N ITEAZ

ITEA2 Project
Call 6 11025

E 2012 - 2015
<

< Work-Package 3: “Modeling”

0

2 openETCS API

~~

g_) Extension of the openETCS Architecture and Designh Document

% Bernd Hekele and David Mentré November 2015
O

(=

(1

@)

Formal System
Requirement Spec.

Formal Language
Functional Vehicle
Specification

OpenENc]

openETCS
Tools
i Safet: Pe———— N
Synthetic & real oy ||| >
life test cases & Docs
response pattern

SW Code
Generator Parameters

¥ openETCS
lopenETCS API
Simulator oooo EVC HW

Vehicle Equipment Manufacturer

Funded by:

% Federal Ministry
> of Education
and Research

1SSz L
5&" A\ Région de
5 3 S5 % GOBERNO MINISTERIO
Bruxelles- 5%’2 DEESPANA DE INDUSTRIA, ENERGIA
Capitale b Y TURISMO!

Laven'y

%
~
L
c
)
Q
Q)

This work is licensed under the "openETCS Open License Terms" (0OLT) dual Licensing: fotoons’.

NFORWATION TECHNOLOGY FOR EUROPEAN ADWANCEMENT

This page is intentionally left blank

OETCS/WP3/D3.5.4-API

Work-Package 3: “Modeling” OETCS/WP3/D3.5.4-API

openETCS API

Extension of the openETCS Architecture and Design Document

Document approbation

November 2015

Lead author: Technical assessor: Quality assessor: Project lead:

location / date location / date location / date location / date

signature signature signature signature

Bernd Hekele Fausto Cochetti Jan Welte Klaus-Rudiger Hase
(DB Netz) (Alstom) (TU Braunschweig) (DB Netz)

Bernd Hekele

DB Netz AG
Volckerstrasse 5
D-80959 Minchen Freimann, Germany

David Mentré

Mitsubishi Electric R&D Centre Europe

Architecture Document

Prepared for openETCS@ITEAZ2 Project

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

Abstract: This document gives an introduction to the openETCS API.

Disclaimer: This work is licensed under the "openETCS Open License Terms'' (0OLT) dual Licensing: European Union Public
Licence (EUPL v.1.1+) AND Creative Commons Attribution-ShareAlike 3.0 — (cc by-sa 3.0)

THE WORK IS PROVIDED UNDER openETCS OPEN LICENSE TERMS (oOLT) WHICH IS A DUAL LICENSE AGREEMENT IN-
CLUDING THE TERMS OF THE EUROPEAN UNION PUBLIC LICENSE (VERSION 1.1 OR ANY LATER VERSION) AND THE
TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE ("CCPL"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS OLT LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

This work is licensed under the "openETCS Open License Terms" (0OLT).

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

OETCS/WP3/D3.5.4-API

Modification History

Version | Section Modification / Description Author
Basic to this work is the documentation pro-

0.1 Document | vided by David Mentré as a result of the | David Mentré
openETCS API Team

0.2 Document | Update based on integration results Bernd Hekele

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

Table of Contents

[MOdITICATION HISTOIY|. . eeeeeeeuuuuiiiiiiiiieieiiess e es s s s e e e e e e e e s e e s s e e e e e e e e s n s aaesseseeseesnnnnsssseeeeennennnn iii
[Figures and Tables|.........c.orreeie s \
B 1 o e LT o 1 1
2 TINput DOCUMENTS|.....c.ceeieee e s 2
[3 openETCS Architecture with respect of the API|............ccccovreiiiiiimmuucceeniereeerreeeeaeee s e e s e eeeeeenns 3
[3.1 Abstract Hardware ArchifeCtUrel.oo oo 3
3.2 Definition of the reference abstract hardware architecture]..............cccooiiiiiiiii e, 3
3.3 Reference abstract software architecture]........... ..o 4

[3.4 Principles for Interfaces (0penETCS _API) ... 5

3.5 openETCS Model Runtime System|....... ..o 5

[Definition of the OPENETCS API|.....ccuuuuuuiiiiiiiieiiieeeueees s s s e e s eeresssssesssssseeeeesnnasssssesssseeennennns 7
4.1 Interfaces to and from Track [BTM, RTM <-> EVC]|........ccooi s 7
[4.1.1 Physical Layer: Bitwalker]........ ..o 7

