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1. Introduction 

Given some input and a given communicative goal (e.g., describing an entity or summarising the 

input data), Natural Language Generation (NLG) aims to produce a text that satisfies this 

communicative goal given the provided input.  

 

Contrary to Natural Language Understanding, (NLU) whose input is text, the input to  NLG is not 

fixed and can in fact vary a great deal. It can be some numerical or graphical input provided by 

some application. For instance, the FoG system  developed by CoGenTex Inc (Goldberg et al 

1994) takes as input a numerical and a graphical depiction of the weather and generate textual 

weather report in English and French. The input can also be text. Thus the STOP system 

developed by the University of Aberdeen (Reiter et al. 2003) produces a personalised smoking 

cessation leaflet from a user filled questionnaire about smoking attitudes, beliefs and history. And 

it can be formal representations as exemplified in the STORYBOOK project where a fairy tale is 

generated from an abstract story plan (Callaway and Lester 2002).  

 

In the ModelWriter project, one main aim is to synchronise text and formal models. In particular, 

Work Package 2 (WP2)  targets the definition, implementation and evaluation of a reversible 

process such that text can be automatically mapped to formal models  (semantic parsing) and 

vice versa, models can be mapped to text (natural language generation).  That is, in the 

ModelWriter project, NLG focuses on mapping formal representations to text. In this survey report, 

we therefore focus on on generation approaches which take formal representations as input.  

While the input to NLG varies, the main research issues involved are constant across the board: 

content must be selected and structured;  appropriate words and syntactic structures must be 

chosen; and referring expressions must be built  which accurately supports the identification, by 

the reader, of the entities being talked about.  

 

In this report, we survey different ways in which these main issues have been handled in the 

literature.  Section 2 starts with a brief overview of NLG that  summarises the key tasks that need 

to be performed by an NLG system. Although these tasks are known to be interdependent, in 

practice, they are often handled separately and integrated in a pipeline architecture. We therefore 

start by discussing the various types of symbolic, supervised and unsupervised or weakly 

supervised approaches which have been proposed for each of these key tasks (Sections 3 to 5). 

We then go on to survey those approaches which attempt to jointly capture all or severa l of the 

NLG subtasks (Section 6). Section 7 concludes with pointers for tools and techniques that are 

relevant for the ModelWriter project.  
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2. A brief Overview of NLG 

While natural language understanding is mostly concerned with resolving ambiguity, natural 

language generation is mostly concerned with decision making i.e., with choice. Generating a text 

implies making choices about which content to verbalise (content selection), how to structure the 

selected content into a text plan (document planning), how to lexicalise a given input 

(lexicalisation), which syntactic structures to use (surface realisation), which content to group or to 

leave implicit (aggregation) and how to describe entities (referring expression generation). Figure 

1 summarises the choices to be made and the terminology used. Document planning (also called 

Macro-Planning) focuses on selecting and structuring content before transforming it into linguist ic 

representations while Microplanning addresses the various linguistic decisions that must be made 

once the overall document structure is determined. Surface realisation, also often included in the 

microplanning phase, consists in choosing the syntactic constructs to be used and in applying 

morphological constraints to ensure that the resulting text is morphologically and syntactically 

well-formed.  

 

As mentioned in the introduction, the various choices required by the generation task are not 

independent of each other. However for practical purpose, the pipeline architecture illustrated in 

Figure 1 is often assumed wherein first document planning occurs, followed by microplanning, 

followed by surface realisation.  
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3. Document Planning 

Document planning includes selecting the content to be generated from (content selection) and 

structuring this content into a document plan i.e., segmenting it into basic units, ordering these 

units and determining the relation between each of these units. Existing approaches can be 

classified along different dimensions (type of input, bottom-up vs top-down approaches, pipeline 

vs joint architecture, etc). In what follows, we summarise existing work according to two main 

dimensions namely, content selection and content planning. For content selection, we review both 

top-down and bottom up approaches. For content planning, we survey different types of machine 

learning and statistical approaches.  

 

3.1. Content Selection 

3.1.1. Top-Down approaches 

(Bouayad-Agha, Casamayor, and Wanner 2011) presents a top-down approach to content 

selection which proceeds in three steps. First, a subset of the knowledge base is identified 

(content bounding). Second, the main topics to be included in the content plan are selected (main 

topics selection). Third,  discourse units are chosen (fine grained content selection).  

 

The approach makes use of an extended ontology encoding the most frequently verbalised 

concepts and the semantic relations that implicitly hold between KB individuals. For instance, it 

includes the result (win or loose) of games which, although they can be derived from the KB, are 

not explicitly stated. This additional knowledge and the rules to infer it are obtained by manual 

analysis of a corpus of football match summaries.  

 

 

 

The KB was automatically extracted from web pages about spanish football games and using a 

set of user-defined rules to populate the extended ontology. It contains 55894 instances.  
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The content bounding module selects KB individuals that are relevant to the game for wh ich a text 

is generated using a set of hand-written rules.  

 

Next the main topics module selects the most relevant concepts and relations using a simple user 

model and a set of heuristics. If a class is related to the user’s team of interes t, it is assigned a 

weight of 1, otherwise 0. Moreover this weight is multiplied by the class relevance measure which 

is set to 1 if the heuristic weight for selecting the instance outweighs the weight for not selecting it. 

Finally semantic relations are weighed with 1 if they link two nodes with a positive relevance 

weight. The weight of the instances is learned through data/text alignment and reflects the degree 

to which a data item is verbalised in game summaries. Boostexter (Schapire and Singer, 2000) is 

used to train a classifier which assigns relevance weight to instances.  

 

Finally, the discourse unit determination module uses manually written templates to cover the 

types of propositions that are found in football summaries. For each node N that is the argument 

of a discourse relation, a set of paths defines its possible extensions i.e., the set of nodes 

(classes) that can be included in the discourse unit verbalising N.  

 

The automatic alignment procedure is evaluated against 158 manually aligned summaries and 

yields an F score of 100%, 87% and 51% or red cards, goals and classification respectively. The 

evaluation of the content selection is done by comparing the content of the generated summaries 

with a gold standard. The test corpus comprises 36 matches each with 3 associated summaries 

from 3 different web sources. Precision and recall are obtained by comparing selected 

individuals/relations and against individuals/relations in the gold standard. Precision varies 

between 32.2% and 60.6% depending on the web source of the reference corpus.  

3.1.2. Bottom-Up Open Planning 

 Content Selection as Natural Language Directed Inference 

(Mellish and Sun 2005, Mellish and Pan 2008) address the problem of presenting parts of OWL 

DL ontologies in natural language. For instance, the axioms below might be verbalised as 

  

“A temporal region is a kind of region. An abstract region is also a kind of region but 

nothing is both a temporal region and an abstract region. One kind of temporal region is a 

time interval. A perdurant can happen at a time interval”.  

 

A10: 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 ⊆ 𝑅𝑒𝑔𝑖𝑜𝑛 

A2:  𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ∩ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 =  ⊥ 

A63: 𝑇𝑖𝑚𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ⊆ 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑅𝑒𝑔𝑖𝑜𝑛 

A45:  𝑃𝑒𝑟𝑑𝑢𝑟𝑎𝑛𝑡 ⊆ ∀𝐻𝑎𝑝𝑝𝑒𝑛𝐴𝑡. 𝑇𝑖𝑚𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

A51: 𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑅𝑒𝑔𝑖𝑜𝑛 ⊆ 𝑅𝑒𝑔𝑖𝑜𝑛 

 

A basic approach to verbalise such set of axioms consists in associating axiom schemas with 

grammatically annotated templates. This might allow for instance, to map the axiom  

 

 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ∩ ∃𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 

 

to  

 

“A student is a person with at least one academic supervisor”.  
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As illustrated below, axioms can be seen as forming a graph where each axiom is connected to 

the concepts it mentions and edge paths between axioms correspond to different possible 

transitions in a coherent text.  Thus, given some input concept X to be described, a possible 

approach to content selection would consist in selecting axioms which are close (in terms of 

edges in the KB graph) to X, which are intrinsically interesting and which have not already been 

presented.  

