
D3.3.2 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

MERgE

ITEA2 – Project #11011

Multi-Concerns Interactions
System Engineering

01.12.2012 to 30.11.2015

Process enactment, deviations & recovery concepts and their
application in use cases

Project Deliverable D3.3.2

Task 3.3 – Advanced concepts in engineering process modelling and enactment (UPMC)

WP3 –Advanced multi-concern engineering concepts (Sam Michiels)

 Status [] Draft

 [] To be reviewed

 [X] Final

Confidentiality [X] Public (for public distribution)

 [] Restricted (only MERgE internal use)

 [] Confidential (only for individual partner(s))

Document created :12.01.2015

Last edited :19.05.2015

Due date :28.02.2015

Date finalised: :19.05.2015

Document version :0.4

Pages :27

Executive summary

This deliverable presents the core concepts regarding software process modelling with a special
focus on process enactment. It initially explains the concept of a process and presents the key
notions used in this domain, according to the state of the art. Then the concepts regarding process
modelling are explained. It further describes the advanced concepts of process modelling and
explains process enactment. It continues on to explain the notions of process planning, deviation and
recovery. Then we present the architecture of the provided tool, PRODAN, for dealing with process
enactment, deviation & recovery. This describes the concepts behind the implementation of tool and
explains the technical choices made for its realization. Finally this deliverable presents the
application of these concepts in the processes acquired from the use cases of the project. This
analysis is explained using a single process from one of our industrial partner. Application of our
methodology on the processes from the use cases allows us to gather feedback on our approach.
This feedback will be taken into account, so that the next deliverable can overcome shortcomings of
the current version of the prototype.

Contributing authors: Fahad R. Golra, Jacques Robin, Regina Hebig, Laboratoire d’Informatique de
Paris 6, Université Pierre et Marie Curie.

If overdue, provide reason here.

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

3

Version. Content Resp. Partner Date

0.1 Process enactment, deviations and recovery
concepts

UPMC-LIP6 15-01-2015

0.2 Process enactment, deviations and recovery
concepts and their application in use cases

UPMC-LIP6 06-03-2015

0.3 Process enactment, deviations and recovery
concepts and their application in use cases.
(Update to overall document structure)

UPMC-LIP6 19-03-2015

0.4 Process enactment, deviations and recovery
concepts and their application in use cases. (post
quality review updates)

UPMC-LIP6 11-04-2015

0.5

0.6

Reviewed & Accepted Name Partner

Independent Reviewer
(outside WP)

Kati Kittilä Codenomicon

Validation from
Management Board

C. Robinson Thales R&T

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

4

Contents

Process enactment, deviations & recovery concepts and their application in use cases 1

List of Figures .. 5

1 List of abbreviations .. 6

2 Process Overview .. 7

2.1 Process Modelling .. 7

2.2 What is a Process?... 7

2.3 Process Modelling Languages and Notations .. 8

2.4 Process-Centered Software Engineering Environments .. 9

3 Executing the Processes .. 10

3.1 Process Enactment .. 10

3.2 Process Management Systems .. 10

3.3 Process-driven Applications ... 11

3.4 Process Enactment issues ... 11

4 Handling Process Deviations ... 14

4.1 Process deviations ... 14

4.2 Deviation detection as a constraint satisfaction problem ... 15

4.3 Deviation Recovery .. 15

4.4 Deviation recovery as a planning problem ... 16

5 Process Modelling Tool - PRODAN .. 18

6 Application to Project Use Case Processes ... 21

6.1 Demonstrator processes .. 21

6.1.1 Industrial Control Systems Process .. 21
6.1.2 Aerospace Process ... 21
6.1.3 Automotive Process ... 21
6.1.4 Radio Communication Process ... 21

6.2 Application to project use cases ... 22

6.3 Feedback from use cases .. 22

7 Conclusion .. 25

8 Bibliography ... 26

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

5

List of Figures

FIGURE 1: PROCESS DRIVEN APPLICATION 10
FIGURE 2: DEDICATED PROCESS MANAGEMENT SYSTEM 11
FIGURE 3: PROCESS DEVIATION CLASSIFICATION 14
FIGURE 4: EXAMPLE PROCESS 16
FIGURE 5: PRODAN ARCHITECTURE 18
FIGURE 6: PROCESS DEVIATIONS 19
FIGURE 7: ANONYMISED PROCESS FROM THE INDUSTRIAL PARTNER 23

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

6

1 List of abbreviations

 BPMN: Business Process Management Notation

 BMP: Business Process Management

 BPI: Business Process Improvement

 COP: Constraint Optimization Problem

 CSP: Constraint Satisfaction Problem

 FUML: Foundational subset for executable UML, sometimes referred to as Formal UML

 MDE: Model-Driven Engineering

 OCL: Object Process Language

 OMG: Object Management Group

 PDL: Process Design Language

 PIL: Process Implementation Language

 PML: Process Modelling Language

 PSL: Process Specification Language

 PSEE: Process-driven Software Engineering Environment

 SPEM: Software Process Engineering Metamodel

 UML: Unified Modeling Language

 WfMS: Workflow Management System

 WS-BPEL: Web Service Business Process Executable Language

 XPDL: XML Process Definition Language

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

7

2 Process Overview

2.1 Process Modelling
The term 'engineering' in software engineering focuses on the systematic and organized procedures
to carry out the activities for software development. In contrast to ad-hoc methods, the target of a
procedure in engineering is not only to achieve goals, but also to accomplish it by following precise
and well-ordered tasks. The greater goal of following such methodology is to ensure quality in these
practices. These well-ordered tasks need to be specified before their actual execution. Well-
documented procedures also allow standardization and possibilities of improvement. Process models
are used to specify these tasks and the order in which these tasks need to be performed in a process.
These processes can be modelled using various languages in different contexts. We will not be
focusing on the specifics of each process modelling approach in this deliverable; instead we are going
to discuss the main concepts of the domain.

