

 Copyright IDEALISM Consortium

D4.1: Standard interfaces and

exchange formats – baseline

Author, company:

Marc Eheim, IILS

Jürgen Freund, University of Stuttgart

Roland Weil, IILS

Stephan Rudolph, University of Stuttgart

Kjell Bentsson, Jotne

Maarten Nelissen, KE-works

Erwin Moerland, DLR

Roberto d’Ippolito, NOESIS

Martin Motzer, DRÄXLMAIER

Kevin van Hoogdalem, KE-works

Jochen Haenisch, Jotne

Version:

1.02

Date:

August 14, 2015

Status:

Final / Released

Confidentiality:

Public

2/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

CHANGE LOG

Vers. Date Author Description

0.1 16.06.2015 Marc Eheim Initial Document

0.2 18.06.2015 Marc Eheim Added thoughts of Freund (U of Stuttgart)

0.3 19.06.2015 Marc Eheim Added chapter 3 contributed by Weil (IILS)
0.4 22.06.2015 Stephan Rudolph Major rework of Sections 2.1 and 2.2

0.5 30.06.2015 Kjell Bentsson Added section 3.4 “STEP”

0.6 09.07.2015 Marc Eheim Moved chapter 3 to 4; added new chapter 3:
Inventory list of used standards

0.7 10.07.2015 Marc Eheim Added conclusions chapter

0.8 10.07.2015 Maarten Nelissen Added section about BPMN

0.9 15.07.2015 Erwin Moerland Major review of chapters 1 and 2, added information
on task 4.3, added DLR contribution to inventory list
of used standards in chapter 3, added information
concerning section 4.4 “CPACS”

(*) extensions were based on version 0.5, used
comparison tool of MS word to insert changes made
revisions 0.6-0.8. Some revisions are therefore
marked inserted by Moerland, Erwin but are made by
Marc Eheim and Maarten Nelissen

0.10 17.07.2015 Roberto d’Ippolito Added section about OWL

0.11 21.07.2015 Roland Weil Revised amendments/comments by Erwin, cleaned
up document, document ready for feview

0.12 23.07.2015 Roland Weil Minor changes/fixes

0.13 24.07.2015 Martin Motzer Review

0.14 27.07.2015 Kevin van Hoogdalem Review

0.15 28.07.2015 Roland Weil Solved major issues of reviews

0.16 30.07.2015 Jochen Haenisch Revised all sections related to STEP and Jotne.

0.17 31.07.2015 Roland Weil Solved minor issues of reviews (2. iteration)

0.18 31.07.2015 Roberto d'Ippolito Review

1.00 31.07.2015 Roland Weil Cleaned up document, set status to final

1.01 13.08.2015 Marc Eheim Moved XML section to annex

Moved CPACS and graph-based design languages
sections to new chapter “commonly used data
formats”

1.02 14.08.2015 Marc Eheim Change confidentiality to public (approved by all
contributors)

3/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Table of Contents

1 Introduction ... 6

2 Engineering Language Workbench .. 8

2.1 State-of-the-Art ... 8

2.2 Vision .. 9

3 Task breakdown .. 13

3.1 T4.1: Design Language Workbench ... 13

3.2 T4.2: Domain Specific Languages (DSLs) ... 13

3.3 T4.3: Engineering Library .. 14

3.4 T4.4: Standard Interfaces and Exchange Formats ... 14

3.5 T4.5: Modelling of Cable Harnesses .. 15

4 Inventory list of current used data formats ... 16

4.1 Fraunhofer LBF ... 16

4.2 IILS ... 17

4.3 iMinds-DistriNet, KU Leuven.. 18

4.4 Jotne EPM Technology AS .. 19

4.5 KE-works .. 20

4.6 DLR .. 21

4.7 Kontec .. 23

4.8 NOESIS Solutions ... 24

5 Standard Interfaces and Data Formats .. 26

5.1 Standardisation Strategy ... 26

5.2 BPMN ... 26

5.3 OWL ... 27

5.4 STEP – ISO 10303 .. 27

6 Commonly used data formats .. 30

6.1 CPACS ... 30

6.2 Graph-based design languages based on UML ... 31

7 Conclusion .. 32

Annex A: Step on a page .. 33

Annex B: XML... 36

4/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

List of Abbreviations

AP Application Protocol

API Application Programming Interface

BPMN Business Process Model and Notation

CAD Computer-aided design

CAE Computer-aided engineering

CFD Computational fluid dynamics

COTS Commercial off-the-shelf

CPACS The Common Parametric Aircraft Configuration Schema

DSL Domain specific language

FEM Finite element method

IGES Initial Graphics Exchange Specification

JT Jupiter Tessellation

KBL Kabelbaumliste

MDO Multi-disciplinary design optimization

OEM Original equipment manufacturer

OWL Web Ontology Language

PDM Product data management

PLM Product life-cycle management

RDE Resource Description Framework

STEP Standard for the exchange of product model data

SysML Systems Modeling Language

UML Unified Modeling Language

VDA Verband der Automobilindustrie

5/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

VDAFS Verband der Automobilindustrie - Flaechenschnittstelle.

VEC Vehicle Electrical Container

VHDL Very High Speed Integrated Circuit Hardware Description Language

W3C World Wide Web Consortium

WP Work package

XML Extensible Markup Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

6/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

1 Introduction

The objective of work package 4 (WP4) is to develop an Engineering Language Workbench,

allowing the automation of complex engineering design tasks. It enables the generation and

integration of engineering services and workflows into the Advanced Integration Framework,

developed in WP3 of the IDEaliSM project.

The position of the Engineering Language Workbench as well as its relation to the overall design

process within IDEaliSM is depicted in Figure 1 The figure also indicates the relation of the

framework to the different work packages. The overall setup consists of three main phases:

1. The Building Phase, in which the language workbench is used to build a (domain specific)

set of tools and information models. These can be used to execute a certain project.

2. The Configuration Phase, where the set of tools and models is assembled into fully

configured and ready to execute project templates.