 

 
 

However this approach falls prey to the generation gap that is, it does not guarantee that the 

selected content supports the generation of a well-formed text. It may result in over-complex 

sentences (when an axiom is too complex to be expressed in a single sentence). It may yield 

repetitive text (when several axioms with identical structure are selected e.g., 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆

𝑃𝑒𝑟𝑠𝑜𝑛, 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆ 𝑈𝑛𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 𝑎𝑛𝑑 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆ ∃𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐). It may place inappropriate 

emphasis on entities and it may prompt incorrect implicature (e.g., if the selected axiom is 

𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆ ∃𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐and the KB also contains the axiom 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 ⊆

1𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟. 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐).  

 

To overcome these limitations, (Mellish and Sun 2005, Mellish and Pan 2008)  proposes a 

generate and test approach where a text is built incrementally by first enumerating a large set of 

possible texts and then choosing between them using a linguistically aware evaluat ion function. 

The set of possible texts is generated by selecting not only axioms present in the KB but also 

logical consequences of these axioms that are licenced by an inference mechanism dubbed 

“natural language directed inference”. In essence this inference process expands the set of KB 

axioms with additional axioms which are sound, relevant, are based on individual axioms rather 

than several and lead to simple and coherent texts (e.g., through semantic aggregation).  

 

The approach is evaluated for feasibility and scalability only (no human based evaluation of the 

selected content is carried out) and shown to be feasible for medium sized ontology (between 50 

and 100 K bytes). 
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 Content selection as a classification task 

 

(Duboue and McKeown, 2003) view content selection as a classification task and learn selection 

rules from a database and its corresponding corpus. The corpus was mined from different web 

sites and the semantic data from fact-sheet pages. The goal is to learn which semantic data is 

actually expressed in the text and which is not. The approach uses clustering, cross entropy 

between language models and a decision tree algorithm to induce different types of content 

selection rules.  

 

The approach proceeds in three steps. First, exact matching is used to identify data values which 

appear in the text. This creates a set of baseline exact match content selection rules describing 

data values that are systematically selected. Second, semantic classes are clustered depending 

on their values (e.g., the age class will be clustered into 2 groups, young and old) and a language 

model is learned for the texts corresponding to each cluster. Cross entropy between language 

models is then used to determine whether the class should be selected. If the cross entropy of the 

language model associated with a semantic cluster and of the language model associated with a 

set of randomly selected documents is greater than chance, then the class is selected. This 

second step yields a set of class based content selection rules which describe classes that are 

relevant for the domain at hand. Finally, an annotated corpus is automatically built where each 

data value is annotated as selected or not selected. If a data value matches an exact match 

content selection rule, it is marked as selected. N-grams matching values selected by a class-

based content selection rule are also marked as selected. Using this annotated corpus, RIPPER 

is used to extract the content selection rules that will be used for NLG. For instance, a content 

selection rule might stipulate that the subtitle of the award should be selected if the person is a 

director who studied in the US and the award is not of Festival type.  

 

The approach was tested on 11 document-data pairs where data was manually annotated for 

selection (triples expressed in the text were annotated as “selected”. The annotated data total 

1129 triples of which 293 (26%) were verbalised in the associated text. The class based rules 

performed best (R:0.94, P:0.41, F1:0.58) whereas the content selection rules proved to have good 

precision but low recall (R:0.53, P:0.46,F1:0.49). Exact matching rules yielded an F1 of 0.51 

(P:0.40,R:0.72).  

 

 Content Selection as an Optimisation Task 

 

(Barzilay and Lapata 2005) present an optimization approach designed to collectively select data 

base entries (events) which are a priori important and are inter-related.  

Content selection is viewed as an optimisation problem where the goal is to minimize label 

assignments which violate linking and selection constraints between events.  

 

Each event (database entry) is assigned an individual preference score indicating whether it 

should be selected or omitted using a boosting algorithm (BoosTexter, Shapire and Singer 2000) 

which combines many simple moderately accurate categorisation rules into a single highly 

accurate rule. The individual preference scores is taken to be the confidence score output by 

BoosTexter.  
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Important links between event are induced using a generate-and-prune approach.  

A pair of entity (a,b) is linked by Li,j,k if a is of type Ei (e.g., PASSING), b of type Bj  (e.g., 

RUSHING) and they have the same value for attribute k (e.g., PLAYER 1). More generally links 

are created between two events if they share entities. A chi square test is then used to filter links 

in which entities have a similar distribution of label values while the weight of each link are 

computed using simulated annealing (i.e. minimizing an objective function which is defined as the 

error rate on the development set).  

 

The approach is applied to a database containing football related information. The text corpus 

consists of 468 game summaries taken from the official site of the American National Football 

league (436580 words, avg length 46.8 sentences). The database is c reated from the tabulated 

information provided by the site. Labels (selected or ommitted) are assigned to DB entries by 

aligning DB entries and text using word overlap and marking entries for which a verbalisation was 

found as “selected” and others as “ommitted”. The overall dataset contained 105792 instances of 

which 15% (68 summaries) are reserved for testing and 1930 for development. The accuracy of 

the automatic labelling procedure was assessed against a gold corpus of 5 games (52 alignment 

pairs) yielding a precision of 94% and a recall of 90.4%. 

 

The approach achieves an F-scores of 60.15% compared with 49.75%  for a classifier (links 

scores set to 0) and 40.09% for a majority baseline (defaulting to the majority class for each event 

type).  

 

 

 Unsupervised Graph-Based Approach 

 

Demir et al, 2010 describes an incremental graph-based ranking algorithm to iteratively determine 

which information is relevant to a given request while taking into account discourse history, the a 

priori importance of a fact, how strongly a fact is related to an already selected fact and whether a 

fact is redundant with respect to selected facts.  

 

The approach uses a weighted undirected graph whose vertices are labelled with facts and where 

the weight of each edge represents how important it is to convey the facts related by the edge 

together. The graph also includes a priority vertex which is connected to all vertices with an edge 

whose weight encodes the apriori importance of a fact  for the user.  

 

The importance score of a vertex is computed using the weighted PageRank metric (Brin and 

Page, 1998). Content selection is done by iterating over the input graph, selecting a vertex with 

high a priori relevance and iteratively selecting facts which are relevant and non redundant. 

Vertex weights are adjusted at each step in the interaction to capture relevance and redundancy 

with respect to the selected facts. Vertices that are related to selected facts are given higher 

score while vertices labelled with facts that are less relevant or that have already been selected 

are assigned lower scores. To determine which facts are relevant, important or redundant, the 

data is manually annotated as essential/possible/not important (for vertices) and 

period/entity/contrast (for edges).  A period edge  expresses a relation between two propositions 

spanning the same time period, an entity edge indicates an entity overlap between 2 facts and 

contrast a contrastive relations. These relations are respectively assigned lowest, middle and 

highest score for relevance.  
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The approach is tested in a system describing information graphics and shown to perform better 

than a baseline where facts are selected based solely on their PageRank level. By taking into 

account which facts have already been selected and promoting facts that are related to selected 

ones, the approach leads to text with higher discourse cohesion than a system simply running 

PageRank to select the highly rated propositions.  

