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Abstract: This work package will comprise the activities concerned with verification and
validation within openETCS. This includes verification & validation of development artifacts,
that is, showing that models and code produced correctly express or implement what they are
supposed to. And also, methods and tools to perform such tasks will be evaluated with the goal
of assembling a suitable method and tool chain to support a full development.
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1

Introduction

In this intermediate report we describe the activities to formally verify the correctness of parts of
the software developed in the OpenETCS project.

While major parts of the functionality of Subset 026 are modelled in higher-level languages,
there is also a substantial part of supporting software that is developed in the C programming
language.

In this document we report about results on the verification of that C code. In particular, we
report on the use of static analysis methods (including formal methods) on C code that has been
developed by the project partner Siemens.

Scope of ,semi

Formalization “ ________
Code

Generatio Semi formal
Specification

Running _direct
ETCS OBU FuIIy Formal ormalization

Model Specification

Scope of
Formal proofing of parts of Model Formalization

Figure 1.1. Scope of formal methods with in OpenETCS

Figure [I.1] outlines the roles of formal methods within the OpenETCS project. What this figure
shall convey is that even a subsystem such as described by Subset 026 of the ETCS specification
is usually too complex to be completely formally specified. Therefore, semi-formal modelling
techniques and tests and simulations play a crucial role to verify that the implementation satisfies
its specification. However, for clearly defined modules and select system properties, formal
methods can well be applied to establish the correctness of an implementation.

This work is licensed under the "openETCS Open License Terms" (0OLT).



OETCS/WP4/D4.3.2

99|[e0 pajelsush

Av usuLmpuey

Jo|eo
D-BUWEI YIMm
UOIIBOILISA [eLuIo) @

Bunsey @

puabar]

-—

- - -

weans }q

1

pue sabessa|\

weibaja)

‘sje)oed

<

weadls Jabajul

ISPOIN
3avos
wouy apo)

(J

Figure 1.2. Scope of code verification

This work is licensed under the "openETCS Open License Terms" (0OLT).



OETCS/WP4/D4.3.2

1.1  Software layers

Figure [1.3|shows the layer structure of the OpenETCS C code. The OpenETCS decoder/encoder
is a collection of data structures and associated functions for reading and writing ETCS packets
from/to a bit stream.

OpenETCS Decoder (Subset 026) |

— 1 1

TrainToTrack TrackToTrain BothWays

Bitstream J7

struct Bitstream
Bitstream Init
Bitstream Normal
Bitstream Read
Bitstream Write

Bitwalker J7

Bitwalker Read
Bitwalker Write

Low-level bit operations | 47

TestBit64
SetBit64
TestBit8
SetBit8
TestBit8Array
SetBit8Array

Figure 1.3. Software layers of the OpenETCS C code

In order to fulfill their task the decoder and encoder function rely on an implementation of bit
streams in C. The Bit st ream package in turn is built on top of the so-called bitwalker layer.
In order to accomplish the task of formal verification of these layers we also provided several
functions that read and write individual bits for basic C types.

The main achievement that we present in this report are the results on the formal specification
and formal specification of the various software layers in Figure [[.3]

This report is result of the joint work of many OpenETCS partners, notably:

e CEALIST

e DLR

e Fraunhofer FOKUS
e Siemens

e SQS

The formal analyses contribute to the ultimate verification goals, which are the following:

This work is licensed under the "openETCS Open License Terms" (0OLT).
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1.2

1. provide evidence that both the generated and a handwritten C code satisfies accepted quality
standards

2. develop a formal specification for Subset 026 functionality
3. verify with Frama-C/WP that the software satisfies its formal specification

4. show that the software does not raise runtime errors

The European standard for railway software [1, § 7.3.4.19] mandates that the specification of
software interfaces shall address various properties. Table [I.]list these properties and also
indicates to what extend Frama-C can be used to formally express them.

Property Specification through Frama-C
pre and post conditions yes

definition and description of all boundary values for yes

all specified data

behaviour when the boundary value is exceeded yes

behaviour when the value is at the boundary yes

time-critical input and output data no

allocated memory for the interface buffers and the yes

mechanisms to detect that the memory cannot be
allocated or all buffers are full, where applicable

existence of synchronization mechanisms between no
functions

definition and description of all equivalence classes yes
for all specified data and each software function using

them

definition of unused or forbidden equivalence classes yes

Table 1.1. Properties to be addressed by interface specification according to EN 50128

We see from this table that Frama-qﬂ is a well-justified choice for the specification of railway
software.

Structure of this document

We represent the C code and related specifications in a top-down approach. Thus, we start on the
level of OpenETCS data packets and explain from there the lower software levels.

e Chapter 2] gives a short overview on the Frama-C/WP tool that plays a central role in the
verification of OpenETCS C code. Here we also try to rectify some misunderstandings about
formal verification that we have encountered in our work.

e Chapter 3| presents the formal specification of OpenETCS packets in ACSL (the specification
language of Frama-C). For the sake of an easier understanding we start with the specification

'Or to be more precise “ACSL” (ANSI/ISO-C Specification Language) which is the specification language of
Frama-C.

This work is licensed under the "openETCS Open License Terms" (0OLT).
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of a concrete packet (AdhesionFactor in Section[3.2)) and explain from there how the
other specifications look like.

e The OpenETCS packets are written to and read from bit streams which is represented by the
type Bitstream and its associated functions. Chapter ] provides the definition and formal
specification of Bit st ream operations.

e The implementation of Bit st ream itself relies on lower level bit operations. The formal
specification of these operations are presented in Chapter [5]

o Chapter [f]lists results of the formal verification with Frama-C/WP.

e Chapter[7]describes the integration activities with respect to the underlying communication
system and the SCADE model.

¢ In Chapter[§] we draw conclusions from this work and outline the next steps in our verification
efforts.

This work is licensed under the "openETCS Open License Terms" (0OLT).
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2 Anintroduction to formal verification with
Frama-C/WP

Frama-C is a platform dedicated to source-code analysis of C software. It has a plug-in ar-
chitecture and can thus be easily extended to different kinds of analyses. The WP plugin of
Frama-C allows one to formally verify that a piece of C satisfies its specification. This implies,
of course, that the user provides a formal specification of what the implementation is supposed
to do. Frama-C comes with its own specification language ACSL which stands for ANSIISO
C Specification Language. In order to help potential users to master ACSL we discuss in this
chapter a very simple C abs_int that implements the computation of the absolute value for
objects of type int.

e In Section [2.T] we will present a straightforward specification of abs_int. We discuss
the reasons why Frama-C/WP is not able to verify that our implementation satisfies this
specification in Section

e In Section[2.3| we provide a more precise specification that can be verified by Frama-C/WP.
In Section 2.4| we explain how Frama-C supports—by allowing the separation of the specifi-
cation from the implementation—good software engineering practices.

e Sections[2.5]and [2.6]discuss, respectively, how Frama-C/WP supports modular verification
and the formal treatment of side effects.

This work is licensed under the "openETCS Open License Terms" (0OLT).
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2.1

2.2

First steps

We will consider the function that computes the absolute value |x| of an integer x. In order to
avoid name clashes with the function abs in C library we use the name abs_int.

The mathematical definition of absolute value is very simple

x ifx>0
x| = ) (1)
—x ifx<0

A straightforward implementation of abs_int is shown in Listing [2.1]

int abs_int (int x)
{

return (x >= 0) ? x : —-Xx;
}

Listing 2.1. An implementation of the absolute value function

In order to demonstrate that this implementation is correct we have to provide a formal specifica-
tion. Listing shows our first attempt for an ACSL specification of abs_int that is based on
the mathematical definition of the function x - |x| in Equation [I]

/%@
ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

*/

int abs_int (int x)

{

return (x >= 0) ? X : —-Xx;
}

Listing 2.2. A first attempt to formally specify abs_int

The first thing to note is that ACSL specifications—or contracts—are placed in special C (they
start with /»@). Thus, they do not interfere with the executable code. The ensures clause in
the specification expresses postconditions, that is, properties that should be guaranteed after the
execution of abs_int. The ACSL reserved word \result is used to refer to the return value
of a C. Note that we use the usual C == and <= to express equalities and inequalities in the
specification. There is also an additional operator ==> which expresses logical implication.

Why can Frama-C/WP not verify such a simple function?

Although the specification and implementation in Listing [2.2] look perfectly right, Frama-C/WP
cannot verify that the implementation actually satisfies its specification.

The reason becomes clear if we look at some actual return values of abs_int. Listing @]
shows our test code whose output is listed in Table [2.1]

This work is licensed under the "openETCS Open License Terms" (0OLT).
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#include <stdio.h>
#include <limits.h>

extern int abs_int (int);

void print_abs (int x)
{

printf ("$12d\t\t%12d\n", x, abs_int (x));
}

int main ()

{
printf ("\n");
print_abs (0);

printf ("\n");
print_abs (1) ;
print_abs (10);
print_abs (INT_MAX) ;

printf ("\n");
print_abs (-1);
print_abs (-10);
print_abs (INT_MIN) ;

Listing 2.3. Some simple test cases for abs_int

x | abs_int (x) | Remark
0 0 v
1 1 v
10 10 v
2147483647 2147483647 v
-1 1 v
-10 10 v
-2147483648 -2147483648 4

Table 2.1. Test results for abs_int

The offending value is in the last line of Table [2.1] which basically states that abs_int (
INT_MIN) equals INT_MIN whereas it should equal —-INT_MIN. The problem is that the
type int only present a finite subset of the (mathematical) integers. Many computers use a
two’s-complement representation of integers which covers the range [-23! ... 23! — 1] on a 32-bit
machine. On such a machine —~INT_MIN cannot be represented by a value of the type int.

