

D2.3.1 Overview and Comparison of

Existing Generators
ModelWriter
Text & Model-Synchronized Document Engineering Platform

Work Package: WP2

Task: T2.3 – Overview and Comparison of Existing Generators

Edited by: Claire Gardent

Claire Gardent <claire.gardent@loria.fr> (CNRS)

Date: 30-Apr-2015

Version: 1.0.0

Apart from the deliverables which are defined as public information in the Project Cooperation

Agreement (PCA), unless otherwise specified by the consortium, this document will be treated as

strictly confidential.

2

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 2 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Document History

Version Author(s) Date Remarks

1.0.0 Claire Gardent 30-Apr-2015 Initial Release

3

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 3 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Table of Contents

DOCUMENT HISTORY ... 2

1. INTRODUCTION ... 5

2. A BRIEF OVERVIEW OF NLG .. 6

3. DOCUMENT PLANNING ... 7

3.1. CONTENT SELECTION ... 7

3.1.1. Top-Down approaches ... 7
3.1.2. Bottom-Up Open Planning .. 8

 Content Selection as Natural Language Directed Inference .. 8
 Content selection as a classification task .. 10
 Content Selection as an Optimisation Task ... 10
 Unsupervised Graph-Based Approach .. 11

3.2. CONTENT PLANNING ... 12

3.2.1. Combinatorial Pattern Matching ... 12

3.2.2. Evolutionary Algorithm .. 13
3.2.3. A Statistical Approach ... 15
3.2.4. A Classification Approach .. 15

4. MICROPLANNING .. 16

4.1. LEXICALISATION ... 16

4.1.1. Verbalisation Templates for RDF Subgraphs ... 16
4.1.2. Verbalising RDF data using Ontology Lexica ... 17

4.2. GENERATING REFERRING EXPRESSIONS ... 20

4.2.1. Full Brevity, Greedy and Incremental Search ... 20
4.2.2. A Corpus Based Investigation of Architectures ... 21

4.2.3. Combining a Sentence Planner and a Maximum Entropy Model for Referring Efficiency

 21

5. SURFACE REALISATION ... 24

5.1. INVERSE PARSING .. 24

5.2. A MAXIMUM ENTROPY FRAMEWORK FOR SURFACE REALISATION.. 24

5.3. GENERATION BY INVERTING A SEMANTIC PARSER THAT USES STATISTICAL MACHINE TRANSLATION

 26

6. JOINT APPROACHES ... 28

6.1. COMPREHENSIVE PROBABILISTIC GENERATION ... 28

6.2. A HIERARCHICAL DISCRIMINATIVE APPROACH .. 30

6.3. GENERATION WITH A PCFG REPRESENTED AS AN HYPERGRAPH.. 31

6.4. INTEGER LINEAR PROGRAMMING FOR CONTENT SELECTION, LEXICALISATION AND AGGREGATION

 32

6.5. A RANKING FRAMEWORK FOR PLANNING AND REALISATION ... 33

7. CONCLUSION... 35

4

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 4 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

8. BIBLIOGRAPHY .. 37

5

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 5 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

1. Introduction

Given some input and a given communicative goal (e.g., describing an entity or summarising the

input data), Natural Language Generation (NLG) aims to produce a text that satisfies this

communicative goal given the provided input.

Contrary to Natural Language Understanding, (NLU) whose input is text, the input to NLG is not

fixed and can in fact vary a great deal. It can be some numerical or graphical input provided by

some application. For instance, the FoG system developed by CoGenTex Inc (Goldberg et al

1994) takes as input a numerical and a graphical depiction of the weather and generate textual

weather report in English and French. The input can also be text. Thus the STOP system

developed by the University of Aberdeen (Reiter et al. 2003) produces a personalised smoking

cessation leaflet from a user filled questionnaire about smoking attitudes, beliefs and history. And

it can be formal representations as exemplified in the STORYBOOK project where a fairy tale is

generated from an abstract story plan (Callaway and Lester 2002).

In the ModelWriter project, one main aim is to synchronise text and formal models. In particular,

Work Package 2 (WP2) targets the definition, implementation and evaluation of a reversible

process such that text can be automatically mapped to formal models (semantic parsing) and

vice versa, models can be mapped to text (natural language generation). That is, in the

ModelWriter project, NLG focuses on mapping formal representations to text. In this survey report,

we therefore focus on on generation approaches which take formal representations as input.

While the input to NLG varies, the main research issues involved are constant across the board:

content must be selected and structured; appropriate words and syntactic structures must be

chosen; and referring expressions must be built which accurately supports the identification, by

the reader, of the entities being talked about.

In this report, we survey different ways in which these main issues have been handled in the

literature. Section 2 starts with a brief overview of NLG that summarises the key tasks that need

to be performed by an NLG system. Although these tasks are known to be interdependent, in

practice, they are often handled separately and integrated in a pipeline architecture. We therefore

start by discussing the various types of symbolic, supervised and unsupervised or weakly

supervised approaches which have been proposed for each of these key tasks (Sections 3 to 5).

We then go on to survey those approaches which attempt to jointly capture all or severa l of the

NLG subtasks (Section 6). Section 7 concludes with pointers for tools and techniques that are

relevant for the ModelWriter project.

6

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 6 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

2. A brief Overview of NLG

While natural language understanding is mostly concerned with resolving ambiguity, natural

language generation is mostly concerned with decision making i.e., with choice. Generating a text

implies making choices about which content to verbalise (content selection), how to structure the

selected content into a text plan (document planning), how to lexicalise a given input

(lexicalisation), which syntactic structures to use (surface realisation), which content to group or to

leave implicit (aggregation) and how to describe entities (referring expression generation). Figure

1 summarises the choices to be made and the terminology used. Document planning (also called

Macro-Planning) focuses on selecting and structuring content before transforming it into linguist ic

representations while Microplanning addresses the various linguistic decisions that must be made

once the overall document structure is determined. Surface realisation, also often included in the

microplanning phase, consists in choosing the syntactic constructs to be used and in applying

morphological constraints to ensure that the resulting text is morphologically and syntactically

well-formed.

As mentioned in the introduction, the various choices required by the generation task are not

independent of each other. However for practical purpose, the pipeline architecture illustrated in

Figure 1 is often assumed wherein first document planning occurs, followed by microplanning,

followed by surface realisation.

7

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 7 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

3. Document Planning

Document planning includes selecting the content to be generated from (content selection) and

structuring this content into a document plan i.e., segmenting it into basic units, ordering these

units and determining the relation between each of these units. Existing approaches can be

classified along different dimensions (type of input, bottom-up vs top-down approaches, pipeline

vs joint architecture, etc). In what follows, we summarise existing work according to two main

dimensions namely, content selection and content planning. For content selection, we review both

top-down and bottom up approaches. For content planning, we survey different types of machine

learning and statistical approaches.

3.1. Content Selection

3.1.1. Top-Down approaches

(Bouayad-Agha, Casamayor, and Wanner 2011) presents a top-down approach to content

selection which proceeds in three steps. First, a subset of the knowledge base is identified

(content bounding). Second, the main topics to be included in the content plan are selected (main

topics selection). Third, discourse units are chosen (fine grained content selection).

The approach makes use of an extended ontology encoding the most frequently verbalised

concepts and the semantic relations that implicitly hold between KB individuals. For instance, it

includes the result (win or loose) of games which, although they can be derived from the KB, are

not explicitly stated. This additional knowledge and the rules to infer it are obtained by manual

analysis of a corpus of football match summaries.

The KB was automatically extracted from web pages about spanish football games and using a

set of user-defined rules to populate the extended ontology. It contains 55894 instances.

8

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 8 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The content bounding module selects KB individuals that are relevant to the game for wh ich a text

is generated using a set of hand-written rules.

Next the main topics module selects the most relevant concepts and relations using a simple user

model and a set of heuristics. If a class is related to the user’s team of interes t, it is assigned a

weight of 1, otherwise 0. Moreover this weight is multiplied by the class relevance measure which

is set to 1 if the heuristic weight for selecting the instance outweighs the weight for not selecting it.

Finally semantic relations are weighed with 1 if they link two nodes with a positive relevance

weight. The weight of the instances is learned through data/text alignment and reflects the degree

to which a data item is verbalised in game summaries. Boostexter (Schapire and Singer, 2000) is

used to train a classifier which assigns relevance weight to instances.

Finally, the discourse unit determination module uses manually written templates to cover the

types of propositions that are found in football summaries. For each node N that is the argument

of a discourse relation, a set of paths defines its possible extensions i.e., the set of nodes

(classes) that can be included in the discourse unit verbalising N.