3.2. Content Planning 

In a language generation system, a content planner typically uses one or more plans to structure 

the content to be included in the output text and to determine the ordering between content 

elements. 

3.2.1. Combinatorial Pattern Matching 

(Duboue and  McKeown 2001) presents a supervised approach to automatically learn plans for 

generation based on semantic types of the input clauses resulting in a top-down planner for 

selecting and ordering basic output elements. They manually annotate 24 transcripts of medical 

briefings with semantic tags and start by applying combinatorial pattern matching to the semantic 

sequences present in the annotated corpus. The resulting patterns are then refined using 

clustering and counting procedures are used to estimate order constraints between those 

clusters.  

 

Given a set of sequences, a minimum window size and a support threshold t,  combinatorial 

pattern discovery permits finding maximal (L,W) patterns with support threshold  t and above.  

 

The (L,W) pattern used is of the form 𝛴(𝛴|? ) ∗ 𝛴where 𝛴represents the semantic tag alphabet and 

matching sequences of length W should have at least L positions filled (i.e., they are non 

wildcards characters).  

 

The support of a pattern is the number of sequences that contains at least one match for this 

pattern.  

 

Pattern detection proceeds in three steps. First (Scanning) the n-grams of the semantic tags 

sequences are listed by increasing size. Second (Generalising), (L,W)-patterns are created for 

each n-gram. Only (L,W)-patterns with support greater than the fixed threshold are kept. The 

process (scanning and generalising) is repeated until no pattern with enough support is found. 

Third (filtering), less specific patterns are pruned. That is, if p1 is more specific than p2, if both 

have offset lists1 of equal size, p2 is filtered out. This yields the lists of maximal patterns which are 

supported by the training data. 

 

Among the patterns found, many are very similar. Agglomerative clustering is used with an 

approximate matching distance measure between patterns to group together patterns that are 

similar.  

 

                                                   

 
1 The offset list records the matching locations of a pattern p in a list of sequences. It consists of 

sets of ordered pairs (seq,pos) where seq records the sequence number and pos the offset in that 

sequence where p matches.  
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Finally, ordering constraints between clusters are derived from frequency counts. In essence, 

frequent ones are kept while order constraints that are violated in any training sequence are 

rejected. The count c of A preceding B is normalised with the count c1 of A preceding x and the 

count c2 of x preceding B where x ranges over all the patterns that match before/after  A or B. 

The arithmetic mean ((c/c1) + (c/c2))/2 is used as the final estimate for each constraint.  

 

Given a training corpus of 24 transcripts, the system produced a set of 24 plan elements 

(semantic tag patterns) and 29 ordering constraints between these plan elements. For evaluation, 

these were compared using 3 fold cross validation with the original hand crafted plan that was 

constructed based on hand analysis of transcripts. For motif detection, L, W and support threshold 

were set to 2, 3 and 3 respectively. Pattern confidence i.e., the proportion of patterns that 

matches a sequence in the test set is 84.62%. Constraint confidence (the proportion of learned 

constraints for which there is at least one pattern from each cluster present ) is 66.70%. 

Constraint accuracy (proportion of order constraints that are verified in all pairs of matching 

patterns in all the test set sequences) is 89.45%. 

 

3.2.2. Evolutionary Algorithm 

(Duboue and  McKeown 2002) use evolution algorithms to learn a text planner determining the 

order of basic messages in medical briefings. The overall learning architecture is depicted in the 

diagram below. Given a set of 82 atomic messages that can occur in a briefing, the task is to learn 

a planner tree which will predict how to order these messages in an output text. The evolutionary 

algorithm explores the space of possible planning trees using mutation and cross -over operations 

to modify the current plan and two corpus driven fitness function to evaluate the fitness of each 

new tree.  
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Three mutation and one cross-over operations are used. The mutations include node insertion 

which picks an internal node at random and moves a subset of its children to a newly created 

subnode and node deletion which randomly picks an internal node different from the root and 

removes it by making its parent absorb its children. Both operators are order preserving. To allow 

for order variation, the shuffle mutation randomly picks an internal node and randomizes the order 

of its children. The cross over mutation is depicted in the Figure below.  

 

 
 

To assess the quality of a new text plan, first an approximate evaluation function Fc is used to 

determine whether order constraints over plan operators are met in the current plan. The order 

constraints are those acquired on the same domain in (Duboue and McKeown 2001). Once a tree 

has been evolved so that it conforms to all order constraints, the second fitness function Fa is 

used to assess how different the current text plan is from that generated by the existing MAGIC 

system developed for the same domain. Alignment between the two texts is used to determine 

how close the two texts are. 

 

The search algorithm was initiated with a plan with one root node connected to a random ordering 

of the 82 basic messsages and executed by 20 generations. A comparison between the MAGIC 

and the best learned planner give a score of 1.16 where 0 would indicate a perfect match (the 

score estimates the number of distinct substructures output by the two planners). In comparison, 

the score of the initial random planner is 2.92. 
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3.2.3. A Statistical Approach 

(Kan and McKeown 2002) learn from a corpus of semantically annotated bibliography entries (i.e., 

summaries) statistics which are used to determine both what predicates to include in a summary 

and how to order them.  

 

A corpus of 2000 summaries is semantically annotated as follows. 5% (100) entries are manually 

annotated with a tagset of 24 predicates (e.g., purpose, audience, contributor, author). The Ripper 

decision tree learner is used to induce a decision tree that  can automatically label a new corpus 

with predicates. Semantic annotation applies to node of the sentences dependency tree. The 

features used represent the predicate’s set of words and relative and absolute position in the 

summary; local context information (i.e., preceding and following predicates); and genericity (how 

uniform the language is for particular predicates across instances). When testing using 5 -fold 

cross validation, the resulting accuracy is 66%.  

 

The semantically annotated corpus is the basis for learning the rule base for content planning. 

Content selection is done by a randomized algorithm which selects n (n is the user defined 

desired summary length) predicates biased for the percentages acquired from the training corpus. 

The selected predicates are then ordered using either the harmonic or quadratic penalised 

version of the algorithm. These are computed as follows. 

 

n-gram statistics on pairs of adjacent predicates are recorded together with the order in which 

they occur. A precedence relationship of distance one is given a full strength score but a distance 

n relationship is given 1/n unit score in the harmonic and 1/2𝑛in the quadratic. Each pair of 

predicates accumulates these weights as instances are found in the training corpus and  a 

randomised hill-climbing algorithm is used to find a maximally compliant ordering.  

 

3.2.4. A Classification Approach 

(Dimitromanolaki and Androutsopoulos 2003) decompose fact ordering into a cascade of multi -

class classification problems where each classifier selects the fact to be placed at the 

corresponding position. The input to each classifier is a vector of binary feature indicating which 

fact classes are in the input and which have already been selected. The output is the class of the 

fact to be placed at the position being processed. The authors experiment with both an instance-

based and a decision tree algorithm. They compare their results with two baselines, a majority 

baseline which assigns to position n the fact class that was most frequent at position n in the 

training data; and a predefined fixed order determined in collaboration with a domain expert. The 

accuracy (percentage of correct selections at each position) of the classifiers outperforms both 

baseline. The approach is trained and tested  (using 10 fold cross validation and stratification) on 

a set of 880 combinations of 6 facts each which were manually ordered according to a domain 

expert recommendation.  
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4. Microplanning 

4.1. Lexicalisation 

4.1.1. Verbalisation Templates for RDF Subgraphs 

(Ell and Harth 2014) present a language independent method for extracting RDF verbalisation 

templates from a parallel corpus of text and RDF data. A template consists of a graph pattern that 

can be used to query a RDF graph and of a sentence pattern which is a slotted sent ence that will 

be completed by inserting in the slots the results of the query.  