In a specification, Frama-C/WP interprets integers as mathematical entities. Consequently, there
is no such thing as an arithmetic overflow when adding or multiplying them. In other words,
Frama-C/WP is perfectly right not being able to verify that abs_int satisfies the contract in
Listing [2.2] Indeed, the implementation does not respect the given specification.

This work is licensed under the "openETCS Open License Terms" (0OLT).
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2.3 Sharpening the contract of abs_int

It is of course well known that the operation —x can overflow and it is the fact that Frama-C/WP
can detect such overflows that helps to prevent incorrect verification results.

The GNU Standard C clearly states that the absolute value of INT_MIN is undeﬁnedE] Under
OSX, the manual page of abs mentions under the field of “Bugs”:

The absolute value of the most negative integer remains negative.

Thus, our formal specification should exclude the value INT_MIN from the set of admissible
value to which albs_int can be applied. In ACSL, we can use the requires clause to express
preconditions of a function. Listing [2.4] shows an extended contract of abs_int that takes the
limitations of the type int into account.

#include <limits.h>

/%@
requires x > INT_MIN;
ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;

x/

int abs_int (int x)

{

return (x >= 0) ? X : —-Xx;

}

Listing 2.4. Taking integer overflows into account

Frama-C/WP is now capable to verify that the implementation of abs_1int satisfies the specifi-
cation of Listing[2.4]

There is an important lesson that can be learned here:

Sometimes developers provide source code and imagine that a tool like Frama-C/WP can ver-
ify the correctness of their implementation. In order to fulfill its task, however, Frama-C/WP
needs an ACSL specification. Such a specification—which must be based on a reasonably
precise description of the admissible inputs and expected behavior—has to come from
the requirements of the software and is not magically discovered from the source code
by Frama-C/WP. The code does what it does. In order to verify that the code does what
someone expects, these expectations must be clearly expressed, that is, they must be formally
specified.

Of course, it might not always be the goal to verify the complete functionality of a piece of
software. Sometimes, it is enough to ensure that individual software components cause no
runtime errors, that is, arithmetic overflows or invalid pointer accesses. Frama-C/WP can also
be used in this situation. Under the terms of the following minimal specification in Listing [2.5]
Frama-C/WP can verify that no runtime error will occur.

2Seehttp://www.gnu.org/software/libc/manual /html_node/Absolute-Value.html

This work is licensed under the "openETCS Open License Terms" (0OLT).
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2.4

#include <limits.h>

/%@
requires x != INT_MIN;
*/
int abs_int (int x)
{
return (x >= 0) ? x : —-Xx;
}

Listing 2.5. Minimal contract to ensure the absence of runtime errors in abs_int

Separating specification and implementation

Before we continue exploring more advanced specification and verification capabilities of
Frama-C/WP we turn to a simple software engineering question.

It is common practice to put function prototypes into “.h” files and keep the implementation in
files ending in “. ¢”. Frama-C/WP supports this separation of specification and implementation.
Listing [2.6] shows the file abs2 . h which contains a declaration of abs_int together with an
attached ACSL specification.

#include <limits.h>

/*@
requires x > INT_MIN;
ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;
*/

int abs_int (int x);
Listing 2.6. Specifying a function prototype in a header file
Listing [2.7| shows the specification of abs_int in a . c file. Note that the file abs2 . h with the

specification is included by this file. Frama-C/WP can verify that this implementation satisfies
the contract in Listing [2.6]

#include "abs2.h"

int abs_int (int x)
{

return (x >= 0) ? X : —-Xx;
}

Listing 2.7. Implementation at a different location than the specification

We remark, that the definition of a very small function like abs_ int would normally be placed
in a header file so that a compiler can inline the function definition at the call site.
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2.5

Modular verification
We now look at a simple example in which our function abs_int is used. More precisely, we

include in Listing [2.8]the header file from Listing [2.6| which contains an ACSL specification of
abs_int.

#include "abs2.h"

void use_1 ()
{

int a = abs_int (3);

int b = abs_int (-1);

int ¢ = abs_int (INT_MAX) ;
int d = abs_int (INT_MIN) ;
/]

Listing 2.8. A simple example of modular verification

When Frama-C/WP tries to verify the code in Listing then it actually tries to establish
whether at each program location where it is called the preconditions of abs_int are satisfied.
Based on the specification of abs_int, Frama-C/WP can indeed verify that for the first three
calls the preconditions are fulfilled. For the last call this verification fails because the value
INT_MIN is explicitly excluded by the specification in Listing[2.6]

Note that the implementation of abs_int does not play any role in determining whether it is
safe to call the function in a particular context. This is what we call modular verification: a
function can be verified in isolation whereas code that calls the function only uses the function
contract.

This also means that in a situation as in Listing[2.9] where nothing is known about the argument
of abs_int, Frama-C/WP cannot establish that the precondition of abs_int is satisfied or,
in other words, that x > INT_MIN holds.

#include "abs2.h"

void use_2 (int x)
{

int a = abs_int (x);

/...

Listing 2.9. Another example of modular verification

If, on the other hand, we have precise information on the arguments at call site, then Frama-C/WP
can exploit the specification of abs_int in order derive some interesting properties. As an
example, we consider the code fragment in Listing Here, Frama-C/WP can verify that the
assertion after the call of abs_int is correct.

Note that this assertion is a static one, that is, it is an ACSL annotation that resides inside a
comment and does not affect the execution of the code in Listing Also note that unlike
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2.6

#include "abs2.h"

/%@
requires (10 <= x < 100) || (=200 < x < =50);
*/
void use_3 (int x)
{
int a = abs_int (x);
//Q@ assert 10 <= a < 200;

//

Listing 2.10. A more complex example of modular verification

in C code, relation chains with their usual mathematical meaning can be used both in function
contracts and assertions.

Dealing with side effects
Listing [2.T1]shows an implementation of abs_int that writes as a side effect the argument x to

a global variable a. A natural question is to ask whether this implementation with a side effect
also satisfies the specification.

#include <limits.h>

extern int a;

/%@
requires x > INT_MIN;
ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;
*/

int abs_int (int x)

{
a = x; // Is this side effect covered by the specification?
return (x >= 0) ? x : —-X;

Listing 2.11. An implementation with side effects

Before we answer this question we consider various uses for side effects. There are of course
legitimate uses for side effects. The assignment to a memory location outside the scope of the
function might be meaningful because an error condition is reported or because some data are

logged as in Listing [2.12]

If Frama-C/WP attempts to verify the code in Listing [2.12] then it issues the following warning:

Neither code nor specification for function logging,
generating default assigns from the prototype

Thus, it points out that the called function 1ogging should have a proper specification that
clearly indicates its side effects.
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#include <limits.h>
extern void logging (int);

/%@
requires x > INT_MIN;

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;
x/
int abs_int (int x)
{
logging (x) ;
return (x >= 0) ? X : —-Xx;

Listing 2.12. Calling a logging function from abs_int

There are, on the other hand, also good reasons to minimize or even forbid side effects:

e Imagine a malicious password checking function that writes the password to a global variable.

e Another reason is that side effects can make it harder to understand what the real consequences
of a function call are. In particular, one must be concerned about unintended consequences
that are caused by side effects The norm IEC 61508 therefore requests in the context of
software module testing and integration testing:

To show that all software modules, elements and subsystems interact correctly
to perform their intended function and do not perform unintended functions (see
also. [2, §7.4.7.2,§7.7.2.9])

Of course, it is quite difficult to ensure by testing alone that something does not happen.

To come back to our question about Listing it is important to understand that Frama-C/WP
verifies that the implementation shown there satisfies the specification.

If one wishes to forbid that a function changes global variables one can use an assigns \
nothing clause as shown in Listing|2.13| Frama-C/WP will then point out that this implemen-
tation prevents the verification of the assigns clause.
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#include <limits.h>

extern int a;

/*@
requires x > INT_MIN;
assigns \nothing; // forbid any side effects
ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;
*/
int abs_int (int x)
{
a = x; // now illegal
return (x >= 0) ? X : —-Xx;

Listing 2.13. Specifying the absence of side effects

Of course, an all-or-nothing-approach to side effects is not very helpful for the verification of
real-life software. Listing [2.14]shows how the assigns clause of a specification can name the
exact memory location that the function is allowed to modify.

// Side effects can be controlled on an individual basis.

#include <limits.h>

extern int a;

/@

*/
int
{

a

requires x > INT_MIN;

assigns a; // allow assignment to a (but only to a).

ensures 0 <= x ==> \result == x;
ensures 0 > x ==> \result == -x;
abs_int (int x)

= x;

return (x >= 0) ? x : —-X;

Listing 2.14. Finer control of side effects

Note however that assigns a does not imply that a write to a necessarily occurs during the
execution of abs. On the other hand, any other memory location must stay unchanged between
the initial state and the final state of abs.
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3

3.1

ETCS data packets

In the following, we give a top-down presentation of the OpenETCS Decoder software. We
discuss the highest, i.e. the data packet level, in this chapter; Chapter [] elaborates on some
intermediate, and Chapter [5|on the lowest level.

On the data packet level, a total of 47 diftferent packets are defined as C struct. We exemplify
our discussion on the alphabetically first packet, AdhesionFactor (Section[3.2), and give
some comments on considerations with respect to other packets (Section [3.3).