14.1.2 Logical Layer: Bytewalker]...........ooo s 8

[4.1.3 Interfaces to the Scade MoOdEll............ccooiiiiiiiiiii e 8

4.2 Interfaces to the DMIL..........ouoriin e 8

[4.3 Interfaces 10 the TIMe SyStem|.........c.oi i e 9

|4.4 " Interfaces 10 the Odometry SYStem|........c.ouiin i eeens 9

14.5 " Interfaces to the Train Interfaces (TTU)] 10

L5 AT 11

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

Figures and Tables

Figures

|Figure 1. Reterence abstract hardware architecture|
|Figure 2. Reterence abstract software architecture|
|Figure 3. openETCS API Highlevel View]

Tables

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

vi

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

1

Introduction

The openETCS API is a major output of the openETCS project. It defines the interface to the
openETCS EVC as an open document. It is based on one side on the industry based Alstom API
definition documented in openETCS Requirements section D2.7.

On the other side it gives an introduction on how to interface to the EVC Scade model as the
modelling result of openETCS project.

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

2 Input Documents

The implementation is based on subset-26 version 3.3.0 [[1]. This version is part of the TSI [2].
https://github.com/openETCS/modeling/wiki/Input-Documents-Repository

The openETCS Alstom API is documented in the openETCS Requirements repository. It consists
of the following parts: 3] API Requirements [4] API DataDictionary [5] API Application Layer
This document is basede on the openETCS API team work results. The complete set of work

results is available in this repository: https://github.com/openETCS/modeling/tree/
master/API

This work is licensed under the "openETCS Open License Terms" (0OLT).

https://github.com/openETCS/modeling/tree/master/API
https://github.com/openETCS/modeling/tree/master/API

OETCS/WP3/D3.5.4-API

3.1

3.2

openETCS Architecture with respect of the API

Abstract Hardware Architecture

For proper understanding of openETCSAPI and of constraints imposed on both sides of the
API, we need to define a reference abstract hardware architecture. This hardware architecture
is “abstract” is the sense that the actual vendor specific hardware architecture might be totally
different of the abstract architecture described in this chapter. For example, several units might
be grouped together on the same processor.

However the actual vendor specific architecture shall fulfil all the requirements and constraints of
this reference abstract hardware architecture and shall not request additional constraints.

Definition of the reference abstract hardware architecture
The reference abstract hardware architecture is shown in figure I}

The reference abstract hardware architecture is made of a bus on which are connected units
defining the OBU:

EVC : European Vital Computer, the Unit where ETCS train control is running.
TIU : Train Interfacing Unit

ODO : The odometery system of the train.

DMI : The driver machine interface.

STM : The Specific Transmission Module. This interface is not in the focus of the openETCS
project.

BTM : The Balise Transmission Module, a receiver hosted on the train for receiving telegrams
sent from track to the train.

LTM : The Loop Transmission Module. Not part of this openETCS implementation;

EURORADIO : The interface hosted in the train for sending and receiving messages between
Train and RBC in both directions. The module receiving and sending messages is called

-
radio

Message

STM STM Vendor Vendor
LTM " "
1 n specific 1 specific n

Figure 1. Reference abstract hardware architecture

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

radio transmission module [RTM]. The train may be equipped with up to 2 radio connections

for machine to machine communication in an ETCS train.

JRU : Not part of this openETCS implementation;

Elements not being part of this implementation are marked.

Those units shall be working concurrently. They shall exchange information with other units

through asynchronous message passing.

3.3 Reference abstract software architecture

EVC
openETCS executable model
Application | model interface
software
L L
openETCS model run-time system 1ODO o
t :
1 1
OpenETCS API E E
Basic ‘ i i
Siemens i i
software = AP AP e | |
adapter adapter API TR
Vendor specific
API
LU TP TR [e
specific

specific gpecific ~ ERSA

platform Simulator

Figure 2. Reference abstract software architecture

The reference abstract software architecture is shown in figure 2] This architecture is made of
following elements:

openETCS executable model produced by the [6] Scade Model. It shall contain the program
implementing core ETCS functions;

openETCS model run-time system shall help the execution of the openETCS executable
model by providing additional functions like encode/decode messages, proper execution of
the model through appropriate scheduling, re-order or prioritize messages, etc.

Vendor specificAPI adapter shall make the link between the Vendor specific platform and the
openETCS model run-time system. It can buffer message parts, encode/decode messages,
route messages to other EVC components, etc.