 

 

The approach consists of six steps. 

1. For each entity in the RDF graph, sentences that contain mentions of that entity are 
extracted. Mentions are labels of the entity (as specified in DBPedia) modulo minor string 
modifications  to account for morpho-syntaxic or typographical variations. 

2. Each of those sentences is associated with a set of identified entities, a subgraph and a 
set of observation. An observations is a 7 tuples of the form (e,p,o,l,r,o’,m) where e,p,o is 
an RDF triple, l and r are the strings matched to the left and the right of the mention of o, 
o’ is the matched mention and m is the modifier (modification) applied for matching o and 
o’. An identifed entity is an entity e such that the sentence contains a (possibly modified) 
mention of e. The sentence subgraph consists of all triples that contain an identified entity.  

3. Sentence and graph abstraction. Identified literals in the graph and in the sentence are 
replaced by shared variables. Different sentences may share the same graph pattern.  

4. Grouping. Given a set of (sp,gp) tuples, each sentence pattern sp is grouped with the set 
of graph patterns found for it.  

5. Frequent maximal subgraph pattern extraction. The maximal frequent subgraphs of a set 
of subgraph patterns are extracted.  

6. Template creation. For each (sp,gp) tuple, the frequent maximal subgraphs of gp are 
extracted. Subgraphs that are not safe, not connected or which yield no results are filtered 
out.  

 

The approach is tested on Wikipedia and DBPedia in English and in German. For 3 587 146 and 

613 027 entities respectively,  3 434 108 (resp. 530 766) templates were extracted where at least 

2 entites were identified . Evaluation includes coverage (numbfer of subgraphs verbalised by a 
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graph pattern), accuracy (proportion of triples expressed in the sentence and vice versa degree to 

which the sentence content is expressed by the sentence), syntactic correctness (degree to which 

a verbalisation is correct) and understandibility (clarity of verbalisation).  

 

4.1.2. Verbalising RDF data using Ontology Lexica 

(Cimiano et al 2013) use a manually constructed lexicon to verbalise ontology concepts. The 

lexicon conforms with the LEMON, a lexicon model for ontologies (McCrae et al 2011) and 

describes the link between a concept, its possible verbalisations and conditions on the use of 

these verbalisation. For instance, the following lexical entry lists two possible verbalisations for 

the ontology concept “schneiden” namely the infinitive form “schneiden” and the past participle 

form “geschnitten”.  

 

 

 

Similarly, the entry below shows a mlexical entry for “tranchieren” (to carve) which refers to the 

same “schneiden” concept but is restricted to cases where the ingredient if of type “meat”. The 

condition is modelled as a logical condition than can be issued as a query on the knowledge base.  

 

 
 

To verbalise a given concept, the lexicon is consulted and only these entries whose conditions are 

satisfied are selected. In addition corpus statistics are used to determine the terms or term 

combinations with higher frequency in the domain corpus.  
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During surface realisation, selected lexical entries are combined using sentence templates 

induced from a domain specific corpus (e.g., cooking recipe). These templates are acquired by 

first parsing the corpus sentences and annotating them with the ontology concepts. 20 000 

templates are extracted whose leaves are labelled with the list of all terms occurring at that 

position in the parse tree together with the corresponding senses (KB concepts) and the 

frequency of the terms.  

 

 
 

At generation time, the input concepts are used to select appropriate lexical entries and the task 

of the surface realiser is to find an appropriate syntactic tree to realise the input concepts. The 

selected tree is a tree that maximises a score taking into account the normalised prob ability of the 

syntax tree (induced from frequency counts on domain corpus), a comparison of the part of 

speech tag, synonyms and lexical senses of each selected lexicalisation with those of the terms in 

the tree, the node distances of related words inside each tree and an n-gram score for each 

resulting sentences.  

 

To automate the production of the lexicon, (Walter et al. )  present a semi-automatic approach 

that exploits a corpus to find occurrences in which a given property is expressed, and generalises  

over these occurrences by extracting dependency paths that can be used as a basis to create 

lemon lexicon entries. The approach is evaluated with respect to DBpedia as dataset and 

Wikipedia as corresponding corpus. 

 

The approach is summarised in the figure below. 
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For each property to be lexicalised, all triples from the knowledge base containing this property 

are retrieved. The labels of the subject and object entities of these triples are then used to search 

the corpus for sentences containing both these entities. Patterns are then extracted from the 

dependency paths of these sentences and used to construct lexical entries.  

 

For instance, given the RDF triple 

 

 

 

The following sentence might be extracted and parsed.  

 

 
From this parse, the following pattern will be extracted: 

 

and the following lexical entry will be built: 
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Patterns are generated by abstracting over the entities occuring in the parse, removing 

determiners and removing patterns with length less than 3 or more than 6. Also if the ent ities are 

related to another token by the nn relation (ie are modifiers) , the pattern is not kept. For each 

property, only those pattern whose relative frequency is above a given threshold are kept.  

4.2. Generating Referring Expressions 

A given target object can be referred to in many ways. Different forms may be used e.g., a 

pronoun (he), a proper name (John), a definite description (the man) or a demonstrative (this 

man). This choice can often be modelled by simple heuristics (e.g.,  using a proper name of a 

definite description for a first mention and a pronoun for subsequent mentions). For descriptions, 

additional choices concern the content of the description (which attributes to include?) and its 

form (how to verbalise each attribute). We focus here on the content selection problem.  

 

4.2.1. Full Brevity, Greedy and Incremental Search 

 

(Dale 1989, Dale and Reiter 1993) present three base algorithms that have been widely used for 

generating entity descriptions.  

 

Given an input consisting of a target entity, a set of other objects (called “distractors”) and a set of 

attributes, the output is a set of attributes which uniquely identifies the target entity i.e., which 

eliminates all distractors. For instance, given the objects and attributes shown below, a 

distinguishing output description for 𝑑1could be either {<type,man>,<clothing,wearing suit>} or 

{<type,man>,<position,left>} which could be realised as “the man wearing a suit” or “the man to 

the left”. 
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The first, full brevity, algorithm searches for a minimal set of attributes that uniquely identifies the 

target entity. To find a minimal description the algorithm first checks whether there is a single 

property of the target that rules out all distractors i.e., that is false of all distractors. If that fails, al l 

possibles combination of 2 properties are used, etc. The process repeats until either all distractors 

have been ruled out or all properties of the target have been tried.  

 

One main drawback with this algorithm is that it is computationally expensive (NP hard). Moreover 

humans sometimes use non minimal descriptions. In contrast, the greedy algorithm incrementally 

selects that property which eliminates the highest number of distractors. This does not garantee a 

minimal description but is much more efficient (because not all combinations of properties are 

explored).  

 

Finally, the incremental algorithm incrementally selects properties based on a predefined ordering 

e.g., by selecting the gender of a person before the color of her eyes.  

 

As extensively discussed by (Krahmer and Van Deemter 2012) these basic algorithms have been 

extended and modified in multiple ways e.g., to take into account not only unary properties but 

arbitrary n-ary relations; to generate plural and vague descriptions; to recast the problem in terms 

of existing framework such as labelled directed graphs and description logics; and to evaluate or 

learn models and algorithm on empirical data.  