3. The Execution Phase, where the fully configured project templates are instantiated and

executed by the end user. This eventually results in the envisioned final product.

The Engineering Language Workbench is used in the Building Phase to create a set of tools,

simulation processes and domain models for a specific engineering task. This task is defined in a

template which is fully configured within the Advanced Integration Framework (WP3). In this

Configuration phase the configured templates in the workflows of the project are created and are

ready for execution. Finally, in the Execution Phase (represented by WP2/WP5 of the IDEaliSM

project) the configured project templates are instantiated and executed by the end user to obtain

the required project result.

Figure 1: Overview of the different phases required for the successful execution

of a typical engineering project as envisioned within IDEaliSM and the role of

the different work packages.

7/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

The Engineering Language Workbench is based on the development of novel so-called “graph-

based design languages” together with their background ontologies. To enable the interoperability

of the various teams and applications a common knowledge base is needed as well as

standardized interfaces and data formats such as CPACS, STEP and UML. Therefore the

Engineering Language Workbench contains five sub-components:

1. The Design Language Workbench itself (section 3.1)

2. A set of domain specific and high-level modelling languages (section 3.2)

3. Engineering Library (section 3.3)

4. Standard Interfaces and Exchange Formats (section 3.4)

5. A method for modelling of cable harnesses (section 3.5)

WP4 follows the overall iterative approach in IDEaliSM and thereby delivers three versions of the

Engineering Language Workbench during the project. During each of the iterations, the sub-

components of the workbench are matured, seamlessly serving the building phase of the use-

cases within the project.

The purpose of this deliverable is to specify the functional and technical requirements for each of

the sub-components of the workbench mentioned above. The requirements analysis will be based

on the definition of the use cases (WP2). After the industrial validation of the first prototype

(WP5), the feedback will be processed and incorporated as new or improved requirements. To

conform to the pace of the framework demonstrator D3.2, the requirements will be finalized in

three iterations. This to ensure each demonstrator prototype is based on the latest requirements.

This document is organised as follows:

 Section 2 contains a description of the state-of-the-art of data exchange standards

(subsection 2.1) and the vision of the standardisation strategy within IDEaliSM (subsection

2.2).

 In Section 3, the different tasks of work package 4 are outlined.

 Section 4 provides an overview of the current state of used tools in the consortium and

their supported data formats and standards.

 Section 5 contains a description of the Standard Interfaces and Data Formats which play a

key role in the project setup.

 Section 6 summarizes the most important aspects

8/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

2 Engineering Language Workbench

The Engineering Language Workbench serves the ultimate goal of modelling multi -disciplinary

simulation and analysis models and tasks. It therefore heavily relies on a set of domain specific

languages (DSLs) and high-level modelling languages as well as ontologies and data standards.

These enable a flexible configuration of engineering workflows and services and a straightforward

integration into the distributed advanced integration framework. Sections 2.1 and 2.2 describe the

current state-of-the-art concerning interfaces and exchange formats and the IDEaliSM vision for

achieving the intended project goals.

2.1 State-of-the-Art

The design of complex cyber-physical systems involves the concurrent development of hardware

and software. Furthermore, the current design and development processes for engineering

complex systems as reflected in the project use-cases (aircraft design, 1-month rudder, 3-weeks

cockpit and 10-day harness) are characterized by heavy multi-disciplinary coupling across

disciplines. The design of such complex systems involves a multitude of domain specialists and

typically follows a system-of-systems approach.

This system-of-systems approach involves usually in a first step the decision making on the

topology (i.e. the architectural design decisions) and the second step the dimensioning of the

design parameters (i.e. the dimensioning of design components). Since many disciplinary mode ls

are used for disciplinary analyses, the consistency between these models in the automated model

generation process plays a crucial role for a successful automation of the model generation

process, frequently occurring in iterative design processes.

It is current state-of the-art that these processing chains of engineering information occur between

different programs and models using a multitude of interfaces. These interfaces frequently rely on

more or less well elaborated and established standards; some of these are open-source, some of

these are proprietary. It is hereby a common experience that despite the fact that interfaces

between major engineering modelling and analysis programs exist, a 100 percent complete and

consistent flow of information from one program to the other is not always guaranteed. Instead,

parts of the information might be lost or distorted during the transmission over the interface.

Manual rework is therefore frequently necessary to check, repair or complete an already

completed digital model once it has been written by one system and been loaded into another

system.

Standards are known to be an important way to support collaboration. When well specified,

standards provide an appropriate trade-off between restriction and guidance. Today’s industry

standards, like STEP, frequently date back more than 20 years. However, they are still largely

underused, either because they are not always flexible or expressive enough for the specific user

needs, because they are too complex and cumbersome to adhere to, because they are replaced

by proprietary data and information exchange formats, or simply because they are ignored.

However, standardisation in terms of information representation format is critical due to several

reasons. First, data formats need to be able to support projects during their entire life-time. In the

aerospace industry this implies a life-span of 50 years and more, in order to ensure maintenance

and certification issues, just to name the most important ones. Then, standards are essential for

collecting, structuring, encoding and debugging engineering knowledge that is too valuable to be

9/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

encoded into any form of a digital proprietary format. If that software supplier goes out of

business, substantial investments on the customer side are at stake.

Interface and design information representation standards are currently controversia lly discussed

in the automotive and aerospace industry. This can be concluded from the quite long list of

alternative standards such as UML, SysML, AutomationML, STEP, VHDL and all kinds of XML

implementations, which have already consumed much development effort and have seen many

updates since. All of the aforementioned standards have both strong and weak points (typically a

standard well suited for representing geometry is not well adapted for representing functional

behaviour and vice versa). Therefore, none of these standards was able to dominate all others

and to become the de-facto market standard so far.