In order to cope with the similarity of specification, implementation, and verification tasks for all
packets, we have chosen to automatically generate formal specifications and implementations for
encoding and decoding data packets from chapter 7 of the ETCS Subset 026 system requirements
description.

Overview and classification of data packets

Tables [3.11 3.2 [3.3] and [3.4]list the packets from ETCS requirements specification “Subset 026”.

While many packets only contain a fixed number of elements, there are also a few that contain a

dynamic number of elements (indicated by the presence of a field N_ITER) and optional values.

We use the following terminology:

e A packet that does not contain an element N_ITER is referred to as static packet.

e All other packets are referred to as dynamic packets.

There are 29 static packets and 19 dynamic packets. Seven of the 29 static packets contain
optional values.
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PacketID | Packet name N_ITER | Optional
3 National Values + +
5 Linking + +
12 Level 1 Movement Authority + -
15 Level 2/3 Movement Authority + -
16 Repositioning Information - -
21 Gradient Profile + -
27 International Static Speed Profile + -
39 Track Condition Change of traction power - -
41 Level Transition Order + +
42 Session Management - +
A4 Data used by applications outside the ERTMS/ETCS i i
system
45 Radio Network registration - -
46 Conditional Level Transition Order + +
49 List of balises for SH Area + +
51 Axle load Speed Profile + -
57 Movement Authority Request Parameters - -
58 Position Report Parameters + -
63 List of Balises in SR Authority + +
65 Temporary Speed Restriction - -
66 Temporary Speed Restriction Revocation - -
67 Track Condition Big Metal Masses + -
68 Track Condition + +
70 Route Suitability Data + +
71 Adhesion Factor - -
72 Packet for sending plain text messages - +
76 Packet for sending fixed text messages - +
79 Geographical Position Information + +
80 Mode profile + -
90 Track Ahead Free up to level 2/3 transition location - +
131 RBC transition order - -

Table 3.1. TrackToTrain packets part 1
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PacketID | Packet name N_ITER | Optional
132 Danger for Shunting information - -

133 Radio in-fill area information - -
134 EOLM Packet - -
136 Infill location reference - +
137 Stop if in Staff Responsible - -
138 Reversing area information - -
139 Reversing supervision information - -
140 Train running number from RBC - -
141 l?efault Gradient for Temporary Speed Restric- i i
tion
254 Default balise, loop or RIU information - -
Table 3.2. TrackToTrain packets part 2
PacketID | Packet name N_ITER | Optional
0 Position Report - +
1 Position Report based on two balise groups - +
3 Onboard telephone numbers + -
4 Error Reporting - -
9 Level 2/3 transition information - -
11 Validated train data + -
44 Data used by applications outside the ERTMS/ETCS i i
system
Table 3.3. TrainToTrack packets
PacketID | Packet name N_ITER | Optional

255 End of information

Table 3.4. Both-Ways packets
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3.2

Formal specification of AdhesionFactor

In this section we describe in detail the formal specification of encoding and decoding operations
of the packet AdhesionFactor, which is a typical static packet.

3.2.1 AdhesionFactor in ETCS

ETCS Subset 026 defines the package adhesion factor (packet 71) as shown in Table 3.5]

variable name | number of bits
NID_PACKET 8
Q_DIR 2
L_PACKET 13
Q_SCALE 2
D_ADHESION 15
L_ADHESION 15
M_ADHESION 1

Table 3.5. Packet AdhesionFactor as defined by ETCS

3.2.2 The type AdhesionFactor

Listing [3.1] shows the definition of type AdhesionFactor as it is generated from the ETCS
specification shown in Section [3.2.1]

struct AdhesionFactor
{

PacketHeader header;

// TransmissionMedia=Any

// This packet is used when the trackside requests a change of
// the adhesion factor to be used in the brake model.

// Packet Number = 71

uint64_t Q_DIR; /] # 2
uint64_t L_PACKET; // # 13
uint64_t Q_SCALE; /] # 2
uint64_t D_ADHESION; // # 15
uint64_t L_ADHESION; // # 15
uint64_t M_ADHESION; /] # 1

}i
typedef struct AdhesionFactor AdhesionFactor;

Listing 3.1. Definition of the type AdhesionFactor
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bit stream ETCS packet(s)

decoder ——»

- struct AdhesionFactor_Data
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Figure 3.1. Relationship between bit stream and packet elements

Figure [3.1] outlines the mapping between a bit stream and the elements of AdhesionFactor.
3.2.3 ACSL predicates AdhesionFactor

Listing [3.2] shows the definition of the logic functions BitSize and MaxBitSize

for AdhesionFactor. The former function uses a macro that contains the size of
AdhesionFactor in bits. The functions are used in Listing [3.8] and Listing [3.9| where the
overloading of the logic predicates allows for a more generic ACSL contract for the EncodeBit
and DecodeBit functions.

/%@
logic integer BitSize{L} (AdhesionFactor* p) = ADHESIONFACTOR_BITSIZE;

logic integer MaxBitSize{L} (AdhesionFactorx p) = BitSize(p);
x/

Listing 3.2. Definition of the BitSize predicates for AdhesionFactor
Listing [3.3] shows the definition of the Invariant predicate for AdhesionFactor. The

predicate is the conjunction of the (trivial) Invariant (uint 64_t) predicates of all members
of on object of type AdhesionFactor.
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/%@
predicate Invariant (AdhesionFactor* p) =
Invariant (p—>Q_DIR) &&
Invariant (p—>L_PACKET) &&
Invariant (p—>Q_SCALE) &&
Invariant (p—>D_ADHESION) &&
Invariant (p—>L_ADHESION) &&
(

Invariant (p—>M_ADHESION) ;
*/

Listing 3.3. Definition of the Invariant predicate for AdhesionFactor

Listing [3.4] shows the definition of the UpperBitsNotSet predicate for AdhesionFactor.

/%@
predicate UpperBitsNotSet (AdhesionFactor* p) =
UpperBitsNotSet (p—->Q_DIR, 2) &&
UpperBitsNotSet (p—>L_PACKET, 13) &&
UpperBitsNotSet (p—>Q_SCALE, 2) &&
UpperBitsNotSet (p—>D_ADHESION, 15) &&
UpperBitsNotSet (p—>L_ADHESION, 15) &&
UpperBitsNotSet (p—>M_ADHESION, 1);
*/

Listing 3.4. Definition of the UpperBitsNotSet predicate for AdhesionFactor

The predicate UpperBitsNotSet (AdhesionFactor«) holds if and only if the values of
all members of AdhesionFactor fit into their assigned numbers of bits. The predicate is
defined as the conjunction of the overloaded UpperBitsNotSet predicate which is explained
in Section[53.2] for all members of AdhesionFactor.

Listing [3.5]shows the definition of predicate Separated for AdhesionFactor. The pred-
icate Separated (stream, p) is true if and only if the two objects x st ream and *p do
not overlap in memory. Thus, writing into the stream will not change *p and vice versa.

/%@
predicate Separated(Bitstreamx stream, AdhesionFactor* p) =
\separated(stream, p) &&
\separated (stream->addr + (0..stream->size-1), p);
x/

Listing 3.5. Definition of the Separated predicate for AdhesionFactor

Listing[3.6]shows the definition of the EqualBits predicate for AdhesionFactor. Based
on the ETCS specification, this predicate describes a relationship between the bits of the in-
dividual members of an object of type AdhesionFactor and those of a bit stream. This
predicate will be used to formally describe the transfer of bits from a bit stream to an object
of type AdhesionFactor and vice versa. The definition of the predicate EqualBits (
AdhesionFactorx) uses the predicate EqualBits (uint64_t), which is explained in
Section 411
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predicate EqualBits (Bitstream* stream, integer pos, AdhesionFactor* p)

EqualBits (stream, pos, pos + 2, p—>Q_DIR) &&
EqualBits (stream, pos + 2, pos + 15, p—->L_PACKET) &&
EqualBits (stream, pos + 15, pos + 17, p->Q_SCALE) &&
EqualBits (stream, pos + 17, pos + 32, p->D_ADHESION) &&
EqualBits (stream, pos + 32, pos + 47, p->L_ADHESION) &&
EqualBits (stream, pos + 47, pos + 48, p->M_ADHESION),;

*/

Listing 3.6. Definition of the EqualBits predicate for AdhesionFactor

3.2.4 Formal specification of AdhesionFactor_UpperBitsNotSet

Listing[3.7] shows the contract of the UpperBitsNotSet function for AdhesionFactor.

/*@

requires valid: \valid_read(p);

requires invariant: Invariant(p);

assigns \nothing;

ensures result: \result <==> UpperBitsNotSet (p);
*/

int AdhesionFactor_UpperBitsNotSet (const AdhesionFactor* p);

Listing 3.7. Contract for UpperBitsNotSet function of AdhesionFactor

The function contract includes the requires clauses, labeled valid and invariant. These
limit the significance of the ensures and assigns clauses to the AdhesionFactor objects
that also satisfy the requires clauses. The valid clause only evaluates to true if the xp is
a valid pointer. The invariant clause requires Invariant (p) to evaluate to true. The
Invariant (AdhesionFactor«) predicate is explained in Section [3.2.3] The contract
also includes a statement on the return value of the function, labeled result. This clause
ensures that the function’s return value for AdhesionFactor* p matches the evaluation of
the predicate UpperBitsNotSet (p) from Section[3.2.3] With the assigns \nothing
clause the contract furthermore specifies that this function has no side effects.
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3.2.5 Formal specification of AdhesionFactor_DecodeBit

Listing [3.8] shows the contract for the DecodeBit function for AdhesionFactor. The
behavior of the function is specified using the two disjoint behaviors normal_case

and error_case. The requirements valid_stream, stream_invariant,
valid_package and separation apply to both behaviors and limit the set of combi-
nations of input arguments for which the ensures and assigns clauses describe the behavior
of the function.