 

4.2.2. A Corpus Based Investigation of Architectures  

 

(Zarrieß and Kuhn 2013) consider referring expressions, syntax and word order and 

explore how different architectural setups account for their interactions. Using a corpus annotated 

with deep syntax and discourse referents, they develop a statistical approach which can map a 

deep syntax tree and a set of referents to a sentence. The approach combines a syntax generator 

mapping a deep to a shallow dependency tree, a referring expression generator and a linearizer. 

They combine these three modules in different ways and examine how these different 

combination modes impact the generated text. 

 

 

4.2.3. Combining a Sentence Planner and a Maximum Entropy Model for Referring 

Efficiency 

 

(Garoufi and Koller 2012) generates maximally useful referring expressions by combining a 

maximum entropy model for referential success trained on the GIVE-2 corpus -and using the 

model weights as costs in a metric sentence planner.  

 

The GIVE-2 corpus is a corpus of instructions given in virtual environment (Gargett et al. 2010)  to 

guide the user in a virtual world. The expressions referring to buttons (the objects manipulated by 

the user) are annotated with the type of the attributes they contain. Six main attributes types are 

considered. 

 

 

 



22 

 

Document reference: D2.3.1  

ModelWriter 

Overview and Comparison of Existing Natural Language Generators  

 

Page 22 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014) 

 

 

 

 

 

 

To model the connection between the current 3D context and referring success, the following ten 

context features are used. 

 

 
A maximum entropy model is then learned to estimate the successfulness of any RE (referring 

expression) in any context.  

 

First, referring expressions in the training corpus are split into a class of high sucessfulness and 

one of low successfulness as follows: 

 

𝑠𝑢𝑐𝑐∗(𝑟)  =  0 𝑖𝑓 𝑠𝑢𝑐𝑐(𝑟)  ≤ 𝑆, 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where S is the median of all values that succ(r) takes and the successfulness 𝑠𝑢𝑐𝑐(𝑟) of a 

referring expression r is defined as: 

 

𝑠𝑢𝑐𝑐(𝑟)  =  0 𝑖𝑓 𝑟 𝑤𝑎𝑠 𝑛𝑜𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑,
𝛥𝑆

𝛥𝑇
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  

 

𝛥𝑠is the distance in the GIVE world between the target referent and the hearer’s location at the 

time whey they are presented with the referring expression r. 𝛥𝑇 is the time elapsed between the 

presentation of the RE and the manipulation of the referent.  
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The model is trained using logistic regression to learn the conditional probability of an RE r issued 

in a scene s being successful given a joint representation of attributes and context:  

 

𝑃(𝑠𝑢𝑐𝑐∗(𝑟)  =  1 | {𝜙𝑖𝑗(𝑟, 𝑠)}𝑖𝑗) 

 

with 𝜙𝑖𝑗(𝑟, 𝑠)  =  𝑐𝑖(𝑠). 𝑎𝑗(𝑟)where 𝑎𝑗(𝑟)  = 1if r contains an attribute of type  𝑎𝑗 and 𝑐𝑖(𝑠)takes the 

value of the feature 𝑐𝑖 on the scene s.  

 

The weight  𝑣𝑗(𝑠) of each attribute j in a given scene is then used to determine the cost of the 

planning operators used to build the natural language verbalisation of the set of selected 

attributes. As a result, a sentence plan has minimal cost among all correct plans just in case the 

referring expressions it contains has maximal successfulness probability. 
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5. Surface Realisation 

 

5.1. Inverse Parsing 

Given a grammar developed for parsing, surface realisation as inverse parsing consists in using 

this grammar to generate, rather than to parse, sentences. Inverse parsing approaches  are 

typically developed for grammars which describe both the syntax and the semantics of natural 

language. They have been proposed for Lexical Functional Grammars, Tree Adjoining Grammars, 

Combinatory Categorial Grammar and Head Driven Phrase Structure Grammar. 

 

(Bangalore and Rambow 2000) describes an approach composed of three modules: a stochastic 

tree chooser, a grammar-based unraveler and a stochastic Linear Precedence chooser. The 

approach takes as input an ordered dependency tree whose nodes are labeled with lexemes. The 

tree chooser (aka supertagger) then uses a stochastic tree model to assign TAG (Tree Adjoining 

Grammar) trees to the nodes of the input dependency tree.  A node n is assignet a TAG tree t so 

that the probability of the subtree composed of n with supertag (ie. TAG tree) t and all of its 

daughter tags is maximal. The unraveller uses the TAG grammar to produce a lattice of all 

possible linearizations that are compatible with the supertagged tree (i.e., the input tree whose 

nodes are labelled with lexemes and TAG trees) and the grammar (linear order information is 

deduced from the TAG trees). Finally, the LP chooser chooses the most likely traversal of this 

lattice given a language model.  

 

Another approach to inverse parsing with TAG is presented in (Narayan and Gardent 2012) who 

introduce a highly optimised surface realisation algorithm for TAG which exploits the structure of 

the input dependency tree to filter applicable rules and implement a beam search filtering the n 

best intermediate solutions using a language model. The approach is tested on the benchmark 

made available by the Surface Realisation Shared Task namely a set of unordered lemmatised 

dependency trees derived from the Penn Treebank.  

 

(Carroll and Oepen 2005) present an inverse parsing approach for HPSG (Head Driven Phrase 

Structure Grammar) which combines symbolic optimisation techniques (tabulation, subsumption 

based local ambiguity factoring) with a conditional, discriminative model for ranking the output 

sentences. Similarly, (White et al 2007) use a language model, a beam search and a ranking 

model to prune the search space when generating with a Combinatory Categorial Grammar 

(CCG). Finally, for Lexical Functional Grammar (LFG), (Cahill and van Genabith 2006) propose a 

PCFG-based approach based on an LFG which was automatically extracted from a treebank.  

 

5.2. A Maximum Entropy Framework for Surface Realisation 

(Ratnaparkhi 2000) presents a surface realiser where the mapping between input semantic 

representations and natural language strings is learned from a corpus of “generation templates” 

i.e., sentences in which values of interest (semantic values) have been replaced with their 

corresponding attributes. For instance, given the set of semantic representation in (1a), the 

sentence in (1b) would yield the generation template in (1c). 
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1a. {$city-fr  = New Yok City, $city-to = Seattle, $time-dep = 6am, $date-dep = Wednesday} 

1b. A flight to Seattle that departs from New York City at  6am on Wednesday. 

1c. A flight to $city-to that departs from $city-fr at  $time-dep on $date-dep 

 

Using this corpus of generation template and associated semantic representations, the authors 

learn three generation models. The first model (NLG1) chooses the most frequent template in the 

training data that corresponds to a given set of attributes. It fails  if this set of attributes has not 

been seen in the training data. NLG1 is the baseline. 