All above three elements shall be included in the EVC;

Vendor specific platform shall be all other elements of the system, bus and other units, as
shown in figure[T]

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

3.4

3.5

We have thus three interfaces:

e model interface is the interface between openETCS executable model and openETCS model
run-time system.

o 0penETCSAPI is the interface between openETCS model run-time system and Vendor
specificAPI adapter.

o Vendor specificAPI is the interface between Vendor specificAPI adapter and Vendor specific
platform. This interface is not publicly described for all vendors. You can find the Alstom
imnplementation as an example.

The two blocks openETCS executable model and openETCS model run-time system are making
the Application software part. This Application software might be either openETCS reference
software or vendor specific software.

The Vendor specificAPI adapter is making the Basic software part.
Principles for Interfaces (openETCS_API)

Information is exchanged as messages in an asynchronous way. A message is a set of information
corresponding to an event of a particular unit, e.g. a balise received from the BTM.

The information is passed to the executable model as parameters to the synchronous call of a
procedure (Interface to the executable model). Since the availability of input messages to the
application is not guaranteed, the parts of the interfaces are defined with a "present" flag. In
addition, fields of input arrays are quite often of variable size. Implementation in the concrete
interface in this use-case is the use of a "size" parameter and a "valid"-flag.

openETCS Model Runtime System

The openETCS model runtime system also provides:

e Input Functions From other Units
In this entity messages from other connected units are received.

e Output Functions to other Units
The entity writes messages to other connected units.

e Conversation Functions for Messages (Bitwalker)
The conversion function are triggered by Input and Ouput Functions. The main task is to
convert input messages from an bit-packed format into logical ETCS messages (the ETCS
language) and Output messages from Logical into a bit-packed format. The logical format of
the messages is defined for all used types in the openETCS data dictonary.
Variable size elements in the Messages are converted to fixed length arrays with an used
elements indicator.
Optional elements are indicated with an valid flag. The conversion routines are responsible
for checking the data received is valid. If faults are detected the information is passed to the
openETCS executable model for further reaction.

e Model Cycle

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

The version management function is part of the message handling. This implies that conver-
sions from other physical or logical layouts of messages are mapped onto a generic format
used in the EVC. Information about the origin version of the messages is part of the messages.

The executable model is called in cycles. Cycle time is set to 10 msec. In the cycle:

— First the received input messages are decoded;

— The input data is passed to the executable model in a predefined order. The order is
defined by the generated Scade model.

— Output of the executable model is encoded according to the SRS and passed to the
buffers of the units.

This work is licensed under the "openETCS Open License Terms" (0OLT).

OETCS/WP3/D3.5.4-API

4

4.1

Definition of the openETCS API

This section gives a short introduction of the openETCS EVC model interfaces. In addition,
it gives an link to the ports of the EVC Scade model and the defining interface types. All
descriptions refer to the EVC - Scade model which is located in this part of the repository:

https://github.com/openETCS/modeling/blob/master/model/Scade/System/OBU_PreIntegrations/

openETCS_EVC/openETCS_EVC. etp

Interfaces to and from Track [BTM, RTM <-> EVC]

OpenETCS Code from
F—T% SCADE > SCADE
Model Model
Legend
°
ETCS .
Specification @ testing
Packet III formal verification
OpenETCS o| Mesaaes and with Frama-GC
| Data Dictionary g T g
=
caller

— — —p handwritten J7

—_—
Modelling C Code generated callee

Figure 3. openETCS API Highlevel View

This part describes the interfaces resulting from BTM and RTM modules. In the Basic Software
described above the following layers are defined for preparing received messages and telegrams
for processing in the EVC resp. for preparing messages to the RBC for sending.

4.1.1 Physical Layer: Bitwalker

According to the SRS, messages and telegrams of the protocol between track (Balises and
RBC) and train are defined on a densely packed and for transport purposes optimised structure.
Information is passed in streams of bytes hiding the details.

This densely packed stream of data is first transformed to a stream of integers with an equivalent
definition of the structure of the interfaces.

A major task of this layer is to guarantee errors induced while transporting the data is detected,
e.g., by the BTM or RTM modules.

The implementation tailored for this task resides in the openETCS dataDictionary https:
//github.com/openETCS/dataDictionary project. This implementation represents the pre-
sentation of subset 26 sections 7 and 8 of the SRS in a physical definition.