/%@
requires valid_stream: Readable (stream) ;
requires stream_invariant: Invariant (stream, MaxBitSize (p));
requires valid_package: \valid(p);
requires separation: Separated(stream, p);

assigns stream->bitpos;
assigns xp;

ensures unchanged: Unchanged{Here,0ld} (stream, 0, 8*stream—>
size);

behavior normal_case:
assumes Normal{Pre} (stream, MaxBitSize (p));

assigns stream—>bitpos;
assigns *p;

ensures invariant: Invariant (p);

ensures result: \result == 1;

ensures increment: stream->bitpos == \old(stream->bitpos) + BitSize (
p);

ensures equal: EqualBits (stream, \old(stream->bitpos), p);

ensures upper: UpperBitsNotSet (p) ;

behavior error_case:
assumes !Normal {Pre} (stream, MaxBitSize (p));

assigns \nothing;
ensures result: \result == 0;

complete behaviors;
disjoint behaviors;
x/
int AdhesionFactor_DecodeBit (AdhesionFactor* p, Bitstream* stream);

Listing 3.8. Contract for DecodeBit function of AdhesionFactor

The assigns clauses in the contract’s body describe the side effects of the function. If the
function contract is split into multiple behaviors, like here, common assigns clauses, which
contain the union of the behaviors’ assigns clauses, are needed outside of the behaviors. Their
meaning will become clear when discussing the individual behaviors.

For both behaviors the unchanged clause states that none of the bits in the bit stream are
written by the function.

e The property valid_streamrequires that the predicate Readable (stream) is satis-
fied (see Section[d.1).
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o The property stream_invariant is only metif the Invariant predicate is true. The
predicate Invariant (Bitstreams, integer) isdescribed in Sectiond.I]

e The property valid_package requires that p is a valid pointer for read and write opera-
tions.

e The property separation requires that st ream and xp do not overlap in the memory.
The Separated predicate was introduced in Section [3.2.3]

The behavior normal_case describes the function’s behavior if st ream contains enough
unread bits to fill all members of xp. In this case an object of type AdhesionFactor is
decoded from the stream and thus +p is written. The latter is stated by the first assigns
clause. In this context the ensures clauses equal and upper describe the relationship of
the bits in the bit stream and the bits of the members of xp. Furthermore st ream->bitpos
will be updated. The effects of this operation are described by the second assigns and the
increment clauses.

The behavior error_case describes the function’s behavior in the opposite case i.e. if =
stream is exhausted before all members of «p are read. In this case the function has no
side effects and in particular does not write *p or stream->bitpos. The ensures clause
result states that the return value of the function equals 0. In normal_case this value was
specified to equal 1.

The distinguishing predicate for the two behaviors is Normal (Bitstreamx, integer),
which appears in the assumes clauses within both behaviors and is explained in Section4.1]
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3.2.6 Formal specification of AdhesionFactor_EncodeBit

Listing 3.9 shows the contract for the EncodeBit function for AdhesionFactor.

/%@
requires valid_stream: Writable (stream) ;
requires stream_invariant: Invariant (stream, MaxBitSize (p));
requires valid_package: \valid_read(p);
requires invariant: Invariant (p);
requires separation: Separated (stream, p);

assigns stream->bitpos;
assigns stream->addr[0.. (stream->size-1)1];

behavior normal_case:
assumes Normal {Pre} (stream, MaxBitSize (p)) && UpperBitsNotSet{Pre} (p)

’

assigns stream->bitpos;

assigns stream—>addr[0.. (stream—->size-1)];

ensures result: \result == 1;

ensures increment: stream->bitpos == \old(stream->bitpos) + BitSize(
p) i

ensures left: Unchanged{Here, 01d} (stream, 0, \old(stream—->
bitpos));

ensures middle: EqualBits (stream, \old(stream->bitpos), p);

ensures right: Unchanged{Here, 0ld} (stream, stream->bitpos, 8 =

stream->size);

behavior values_too_big:
assumes Normal {Pre} (stream, MaxBitSize(p)) && !UpperBitsNotSet{Pre} (p
)

assigns \nothing;
ensures result: \result == -2;

behavior invalid_bit_sequence:
assumes !Normal {Pre} (stream, MaxBitSize (p));

assigns \nothing;
ensures result: \result == -1;

complete behaviors;
disjoint behaviors;
x/
int AdhesionFactor_EncodeBit (const AdhesionFactor* p, Bitstreamx stream);

Listing 3.9. Contract for EncodeBit function of AdhesionFactor

The behavior of the function is described using the three disjoint behaviors normal_case,
values_too_bigand invalid_bit_sequence. The requirements valid_stream,
stream_invariant, valid_package, invariant and separation are similar to
those of the DecodeBit function’s contract for AdhesionFactor. The ones not examined
in detail here do not differ from the ones in Section[3.2.3]
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Like for the DecodeBit function for AdhesionFactor in Section the assigns
clauses in the contract body are the conjunction of the assigns clauses of the individual
behaviors.

e Property valid_stream is only met if Writable (stream) applies. The predicate
Writable (Bitstreamx) requires that the stream is accessible for updates.

e Property valid_package requires p to be valid pointer.

e Property invariant is only met if the Invariant predicate, which was described in
Section[3.2.3] holds for p.

The behaviors of the EncodeBit contract describe one successful case and two error cases.

Behavior normal_case describes a successful encoding of the object xp into the bit stream.

The assigns clauses specify that in this case both the bitpos of the st ream and the fields
of the bit stream are written. The increment clause describes the new value for bitpos. The
ensures clauses left, middle and right state that only some bits of the bit stream are
written. The updated bits and their relationship to the bits of the members of the object xp are
described with the EqualBits predicate, which is described in Section[3.2.3] The Unchanged
predicate specifies that the bits in the bit stream before the old st ream->bitpos and the after
the new st ream—>bitpos remain unchanged. Unchanged (Bitstream*, integer,
integer) is defined in Section

Behavior values_too_big describes the scenario in which the value of at least one member
of xp is bigger than the specified bit size for that member of AdhesionFactor allows. The
numbers of bits for the members of AdhesionFactor are specified in Section [3.2.1] The
assigns clause states that this behavior of the function causes no side effects and the result
clause ensures that the function will return the value —2. In contrast to normal_case, for
this behavior it is assumed that the UpperBitsNotSet (p) predicate evaluates to false. The
Normal (stream, MaxBitSize (p)) predicate returns true for both behaviors.

Finally, the behavior invalid_bit_sequence describes the function’s behavior if the bit
stream is not long enough to write a complete AdhesionFactor object into. This behavior is
distinguished from the other behaviors by the evaluation of the predicate Normal (stream,

MaxBitSize (p) ). Notice that the evaluation of UpperBitsNotSet (p) might be false,
too. Like in the value_too_lbig behavior the function ends without encoding any bits into
the stream. Therefore the assigns clause is \nothing. The result clause states that the
function’s return value equals —1.
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3.3

Formal specification of other packets

After examining the definition of the predicates for AdhesionFactor and
the formal specifications of the functions AdhesionFactor_EncodeBit and
AdhesionFactor_DecodeBit from Section [3.2] the predicates for other (static)
packets and the specifications of the corresponding functions look very familiar.

In fact the only difference of the predicates lies in the different sets of sub predicates which are
used and depends on the different sets of member variables for the different packets. The fact that
ACSL predicates and logic functions can be overloaded for different types enables us to develop
generic formal specifications for the EncodeBit and DecodeBit functions of all packets.
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4.1

The bit stream layer

In this chapter, we describe the intermediate abstractions levels the packet level (Chapter 3)) relies
on. First, we discuss in Section {f.T]a level where operation arguments typically include a pointer
to the C structure Bit st ream, which encapsulates bitstream data and all related administration
information (see Listing [4.]).

struct Bitstream
{

uint8_tx addr; // start address of stream data
uint32_t size; // length of stream data in bytes
uint32_t bitpos; // current bit position within stream data

}i
typedef struct Bitstream Bitstream;

Listing 4.1. Details for the Bitstream data structure

In this chapter, we present a level still working on bit sequences, but with an operation typically
having one argument for every bitstream data or administration input. Chapter [5|finally presents
lower level implementation details.

The Bitstream abstraction

The operations on packet data structures were implemented by operations on a struct
Bitstream~ argument. The latter are described in this section.