 

The second model (NLG2) is a conditional distribution model over the vocabulary V of words seen 

in the training data. The model is a maximum entropy model of the form : 

 

𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, 𝑎𝑡𝑡𝑟𝑖)  =  
∏𝑘

𝑗=1 𝛼
𝑗

𝑓𝑗(𝑤𝑖,𝑤𝑖−1,𝑤𝑖−2,𝑎𝑡𝑡𝑟𝑖)

𝑍(𝑤𝑖−1,𝑤𝑖−2,𝑎𝑡𝑡𝑟𝑖)
   

 

where 𝑤𝑖ranges over V and {𝑤𝑖−1, 𝑤𝑖−2, 𝑎𝑡𝑡𝑟𝑖} is the history where 𝑤𝑖denotes the i-th word in the 

generated phrase and 𝑎𝑡𝑡𝑟𝑖 denotes the attributes (in the input meaning representation) that 

remain to be generated at position i in the phrase. 𝑓𝑖are features and capture information in the 

history that is useful fo estimating 𝑝(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, 𝑎𝑡𝑡𝑟𝑖). The feature weights 𝛼𝑗are obtained using 

the Improved Iterative Scaling algorithm and are set to maximise the likelihood of the training 

data. At generation time, the probability of the  sequence of words 𝑤1 . . . 𝑤𝑛 given the semantic 

representation A (attribute set) is: 

 

𝑝(𝑤1  . . . 𝑤𝑛 | 𝐴)  = ∏𝑛
𝑖=1 𝑝(𝑤𝑖|𝑤𝑖−1 , 𝑤𝑖−2 , 𝑎𝑡𝑡𝑟𝑖) 

 

The features used are the following: 

 

 

 

Sentences are incrementally generated by choosing at each step the word sequence with highest 

probability given the already generated sentence and the semantic representation (attributes) 

remaining to be verbalised.  

 

NLG3 addresses a shortcoming of NLG2 namely that the previous two words are not necessarily 

the best predictors for the next word. Instead, NLG3 conditions generation on syntactical ly related 

words by generating a syntactic dependency tree topd-down where each word is predicted in the 

context of ist syntactically related parent, grand parent and sibling. For NLG3 the training corpus 

is annotated with dependency trees.  

 

The approach was test on flight descriptions with 26 attributes for the meaning representations 

and a training corpus of 6000 templates. The test set consisted of 1946 templates. The evaluation 

was human based and classified each output into perfectly acceptable / OK /  Bad / No output. 

NLG2 and NLG3 were found to outperform the baseline by a large margin. 
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5.3. Generation by Inverting a Semantic Parser that uses Statistical Machine 

Translation 

 

(Wong and Mooney 2007) inverts a semantic parser that uses SMT (Statistical Machine 

Translation) methods to map sentences into meaning representations.  

 

The generation task is to find a sentence e such that (i) e is a good sentence and (ii) its meaning 

matches that of the input MR (meaning representation). To assess sentence quality, a language 

model is used. To assess the relation between sentence and meaning representation, an SMT 

based parsing model is used. Thus to find the best verbalisation e of a given meaning 

representation f, the approach maximises 

 

Pr(𝑒) . Pr (𝑒|𝑓) ≈ 𝑚𝑎𝑥𝑑∈𝐷(𝑓)𝑃𝑟(𝑒(𝑑)). 𝑃𝑟(𝑑|𝑒(𝑑)) 

= 𝑚𝑎𝑥𝑑∈𝐷(𝑓)
𝑃𝑟(𝑒(𝑑)).𝑒𝑥𝑝 ∑𝑖 𝜆𝑖𝑓𝑖(𝑑)

𝑍𝜆 (𝑒(𝑑))
 

 

where d(f) is the set of derivations that are consistent with f and e(d) is the output sentence 

generated by d.  

 

The derivations consistent with a given meaning representations are produced using a grammar 

based parser whose grammar is learned from a sentence aligned corpus of sentences and 

meaning representations. First Giza++ is used to obtain the best alignments from the training 

examples between word phrases and production rules describing the structure of the given 

meaning representation. Then SCFG (Synchronous Context Free Grammar) ru les are extracted 

from these alignments. For instance, given the text and the meaning representation shown in (2a) 

and 2b) respectively 

 

2a.  If our player 4 has the ball, then our player 6 should stay in the left side of our half.   

2b. ((bowner our {4}) 

        (d our {6} (pos (left (half our))))) 

 

a possible alignment and set of extracted rules would be as shown below. 
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A maximum entropy model is learned to define the conditional probability of derivations given an 

input sentence: 

 

 

 
 

The feature functions 𝑓𝑖 are the number of times each rule is used in a derivation. 𝑍𝜆(𝑒) is a 

normalizing factor and the model parameters 𝜆𝑖 are estimated using L-BFGS to maximise the 

conditional log likelihood of the training data. 

 

The approach is evaluated on the RoboCup and on the GeoQuery corpora where the RoboCup 

corpus consists of 300 coach advice pieces aligned with a correponding CLANG meaning 

representation. The GeoQuery corpus consists of 880 questions manually translated to  the 

function GeoQuery language. BLEU and NIST are used as well as a human evaluation targeting 

fluency and adequacy.   
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6. Joint Approaches 

 

6.1. Comprehensive Probabilistic Generation 

(Belz 2008) presents a probabilistic approach to generation where the generation task is seen as 

incrementally specifying a word string by probabilistically rewriting less specified representations 

(data) into more specified ones (linguistic representations and strings).  The grammar is extracted 

from a paralled corpus of text and data e.g., 

 

 

 

First, a set of expansion rules is extracted semi-automatically from a parallel data-text corpus. 

Expansion rules are context free rules whose non terminals are terms of the form  f(b1 … bn) with 

b1 … bn variables or constant and f an n-ary relation. They permit converting an input vector of 

numbers and symbols in steps to a set of natural language strings. For instance, in the domain of 

weather reports, a grammar of such expansion rules might support the following derivation:  

 

 

 

The first 4 arguments of the Segment relation encode contextual information: it is the second 

segment (2) but not the last (-1), that wind speed has increased compared to the preceding 

segment (up), that the wind direction has changed counter-clock wise (counterclock) and that the 

changes are gradual (slow). The last 7 arguments are part of an input vector of weather data.  

 

The Figure below shows a fragment of the base generator which generates phrases describing 

gusts of winds.  
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The type definitions define Nv to be any positive integer, N to be either Nv or unspecified (n) and 

ST to be s, t or n which encodes presence of showers, thunderstorms or the unspecified value. 

The topmost Gusts relation takes as arguments information about maximum gust speed, minimum 

gust speed and presence of showers/thunderstorms.  

 

To extract the rules from the data, corpus sentences are analysed using a set of simple chunking 

rules that split wind statements into wind direction, wind speed, gust speed, gust statements, time 

expressions, transitions phrases, pre-modifiers and post-modifiers. This results in phrases about 

wind directions, wind speed etc which are used to define a CFG whose preterminal and lexical 

rules expands e.g., a non terminal representing a wind direction change to backing. Higher-level 

rules that combine sequences of preterminals into larger components are written manually taking 

care of text structuring, aggregation and elision.  

 

For each sentence in the corpus, the extracted grammar is used to produce all possible derivation 

trees and a probability distribution over alternative rules is computed using frequency counts, add -

1smoothing and standard maximum likelihood estimation. Thus if c(N → 𝛼) is the number obtained 

by adding 1/n to c for every occurrence of the rule in a set of derivation trees for a sentence 

where n is the total number of alternative derivations trees for the sentence, then 

 

p(N → 𝛼) = 
𝑐 (𝑁 →𝛼)

∑𝑖:(𝑁 →𝛼𝑖) ∈ 𝑅 𝑐(𝑁 →𝛼𝑖)
 

 

During generation, inputs are rewritten using expansion rules and the probability distribution over 

expansion rules is used in one of three ways; 

 

Greedy generation: the most likely rule is applied at each rewrite step.  

Viterby generation: create a generation forest by applying all rules at each step, then do a Viterby 

search. This maximises the joint likelihood of all decisions taken. 