2.2 What is a Process?
Process is a generic term that has been used in many fields like Business Process Management
(BPM), Workflow Management (WfM), Business Process Improvement (BPI), etc. These
domains present process as the specification of the core methodology and then the implementations
of the business domains are developed around it. They normally call this process, a 'business
process'. It is defined by Davenport as:

 "A structured, measured set of activities designed to produce a specific output for a
particular customer or market. It implies a strong emphasis on how work is done within an
organization, in contrast to a product focus's emphasis on what. A process is thus a
specific ordering of work activities across time and space, with a beginning and an end,
and clearly defined inputs and outputs: a structure for action. Taking a process approach
implies adopting the customer's point of view. Processes are the structure by which an
organization does what is necessary to produce value for its customers" (Davenport,
1993)

This definition of process focuses on a general structure and motivation of a business process. A
'software process' in our view is also a business process that is targeted towards the development of
software systems. Specifically, software process is defined in the literature as:

"A set of partially ordered process steps, with sets of related artefacts, human and
computerized resources, organizational structures and constraints, intended to produce
and maintain the requested software deliverables" (Lonchamp, 1993)

So we can interchangeably use ‘process’ and ‘software processes’ in this deliverable for two reasons.
First, ‘process’ is a more general term that can be used to explain the core concepts. Second, to
define software process, the software industry uses BPM technologies, where business processes
represent the software processes.

Longchamps's definition can be viewed as an extension to the Davenport's definition of process,
where he focuses on a clear process boundary, well-defined inputs and outputs and a structure of
action, which transforms the inputs to outputs. Numerous other definitions of process can also be
found in the literature, but they all focus on related groups of activities, common goals, and the use of

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

8

people, information and resources (Lindsay, Downs, & Lunn, 2003). Level of granularity in the
definition of process may vary, but the key concepts are fundamental for the completeness of a
process. Processes are defined in detail because adhering to them may be critical for a project's
success, especially for the large-scale projects (Lehman, 1991).

Initially, the software engineering community had put a lot of stress on the linear structure of a
process, which does not fit well with the software development practices. There has been an
argument that workflow view of processes with definable inputs and outputs of discrete tasks, having
dependencies on one another in a clear succession is limiting. So a more flexible definition of a
process is

"Any work that meets the following four criteria: it is recurrent; it affects some aspect of
organizational capabilities; it can be accomplished in different ways that make a difference
to the contribution it generates in terms of cost, value, service, or quality; and it involves
coordination" (Keen, 1997)

This definition does not explain the structure of a process; neither does it constrain the ordering of
activities, it rather focuses on the significant characteristics of a process. We tend to follow this
approach definition in complement with the earlier definitions. This allows us to take processes both
in forms of imperative and declarative representations. Thus we have the flexibility to specify the
processes without focusing on their sequence of execution. In such cases, the processes can be
specified as a collection of activities having multiple constraints on them that guide their execution to
achieve the objectives.

2.3 Process Modelling Languages and Notations
Software process programming started to evolve as soon as the software community started to give
software processes the same importance as that of software programs (Osterweil, 1987). Gradually
software enterprises realized the need to develop processes for each software project. This created a
need for a well-defined approach to describe their processes. Once specified, these processes could
be later on re-used for multiple projects and tailored according to the specific needs of the projects.
They were expected to capture all the details of the product and the organization for developing that
product. To respond to this need, Osterweil suggested a notion of 'process program', which would
describe the work routines of a software enterprise relating to a specific project by taking all the
needed process elements into account (Osterweil, 1987). Gradually, these process programs
evolved into full-fledged languages for formal specification of processes, called Process Modelling
Languages (PML).

Curtis et al. presented four distinct views to describe the elements modelled by the process
programs/models (Curtis, Kellner, & Over, 1992). These views are: 1) Functional View, that covers
the functional dependencies between the processes. These functional dependencies can be input
and output dependency, where the output of one process is an input to the other. 2) Dynamic View,
that covers the control sequencing of the process elements. The control flow and the sequence of
processes describe the overall behaviour. 3) Informational View, that provides the description of work
products used or produced by the process. 4) Organizational view, which includes the description of
the performer of processes and the organizational hierarchy regarding the responsibilities.

The problem with PMLs is the level of detail and formal specification that makes it quite difficult to use
in the industry. For this reason, PMLs are mainly used by academia to formally prove various
assumptions and characteristics of process modelling. However the research carried out on PMLs
gives a formal foundation for high-level process modelling notations. The term 'high level' is to
demonstrate that other languages use a higher level of abstraction, thus hiding the fine details from
the end user. These high level languages can be divided in two categories. First, the Business

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

9

process modelling languages, which provide the possibility to graphically draw the process flows
(Object Management Group, 2011). These process flows are used for discussions between
stakeholders and for keeping the documentations. Originally these languages were not meant to be
executable, but now with growing influence of IT in business, a need to execute them has been
growing. To handle this need, some executable languages have been presented, to which the
business processes can be transformed (OASIS, 2007). The second category is the workflow
models, which also allowed drawing the process flow graphically. They were intended to be directly
executable on a workflow management system. Workflow notations are developed for enactment, so
they need well-defined execution semantics. For the development of information systems using
workflows at the core, the target of the system analysis phase is to understand the process in which
the intended system would be deployed. In some recent endeavours, process models are used to
describe these processes, which are embedded in the information systems and control their execution
(Weigold, Aldinucci, Danelutto, & Getov, 2012).