The operation Bitstream_Read (stream, length) reads the next length bits from the
bitstream st ream, and returns them as a uint 64_t value. Its formal ACSL specification is
shown in Listing It requires st ream

e to point to a valid memory area (requirement property “valid”),
e to adhere to its data type invariant (property “invariant”), and

e not to be exhausted (property “normal”).
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/%@

requires valid: Readable (stream) ;

requires invariant: Invariant (stream, length);

requires normal: Normal (stream, length);

assigns stream->bitpos;

ensures pos: stream->bitpos == \old(stream->bitpos) + length;

ensures changed: EqualBits (stream, \old(stream—->bitpos), stream—->

bitpos, \result);

ensures upper: UpperBitsNotSet (\result, length);

ensures size: stream->size == \old(stream->size);

ensures unchanged: Unchanged{Here,0ld} (stream, 0, 8 » stream->size);
*/

uint64_t Bitstream_Read (Bitstreamx stream, uint32_t length);

Listing 4.2. Reading from a bitstream

It is allowed to—and usually in fact will—modify the current bit position within stream,
but it has to leave all other memory unchanged (expressed by the “assigns” clause). After
completion of the operation,

the current bit position has been increased accordingly (postcondition property “pos”),

e the return value equals, bit by bit, the stream between the current bit position on entry and
that on exit (property “changed”),

e in particular, all but the 1ength least significant bitﬂ of the return value are zero (property
“upper”),

e stream’s total size remains unaffected (property “size”), and

e 5o do all of its content bits (property “unchanged”).

Bitstream
first last
x

\\ EqualBits

N\
\
Ay
A

value (uint64_t)

length = last - first

Figure 4.1. Bit coincidences required by EqualBits

3 Bit positions are counted differently in Frama-C and in the openETCS project. In this report, we preferably used
the terms “least” and “most significant bit(s)” to designate a (range of) bit position(s) independent of the coordinate
system.
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The formal definitions of the ACSL predicates used in Bit st ream_Read’s contract are given
in Listing .3} they build upon the internal details of the Bit st ream data structure shown in

Listing 4.1}

predicate
Readable{L} (Bitstreamx stream) = \valid(stream) &&
\valid_read (stream->addr + (0..stream—->size-1));

predicate
Writeable{L} (Bitstream* stream) = \valid(stream) &&
\valid(stream—->addr + (0..stream—>size-1));

predicate
Invariant{L} (Bitstreamx stream, integer length) =
\separated (stream, stream->addr + (0..stream->size-1)) &&

Invariant (stream->size, stream->bitpos, length);

predicate
Normal{L} (Bitstream* stream, integer length) =
Normal (stream->size, stream->bitpos, length);

predicate
Unchanged{A,B} (Bitstream* stream, integer first, integer last) =
\forall integer i; first <= i < last ==>

(\at (Bit8Array (stream->addr, i),A) <==>
\at (Bit8Array (stream->addr, 1i),B));

predicate
EqualBits{A} (Bitstreamx stream, integer first, integer last, uint64_t
value) =
EqualBits{A} (stream->addr, first, last, wvalue);

Listing 4.3. ACSL predicates used in bitstream layer contracts

e Predicate Readable requires that a stream’s data area is complete accessible for read.
e Similarly, predicate Writeable requires that it is accessible for update.

e Predicate Invariant requires that a struct Bitstream’s data area doesn’t overlap
with the struct itself, and that some further, lower-level invariant holds (see Section .3
below, in particular Listing .7)).

In a similar way, predicate Normal and EqualBits is reduced to a lower-level predicate
of the same name, respectivelyﬂ

e A clause Normal (size,bitpos, length) requires bitpos to be such that at least
length more bits are available beyond it in a stream of byte-size si zeﬂ

e A clause Unchanged{2, B} (stream, first, last) succeeds if, and only if, all data
bits [first...last) of stream agree in memory state A and B. For example, it is used
with A and B instantiated to Frama-C’s reserved keyword “Here” and “01d”, denoting the
memory state after and before operation completion and entry, respectively; cf. Listing [4.6]

e Aclause EqualBits (addr, first, last, value) requires bits [first...last)in
the byte array at addr to coincide with the corresponding least significant bits of value,

cf. Figure 4.1}

*Frama-C allows for predicate overloading.
3> We tacitly assume that each stream has a multiple of 8 bits available.
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4.2 Auxiliary Bitstream functions

As a kind of constructor for type Bit st ream, we provide the operation Bitstream_Init,

shown with its contract in Listing {.4]

/%@
requires valid: Writeable (stream) ;
requires bit_size: 8 x size <= UINT32_MAX;
requires valid_pos: bitpos <= 8 x size;
requires separated: \separated(addr + (0..size-1), stream);

assigns stream->addr, stream->size, stream->bitpos;

ensures addr: stream->addr == addr;
ensures size: stream->size == size;
ensures bitpos: stream->bitpos == bitpos;
ensures invariant: Invariant (stream, 0);

x/

void Bitstream Init (Bitstreamx stream, uint8_t* addr, uint32_t size,
uint32_t bitpos);

Listing 4.4. Setting-up a bitstream

Moreover, we provide a test for exhaustion of a Bit st ream, shown in Listing 4.5

/%@
requires valid: Readable (stream) ;
requires invariant: Invariant (stream, length);

assigns \nothing;
ensures result: \result <==> Normal (stream, length);
x/

int Bitstream_Normal (const Bitstreamx stream, uint32_t length);

Listing 4.5. Testing a bitstream for exhaustion
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4.3 Writing bit sequences

In this section, we describe the function Bitstream_Write that transfers the designated bits
from a variable of type uint 64_t into a bit stream (see Figure .2).

Bitstream
bitpos bitpos+length

addr

Bitstream_Write

value (uint64_t)
length

Figure 4.2. Sketch of Bitstream Write

Listing 4.6 shows contract of the Bit st ream_Write operation, and moreover exemplifies its

implementation.
/@
requires valid: Writeable (stream) ;
requires invariant: Invariant (stream, length);
requires normal: Normal (stream, length);
requires upper: UpperBitsNotSet (value, length);
assigns stream—>addr[0..stream->size - 1];

assigns stream—>bitpos;

ensures pos: stream->bitpos == \old(stream->bitpos) + length;
ensures changed: EqualBits (stream, \old(stream->bitpos), stream—>
bitpos, value);
ensures unchanged: Unchanged{Here,0ld} (stream, 0, \old(stream->bitpos))
14
ensures unchanged: Unchanged{Here,Old} (stream, stream->bitpos, 8 =«
stream->size);
ensures size: stream->size == \old(stream->size);
*/
void Bitstream_Write (Bitstream* stream, uint32_t length, uint64_t value)
{
Bitwalker_Write (stream->addr, stream->size, stream->bitpos, length,
value) ;
//Q@ assert EqualBits (stream, stream->bitpos, stream->bitpos + length,
value) ;

stream—->bitpos += length;

//Q@ assert EqualBits (stream, \at (stream->bitpos,Pre), stream->bitpos,
value) ;

Listing 4.6. Writing to a bitstream
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Most parts of the contract are quite similar to that of Bit st ream_Read in Listing[4.2] Differ-
ences are the following:

e We require that the value to be written fits into the specified 1ength, i.e. its unused most
significant bits are zero (requirement property “upper”).

e The operation is allowed to change the contents of the bitstream (first assigns clause) in
addition to the streams current bit position (second assigns clause), but no other memory
locations.

e Since we couldn’t specify in the assigns clauses which bits exactly are allowed to be
modified, we give the details in two ensures clauses named “unchanged”™ All bits
before the stream’s bitpos on operation entry, and after its bitpos on exit, must remain
unchanged.

The formal definitions of the used ACSL predicates are given in Listing Again, the tacit
assumption that the array contains sensible data up to its very last bit is used in predicate Normal.

predicate Readable{L} (uint8_tx addr, integer size) = \valid_read(addr +
(0..size-1));

predicate Writeable{L} (uint8_t«* addr, integer size) = \valid(addr + (0..
size-1));

predicate Invariant{L} (integer size, integer bitpos, integer length) =
8 x size <= UINT32_MAX &&
length <= 64 &&
bitpos + length <= UINT32_MAX;

predicate Normal{L} (integer size, integer bitpos, integer length) =
bitpos + length <= 8 x size;

Listing 4.7. ACSL predicates used in bit sequence layer contracts

The implementation just employs the lower-level operation Bitwalker_Write to write the
bits, and appropriately updates the st ream’s bitpos. Listing #.8shows the contract, and the
implementation, of the Bitwalker_Write operation.

Two assertions were needed to help the provers establishing that value’s bits are actually written
to stream’s data array by Bitwalker_Write, and that they aren’t subsequently destroyed
by the increment of bitpos.
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/%@
requires valid: Writeable (addr, size);
requires invariant: Invariant (size, bitpos, length);
requires normal: Normal (size, bitpos, length);
requires upper: UpperBitsNotSet (value, length);

assigns addr[0..size-1];

ensures left: Unchanged{Here, 0ld} (addr, 0, bitpos);
ensures middle: EqualBits (addr, bitpos, bitpos + length, value);
ensures right: Unchanged{Here, 01d} (addr, bitpos + length, 8 * size)
7
x/
void

Bitwalker_Write (uint8_tx addr, uint32_t size,
uint32_t bitpos, uint32_t length, uint64_t value);

/%@
loop invariant bound: bitpos <= 1 <= bitpos + length;
loop invariant left: Unchanged{Here,Pre} (addr, 0, bitpos);
loop invariant middle: EqualBits (addr, bitpos, i, value, length);
loop invariant right: Unchanged{Here,Pre} (addr, i, 8 * size);

loop assigns 1, addr[0..size-1];
loop variant Dbitpos + length - 1i;
x/
for (uint32_t i = bitpos; 1 < bitpos + length; ++1i)
{
int flag = TestBit64 (value, (64 - length) + (i - bitpos));
SetBit8Array(addr, size, 1, flag);

Listing 4.8. Writing a bit sequence
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4.4 Reading bit sequences

In this section, we describe the function Bit st ream_Read that transfers the designated bits
from a bitstream into a variable of type uint 64_t (see Figure .3).

