ITEA Office

u I T E A 3 High Tech Campus 69 - 3 T +31880036136
5656 AG Eindhoven E info@itea3.org
The Netherlands W www.itea3.org

ITEA 3 is a EUREKA strategic ICT cluster programme

D3.2.1 M2M Transformation
Framework Architectural Design

Document
ModelWriter

Text & Model-Synchronized Document Engineering Platform

Project number: ITEA 2 13028
Work Package: WP3
Task: T3.2 - Specification and design of the M2M Transformation

Edited by:
Ferhat Erata <ferhat.erata@unitbilisim.com> (UNIT)

Moharram Challenger <moharram.challenger@unitbilisim.com> (UNIT)

Date: 07-June-2015
Document version: 1.0.0

Apart from the deliverables which are defined as public information in the Project Cooperation
Agreement (PCA), unless otherwise specified by the consortium, this document will be treated as
strictly confidential.

A ITEAZ

Document History

Document reference: D3.2.1
ModelWriter
M2M Transformation Framework architectural design document

Version Author(s) Date Remarks
0.5.0 Ferhat Erata 07-June-2015 | Draft
Moharram Challenger
0.6.0 Developer team in 09-Sep-2015 Modifications
UNIT
Page 2 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

3
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

Table of Contents

(D TeTed U] V1= N i | 0 PP 2

I 1N 12T 1T o 4
Bl Role Of the deliVerable..............c.oiie e 4
Il The List of Technical WOrk PACKAGES.c.eeiveiieeeeeee e 4
- (0] 01T o140 o 1 PP 4
- Structure of the AOCUMENT. e 4
Il Terms, abbreviations and definitionS..............coeiieiee e 5

2. SPECIFICATION OF M2M TRANSFORMATION ututitteeeateteteteaea e et e e e et et et e e e et e e e e aenenns 6
- Current Status of the ModelWriter Synchronization Functionality..... Error! Bookmark not
defined.

3. DESIGN OF THE M2M TRANSFORMATION .. .utututttttneteteaentaetae e e enet et e e eeae s e e e eneae e e eneneneenen 11

4. CONCLUSION AND WAY FORWARD ... tttttuatetettatteaee st eaet et et e e e et e e et et e et e et et e et eaen e nenees 15

= N o = 16

Page 3 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

4
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

1. Introduction

Role of the deliverable
This document is the first version of the description of the use cases proposed by the French

consortium. It may be up-dated depending on the further details and requirements we get from our
industrial use case providers.

The List of Technical Work Packages

UC Code Requirements derived from

WP2 Semantic Parsing and Generation of Documents and Documents Components
WP3 Model to/from Knowledge Base (synchronization mechanism)

WP4 Knowledge Base Design and Implementation

WP6 Architecture, Integration and Evaluation

Conventions

The requirements are prefixed by “REQ-SR-WPz-xxx”, and are written in a roman typeface, where
“REQ” stands for “Requirement”, “SR” indicates “Software Requirements”, “z” stands for the number
of work package where the requirement is orginated and “xxx” is the positive integer identifier of the
requirement. You can add this id (xxx) which is unique entire ‘requirements’ repository, at the end
of https://github.com/ModelWriter/Requirements/issues/ to access the latest version of the

requirement.

Structure of the document

This document is organized as follows:
= Chapter 1 introduces the document.
= Chapter 2 describes the specification of the M2M
= Chapter 3 describes the design of the M2M
= Annex1

Page 4 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34
https://github.com/ModelWriter/Requirements/issues/

5
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

Terms, abbreviations and definitions

Abbreviation Definition

RDF

WP

ucC

Resource Description Framework
Work Package

Use Case

This document consists of the specification and design of the M2M Transformation Framework
whose main goal is to make the ModelWriter tool able to launch M2M (model-to-model)
transformations including the following features:

o

o

To obtain one or several output models from one or several input models.

To configure the transformations to be able to produce different outputs using the same
inputs.

To compose simple transformations to obtain more complex ones.
To keep traces between transformed models and its source models.

To synchronize the output models after its input models or configurations have been
modified.

To synchronize the output models without changing the modifications that users or
processes may have made on them after the transformations was finished.

