
op
en

E
TC

S
O

E
TC

S
/W

P
3/

D
3.

5.
4

A
pp

en
di

x:
Tr

ac
ks

id
e

ITEA2 Project
Call 6 11025
2012 – 2015

Work-Package 3: “Modeling"

D3.5.4 Appendix: Dynamic ETCS Track Model
Use Case: Amsterdam- Utrecht ETCS L2 Reference Line

Mairamou Haman Adji August 2015

This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing:

This page is intentionally left blank

OETCS/WP3/D3.5.4 Appendix: Trackside 1

Work-Package 3: “Modeling" OETCS/WP3/D3.5.4 Appendix:
Trackside

August 2015

D3.5.4 Appendix: Dynamic ETCS Track Model
Use Case: Amsterdam- Utrecht ETCS L2 Reference Line

Document approbation

Lead author: Technical assessor: Quality assessor: Project lead:

location / date location / date location / date location / date

signature signature signature signature

Jakob Gärtner Baseliyos Jacob Marc Behrens Klaus-Rüdiger Hase

(LEA Railergy) (DB Netz AG) (DLR) (DB Netz AG)

Mairamou Haman Adji

LEA Railergy
c/o LEA P&W sarl
BP14000
Yaoundé,
République du Cameroun

Track Model User’s Guide

Prepared for openETCS@ITEA2 Project

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 2

Abstract: openETCS provides a formalisation of a reference ETCS onboard unit, using model-
based software design based on the Scade language.
In order to complement this work with a dynamic simulation environment a ETCS track model
has been developed. In contrast to pure scenario- driven approach, this model is intended to
provide a simulation of dynamic behaviour of the track based on active interaction between
train and track. The model has been derived from actual engineering data and events that have
been collected by a train passing this reference track. This document provides an outline of the
simulation concept, its implementation and is intended to serve as a quick reference guide to
users and reviewers.
On purpose, it has been written in a semi- technical way in order to be understandable by a more
general audience. However, some basic understanding of ETCS is helpful for the reception of
this document.

Disclaimer: This work is licensed under the "openETCS Open License Terms" (oOLT) dual Licensing: European Union Public
Licence (EUPL v.1.1+) AND Creative Commons Attribution-ShareAlike 3.0 – (cc by-sa 3.0)

THE WORK IS PROVIDED UNDER openETCS OPEN LICENSE TERMS (oOLT) WHICH IS A DUAL LICENSE AGREEMENT IN-
CLUDING THE TERMS OF THE EUROPEAN UNION PUBLIC LICENSE (VERSION 1.1 OR ANY LATER VERSION) AND THE
TERMS OF THE CREATIVE COMMONS PUBLIC LICENSE ("CCPL"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR
OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS OLT LICENSE OR COPY-
RIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS
OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

http://creativecommons.org/licenses/by-sa/3.0/
http://joinup.ec.europa.eu/software/page/eupl/licence-eupl

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 3

Modification History

Version Section Modification / Description Author

1.0 all created document Mairamou Haman Adji

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 4

Table of Contents
Modification History.. 3

1 Proof of Concept based on User Stories.. 6

2 The Amsterdam- Utrecht Reference Track ... 8

2.1 Introduction ... 8

2.2 Approach .. 9

2.3 Engineering Data.. 9

2.4 Operational Rules .. 13

3 Simulation Concepts .. 14

3.1 The State of The Art in Railway (ETCS) simulation.. 14

3.2 Dynamic track simulation throughout the (open)ETCS lifecycle 15

3.3 The role of dynamic simulation in the formalisation of ERA ETCS Change Requests and
in improving interoperability.. 16

4 Formal model for trackside simulation .. 24

4.1 Simulation concept... 24

4.2 Fundamental modelling concept: The daisy chain ... 25

4.3 Where to find the information in the model .. 27

4.4 Track model (balises).. 28

4.5 Radio Message simulation ... 35

4.6 The radio message formal model .. 38

5 Implementation of additional user stories.. 40

5.1 Building your own tracks.. 40

6 Connecting with existing environments... 41

6.1 Subset-076 .. 41

6.2 Subset-094 .. 41

7 Closing remarks.. 41

References ... 41

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 5

Figures and Tables

Figures

Figure 1. Example for a "nominal" user story: Sequence Diagram for Use Case 7 7

Figure 2. Example for a "test case" user story: Description for Use Case 13... 8

Figure 3. Example Track Layout Plan .. 10

Figure 4. Variable definition for V_STATIC .. 13

Figure 5. Overview of Components in the ALSTOM EVC architecture, using TeamWork SA RT notation...... 15

Figure 6. Depiction of the openETCS Third Iteration Proof of Concept Environment 16

Figure 7. Reference test architecture for ERTMS/ETCS on-board equipment... 17

Figure 8. Dynamic simulation for improving interoperability .. 17

Figure 9. SCADE cycle- based execution model .. 22

Figure 10. Raspberry Pi2 running the track model ... 23

Figure 11. Simplified Simulation Concept... 24

Figure 12. Daisy Chained Balise Groups ... 26

Figure 13. Siemens Eurobalise.. 28

Figure 14. Triggering a Balise when the train is inside the defined distance bracket
(view from SCADE Suite Simulator) .. 29

Figure 15. Triggering a Balise in the Daisy Chain... 30

Figure 16. Engineering data for BG354 (view from SCADE model) .. 30

Figure 17. Interface and parameter reference for BG354 (view from SCADE model) 31

Figure 18. Interface and parameter reference for balises in BG354 (view from SCADE model) 31

Figure 19. Telegram data of BG354 (view from SCADE model)... 32

Figure 20. Sending packets from BG354 (view from SCADE model) .. 34

Figure 21. Balises in different local coordinate systems (depending on track sections) 34

Figure 22. Track Discontinuity modelling (view from SCADE model) .. 34

Figure 23. Daisy- chained Send Radio message operators (view from SCADE model) 39

Figure 24. Send Radio Message (view from SCADE model) .. 39

Figure 25. Merge message information into the message/ packets stream (view from SCADE model)......... 40

Figure 26. Composing packets for a L2/3 Movement Authority message (view from SCADE model) 40

Tables

Table 1. Some balise positions in original format ... 11

Table 2. Example packet data for Gradient Profile as found in the JRU log .. 12

Table 3. Example packet data for Speed Profile as found in the JRU log ... 13

Table 4. Cross reference table for the balise groups relevant for the Proof of Concept 21

Table 5. Engineering data for BG354 .. 30

Table 6. Packets sent from BG354 as found in the JRU log .. 33

Table 7. Cross reference table for the radio messages relevant for the Proof of Concept,
partial list covering the sheets Amstel and Bijlmer.. 38

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 6

1 Proof of Concept based on User Stories

One of the main objectives of the openETCS project is to prove the formalisation of the EVC by
validating it against a reference track. The project has selected the ETCS Level 2 track between
Utrecht and Amsterdam (The Netherlands) as the reference track of choice.
openETCS is using the concept of user stories to define meaningful use cases from the point of
view of a railway operator. DB Netz AG as the project leader has defined the following scenarios
in order to focus and drive the project’s priorities:

• Use case 1: Start of Mission and connection to the RBC (Issue #66)