2.4 Process-Centered Software Engineering Environments
Process Modelling Languages became one of the key research areas of software engineering
research and since then new dimensions on process modelling approaches are being explored. The
development of Process-Centered Software Engineering Environments (PSEE) is based around
the concepts of process modelling. PSEEs are the information systems that provide the notations
and mechanisms for the development of process models. These systems also foster the possibility to
maintain and enact a process model. PSEE offers support for process management in one or more
phases of process lifecycle ranging from requirements specification, assessment and problem
elicitation, (re)-design, implementation to monitoring and data collection (Ambriola, Conradi, &
Fuggetta, 1997). The PSEE is designed to guide/enforce the user in the development process. The
role of PSEEs in guiding a user is classified into four levels from least active to most active as: 1)
Passive role, that operates on user requests 2) Active guidance, where PSEE guides the user 3)
Enforcement, where user is forced to act as per the direction of PSEE 4) Automation, where system
does not require user intervention (Dowson & Fernström, 1994).

A PSEE offers a PML to support the definition of process models, which are then analysed and
enacted by the environment (Türetken, 2007). The analysis of these process models is based on
different properties like consistency, redundancy and circularity. The enactment of the process model
is handled by the environment according to the degree of guidance provided by the PSEE, where it
can demand the user to execute some processes or perform them itself by invoking the related
application and IT tools. The focus of PSEE remains on the analysis and enactment of the
processes, so they rely on formal languages (PMLs) that are very close to software programs
(Bandinelli, Braga, Fuggetta, & Lavazza, 1994; Sutton & Osterweil, 1997). Some recent research
endeavours targeted the use of process models in PSEE by exploiting MDE (Model-Driven
Engineering) (Montoni, et al., 2006; Maciel, Gomes, Magalhaes, Silva, & Queiroz, 2013). Ambriola
et al. provide a classification of PMLs based on the support that they provide for a specific phase of
process lifecycle and the level of abstraction (Ambriola, Conradi, & Fuggetta, 1997). This
classification identifies:

 Process Specification Languages (PSL): they are used for the requirement specification
and assessment of processes.

 Process Design Languages (PDL): they support the design phase of the process
development.

 Process Implementation Languages (PIL): they are used for the implementation and
monitoring of the processes.

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

10

3 Executing the Processes

3.1 Process Enactment
With growing trend of reliance on standardized systems, more and more enterprises are adopting
process driven methodologies, especially for software development. Ideally, all the different activities
performed in a software enterprise should be explicitly defined to promote standardization and
improve control, flexibility and effectiveness of standard practices. In order to deliver quality customer
value, these processes are often supported or at times fully implemented by software systems (Rossi
& Turrini, 2007). A process execution typically involves various applications, services and humans.
Specialized process management systems are developed to integrate and control these processes to
achieve the desired business goal.

3.2 Process Management Systems
These process management systems rely on the inherent behaviour of the process modelling
languages. For industrial use, typically two types of process management systems are in use:
Workflow Management Systems (WfMS) and Business Process Management i.e. Workflow
Management Systems and Business Process Management. In WfMS, a workflow is a process model
that is used to describe process definitions by modelling the contained activities, procedural rules and
associated control data to manage its execution (Hollingsworth, 2004). Each process instance in a
workflow has its own specific set of data associated to that individual process instance. In order to
execute these processes, a workflow engine is required. Workflow engine interprets the (graphical)
workflow representations using a computations form, known as workflow description language. On
the other hand, BPM processes are implemented as web services. For their execution, Web Services
Business Process Execution Language (WS-BPEL) has played the most significant role (OASIS,
2007). WS-BPEL is a language for defining and executing business processes. It is based on web
services and it exploits the web services composition, orchestration, and coordination for realizing
SOA.

Figure 1: Process Driven Application

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

11

3.3 Process-driven Applications
Processes are developed and executed to automate the software development methodologies. In
order to do so, the process engines are connected with the application tools and services. This way,
the complete Information system can be integrated and controlled around the process engine. In
such situations, there are two methods to empower the process engine to control/help in controlling
the rest of the development environment. One of the ways to automate software development is to
embed the process engine within the software application as a component. This component is then
bound to other components of the system that provide the actual functional code, as shown in Figure
1. This way process definition represents the main control logic of the application and process engine
is responsible for triggering other components. Applications developed with this architecture are
called process-driven applications (Weigold, 2010).

Figure 2 depicts the architecture followed by the process management systems (BPMS/WfMS),
where the business process engine is implemented as a standalone software system that interacts
with other software applications, services and humans to achieve the business goal. This architecture
is not very domain specific and allows a generic process engine that can be used with different types
of applications in multiple domains.

3.4 Process Enactment issues

For industrial development, software processes can potentially be modeled using languages coming
from four communities:

 The software process engineering community, which specified its special purpose SPEM
(Software Process Engineering Metamodel) standard (Object Management Group, 2008);

 The model-driven engineering community, which specified the general purpose UML (Unified
Modeling Language) standard (Object Management Group, 2011) to model many different
aspects of a software project, together with its companion standards OCL (Object Constraint
Language) (Object Management Group, 2014) and FUML (Formal UML) (Object
Management Group, 2013);

 The business process and web service modelling community, which specified the BPMN
(Business Process Management Notation) (Object Management Group, 2011) and the WS-
BPEL (Web Service Business Process Execution Language) (OASIS, 2007) standards

Figure 2: Dedicated Process Management System

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

12

that are dedicated to business processes in general, but not specifically to software
processes.

 The workflow modelling community, which specified the XPDL (XML Process Definition
Language) standard (Workflow Management Coalition, 2012) to support interoperability
between workflow engines capable of enacting business processes represented as workflows.

