
 

 

 

D3.2.1 M2M Transformation 

Framework Architectural Design 

Document 
ModelWriter 
Text & Model-Synchronized Document Engineering Platform 
 

 

 

 

 

 

 

 

 

Project number: ITEA 2 13028 

Work Package: WP3 

Task: T3.2 - Specification and design of the M2M Transformation 

 

Edited by: 

 

Ferhat Erata <ferhat.erata@unitbilisim.com> (UNIT) 

Moharram Challenger <moharram.challenger@unitbilisim.com> (UNIT) 

 

 

Date: 07-June-2015 

Document version: 1.0.0 

 

 

 

 

 

 

 

 

 

Apart from the deliverables which are defined as public information in the Project Cooperation 

Agreement (PCA), unless otherwise specified by the consortium, this document will be treated as 

strictly confidential. 

  



2 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 2 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

Document History 

Version Author(s) Date Remarks 

0.5.0 Ferhat Erata 

Moharram Challenger 

07-June-2015 Draft 

0.6.0 Developer team in 

UNIT 

09-Sep-2015 Modifications 

    

 

 

  

https://github.com/ModelWriter/Deliverables/issues/34


3 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 3 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

Table of Contents 

 

DOCUMENT HISTORY .......................................................................................................... 2 

1. INTRODUCTION .............................................................................................................. 4 

 Role of the deliverable............................................................................................. 4 
 The List of Technical Work Packages........................................................................ 4 

 Conventions ........................................................................................................... 4 
 Structure of the document........................................................................................ 4 

 Terms, abbreviations and definitions ......................................................................... 5 

2. SPECIFICATION OF M2M TRANSFORMATION ......................................................................... 6 

 Current Status of the ModelWriter Synchronization Functionality ..... Error! Bookmark not 

defined. 

3. DESIGN OF THE M2M TRANSFORMATION ........................................................................... 11 

4. CONCLUSION AND WAY FORWARD ..................................................................................... 15 

REFERENCES ................................................................................................................... 16 

 

 

 

 

https://github.com/ModelWriter/Deliverables/issues/34


4 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 4 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

1. Introduction 

Role of the deliverable  

This document is the first version of the description of the use cases proposed by the French 

consortium. It may be up-dated depending on the further details and requirements we get from our 

industrial use case providers. 

 

The List of Technical Work Packages 

UC Code Requirements derived from 

WP2 Semantic Parsing and Generation of Documents and Documents Components 

WP3 Model to/from Knowledge Base (synchronization mechanism) 

WP4 Knowledge Base Design and Implementation 

WP6 Architecture, Integration and Evaluation 

 

 

Conventions 

The requirements are prefixed by “REQ-SR-WPz-xxx”, and are written in a roman typeface, where 

“REQ” stands for “Requirement”, “SR” indicates “Software Requirements”, “z” stands for the number 

of work package where the requirement is orginated and “xxx” is  the positive integer identifier of the 

requirement. You can add this id (xxx) which is unique entire ‘requirements’ repository, at the end 

of https://github.com/ModelWriter/Requirements/issues/ to access the latest version of the 

requirement. 

 

 

Structure of the document 

This document is organized as follows: 

 Chapter 1 introduces the document. 

 Chapter 2 describes the specification of the M2M  

 Chapter 3 describes the design of the M2M 

 Annex 1 

 

https://github.com/ModelWriter/Deliverables/issues/34
https://github.com/ModelWriter/Requirements/issues/


5 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 5 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

Terms, abbreviations and definitions 

Abbreviation Definition 

RDF Resource Description Framework 

WP Work Package 

UC Use Case 

 

This document consists of the specification and design of the M2M Transformation Framework 

whose main goal is to make the ModelWriter tool able to launch M2M (model-to-model) 

transformations including the following features: 

o To obtain one or several output models from one or several input models. 

o To configure the transformations to be able to produce different outputs using the same 
inputs. 

o To compose simple transformations to obtain more complex ones. 

o To keep traces between transformed models and its source models. 

o To synchronize the output models after its input models or configurations have been 
modified. 

o To synchronize the output models without changing the modifications that users or 
processes may have made on them after the transformations was finished. 

https://github.com/ModelWriter/Deliverables/issues/34


6 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 6 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

2. Specification of M2M Transformation 

1. Text Part 

Feature 1.1: 

User shall be able to mark any kind of textual documents on Eclipse Editor. 