• Use Case 2: Train is running after receiving a Movement Authority (MA); (Issue #67)

• Use Case 3: ETCS Brake intervention (revocation of MA or not allowed speed); (Issue #68)

• Use Case 4: Train is reading track information - Train is sending information to the track.
(Issue #69)

• Use Case 5: Awakeness of Train with Level NTC (Issue #244)

• Use Case 6: SoM in Level NTC and Mode SN (Issue #245)

• Use Case 7: Running in Level NTC and Mode SN (Issue #246)

• Use Case 8: Change Level NTC and SN to Level 2 and Mode FS (Issue #247)

• Use Case 9: Run in Level 2 and Mode FS after MA request (Issue #248)

• Use Case 10: Change Level 2 Mode FS to Level NTC Mode SN (Issue #249)

• Use Case 11: Run in Level NTC and Mode SN (Issue #250)

• Use Case 12: End of Mission in Level NTC and Mode SN (Issue #251)

• Use Case 13: Train stops before Signal Marker Board after revoked Movement Authority
(MA); (Issue #70)

• Use Case 14: Mode Change and communication with the RBC. (Issue #71)

• Use Case 15: Route is cancelled from the end of route signal. (Issue #72)

• Use Case 16: Behaviour of the OBU after a TRIP. (Issue #73)

(Non-exhaustive list: The authoritative definition of the User Stories can be found on
https://github.com/openETCS/modeling/issues
and can be identified by the issue number cited above, or by searching for the label "User Story")

The Use Cases can be roughly classified as follows:

1. Use cases that are directly derived from existing data taken from a test train passing the
Amsterdam- Utrecht ETCS L2 line

2. Use cases that are derived from test requirements for the Amsterdam- Utrecht and are based
on synthetic data, created on purpose.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 7

Figure 1. Example for a "nominal" user story: Sequence Diagram for Use Case 7

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 8

Figure 2. Example for a "test case" user story: Description for Use Case 13

Use case 7 (please see figure 1) is a typical use case that can be represented using the nominal
behaviour taken from data recorded during a train passage.

Other use cases appear to be more complex: to reproduce them, we have to create a specific
situation that may only be done at very high cost (by interrupting normal train operations for test
rides) or by creating a specific simulation scenario. An example for such a scenario is Use Case
13. (see figure 2)

We had to solve the following task:

1. Find a formal representation of the Amsterdam- Utrecht ETCS Level 2 line which allows
validation of the Use Cases with the openETCS EVC- model in the loop

2. Find an efficient way to model the test case scenarios

3. Propose a concept which allows dynamic simulation, meaning that we can actively drive a
train, with a simulation environment that acts and reacts dynamically, instead of just providing
playback of predefined scenarios.

2 The Amsterdam- Utrecht Reference Track

2.1 Introduction

The openETCS Proof Of Concept is based on the Amsterdam- Utrecht ETCS line. It is one of the
few ETCS lines that are already operational and where engineering and JRU data were available
to the consortium.
Some of the characteristics of the Amsterdam- Utrecht line [7].:

• Four tracks

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 9

• Very busy mixed traffic

• ETCS Level 2 with mixed signalling, including wayside optical signals and ATB train
protection for conventional traffic

• ERTMS 2.3.0 standard (Baseline 2)

For our Proof of Concept this means that, already in the "nominal scenarios", we see transitions
from the conventional ATB train protection to ETCS L2 full supervision, that we need a represen-
tation of the balises found on the track, and a simple RBC model in order to act as a counterpart
to the openETCS EVC model.

We had to decide to which level of fidelity we could model the track, and due to the focus of
openETCS on the EVC reference design we limited the scope to building the simulation to "what
the train can see".
A full RBC model, the full set of operational rules as well as the interlocking logic are hence out
of scope of this work.

2.2 Approach

As an input, we had access to a set of engineering data, track layout plans, and selected JRU
recordings from an ICE3 train of consortium member DB. Furthermore we could build on
some initial modelling trials that were conducted by the consortium and on a comprehensive
formalisation of the ETCS language, to be found at
https://github.com/openETCS/modeling/tree/master/model/Scade/System/ObuFunctions
.../ETCS_Messaging/TrackMessages
In addition we had access to a description of the operational rules for the Amsterdam- Utrecht
line. The first step to creating a dynamic simulation was the analysis of the available information,
in order to have s old basis for our reverse- engineering effort.

2.3 Engineering Data

2.3.1 Track Layout Plans

The definitive source of information for the balise positions were the track layout plans that do
not only allow for a direct reading of the engineering positions of the balises, but also for an
understanding of the actual situation on the track, the related signals, the points and stations etc.
An example is given in figure 3.

2.3.2 Balise Position Data

Table 1 gives an example of engineering data as provided for positions and orientation of balises
on the reference track. The meaning of the columns is:

• NID_C: Country identifier of the track. The Amsterdam- Utrecht line has a NID_C = 426
(Subset-026 7.5.1.86)[3]

• NID_BG: Balise Group Identifier. (Subset-026 7.5.1.85)[3]

• Lint: Track section (not used for our model)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 10

Figure 3. Example Track Layout Plan

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 11

NID_C NID_BG Lint km Or BG Or Line Line no

426 352 Asd-Asa 105017 Utrecht Z spoor UB

426 353 Asd-Zvg 1565 Utrecht Z spoor UB

426 354 Asd-Zvg 3185 Utrecht Z spoor UB

426 355 Asd-Zvg 4040 Utrecht Z spoor UB

426 356 Asd-Zvg 4197 Amsterdam Z spoor UB

426 357 Asd-Zvg 4252 Amsterdam Z spoor 508

426 358 Asd-Zvg 4428 Amsterdam Z spoor 508

426 359 Asd-Zvg 4598 Utrecht Z spoor 508

426 360 Asd-Zvg 4650 Utrecht Z spoor 508

426 361 Asd-Zvg 5083 Amsterdam Z spoor 598

426 362 Asd-Zvg 5137 Amsterdam Z spoor 598

426 363 Asd-Zvg 5372 Utrecht Z spoor 598

426 364 Asd-Zvg 5425 Utrecht Z spoor 598

426 365 Asd-Zvg 5598 Amsterdam Z spoor 608

426 366 Asd-Zvg 5649 Amsterdam Z spoor 608

426 367 Asd-Zvg 5805 Amsterdam Z spoor 608

426 368 Asd-Zvg 5945 Utrecht Z spoor 608

426 369 Asd-Zvg 6000 Utrecht Z spoor 608

426 370 Asd-Zvg 6940 Amsterdam Z spoor UB1

426 371 Asd-Zvg 6990 Utrecht Z spoor UB1

426 372 Asd-Zvg 7424 Amsterdam Z spoor UB2

426 373 Asd-Zvg 7625 Amsterdam Z spoor UB2

426 374 Asd-Zvg 7857 Utrecht Z spoor UB2

426 375 Asd-Zvg 8325 Amsterdam Z spoor UB3

426 376 Asd-Zvg 8774 Amsterdam Z spoor UB3

426 377 Asd-Zvg 9144 Amsterdam Z spoor UB3

Table 1. Some balise positions in original format

• km: Engineering location of the balise group. Please note that this position is the trackside
view of the balise group. The train is not aware of this absolute location reference.