The automatic alignment procedure is evaluated against 158 manually aligned summaries and

yields an F score of 100%, 87% and 51% or red cards, goals and classification respectively. The

evaluation of the content selection is done by comparing the content of the generated summaries

with a gold standard. The test corpus comprises 36 matches each with 3 associated summaries

from 3 different web sources. Precision and recall are obtained by comparing selected

individuals/relations and against individuals/relations in the gold standard. Precision varies

between 32.2% and 60.6% depending on the web source of the reference corpus.

3.1.2. Bottom-Up Open Planning

 Content Selection as Natural Language Directed Inference

(Mellish and Sun 2005, Mellish and Pan 2008) address the problem of presenting parts of OWL

DL ontologies in natural language. For instance, the axioms below might be verbalised as

“A temporal region is a kind of region. An abstract region is also a kind of region but

nothing is both a temporal region and an abstract region. One kind of temporal region is a

time interval. A perdurant can happen at a time interval”.

A10: 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 ⊆ 𝑅𝑒𝑔𝑖𝑜𝑛

A2: 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ∩ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 = ⊥

A63: 𝑇𝑖𝑚𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ⊆ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛

A45: 𝑃𝑒𝑟𝑑𝑢𝑟𝑎𝑛𝑡 ⊆ ∀𝐻𝑎𝑝𝑝𝑒𝑛𝐴𝑡. 𝑇𝑖𝑚𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

A51: 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ⊆ 𝑅𝑒𝑔𝑖𝑜𝑛

A basic approach to verbalise such set of axioms consists in associating axiom schemas with

grammatically annotated templates. This might allow for instance, to map the axiom

 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ∩ ∃𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐

to

“A student is a person with at least one academic supervisor”.

9

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 9 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

As illustrated below, axioms can be seen as forming a graph where each axiom is connected to

the concepts it mentions and edge paths between axioms correspond to different possible

transitions in a coherent text. Thus, given some input concept X to be described, a possible

approach to content selection would consist in selecting axioms which are close (in terms of

edges in the KB graph) to X, which are intrinsically interesting and which have not already been

presented.

However this approach falls prey to the generation gap that is, it does not guarantee that the

selected content supports the generation of a well-formed text. It may result in over-complex

sentences (when an axiom is too complex to be expressed in a single sentence). It may yield

repetitive text (when several axioms with identical structure are selected e.g., 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆

𝑃𝑒𝑟𝑠𝑜𝑛, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆ 𝑈𝑛𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 𝑎𝑛𝑑 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆ ∃𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐). It may place inappropriate

emphasis on entities and it may prompt incorrect implicature (e.g., if the selected axiom is

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆ ∃𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐and the KB also contains the axiom 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆

1𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐).

To overcome these limitations, (Mellish and Sun 2005, Mellish and Pan 2008) proposes a

generate and test approach where a text is built incrementally by first enumerating a large set of

possible texts and then choosing between them using a linguistically aware evaluat ion function.

The set of possible texts is generated by selecting not only axioms present in the KB but also

logical consequences of these axioms that are licenced by an inference mechanism dubbed

“natural language directed inference”. In essence this inference process expands the set of KB

axioms with additional axioms which are sound, relevant, are based on individual axioms rather

than several and lead to simple and coherent texts (e.g., through semantic aggregation).

The approach is evaluated for feasibility and scalability only (no human based evaluation of the

selected content is carried out) and shown to be feasible for medium sized ontology (between 50

and 100 K bytes).

10

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 10 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

 Content selection as a classification task

(Duboue and McKeown, 2003) view content selection as a classification task and learn selection

rules from a database and its corresponding corpus. The corpus was mined from different web

sites and the semantic data from fact-sheet pages. The goal is to learn which semantic data is

actually expressed in the text and which is not. The approach uses clustering, cross entropy

between language models and a decision tree algorithm to induce different types of content

selection rules.

The approach proceeds in three steps. First, exact matching is used to identify data values which

appear in the text. This creates a set of baseline exact match content selection rules describing

data values that are systematically selected. Second, semantic classes are clustered depending

on their values (e.g., the age class will be clustered into 2 groups, young and old) and a language

model is learned for the texts corresponding to each cluster. Cross entropy between language

models is then used to determine whether the class should be selected. If the cross entropy of the

language model associated with a semantic cluster and of the language model associated with a

set of randomly selected documents is greater than chance, then the class is selected. This

second step yields a set of class based content selection rules which describe classes that are

relevant for the domain at hand. Finally, an annotated corpus is automatically built where each

data value is annotated as selected or not selected. If a data value matches an exact match

content selection rule, it is marked as selected. N-grams matching values selected by a class-

based content selection rule are also marked as selected. Using this annotated corpus, RIPPER

is used to extract the content selection rules that will be used for NLG. For instance, a content

selection rule might stipulate that the subtitle of the award should be selected if the person is a

director who studied in the US and the award is not of Festival type.

The approach was tested on 11 document-data pairs where data was manually annotated for

selection (triples expressed in the text were annotated as “selected”. The annotated data total

1129 triples of which 293 (26%) were verbalised in the associated text. The class based rules

performed best (R:0.94, P:0.41, F1:0.58) whereas the content selection rules proved to have good

precision but low recall (R:0.53, P:0.46,F1:0.49). Exact matching rules yielded an F1 of 0.51

(P:0.40,R:0.72).

 Content Selection as an Optimisation Task

(Barzilay and Lapata 2005) present an optimization approach designed to collectively select data

base entries (events) which are a priori important and are inter-related.

Content selection is viewed as an optimisation problem where the goal is to minimize label

assignments which violate linking and selection constraints between events.

Each event (database entry) is assigned an individual preference score indicating whether it

should be selected or omitted using a boosting algorithm (BoosTexter, Shapire and Singer 2000)

which combines many simple moderately accurate categorisation rules into a single highly

accurate rule. The individual preference scores is taken to be the confidence score output by

BoosTexter.

11

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 11 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Important links between event are induced using a generate-and-prune approach.

A pair of entity (a,b) is linked by Li,j,k if a is of type Ei (e.g., PASSING), b of type Bj (e.g.,

RUSHING) and they have the same value for attribute k (e.g., PLAYER 1). More generally links

are created between two events if they share entities. A chi square test is then used to filter links

in which entities have a similar distribution of label values while the weight of each link are

computed using simulated annealing (i.e. minimizing an objective function which is defined as the

error rate on the development set).

The approach is applied to a database containing football related information. The text corpus

consists of 468 game summaries taken from the official site of the American National Football

league (436580 words, avg length 46.8 sentences). The database is c reated from the tabulated

information provided by the site. Labels (selected or ommitted) are assigned to DB entries by

aligning DB entries and text using word overlap and marking entries for which a verbalisation was

found as “selected” and others as “ommitted”. The overall dataset contained 105792 instances of

which 15% (68 summaries) are reserved for testing and 1930 for development. The accuracy of

the automatic labelling procedure was assessed against a gold corpus of 5 games (52 alignment

pairs) yielding a precision of 94% and a recall of 90.4%.

The approach achieves an F-scores of 60.15% compared with 49.75% for a classifier (links

scores set to 0) and 40.09% for a majority baseline (defaulting to the majority class for each event

type).

 Unsupervised Graph-Based Approach

Demir et al, 2010 describes an incremental graph-based ranking algorithm to iteratively determine

which information is relevant to a given request while taking into account discourse history, the a

priori importance of a fact, how strongly a fact is related to an already selected fact and whether a

fact is redundant with respect to selected facts.

The approach uses a weighted undirected graph whose vertices are labelled with facts and where

the weight of each edge represents how important it is to convey the facts related by the edge

together. The graph also includes a priority vertex which is connected to all vertices with an edge

whose weight encodes the apriori importance of a fact for the user.

The importance score of a vertex is computed using the weighted PageRank metric (Brin and

Page, 1998). Content selection is done by iterating over the input graph, selecting a vertex with

high a priori relevance and iteratively selecting facts which are relevant and non redundant.

Vertex weights are adjusted at each step in the interaction to capture relevance and redundancy

with respect to the selected facts. Vertices that are related to selected facts are given higher

score while vertices labelled with facts that are less relevant or that have already been selected

are assigned lower scores. To determine which facts are relevant, important or redundant, the

data is manually annotated as essential/possible/not important (for vertices) and

period/entity/contrast (for edges). A period edge expresses a relation between two propositions

spanning the same time period, an entity edge indicates an entity overlap between 2 facts and

contrast a contrastive relations. These relations are respectively assigned lowest, middle and

highest score for relevance.