- User shall be able to mark text fragments on a Markdown, Wikitext.. file (Eclipse 

Wiki Editor). 

o plugin: org.eclipse.mylyn.wikitext.ui 

o editor: org.eclipse.mylyn.internal.wikitext.ui.editor.MarkupEditor 

- User shall be able to mark text fragments on a Java file (Eclipse JDT Java Editor).  

o plugin: org.eclipse.jdt.ui 

o editor: org.eclipse.jdt.internal.ui.javaeditor.CompilationUnitEditor 

- User shall be able to mark text fragments on an XML file (Eclipse XML Editor). 

o plugin: org.eclipse.wst.xml.ui 

o editor: org.eclipse.wst.xml.ui.internal.tabletree.XMLMultiPageEditorPart 

- User shall be able to mark text fragments on a Plain text file (Eclipse Text Editor).  

o plugin: org.eclipse.ui.editors 

o editor: org.eclipse.ui.editors.text.TextEditor 

- User shall be able to should mark text fragments on a Textual DSL (Eclipse Xtext 

Editor). 

o editor: org.eclipse.xtext.xbase.ui.editor.XbaseEditor 

 

Feature 1.2: 

User shall be able to see the start and end char positions of markers shifting while editing 

on the text editor. 

- Offset and Length of markers should be updated while editing on the text editor.  

 

Feature 1.3: 

 The system shall indicate text fragments or a model elements which are already linked by 

means of a kind of visual indicator. 

Feature 1.4: 

 User shall be able to delete any marker based on a valid text selection on the editor.  

- Precondition: the text should be marked before deletion. 

 

Feature 1.5: 

 User shall be able to mark a text fragment by the 'Mark All' command to indicate that all text 

fragments with the same syntax should be searched and marked as well as different 

representations of single entity. 

- Although the system should assign unique IDs to all markers, another group ID 

should be also assigned. 

 

https://github.com/ModelWriter/Deliverables/issues/34


7 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 7 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

Feature 1.6: 

User shall be able to delete a marker which has been already marked by the 'Mark All' 

command by means of the 'Delete All' command to indicate that all the related markers 

should be also deleted. 

Feature 1.7: 

The System shall persist a text marker and its state. 

 

Feature 1.8: 

User shall be able to undo/redo markers and their states while working on Text editor.  

Model Part 

Feature 2.1: 

User shall be able to mark an element which inherits `ENamedElement` on an Eclipse Ecore 

Editor. 

- User shall be able to mark an EMF model element on EcoreEditor/EMF Reflective 

Editor. 

o plugin: org.eclipse.emf.ecore.editor 

o editor: org.eclipse.emf.ecore.presentation.EcoreEditor 

- User shall be able to mark a EMF model element on Generic EMF Form Editor. 

o plugin: org.eclipse.emf.generic.editor 

o editor: org.eclipse.emf.editor.EEditor 

 

Feature 2.2: 

User shall be able to mark an element which inherits `NamedElement` on an Eclipse UML 

Editor. 

- User shall be able to mark a UML model element on the tree-based UML2 editor of 

Eclipse. 

o plugin: org.eclipse.uml2.uml.editor 

o editor: org.eclipse.uml2.uml.editor.presentation.UMLEditor 

 selection: org.eclipse.uml2.uml.NamedElement 

- User shall be able to mark a UML model element on the free-form UML editor of 

Eclipse. 

o plugin: org.eclipse.papyrus.editor 

o editor: org.eclipse.papyrus.editor.PapyrusMultiDiagramEditor 

- User shall be able to mark a UML model element on the free form Sirius editor of 

Eclipse. 