• Or BG: Orientation of the balise group. The orientation is given with reference to the driving
direction towards Amsterdam and Utrecht, respectively. A train driving in direction of Utrecht
would see a balise group with orientation "Utrecht" as nominal, "Amsterdam" would be seen
as "reverse".

• Or Line: Nominal direction of the track. "Z" means that the main direction of the track is
southbound, which means towards Utrecht.

• Line No: Section number. Not used for our simulation.

The full table is available in Appendix 1.

2.3.3 Message and Packet Data

Message and Packet Data were not available as a set of engineering data. The project could
however evaluate a set of JRU data from actual train passages on the Amsterdam- Utrecht corridor.
One such data set was selected and used as a reference input for our balise and RBC message
simulation. The data were available in the form of annotated .csv files, which have been published

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 12

NID_PACKET(8bits) = Gradient Profile(21)
Q_DIR(2bits) = Reverse(0)
L_PACKET(13bits) = 222bits(222)
Q_SCALE(2bits) = 1m(1)
D_GRADIENT(15bits) = 7890.0m(7890)
Q_GDIR(1bits) = Uphill(1)
G_A(8bits) = 2‰(2)
N_ITER(5bits) = 7(7)
1: D_GRADIENT[1](15bits) = 220.0m(220)
Q_GDIR[1](1bits) = Uphill(1)
G_A[1](8bits) = 8‰(8)
2: D_GRADIENT[2](15bits) = 420.0m(420)
Q_GDIR[2](1bits) = Uphill(1)
G_A[2](8bits) = 4‰(4)
3: D_GRADIENT[3](15bits) = 140.0m(140)
Q_GDIR[3](1bits) = Downhill(0)
G_A[3](8bits) = 4‰(4)
4: D_GRADIENT[4](15bits) = 120.0m(120)
Q_GDIR[4](1bits) = Downhill(0)
G_A[4](8bits) = 12‰(12)
5: D_GRADIENT[5](15bits) = 320.0m(320)
Q_GDIR[5](1bits) = Downhill(0)
G_A[5](8bits) = 5‰(5)
6: D_GRADIENT[6](15bits) = 110.0m(110)
Q_GDIR[6](1bits) = Uphill(1)
G_A[6](8bits) = 2‰(2)
7: D_GRADIENT[7](15bits) = 178.0m(178)
Q_GDIR[7](1bits) = Uphill(1)
G_A[7](8bits) = End of gradient profile(255)"

Table 2. Example packet data for Gradient Profile as found in the JRU log

on the Github repository as part of the User Story documentation. As an example, we present
in Table 2 an instance of a packet 21 (Gradient Profile) which was sent as part of a Level2/3
Movement Authority Message.

A full description of the packet definition can be found in Subset-026 (7.4.2.6) [3]. The actual
semantics of the packet are not interesting for us. Our only task is to interpret them in the right
way so that they will be correctly decoded once they reach the EVC model.
In order to avoid transcription errors, we want to use the data from the JRU trace "as raw as
possible". For that purpose, a detailed analysis of the contents of this log file is required: The file
is a result of a script interpreting the raw data: bits are converted to integers, and some comments
are added. If we take the first line of the packet:

NID_PACKET(8bits) = Gradient Profile(21)

Here, we can easily understand that in the original packet (bitstream), the value used 8 bits, and
has been interpreted as decimal number (21). If we take another line, the interpretation is equally
straightforward:

D_GRADIENT(15bits) = 7890.0m(7890)

We could easily say that there is a 1:1 translation of the real value (7890.0m) and the representation
found in the JRU data (7890). However, this is only due to the following line:

Q_SCALE(2bits) = 1m(1)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 13

which just means that the values for distance have to be scale with a factor of 1m.

If we look at packet 27 (international static speed profile), we can see another interesting aspect:

NID_PACKET(8bits) = International Static Speed Profile(27)
Q_DIR(2bits) = Reverse(0)
L_PACKET(13bits) = 86bits(86)
Q_SCALE(2bits) = 1m(1)
D_STATIC(15bits) = 7890.0m(7890)
V_STATIC(7bits) = 160km/h(32)
Q_FRONT(1bits) = Train length delay on validity end point(0)
N_ITER(5bits) = 0(0)
N_ITER(5bits) = 1(1)
1: D_STATIC[1](15bits) = 1508.0m(1508)
V_STATIC[1](7bits) = End of SSP(127)
Q_FRONT[1](1bits) = Train length delay on validity end point(0)
N_ITER[1](5bits) = 0(0)"

Table 3. Example packet data for Speed Profile as found in the JRU log

Looking at the line:

V_STATIC(7bits) = 160km/h(32)

we can see that the representation in the JRU log (32) and its interpretation (160km/h) do not
have the same scale. [3] (7.5.1.171) gives the following information:

Figure 4. Variable definition for V_STATIC

This means that V_STATIC is using a scaling factor of 5 to encode the speed.

We conclude, that in general, we will provide a track simulation model (balises positions,
messages and packets) containing the integer representation as found in the JRU log. We will
rely on the TrackMessages library to correctly translate the values into the proper scaling for use
onboard the EVC. Initially this decision was only taken in order to reduce room for interpretation/

transcription errors when building the track simulation model, however, in context of WP5
(Demonstrator) this decision has proven to be very valuable, as it created a requirement for
development of a full formalisation of Subset-026, Chapters 6, 7, and 8.

2.4 Operational Rules

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 14

As a reference, we had access to the operational rules for the Amsterdam- Utrecht corridor [9].
Due to the limited scope of the project, we did not attempt to create simulation models based on
this document, we rather used it a means to validate our model.
Future work, possibly in the following months of this project, may include some basic research
on formalisation of such operational rules.

3 Simulation Concepts

3.1 The State of The Art in Railway (ETCS) simulation

The ETCS requirements provides extensive specification on test formats and a test environment,
for example in Subset-076 and Subset-094. Current ETCS Simulation Environments allow to:

• Use a set of offline tools to prepare track and scenario data

• Run a train through the hardcoded scenarios, interacting with the (real or simulated) EVC
and accepting input from a driver

• Use a simulated EVC

• Use a simulated DMI (Driver Machine Interface)

• Emit messages, packets and telegrams (priorly prepared) through a trackside simulator

openETCS is aiming in providing an open, formal executable specification of the EVC kernel,
in order to serve as a functional reference and as a basis for working on novel approaches for
interoperability.

We therefore require a simulation concept that supports the development, validation and main-
tenance of this openETCS kernel, and complements it also after the completion of this project.
Some objectives we identified were:

• Dynamic Behaviour: The trackside simulation should be able to actively act and react. In
other words, instead of reacting to predefined scenarios, all input parameters should be
independent of each other.

• The approach should allow blackbox as well as whitebox simulation.

• The simulation model should allow certification as a verification tool (in the context of
EN50128)

• The system should be hardware- independent

• The system should at least cover all functionality of the current state of the art

• The approach should allow deployment through all phases of EVC and track development,
testing and validation, including the development of the openETCS kernel itself.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 15

3.2 Dynamic track simulation throughout the (open)ETCS lifecycle

Our concept is aiming at covering all aspects of verification and validation throughout the
openETCS lifecycle, and in the lifecycle of ETCS onboard and trackside installations in general.
Not all points are relevant for openETCS, but rather lay the grounds for ongoing work of the
openETCS foundation and for industrial exploitation.