Concerning data exchange in the automotive industry, the landscape of standards is even more

heterogeneous: for the exchange of product geometry, IGES, VDAFS and more recently STEP

AP242 and JT seem to become a de-facto standard, however many OEMs still insist/prefer

exchanging native CAD formats in order to avoid losing (fully or in part) the internal construction

logic or other relevant product data during the translation process. Other domains, such as wire

harness, undergo an similarly radical transformation process as product geometry has underwent

over the last 30 years of CAD systems, but in much less time. As a consequence, current

standards for harness information such as the VEC (Vehicle Electrical Container)
1
 as the

successor of the KBL
2
 standard have not yet fully converged and thus undergo steady

improvements. The German Association of the Automotive Industry (VDA) recommends the VEC

for the exchange of harness design data across process steps.
3

All-in-all, it can be concluded that standards are potentially valuable, but they currently suffer from

certain drawbacks that limit them in the fulfilment of their potential. One of the possible solutions

to overcome these limitations would be the development of a consistent and unified theory of

design. By means of such a unified theory of design, it could be concluded what the real need of

the information flow between different computer programs looks like, facilitating the design of an

almost timeless, enduring standard which would be complete and consistent and therefore a

worthwhile financial investment into valid and secure digital process chains.

2.2 Vision

In the current IDEALISM project, the aforementioned deficiencies of the data exchange formats

underlying the digital process chains have raised the need for the successful development of a

framework consistently supporting the product life-cycle needs of addressing, manipulating and

evaluating design as well as manufacturing knowledge along the entire product life-cycle.

Graph-based design languages all by themselves are a novel way of supporting the activity of

engineering design. They are inspired by natural human languages, in which the vocabulary (i.e.

the words) and the rules (i.e. the building laws) define a so-called language grammar. This means

that any correct sentence in this language (i.e. a permissible vocabulary combination) represents

a valid engineering product variant. Through the automatic compilation of a graph-based design

language in a machine called design compiler, a powerful framework for engineering design can

1
 http://ecad-wiki.prostep.org/doku.php?id=specifications:vec:start

2
 http://ecad-wiki.prostep.org/doku.php?id=specifications:kbl

3
 https://www.vda.de/de/services/Publikationen/Publikation.~1025~.html$

http://ecad-wiki.prostep.org/doku.php?id=specifications:vec:start
http://ecad-wiki.prostep.org/doku.php?id=specifications:kbl
https://www.vda.de/de/services/Publikationen/Publikation.~1025~.html$

10/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

be established. This relieves the design engineering teams by automatic model generation from

tedious routine works, allows know-how re-use of design knowledge by re-use of design rules and

eases topological and parametrical product variations.

In order to fully automate, semi-automatically or interactively assist such design and

manufacturing development activities and processes along the product development process,

novel means to represent the design and manufacturing knowledge needs to be developed. The

so-called design language workbench on the basis of either the so-called “graph-based design

languages”, CPACS, or STEP is intended to solve several important issues in this respect:

 Representing engineering knowledge in a human-readable and digitally processable way

according to the philosophical approach “design as a language”, as it is described in the

book by Brian Arthur (“The Nature of Technology - What It Is and How It Evolves”, New

York, Free Press, 2009).

 Decomposition and structuring of the engineering design knowledge in the form of a

design language with a vocabulary (i.e. building blocks), rules (i.e. building knowledge)

and process knowledge (i.e. building sequences)

 Allowing the merging, mapping and extension of the knowledge representation in form of

design languages by processing mechanisms ensuring consistency and correctness.

 Model generation of all necessary disciplinary engineering analysis models by compilation

of the design language into consistent, domain-specific model representations.

The sought-after engineering design language workbench is based on the representation of both

globally generic engineering background knowledge and locally specific engineering product

design and manufacturing knowledge in a re-useable engineering ontology. For this purpose, the

concept and representation format of so-called graph-based design languages on the basis of the

Unified Modeling Language (UML) will be used and partially extended. Since the creation of such

an equally global generic and locally specific knowledge representation involves the cooperation

of several specialists, as a consequence several means have to be developed in order to ensure

the capability of cooperation of specialists separated in space and time (i.e. support of concurrent

distributed engineering concepts) and to automatically merge and integrate their partial ontologies

into a globally consistent and system-wide accessible and valid re-useable knowledge

representation.

The first goal of the design language workbench involves the following list of syntactical features

definitions and developments:

 Demonstration of automated merging and integration capabilities of separated, partial

ontologies into an overall, system-wide valid ontology to ensure global consistency of

engineering concepts. This includes the development of consistency checks for validation

and verification and the development of knowledge representation regulations to ensure

the correctness of both global representation and processing during its construction.

 Demonstration of automated mapping capabilities of partial ontologies from one

representation format (such as UML) into other data formats (such as CPACS) by means

of import and/or export filters. This is tested in a first step by mapping ontology

information between equivalent vocabulary and rule content represented in CPACS/STEP

and UML.

 Investigation and exploration of round-trip engineering capabilities by means of

establishing a potentially permanent and interactive mapping between a domain-specific

11/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

language (edited in its domain-specific editor) and the generic knowledge representation

in the design language and/or ontology

 Interface and integration of design optimization loops via generic/abstract optimization

“adaptors” coupling the design language components to the optimizer capability. These

depend on the mathematical properties of the representation space (discrete decisions for

topology-based methods versus parametric decisions for gradient-based methods).

The second development goal of the design language workbench involves the following list of

semantical feature definitions and developments:

 Abstract geometry ontology representation. This involves the definition of: geometry

representation in a design language including the demonstration of mappings (i.e.

translation capabilities) of abstract geometry elements to distinct domain-specific

geometry representations in distinct domain-specific languages. This includes

demonstration of extension capabilities for new geometry features. These features allows

to create design trades where function is traded versus form (“form follows function”) and

its inverse trade (“function follows form”), reflecting frequently occurring “top-down” and

“bottom-up” design activities.

 Together with an abstract geometry, an abstract way of representing geometrical

constraints will be developed. It allows the positioning of geometry components in respect

to each other (i.e. component A is located “on top of” component B, or, line A “is

perpendicular to” plane B, etc.).

 Validation of correct geometry constructions by checking the water-proof property of the

geometry in an automated meshing tool.

 Verification of correct geometry construction by means of dedicated test grammars which

systematically test the defined design language features.