12

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 12 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The approach is tested in a system describing information graphics and shown to perform better

than a baseline where facts are selected based solely on their PageRank level. By taking into

account which facts have already been selected and promoting facts that are related to selected

ones, the approach leads to text with higher discourse cohesion than a system simply running

PageRank to select the highly rated propositions.

3.2. Content Planning

In a language generation system, a content planner typically uses one or more plans to structure

the content to be included in the output text and to determine the ordering between content

elements.

3.2.1. Combinatorial Pattern Matching

(Duboue and McKeown 2001) presents a supervised approach to automatically learn plans for

generation based on semantic types of the input clauses resulting in a top-down planner for

selecting and ordering basic output elements. They manually annotate 24 transcripts of medical

briefings with semantic tags and start by applying combinatorial pattern matching to the semantic

sequences present in the annotated corpus. The resulting patterns are then refined using

clustering and counting procedures are used to estimate order constraints between those

clusters.

Given a set of sequences, a minimum window size and a support threshold t, combinatorial

pattern discovery permits finding maximal (L,W) patterns with support threshold t and above.

The (L,W) pattern used is of the form 𝛴(𝛴|?) ∗ 𝛴where 𝛴represents the semantic tag alphabet and

matching sequences of length W should have at least L positions filled (i.e., they are non

wildcards characters).

The support of a pattern is the number of sequences that contains at least one match for this

pattern.

Pattern detection proceeds in three steps. First (Scanning) the n-grams of the semantic tags

sequences are listed by increasing size. Second (Generalising), (L,W)-patterns are created for

each n-gram. Only (L,W)-patterns with support greater than the fixed threshold are kept. The

process (scanning and generalising) is repeated until no pattern with enough support is found.

Third (filtering), less specific patterns are pruned. That is, if p1 is more specific than p2, if both

have offset lists1 of equal size, p2 is filtered out. This yields the lists of maximal patterns which are

supported by the training data.

Among the patterns found, many are very similar. Agglomerative clustering is used with an

approximate matching distance measure between patterns to group together patterns that are

similar.

1 The offset list records the matching locations of a pattern p in a list of sequences. It consists of

sets of ordered pairs (seq,pos) where seq records the sequence number and pos the offset in that

sequence where p matches.

13

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 13 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Finally, ordering constraints between clusters are derived from frequency counts. In essence,

frequent ones are kept while order constraints that are violated in any training sequence are

rejected. The count c of A preceding B is normalised with the count c1 of A preceding x and the

count c2 of x preceding B where x ranges over all the patterns that match before/after A or B.

The arithmetic mean ((c/c1) + (c/c2))/2 is used as the final estimate for each constraint.

Given a training corpus of 24 transcripts, the system produced a set of 24 plan elements

(semantic tag patterns) and 29 ordering constraints between these plan elements. For evaluation,

these were compared using 3 fold cross validation with the original hand crafted plan that was

constructed based on hand analysis of transcripts. For motif detection, L, W and support threshold

were set to 2, 3 and 3 respectively. Pattern confidence i.e., the proportion of patterns that

matches a sequence in the test set is 84.62%. Constraint confidence (the proportion of learned

constraints for which there is at least one pattern from each cluster present) is 66.70%.

Constraint accuracy (proportion of order constraints that are verified in all pairs of matching

patterns in all the test set sequences) is 89.45%.

3.2.2. Evolutionary Algorithm

(Duboue and McKeown 2002) use evolution algorithms to learn a text planner determining the

order of basic messages in medical briefings. The overall learning architecture is depicted in the

diagram below. Given a set of 82 atomic messages that can occur in a briefing, the task is to learn

a planner tree which will predict how to order these messages in an output text. The evolutionary

algorithm explores the space of possible planning trees using mutation and cross -over operations

to modify the current plan and two corpus driven fitness function to evaluate the fitness of each

new tree.

14

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 14 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Three mutation and one cross-over operations are used. The mutations include node insertion

which picks an internal node at random and moves a subset of its children to a newly created

subnode and node deletion which randomly picks an internal node different from the root and

removes it by making its parent absorb its children. Both operators are order preserving. To allow

for order variation, the shuffle mutation randomly picks an internal node and randomizes the order

of its children. The cross over mutation is depicted in the Figure below.

To assess the quality of a new text plan, first an approximate evaluation function Fc is used to

determine whether order constraints over plan operators are met in the current plan. The order

constraints are those acquired on the same domain in (Duboue and McKeown 2001). Once a tree

has been evolved so that it conforms to all order constraints, the second fitness function Fa is

used to assess how different the current text plan is from that generated by the existing MAGIC

system developed for the same domain. Alignment between the two texts is used to determine

how close the two texts are.

The search algorithm was initiated with a plan with one root node connected to a random ordering

of the 82 basic messsages and executed by 20 generations. A comparison between the MAGIC

and the best learned planner give a score of 1.16 where 0 would indicate a perfect match (the

score estimates the number of distinct substructures output by the two planners). In comparison,

the score of the initial random planner is 2.92.

15

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 15 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

3.2.3. A Statistical Approach

(Kan and McKeown 2002) learn from a corpus of semantically annotated bibliography entries (i.e.,

summaries) statistics which are used to determine both what predicates to include in a summary

and how to order them.

A corpus of 2000 summaries is semantically annotated as follows. 5% (100) entries are manually

annotated with a tagset of 24 predicates (e.g., purpose, audience, contributor, author). The Ripper

decision tree learner is used to induce a decision tree that can automatically label a new corpus

with predicates. Semantic annotation applies to node of the sentences dependency tree. The

features used represent the predicate’s set of words and relative and absolute position in the

summary; local context information (i.e., preceding and following predicates); and genericity (how

uniform the language is for particular predicates across instances). When testing using 5 -fold

cross validation, the resulting accuracy is 66%.

The semantically annotated corpus is the basis for learning the rule base for content planning.

Content selection is done by a randomized algorithm which selects n (n is the user defined

desired summary length) predicates biased for the percentages acquired from the training corpus.

The selected predicates are then ordered using either the harmonic or quadratic penalised

version of the algorithm. These are computed as follows.

n-gram statistics on pairs of adjacent predicates are recorded together with the order in which

they occur. A precedence relationship of distance one is given a full strength score but a distance

n relationship is given 1/n unit score in the harmonic and 1/2𝑛in the quadratic. Each pair of

predicates accumulates these weights as instances are found in the training corpus and a

randomised hill-climbing algorithm is used to find a maximally compliant ordering.

3.2.4. A Classification Approach

(Dimitromanolaki and Androutsopoulos 2003) decompose fact ordering into a cascade of multi -

class classification problems where each classifier selects the fact to be placed at the

corresponding position. The input to each classifier is a vector of binary feature indicating which

fact classes are in the input and which have already been selected. The output is the class of the

fact to be placed at the position being processed. The authors experiment with both an instance-

based and a decision tree algorithm. They compare their results with two baselines, a majority

baseline which assigns to position n the fact class that was most frequent at position n in the

training data; and a predefined fixed order determined in collaboration with a domain expert. The

accuracy (percentage of correct selections at each position) of the classifiers outperforms both

baseline. The approach is trained and tested (using 10 fold cross validation and stratification) on

a set of 880 combinations of 6 facts each which were manually ordered according to a domain

expert recommendation.

16

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 16 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

4. Microplanning

4.1. Lexicalisation

4.1.1. Verbalisation Templates for RDF Subgraphs

(Ell and Harth 2014) present a language independent method for extracting RDF verbalisation

templates from a parallel corpus of text and RDF data. A template consists of a graph pattern that

can be used to query a RDF graph and of a sentence pattern which is a slotted sent ence that will

be completed by inserting in the slots the results of the query.

The approach consists of six steps.

1. For each entity in the RDF graph, sentences that contain mentions of that entity are
extracted. Mentions are labels of the entity (as specified in DBPedia) modulo minor string
modifications to account for morpho-syntaxic or typographical variations.

2. Each of those sentences is associated with a set of identified entities, a subgraph and a
set of observation. An observations is a 7 tuples of the form (e,p,o,l,r,o’,m) where e,p,o is
an RDF triple, l and r are the strings matched to the left and the right of the mention of o,
o’ is the matched mention and m is the modifier (modification) applied for matching o and
o’. An identifed entity is an entity e such that the sentence contains a (possibly modified)
mention of e. The sentence subgraph consists of all triples that contain an identified entity.