3.2.1 User Validation

The term User Validation refers to the practice to use simplified simulation models during the
day-to-day analysis and development work.
openETCS is using SCADE Suite as standard development tool.
During system analysis and development cycle, each SCADE user can iteratively cycle through
analysis / design/ simulation in order to understand the requirements, model them, and function-
ally validate them. This approach strongly supports the distributed and agile openETCS process.
Where appropriate, users can integrate the track simulation model, fully, or in part, in their
development cycle.

3.2.2 openETCS system integration

openETCS system integration can be grouped into two main issues:

1. Integration of the various parts of the openETCS EVC kernel (Figure 5 provides an example
of an EVC functional breakdown)

Figure 5. Overview of Components in the ALSTOM EVC architecture, using TeamWork SA RT notation

2. Integration of the different modules of the Proof of Concept. (Figure 6 shows the user
interface of the environment used to integrate the different elements of the Proof of Concept)
During the 3rd iteration effort of openETCS, a model- level integration environment was
created. It includes, on model level, the following elements:

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 16

(a) The openETCS EVC kernel formal model

(b) The openETCS DMI formal model

(c) A simple environment toolbox, containing a train model, odometry model, and a
telegram/ packet generator

(d) A boilerplate to interact with the system (driver inputs, graphical outputs)

Figure 6. Depiction of the openETCS Third Iteration Proof of Concept Environment

For the full Proof of Concept, the complete track model is being integrated into the integration
environment, allowing to develop, validate and demonstrate the Use Cases.

3.3 The role of dynamic simulation in the formalisation of ERA ETCS Change Re-
quests and in improving interoperability

The complexity of the ETCS software requirements specification and it’s history of incremental
changes make for its reputation to lacking stringency, consistency and a clear, unified concept.
The original objective of a unique set of requirements that, if only correctly implemented, would
guarantee interoperability, looks quite utopian. At best, there is a common syntax, but there is no
common grammar, as far as the interactions between trackside and onboard are concerned.
openETCS’s original concept has addressed the main problem of ETCS by building an openly
available formal model, which is a possible basis for a formalisation of the ERA ETCS change
request process.

Subset-94 [6], see Fig. 7 describes functional requirements for an on-board Reference Test
Facility. In section 5.1.1.1 it states "The test architecture described in this document is focused on
performing the tests defined in Subset-076-6-3 (...), and hence, the compliance with Subset-026"
In consequence this would mean that if any ETCS Onboard Unit would pass the tests as described
in Subset-076 [5] on an on-board Reference Test Facility, it should work on any validated ETCS
infrastructure, which is not really the case.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 17

Figure 7. Reference test architecture for ERTMS/ETCS on-board equipment

We believe that providing a formal model of the onboard functionality is only half of the solution:
It needs to be complemented by a formal model of the trackside functionality. The validation of
the onboard against Subset-076 and the other relevant standards referenced in the CCS TSI is not
sufficient, we need to harmonise the onboard and the track before we start the actual (real- world)
track implementation. Only that way we can reduce the effort and make progress towards the
goal of "Zero Onsite Testing".

Technical Speci�cations for Interoperability -- Command, Control

and Signaling (TSI CCS)

openETCS

Track

Model

OpenETCS

OBU

kernel
Dynamic Validation

Validation Validation

Figure 8. Dynamic simulation for improving interoperability

The validation against the relevant standards referenced in the Document "Applicable standards
in HS Control-Command and Signalling TSI (2006/860/EC)" [1] is complemented by extensive
validation using the co-simulation of the openETCS formal, executable specifications for the
trackside and the onboard functionalities.

As a first step, a validation process for the formal track model must be established.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 18

3.3.1 Validation of the openETCS Dynamic Simulation Model against the existing,
scenario- based test cases for the Reference Track

During the analysis and design phase of openETCS, the Track Model is being validated by
WP4. We have taken care that the basic interface concepts and data structures at the component
boundaries are compatible with the standard approaches as described in Subset-076 [5] and
Subset-094 [6], however such integration is beyond the scope of this work.
WP4 is validating the Track Model against the script- driven simulation scenarios used by the
team members of work package 4. In addition, peer review is being provided by WP4.
The objective of this exercise is to ensure equal behaviour of the dynamic simulation model as
compared to the conventional approach, as far as appropriate.

3.3.2 Checking the track model’s consistency by comparing engineering data and
packet data

During analysis of the initial Track Model, some discrepancies between the balise positions as
defined in the engineering data and the related data concerning linking distance as recorded in
the JRU have been discovered. We created a cross reference file (see Table 4) using a spreadsheet
tool.

The columns must be read as follows:

• NID_C: Country identifier of the track. The Amsterdam- Utrecht line has a NID_C = 426
(Subset-026 7.5.1.86)[3]

• NID_BG: Balise Group Identifier. (Subset-026 7.5.1.85)[3]

• Corrected pos.: Engineering position after correction based on linking data (in Meters)

• Difference: Difference (in Meters) between the engineering position and the corrected position
(positive numbers move the balise group down the track, e.g. towards Utrecht)

• Or: Orientation of the Balise Group as defined in the engineering data

• Or US: Orientation of the Balise Group from the train’s perspective as it runs from Amsterdam
towards Utrecht, as defined in the User Stories (=US)

• Packets: Packets emitted from a particular Balise Group

NID_C NID_BG Corrected pos. Difference Or Or US Packets

426 352 Utrecht nominal P45

426 353 Utrecht nominal P42

426 354 3185 0 Utrecht nominal P42,P46,P46,P3

426 351 3997 2 Utrecht nominal none

426 355 4051 11 Utrecht nominal P42,P46

426 356 4205 8 Amsterdam reverse P41

426 357 4255 3 Amsterdam reverse none

426 358 4430 2 Amsterdam reverse none

426 359 4599 1 Utrecht nominal none

Continued next page. . .

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 19

NID_C NID_BG Corrected pos. Difference Or Or US Packets

426 360 4654 4 Utrecht nominal P137

426 361 5082 -1 Amsterdam reverse none

426 362 5136 -1 Amsterdam reverse none

426 363 5374 2 Utrecht nominal none

426 364 5428 3 Utrecht nominal none

426 365 5600 2 Amsterdam reverse none

426 366 5655 6 Amsterdam reverse none

426 367 5807 2 Amsterdam reverse none

426 368 5948 3 Utrecht nominal none

426 369 6001 1 Utrecht nominal P137

426 341 6472 2 Amsterdam reverse none

426 370 6940 0 Amsterdam reverse none

426 371 6993 3 Utrecht nominal none

426 372 7426 2 Amsterdam reverse none

426 373 7626 1 Amsterdam reverse none

426 374 7858 1 Utrecht nominal none

426 375 8326 1 Amsterdam reverse none

426 376 8775 1 Amsterdam reverse none

426 377 9146 2 Amsterdam reverse none

426 378 9561 3 Utrecht nominal none

426 379 9615 3 Utrecht nominal none

426 380 9842 1 Amsterdam reverse none

426 381 9896 3 Amsterdam reverse none

426 382 10096 3 Amsterdam reverse none

426 383 10596 4 Amsterdam reverse none

426 384 11026 4 Utrecht nominal none

426 385 11091 7 Utrecht nominal none

426 386 11280 5 Amsterdam reverse none

426 387 11334 5 Amsterdam reverse none

426 388 11834 7 Amsterdam reverse none

426 389 12582 12 Utrecht nominal none

426 390 12689 11 Amsterdam reverse none

426 391 13190 12 Amsterdam reverse none

426 392 14064 7 Utrecht nominal none

426 393 14172 6 Amsterdam reverse none

426 394 14879 2 Amsterdam reverse none

426 395 15575 -2 Utrecht nominal none

426 396 15684 -2 Amsterdam reverse none

Continued next page. . .