Several syntactic and/or semantic bridges among these various industry standards have been
included in their latest versions. A complete mapping of SPEM to a UML profile has been published
as part of the latest 2.0 version of SPEM. This profile defines stereotypes specializing the main UML
metaclasses in the classes, common behaviours, activities and actions packages. Two formal
semantics have been published in the latest version of the FUML standard. The first of these
semantics is an operational execution semantics defined by a virtual machine implemented in Java.
The second is a declarative axiomatic semantics defined in first-order logic. The first semantics
provides a standard to enact software process models specified as FUML classes, activities and
actions. The second semantics provides a standard to support formal verification of properties of such
models. A SPEM model can thus be enacted and verified by first being mapped into a UML model
decorated with stereotypes from the UML profile for SPEM onto which to run enactment and
verification engines based on the FUML semantics. However, the SPEM profile does not provide
additional semantics that are proper to the stereotyped UML metaclasses as compared to their base
UML metaclasses. Thus today, modelling a software process directly as UML activity diagram is more
convenient for enactment and verification purposes than in SPEM.

Syntactically, WS-BPEL is defined as an XML-schema. Its specification includes an operational
semantics for process enactment. In contrast to UML, it neither provides a concrete graphical syntax,
nor a denotational or axiomatic semantics to support process verification.

BMPN defines such a concrete graphical syntax, as an alternative to those of UML and SPEM.
However, it neither provides a direct operational semantics supporting standard enactment nor a
direct denotational or axiomatic semantics supporting verification. The latest version of BMPN
however includes a mapping to WS-BPEL. The main motivation for this mapping is to support reusing
the operational semantics of WS-BPEL and the available enactment engines implementing it to enact
BMPN process models. However, this mapping is both partial and ambiguous: some BMPN
constructs have no possible correct translation into WS-BPEL while others have several different
possible translations.

XPDL defines an XML serialization of BPMN that can be enacted by many workflow tools, which
accept a process model in XPDL as input and translate it into their internal executable proprietary
workflow language. XPDL can thus be used to enact BPMN processes.

Thus, in order to model software processes using an intuitive graphical notation but nevertheless
enactable following a standard semantics, one has the following choices:

 Modelling using BMPN and enacting it using a workflow engine accepting XPDL inputs;

 Modelling using UML activities and enacting using an activity engine implementing the FUML
operational semantics.

However, one can only use UML activities in order to be able to easily verify properties of the process
model prior or during its enactment. The lack of a standard graphical or axiomatic semantics for
BPMN makes it inappropriate to use it with such usage in mind.

In addition, BMPN only supports representing processes imperatively by way of a model backbone
consisting of strict activity sequences, linked together predominantly by AND, OR, XOR, split and join
nodes. UML activities are also generally used to represent processes in such imperative style.
However, the integration of OCL with UML activities also allows representing looser processes
declaratively by using OCL constraints to define a minimal partial order among activities, instead
forcing them into a somewhat arbitrary strict order sequence using control flows. This is an essential

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

13

property to model highly iterative and agile software processes that have become prominently
adopted over the last decade for non-critical software development in application domains not
subjected to certification obligations

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

14

4 Handling Process Deviations

4.1 Process deviations

We already described that process management systems are responsible for enacting the process
models that are specified in the planning phase. A process management system is responsible for; 1)
taking process model as input and allowing the process agents to realize the software development
activities, 2) making sure that the activities in the process enactment are being realized in the same
way as specified in the process model, 3) the specified artefacts are being produced by the execution
of these activities. In order to take on the above stated responsibilities, a process management
system has to take into account all the ‘abnormal’ situations as well. Real life processes in software
development projects may not follow the exact plan. The reasons for not following the exact plan may
vary; the situational demand, incapacity to execute the process under given circumstances, past
experiences or the volatility/evolution of requirements. In such cases, the Process-centered Software
Engineering Environment (PSEE) should be able to observe the inconsistency between the software
process model and its actual execution.

 Any action of the process agent that is not compatible with the process model is called a deviation. A
precise definition of process deviation found in the state of the art is:

“Deviations are actions that violate the constraints present on the process model over the
sequence of actions or over the artefact states these actions produce“ (Silva, 2012)

A deviation denotes the fact that the process enactment is not conforming to the specified process.
Process deviation itself does not give any reason for such behaviour. A classification of process
deviations can help in understanding the causes that bring the process enactment engine to a non-
conformant state. As shown in Figure 3, we classify deviations into two sub-groups i.e. anomaly and
exception. Anomalies refer to the abnormal enactment of the process model such that it reaches a
‘state’ that was not specified at process design phase. The first main category of deviation is
anomaly. Anomalies can either be inconsistencies or security attacks. An inconsistency is an
operational error that may be caused by information system or human mistake that takes the process
to a state, which was not specified by the process. An inconsistency is a safety threat to the
information system. A security attack is a deliberate action by some human agent to work around the

Deviation

Anomaly

Security (Attack)
Safety

(Inconsistency)

Exception

Implicit Explicit

Figure 3: Process Deviation Classification

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

15

system to achieve a harmful goal. Exceptions are the second main category of Deviations. They
refers to the ‘actions’ performed by the process agents in violation to what was already planned.
Exceptions can be divided into implicit and explicit exceptions. Explicit exceptions are the ones that
are described in the specified process model. Not all process-modelling languages allow specifying
explicit exceptions in the process models. Little-JIL is one of the languages that has developed a very
concrete mechanism to handle explicit deviations in the process models (Cass, Lerner, McCall,
Osterweil, Sutton, & Wise, 2000). Implicit exceptions in a process model are the unexpected
deviations of a process model. These deviations may occur due to unforeseen circumstances,
employee’s over-confidence, etc.

4.2 Deviation detection as a constraint satisfaction problem
Our approach to deviation detection is to view it as a Constraint Satisfaction Problem (CSP) Prior
to enactment. The process modeler-oriented representation of the process model is translated into a
set of constraints expressed as a formula M in a sorted first-order logic. During enactment, the trace
of the actions executed so far is also expressed into a formula T in the same logic. We then use a

constraint solver to check the satisfiability of the formula M T. If the solver answers that this formula
is unsatisfiable, we conclude that the enactment trace is violating a subset of constraints of the
process model and we return these constraints to the process modeler expressed in the modeler

oriented representation. If the constraint solver finds a variable assignment that satisfies M T, we
conclude that the enactment trace is so far respecting the constraints of the process model.