3. Sentence and graph abstraction. Identified literals in the graph and in the sentence are
replaced by shared variables. Different sentences may share the same graph pattern.

4. Grouping. Given a set of (sp,gp) tuples, each sentence pattern sp is grouped with the set
of graph patterns found for it.

5. Frequent maximal subgraph pattern extraction. The maximal frequent subgraphs of a set
of subgraph patterns are extracted.

6. Template creation. For each (sp,gp) tuple, the frequent maximal subgraphs of gp are
extracted. Subgraphs that are not safe, not connected or which yield no results are filtered
out.

The approach is tested on Wikipedia and DBPedia in English and in German. For 3 587 146 and

613 027 entities respectively, 3 434 108 (resp. 530 766) templates were extracted where at least

2 entites were identified . Evaluation includes coverage (numbfer of subgraphs verbalised by a

17

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 17 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

graph pattern), accuracy (proportion of triples expressed in the sentence and vice versa degree to

which the sentence content is expressed by the sentence), syntactic correctness (degree to which

a verbalisation is correct) and understandibility (clarity of verbalisation).

4.1.2. Verbalising RDF data using Ontology Lexica

(Cimiano et al 2013) use a manually constructed lexicon to verbalise ontology concepts. The

lexicon conforms with the LEMON, a lexicon model for ontologies (McCrae et al 2011) and

describes the link between a concept, its possible verbalisations and conditions on the use of

these verbalisation. For instance, the following lexical entry lists two possible verbalisations for

the ontology concept “schneiden” namely the infinitive form “schneiden” and the past participle

form “geschnitten”.

Similarly, the entry below shows a mlexical entry for “tranchieren” (to carve) which refers to the

same “schneiden” concept but is restricted to cases where the ingredient if of type “meat”. The

condition is modelled as a logical condition than can be issued as a query on the knowledge base.

To verbalise a given concept, the lexicon is consulted and only these entries whose conditions are

satisfied are selected. In addition corpus statistics are used to determine the terms or term

combinations with higher frequency in the domain corpus.

18

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 18 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

During surface realisation, selected lexical entries are combined using sentence templates

induced from a domain specific corpus (e.g., cooking recipe). These templates are acquired by

first parsing the corpus sentences and annotating them with the ontology concepts. 20 000

templates are extracted whose leaves are labelled with the list of all terms occurring at that

position in the parse tree together with the corresponding senses (KB concepts) and the

frequency of the terms.

At generation time, the input concepts are used to select appropriate lexical entries and the task

of the surface realiser is to find an appropriate syntactic tree to realise the input concepts. The

selected tree is a tree that maximises a score taking into account the normalised prob ability of the

syntax tree (induced from frequency counts on domain corpus), a comparison of the part of

speech tag, synonyms and lexical senses of each selected lexicalisation with those of the terms in

the tree, the node distances of related words inside each tree and an n-gram score for each

resulting sentences.

To automate the production of the lexicon, (Walter et al.) present a semi-automatic approach

that exploits a corpus to find occurrences in which a given property is expressed, and generalises

over these occurrences by extracting dependency paths that can be used as a basis to create

lemon lexicon entries. The approach is evaluated with respect to DBpedia as dataset and

Wikipedia as corresponding corpus.

The approach is summarised in the figure below.

19

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 19 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

For each property to be lexicalised, all triples from the knowledge base containing this property

are retrieved. The labels of the subject and object entities of these triples are then used to search

the corpus for sentences containing both these entities. Patterns are then extracted from the

dependency paths of these sentences and used to construct lexical entries.

For instance, given the RDF triple

The following sentence might be extracted and parsed.

From this parse, the following pattern will be extracted:

and the following lexical entry will be built:

20

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 20 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Patterns are generated by abstracting over the entities occuring in the parse, removing

determiners and removing patterns with length less than 3 or more than 6. Also if the ent ities are

related to another token by the nn relation (ie are modifiers) , the pattern is not kept. For each

property, only those pattern whose relative frequency is above a given threshold are kept.

4.2. Generating Referring Expressions

A given target object can be referred to in many ways. Different forms may be used e.g., a

pronoun (he), a proper name (John), a definite description (the man) or a demonstrative (this

man). This choice can often be modelled by simple heuristics (e.g., using a proper name of a

definite description for a first mention and a pronoun for subsequent mentions). For descriptions,

additional choices concern the content of the description (which attributes to include?) and its

form (how to verbalise each attribute). We focus here on the content selection problem.

4.2.1. Full Brevity, Greedy and Incremental Search

(Dale 1989, Dale and Reiter 1993) present three base algorithms that have been widely used for

generating entity descriptions.

Given an input consisting of a target entity, a set of other objects (called “distractors”) and a set of

attributes, the output is a set of attributes which uniquely identifies the target entity i.e., which

eliminates all distractors. For instance, given the objects and attributes shown below, a

distinguishing output description for 𝑑1could be either {<type,man>,<clothing,wearing suit>} or

{<type,man>,<position,left>} which could be realised as “the man wearing a suit” or “the man to

the left”.

21

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 21 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The first, full brevity, algorithm searches for a minimal set of attributes that uniquely identifies the

target entity. To find a minimal description the algorithm first checks whether there is a single

property of the target that rules out all distractors i.e., that is false of all distractors. If that fails, al l

possibles combination of 2 properties are used, etc. The process repeats until either all distractors

have been ruled out or all properties of the target have been tried.

One main drawback with this algorithm is that it is computationally expensive (NP hard). Moreover

humans sometimes use non minimal descriptions. In contrast, the greedy algorithm incrementally

selects that property which eliminates the highest number of distractors. This does not garantee a

minimal description but is much more efficient (because not all combinations of properties are

explored).

Finally, the incremental algorithm incrementally selects properties based on a predefined ordering

e.g., by selecting the gender of a person before the color of her eyes.

As extensively discussed by (Krahmer and Van Deemter 2012) these basic algorithms have been

extended and modified in multiple ways e.g., to take into account not only unary properties but

arbitrary n-ary relations; to generate plural and vague descriptions; to recast the problem in terms

of existing framework such as labelled directed graphs and description logics; and to evaluate or

learn models and algorithm on empirical data.

4.2.2. A Corpus Based Investigation of Architectures

(Zarrieß and Kuhn 2013) consider referring expressions, syntax and word order and

explore how different architectural setups account for their interactions. Using a corpus annotated

with deep syntax and discourse referents, they develop a statistical approach which can map a

deep syntax tree and a set of referents to a sentence. The approach combines a syntax generator

mapping a deep to a shallow dependency tree, a referring expression generator and a linearizer.

They combine these three modules in different ways and examine how these different

combination modes impact the generated text.

4.2.3. Combining a Sentence Planner and a Maximum Entropy Model for Referring

Efficiency

(Garoufi and Koller 2012) generates maximally useful referring expressions by combining a

maximum entropy model for referential success trained on the GIVE-2 corpus -and using the

model weights as costs in a metric sentence planner.

The GIVE-2 corpus is a corpus of instructions given in virtual environment (Gargett et al. 2010) to

guide the user in a virtual world. The expressions referring to buttons (the objects manipulated by

the user) are annotated with the type of the attributes they contain. Six main attributes types are

considered.

22

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 22 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

To model the connection between the current 3D context and referring success, the following ten

context features are used.

A maximum entropy model is then learned to estimate the successfulness of any RE (referring

expression) in any context.

First, referring expressions in the training corpus are split into a class of high sucessfulness and

one of low successfulness as follows:

𝑠𝑢𝑐𝑐∗(𝑟) = 0 𝑖𝑓 𝑠𝑢𝑐𝑐(𝑟) ≤ 𝑆, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where S is the median of all values that succ(r) takes and the successfulness 𝑠𝑢𝑐𝑐(𝑟) of a

referring expression r is defined as:

𝑠𝑢𝑐𝑐(𝑟) = 0 𝑖𝑓 𝑟 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑,
𝛥𝑆

𝛥𝑇
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝛥𝑠is the distance in the GIVE world between the target referent and the hearer’s location at the

time whey they are presented with the referring expression r. 𝛥𝑇 is the time elapsed between the

presentation of the RE and the manipulation of the referent.