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 20

NID_C NID_BG Corrected pos. Difference Or Or US Packets

426 397 16376 -3 Utrecht nominal none

426 398 17075 -4 Utrecht nominal none

426 399 17202 -9 Amsterdam reverse none

426 400 17820 -4 Utrecht nominal none

426 401 18432 -4 Utrecht nominal none

426 402 18737 -1 Amsterdam reverse none

426 403 19327 0 Utrecht nominal none

426 404 19891 2 Utrecht nominal none

426 405 20230 3 Amsterdam reverse none

426 406 20749 4 Utrecht nominal none

426 407 21198 6 Utrecht nominal none

426 408 21594 6 Amsterdam reverse none

426 409 21669 6 Utrecht nominal none

426 410 21723 6 Utrecht nominal none

426 476 21813 7 Utrecht nominal none

426 411 22258 6 Amsterdam reverse none

426 412 22313 7 Amsterdam reverse none

426 413 22494 9 Utrecht nominal none

426 414 22681 12 Utrecht nominal none

426 415 22734 11 Utrecht nominal none

426 416 23032 13 Amsterdam reverse none

426 417 23086 15 Amsterdam reverse none

426 418 23146 14 Utrecht nominal none

426 419 23957 22 Amsterdam reverse none

426 420 24505 30 Utrecht nominal none

426 421 25291 36 Amsterdam reverse none

426 422 25934 34 Utrecht nominal none

426 423 26453 33 Amsterdam reverse none

426 424 27245 35 Utrecht nominal none

426 425 27311 33 Utrecht nominal none

426 426 27558 33 Amsterdam reverse none

426 427 27612 34 Amsterdam reverse none

426 428 27783 35 Utrecht nominal none

426 429 28121 35 Amsterdam reverse none

426 477 28460 36 Utrecht nominal none

426 430 28760 33 Utrecht nominal none

426 431 28814 35 Utrecht nominal none

426 432 29289 34 Amsterdam reverse none

Continued next page. . .

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 21

NID_C NID_BG Corrected pos. Difference Or Or US Packets

426 433 29343 32 Amsterdam reverse none

426 434 29412 34 Utrecht nominal none

426 435 29466 32 Utrecht nominal none

426 436 29691 30 Amsterdam reverse none

426 437 29757 31 Amsterdam reverse none

426 438 30565 31 Utrecht nominal none

426 439 30794 31 Amsterdam reverse none

426 440 31502 32 Utrecht nominal none

426 441 32165 31 Amsterdam reverse none

426 442 32327 32 Utrecht nominal none

426 443 32381 31 Utrecht nominal none

426 444 32867 32 Amsterdam reverse none

426 445 32921 34 Amsterdam reverse none
Table 4. Cross reference table for the balise groups relevant for the Proof of Concept

We assumed the JRU data to be more accurate than the original engineering data, as the
Amsterdam- Utrecht track is already operational and the packet data must therefore be con-
sidered as definitive.

Note: As the Balise Groups with NID_BG 352 and 353 are not linked, no correction data are
applicable.

3.3.3 Validation of the openETCS EVC kernel against the reference track

Once the reference track model is considered to correctly reflect the infrastructure and events
as recorded for the "real" reference track, it can be used to validate the functionality of the
openETCS kernel against the reference track, as depicted in Figure 8 above.
Once this achieved, we can consider the Reference Track Model and the Reference ETCS kernel
to be interoperable, at least to the extent that the User Stories cover the actual operational situation
on the track.
Extending this approach to full CCS TSI coverage would assure that both the Track and the EVC
models are TSI compliant, and they are interoperable as well.

Within the openETCS effort, we will limit our efforts to demonstrating functional interoper-
ability between the reference track and onboard.

3.3.4 Validation of tracks and OBUs against the openETCS reference EVC

openETCS has claimed as on if its main objectives to create a Reference ETCS Kernel, against
which future onboard system may be validated.
We intend to extend this concept to validating new Dynamic Track Models against the openETCS
kernel as well, with the ultimate objective to have a library of validated tracks against which
future Onboard Unit implementations can be tested.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 22

The extension of the validation concept beyond the current reference track model for the
Amsterdam- Utrecht corridor is beyond the scope of the openETCS effort.

3.3.5 Verification and Validation in an EN50128 SIL4 context

openETCS has chosen the SCADE1 Suite from Esterel Technologies as software development
tool. The rationale behind this decision was to enable a future development of a CENELEC EN
50128 SIL42 compliant ETCS reference kernel.
We decided to use the same development environment for the Track Model. This will en-
able us to certify the Track Model (and the process to create such models) in EN50128 context,
meaning that it can be used as basis for a trusted and certified verification and validation tool suite.

Process definition and certification are beyond the scope of openETCS. We will concentrate on
demonstrating functional aspects.

3.3.6 Transferring the concept to WP5 (Demonstrator)

As we can generate C- code from the Track Model, it is also possible to embed the Track Model
into external simulation and testing environments. As a first trial, we have generated code for
the model and embedded it onto a Raspberry Pi2 hardware, which can be coupled to WP5
demonstrator hardware via Ethernet. (See figure 10)
Of course, the generated code can also easily be integrated on any other hardware platform.
Thanks to the cycle- based execution model of SCADE, this is very straightforward.

Figure 9. SCADE cycle- based execution model

The cyclic function contains the complete Track Model.

1SCADE = Safety Critical Application Development Environment
2European Committee for Electrotechnical Standardization standard for Safety Critical Software Development in

Railways, Safety Integrity Level 4

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 23

Figure 10. Raspberry Pi2 running the track model

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 24

4 Formal model for trackside simulation

4.1 Simulation concept

The simulation of the track can be seen as an integral part of a simulation and validation facility.
While, at the moment, the openETCS demonstration environment is not designed to be Subset-
094 compliant, it’s basic concept is similar and extension to a full onboard- unit test facility is
possible in the future.

Figure 11. Simplified Simulation Concept

4.1.1 Scope of the model

The scope of the model is defined by the User Stories. A full balise and RBC model exists for
the southbound track of the western pair of tracks on the Amsterdam- Utrecht corridor, between
the stations Amsterdam Amstel and Utrecht CS.

4.1.2 Overview

The Track Model consists of two main parts:

• The balise model:

– The balise model receives a single input from the train model, which provides informa-
tion on the nominal train position.

– The balise model sends messages and packets to the EVC Model when the train passes
a position where a balise is located

• The radio message model:

– The radio message model gets a command from the RBC model, called a "trigger"
which serves as an identifier to release a specific message with its packets

– The radio message model sends messages and packets to the EVC Model when the RBC
model commands.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 25

This functional breakdown assures that the RBC logic and the RBC messages are only loosely
coupled.