Bitstream
bitpos bitpos+length

addr

" Bitstream_Read

return value (uint64_t)

length

Figure 4.3. Sketch of Bitstream Read

The following peculiarities are observed when the former is compared to Bitwalker_Read’s

contract in Listing[4.9]

/%@
requires valid: Readable (addr, size);
requires invariant: Invariant(size, bitpos, length);
requires normal: Normal (size, bitpos, length);
assigns \nothing;
ensures equal: EqualBits (addr, bitpos, bitpos + length, \result);
ensures upper: UpperBitsNotSet (\result, length);

*/

uint64_t Bitwalker_Read(uint8_tx addr, uint32_t size, uint32_t bitpos,
uint32_t length);

Listing 4.9. Reading a bit sequence
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e We require that the value to be written fits into the specific 1length,i.e. all butits length
least significant bits are zero (requirement property “upper”).

e The operation may modify the data array at addr, but nothing else.

e Again, we give the details of which data bits exactly are allowed to be changed in two
ensures clauses, named “left” and “right”, and requiring all bits before bitpos and
after bitpos+length to remain unchanged, respectively.

In the implementation, which is shown here as an example, we used the straight-forward algorithm
that takes a bit from value and places it into the addr array, bit by bit. In order for the provers
to establish that algorithm’s correctness, we had to provide a total of six ACSL clauses about the
loop:

e The loop variable, i, always ranges in the interval [bitpos...bitpos+length]—Iloop
invariant property “bound”. Note that the highest value is actually taken, viz. on exit of the
loop body in the last iteration, subsequently causing the loop to terminate.

e The bits before bitpos, and after bitpos+length remain as they were on operation
entry—invariant property “left” and “right”, respectively.

e In the ith iteration, the bits [bitpos...bitpos+i) agree with the least significant i bits
of value—invariant property “middle”.

e The loop code is allowed to modify the variable i, and the whole array at addr, but nothing
else— loop assigns clause.

e The value of the integer expression bitpos+length—i is non-negative throughout the
whole loop execution, but is decreased in every iteration — loop variant clause. There-
fore, the loop is guaranteed to terminate eventually.

The operations we have discussed here are based on operations to write and to read a single bit.
The details of the latter, as well as of the predicates used in their contracts, are given in Chapter 5]
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4.5

Verification of the Bitstream abstraction

Critics of the formal software verification approach often argue that verifying an operation against
its formal specification results in little or no increase of trustworthiness when

e the specification, including all auxiliary definitions etc., is as complex as the operation’s
implementation, or/and

e the specification essentially duplicates the implemented algorithm in a different (such as
functional rather than imperative) language.

Both criteria may be seen to be met by our Bitwalker case study.

However, since the operations we dealt with essentially implement a communication protocol,
there is a very simple “high-level” property that should be satisfied, viz. that a “send” operation
is inverse to a “receive” operation. This property can be stated formally in a very brief and
understandable way. It ensures, in a mathematical context, that both operations implement
bijective mappings, that is, in an engineering sense, that the communication channel neither
looses, nor subjoins information. In fact, we have achieved to formally prove this property.

More particularly, in our setting, we could show that the operations Bit st ream_Read and
Bitstream_Write areinverse to each other. To this end, we set up two fictitious C procedures
realizing the composition of both operations in the two possible orders.

4.5.1 The verification function Bitstream WriteThenRead

Figure [.4] outlines the first scenario where a 64-bit value is written into a bit stream and read
from there afterwards (see Figure 4.4).

valve | [

bitpos X bitpos+length
addr ‘ i 1

Bitstream_Read \\\

N\

4

result volve | I

Figure 4.4. QOutline of Bitstream WriteThenRead
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Listing #.10| shows the procedure for the scenario “use Bit st ream_Write to write a value to
a stream, then immediately read it back using Bit st ream_Read”.

/%@
requires valid: Writeable (stream);
requires invariant: Invariant (stream, length);
requires normal: Normal (stream, length);
requires upper: UpperBitsNotSet (value, length);
assigns stream->addr[0..stream->size-1];
assigns stream->bitpos;
ensures equality: \result == value;

*/

uint64_t

Bitstream _WriteThenRead (Bitstreamx stream, uint32_t length, uint64_t v)

{

//@ ghost uint32_t old_pos = stream->bitpos;

Bitstream_Write (stream, length, value);
//@ assert equal: EqualBits (stream, old_pos, old_pos+length, value);

/%@

assigns stream->bitpos;

ensures reset: stream->bitpos == \at (stream->bitpos,Pre);
*/
stream->bitpos —-= length;

uint64_t result = Bitstream_Read(stream, length);

//@ ghost uint32_t new_pos = stream->bitpos;

//@ assert equal_result: EqualBits(stream, old_pos, new_pos, result);
//Q@ assert equal_value: EqualBits (stream, old_pos, new_pos, value);

/*Q@ assert aux: \forall integer k; old_pos <= k < new_pos ==>
\let J = new_pos - 1 - k;
(BitTest (value, j) <==> BitTest (result, 3J));
*/
//Q assert left: EqualBits64 (result, value, 64-length, 64);
//@ assert compare: EqualBits64 (result, value, 0, 64);

return result;

Listing 4.10. Verifying the scenario “write, then read”

The procedure’s body code is straightforward; after Bit st ream_Write, we have to seek back
to the original bit position, before calling Bit st ream_Read”. We could show that the read
value always equals the written one, provided

the stream is accessible for both read and update (requirement property “valid”),

it satisfies its type invariant (property “invariant”; cf. Listing[4.3|and [4.7),

the stream’s current bit position is sufficiently small such that all value bits still fit into the
stream (property“normal”), and

the most significant value bits that are not written are all zero (property“upper”).

This ensures that the bitstream communication channel doesn’t loose information—every value
we write into it can completely be restored.
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4.5.2 The verification function Bitstream ReadThenWrite

Vice versa, we could also show that the channel doesn’t transmit more information than is needed
to fulfill its task. Figure 4.4 outlines this second scenario where a 64-bit value is read from a bit
stream and written into another bit stream afterwards (see Figure [4.3)).

bitpos bitpos+length
o[ |

Bitstream_Read

Bitstream_Write

<+ - — - ———— -

bitpos bitpos+length
o[ \

Figure 4.5. Outline of Bitstream ReadThenWrite

Listing 4.T1|shows the procedure for the scenario “use Bit st ream_Read to read a value from
a stream, then immediately write it back using Bitstream_Write”.

/*@

requires valid: Writeable (stream);

requires invariant: Invariant (stream, length);

requires normal: Normal (stream, length);

assigns stream—>addr[0..stream—>size-1];

assigns stream—->bitpos;

ensures unchanged: Unchanged{Here,Old} (stream, 0, 8 % stream->size);
x/

void Bitstream_ReadThenWrite (Bitstreamx stream, uint32_t length)
{
//@ ghost uint32_t old_pos = stream->bitpos;
uint64_t value = Bitstream_Read(stream, length);
//@ assert equal: EqualBits(stream, old_pos, old_pos+length, value);

stream->bitpos —-= length;
//Q assert stream—>bitpos == old_pos;

Bitstream_Write (stream, length, value);

//@ assert unchanged: Unchanged{Here,Pre} (stream, old_pos, stream—>
bitpos);

Listing 4.11. Verifying the scenario “read, then write”
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We were able show that this leaves the whole stream unchanged, provided the first three
requirement properties from Bitstream WriteThenRead are met. As an example for
a channel transmitting redundant information, consider a bitstream implementation with
Bitstream_ Write storing each byte twice in succession and Bitstream_Read ignor-
ing every second byte. Such a stream doesn’t meet our property, since, starting from a stream
with non-agreeing adjacent bytes, there is no way to reproduce it by a “read, then write” scenario.
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5.1

Low-level bitstream operations

In this chapter, we describe the implementation of the low-level bitstream operations. They were
used to implement the bit sequence abstraction level, cf. Chapter 4 Since a write operation
moves bits from a uint 64_t value into an array of uint8_t values, and a read operations
moved them the other way round, we need bit operations on both data types. They are given in
Subsection[5.1.1|for an array of uint8_t, in Subsection[5.1.2]for a single uint8_t, and in
Subsection[5.1.3|for single uint64_t.

Reading and writing individual bits
5.1.1 Reading and writing 8 bit arrays
In this section, we discuss the operations for read and write of a single bit from/into a byte array.

The operation TestBit8Array (addr, size, pos) returns the po s bit within the array
at addr of byte-size si zeﬂ Its contract and its implementation is shown in Listing See
Listing [5.8] for the definition of the predicate Bit 8Array. The array bits are counted starting
with the most significant one of the first byte. A call to TestBit8 (bytevalue,bitadr)
returns the bitadr™ bit within bytevalue, this operation is discussed in Subsection
below.

/*@
requires valid: \valid_read(addr + (0..size-1));
requires size: 8 x size <= UINT32_MAX;
requires pos: pos < 8 x size;

assigns \nothing;

ensures result: \result != 0 <==> Bit8Array (addr, pos);

x/

static inline int TestBit8Array (uint8_t* addr, uint32_t size, uint32_t pos
)

{
return TestBit8 (addr[pos / 8], pos % 8);

}

Listing 5.1. Reading a bit of an uint8_t array

Similarly, the operation SetBit8Array (addr, size,pos, flag) sets the pos™ bit
within the array at addr of byte-size size to £lag. Its contract is shown in Listing [5.2]
It requires

e the whole array to be accessible for update (requirement property “valid”),
e each possible bit position in the array to fit into a uint 32_t (property “size”), and

e the given pos to be a valid bit position in the array (property “pos”).