Greedy roulette wheel generation: at each step select a rule according to a non uniform random 

distribution proportional to the likelihoods of expansion rules.  

 



30 

 

Document reference: D2.3.1  

ModelWriter 

Overview and Comparison of Existing Natural Language Generators  

 

Page 30 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014) 

 

The approach was tested on an aligned corpus of 2123 instances corresponding to a total of 

22985 words. It was evaluated using BLEU-4 and NIST-5 as well as a human evaluation. Greedy 

generation was found to be best and to be competitive with a hand crafted system.  

 

6.2. A Hierarchical Discriminative Approach 

(Angeli et al. 2011) presents an approach for generating text from database records where the 

generation process is broken up into a sequence of local decisions, arranged hierarchically and 

each trained discriminatively.  

 

Given a corpus consisting of database records and text verbalising some of the information 

encoded in these records, they start by using the model of Liang et al. (2009) to automatically 

induce the correspondences between words in the text and the actual database records 

mentioned. The generation process is then structured into three sequential decisions: (i) record 

selection which determine which records in the input to talk about (content selection); (ii) field set 

decisions, which determine which fields of those records to mention: and (iii) template decisions 

which determine which words to use to describe the chosen fields (surface realisation).  

 

 
 

Each of these decisions is made by a discriminative model whose features are designed to be 

domain-independent and which may depend on the current and all previous decisions (global 

features)2. Each record, field set and template (sequence of elements where each element is 

either a word or a field) is associated with a feature vector and at each step in the generation 

process the vector with maximal probability given the  previous decision sequence is chosen 

(greedy search).  

 

 
                                                   

 
2 This is in contrast with eg Belz 2008’s approach where decisions must decompose locally 

according to a tree.  
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The parameters of the model (feature weights) are learned by maximising the conditional 

likelihood of the training data which consists of  pairs of database records and text which have 

been aligned and where text has been generalized either to the corresponding field name or to 

those field names that are licensed by some manually defined trigger pattern.  

 

The approach is evaluated on three domains namely, robocup games (1919 entries), weather 

forecasts (SumTime-Meteo corpus, 469 entries) and WeatherGov (29528 entries) using BLEU-4 

and a human-based evaluation.  

 

6.3. Generation with  a PCFG represented as an Hypergraph 

 

(Konstas and Lapata 2012) describe an end-to-end approach to generation in which a PCFG is 

learned captures the structure of a database d with records and fields as intermediate non-

terminals, and words w (from the associated text) as terminals. The grammar is represented as a 

weighted directed hypergraph and the weights are computed using a dynamic program similar to 

the inside-outside algorithm.  

 

Given a trained grammar and a database fragment, the model generates text by compiling a 

hypergraph specific to the test input (database elements) and decoding the hypergraph via cube 

pruning. That is generation finds the text w which maximises: 

 

𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑃(𝑤|𝑑)  =  𝑎𝑟𝑔𝑚𝑎𝑥𝑤𝑃(𝒘). 𝑃(𝑑|𝑤) 

 

where P(w|d) is the decoding likelihood for a sequence of word w. P(w) is a measure of the quality 

of each output (given by a language model) and P(w|d) is the posterior of the output for database 

d.  

 

The approach is tested and evaluated on three domains namely, weather forecast generation 

(WeatherGov), air travel (ATIS)  and soccer commentaries (Robocup). It is shown to outperform 2 

previous approaches (Angeli et al. 2010, Kim and Mooney 2010) in terms of BLEU scores and in a 

human evaluation for fluency and semantic correctness.  

 

 

The approach is refined in (Konstas and Lapata 2013) to produce documents plans which are 

either induced from the data or from an RST discourse parser. This is done by replacing the 

grammar rules describing the chaining of database records by discourse rules describing how 

records group into sentences and how sentences group into a document.  

 

In the first approach  (discourse rules induced from data), the new discourse rules are extracted 

from the training data as follows. First datbase records and words are aligned using Liang et al’s 

(2009) unsupervised model. The aligned record tokens are them mapped to their corresponding 

type, adjacent words with the same record type are merged and text is segmented on 

punctuation. Next the corresponding discourse tree is created and binarized. That is words are 

grouped to reflect the record they verbalise, records are grouped to reflect the sentence they 

cover and sentences are attached to the root discourse node. Rule weights are counted on the 

resulting treebanks and rules with frequency less than 3 are discarded. 
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In the second RST type approach, each record is mapped to an EDU (elementary discourse unit) 

and an existing discourse parser is used to parse the resulting corpus and extract rule weights.  

 

The approach is evaluated on the Weather Gov and the WinHelp corpus and shown to outperform 

the previous version of the system by a wide margin on both datasets.  

 

6.4. Integer Linear Programming for Content Selection, Lexicalisation and 

Aggregation 

(Lampouras and Androutsopoulos 2013) presents an ILP model of content selection, lexicalisation 

and aggregation that generates text from ontology. Compared to a traditional pipeline 

architecture, the ILP approach permits avoiding greedy decisions. The approach was tested on 

two ontologies and shown to produce more compact text than a standard pipeline approach with 

no deterioration in the perceived quality of the generated texts.  

 

For each fact (OWL axiom) in the knowledge base, a set of alternative sentence plans is available 

where a sentence plan is a sentences containing slots annotated with instructions specifying how 

to fill slots. For instance, the fact: 

 

(exhibit12, foundIn, athens) 

 

 is associated with the sentence plan  

 

[ref (S)] [find past ] [in] [ref (O)] 

 

where square brackets denote slots, ref (S) and ref (O) are instructions requiring referring 

expressions for S and O in the corresponding slots, and “find past ” requires the simple past form 

of “find”. In our example, the sentence plan would lead to a sentence like “Exhibit 12 was found in 

Athens”.  

 

The slots and the individuals, classes or datatype values they refer are called “elements”.  

 

Aggregation rules (Dalianis, 1999) are used that operate on sentence plans and usually lead to 

shorter texts e.g., 

 

Bancroft Chardonnay is a kind of Chardonnay. It is made in Bancroft 

⇒Bancroft Chardonnay is a kind of Chardonnay made in Bancroft 

 

The ILP model makes use of the following variables: 

 

● F =  {𝑓1 , . . . , 𝑓𝑛}is the set of facts to be verbalised 

● 𝑠1 , . . . , 𝑠𝑛are disjoints subsets of F each containing 0 to n facts with 𝑚 ≼ 𝑛 
● 𝑎𝑖 = 1 if 𝑓𝑖 is selected, 0 otherwise 

● 𝑙𝑖𝑗𝑘= 1 if sentence plan 𝑝𝑖𝑘is used to express fact 𝑓𝑖and  𝑓𝑖 is in subset 𝑠𝑗, 0 otherwise 

● 𝑏𝑡𝑗  = 1 if element  𝑒𝑡 is used in subset 𝑠𝑗, 0 otherwise 

 

Given a set of facts to be verbalised, the objective function maximises the total importance of 

selected facts (each fact is assumed to be annotated with an importance score) and minimises the 
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number of distinct elements in each subset i.e., the approximate lengths of the corresponding 

aggregated sentence. In addition, well formed solutions must obey the following five constraints:  

 

1. For each selected fact, only one sentence plan in only one subset is selected 
2. If a sentence plan is selected in a given subset, then all elements of that sentence plan 

are also selected in that subset 
3. If an element is used in a subset than at least one of the sentence plans involving that 

element mus also be selected in that subset 
4. The number of elements that a subset may contain is limited to a maximum allowed 

number (this limits the maximum lengths of a sentence).  
5. Facts from different sections are not placed in the same subset (it is assumed that each 

relation has been manually mapped to a single topical section).  