• Changes to operational rules (under which circumstances does the RBC send a specific
message?) is under the sole responsibility of the RBC model.

• Changes to packet contents are under the sole responsibility of the Track Model (radio
message model)

4.1.3 RBC model

While the RBC3 model is outside the scope of this work, it is essential for its functioning. The
RBC model

• Receives Train to Track Messages from the EVC Model

• Processes the messages in line with preset rules and procedures (our RBC model is very
much simplified as we do not attempt to simulate interlocking behaviour)

• Dynamically generates messages as required

• Dynamically triggers sending of messages from the radio message model as required

From point of view of the radio messages model, the only "interesting" information from the
RBC model is the trigger which corresponds to preset parameters in the radio message model in
order to send a message and its packets.

4.2 Fundamental modelling concept: The daisy chain

The basic design pattern of the track model (balise as well as radio message models) is the daisy
chain. The idea is to have reusable, similar components with an extremely simple interface, from
which we can construct a track model by simple concatenation. Figure 12 provides a simple
example. The model describes a track section (as seen on the track layout sheet 7 Bijlmer-
Abcoude) which contains 3 balise groups.
We can describe this design pattern as follows:

• The model consists of several SCADE operators that follow an identical pattern. Each
operator models a Balise Group.

• The first operator receives its inputs from the calling operator (which in this case represents a
section of the reference track)

• The following operator receives its inputs from the first operator (for message/ packet data)
and from the calling operator (for the train position)

• Operators can be daisy chained infinitely

• The last operator in the chain provides its output to the calling operator

• If any of the operators sends a message and or/ packets, they pass through all the subsequent
operators, so that at the output of the last member of the chain the desired packets and
messages are sent.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 26

Figure 12. Daisy Chained Balise Groups

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 27

As we will see in detail, we have used the daisy chain pattern in order to provided a structured,
hierarchical model. There are several layers of daisy chains, which can be concatenated:

1. Tracks

2. Sections (Sheets)

3. Balise Groups

Tracks, Sections and Balise Groups share the same semantics and interfaces and can be concate-
nated between each other.
It is however recommended to maintain the hierarchical structure as in the reference track model
when constructing new tracks. If we go one hierarchy level down, there is a daisy chain of balises
inside each balise group model. This pattern is more rigid, and will be described in the relevant
section where we will discuss design templates in more detail.
Inside each balise, there are again daisy- chained operators to build messages and packets. Again,
these will be discussed in more detail in the design templates chapter.

Equally, the radio message model is built using the same design principles.

4.3 Where to find the information in the model

The model is organised in SCADE packages. Each package contains specific elements or infor-
mation.

The main elements:

• The Amsterdam Utrecht Reference Line: AmsterdamUtrechtL2
The track model is then hierarchically structured:

– Main balise model: Amsterdam_Utrecht_Lijn1_balises
The balise model is grouped according to the Track Topology Sheets
(SheetXX_Name_Balises), which in turn contain the models for the balise groups,
balises and for sending the packets.

– Main radio message model: Amsterdam_Utrecht_Lijn1_RBC
The radio message model is grouped according to the Track Topology Sheets
(SheetXX_Name_RBC), which in turn contain the models for sending the messages
and packets.

• The balise data for the Amsterdam- Utrecht Reference Line (NID_C=426): Balises426.
The corrected balise positions are visible in the engineering data, as we have expressed them
using SCADE constant expressions in the format OriginalPosition + Correction

• The packet and message data for the Amsterdam- Utrecht Reference Line: Packets426 and
Messages_426, respectively.

• A packaging for the User Stories (with the original June 2015 milestone): US_Integration_June.

There are some additional packages (that a normal user of the track model can ignore):
3RBC = Radio Block Center

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 28

• FirstTest: The first, short test track that was used to validate the concept

• AmsterdamUtrechtL1: A first version of the track model, containing Linking information
sent from balise groups (That’s why we called it "L1", for ETCS Level 1)

• AmsterdamUtrechtL2_original: A version of the test track with balise positions (defined
in Balises426_original not aligned with the linking information

• Internal_Tests: Some test routines that were used for user validation of the track model and
the underlying libraries (such as TrackMessages)

• Basics, Infra426: internal definitions

4.4 Track model (balises)

Figure 13. Siemens Eurobalise

The track model provides the EVC kernel with a view of the balise infrastructure. The main
functions of this model are:

• When the train passes a balise group, it receives the telegrams of the balises, in the right
sequence. The information is complete enough for the EVC to derive the BG’s orientation
and to position it using odometer data and, if applicable, linking information.

• When the train passes a balise, it receives the packets contained therein, if applicable.

The main idea of the model is that it should dynamically react to a passing train. Instead of
hard- wired scenarios, the simulated train can move forward, backwards, come to standstill and
change speed, without any impact on the representation of the track in the simulation. The only
determining factor for receiving balise information is whether or not the front end of the train is
"close enough" to a balise in order to "see it".

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 29

Figure 14. Triggering a Balise when the train is inside the defined distance bracket
(view from SCADE Suite Simulator)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 30

4.4.1 Concept

A real- world balise transmits its telegrams when a train passes. In our simulation, we try to
model this as close as possible: As soon as a balise "sees" that a train is passing over it, it actively
sends the information (telegram header and packets) through the daisy chain. At the end of the
model, the resulting telegram and packets are transmitted to the simulated EVC.

Figure 15. Triggering a Balise in the Daisy Chain

On model level we use the SCADE function InfraLib::Balise_localisation (see Figure 14), which
checks whether the Balise is within a predefined distance bracket from the nominal train position.

Note that this function takes into account the variable N_PIG, which determines the position of a
given balise ("I am the 1st") inside a balise group in order to determine the balise position.

4.4.2 The Balise Group Model

We will not explain the models in full, but limit the discussion to the parts of the model that are
track and data- specific.

As the Amsterdam- Utrecht track is am ETCS Version 2.3.0 Level 2 track, we only see balise
groups with 2 balises per group. We present BG354. The relevant (corrected) engineering data
are as follows:

NID_C NID_BG Lint km Or BG Or Line Line no

426 354 Asd-Zvg 3185 Utrecht Z spoor UB

Table 5. Engineering data for BG354

In the SCADE model, these data are defined as a constant expression:

Figure 16. Engineering data for BG354 (view from SCADE model)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 31

Figure 17. Interface and parameter reference for BG354 (view from SCADE model)

Figure 17 shows an external view of the operator implementing BG354.
The interface is defined as follows:

• input BG_message_in: data from daisy- chained BGs before

• input TrainPos: Train Position from simulation environment

• parameter 4 Engineering_Data: static definition of engineering data (from Figure 16)

• output BG_message_out: data to daisy- chained BGs after

Looking inside the model (see Fig. 18), we will find two balises: Balise_354_0 and Balise
Balise_354_1. Again, the daisy- chain pattern has been used in order to allow for a flexible
design pattern (in the chapter "Explaining the templates", we will see how to design BGs with a
different balise count between 1 and 8).
The most important about this design pattern is that the ordering of the balises in a group is
significant. If balise Balise_354_0 is the first in the chain and Balise_354_1 the second, then the
passing train will see the BG as having nominal orientation. If the order is inverted, then the train
will consider the BG to be oriented as reverse.