® This parameter isn’t actually used in the code, but merely in the contract.
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The assigns clause allows the operation to change the contents of the array, but no other
memory locations. On completion, the operation shall guarantee

e thatthe value of £1 agﬂis actually stored at the designated bit position (postcondition property
“middle”; the call Bit8Array () succeeds if, and only if, the posth bit within the byte
array at addr is set, cf. Listing[5.8]in Section[5.2)), and

o that all other bits remain unchanged (properties “left”, “right”).

Two fairly sophisticated hints had to be provided as assertions in the body in order for the provers
to establish the contract’s post-conditions.

/%@
requires valid: \valid(addr + (0..size-1));
requires size: 8 x size <= UINT32_MAX;
requires pos: pos < 8 x size;

assigns addr[0..size-1];

ensures left: Unchanged{Here, 01d} (addr, 0, pos);
ensures middle: Bit8Array(addr, pos) <==> (flag != 0);
ensures right: Unchanged{Here,Old} (addr, pos + 1, 8 x size);
x/
static inline void SetBit8Array (uint8_tx addr, uint32_t size, uint32_t pos,
int flag)

{
uint32_t i = pos / 8u;
uint32_t k

o)

pos % 8u;

addr[i] = SetBit8(addr[i], k, flag);

// The following assertion claims that in byte with index "pos/8"
// the bits with indices different from "k" do not change

/%@
assert bits_in_byte:
\forall integer j; (0 <= j < 8 && j != k) ==>
(Bit8 (addr[pos/8], J) <==> \at (Bit8 (addr[pos/8]1, 3Jj), Pre));
*/

// The following assertion claims that in every byte
// with an index that is different from "pos/8" no bit is changed.

/%@
assert other_bytes:
\forall integer 1, j; (0 <= 1 < size && 1 != pos/8 && 0 <= j <
8) ==>
(Bit8 (addr([1l], J) <==> \at(Bit8(addr[l], Jj), Pre));
*/

Listing 5.2. Writing a bit of an uint8_t array

7 Any non-zero £1lag value is treated like 1. This is ensured by the contract of the called operation SetBit8, cf.

Subsection @
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5.1.2 Reading and writing 8 bit words

/*@

requires pre: pos < 8;
assigns \nothing;

ensures pos: \result != 0 <==> Bit8(value, pos);

*/
static inline int TestBit8 (uint8_t value, uint32_t pos)

{

uint8_t mask = ((uint8_t) 1) << (7u - pos);
uint8_t flag = value & mask;

return flag != 0;

Listing 5.3. Reading a bit of uint8_t

The operation TestBit 8 (value, pos) returns the po s™ bit of value. Its contract is shown
in Listing [5.3]

The value of pos must not exceed 7 (requirement property “pre”),
no memory may be modified (assigns), and

the result is non-zero if, and only if, the specified bit is set (postcondition property “pos”;
the call Bit 8 (value, pos) succeeds if, and only if, the po st of the byte value is set,

cf. Listing [5.8]in Section[5.2)).

The shown implementation additionally guarantees that the result is zero or one, which is not
specified in the contract since this property isn’t needed. Returning just £1lag rather than
flag!=0u would satisfy the contract also, and would be slightly faster.

Dual to TestBit 8, the operation SetBit8 (value, pos, flag) returns value, with the
pos' bit set to £1ag. Its contract is shown in Listing

Again, the value of pos mustn’t exceed 7 (requirement property “pre”),
no memory may be modified (assigns clause),

the return value coincides with value, except possibly at pos (postcondition properties
“left” and “right”; acall EqualBits8 (x,y, first, last) succeeds if, and only
if, the uint8_t values x and y agree on all bits in range [first...last), cf. also

Listing[5.10]in Section[5.2)), and

flag is written to the appropriate bit of value (property “pos”).

The implementation branches on the value of £1ag, and clears or sets the appropriate bit in
the usual way. Note that both our contract and our implementation enable us to set a bit by
supplying a £lag value of e.g. 2, whereas the code “mask=flag<<(7-pos) ; return (
value&~mask) |mask” does not.

This work is licensed under the "openETCS Open License Terms" (0OLT).



OETCS/WP4/D4.3.2

46

requires pre: pos < 8;

assigns \nothing;

ensures left: EqualBits8 (\result, value, 0, pos);

ensures pos: Bit8 (\result, pos) <==> (flag != 0);

ensures right: EqualBits8(\result, value, pos + 1, 8);
*/
static inline uint8_t SetBit8 (uint8_t value, uint32_t pos, int flag)
{

uint8_t mask = ((uint8_t) 1) << (7u - pos);

return (flag == 0) ? (value & ~mask) : (value | mask);

Listing 5.4. Writing a bit of uint8_t

5.1.3 Reading and writing 64 bit words

The operations to read and write a bit of a uint 64_t are closely similar to those working on
auint8_t. They are shown in Listing [5.5|and [5.6] without repeating the comments given in
Subsection for the 8 bit version. See Listing[5.8]for the employed ACSL predicates.

/%@
requires pre: pos < 64;

assigns \nothing;

ensures set_bit: \result != 0 <==> Bit64 (value, pos);
*/
int TestBit64 (uint64_t value, uint32_t pos)
{
uint64_t mask
uint64_t flag

((uint64_t) 1) << (63u - pos);
value & mask;

return flag != Ou;

Listing 5.5. Reading a bit of uint64_t

Listing [5.6] shows the operation SetBit64. Note that it has a redundant postcondition, viz.
property “upper”, which guarantees that the leading zeros in value are kept in the result, up
to, but excluding position pos. This property was needed to enable the provers to verify code
that uses SetBit 64.
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requires pre: pos < 64;
assigns \nothing;
ensures left: EqualBits64 (\result, value, 0, pos);
ensures set_bit: flag !'= 0 <==> Bit64 (\result, pos);
ensures right: EqualBits64 (\result, value, pos + 1, 64);
ensures upper: \forall integer i; i >= 64 - pos ==>

(UpperBitsNotSet (value, 1) ==> UpperBitsNotSet (\
result, 1i));

x/

uint64_t SetBit64 (uint64_t value, uint32_t pos, int flag)

{
uint64_t mask = ((uint64_t) 1lu) << (63 - pos);
return (flag == 0) ? (value & ~mask) : (value | mask);

Listing 5.6. Writing a bit of uint64_t

The operation UpperBitsNotSet64 (value, length) succeeds, i.e. returns a non-zero
value, if, and only if, all bits of value except the least significant 1ength ones are zero. It is
used in the implementation of packet writing functions like AdhesionFactor_EncodeBit
(see Section @) to check that no non-zero bits from the packet structure (like struct
AdhesionFactor) are ignored due to space limitations in the bitstream.

/%@

requires pre: length <= 64;

assigns \nothing;

ensures not_set: \result <==> UpperBitsNotSet (value, length);
x/

int UpperBitsNotSet64 (uint64_t value, uint32_t length);

Listing 5.7. Test that upper bits are not set
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5.2

Formalization of bit operations in Frama-C

The definition of predicate Bit8 is shown in Listing It relies on the Frama-C library
predicate Bit Test, performing a coordinate transformation to fit Frama-C’s notion of bit
positions with the notion of ETCS.

predicate Bit8{A} (uint8_t v, integer n) = BitTest(v, 7 - n);
predicate Bit64{A} (uint64_t v, integer n) = BitTest (v, 63 - n);
predicate Bit8Array{A} (uint8_t«+ a, integer n) = Bit8(a[n / 8],n % 8);

Listing 5.8. Definition of bit test predicates

The predicate UpperBitsNotSet (value, length) succeeds if, and only if, all but possi-
bly the least significant Length bits of value are zero. Its definition is shown in Listing[5.9]

predicate
UpperBitsNotSet {A} (integer value, integer length) =
\forall integer i; length <= i ==> !BitTest (value, 1);

Listing 5.9. Definition of the low-level predicate UpperBitsNotSet

Listing[5.10]shows the predicate EqualBits64 that was used in the 64-bit operations’ contracts.
The call EqualBits64 (x,y, first, last) succeeds if, and only if, the uint 64_t values
x and y agree on all bits in the range from first to last). The predicate EqualBits8, used
in Subsection[5.1.2] is defined in similar ways; its definition need not be shown here.

predicate
EqualBits64{A} (uint64_t x, uint64_t y, integer first, integer last) =
\forall integer i; 64 - last <= i < 64 - first
==> (BitTest (x, 1) <==> BitTest(y, 1));

Listing 5.10. Definition of the low-level predicate EqualBits64

In order for the provers to find all low-level validation proofs, we needed to supply three redundant
properties about EqualBits64 and UpperBitsNotSet; they are shown in Listing
Axiom equal_bits64_0 states that two uint 64_t values must be equal, if they agree on
all 64 bit positions. Axiom upper_bits_less_than states that in a nonnegative number
less than 2" all bits are zero, except for possibly the least significant n ones. The necessity of
these extra axioms might indicate an incompleteness in Frama-C’s actual bit-operator theory;
this is currently investigated. Axiom equal_bits64_1 is just a (relaxed) rephrasing of the
definition in Listing [5.10] using a different index scheme. It is necessary due to the provers’
weakness in applying index transformations.
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axiomatic BitProperties
{
axiom equal_bits64_0:
\forall uint64_t x, y; EqualBits64d(x, y, 0, 64) ==> x == y;

axiom equal_bits64_1:
\forall uinté64_t x, y, integer p, g;
(\forall integer k; p <= k < g
==> \let j = g-1-k; (BitTest (x, J) <==> BitTest(y, J)))
==> EqualBits64(x, y, 64-(g-p), 64);

axiom upper_bits_less_than:

\forall integer x, n; x >= 0 ==> n >= 0 ==>
(UpperBitsNotSet (x, n) <==> x < (1 << n));

Listing 5.11. ACSL axioms used in 64-bit contracts

Finally, for a nonnegative integer v, the predicate Bit Test (v, n) succeeds if, and only if, the
n'" bit is set in the binary representation of v, i.e. iff the truncating integer division of v by 2"
yields an odd number. This predicate comes with the standard library of the Frama-C system,
however, without any detailed documentation. Its declaration is shown in Listing[5.12]

predicate BitTest (integer v, integer n);

Listing 5.12. The Frama-C library predicate BitTest
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6 Formal verification with Frama-C/WP

In this chapter we introduce the formal verification tools used in this tutorial. We will afterwards
present to what extent the functions from Chapters 3—5 could be deductively verified.