Depending on the expressive richness of the constraints needed in a particular process modelling
domain, different sorted logics and different associated solvers are usable in practice. Therefore, the
translation scheme between the process modeler-oriented representation and the solver-oriented
representation may need to differ in different applicative domains. With respect to variations in
process domain size, one must note that process models with more than 50 elements rapidly become
visually overwhelming for a human user. Therefore, modelling very large process always involves in
practice decomposing it into sub-processes encapsulated into compound activities of a higher-level
process. Then deviation detection can be carried out recursively on small models at each abstraction
level. Consequently, the size of the input formula passed to underlying constraint solver remains
within restricted bounds that ensure that it can return an answer in reasonable time for each call.

4.3 Deviation Recovery
Once the process is process is specified through the development of a process model, it defines the
standard execution paths through the activities. The involvement of human actors in the processes,
at times makes it hard to continue with the specified process and thus we come across process
deviations. Once the process enactment deviates from the standard paths of the specified process
model, the execution of the remaining standard path might not make any sense. Some of the
activities that were not executed or skipped due to a deviation might be mandatory for the process.
Thus a re-planning of the process enactment is required, that guides the user about the new
sequence of execution for the activities in that process.

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

16

Figure 4: Example Process

Let’s take the example of a process to explain the concept of process recovery, as shown in Figure 4.
This process has seven activities starting from ReceiveOrder activity to CloseOrder activity. Let us
suppose that during the executing of this process ReceiveOrder activity was the first activity to be
executed. After the execution of this activity, there were two possibilities to continue the execution
according the specified process; executing FillOrder or CloseOrder activity. However, due to some
internal settlement, ShipOrder activity was selected for execution. This lead to a deviation situation
and the tool detected this deviation. However the user insisted on executing ShipOrder activity. After
the execution of this activity, the tool cannot propose the execution of CloseOrder (or any other
activity in this case). A re-planning of activities is carried out here and the user is guided to execute
the FillOrder activity. It allows the user to continue the execution with SendInvoice activity and
continue till the completion of this process. This re-planning of sequence of execution for the
activities is called process recovery. Process recovery helps the user to come back to the normal
execution of the process, as specified initially. The current implementation of PRODAN can handle all
types of deviations explained in Section 4.1. This ensures support for dealing with security and safety
concerns in process model enactment.

4.4 Deviation recovery as a planning problem
Our approach to deviation recovery is to view it as an artificial intelligence planning problem. The
initial state of the planning problem is the last state of the current process enactment trace. The goal
state of the planning problem is the final state of the process model. The actions of the planning
problem and their associated preconditions and postconditions are those of the process models. Just
as for deviation detection, we thus translate the process-modeler oriented representation into a AI
planner oriented representation. We then run the planner which returns a recovery plan, i.e., an
ordered sequence of actions, or path, that leads from the initial state (i.e., the current enactment
state) to the goal state (i.e., the final process model state).

Note that in the general case, there can be many different goal states and many different paths from
the initial state to any of these goal states. Finding all paths might be computationally expensive and
wasteful in practice. What we need to return to the process modeler is either one or a small set of
plans to choose from based on domain-specific expertise. This indicates that the underlying planner
must not merely find any plan but the best plan(s). In order to do so, the planner must thus be given
some criteria to choose among alternative paths during planning. Common criteria involve minimizing
resource usage such as enactment time or cost.

Note also that in some cases, there may also be no path leading to any goal state from the initial
state. When this happens we alert the process modeler that the process deviations detected can no
longer be fully corrected by any forward action sequences and we offer two possible courses of
action. The first is to jump back to the last point in the deviation path and from there a full recovery
plan is generated. The other is to propose partial forward recovery plans that minimize the deviation
impact at final state. This impact is computed from the process model constraints that will remain
violated in the plan.. In practice, this requires distinguishing between hard constraints that must not be
violated, from soft constraints that can be relaxed, but their violation must be minimized. It may also

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

17

involve attributing weights to the soft constraints. This can be done, in part automatically, by exploiting
the semantics of the user process model representation. However, in the general case, it may require
the process modeler to manually tag or rank the various process model constraints for tie-breaking
purposes.

Finally, it should be noted that the last two decades has witnessed a resurgence of reformulating the
AI planning problem as either CSP or a Constraint Optimization Problem (COP). Many of the most
efficient and scalable planners in recent planning competitions use this approach. This suggests that
the process deviation recovery problem can be translated into a CSP or COP just as the deviation
detection problem. Therefore, a common constraint solver can be re-used for both tasks and most of
the steps to translate from deviation detection problem into a CSP problem accepted as input by such
solver can also be reused to translate the deviation recovery problem into a CSP or COP problem.

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

18

5 Process Modelling Tool - PRODAN

In MERgE, we want to be able to enact software processes. We also want to use verification engines
to automatically detect when the enactment deviated from the process model and search for possible
deviation recovery plans that minimize the number of process model constraints violated at the end of
enactment. We thus need a process modelling language with a standard operational semantics and
axiomatic semantics. In the current state of the published standard, only the UML activity provides
both, which is why it serves as the basis for the PRODAN tool.

PRODAN allows modelling the processes in the process editor view. Once the process model is
specified using the UML activity diagram, it can be enacted from within the tool. The enactment
interface of the tool allows enacting the process by executing the activities on the process model. It
lists all the activities of the process model and gives user the possibility to execute any of the activities
in the model at a given time. Process planning and recovery mechanisms guide the user through the
enactment of the process by suggesting the next candidate activities for execution.