Position indicators (N_PIG)

Telegram header

data

Figure 18. Interface and parameter reference for balises in BG354 (view from SCADE model)

The position indicators are a fixed part of the design pattern. They must not be altered, and their
order and position is fixed. The telegram header data are used to generate the telegram headers
sent to the EVC in case a train "passes" the balise, and also to calculate the balise position with
reference to the engineering data. This means that the balise with the parameter N_PIG=0 will
release its telegram when the train passes the nominal position of the BG, while for balises with

4defined as "Hidden Input" in SCADE

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 32

a different N_PIG an offset will be used. The offset is also correctly calculated for reverse BGs.
The orientation of the BG is determined by the N_PIG information in the telegram header data.
If N_PIG of the balise that is connected to the position indicator 0 = 0, then the BG is considered
to be in nominal orientation. (of course, a reversing train will encounter it as reverse).

Figure 19. Telegram data of BG354 (view from SCADE model)

Since the parameter n_pig in the constant expression BG354_header_B0 is connected to the
balise model with the position indicator 0, it is considered to be the 1st balise of a group in
nominal orientation.

4.4.3 Sending balise telegrams and packets

Again, the daisy- chain design pattern is being used. While the telegram headers are sent by
using internal logic in the balise model itself, a more elaborated design schema is used to send
the packets that may be contained in a balise.

Comparing the packet data as found in the JRU log, we can see that the ordering of the send-
packet operators in the balise is similar. This means that also the telegram will contain the packets
in the same order as found in the JRU data.

The packet- specific send operators can be freely concatenated. They assure that all packets are
merged into a message in a correct way. (For a deeper discussion of the underlying libraries,
check the projects BaliseLib.etp and TrackMessages.etp that are part of the openETCS effort.)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 33

NID_PACKET(8bits) = Session Management(42)
Q_DIR(2bits) = Nominal(1)
L_PACKET(13bits) = 113bits(113)
Q_RBC(1bits) = Establish communication session(1)
NID_C(10bits) = 426
NID_RBC(14bits) = 1(1)
NID_RADIO = Anonymous(lenght is more than 32bits or variable)
Q_SLEEPSESSION(1bits) = Ignore session management information(0)"

NID_PACKET(8bits) = Conditional Level Transition Order(46)
Q_DIR(2bits) = Nominal(1)
L_PACKET(13bits) = 42bits(42)
M_LEVELTR(3bits) = Level STM(1)
NID_STM(8bits) = ATB
N_ITER(5bits) = 1(1)
1: M_LEVELTR[1](3bits) = Level 2(3)"

NID_PACKET(8bits) = Conditional Level Transition Order(46)
Q_DIR(2bits) = Reverse(0)
L_PACKET(13bits) = 39bits(39)
M_LEVELTR(3bits) = Level STM(1)
NID_STM(8bits) = ATB
N_ITER(5bits) = 0(0)"

NID_PACKET(8bits) = National Values(3)
Q_DIR(2bits) = Nominal(1)
L_PACKET(13bits) = 186bits(186)
Q_SCALE(2bits) = 1m(1)
D_VALIDNV(15bits) = 0.0m(0)
N_ITER(5bits) = 1(1)
1: NID_C[1](10bits) = 426
V_NVSHUNT(7bits) = 40km/h(8)
V_NVSTFF(7bits) = 40km/h(8)
V_NVONSIGHT(7bits) = 40km/h(8)
V_NVUNFIT(7bits) = 10km/h(2)
V_NVREL(7bits) = 15km/h(3)
D_NVROLL(15bits) = 5.0m(5)
Q_NVSRBKTRG(1bits) = No(0)
Q_NVEMRRLS(1bits) = Release only at standstill possible(0)
V_NVALLOWOVTRP(7bits) = 0km/h(0)
V_NVSUPOVTRP(7bits) = 40km/h(8)
D_NVOVTRP(15bits) = 200.0m(200)
T_NVOVTRP(8bits) = 60s(60)
D_NVPOTRP(15bits) = 60.0m(60)
M_NVCONTACT(2bits) = Train trip(0)
T_NVCONTACT(8bits) = 35s(35)
M_NVDERUN(1bits) = Yes(1)
D_NVSTFF(15bits) = Infinity(32767)
Q_NVDRIVER_ADHES(1bits) = Allowed(1)"

NID_PACKET(8bits) = End of information(255)"

Table 6. Packets sent from BG354 as found in the JRU log

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 34

Packet- speci�c send operators from BaliseLib (please note the di�erent versions related to the baseline of the track)

Packet de�nition references (static expressions) from the package Packets426

Figure 20. Sending packets from BG354 (view from SCADE model)

(Note: The packet definitions for BG354 in the SCADE model can be found in Packets426::BG354_Pxxx)

4.4.4 Driving the train: Train Position vs. Balise Position

Looking at the track topology maps, we can see that the engineering positions of balise groups
that a train may pass can be on different track sections that may exhibit different origins for the
distances (kilometres). These different coordinate systems are of course also reflected in the
engineering data.

Track Section Boundary

BG352 at k
m

 1
05017

BG353 at k
m

 1565

Train direction

Figure 21. Balises in different local coordinate systems (depending on track sections)

Our train "knows nothing" about those coordinate systems: It starts at position 0 and while it
drives on, the train position increases steadily when the train moves forward, and decreases when
it moves backwards.
On the other hand, the balises will only emit their telegrams when they see that the train position
equals their own location (see figure 14).
We therefore need a method to position the train correctly inside the track sections.

Figure 22. Track Discontinuity modelling (view from SCADE model)

The operator InfraLib::TrackDiscontinuity takes two parameters:

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 35

• StartSection: kilometre at the start of the track section

• EndSection: kilometre at the end of the track section

When placed in the daisy chain before the concerned track section, the balises inside this section
will see the simulated train in their local coordinate system. Track sections with such discontinu-
ities can be concatenated. Each section will see the train in its local coordinate system.

When comparing the model with the track layout plan, we can observe that the section in
the Scade Operator Balises0001_Amstel_UB_Signal_611_to_613 are between km 104775 and
km 105650, which is between signal 611 and signal 613.

For the section in the Scade Operator Balises0001_Amstel_UB_Signal_613_to_617, we had to
define the beginning of the section to start also at signal 613. As there is no absolute kilometre
value describing the position of this signal in the coordinate system of the following track, we
have simply defined a constant expression to define the parameter StartSection by using the
available distance information between signal 613 and BG353. The EndSection parameter is the
latest position known from the User Story definition and is in fact located at Utrecht CS.

4.5 Radio Message simulation

The basic design principles used for the balise model (daisy chaining, merging of packets into a
compressed format) apply also for the radio message model.
The main differences are:

• While balises contain a telegram header which always contains the same set of information,
plus a set of packets (at least a packet 255), radio messages are composed of a Message (as
defined in Subset-026 chapter 8 [4]) plus optional packets.

• The balise model activates a balise when a train passes, while the radio message model
expects an external trigger signal which comes from the RBC model.