Besides the aforementioned aspects of a so-called “abstract geometry”, means to also define

physical properties of objects or processes are provided. For this, an abstract physics ontology

representation needs to be developed. This involves several definitions as follows:

 Physics properties (e.g. material values) have to be represented and mapped to different

target systems. Demonstration and extension capability of an abstract physics ontology

representation.

 Together with an abstract geometry, an abstract way of representing physical boundary

conditions (e.g. flow speed at the wall is zero) is to be developed. It allows the expression

of physical properties related to abstract geometry (i.e. force F “is perpendicular to” plane

C, or, force F “is aligned with” line D.).

 Propagation of the physical properties and enrichment of an automatically generated

mesh with these boundary conditions in an appropriate domain-specific representation

suited for engineering analysis and simulation such as finite element (FEM for structural

mechanics analysis) and finite difference meshing schemes (CFD for fluid mechanics

analysis).

 Validation of mesh enrichment with physical properties in a FEM-analysis (in the 1-month

rudder use-case) and a CFD-analysis (in the 3-weeks cockpit use-case) process by

analysing and comparing the generated simulation results with known reference cases

from industry within the provided use-cases.

12/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

 Verification of correct mesh enrichment with physical properties by analysing and

comparing the generated simulation results of the FEM-analysis and the CFD-analysis

with known reference analytical results (i.e. systematic testing).

For the listed development goals, IDEaliSM will make use of open, internationally standardized

and IP free knowledge representation standards, such as graph-based design languages based

on UML, STEP (and any other data format which can be generated therefrom). This is considered

mandatory for the establishment of a secure and future-proof knowledge processing effort. On the

other hand, IDEaliSM will critically look at the issues faced by present standards and provide

suggestions for improvement (e.g. by providing proposals for future standards like CPACS). For

example, most of the CAD/CAE systems are able to import/export STEP files; however, a lot of

the product information and data structuring is often ignored by these systems, which severely

limits tools interoperability. IDEaliSM will look at STEP standards not only to exchange product

model information including CAD, CAE and PLM data, but also for the definition of the product

structure ontology (STEP ISO 10303) as well as for the structuring requirements (STEP ISO

10303-209/233/-239/242).

The consortium sees a serious chance that a) the design language representation on the basis of

UML will allow the representation of the design knowledge in an international, open source format

independent from a special software vendor company, and, b) that the ontology mapping

capabilities behind the design language workbench will provide an elegant, alternative way out of

the dilemma to favour one standard over all others by providing appropriate translation means

between the already existing individual domain standards as this will be illustrated later via the

mapping between design languages based on UML, STEP and commonly used formats like

CPACS and WFXML.

Since many standards define a data model and a XML schema for the exchange of data between

OEM and supplier there exists a seamless way of integration with design languages based on

UML, by means of style-sheet translation technology.

13/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

3 Task breakdown

3.1 T4.1: Design Language Workbench

The task of creating a Design Language Workbench will be entirely accomplished if methods

could be defined and applied for decomposing and structuring engineering design knowledge in

form of design languages, with a vocabulary (i.e. building blocks), rules (i.e. building knowledge)

and process knowledge (i.e. building sequence).

Design Language definitions, which are developed in T4.2, are a great tool for packing

engineering knowledge into a formalized representation. But to complete such languages , efficient

processing mechanisms for merging, mapping and extending the knowledge have to be

developed ensuring consistency and correctness at all times.

This involves the following developments:

 Automated merging and integration capabilities of partial ontologies into an overall

ontology

 Establishment of round‐trip engineering capabilities between a domain‐specific language

(edited in a domain‐specific editor) and the design language and/or ontology

 Interface and integration of design optimization loop via generic workflow “adaptors”.

3.2 T4.2: Domain Specific Languages (DSLs)

Engineering design knowledge needs formalization to be re-useable. This formalization will be

designed and developed into appropriate domain specific ontologies and representations using

generic and existing ontologies. The resulting Domain Specific Languages will cover the

knowledge for the various use cases, domains and disciplines and will therefore form the building

blocks for the engineering services and workflows in WP3. Representat ions of physics, structural

design and analysis, electrical design and analysis, cost, weight , manufacturing and process

knowledge will be the content of these languages. Abstraction of geometry will be a separate

design language. This abstract geometry ontology allows the mapping of the geometry information

to different distinct CAD modellers and should support a vendor neutral CAD geometry

representation and is of importance to the different domains and use-cases. Implementation of

generic design language components (vocabulary, rules and production systems) do also include

methods for a generic automated 3D routing service, an automated finite element analysis and the

description of business and simulation workflows.

This includes:

 Implementation of a dedicated routing design language for the modelling of use case 2

(harness in 10 days) and use case 3 (3 weeks cockpit) which can interact with other

design languages which express other engineering design tasks.

 Implementation of an interface between the design language workbench and a finite

element solver for use case 1 (rudder in a month).

 Establishment of a set of test examples which allow for the establishment of automatic

testing of individual ontology mapping and routing features.

 Extension of the language workbench to facilitate a generic representation for future

manufacturing means and processes.

 Standardized language to express business and simulation workflows

14/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

3.3 T4.3: Engineering Library

The development of an engineering library will take place to rapidly frontload engineering

programs based on corporate standards.

The library will be composed of the following main features:

 process modules (tasks, deliverables, workflows, human-oriented and simulation-oriented)

 product modules (parts, assemblies)

 design requirements

 rules and constraints

 COTS (design) tools

 engineering services developed in WP3

Interface standards will be developed allowing quick and smooth integration of engineering

modules into the appropriate programs.

The ontologies emerged from the Design Language Workbench will be used to define these

interface specifications, since naturally a lot of variations in languages and structures among the

different (types of) standards exist.

3.4 T4.4: Standard Interfaces and Exchange Formats

In this task data formats and interfaces have to be established which represent the projects

knowledge in an integrated manner.