The process specified using the process editor in UML activity diagram is an imperative model. In
our methodology we do not execute the activities of the process model directly. We transform this
imperative process model to a declarative process model. This is carried out by the process engine
implemented in PRODAN, as shown in Figure 4. The process engine takes the UML model as an
input and transforms it into Alloy model. A metamodel for declarative process modelling is developed
in Alloy, which serves as the output metamodel for the transformation definition. This transformation
results in a declarative process model, which is a set of nodes (representing each activity of the
process model) and a set of constraints (representing the control flow between the activities). These
set of constraints are called process rule-set in our methodology. The process engine is also

Figure 5: PRODAN Architecture

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

19

responsible for managing the execution trace of the process. Besides managing the execution trace,
it also keeps track of the state of currently executing activities.

The declarative process model generated from the specified process model can be treated as a CSP.
It describes the logical framework for the execution of the process model, where a token is passed
between each node to simulate its execution. This token is generated from the initial node and is then
passed over to other candidate nodes without violating any constraints. The constraints in the system
are termed as rules of the process rule-set. The first constraint specifies the first node to be
executed in the process model, which by UML specification is the initial node. Other than the initial
node constraint, there are three types of constraints: Response, Precedence and Existence. Let
consider that two activities a and b are modelled in the process model such that the control flow
passes the execution control to b after the execution of a. In this case, these constraints will be:

 Response(a,b) specifying that activity b must be executed anytime during the execution of
the process, once activity a is executed. This does not constrain that activity b is to be
executed directly after a.

 Precedence(a,b) specifying that activity b can be executed only if activity a has already
been executed in the process. This does not constrain that activity a to be executed
directly before the execution of activity b.

 Existence(a) specifying that activity a must be executed exactly once during the execution
of the process.

The constraint satisfaction problem takes into account the logical framework, process rule-set and the
execution trace from the process engine. This CSP is passed on to the solver of AlloyAnalyzer, which
generates a solution for this problem. The solution of this problem is an execution path for the nodes
such that it does not violate any of the given constraints. Generation of this execution path is termed
as process planning in our methodology.

Once the standard execution path is generated for the specified process model, it should execute all
the activities in the given order. However, in the real life situations it is very hard to follow the exact
specified process due to multiple reasons like volatility of the requirements, unforeseen situations that
are not covered by the process, optimization of the process, etc. Figure 6 explains the situation of real
life process enactments where deviations from the specified process are taking place. In these
scenarios, one can choose of ignore the deviations, which results in situations where specified
process is alienated from the real life process. In order to synchronise the real life processes with the
process enactment, the tool has to consider the process deviations. Some of the tools consider the

Figure 6: Process Deviations

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

20

occurrence of process deviations, but their enactment engines are not flexible enough to manage
them. Thus, they restrict any deviation in process enactment, which results in situations where the
users are restricted to the specified process, even if the situations demand to deviate. PRODAN
considers the process deviation and gives the possibility to manage them effectively. For
accomplishing it, our methodology offers the concepts of automatic deviation detection and process
recovery.

Automatic deviation detection in the tool is implemented on the declarative process model. In case of
a process deviation, one or more constraints from the process rule-set are violated. In case of
violation of a constraint, the user is notified about the deviation, however the tool does not restrict the
user from deviating. The warning to the user is generated alongside the details of the particular
constraints that are being violated in case of a deviation. If the user chooses to deviate from the
specified process, the re-planning of the process execution path is carried out. This re-planning of the
execution path is called process recovery in our methodology. In this phase, the CSP takes into
account the execution trace with the deviation. The activities that were skipped due to the deviation
are considered as potential starting nodes for process recovery. Thus CSP is handed over to the
solver of AlloyAnalyzer with last executed node and skipped nodes as starting nodes to generate
multiple execution paths for the process enactment. These execution paths are suggested to the user
in the process enactment interface. The final choice amongst multiple execution paths remains at the
discretion of the user.

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

21

6 Application to Project Use Case Processes

One important reason of development of a process modelling methodology that can handle process
deviations in project MERgE is to support its application across different industrial domains. There
are four distinct use cases in the project that are focusing on the development of a demonstrator for
each use case. These use cases are brought up by the industrial partners to show actual working
constraints in the development of software systems, highlighting the security and safety issues.

6.1 Demonstrator processes
All of the use cases in the project focus on the multi-concern software modelling. None of the use
case providers were following semi-automatically enactable process models in their routine software
development practices. They thus could not deliver to us process models and enactment traces
containing deviations on which to directly evaluate PRODAN However after extensive interactions
with project partners, we were able to design some process models reflecting their practices.
However, due to both intellectual property and privacy issues, these processes are sensitive
information that cannot be fully disclosed in a public deliverable. An overview of these processes is
given below.

6.1.1 Industrial Control Systems Process

A process from the Industrial Control Systems demonstrator was acquired through NSense. This is a
process model that captures the service delivery mechanism used in that industry. This process was
modelled using the process-modelling tool provided by UPMC. Further interviews were conducted to
establish a knowledge base regarding the typical process deviations that occur in Industrial Control
Systems demonstrator.

6.1.2 Aerospace Process

Space applications technical process (OAS-SA-PTD-001) was used to extract the software
development processes used in the aerospace industry. An initial study on the flexibility of their
process in terms of over and under-constrained processes was performed and an internal deliverable
was sent to them. After this, their process was used as a case study for the demonstration of
PRODAN enactment prototype.

6.1.3 Automotive Process

Melexis provided us with the Triaxis Software architecture. This state diagram of the software
architecture was used to extract a basic process from this demonstrator. This allowed us to model
this process. Its characteristics make it similar in nature that the processes extracted for the industrial
control system and aerospace domains.