23

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 23 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The model is trained using logistic regression to learn the conditional probability of an RE r issued

in a scene s being successful given a joint representation of attributes and context:

𝑃(𝑠𝑢𝑐𝑐∗(𝑟) = 1 | {𝜙𝑖𝑗(𝑟, 𝑠)}𝑖𝑗)

with 𝜙𝑖𝑗(𝑟, 𝑠) = 𝑐𝑖(𝑠). 𝑎𝑗(𝑟)where 𝑎𝑗(𝑟) = 1if r contains an attribute of type 𝑎𝑗 and 𝑐𝑖(𝑠)takes the

value of the feature 𝑐𝑖 on the scene s.

The weight 𝑣𝑗(𝑠) of each attribute j in a given scene is then used to determine the cost of the

planning operators used to build the natural language verbalisation of the set of selected

attributes. As a result, a sentence plan has minimal cost among all correct plans just in case the

referring expressions it contains has maximal successfulness probability.

24

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 24 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

5. Surface Realisation

5.1. Inverse Parsing

Given a grammar developed for parsing, surface realisation as inverse parsing consists in using

this grammar to generate, rather than to parse, sentences. Inverse parsing approaches are

typically developed for grammars which describe both the syntax and the semantics of natural

language. They have been proposed for Lexical Functional Grammars, Tree Adjoining Grammars,

Combinatory Categorial Grammar and Head Driven Phrase Structure Grammar.

(Bangalore and Rambow 2000) describes an approach composed of three modules: a stochastic

tree chooser, a grammar-based unraveler and a stochastic Linear Precedence chooser. The

approach takes as input an ordered dependency tree whose nodes are labeled with lexemes. The

tree chooser (aka supertagger) then uses a stochastic tree model to assign TAG (Tree Adjoining

Grammar) trees to the nodes of the input dependency tree. A node n is assignet a TAG tree t so

that the probability of the subtree composed of n with supertag (ie. TAG tree) t and all of its

daughter tags is maximal. The unraveller uses the TAG grammar to produce a lattice of all

possible linearizations that are compatible with the supertagged tree (i.e., the input tree whose

nodes are labelled with lexemes and TAG trees) and the grammar (linear order information is

deduced from the TAG trees). Finally, the LP chooser chooses the most likely traversal of this

lattice given a language model.

Another approach to inverse parsing with TAG is presented in (Narayan and Gardent 2012) who

introduce a highly optimised surface realisation algorithm for TAG which exploits the structure of

the input dependency tree to filter applicable rules and implement a beam search filtering the n

best intermediate solutions using a language model. The approach is tested on the benchmark

made available by the Surface Realisation Shared Task namely a set of unordered lemmatised

dependency trees derived from the Penn Treebank.

(Carroll and Oepen 2005) present an inverse parsing approach for HPSG (Head Driven Phrase

Structure Grammar) which combines symbolic optimisation techniques (tabulation, subsumption

based local ambiguity factoring) with a conditional, discriminative model for ranking the output

sentences. Similarly, (White et al 2007) use a language model, a beam search and a ranking

model to prune the search space when generating with a Combinatory Categorial Grammar

(CCG). Finally, for Lexical Functional Grammar (LFG), (Cahill and van Genabith 2006) propose a

PCFG-based approach based on an LFG which was automatically extracted from a treebank.

5.2. A Maximum Entropy Framework for Surface Realisation

(Ratnaparkhi 2000) presents a surface realiser where the mapping between input semantic

representations and natural language strings is learned from a corpus of “generation templates”

i.e., sentences in which values of interest (semantic values) have been replaced with their

corresponding attributes. For instance, given the set of semantic representation in (1a), the

sentence in (1b) would yield the generation template in (1c).

25

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 25 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

1a. {$city-fr = New Yok City, $city-to = Seattle, $time-dep = 6am, $date-dep = Wednesday}

1b. A flight to Seattle that departs from New York City at 6am on Wednesday.

1c. A flight to $city-to that departs from $city-fr at $time-dep on $date-dep

Using this corpus of generation template and associated semantic representations, the authors

learn three generation models. The first model (NLG1) chooses the most frequent template in the

training data that corresponds to a given set of attributes. It fails if this set of attributes has not

been seen in the training data. NLG1 is the baseline.

The second model (NLG2) is a conditional distribution model over the vocabulary V of words seen

in the training data. The model is a maximum entropy model of the form :

𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, 𝑎𝑡𝑡𝑟𝑖) =
∏𝑘

𝑗=1 𝛼
𝑗

𝑓𝑗(𝑤𝑖,𝑤𝑖−1,𝑤𝑖−2,𝑎𝑡𝑡𝑟𝑖)

𝑍(𝑤𝑖−1,𝑤𝑖−2,𝑎𝑡𝑡𝑟𝑖)

where 𝑤𝑖ranges over V and {𝑤𝑖−1, 𝑤𝑖−2, 𝑎𝑡𝑡𝑟𝑖} is the history where 𝑤𝑖denotes the i-th word in the

generated phrase and 𝑎𝑡𝑡𝑟𝑖 denotes the attributes (in the input meaning representation) that

remain to be generated at position i in the phrase. 𝑓𝑖are features and capture information in the

history that is useful fo estimating 𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, 𝑎𝑡𝑡𝑟𝑖). The feature weights 𝛼𝑗are obtained using

the Improved Iterative Scaling algorithm and are set to maximise the likelihood of the training

data. At generation time, the probability of the sequence of words 𝑤1 . . . 𝑤𝑛 given the semantic

representation A (attribute set) is:

𝑝(𝑤1 . . . 𝑤𝑛 | 𝐴) = ∏𝑛
𝑖=1 𝑝(𝑤𝑖|𝑤𝑖−1 , 𝑤𝑖−2 , 𝑎𝑡𝑡𝑟𝑖)

The features used are the following:

Sentences are incrementally generated by choosing at each step the word sequence with highest

probability given the already generated sentence and the semantic representation (attributes)

remaining to be verbalised.

NLG3 addresses a shortcoming of NLG2 namely that the previous two words are not necessarily

the best predictors for the next word. Instead, NLG3 conditions generation on syntactical ly related

words by generating a syntactic dependency tree topd-down where each word is predicted in the

context of ist syntactically related parent, grand parent and sibling. For NLG3 the training corpus

is annotated with dependency trees.

The approach was test on flight descriptions with 26 attributes for the meaning representations

and a training corpus of 6000 templates. The test set consisted of 1946 templates. The evaluation

was human based and classified each output into perfectly acceptable / OK / Bad / No output.

NLG2 and NLG3 were found to outperform the baseline by a large margin.

26

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 26 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

5.3. Generation by Inverting a Semantic Parser that uses Statistical Machine

Translation

(Wong and Mooney 2007) inverts a semantic parser that uses SMT (Statistical Machine

Translation) methods to map sentences into meaning representations.

The generation task is to find a sentence e such that (i) e is a good sentence and (ii) its meaning

matches that of the input MR (meaning representation). To assess sentence quality, a language

model is used. To assess the relation between sentence and meaning representation, an SMT

based parsing model is used. Thus to find the best verbalisation e of a given meaning

representation f, the approach maximises

Pr(𝑒) . Pr (𝑒|𝑓) ≈ 𝑚𝑎𝑥𝑑∈𝐷(𝑓)𝑃𝑟(𝑒(𝑑)). 𝑃𝑟(𝑑|𝑒(𝑑))

= 𝑚𝑎𝑥𝑑∈𝐷(𝑓)
𝑃𝑟(𝑒(𝑑)).𝑒𝑥𝑝 ∑𝑖 𝜆𝑖𝑓𝑖(𝑑)

𝑍𝜆 (𝑒(𝑑))

where d(f) is the set of derivations that are consistent with f and e(d) is the output sentence

generated by d.

The derivations consistent with a given meaning representations are produced using a grammar

based parser whose grammar is learned from a sentence aligned corpus of sentences and

meaning representations. First Giza++ is used to obtain the best alignments from the training

examples between word phrases and production rules describing the structure of the given

meaning representation. Then SCFG (Synchronous Context Free Grammar) ru les are extracted

from these alignments. For instance, given the text and the meaning representation shown in (2a)

and 2b) respectively

2a. If our player 4 has the ball, then our player 6 should stay in the left side of our half.

2b. ((bowner our {4})

 (d our {6} (pos (left (half our)))))

a possible alignment and set of extracted rules would be as shown below.

27

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 27 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

A maximum entropy model is learned to define the conditional probability of derivations given an

input sentence:

The feature functions 𝑓𝑖 are the number of times each rule is used in a derivation. 𝑍𝜆(𝑒) is a

normalizing factor and the model parameters 𝜆𝑖 are estimated using L-BFGS to maximise the

conditional log likelihood of the training data.