 

6.5.  A Ranking Framework for Planning and Realisation 

(Kondadadi et al. 2013) presents a statistical approach to generation in which automatically 

induced sentence templates are ranked for position in the output text using an SVM (Support 

Vector Machine).  

 

Corpus sentences are processed using the deep semantic parser Boxer. The DRS (Discourse 

Representation Structure) produced by Boxer and the domain specific named entity tags 

produced by domain specific named entity taggers are used to associate each sentence in the 

corpus with a meaning representation and the corresponding template. For instance, the sentence 

 

Mr. Mitsutaka Kambe has been serving as Managing Director of the 77 Bank, Ltd. since 

June 27, 2008. 

 

is associated with the conceptual meaning: 

 

SERVING | TITLE | PERSON | COMPANY | DATE 

 

and with the template 

 

[person] has been serving as [title] of the [company] since [date] 

 

Next templates are clustered into conceptual units using k-means clustering and similarity 

between templates so that each conceptual unit is associated with a set of templates and 

conversely, each template is associated with a conceptual unit.  

 

A training corpus is then built which aligns each corpus sentence S with a ranked list of templates 

where the rank of each template t is determined  by its Levenshtein edit distance to the template 

corresponding to S. In addition templates are associated with a feature vector using the features 

listed below.  
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The weight associated with each feature is learned using a linear kernel for a ranking SVM.  

 

At generation time, the input consists of a set of input data, a template bank  and the SVM ranking 

model. Templates are then selected and filled iteratively by chosing the template that rank highest 

at each step of the generation process and filling its slots with matching entity tags from the input 

data.  

 

The approach is tested on two domains: corporate officer and director biographies and oil rig 

weather reports from the SumTime Meteo corpus. BLEU-4 and Meteor are used as well as a 

human based evaluation. The baseline simply chooses the most frequent conceptual unit at the 

given position and the most likely template for the conceptual unit.  

  



35 

 

Document reference: D2.3.1  

ModelWriter 

Overview and Comparison of Existing Natural Language Generators  

 

Page 35 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014) 

 

7. Conclusion 

While there are many possible ways of handling the various issues arising when generating text, 

one common issue is how to relate natural language words and phrases to data items. Indeed, 

most of the approaches described in this deliverable incorporate an alignment step in which words 

in text are aligned with data items. This step is more or less complex depending on the available 

text and data corpora and on the model used.  

 

(Belz 2008, Konstas and Lapata 2013, Ratnparkhi 2000, Wong and Mooney 2007) all explore a 

setting in which a parallel corpus is available: short texts are aligned with database fragments in 

so called scenarii. Given this parallel corpus, the alignment between words and data can be 

learned using various techniques. (Belz 2008) uses a mixture of hand written rules and 

automatically learned rules to learn a probabilistic grammar that rewrites data vectors into text.  

(Konstas and Lapata 2013)  automatically induce a probabilistic context free grammar from 

aligned database and text fragments. (Ratnaparkhi 2000) learns an incremental generation model 

from a corpus of generation templates i.e., of sentences in which values of interests (semantic 

values) have been replaced with corresponding attributes.  His generation system makes use of 3 

models: a first model to choose the most frequent template in the training data that corresponds to 

a set of attributes, a second model to choose the most likely word given the words already 

generated and a third model to improve syntactic well formedness. In his approach, the alignment 

between text and data is given by the annotated templates and used to train models that  guide 

choices at generation time. (Wong and Mooney 2007) train a statistical machine translation model 

on an aligned corpus of text and semantic rule describing the semantic structure of the input data.  

 

Other approaches investigate how to relate text and data in a context where no parallel data/text 

corpus is available. (Duboue and McKeown 2003) use clustering, cross entropy and a decision 

tree algorithm to learn which semantic data is actually expressed in the text. (Ell and Harth 2014) 

induce verbalization templates from Wikipedia which can verbalise sets of DBPedia RDF triples 

using matching and frequent maximal subgraph extraction. (Cimiano et al 2013) presents a similar 

approach where  sentences that contain mentions matching entities occurring in an RDF triples 

are extracted from a large corpus and used to create sentence templates. (Kondadadi et al 2013) 

also automatically induce sentence templates from data but additionally learn a ranker to 

determine which template is most appropriate given the input.  

 

Thus alignments can be learned using either parallel or comparable data/text corpora. In 

ModelWriter, models and text may give rise to both situations.  

 

In Use Case UC-FR1 (Synchronisation between models and documentation, OBEO – Sirius 

Product) for instance, there is no direct alignment of text and data. In this usecase the 

synchronization mechanism relies on the detection and creation of “links” .between elements in 

the model or the java code and  elements in the documentation. In this case, the alignment 

techniques used for generation from comparable corpora can be used to support Obeo’s 

synchronization system. We will therefore investigate how the detailed alignment technique 

described in (Ell and Harth) can be adapted to support the semantic annotation of Sirius 

documentation by model and Java code items and in this way, automatically produce the links that 

are required by the synchronization mechanism to signal to the user which parts of the 

documentation might need updating. The alignment tool developed could also be used in usecase 



36 

 

Document reference: D2.3.1  

ModelWriter 

Overview and Comparison of Existing Natural Language Generators  

 

Page 36 of 40 Based on the ITEA 3 FFP Annex Template v1.0 (September 2014) 

 

UC-FR4 to synchronise elements of the SIDP normalized rules with the SIDP documents thus 

facilitating access to the relevant portion of the SIDP document from the given rule.  

 

In contrast, in use case UC-FR4 (Synchronisation of regulation documentation with a design rule 

repository), because RDF data will be produced from the text by semantic parsing, parallel data 

will be available. We will therefore explore data-to-text alignment techniques developed for  

parallel data/text corpora taking inspiration from (Belz 2008, Konstas and Lapata 2013, 

Ratnparkhi 2000). 

 

As shown in the approaches just mentioned, once the data is aligned, lexicalizations and 

sentence templates can be extracted. and used for surface realization. However many choices 

remain to be made including, content selection, content planning, referring expression generation, 

and surface realization. In the context of ModelWriter, content selection is less an issue as 

generation is meant to reflect changes in the model. Content selection can therefore be 

determined by the changes made. i.e., the content to be verbalized is the content affected by the 

change. Content planning is also not a major issue as the changes to be verbalized will usually be 

local. In short, most of the work will consist in developing a surface realizer which produces high 

quality text from the lexicalizations induced through data-to-text alignment. To this end we will 

explore the development of a joint model similar to those described in (Belz 2008, Angeli et al. 

2011, Konstas and Lapata 2012, Lampouras and Androutsopoulos 2013, Kondadadi 2013). As 

explained in the FPP, the aim is WP2 is to develop a reversible processor which can both parse 

text into models and generate text from modes. Consequently, for generation, we will take as a 

starting point the RDF representations produced by the semantic parser developed for the use 

case UC-FR4. In a first step, the aim will be to regenerate the sentences from which the RDF data 

was derived. Since parallel data will be available we will start by investigating the model described 

in Belz 2008. That is we will learn a probabilistic context free grammar describing how data 

rewrite into strings. In a second step, we will evaluate the model on unseen data i.e. on sets of 

RDF triples that are not produced by the semantic parser. This will be useful for instance, to 

verbalise answers to queries formulated on the knowledge base produced by the semantic parser 

from the normalized SIDP rules.  
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