Page 5 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

6
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

2. Specification of M2M Transformation

1. Text Part

Feature 1.1:

User shall be able to mark any kind of textual documents on Eclipse Editor.
- User shall be able to mark text fragments on a Markdown, Wikitext.. file (Eclipse
Wiki Editor).
o plugin: org.eclipse.mylyn.wikitext.ui
o editor: org.eclipse.mylyn.internal. wikitext.ui.editor.MarkupEditor
- User shall be able to mark text fragments on a Java file (Eclipse JDT Java Editor).
o plugin: org.eclipse.jdt.ui
o editor: org.eclipse.jdt.internal.ui.javaeditor.CompilationUnitEditor
- User shall be able to mark text fragments on an XML file (Eclipse XML Editor).
o plugin: org.eclipse.wst.xml.ui
o editor: org.eclipse.wst.xml.ui.internal.tabletree. XMLMultiPageEditorPart
- User shall be able to mark text fragments on a Plain text file (Eclipse Text Editor).
o plugin: org.eclipse.ui.editors
o editor: org.eclipse.ui.editors.text. TextEditor
- User shall be able to should mark text fragments on a Textual DSL (Eclipse Xtext
Editor).
o editor: org.eclipse.xtext.xbase.ui.editor.XbaseEditor

Feature 1.2:

User shall be able to see the start and end char positions of markers shifting while editing
on the text editor.
- Offset and Length of markers should be updated while editing on the text editor.

Feature 1.3:

The system shall indicate text fragments or a model elements which are already linked by
means of a kind of visual indicator.

Feature 1.4:

User shall be able to delete any marker based on a valid text selection on the editor.
- Precondition: the text should be marked before deletion.

Feature 1.5:

User shall be able to mark a text fragment by the 'Mark All' command to indicate that all text
fragments with the same syntax should be searched and marked as well as different
representations of single entity.
- Although the system should assign unique IDs to all markers, another group ID
should be also assigned.

Page 6 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

7
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

Feature 1.6:

User shall be able to delete a marker which has been already marked by the 'Mark All'
command by means of the 'Delete All' command to indicate that all the related markers
should be also deleted.

Feature 1.7:

The System shall persist a text marker and its state.

Feature 1.8:

User shall be able to undo/redo markers and their states while working on Text editor.
Model Part

Feature 2.1:

User shall be able to mark an element which inherits 'ENamedElement’ on an Eclipse Ecore
Editor.
- User shall be able to mark an EMF model element on EcoreEditor/EMF Reflective
Editor.
o plugin: org.eclipse.emf.ecore.editor
o editor: org.eclipse.emf.ecore.presentation.EcoreEditor
- User shall be able to mark a EMF model element on Generic EMF Form Editor.
o plugin: org.eclipse.emf.generic.editor
o editor: org.eclipse.emf.editor.EEditor

Feature 2.2:

User shall be able to mark an element which inherits ‘"NamedElement™ on an Eclipse UML
Editor.
- User shall be able to mark a UML model element on the tree-based UML2 editor of
Eclipse.
o plugin: org.eclipse.uml2.uml.editor
o editor: org.eclipse.uml2.uml.editor.presentation. UMLEditor
«» selection: org.eclipse.uml2.uml.NamedElement
- User shall be able to mark a UML model element on the free-form UML editor of
Eclipse.
o plugin: org.eclipse.papyrus.editor
o editor: org.eclipse.papyrus.editor.PapyrusMultiDiagramEditor
- User shall be able to mark a UML model element on the free form Sirius editor of

Eclipse.
o plugin: org.eclipse.sirius.diagram.ui.ext
o editor:

org.eclipse.sirius.diagram.ui.tools.internal.editor. DDiagramEditorimpl

« selection:org.eclipse.emf.ecoretools.design.ui.parts.DNodeListEditPart
WithAlpha

% selection:org.eclipse.sirius.diagram.ui.internal.edit.parts. DNodeContai
nerEditPart

Page 7 of 16 https://qithub.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

8
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

«» selection:org.eclipse.sirius.diagram.ui.internal.edit.parts. DNodeListEdit
Part

« selection:org.eclipse.sirius.diagram.ui.internal.edit.parts. DEdgeEditPar
t

Feature 2.3:

User shall be able to mark OMG ReqlF model elements such as “SpecObject” and
"SpecHierarchy’.
- plugin: org.eclipse.rmf.reqif10.pror.editor (RMF is still in incubation phase)
- editor: org.eclipse.rmf.reqifl0.pror.editor.presentation.SpecificationEditor
o selection: org.eclipse.rmf.reqif10.Specification
o selection: org.eclipse.rmf.reqif10.SpecObject
o selection: org.eclipse.rmf.reqif1l0.SpecHierarchy

Feature 2.4:

User shall be able to mark OMG BPMN2.x model elements such as Gateways and Activities

Feature 2.5:

Once an instance of EMF model is marked on the "EcoreEditor’, the offset and length of the
corresponding XMl statement should be also marked.