In aircraft design CPACS (Common Parametric Aircraft Configuration Scheme) is an XML schema

definition for efficient data exchange which is currently becoming a quasi-standard across

institutions in Europe. Beside product information of multi fidelity-levels, process information is

also incorporated within CPACS. This aids in providing settings to the analysis modules with

analysis workflows, steering their behaviour according to the project at hand. The following

extensions to CPACS are envisioned:

 After identifying the analyses to be performed in light of the aircraft design use -cases,

CPACS will be extended to cover features required to cover all product information being

exchanged between the involved analysis modules.

 Within IDEaliSM, the process information storage capabilities of CPACS will be extended,

creating the ability to save process information delivered by the components of the

Advanced Integration Framework.

The possibility of saving data lifecycle information within the central data model will be

investigated. In this, the right balance between data size and readability to data

reproducibility needs to be found.

 Finally, if needed, automated mapping capabilities for different design languages will be

developed by establishing in-/export filters in order to link design languages in CPACS.

STEP, defined in ISO 10303, is a widely used set of standards for the description of arbitrary

product data that also covers requirements of the aeronautics industry. Most CAD/CAE systems

are able to process STEP files. However, their focus is shape data; a lot of the product

information is not supported by these systems, which severely limits tools interoperability.

Therefore STEP will be used within IDEaliSM not only with a sub-set of its capabilities, but in a

more holistic way.

15/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

This includes:

 the exchange of product model information (CAD, CAE and PLM data) using one or

several of the standards STEP ISO 10303-209/233/239/242

 the integration and management of such information from different sources in a consistent

database

 the definition of the product structure ontology (STEP ISO 10303)

 Incorporation of KBL and its successor VEC into the list of addressed standards.

STEP is a set of standards that grows as new industry requirements appear . Some of these

standards, like AP233 and AP239 apply relatively general data model concepts; these can be

specialized by a reference data ontology to meet concrete industrial needs. Else, as STEP is

defined by means of the formal data modelling language EXPRESS, standardized as ISO 10303-

11, non-standard extensions may be added to STEP data dictionaries to incorporate locally

required product information.

3.5 T4.5: Modelling of Cable Harnesses

This task concerns the development of a specific solution for harness stiffness simulation. A

prediction of the mechanical behaviour of cable harnesses for cable routing simulations will be

developed. Using the approach of the Finite Element Method (FEM) the harness stiffness for

every occurring cross section can be determined. The large variety of cross-sections of cable

harnesses will be categorized. Furthermore uncertainties regarding geometrical dimensions,

material properties or other cable specific information will be investigated. A semi -automated

software tool will be used for the prediction of cable harness stiffness and results will be validated

with experimentally measured data (this links to WP5).

This task contributes to Design Languages (T4.2) and is a part of the Engineering Library (T4.3)

as a tool to calculate harness stiffness data.

16/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4 Inventory list of current used data formats

This section is an inventory list of current tools of the solution providers and their supported

standards, API’s and data formats. Possibilities of interoperability between these tools can be

elaborated.

4.1 Fraunhofer LBF

Software application name

(version)

LBF-CHSSC (Cable Harness Segments Stiffness Calculator)

Engineering services provided Stiffness Calculation of Cable Harness Segments

Operating system (version) Microsoft Windows 7

Java Runtime Environment 8

Ansys (R14.5, R15.0)

Screen resolution > 1200 x 850 pixel

Virtual machine support (version) No?

Data formats support (version) tbd (KBL, VEC support planned, maybe also XML, STEP or CPACS

support useful)

Information model availability,

name (version)

?

Information modelling language to

document the information model

tbd

Programming languages support tbd

API support tbd

Web-services support ?

Provided test data tbd

Contact name (email address) Christoph Tamm (christoph.tamm@lbf.fraunhofer.de)

Other information

mailto:christoph.tamm@lbf.fraunhofer.de

17/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.2 IILS

Software application name

(version)

DesignCompiler43 (version 2.1)

Engineering services provided 3D cable routing

Operating system (version) Windows, Linux (no special version)

64-bit recommended

Virtual machine support (version) with client operating system Windows or Linux

Data formats support (version) datasets: *.xls

electrical information: *.kbl

geometrical information: *.step, *.stl, *.vtp

Information model availability,

name (version)

own data model based on UML

Information modelling language to

document the information model

UML

Programming languages support Java, (xtend)

API support No / not yet

Web-services support No / not yet

Provided test data none

Contact name (email address) Marc Eheim (eheim@iils.de)

Other information

mailto:eheim@iils.de

18/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.3 iMinds-DistriNet, KU Leuven

Software application name

(version)

Impera

Engineering services provided Integrated configuration management for automated cloud

deployment

Operating system (version) Linux (CentOS, Fedora, Ubuntu)

Virtual machine support

(version)

yes

Data formats support

(version)

NA – not applicable

Information model

availability, name (version)

NA – not applicable

Information modelling

language to document the

information model

NA – not applicable

Programming languages

support

NA – not applicable

API support Python

Web-services support yes

Provided test data NA

Contact name (email address) Stefan Walraven (stefan.walraven@cs.kuleuven.be)

Bert Lagaisse (bert.lagaisse@kuleuven.be)

Bart van Brabant (bart.vanbrabant@cs.kuleuven.be)

Other information https://github.com/impera-io/impera

Support for deploying on OpenStack (private cloud) and Amazon AWS

mailto:stefan.walraven@cs.kuleuven.be
mailto:bert.lagaisse@kuleuven.be
mailto:bart.vanbrabant@cs.kuleuven.be
https://github.com/impera-io/impera

19/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.4 Jotne EPM Technology AS

Software application name

(version)

EXPRESS Data Manager (EDM)

Engineering services provided ISO 10303 STEP data exchange, integration and archival

Operating system (version) Windows/Unix/Linux/MacOs

Virtual machine support

(version)

yes

Data formats support

(version)

XML(P28), STEP (P21)

Information model

availability, name (version)

All ISO 10303-11 application protocols and user defined schemas

Information modelling

language to document the

information model

EXPRESS

Programming languages

support

C/C++, JAVA, .NET, EXPRESS-X

API support Yes

Web-services support Yes

Provided test data GLIDER Aircraft

Contact name (email address) Kjell Bengtsson (kjell.bengtsson@jotne.com)