o plugin: org.eclipse.sirius.diagram.ui.ext 

o editor: 

org.eclipse.sirius.diagram.ui.tools.internal.editor.DDiagramEditorImpl 

 selection:org.eclipse.emf.ecoretools.design.ui.parts.DNodeListEditPart

WithAlpha 

 selection:org.eclipse.sirius.diagram.ui.internal.edit.parts.DNodeContai

nerEditPart 

https://github.com/ModelWriter/Deliverables/issues/34


8 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 8 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

 selection:org.eclipse.sirius.diagram.ui.internal.edit.parts.DNodeListEdit

Part 

 selection:org.eclipse.sirius.diagram.ui.internal.edit.parts.DEdgeEditPar

t 

 

Feature 2.3: 

User shall be able to mark OMG ReqIF model elements such as `SpecObject` and 

`SpecHierarchy`. 

- plugin: org.eclipse.rmf.reqif10.pror.editor (RMF is still in incubation phase) 

- editor: org.eclipse.rmf.reqif10.pror.editor.presentation.SpecificationEditor 

o selection: org.eclipse.rmf.reqif10.Specification 

o selection: org.eclipse.rmf.reqif10.SpecObject 

o selection: org.eclipse.rmf.reqif10.SpecHierarchy 

 

Feature 2.4: 

 User shall be able to mark OMG BPMN2.x model elements such as Gateways and Activities 

 

Feature 2.5: 

Once an instance of EMF model is marked on the `EcoreEditor`, the offset and length of the 

corresponding XMI statement should be also marked. 

 

Feature 2.6: 

 User shall be able to delete an `ENamedElement` on the `EcoreEditor`. 

- Once an instance of `EClass` is deleted, Markers on its EStructuralFeatures should 

be deleted. 

- Once an instance of `EAttribute` is deleted, its marker should also be deleted. 

- Once an instance of `EReference` is deleted, its marker should also be deleted. 

- Once an instance of `EPackage` is deleted, all `Subpackages`, `EClassifiers` and 

`EStructuralFeatures` of those `EPackage` should be deleted recursively. 

 

Feature 2.7: 

User shall be able to undo/redo model markers and their states while working on Model 

editors. 

 

Model <-> Text 

Feature 3.1: 

Show mapping between arbitrary model and text markings. 

 

https://github.com/ModelWriter/Deliverables/issues/34


9 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 9 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

Feature 3.2: 

Show the filter on the project explorer view on the mapping wizard. 

 

Feature 3.3: 

Show filtered relation types according to selected marker type. 

 

Feature 3.4: 

Show the markers which have been filtered according to selected relation type and selected 

marker. 

 

Views (UI parts) 

Feature 4.1: 

Show ModelWriter Markers which marked current document on Master View. 

 

Feature 4.2: 

Show target markers of selected marker on Target View. 

 

Feature 4.3: 

Show source markers of selected marker on Source View. 

 

Feature 4.4: 

Show details of marker which is selected from Master View on the Properties View.  

 

Feature 4.5: 

Navigate and focus to markers through selected marker on Views. 

Traceability 

Feature 5.1: 

The System shall persist a model marker and its state. The persistency formalism must 

align with set theory and relational calculus. 

 

Feature 5.2: 

Virtualize markers and their relations. 

 

https://github.com/ModelWriter/Deliverables/issues/34


10 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 10 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

Configuration 

Feature 6.1: 

Markers and links (mappings) shall be able to specify by the user in a declarative way.  

 

Feature 6.2: 

 The specification formalism must support First-order Logic constraints. 

 

The following image offers an overview of the components of the M2M Transformation Framework. 

 
All the components will be designed as Eclipse plugins in order to make the framework 

usable and extendable by third-party companies. 

 

M2M 
Transformation 

Framework

Knowledge Base (KB)

User-
visible 

model A

User-
visible 

model B

User-
visible 

model X

Synchronization Manager

Configuration 
Manager

Traceability 
Manager

Transformation Manager

A-KB 
transformation

X-KB 
transformation

X-KB 
transformation

https://github.com/ModelWriter/Deliverables/issues/34


11 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 11 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

3. Design of The M2M Transformation 

 

 

User give an alloy file (“.als”) to system via “UI” and “Configuration” parses the file in the 

background and creates an xml file via “Traceability”. So marker types and relation types are 

determined. Then Users open text and model documents. Select a part of text and mark this area 

via “UI”. “Marker- part” creates marker according to selected type and selected area. And then 

marker data is written by “Configuration” to the xml file which is already created. The same steps 

are repeated for the selected model element. 