Feature 2.6:

User shall be able to delete an "ENamedElement” on the "EcoreEditor’.
- Once an instance of "EClass’ is deleted, Markers on its EStructuralFeatures should
be deleted.
- Once an instance of "EAttribute” is deleted, its marker should also be deleted.
- Once an instance of 'EReference’ is deleted, its marker should also be deleted.
- Once an instance of 'EPackage’ is deleted, all 'Subpackages’, "EClassifiers™ and
"EStructuralFeatures” of those "EPackage™ should be deleted recursively.

Feature 2.7:

User shall be able to undo/redo model markers and their states while working on Model
editors.

Model <-> Text

Feature 3.1:

Show mapping between arbitrary model and text markings.

Page 8 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

9
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

Feature 3.2:

Show the filter on the project explorer view on the mapping wizard.

Feature 3.3:

Show filtered relation types according to selected marker type.

Feature 3.4:

Show the markers which have been filtered according to selected relation type and selected
marker.
Views (Ul parts)

Feature 4.1:

Show ModelWriter Markers which marked current document on Master View.

Feature 4.2:

Show target markers of selected marker on Target View.

Feature 4.3:

Show source markers of selected marker on Source View.

Feature 4.4

Show details of marker which is selected from Master View on the Properties View.

Feature 4.5:

Navigate and focus to markers through selected marker on Views.
Traceability

Feature 5.1:

The System shall persist a model marker and its state. The persistency formalism must
align with set theory and relational calculus.

Feature 5.2:

Virtualize markers and their relations.

Page 9 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

10
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

Configuration

Feature 6.1:

Markers and links (mappings) shall be able to specify by the user in a declarative way.

Feature 6.2:

The specification formalism must support First-order Logic constraints.

The following image offers an overview of the components of the M2M Transformation Framework.

User-
visible
odel

A-KB X-KB X-KB
transformatign transfofmation transformation

Transformation Manager

User-
visible
odel B

User-
visible
odel A

Configuration Traceability
Manager Manager M2M

Synchronization Manager Transformation

: | : Framework
Knowledge Base (KB)

All the components will be designed as Eclipse plugins in order to make the framework
usable and extendable by third-party companies.

Page 10 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

11

I TEAZ

Document reference: D3.2.1
ModelWriter
M2M Transformation Framework architectural design document

3. Design of The M2M Transformation

ﬁ]Texts
(@) Text [
EUI EI Configuration
@ Jawa [java) -
Marker Traceabili
ﬁFunmnns ﬁ ﬁ y
DA selected element DEF] Mark et
(@) Create Marker (@5 Wirite Marker ta Xml File
@ Markdown [.md) @) Create Marker
DA Text
lssmsss e
Dl Mo del
43 Models D= Mapping
1 () Wirite Mapping to ¥ml File
@ i] @ Map Markers
core [ecore
DR 2lloy File [als)
@ ReglF [reqif] @ Parse Alloy File @ Create Xml File
i
@ Instance [xmmi] MA”WFJ'E Lals]
LT
{3 Configuration File
@ Aoy File [.als)
e
CIModel Connector i cciipse RMF Requirement Mode! Framework)
t to Reqf q ch @ Req
&

User give an alloy file (“.als”) to system via “Ul” and “Configuration” parses the file in the
background and creates an xml file via “Traceability”. So marker types and relation types are
determined. Then Users open text and model documents. Select a part of text and mark this area
via “UlI”. “Marker- part” creates marker according to selected type and selected area. And then
marker data is written by “Configuration” to the xml file which is already created. The same steps
are repeated for the selected model element.

After markers have been created, mapping can now be done. For mapping user selects a
marker as source, then selects a relation type and selects markers as target. “Configuration-part”
also writes the mapping data to the xml file via “Traceability-part”. So user mapped a model
element and a text element.

Texts

It includes Text (.txt), Java (.java), Markdown (.md), and etc. type text files. Any kind of

these files can be used to marking action.

Models

It includes Ecore (.ecore), ReqlF (.reqif), XML instance (.xmi), and so on. type model files.
Any kind of these files can be used to marking action.

Page 11 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

12
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

Configuration File

There is an Alloy (.als) file to describe sets and relations between sets. Sets correspond to
marker types and relations correspond to mapping notion in our system.