This work is licensed under the "openETCS Open License Terms" (0OLT).

https://github.com/openETCS/modeling/blob/master/model/Scade/System/OBU_PreIntegrations/openETCS_EVC/openETCS_EVC.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/OBU_PreIntegrations/openETCS_EVC/openETCS_EVC.etp
https://github.com/openETCS/dataDictionary
https://github.com/openETCS/dataDictionary

OETCS/WP3/D3.5.4-API 8

4.2

4.1.2 Logical Layer: Bytewalker

In a second step the information provided by the Bitwalker is prepared for the input to the EVC.
This function is implemented in the EVC Scade model by means of the track-messages function:

https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/
ETCS_Messaging/TrackMessages/TrackMessages.etp

This function is responsible for performing a first set of simple logical checks on the transformed
information.

On the output from scade model to the RTM information is managed with the openETCS output
bus, also being implemented in the track messages function.

4.1.3 Interfaces to the Scade Model

Having passed Bitwalker and Bytewalker the information coming from RTM and BTM is
combined to a single interface to the EVC model.

The function is based on an input- buffer for track- messages. In this buffer, the messages of
balises (from BTM) and of radio communication (from RTM) are sequenced in a single buffer.
This buffer is interfacing to this evc.

Similarly, on the output side, a buffer is used for managing with multiple output messages to the
radio interface in each cycle.

Input: API_fromTrack
Type: API_Msg_Pkg::API_TrackSideInput_T

Another interface is defined to give the status of the radio mobiles known to the EVC:
Input: API_mobileHW Status
Type: MoRC_Pck::mobileHWStatus_Type_T

In the output direction information is passed from the EVC model to the RTM.

Output: API_toRBC
Type: TM_radio_messages::M_TrainTrack_Message T

For controlling the radio modules a second interface is defined:

Output: API_RTM_management
Type: API_RadioCommunication_Pkg::RadioManagement_T

Interfaces to the DMI

The interfaces and protocols in the interface to the DMI is based on the protocol defined by
ERSA in its DMI implementation. Details are not opensource.

Input: API_fromDMI
Type: API_DMI_Pkg::DMI_to_EVC_Message_int_T

This work is licensed under the "openETCS Open License Terms" (0OLT).

https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/ETCS_Messaging/TrackMessages/TrackMessages.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/ETCS_Messaging/TrackMessages/TrackMessages.etp

OETCS/WP3/D3.5.4-API

Output: API_toDMI
Type: API_DMI_Pkg::EVC_to_DM_Message_int_T

Model: https://github.com/openETCS/modeling/blob/master/model/Scade/Systen/
APITypes/APITypes.etp

4.3 Interfaces to the Time System

The interface types are defined in the OBU_Basic_Types_Pkg Package. The system time is
defined in the basic software.

The system TIME is provided to the executable model at the begin of the cycle. It is not refreshed
during the cycle. The time provided to the application is equal to O at power-up of the EVC (it is
not a “UTC time” nor a “Local Time”), then must increase at each cycle (unit = 1 msec), until it
reaches its maximum value (i.e current EVC limitation = 24 hours)

Input: API_SystemTime
Type: Obu_BasicTypes_Pkg::T_internal_Type

e TIME (T_internal_Type, 32-bit INT)
Standardized system time type used for all internal time calculations: in ms. The time is
defined as a cyclic counter: When the maximum is exceeded the time starts from 0 again.

Model: https://github.com/openETCS/modeling/blob/master/model/Scade/System/
ObuFunctions/Obu_BasicTypes/Obu_BasicTypes.etp

4.4 Interfaces to the Odometry System

The interface types are defined in the OBU_Basic_Types_Pkg Package. The odometer gives
the current information of the positing system of the train. In this section the structure of the
interfaces are only highlighted. Details, including the internal definitions for distances, locations
speed and time are implemented in the package.

Input: API_Odometry
Type: Obu_BasicTypes_Pkg::odometry_T

e Odometer (odometry_T)

— valid (bool)
valid flag, i.e., the information is provided by the ODO system and can be used.

— timestamp (T_internal_Type)
of the system when the odometer information was collected. Please, see also general
remarks on the time system.