6.1.4 Radio Communication Process

Arcadia is a confidential proprietary process followed by some Thales division for model-driven
systems engineering. It is generic process that specifies high-level cross-domain guidelines that can
be followed in most Thales application domains, including the Radio Communication domain of Merge
end-user partner and use case provider Thales Communication Systems (TCS). Melody Advanced is
a proprietary modelling tool of Thales Global Systems (TGS) that Thales systems engineers can use
to carry out the system modelling activities prescribed by Arcadia. Through TGS participation to the
Eclipse foundation project Polarsys, the basic core modelling services provided by Melody Advanced
have been released as an open-source tool called Capella. We thus studied Capella to analyse the
small sub-process of Arcadia that it supports. We concluded that it does not present characteristics
that make it very different in nature from the processes extracted from the other domains. Hence,

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

22

systems engineers using Capella, should be able to benefit from the process guidance services of the
kind implemented in PRODAN.

6.2 Application to project use cases
In general, all the processes from different use cases represent the same sort of complexities. A
software development process from any of the domains will constitute of some activities that might be
sequenced in different fashions. These activities in real life might be performed differently in different
domains. To explain the process modelling methodology, we are giving the results here from one of
these processes.

Figure 7 shows a high level process by one of our industrial partners, NSense. This is a service
delivery process from the industrial control systems demonstrator. For intellectual property and
privacy protection reasons, we do not have the right to publish the complete process here. Thus, we
have anonymised the process by changing the name of nodes with the letters of the alphabet and we
do not give details on their descriptions. This process contains 19 Actions, 30 ObjectNodes with 28
Pins and 2 ActivityParameterNodes, 15 ControlNodes with 3 MergeNodes, 3 DecisionNodes, 4
ForkNodes and 5 JoinNodes ; 14 ObjectFlows, 40 ControlFlows, et 4 Partitions. Partitions are not
part of the subset of fUML because they do not have execution semantics. They add information on
the diagram, but do not affect its execution. Thus, the process includes (excluding partitions)
ActivityEdges 54 and 64 ActivityNodes for a total of 118 elements in the UML model.

This process model was developed using the process editor of PRODAN tool. The tools allowed us
to specify the process. The enactment of smaller parts of the process was possible from the
enactment view, however the complete process was too big to be handled by the current process
enactment mechanism. So if we carry out a Single Entry Single Exit (SESE) decomposition of the
process, we can have multiple simpler processes from the same process model. We executed those
SESE process models to demonstrate the capability of the tool.

Using the smaller decomposed process model chunks, we are able to enact the complete process
model, where deviations from the process are automatically detected by PRODAN. In case of any
deviation, the tool not only alerts the user about the deviation but also gives precise information about
the constraints being violated. These constraints give insights about the exact location of the
deviation. It helps the user to locate the exact problem area, in case the deviation was not really
intended by the user and it is a safety or security loophole.

The tool also manages to give recovery guidelines to the user, by suggesting the activities to be
performed next, after a deviation. The planning of the process is initially done according to the
specified process. And the user is guided to follow the plan process initially. But once a deviation
occurs, the normal course of execution is interrupted. In this case, the process engine goes for a re-
planning of activities and suggests the activities to the user keeping in view the already executed
activities through the execution trace.

6.3 Feedback from use cases
Application of our process modelling and enactment methodology on the processes from the four
demonstrators of the project helped us collect the recommendations and feedback on our approach.

The feedback we received was generally positive concerning the practical usability of the tool for
deviation detection on the use cases that they provided. It however pointed out that the assistance
provided by the tool would be greatly enhanced in practice with the addition of a more comprehensive
process recovery guideline functionality. They also laid down three desired requirements for this
functionality. The first is that the guideline generated should not be limited to a set of possible single
actions to execute immediately after deviation detection toward recovery, but should rather consist of
genuine multi-step plans, i.e., action sequences leading from the current deviated point to one of the

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

23

F
ig

u
re

 7
: A

n
o

n
y
m

is
e
d

 p
ro

c
e
s
s
 fro

m
 th

e
 in

d
u

s
tria

l p
a

rtn
e

r

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

24

final goal states of the process. In addition, the feedback suggested a guideline consisting of multiple
alternative recovery plans, ranked by increasing number of constraints violated by the final enactment
trace resulting from appending to recovery plan to the executed actions from the initial state to the
current deviated state. This would allow the project manager to quickly choose between recovery
plans by making trade-offs based on domain expertise. Finally, it was suggested that the user should
be able to label constraints in the process model by an importance weight to be taken into account for
ranking the suggested recovery plans.

We will thus focus the next version of the prototype towards providing these functionalities and testing
the efficiency of their execution using the process model test case that we presented earlier. In terms
of underlying planning technology, we will consider using a Satisfiability Modulo Theory (SMT) solver
instead of the pure SAT solvers provided by AlloyAnalyzer. This should improve the efficiency of both
deviation detection and recovery plan generation with process models with non-Boolean, numerical
constraints such as those dealing with resource allocation and deadlines.

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

25

7 Conclusion

The first deliverable of our team, consisted in an initial deviation detection prototype with its
accompanying user manual. It was focused on explaining the concepts of deviation detection and
deviation recovery guideline generation from the perspective of the user in didactic fashion using
illustrative process models. In this second deliverable, we look “under the hood” and present the
research concepts underlying the implementation of the prototype and discussed alternative
possibilities for its future improvement. We also discuss real world process models that we elaborated
in collaboration with use case partners in several industrial domains to help them assess the practical
usability of our prototype for deviation detection. We also used these industrial process models to
gather further requirements for deviation recovery guideline generation. In the next deliverable, we will
provide a final prototype addressing these requirements. We will also describe performance tests of
this final prototype using the process models described in this second deliverable

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

26

8 Bibliography

Ambriola, V., Conradi, R., & Fuggetta, A. (1997). Assessing process-centered software engineering
environments . ACM Transactions on Software Engineering and Methodology (TOSEM) , 6(3),
283-328.