Within Frama-C, the WP plug-in [3] enables deductive verification of C programs that have
been annotated with the ANSI/ISO C Specification Language (ACSL)[4]]. The WP plug-in uses
weakest precondition computations to generate proof obligations. To formally prove the ACSL
properties, these proof obligations can be submitted to external automatic theorem provers or
interactive proof assistants.

We used the WP plugin-in of Sodium release of Frama-Cﬂ together with the automatic theorem
provers Alt-Ergo (version 0.99.1ﬂ CVC(C4 (version 1.4) and Z3 (version 4.4.0@

Here are the options of Frama-C that we used and that influence the number of generated proof
obligations.

—wp
-wp-rte
-warn-signed-downcast
-warn-signed-overflow
-warn-unsigned-overflow
-wp-no-bits

-wp—model Typed+ref
-wp-par 1

-wp-timeout 20
-wp-prover z3
—-wp-prover cvcéd
-wp-prover alt-ergo

We list in the following tables the number of generated verification conditions (VC), as well as
the percentage of proven verification conditions. The tables show that all verification conditions
could be verified.

Please note that the number of proven verification conditions do not reflect on the quality/strength
of the individual provers. The reason for that is that we “pipe” each verification condition
sequentially through Qed, Z3, CVC4 and Alt-Ergo. If one prover succeeds, then the remaining
provers are not called.

8Seehttp://frama-c.com/install-sodium-20150201.html

°Seehttp://alt-ergo.lri.fr

OFor the use of CVC4 (see http://cvcd.cs.nyu.edu/web) and Z3 (see |http://research.
microsoft.com/en—us/um/redmond/projects/z3) we relied on version 0.86 of the Why3 platform
for deductive program verification (see http://why3.1lri.fr).
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6.1  Verification of bit stream and lower-level bit operations

Table [6.1| shows the result of formal verification for the functions from Chapters @ and [5] All

verification conditions could be automatically verified.

ves individual provers
component
all proven (%) | qed alt-ergo cvcd z3
bit stream 58 58 100 | 19 0 0 39
bit stream (inverse) | 58 58 100 | 33 2 1 22
lower-level bit ops | 126 126 100 | 55 0 1 70

Table 6.1. Verfication results for bit stream and lower-level bit operations

6.2 Verification of static ETCS packets

Tables [6.2] [6.3] [6.4] and [6.5] show the results of formal verification for static packets.

All static packets without optional values could be automatically verified. The formal specfication
and verification of static packets with optional values or dynamic packets could not be completely

executed in the course of the project and remains to be done as future work.

PacketID VCs Individual Provers
Al Proven (%) | Qed grléo cves 73
16 436 436 100 318 0 1 117
39 483 483 100 346 0 1 136
42 559 543 97 399 0 1 143
45 389 389 100 290 O 1 98
57 483 483 100 346 0 1 136
65 624 624 100 430 O 1 193
66 389 389 100 290 O 1 98
71 530 530 100 374 0 1 155
72 999 957 95 671 0 1 285
76 958 938 97 644 9 1 284
90 474 465 98 341 0 1 123

Table 6.2. Verfication results for static track to train packets part 1
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PacketID VCs Individual Provers
All Proven (%) Qed grl:;_o CvVC4 73
131 624 624 100 430 0 1 193
132 389 389 100 290 0 1 98
133 718 718 100 486 0 1 231
134 624 624 100 430 0 1 193
136 474 465 98 341 0 1 123
137 389 389 100 290 0 1 98
138 483 483 100 346 0 1 136
139 483 483 100 346 0 1 136
140 389 389 100 290 0 1 98
141 436 436 100 318 0 1 117
254 342 342 100 262 0 1 79

Table 6.3. Verfication results for static track to train packets part 2

PacketID VCs Individual Provers
Al Proven (%) | Qed gﬂ;o CVC4 73
0 926 910 98 | 621 0 0 289
1 973 948 97 | 649 6 2 291
4 342 342 100 262 0 1 79
9 342 342 100 262 0 1 79
44 389 38 100 |290 0 1 08

Table 6.4. Verfication results for static train to track packets

VCs Individual Provers
PacketID N
t_
All Proven (%) Qed Ergo CvCc4 73
255 239 239 100 192 0 1 46

Table 6.5. Verfication results for both-ways packets
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7.1

7.2

Verification of integration

Figure[I.2)on Page 2] outlines the scope of code verification within OpenETCS. Verification activ-
ities, however, also concern integration of the C code with the SCADE model (see Section [7.1))
and with the communication layers that underlies the bit stream abstractions (see Section[7.2).

Integration with SCADE model

The generated data packets from Chapter 3| are sent and received over the so-called bit stream
layer (see Chapter [d)). In order to exchange the packets with the OpenETCS application layer that
is modeled in SCADE (see Figure the so-called integer stream layer was defined. Due to the
relative late emergence of this layer in the OpenETCS project this layer could not be formally be
verified. Rather it was tested together with underlying communication layer (see Section[7.2).

Integration with the underlying communication layer

The ETCS packets and messages which are decoded represent the bit decoding and encoding
layer as applied inside the BTM and EURORADIO module as described inside{ﬂ

Concerning the ETCS air gap messages it represents the layer for bit encoding and decoding the
ETCS content

e coded_EUROBALISE_input_telegram
e coded_EURORADIO_output_msg and

e coded EURORADIO_input_msg

between the openETCS Kernel and the OpenETCS API (see Figure [7.)).

The scope of the ETCS data packets is aligned with the openETCS show case Amsterdam-Utrecht.
Thus not the complete set of packets can be decoded. The supported packets are listed inside
Section[3.11

The OpenETCS decoder/encoder is referenced as “additional code components developed by
other means” It is generated from the requirement document of Subset-026-6 and SUBSET-
026-7 to a XML model. This model was verified manually against the SUBSET-026. Although
not having a certified code generator the verification is artifacts were verified after generation.

'See SUBSET-026, Chapter 2, Figure 1.
12 See Chapter 3.5 of Deliverable 2.3.
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Figure 7.1. Overview on integration interfaces.
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8.1

8.2

Conclusion

The main results of this report are

e generation of specifications and contracts, i.e.,

—  generation of formal specifications from a formalization of ETCS packets
—  generation of C code from a formalization ETCS data packets

—  formal verification of a subset (static packets) of the generated code against the generated
specifications

e formal verification of underlying bit operations
e integration with the underlying communication layer

e integration with code generated from SCADE model

Lessons learned

The formal verification provided important feedback regarding the applicability of Frama-C
with respect to C code from the railway domain. The main technical challenge was to handle
the automatic verification of low-level bit operations with the Frama-C/WP plugin. This was
achieved by a properly defined layer of elementary bit operation.

Frama-C issues
While working with Frama-C in the course of the OpenETCS project, Fraunhofer FOKUS

identified several issues of Frama-C and reportecE] them together with feature requests to the
developers at CEA LIST. Table8.1|lists some of the issues reported by Fraunhofer FOKUS.

3Frama-C’s bug tracking system (BTS) can be accessed viahttps://bts.frama-c.com
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8.3

BTS identifier | Description Status
0001638 assigns clause appears unprovable acknowledged
0001685 Axiomatic is recompiled when using several pro- assigned

cesses
0001687 Frama-C GUI discards candidate Coq proof assigned
0001693 Generate footprint from reads clauses of logic decla- assigned
rations
0001694 Generate proof obligation for drivers when driver assigned
instantiate a logic acsl declaration
0001699 Develop strategies to efficiently run WP with differ- assigned
ent ATP and Coq
0001761 Check that all occurrences of *p in assigns are resolved
guarded by a \valid (p) inrequires
0001771 quality of PDF files resolved
0002041 unable to use lemma separated_region acknowledged
0002040 assumes clause and labels resolved
0002098 overloading of predicate fails resolved
0002100 readability of Coq(?) names acknowledged
0002161 redefinition of _ STDC_VERSION_ _ resolved

Table 8.1. Selection of Frama-C issues identified within the OpenETCS project

We wish to emphasize the importance of identifying, documenting, and fixing of problems
related to verification tools because these activities helps to document appropriate instructions or

constraints on the use of the tools [1, § 6.7.4.3].

Future work

With respect to ETCS and Frama-C, further development is necessary in order to

e improve the specification and verification of dynamic packets and

e Dbetter document verification techniques for bit operations in Frama-C
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