The approach is evaluated on the RoboCup and on the GeoQuery corpora where the RoboCup

corpus consists of 300 coach advice pieces aligned with a correponding CLANG meaning

representation. The GeoQuery corpus consists of 880 questions manually translated to the

function GeoQuery language. BLEU and NIST are used as well as a human evaluation targeting

fluency and adequacy.

28

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 28 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

6. Joint Approaches

6.1. Comprehensive Probabilistic Generation

(Belz 2008) presents a probabilistic approach to generation where the generation task is seen as

incrementally specifying a word string by probabilistically rewriting less specified representations

(data) into more specified ones (linguistic representations and strings). The grammar is extracted

from a paralled corpus of text and data e.g.,

First, a set of expansion rules is extracted semi-automatically from a parallel data-text corpus.

Expansion rules are context free rules whose non terminals are terms of the form f(b1 … bn) with

b1 … bn variables or constant and f an n-ary relation. They permit converting an input vector of

numbers and symbols in steps to a set of natural language strings. For instance, in the domain of

weather reports, a grammar of such expansion rules might support the following derivation:

The first 4 arguments of the Segment relation encode contextual information: it is the second

segment (2) but not the last (-1), that wind speed has increased compared to the preceding

segment (up), that the wind direction has changed counter-clock wise (counterclock) and that the

changes are gradual (slow). The last 7 arguments are part of an input vector of weather data.

The Figure below shows a fragment of the base generator which generates phrases describing

gusts of winds.

29

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 29 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The type definitions define Nv to be any positive integer, N to be either Nv or unspecified (n) and

ST to be s, t or n which encodes presence of showers, thunderstorms or the unspecified value.

The topmost Gusts relation takes as arguments information about maximum gust speed, minimum

gust speed and presence of showers/thunderstorms.

To extract the rules from the data, corpus sentences are analysed using a set of simple chunking

rules that split wind statements into wind direction, wind speed, gust speed, gust statements, time

expressions, transitions phrases, pre-modifiers and post-modifiers. This results in phrases about

wind directions, wind speed etc which are used to define a CFG whose preterminal and lexical

rules expands e.g., a non terminal representing a wind direction change to backing. Higher-level

rules that combine sequences of preterminals into larger components are written manually taking

care of text structuring, aggregation and elision.

For each sentence in the corpus, the extracted grammar is used to produce all possible derivation

trees and a probability distribution over alternative rules is computed using frequency counts, add -

1smoothing and standard maximum likelihood estimation. Thus if c(N → 𝛼) is the number obtained

by adding 1/n to c for every occurrence of the rule in a set of derivation trees for a sentence

where n is the total number of alternative derivations trees for the sentence, then

p(N → 𝛼) =
𝑐 (𝑁 →𝛼)

∑𝑖:(𝑁 →𝛼𝑖) ∈ 𝑅 𝑐(𝑁 →𝛼𝑖)

During generation, inputs are rewritten using expansion rules and the probability distribution over

expansion rules is used in one of three ways;

Greedy generation: the most likely rule is applied at each rewrite step.

Viterby generation: create a generation forest by applying all rules at each step, then do a Viterby

search. This maximises the joint likelihood of all decisions taken.

Greedy roulette wheel generation: at each step select a rule according to a non uniform random

distribution proportional to the likelihoods of expansion rules.

30

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 30 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The approach was tested on an aligned corpus of 2123 instances corresponding to a total of

22985 words. It was evaluated using BLEU-4 and NIST-5 as well as a human evaluation. Greedy

generation was found to be best and to be competitive with a hand crafted system.

6.2. A Hierarchical Discriminative Approach

(Angeli et al. 2011) presents an approach for generating text from database records where the

generation process is broken up into a sequence of local decisions, arranged hierarchically and

each trained discriminatively.

Given a corpus consisting of database records and text verbalising some of the information

encoded in these records, they start by using the model of Liang et al. (2009) to automatically

induce the correspondences between words in the text and the actual database records

mentioned. The generation process is then structured into three sequential decisions: (i) record

selection which determine which records in the input to talk about (content selection); (ii) field set

decisions, which determine which fields of those records to mention: and (iii) template decisions

which determine which words to use to describe the chosen fields (surface realisation).

Each of these decisions is made by a discriminative model whose features are designed to be

domain-independent and which may depend on the current and all previous decisions (global

features)2. Each record, field set and template (sequence of elements where each element is

either a word or a field) is associated with a feature vector and at each step in the generation

process the vector with maximal probability given the previous decision sequence is chosen

(greedy search).

2 This is in contrast with eg Belz 2008’s approach where decisions must decompose locally

according to a tree.

31

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 31 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The parameters of the model (feature weights) are learned by maximising the conditional

likelihood of the training data which consists of pairs of database records and text which have

been aligned and where text has been generalized either to the corresponding field name or to

those field names that are licensed by some manually defined trigger pattern.

The approach is evaluated on three domains namely, robocup games (1919 entries), weather

forecasts (SumTime-Meteo corpus, 469 entries) and WeatherGov (29528 entries) using BLEU-4

and a human-based evaluation.

6.3. Generation with a PCFG represented as an Hypergraph

(Konstas and Lapata 2012) describe an end-to-end approach to generation in which a PCFG is

learned captures the structure of a database d with records and fields as intermediate non-

terminals, and words w (from the associated text) as terminals. The grammar is represented as a

weighted directed hypergraph and the weights are computed using a dynamic program similar to

the inside-outside algorithm.

Given a trained grammar and a database fragment, the model generates text by compiling a

hypergraph specific to the test input (database elements) and decoding the hypergraph via cube

pruning. That is generation finds the text w which maximises:

𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑃(𝑤|𝑑) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑃(𝒘). 𝑃(𝑑|𝑤)

where P(w|d) is the decoding likelihood for a sequence of word w. P(w) is a measure of the quality

of each output (given by a language model) and P(w|d) is the posterior of the output for database

d.

The approach is tested and evaluated on three domains namely, weather forecast generation

(WeatherGov), air travel (ATIS) and soccer commentaries (Robocup). It is shown to outperform 2

previous approaches (Angeli et al. 2010, Kim and Mooney 2010) in terms of BLEU scores and in a

human evaluation for fluency and semantic correctness.

The approach is refined in (Konstas and Lapata 2013) to produce documents plans which are

either induced from the data or from an RST discourse parser. This is done by replacing the

grammar rules describing the chaining of database records by discourse rules describing how

records group into sentences and how sentences group into a document.

In the first approach (discourse rules induced from data), the new discourse rules are extracted

from the training data as follows. First datbase records and words are aligned using Liang et al’s

(2009) unsupervised model. The aligned record tokens are them mapped to their corresponding

type, adjacent words with the same record type are merged and text is segmented on

punctuation. Next the corresponding discourse tree is created and binarized. That is words are

grouped to reflect the record they verbalise, records are grouped to reflect the sentence they

cover and sentences are attached to the root discourse node. Rule weights are counted on the

resulting treebanks and rules with frequency less than 3 are discarded.

32

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 32 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

In the second RST type approach, each record is mapped to an EDU (elementary discourse unit)

and an existing discourse parser is used to parse the resulting corpus and extract rule weights.

The approach is evaluated on the Weather Gov and the WinHelp corpus and shown to outperform

the previous version of the system by a wide margin on both datasets.

6.4. Integer Linear Programming for Content Selection, Lexicalisation and

Aggregation

(Lampouras and Androutsopoulos 2013) presents an ILP model of content selection, lexicalisation

and aggregation that generates text from ontology. Compared to a traditional pipeline

architecture, the ILP approach permits avoiding greedy decisions. The approach was tested on

two ontologies and shown to produce more compact text than a standard pipeline approach with

no deterioration in the perceived quality of the generated texts.

For each fact (OWL axiom) in the knowledge base, a set of alternative sentence plans is available

where a sentence plan is a sentences containing slots annotated with instructions specifying how

to fill slots. For instance, the fact:

(exhibit12, foundIn, athens)

 is associated with the sentence plan

[ref (S)] [find past] [in] [ref (O)]

where square brackets denote slots, ref (S) and ref (O) are instructions requiring referring

expressions for S and O in the corresponding slots, and “find past ” requires the simple past form

of “find”. In our example, the sentence plan would lead to a sentence like “Exhibit 12 was found in

Athens”.

The slots and the individuals, classes or datatype values they refer are called “elements”.