Other information

mailto:kjell.bengtsson@jotne.com

20/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.5 KE-works

Software application name

(version)

KE-chain v1.3.8

Engineering services provided Engineering Process Management component in the IDEaliSM

Integration Framework

Operating system (version) Linux based server deployment (Ubuntu-, RHEL-, Debian- based)

Virtual machine support

(version)

VMWARE & VirtualBox

Data formats support

(version)

Custom

Information model

availability, name (version)

Product Information Model, Workflow Information Model

Information modelling

language to document the

information model

The Workflow Information Model is loosely based on BPMN, the

Product Information Model is based on influences from Step & UML

object modelling

Programming languages

support

Python

API support -

Web-services support REST, SOAP

Provided test data -

Contact name (email address) Maarten Nelissen (maarten.nelissen@ke-works.com)

Other information

mailto:maarten.nelissen@ke-works.com

21/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.6 DLR

Software application name

(version)

Remote Component Environment (RCE), v6.2.1 and higher

Engineering services provided A distributed, workflow-driven integration environment in which

complex calculation and simulation workflows consisting of existing

design and simulation tools on dedicated servers can be created,

managed and executed.

libraries to connect analysis modules to the central data model CPACS

Operating system (version) Red Hat Enterprise Linux 6 Workstation (64 bit)

Debian 7 stable (64 bit)

SUSE Linux Enterprise Desktop ("SLED") 11 SP2 (64 bit)

Windows 7 (64 bit)

Virtual machine support

(version)

possibly, not used up until now

Data formats support

(version)

data formats depend on integrated design and simulation tools

extensions are provided for XML file handling (using xml interfacing

(TIXI) and geometry interfacing (TIGL) libraries for CPACS v2.3 and

higher)

Information model

availability, name (version)

Common Parametric Aircraft Configuration Schema (CPACS), Version

2.3

Information modelling

language to document the

information model

XSD (XML Schema Definition)

Programming languages

support

All languages are supported. Supporting libraries provide interfaces

for: C/C++, Python, MATLAB and FORTRAN. Java if required

API support yes: Java for RCE, C++ for CPACS supporting libraries

Web-services support

Provided test data internally developed medium-range transport aircraft described in

CPACS, VAMPzero conceptual design tool + GUI interface embedded

in RCE

Contact name (email address) Erwin Moerland (erwin.moerland@dlr.de),

Thomas Zill (thomas.zill@dlr.de)

mailto:erwin.moerland@dlr.de
mailto:thomas.zill@dlr.de

22/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Other information Contact persons of DLR’s software department:

Doreen Seider (doreen.seider@dlr.de),

Robert Mischke (robert.mischke@dlr.de)

Software application name

(version)

Multiple Aircraft Analysis Tools

Engineering services provided disciplinary analyses for aircraft conceptual and pre-design purposes

libraries to connect analysis modules to the central data model CPACS

Operating system (version) Mostly Windows 7 (64 bit), some Linux

Virtual machine support

(version)

possibly, not used up until now

Data formats support

(version)

All support CPACS v2.3

Information model

availability, name (version)

Common Parametric Aircraft Configuration Schema (CPACS), Version

2.3

Information modelling

language to document the

information model

XSD (XML Schema Definition)

Programming languages

support

All languages are supported. Supporting libraries provide interfaces

for: C/C++, Python, MATLAB and FORTRAN. Java if required

API support C++ for CPACS supporting libraries

Web-services support

Provided test data internally developed medium-range transport aircraft described in

CPACS

Contact name (email address) Erwin Moerland (erwin.moerland@dlr.de),

Thomas Zill (thomas.zill@dlr.de)

Other information Software tools remain the proprietary of the tool developer, therefore

individual tool contact persons vary throughout DLR

mailto:doreen.seider@dlr.de
mailto:robert.mischke@dlr.de
mailto:erwin.moerland@dlr.de
mailto:thomas.zill@dlr.de

23/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.7 Kontec

Software application name

(version)

DesignCompiler43 (version 2.1) Plugin

Engineering services provided Interface for FEM simulation in Compiler 43

Engine & Exhaust aftertreatment development

Operating system (version) Windows 7

Virtual machine support

(version)

?

Data formats support

(version)

datasets: .xlsx, .txt

meshing information: .unv (GMSH), .inp (Abaqus)

geometrical information: .stp, .stl, .step

FEM results: .frd (Calculix)

Information model

availability, name (version)

own data model based on UML

Information modelling

language to document the

information model

UML

Programming languages

support

Java, VBA

API support No / not yet

Web-services support No / not yet

Provided test data none

Contact name (email address) Qi Xie (qi.xie.dif@kontec.de)

Other information

mailto:qi.xie.dif@kontec.de

24/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

4.8 NOESIS Solutions

Software application name

(version)

Noesis Optimus 10.16 and higher

Noesis Optimus 11 enterprise platform

Engineering services provided A commercial off the shelf product integration and design

optimization tool for complex and distributed multidisciplinary

optimization problems. Provides simulation workflows, design and

analysis methods for exploration and optimization, surrogate

modelling for model-based predictions, robustness and reliability

analysis, uncertainty quantification. Interfaces are provided to most

commonly used commercial tools, provides inclusion and extension of

optimization and metamodeling features, fully scriptable in Python

2.7. Already established in major aeronautic and automotive industry.

Full support to CPACS and any XML structured format available.

Operating system (version) Windows Server 2003 on x86 and x86-64 (both AMD & Intel hardware)

Windows Vista on x86 and x86-64 (both AMD & Intel hardware)

Windows Server 2008 on x86 and x86-64 (both AMD & Intel hardware)

Windows 7 on x86 and x86-64 (both AMD & Intel hardware)

Windows 8/8.1 on x86 and x86-64 (both AMD & Intel hardware)

Linux SUSE Enterprise 10.3 and higher on x86 and x86-64 (native 64-

bit supported)

Linux RedHat Enterprise 5, 6 and 7 on x86 and x86-64 (native 64-bit

supported)

Linux CentOS 5, 6 and 7 on x86 and x86-64 (native 64-bit supported)

Virtual machine support

(version)

Yes, all virtualization engines compatible with the operating systems

above + UBUNTU

Data formats support

(version)

CATIA, MATLAB, LMS Virtual.Lab, Ricardo Wave, MS Excel, LMS

Imagine.Lab, ANSYS Workbench, ANSA, LS-Dyna, Sigmetrix, PTC Pro/E

4 and 5, XML Generic, Moldflow, SpaceClaim, CoCreate, CD-Adapco

Star CCM+, Calc (Linux Excel), JMAG, Siemens NX (CAD+CAE),

MapleSim, Maple, AVL Excite/Boost, MSC Nastran OP2, Samcef, GT

Power, SimulationX, MSC Adams Cars/View, Flowmaster, Abaqus, MSC

Nastran bulk (f06, blk)

Information model

availability, name (version)

Workflow XML 1.0

Information modelling

language to document the

information model

Worfklow XML (WFXML, based on a specific XSD grammar)

25/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Programming languages

support

C++, Python

API support Python

Web-services support Can connect to REST services as client.

No REST server yet implemented (planned)

Provided test data none

Contact name (email address) Roberto d’Ippolito (roberto.dippolito@noesissolutions.com)

Other information

mailto:roberto.dippolito@noesissolutions.com

26/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

5 Standard Interfaces and Data Formats

Exchanging knowledge in a consistent way is fundamental to the success of the integration

project. The consortium has identified several data formats in which the central product model

could be described. These data formats and might be used as interchange formats. This section

starts with a description of the master data management (MDM) module, performing the central

management of data within the advanced engineering framework.

5.1 Standardisation Strategy

Figure 2: Data Formats contributing to the MDM

In order to guarantee consistent data management in WP4, a master data management (MDM)

module will be established, depicted in Figure 2. This MDM is capable of providing data to the

other modules within the Advanced Integration Framework, in the data format requested by the

implementation. This implies the data types used through the MDM can differ from one use-case

to the other. If the implementation of a use-case requires exchanging information between the

involved data standards, converter tools will be established aiding in the translation from the one

to the other. For the data exchange between the standard data formats and the workbench

functionalities (e.g. FEM, Routing …), the ontologies of corresponding design languages act as

interfaces (developed in T4.2). These ontologies are published and maintained by the design

language developers and integrated into the standard data formats of the master data model.

5.2 BPMN

The Business Process Modelling Notation (BPMN) is a widely-accepted standard for modelling

business processes but also technical workflows. Initially, BPMN was a standard that only

specified how a process can be visualized in a diagram but since its latest version 2.0 it also

specifies a formal data representation that allows for a standardized exchange of process models.

Since IDEaliSM aims to create an Integration Framework to integrate multiple disciplines,

departments, sites and even companies, process models play a major role in the project. Hence,

27/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

BPMN is highly relevant for the project. BPMN 2.0
4
 will be used in the IDEaliSM framework by the

Engineering Process Management module and in interaction with the simulation workflow module.

In BPMN a process consists of multiple activities and events (incl. its starting point and its end)

that are structured in a sequential flow (that may also feature parallel and/or alternative process

flows). It also allows for modelling organizational responsibilities for activities using the

mechanism of swim lanes (a visualization approach that is mainly targeted at a management

audience) and one may specify documents and/or development artefacts as inputs and outputs of

activities. Nesting of processes is also possible. Finally, BPMN provides a set of specialized

modelling elements for specifying details that are only relevant for workflow management (such as

email notification events or task timeouts, etc.).

Since BPMN, as a data format, is not only meant for exchanging process models but also for

exchanging process diagrams, it also features information about the visualization of process

elements as an integral part of its data representation. These elements are irrelevant for the

IDEaliSM project. There must be investigated how the BPMN model relates to the information in

the other models used in the tool in the IDEaliSM framework.

5.3 OWL

The Web Ontology Language (OWL) is a family of knowledge representation languages for

authoring ontologies. Ontologies are a formal way to describe taxonomies and classification

networks, essentially defining the structure of knowledge for various domains: the nouns

representing classes of objects and the verbs representing relations between the objects.

Ontologies resemble class hierarchies in object-oriented programming but there are several

critical differences. Class hierarchies are meant to represent structures used in source code that

evolve fairly slowly (typically monthly revisions) whereas ontologies are meant to represent

information on the Internet and are expected to be evolving almost constantly. Similarly,

ontologies are typically far more flexible as they are meant to represent information on the

Internet coming from all sorts of heterogeneous data sources. Class hierarchies on the other hand

are meant to be fairly static and rely on far less diverse and more structured sources of data such

as corporate databases.

The OWL languages are characterized by formal semantics. They are built upon a W3C XML

standard for objects called the Resource Description Framework (RDF).

5.4 STEP – ISO 10303

The growing need for interoperability of different CAD-systems resulted in the initial release of the

ISO 10303 standard in 1994 under its title: “Industrial automation systems and integration -

Product data representation and exchange”. Today the Standard for the Exchange of Product

Model Data (STEP) – as ISO 10303 is often informally referred to - is well tested and widely used

daily, especially in the CAD area. STEP, however, covers not only most of the scope of current

CAD-systems, but also most of the remaining data needed to describe a product during its

4 http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/BPMN/2.0/

28/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

lifecycle, such as analysis, manufacturing and operational data. Not all of the STEP capabilities

are supported by commercial actors today.

Figure 3 illustrates the development of and its coverage of industrial data over the years : The

STEP standard

Figure 3: The development of the STEP standard over the years

There are the following reasons for the good uptake of STEP by industry:

 STEP can represent volume models with the required industrial accuracy and quality;

 STEP integrates product shape with other product properties and life-cycle information;

 STEP is a formal data model specified by the language EXPRESS (ISO 10303-11), which

is among the most powerful data modelling languages with respect to constraining a

model; this enables high data quality due to automated data verification and validation;

 STEP is not only an information model, but defines also several implementation methods,

such as, file formats and database access interfaces;

 STEP has a framework for testing of vendor translators, CAx-IF (implementers forum);

 STEP has no serious competitors.

STEP is not a single document, but a series of standards; each document is called a Part. The

following Part-numbering system has been imposed on ISO 10303 for its various aspects:

Part 1 : Overview and fundamental principles
Parts 10-19 : Description methods
Parts 20-29 : Implementation methods
Parts 30-39 : Conformance testing methodology and framework
Parts 40-99 : Integrated generic resources
Parts 100-199 : Integrated application resources
Parts 200-299 : Application protocols
Parts 300-399 : Abstract test suites
Parts 400-499 : Application Protocol Modules
Parts 500-999 : Application interpreted constructs
Parts 1000-2999 : Application modules
Parts 3000-... : Business Object Models.

29/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Additional details of ISO 10303 are included in Annex A: Step on a page.

For IDEaliSM mainly APs 209, 239 and 242 are of interest as they cover the industry domains of

the IDEaliSM partners and have considerable commercial support.

30/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

6 Commonly used data formats

This chapter contains wide-spread data formats, which are used in design processes every day.

However these data formats are not a standard yet. These common information formats are often

based on XML (see annex).

6.1 CPACS

The conceptual and preliminary phases of aircraft design ranging up to high fidelity

Multidisciplinary Design Optimization (MDO) are characterized by their interdisciplinary character

as well as by an agile way of collaboration between heterogeneous partners. Agility goes in line

with the frequent establishment of links between analysis services. In this context the XML

schema CPACS (Common Parametric Aircraft Configuration Schema) was developed by DLR to

establish these links with minimum effort.

CPACS is a data definition for the air transportation system. Using a central model approach, the

number of interfaces between analysis modules within a design system is decreased significantly,

as shown in Figure 4. Furthermore, by adhering to a standard for data exchange, exchanging

analysis modules within a design process is significantly simplified.

Figure 4: A Central Model Approach significantly reduces the amount of

interfaces within a design process

The development of CPACS for aircraft design began in 2005. CPACS enables engineers to

exchange information between their tools. It is therefore a driver for multi -disciplinary and multi-

fidelity design in distributed environments. CPACS describes the characteristics of aircraft,

rotorcraft, engines, climate impact, fleets and mission in a structured, hierarchical manner. Not

only product but also process information is stored in CPACS. The process information helps in

setting up workflows for analysis modules. The scope is by now enlarged to take into account

topics such as high-lift, noise and climate impact, engine design and air transportation system

modelling. CPACS can be combined with existing aircraft design systems.

Several analysis modules are connected to CPACS. An example of information extracted by

multiple disciplinary analysis modules is shown in the Figure 5. Different models for structure,

aerodynamic and load analysis can be derived from the same file. As all models are derived from

the same data it is assured that they rely on the same references, i.e. geometry. Multi-disciplinary

processes are therefore enhanced from central model applications.

31/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Figure 5: Example of multi-disciplinary analysis using CPACS

Furthermore, CPACS is a hierarchic data structure therefore it is possible to work on different

levels of fidelity. The deeper the structure the more detail is present.

As CPACS is a medium for communication it is supposed to be an open standard. It is available

as Open Source Software under the Apache 2.0 license and further information can be found at

https://software.dlr.de/p/cpacs/home/.

6.2 Graph-based design languages based on UML

Graph-based design languages are a novel way of supporting the activity of engineering design.

They are inspired by natural human languages, in which the vocabulary (i.e. the words) and the

rules (i.e. the building laws) define a so-called language grammar. This means that any correct

sentence in this language (i.e. a permissible vocabulary combination) represents a valid

engineering product variant. Graph-based design languages are expressed on the basis of the

internationally standardized Unified Modeling Language (UML) format and are therefore easily

readable, editable and storable based on publicly available UML tools.

https://software.dlr.de/p/cpacs/home/

32/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

7 Conclusion

This document created a foundation for the creation of tool interconnectivity and interoperability

within the IDEaliSM project. Section 3 provided an overview of the tools that will be incorporated

in the project by the solution providers. The list of supported interfaces and formats defines the

baseline for data exchange. Section 4 provided an overview of the intended usage of data formats

in the Master Data Management module within the Advanced Integration Framework as

developed in Work Package 3 of the project.

At this stage of the project the use-cases are not yet fully defined. The types of information

required to work out the use-cases can still vary during the course of the project. Ontologies

describing the information have to be defined and integrated into a common information model

like CPACS or STEP as well as in graph-based design languages based on UML.

Also depending on in-house processes of different companies it is likely necessary to handle

different Domain Specific Languages and data formats beside the currently supported ones

(section 3) and proposed in section 4. At a later stage, the required information could be

incorporated into the integrated data formats or alternatively appropriate converters have to be

created where necessary.

33/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Annex A: Step on a page

This annex includes a summary of ISO 10303 STEP on three pages: a description, an overview of

resource parts and an overview of modules. These documents are maintained by NIST, USA

(http://www.mel.nist.gov/sc5/soap/).

http://www.mel.nist.gov/sc5/soap/

34/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

35/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

36/36

Document: Standard interfaces and exchange formats – baseline

Version: 1.02

Date: August 14, 2015

Annex B: XML
The Extensible Markup Language (XML) is a markup language to create common information

formats and electronically share structured data using standard ASCII text. XML formats are

characterized by their flexibility and simplicity and therefore they are human (and machine)

readable. XML is playing an increasingly important role in the exchange of data. For example

UML, CPACS and the harness information standards KBL and VEC are formatted using XML.

To formally describe the elements in a XML document, a XML Schema Definition (XSD) can be

used. XML Schemas express shared vocabularies and rules for defining the structure, content

and semantics of XML documents. To transform the structure of an XML document into an XML

document with a different structure, XSLT (Extensible Stylesheet Language Transformations) are

usually used. For all three standards (XML, XSD, XSLT), recommendations on usage are

provided by the W3C.