Ul
This part includes “Create Marker” and “Map Markers” commands.
Create Marker:
Triggers creating marker action in the Marker part according to selected text or
model element.
Map Markers:
Connects existing markers with existing relation types.
Parse Alloy File:
Triggers parsing alloy file action in Configuration.
Marker
Creates marker with selection which comes from UL.
Traceability

It is an API that records markers and their relations to xml file for persistence.

Configuration

It uses Traceability API to create xml file and write marker, mapping to xml file.
Write Marker to Xml File:
Writes marker to xml file via Traceability API.
Write Mapping to Xml File:
Writes mapping relation to xml file via Traceability API.
Create Xml File:
Parses alloy file and then creates template xml file according to result of parsing.

Page 12 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

13
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

4. Towards implementation

The following figure illustrates the snapshot of the internal representation of ModelWriter Platform
between two consequtive user interactions. The platfor has three main modules: Model part (at the
left side of the figure), Writer part (at the right side of the figure), and Knowledge base part (at the
buttom of the figure). In this big picture, the simplified metamodels are used to ease the
understanding of the system. These metamodels are called “Document Model”, “Domain and
Requirement Models”, and “Synchronization Model” for Writer, Model, and KB parts respectively.
Document Model is used to decompose a text in the document and restore in an structural and
meaningful way. Domain Model and Requirement Model are sample models which are used in the
Model Part as the User-Visible model. However, ModelWriter will support adding various modeling
languages by configuring ModelWriter. The Synchronization metamodel aims to keep the
traceability links between texts and models.

The figure below illustrates snapshot of ModelWriter. Using Microsoft Word’s OOXML standard
(.docx) and the Text Connectors provided in WP6, a requirement document is imported to the
system as an instance of the Document Model. The user also provides two instance model for the
Model part of the system. Considering the KB part, “System validates Book” statement is restored.

Page 13 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

14

ITEAZ=

Document reference: D3.2.1
ModelWriter
M2M Transformation Framework architectural design document

- PIGR - platforre/resource/Libiary ManagementSystenyMy.reqil - lormalmind Studio - -l B 9 O [Clbaled- 1 - A A - Libeary Miagemend Syt - Word T m - 3 %
e [0 Sk (i ftande Binden Hiop WOME | RSO DESGH PAGELAYOUT RS WAUNGS IR P 00N Auobe remattens < [
O-B88 - AE-H-ee-o- sexrami T ranl P " Lanmbceor s 1 AL
] o B e a-%-a- S bomal | TN Spec Heading | [z B8RS
& B Myseqt | W Requrements Document 1 = 0 |3 Owme
£ O SoscHimcty Navigation - %
P (T——H Library Management System
ouan Addmeaeat At .t o och 9 tumtamin]
DRI Validation of the Bzct Valization. of the Bock @ Valdaticn 1t HEADINGS ~ PAGES §s Grossasn
A B
= L 11w
== o —
< > u E
g 12 Be ~o& 2 e
oy
rm—— = T . ReauREMENTS
Desoption. e 12 equirernest - V.
o A3 1 E 11 RICHEMINT - AT T FOR D00 SEARCHES.
5| Tt e e o a3z
Fame. Rasgare Time for Bzok Searches I S perterm,
il = 2 12 RN -VATONCF REROr
e 1 oty
—— ittt
e fr— f s
Shandard Attrsutne Al Attribte < » ~ }

Teatamie) ==
[[| s e)
o
o
S ——
o
Documunt Madel

o= a1
Hlame =L eary Wapagemeet Syster
e =1. £ 13

=

mige = m2. 3, e me |
et The st alws e s o 30 e o g3 g
e Tom sy

bt bosk Smbrs k103

rmia]

T
- o,
[Ty

MarvadTort= hoak

J—TTTY
— asaTen - ok B

Spactenton sacs

" 1 Rerement s
Frae Ou Sactan Teat
) Ry Roalt scora sl £10= Rog 23 00 oo = “user” ar®y
[e ——
5 Tapanapa scare
e g
R

(e r D Raqi3 -

Page 14 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

15
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

5. Conclusion and way forward

The initial version of the architecture for WP3 is discussed in this document. The architecture and
the implemented features will be updated in the next phases by adding new features while
integrating with other components. One of the main components in WP3 is the transformation
between the models and knowledge base which will be realized in the second year of the project.

Page 15 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

16
A ITEAZ
Document reference: D3.2.1

ModelWriter
M2M Transformation Framework architectural design document

References

N/A

Page 16 of 16 https://github.com/ModelWriter/Deliverables/issues/34

https://github.com/ModelWriter/Deliverables/issues/34