Aggregation rules (Dalianis, 1999) are used that operate on sentence plans and usually lead to

shorter texts e.g.,

Bancroft Chardonnay is a kind of Chardonnay. It is made in Bancroft

⇒Bancroft Chardonnay is a kind of Chardonnay made in Bancroft

The ILP model makes use of the following variables:

● F = {𝑓1 , . . . , 𝑓𝑛}is the set of facts to be verbalised

● 𝑠1 , . . . , 𝑠𝑛are disjoints subsets of F each containing 0 to n facts with 𝑚 ≼ 𝑛
● 𝑎𝑖 = 1 if 𝑓𝑖 is selected, 0 otherwise

● 𝑙𝑖𝑗𝑘= 1 if sentence plan 𝑝𝑖𝑘is used to express fact 𝑓𝑖and 𝑓𝑖 is in subset 𝑠𝑗, 0 otherwise

● 𝑏𝑡𝑗 = 1 if element 𝑒𝑡 is used in subset 𝑠𝑗, 0 otherwise

Given a set of facts to be verbalised, the objective function maximises the total importance of

selected facts (each fact is assumed to be annotated with an importance score) and minimises the

33

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 33 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

number of distinct elements in each subset i.e., the approximate lengths of the corresponding

aggregated sentence. In addition, well formed solutions must obey the following five constraints:

1. For each selected fact, only one sentence plan in only one subset is selected
2. If a sentence plan is selected in a given subset, then all elements of that sentence plan

are also selected in that subset
3. If an element is used in a subset than at least one of the sentence plans involving that

element mus also be selected in that subset
4. The number of elements that a subset may contain is limited to a maximum allowed

number (this limits the maximum lengths of a sentence).
5. Facts from different sections are not placed in the same subset (it is assumed that each

relation has been manually mapped to a single topical section).

6.5. A Ranking Framework for Planning and Realisation

(Kondadadi et al. 2013) presents a statistical approach to generation in which automatically

induced sentence templates are ranked for position in the output text using an SVM (Support

Vector Machine).

Corpus sentences are processed using the deep semantic parser Boxer. The DRS (Discourse

Representation Structure) produced by Boxer and the domain specific named entity tags

produced by domain specific named entity taggers are used to associate each sentence in the

corpus with a meaning representation and the corresponding template. For instance, the sentence

Mr. Mitsutaka Kambe has been serving as Managing Director of the 77 Bank, Ltd. since

June 27, 2008.

is associated with the conceptual meaning:

SERVING | TITLE | PERSON | COMPANY | DATE

and with the template

[person] has been serving as [title] of the [company] since [date]

Next templates are clustered into conceptual units using k-means clustering and similarity

between templates so that each conceptual unit is associated with a set of templates and

conversely, each template is associated with a conceptual unit.

A training corpus is then built which aligns each corpus sentence S with a ranked list of templates

where the rank of each template t is determined by its Levenshtein edit distance to the template

corresponding to S. In addition templates are associated with a feature vector using the features

listed below.

34

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 34 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

The weight associated with each feature is learned using a linear kernel for a ranking SVM.

At generation time, the input consists of a set of input data, a template bank and the SVM ranking

model. Templates are then selected and filled iteratively by chosing the template that rank highest

at each step of the generation process and filling its slots with matching entity tags from the input

data.

The approach is tested on two domains: corporate officer and director biographies and oil rig

weather reports from the SumTime Meteo corpus. BLEU-4 and Meteor are used as well as a

human based evaluation. The baseline simply chooses the most frequent conceptual unit at the

given position and the most likely template for the conceptual unit.

35

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 35 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

7. Conclusion

While there are many possible ways of handling the various issues arising when generating text,

one common issue is how to relate natural language words and phrases to data items. Indeed,

most of the approaches described in this deliverable incorporate an alignment step in which words

in text are aligned with data items. This step is more or less complex depending on the available

text and data corpora and on the model used.

(Belz 2008, Konstas and Lapata 2013, Ratnparkhi 2000, Wong and Mooney 2007) all explore a

setting in which a parallel corpus is available: short texts are aligned with database fragments in

so called scenarii. Given this parallel corpus, the alignment between words and data can be

learned using various techniques. (Belz 2008) uses a mixture of hand written rules and

automatically learned rules to learn a probabilistic grammar that rewrites data vectors into text.

(Konstas and Lapata 2013) automatically induce a probabilistic context free grammar from

aligned database and text fragments. (Ratnaparkhi 2000) learns an incremental generation model

from a corpus of generation templates i.e., of sentences in which values of interests (semantic

values) have been replaced with corresponding attributes. His generation system makes use of 3

models: a first model to choose the most frequent template in the training data that corresponds to

a set of attributes, a second model to choose the most likely word given the words already

generated and a third model to improve syntactic well formedness. In his approach, the alignment

between text and data is given by the annotated templates and used to train models that guide

choices at generation time. (Wong and Mooney 2007) train a statistical machine translation model

on an aligned corpus of text and semantic rule describing the semantic structure of the input data.

Other approaches investigate how to relate text and data in a context where no parallel data/text

corpus is available. (Duboue and McKeown 2003) use clustering, cross entropy and a decision

tree algorithm to learn which semantic data is actually expressed in the text. (Ell and Harth 2014)

induce verbalization templates from Wikipedia which can verbalise sets of DBPedia RDF triples

using matching and frequent maximal subgraph extraction. (Cimiano et al 2013) presents a similar

approach where sentences that contain mentions matching entities occurring in an RDF triples

are extracted from a large corpus and used to create sentence templates. (Kondadadi et al 2013)

also automatically induce sentence templates from data but additionally learn a ranker to

determine which template is most appropriate given the input.

Thus alignments can be learned using either parallel or comparable data/text corpora. In

ModelWriter, models and text may give rise to both situations.

In Use Case UC-FR1 (Synchronisation between models and documentation, OBEO – Sirius

Product) for instance, there is no direct alignment of text and data. In this usecase the

synchronization mechanism relies on the detection and creation of “links” .between elements in

the model or the java code and elements in the documentation. In this case, the alignment

techniques used for generation from comparable corpora can be used to support Obeo’s

synchronization system. We will therefore investigate how the detailed alignment technique

described in (Ell and Harth) can be adapted to support the semantic annotation of Sirius

documentation by model and Java code items and in this way, automatically produce the links that

are required by the synchronization mechanism to signal to the user which parts of the

documentation might need updating. The alignment tool developed could also be used in usecase

36

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 36 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

UC-FR4 to synchronise elements of the SIDP normalized rules with the SIDP documents thus

facilitating access to the relevant portion of the SIDP document from the given rule.

In contrast, in use case UC-FR4 (Synchronisation of regulation documentation with a design rule

repository), because RDF data will be produced from the text by semantic parsing, parallel data

will be available. We will therefore explore data-to-text alignment techniques developed for

parallel data/text corpora taking inspiration from (Belz 2008, Konstas and Lapata 2013,

Ratnparkhi 2000).

As shown in the approaches just mentioned, once the data is aligned, lexicalizations and

sentence templates can be extracted. and used for surface realization. However many choices

remain to be made including, content selection, content planning, referring expression generation,

and surface realization. In the context of ModelWriter, content selection is less an issue as

generation is meant to reflect changes in the model. Content selection can therefore be

determined by the changes made. i.e., the content to be verbalized is the content affected by the

change. Content planning is also not a major issue as the changes to be verbalized will usually be

local. In short, most of the work will consist in developing a surface realizer which produces high

quality text from the lexicalizations induced through data-to-text alignment. To this end we will

explore the development of a joint model similar to those described in (Belz 2008, Angeli et al.

2011, Konstas and Lapata 2012, Lampouras and Androutsopoulos 2013, Kondadadi 2013). As

explained in the FPP, the aim is WP2 is to develop a reversible processor which can both parse

text into models and generate text from modes. Consequently, for generation, we will take as a

starting point the RDF representations produced by the semantic parser developed for the use

case UC-FR4. In a first step, the aim will be to regenerate the sentences from which the RDF data

was derived. Since parallel data will be available we will start by investigating the model described

in Belz 2008. That is we will learn a probabilistic context free grammar describing how data

rewrite into strings. In a second step, we will evaluate the model on unseen data i.e. on sets of

RDF triples that are not produced by the semantic parser. This will be useful for instance, to

verbalise answers to queries formulated on the knowledge base produced by the semantic parser

from the normalized SIDP rules.

37

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 37 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

8. Bibliography

Androutsopoulos, Ion, Gerasimos Lampouras, and Dimitrios Galanis. "Generating natural

language descriptions from OWL ontologies: the NaturalOWL system." Journal of Artificial

Intelligence Research (2013): 671-715.