 

 After markers have been created, mapping can now be done. For mapping user selects a 

marker as source, then selects a relation type and selects markers as target. “Configuration-part” 

also writes the mapping data to the xml file via “Traceability-part”. So user mapped a model 

element and a text element. 

 

Texts   

 It includes Text (.txt), Java (.java), Markdown (.md), and etc. type text files. Any kind of 

these files can be used to marking action.  

 

Models  

It includes Ecore (.ecore), ReqIF (.reqif), XML instance (.xmi), and so on. type model files. 

Any kind of these files can be used to marking action.  

https://github.com/ModelWriter/Deliverables/issues/34


12 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 12 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

 

Configuration File  

 There is an Alloy (.als) file to describe sets and relations between sets. Sets correspond to 

marker types and relations correspond to mapping notion in our system. 

UI  

 This part includes “Create Marker” and “Map Markers” commands.  

Create Marker:  

Triggers creating marker action in the Marker part according to selected text or 

model element.  

Map Markers: 

Connects existing markers with existing relation types.  

 Parse Alloy File:  

  Triggers parsing alloy file action in Configuration.  

 

Marker  

 Creates marker with selection which comes from UI. 

 

Traceability  

 It is an API that records markers and their relations to xml file for persistence. 

 

Configuration  

 It uses Traceability API to create xml file and write marker, mapping to xml file.  

 Write Marker to Xml File: 

  Writes marker to xml file via Traceability API. 

 Write Mapping to Xml File: 

  Writes mapping relation to xml file via Traceability API. 

 Create Xml File: 

  Parses alloy file and then creates template xml file according to result of parsing.  

 

  

https://github.com/ModelWriter/Deliverables/issues/34


13 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 13 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

4. Towards implementation 

The following figure illustrates the snapshot of the internal representation of ModelWriter Platform 

between two consequtive user interactions. The platfor has three main modules: Model part (at the 

left side of the figure), Writer part (at the right side of the figure), and Knowledge base part (at the 

buttom of the figure). In this big picture, the simplified metamodels are used to ease the 

understanding of the system. These metamodels are called “Document Model”, “Domain and 

Requirement Models”, and “Synchronization Model” for Writer, Model, and KB parts respectively. 

Document Model is used to decompose a text in the document and restore in an st ructural and 

meaningful way. Domain Model and Requirement Model are sample models which are used in the 

Model Part as the User-Visible model. However, ModelWriter will support adding various modeling 

languages by configuring ModelWriter. The Synchronization metamodel aims to keep the 

traceability links between texts and models.  

 

The figure below illustrates snapshot of ModelWriter. Using Microsoft Word’s OOXML standard 

(.docx) and the Text Connectors provided in WP6, a requirement document is imported to the 

system as an instance of the Document Model. The user also provides two instance model for the 

Model part of the system. Considering the KB part, “System validates Book” statement is restored.  

https://github.com/ModelWriter/Deliverables/issues/34


14 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 14 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

 

 

 

  

https://github.com/ModelWriter/Deliverables/issues/34


15 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 15 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

5. Conclusion and way forward 

The initial version of the architecture for WP3 is discussed in this document. The architecture and 

the implemented features will be updated in the next phases by adding new features while 

integrating with other components. One of the main components in WP3 is the transformation 

between the models and knowledge base which will be realized in the second year of the project.  

https://github.com/ModelWriter/Deliverables/issues/34


16 

 

Document reference: D3.2.1  

ModelWriter 

M2M Transformation Framework architectural design document 

 

Page 16 of 16 https://github.com/ModelWriter/Deliverables/issues/34 

 

References 

N/A 

 

https://github.com/ModelWriter/Deliverables/issues/34