Bandinelli, S., Braga, M., Fuggetta, A., & Lavazza, L. (1994). The architecture of the SPADE-1
Process-Centered SEE . In B. C. Warboys, Software Process Technology, Lecture Notes in
Computer Science, (Vol. 772, pp. 15-30). Springer Berlin Heidelberg .

Bendraou, R., Combemale, B., Cregut, X., & Gervais, M. P. (2007). Definition of an Executable SPEM
2.0. The 14th Asia-Pacific Software Engineering Conference, APSEC 2007 (pp. 390-397).
IEEE.

Bendraou, R., Jézéquel, J.-M., Gervais, M.-P., & Blanc, X. (2010). A comparison of six uml-based
languages for software process modeling. IEEE Transactions on Software Engineering, 36(5),
662-675.

Cass, A. G., Lerner, A. S., McCall, E. K., Osterweil, L. J., Sutton, S. M., & Wise, A. (2000). Little-
JIL/Juliette: a process definition language and interpreter. The 2000 International Conference
on Software Engineering, ICSE'2000 (pp. 754-757). IEEE.

Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Communications of ACM, 35, 75-90.

Davenport, T. H. (1993). Process innovation: reengineering work through information technology .
Boston, USA: Harvard Business School Press .

Dowson, M., & Fernström, C. (1994). Towards requirements for enactment mechanisms . In B. C.
Warboys, Software Process Technology, Lecture Notes in Computer Science (Vol. 772, pp.
90-106). Springer Berlin Heidelberg.

Hollingsworth, D. (2004). The Workflow Reference Model: 10 Years On . Fujitsu Services, UK;
Technical Committee Chair of WfMC .

Keen, P. G. (1997). The process edge: creating value where it counts. USA: Harvard Business
Review Press.

Lehman, M. (1991). Software engineering, the software process and their support . Software
Engineering Journal , 6, 243-258.

Lindsay, A., Downs, D., & Lunn, K. (2003). Business processes- attempts to find a definition.
Information and Software Techonology, 1015-1019.

Lonchamp, J. (1993). A structured conceptual and terminological framework for software process
engineering. The Second International Conference on the Software Process , (pp. 41-53).

Maciel, R. S., Gomes, R. A., Magalhaes, A. P., Silva, B. C., & Queiroz, J. P. (2013). Supporting
model-driven development using a process- centered software engineering environment.
Automated Software Engineering, 20(3), 427-461.

Montoni, M., Santos, G., Rocha, A. R., Figueiredo, S., Cabral, R., Barcellos, R., et al. (2006). Taba
Workstation: Supporting Software Process Deployment Based on CMMI and MR-MPS.BR. In
J. Münch, & M. Vierimaa, Product-Focused Software Process Improvement, Lecture Notes in
Computer Science (Vol. 4034, pp. 249-262). Springer Berlin Heidelberg .

OASIS. (2007). Web Services Business Process Execution Language (WS-BPEL), Version 2.0.
Retrieved from http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Object Management Group. (2008, April). Software & Systems Process Engineering Meta-Model
Specification (SPEM) Version 2.0. Retrieved from http://www.omg.org/spec/SPEM/2.0/

Object Management Group. (2011). Documents Associated with Business Process Model and
Notation (BPMN), Version 2.0. Retrieved from http://www.omg.org/spec/BPMN/2.0/

D3.3.1 Process Concepts & their application in use cases MERgE ITEA2 Project # 11011

27

Object Management Group. (2011). Documents Associated With Unified Modeling Language (UML),
V2.4.1. Retrieved from http://www.omg.org/spec/UML/2.4.1/

Object Management Group. (2013). Documents Associated with Semantics of a Foundational Subset
for Executable UML Models (FUML), V1.1. Retrieved from
http://www.omg.org/spec/FUML/1.1/

Object Management Group. (2014). Documents Associated with Object Constraint Language (OCL)
Version 2.4. Retrieved from http://www.omg.org/spec/OCL/2.4/

OMG. (2008). Software & Systems Process Engineering Metamodel Specification (SPEM). Version
2.0.

OMG. (2015). (BPMN Model Interchange working group) Retrieved from
http://www.omgwiki.org/bpmn-miwg/doku.php

Osterweil, L. J. (1987). Software processes are software too. The 9th international conference on
Software Engineering, ICSE ’87 (pp. 2-13). Los Alamitos: IEEE Computer Society Press .

Ouyang, C., Dumas, M., Hofstede, A. H., & Aalst, W. M. (2006). From BPMN Process Models to
BPEL Web Services. International Conference on Web Services, ICWS ’06 (pp. 285-292).
IEEE.

Rossi, D., & Turrini, E. (2007). Using a process modeling language for the design and implementation
of process-driven applications. International Conference on Software En- gineering Advances.
ICSEA 2007 (p. 55). IEEE.

Silva, M. A. (2012). Detection and Handling of Deviations in Process-Centered Software Engineering
Environments. PhD Thesis, LIP6/ Université Pierre et Marie Curie, Informatique.

Sutton, S. M., & Osterweil, L. J. (1997). The design of a next-generation process language. In M.
Jazayeri, & H. Schauer, Software Engineering – ESEC/FSE’97, Lecture Notes in Computer
Science (Vol. 1301, pp. 142-158). Springer Berlin Heidelberg.

Türetken, O. (2007). A method for decentralized business process modeling. The Middle East
Technical University. PhD Thesis.

Weigold, T. (2010). A generic framework for process execution and secure multiparty transaction
authorization, University of Westminster, PhD Thesis.

Weigold, T., Aldinucci, M., Danelutto, M., & Getov, V. (2012). Process-driven biometric identification
by means of autonomic grid components. International Journal of Autonomous and Adaptive
Communications Systems, 5(3), 274-291.

Workflow Management Coalition. (2012). XML Process Definition Language (XPDL). Retrieved from
http://www.xpdl.org/standards/xpdl-2.2/XPDL%202.2%20(2012-08-30).pdf