Angeli, Gabor, Percy Liang, and Dan Klein. "A simple domain-independent probabilistic approach

to generation." Proceedings of the 2010 Conference on Empirical Methods in Natural Language

Processing 9 Oct. 2010: 502-512.

Bangalore, Srinivas, and Owen Rambow. "Using TAG, a tree model, and a language model for

generation." In Proceedings of the 1st International Natural Language Generation Conference

2000.

Barzilay, Regina, and Mirella Lapata 2005. "Collective content selection for concept -to-text

generation." Proceedings of the conference on Human Language Technology and Empirical

Methods in Natural Language Processing, 2005, pages 331-338.

Belz, Anja. "Automatic generation of weather forecast texts using comprehensive probabilistic

generation-space models." Natural Language Engineering 14.04 (2008): 431-455.

Bouayad-Agha, Nadjet, Gerard Casamayor, and Leo Wanner 2011. "Content selection from an

ontology-based knowledge base for the generation of football summaries." Proceedings of the

13th European Workshop on Natural Language Generation 28 Sep. 2011: 72-81.

Bouayad-Agha, N., Casamayor, G., Rospocher, M., Saggion, H., Serafini, L., and Wanner, L.

From ontology to NL: Generation of multilingual user-oriented environmental reports. In

Proceedings of the 17th International Conference on Appications of Natural Language Processing

to Information Systems (NLDB 2012). Lecture Notes in Computer Science series, vol. 7337

(Groningen, NL, 2012).

Cahill, Aoife, and Josef Van Genabith. "Robust PCFG-based generation using automatically

acquired LFG approximations." Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for Computational

Linguistics 17 Jul. 2006: 1033-1040.

Carroll, John, and Stephan Oepen. "High efficiency realization for a wide-coverage unification

grammar." Natural Language Processing–IJCNLP 2005 (2005): 165-176.

Cimiano, Philipp et al. "Exploiting ontology lexica for generating natural language texts from RDF

data." (2013).

Dale, Robert. "Cooking up referring expressions." Proceedings of the 27th annual meeting on

Association for Computational Linguistics 26 Jun. 1989: 68-75.

Dale, Robert, and Ehud Reiter. "Computational interpretations of the Gricean maxims in the

generation of referring expressions." Cognitive science 19.2 (1995): 233-263.

38

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 38 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Demir, Seniz, Sandra Carberry, and Kathleen F McCoy. "A discourse-aware graph-based content-

selection framework." Proceedings of the 6th International Natural Language Generation

Conference 7 Jul. 2010: 17-25.

Dimitromanolaki, Aggeliki, and Ion Androutsopoulos. "Learning to order facts for discourse

planning in natural language generation." arXiv preprint cs/0306062 (2003).

Duboue, Pablo A, and Kathleen R McKeown. "Empirically estimating order constraints for content

planning in generation." Proceedings of the 39th Annual Meeting on Association for

Computational Linguistics 6 Jul. 2001: 172-179.

Duboue, Pablo A, and Kathleen R McKeown. "Content planner construction via evolutionary

algorithms and a corpus-based fitness function." Proceedings of INLG 2002 Jul. 2002: 89-96.

Duboue, Pablo A, and Kathleen R McKeown. "Statistical acquisition of content selection rules for

natural language generation." Proceedings of the 2003 conference on Empirical methods in

natural language processing 11 Jul. 2003: 121-128.

Galanis, Dimitrios, and Ion Androutsopoulos. "Generating multilingual descriptions from

linguistically annotated OWL ontologies: the NaturalOWL system." Proceedings of the Eleventh

European Workshop on Natural Language Generation 17 Jun. 2007: 143-146.

Gargett, Andrew et al. "The GIVE-2 Corpus of Giving Instructions in Virtual Environments." LREC

May. 2010.

Garoufi, Konstantina, and Alexander Koller. "Combining symbolic and corpus-based approaches

for the generation of successful referring expressions." Proceedings of the 13th European

Workshop on Natural Language Generation 28 Sep. 2011: 121-131.

Kan, Min-Yen, and Kathleen McKeown. "Corpus-trained text generation for summarization."

(2002).

Kelly, Colin, Ann Copestake, and Nikiforos Karamanis. "Investigating content selection for

language generation using machine learning." Proceedings of the 12th European Workshop on

Natural Language Generation 30 Mar. 2009: 130-137.

Kim, Joohyun, and Raymond J Mooney. "Generative alignment and semantic parsing for learning

from ambiguous supervision." Proceedings of the 23rd International Conference on Computational

Linguistics: Posters 23 Aug. 2010: 543-551.

Krahmer, Emiel, and Kees Van Deemter. "Computat ional generation of referring expressions: A

survey." Computational Linguistics 38.1 (2012): 173-218.

Ell, Basil, and Andreas Harth. "A language-independent method for the extraction of RDF

verbalization templates." INLG 2014 (2014): 26.

Howald, Blake, Ravi Kondadadi, and Frank Schilder. "Domain adaptable semantic clustering in

statistical nlg." Proceedings of the 10th International Conference on Computational Semantics

(IWCS 2013) 2013: 143-154.

39

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 39 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

Schilder, Frank, Blake Howald, and Ravi Kondadadi. "Gennext: A consolidated domain adaptable

nlg system." Proceedings of the 14th European Workshop on Natural Language Generation 8

Aug. 2013: 178-182.

Kondadadi, Ravi, Blake Howald, and Frank Schilder. "A Statistical NLG Framework for

Aggregated Planning and Realization." ACL (1) 6 Aug. 2013: 1406-1415.

Konstas, Ioannis, and Mirella Lapata. "Unsupervised concept-to-text generation with

hypergraphs." Proceedings of the 2012 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies 3 Jun. 2012: 752-761.

Konstas, Ioannis, and Mirella Lapata. "Inducing Document Plans for Concept -to-Text Generation."

EMNLP 2013: 1503-1514.

Lampouras, Gerasimos, and Ion Androutsopoulos. "Using Integer Linear Programming in

Concept-to-Text Generation to Produce More Compact Texts." ACL (2) 4 Aug. 2013: 561-566.

Liang, Percy, Michael I Jordan, and Dan Klein. "Learning semantic correspondences with less

supervision." Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the

4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1 -

Volume 1 2 Aug. 2009: 91-99.

McCrae, John, Dennis Spohr, and Philipp Cimiano. "Linking lexical resources and ontologies on

the semantic web with lemon." The Semantic Web: Research and Applications (2011): 245-259.

Mellish, Chris, and Xiantang Sun. "Natural language directed inference in the presentation of

ontologies." ENLG, Aberdeen, Scotland, August (2005).

Mellish, Chris, and Jeff Z Pan. "Natural language directed inference from ontologies." Artificial

Intelligence 172.10 (2008): 1285-1315.

Narayan, Shashi, and Claire Gardent. "Structure-driven lexicalist generation." 24th International

Conference in Computational Linguistics (COLING) 8 Dec. 2012: 100-113.

Page, Lawrence et al. "The PageRank citation ranking: Bringing order to the web." (1999).

Ratnaparkhi, Adwait. "Trainable methods for surface natural language generation." Proceedings

of the 1st North American chapter of the Association for Computational Linguistics conference 29

Apr. 2000: 194-201.

Reiter, Ehud, Robert Dale, and Zhiwei Feng. Building natural language generation systems.

Cambridge: Cambridge university press, 2000.

Schapire, Robert E, and Yoram Singer. "BoosTexter: A boosting-based system for text

categorization." Machine learning 39.2-3 (2000): 135-168.

Walter, Sebastian, Christina Unger, and Philipp Cimiano. "A corpus-based approach for the

induction of ontology lexica." Natural Language Processing and Information Systems (2013): 102-

113.

40

Document reference: D2.3.1

ModelWriter

Overview and Comparison of Existing Natural Language Generators

Page 40 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014)

White, Michael, Rajakrishnan Rajkumar, and Scott Martin. "Towards broad coverage surface

realization with CCG." Proceedings of the Workshop on Using Corpora for NLG: Language

Generation and Machine Translation (UCNLG+ MT) 11 Sep. 2007: 267-276.

Wong, Yuk Wah, and Raymond J Mooney. "Generation by Inverting a Semantic Parser that Uses

Statistical Machine Translation." HLT-NAACL 2007: 172-179.

Zarrieß, Sina, and Jonas Kuhn. "Combining Referring Expression Generation and Surface

Realization: A Corpus-Based Investigation of Architectures." ACL (1) 2013:

