with Frama-C/WP allows to prove with mathematical strength that soft-
ware satisfies it functional specification. This approach has been applied to railway software [11]
and other software components[12] before. The technical challenge for the software analyzed in
the report at hand is the extensive use of low-level bit operations.

Verification with Frama-C/WP is intended mostly for the level of software components. Thus,
one can imagine that this approach could replace tests on the level of software components but
surely not for software integration and software/hardware integration.

Moreover, deductive verification with Frama-C/WP works most efficiently if there is already a
sufficiently precise informal specification. This was not the case for the Bitwalker which only
was accompanied with a high-level description of its intended functionality. However, neither the
admissible inputs nor the expected results (including error conditions) were properly described.
Instead, this information had to be discovered from the implementation and cross checked with
the software designer.

Since formal verification is a very precise but also relatively expensive technique, it does not
make sense to use it without using cheaper verification techniques first. Specifically, we highly
recommend simpler static analyses from Chapter 4 to quickly identify code deficiencies and to
fix them before a tool like Frama-C/WP is applied.

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 94

This work is licensed under the "openETCS Open License Terms" (oOLT).



OETCS/WP4/D4.2.2 95

References

[1] IEC SC 65A. Functional safety of electrical/electronic/programmable electronic safety-related sys-
tems, part 3 software requirements. Technical Report IEC 61508, The International Electrotechnical
Commission, 2010.

[2] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580 and 583, 1969.

[3] ANSI/ISO C Specification Language. http://frama-c.com/acsl.html, March 2014.

[4] Frama-C Software Analyzers. http://frama-c.com, March 2014.

[5] WP Plug-in. http://frama-c.com/wp.html, March 2014.

[6] Sylvain Conchon, Evelyne Contejean, and Johannes Kanig. Homepage of the Alt-Ergo Theorem
Prover. http://alt-ergo.lri.fr/, 2013.

[7] Clark Barrett and Cesare Tinelli. Homepage of CVC4. http://cvc4.cs.nyu.edu/web,
2014.

[8] Coq Development Team. The Coq Proof Assistant Reference Manual, v8.3 edition, 2011. http:
//coq.inria.fr/.

[9] ISO. ISO C Standard 1999. Technical report, ISO/IEC JTC 1, 1999. ISO/IEC 9899:1999 draft.

[10] Loïc Correnson, Pascal Cuoq, Florent Kirchner, Virgile Prevosto, Armand Puccetti, Julien Sig-
noles, and Boris Yakobowski. Frama-C User Manual. http://frama-c.com/download/
user-manual-Neon-20140301.pdf.

[11] Virgile Prevosto, Jochen Burghardt, Jens Gerlach, Kerstin Hartig, Hans Werner Pohl, and Kim
Voellinger. Formal specification and automated verification of railway software with frama-c. In
INDIN, pages 710–715, 2013.

[12] Kim Völlinger. Einsatz des Beweisassistenten Coq zur deduktiven Programmverifikation. Master’s
thesis (Diplomarbeit), Humboldt-Universität zu Berlin, August 2013.

This work is licensed under the "openETCS Open License Terms" (oOLT).

http://frama-c.com/acsl.html
http://frama-c.com
http://frama-c.com/wp.html
http://alt-ergo.lri.fr/
http://cvc4.cs.nyu.edu/web
http://coq.inria.fr/
http://coq.inria.fr/
http://frama-c.com/download/user-manual-Neon-20140301.pdf
http://frama-c.com/download/user-manual-Neon-20140301.pdf

	Figures and Tables
	List of code examples
	List of Corrections
	Introduction
	Structure of this document

	An introduction to formal verification with Frama-C/WP
	First steps
	Why can Frama-C/WP not verify such a simple function?
	Sharpening the contract of [style=inline]absint
	Separating specification and implementation
	Modular verification
	Dealing with side effects

	Formal verification of the Bitwalker core functionality
	Verification method
	A first look on Bitwalker_Peek and Bitwalker_Poke
	Analyzing Bitwalker_Peek
	Analyzing Bitwalker_Poke

	Informal specifications
	Basic concepts
	Informal specification of Bitwalker_Peek
	Informal specification of Bitwalker_Poke

	Tests for Bitwalker_Peek and Bitwalker_Poke
	Formal specification with ACSL
	Formal specification of Bitwalker_Peek
	Code annotations for Bitwalker_Peek
	Formal specification of Bitwalker_Poke
	Code annotations for Bitwalker_Poke

	Results of formal verification with Frama-C/WP
	Open issues

	Static Analysis of Bitwalker
	Introduction
	Resource Standard Metrics -RSM- Results
	Quality Metrics
	Complexity Metrics

	LocMetrics tool Results
	Understand tool Results
	Clang Static Analyzer tool Results
	CPPcheck tool Results
	Testwell CMT++ Results
	Complexity Metrics
	Maintainability Index

	MISRA and Mü8004 Rules Comparation
	Conclusions

	Conclusions
	References