— Coordinate (odometryLocation_T)
* nominal (L_internal_Type) [cm]
* min (L_internal_Type) [cm]
* max (L_internal_Type) [cm]

This work is licensed under the "openETCS Open License Terms" (0OLT).

https://github.com/openETCS/modeling/blob/master/model/Scade/System/APITypes/APITypes.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/APITypes/APITypes.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/Obu_BasicTypes/Obu_BasicTypes.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/Obu_BasicTypes/Obu_BasicTypes.etp

OETCS/WP3/D3.5.4-API

10

4.5

The type used for length values is a 32 bit integer. Min and max value give the interval
where the train is to be expected. The boundaries are determined by the inaccuracy of
the positioning system. All values are set to O when the train starts.

— speed (V_internal_Type) [cm/sec] General Speed of the train

- acceleration (A_internal_Type)[0.01 m/s2],
Standardized acceleration type for all internal calculations

— motionState (Enumeration)
indicates whether the train is in motion or in no motion

— motionDirection (Enumeration)
indicates the direction of the train, i.e., CAB-A first, CAB-B first or unknown.

Model: https://github.com/openETCS/modeling/blob/master/model/Scade/Systen/
ObuFunctions/Obu_BasicTypes/Obu_BasicTypes.etp

Interfaces to the Train Interfaces (TIU)

The following information is based on the implementation of the Alstom API. The interface is
organised in packets. Details on the interfaces can be seen from the Scade models. The interface
is used on the input side to docuemnt the status of the train’s units. On the output side, commands
to the train units, especially the brake system, are available.

Input: API_fromTIU
Type: API_TIU_Pkg:: TIU_Input_msg
Output: API_toTIU

Type: API_TIU_Pkg:: TIU_Output_msg

Model: https://github.com/openETCS/modeling/blob/master/model/Scade/System/
APITypes/APITypes.etp

This work is licensed under the "openETCS Open License Terms" (0OLT).

https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/Obu_BasicTypes/Obu_BasicTypes.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/ObuFunctions/Obu_BasicTypes/Obu_BasicTypes.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/APITypes/APITypes.etp
https://github.com/openETCS/modeling/blob/master/model/Scade/System/APITypes/APITypes.etp

OETCS/WP3/D3.5.4-API 11

References

[1]
(2]

ERA. System Requirements Specification, SUBSET-026, v3.3.0 edition, March 2012.

ERA. New Annex A for ETCS Baseline 3 and GSM-R Baseline 0, recommendation basleine
3 edition, April 17th 2012. http://www.era.europa.eu/Document-Register/Pages/
New-Annex-A- for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx.

Nicolas Boverie. API Requirements for OpenETCS. Alstom Transport, v1.4 edition, Septem-
ber 2014. https://github.com/openETCS/requirements/blob/master/D2.7-Technical_|
Appendix/OETCS_API%20Requirements_v1.4.pdf.

Alstom Transport. Appendix Functional Data Dictionary, v1.1 edition, 2014. https:
//github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/
OETCS_API%20Requirements_appendix_functional_data_dictionary_vl.1.pdf.

Alstom Transport. Appendix application layer, v1.2 edition, 2014. |https://github.
com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%
20Requirements_appendix_application_layer_vl1.2.pdf.

openETCS. openETCS SCADE model, 2014. https://github.com/openETCS/modeling/tree/
master/model/Scade/System.

This work is licensed under the "openETCS Open License Terms" (0OLT).

http://www.era.europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx
http://www.era.europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_v1.4.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_v1.4.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_functional_data_dictionary_v1.1.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_application_layer_v1.2.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_application_layer_v1.2.pdf
https://github.com/openETCS/requirements/blob/master/D2.7-Technical_Appendix/OETCS_API%20Requirements_appendix_application_layer_v1.2.pdf
https://github.com/openETCS/modeling/tree/master/model/Scade/System
https://github.com/openETCS/modeling/tree/master/model/Scade/System

	Modification History
	Figures and Tables
	Introduction
	Input Documents
	openETCS Architecture with respect of the API
	Abstract Hardware Architecture
	Definition of the reference abstract hardware architecture
	Reference abstract software architecture
	Principles for Interfaces (openETCS_API)
	openETCS Model Runtime System

	Definition of the openETCS API
	Interfaces to and from Track [BTM, RTM <-> EVC]
	Physical Layer: Bitwalker
	Logical Layer: Bytewalker
	Interfaces to the Scade Model

	Interfaces to the DMI
	Interfaces to the Time System
	Interfaces to the Odometry System
	Interfaces to the Train Interfaces (TIU)

	References