4.5.1 Base data for the radio message model

The only available source of information for the creation of the radio message simulation model
are the data logged in the JRU files provided as part of the User Story definitions.
As part of our analysis work, we have created a cross- reference table for the simulated radio
messages.
The columns must be read as follows:

1. NID_MESSAGE: Message (as defined in Subset-026 chapter 8 [4]).
The messages are defined as constant expressions in the package Messages_426 and named
using the format LRBG_nn._D_ddddd_f_Mmmm with:

• nnn = NID_BG value of NID_LRBG (the NID_C value is assumed to be 426, as
already expressed in the package name)

• ddddd = the integer part of the distance from the LRBG where the radio message was
recorded, in meters. The number is padded with leading zeroes if less the 5 significant
digits exist.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 36

• f = the fractional part of the distance from the LRBG where the radio message was
recorded, in tenths of meters.

• mmm = the NID_MESSAGE. Padded with leading zeroes if less then 3 significant
digits exist.

2. Packets: Optional packets, as defined in Subset-026 chapter 8 [4] and described in detail in
Subset-026 chapters 7 [3] and, where applicable in chapter 6 [2].
The packet definitions in the form of SCADE constant expressions can be found in the
package Packets426.

3. Trigger: Integer value. The radio message simulation model observers the input Trigger
which is propagated through all Send Radio Message operators that are daisy- chained to
form the simulation model. If an operator receives a trigger value corresponding to its local
trigger parameter definition, it will release the message and all optional packets it contains
and forward them through the daisy chain to the EVC. The trigger has, by convention, the
format nnndddddf with:

• nnn = NID_BG value of NID_LRBG (the NID_C value is assumed to be 426, as
already expressed in the package name)

• ddddd = the integer part of the distance from the LRBG where the radio message was
recorded, in meters. The number is padded with leading zeroes if less the 5 significant
digits exist.

• f = the fractional part of the distance from the LRBG where the radio message was
recorded, in tenths of meters.

4. LRBG: NID_BG value of NID_LRBG (the NID_C value is assumed to be 426).

Important note: This value refers to the LRBG known to the train at the reception of the
message. It may differ from the LRBG which is referenced in the message itself!

5. Distance: Distance from the LRBG at which the message was received according to the JRU
data, in meters, resolution 0,1m

NID_MESSAGE Packets Trigger LRBG Distance

32 None 353003192 353 319.2

8 None 353004219 353 421.9

24 P57 353004310 353 431.0

24 None 353004413 353 441.3

24 None 353004972 353 497.2

24 None 353006561 353 656.1

24 None 353008532 353 853.2

24 None 353010375 353 1037.5

24 None 353012387 353 1238.7

24 None 353014483 353 1448.3

24 None 354000537 354 53.7

24 None 354000902 354 90.2

3 P15, P21, P27, P3, P5, P41, P65 354002753 354 275.3

Continued next page. . .

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 37

NID_MESSAGE Packets Trigger LRBG Distance

24 None 354004835 354 483.5

24 None 354006798 354 679.8

24 None 351000333 351 33.3

3 P15, P21, P27, P3, P5, P41, P65 351000549 351 54.9

24 None 351000656 351 65.6

24 None 351000723 351 72.3

15 None 355000894 355 89.4

24 None 355001262 355 126.2

24 None 355001330 355 133.0

15 None 356000485 356 48.5

24 None 357000389 357 38.9

24 None 357000591 357 59.1

24 None 357001511 357 151.1

24 None 358000540 358 54.0

24 None 358000916 358 91.6

15 None 358001231 358 123.1

24 None 359000371 359 37.1

24 None 359000500 359 50.0

24 None 360000516 360 51.6

24 None 360000980 360 98.0

24 None 360001835 360 183.5

24 None 360002492 360 249.2

24 None 360002766 360 276.6

24 None 360003507 360 350.7

24 None 360004244 360 424.4

24 None 361000278 361 27.8

24 None 361000442 361 44.2

24 None 362000298 362 29.8

24 None 362000347 362 34.7

24 None 362000769 362 76.9

24 None 362001089 362 108.9

15 None 362001249 362 124.9

24 None 362001364 362 136.4

24 None 362001588 362 158.8

24 None 362001820 362 182.0

24 None 362002166 362 216.6

24 None 362002273 362 227.3

24 None 362002606 362 230.6

Continued next page. . .

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 38

NID_MESSAGE Packets Trigger LRBG Distance

3 P15, P21, P27, P3, P5, P41, P65 362002307 362 230.7

3 P15, P21, P27, P3, P5, P41, P65 362002389 362 238.9

24 None 363000258 363 25.8

24 None 364000173 364 17.3

24 None 364000366 364 36.6

3 P15, P21, P27, P3, P5, P41, P65 364000911 364 91.1

24 None 364001742 364 174.1

24 None 365000582 365 58.2

24 None 366000521 366 52.1

24 None 367000154 367 15.4

24 None 367000599 367 59.9

24 None 367001513 367 151.3

24 None 368000592 368 59.2

24 None 369000733 369 73.3

24 None 369001060 369 106.0

15 None 369002313 369 231.3

24 None 369002772 369 277.2

24 None 369004516 369 451.6

24 None 341000724 341 72.4

15 None 341001344 341 134.4

24 None 341001559 341 155.9

24 None 341003500 341 350.0
Table 7. Cross reference table for the radio messages relevant for the Proof of Concept,

partial list covering the sheets Amstel and Bijlmer

Remark: with the exception of the message received at LRBG=353 and the distance=431.0,
General Messages (M024) are not part of this model, but are dynamically created inside the RBC
model.

4.6 The radio message formal model

4.6.1 Concatenating operators

As the design principles have already been discussed in the Balise Model chapter of this text,
we will mainly highlight the differences. Figure 23 shows an example of a send radio message
model.

• The name of the operators corresponds with the name of the message definition (for example
LRBG_353_D_00319_2_M032; see also the legend for table 7)

• At the hidden inputs we see the trigger value (for example 353003192)

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 39

Figure 23. Daisy- chained Send Radio message operators (view from SCADE model)

4.6.2 Activating the send function

Going one level deeper inside the operator Send_RBC_LRBG_353_D_00319_2_M032, we see
(figure 24) that:

• If The trigger value received from RBC (via RadioDataIn) equals the parameter (via Trigger-
Value), then the function Build_RBC_Message_LRBG_353_D_00319_2_M032 is activated,

• Otherwise, the RadioDataIn value is just propagated to the output R_data_out.

Figure 24. Send Radio Message (view from SCADE model)

This means that if the trigger is valid, the messages and packets defined in this operator will be
merged to the data flow representing the radio messages. Otherwise, any other messages defined
elsewhere will be passed along the daisy chain.

4.6.3 Merging information

If the RBC commands that a message be sent, we have to merge the defined message and packet
information onto the data flow that runs along the daisy chain. In our example in figure 25, a
message 32 must be sent, which contains no optional packets.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 40

Figure 25. Merge message information into the message/ packets stream (view from SCADE model)

The operator RadioLib::No_Radio_Packets simply passes along the packet stream without adding
any information.

If we look at a different message (Message 3, L2/3 Movement Authority), we explore the
operator SendRadioPackets_LRBG_351_D_00054_9_M003, which plugs in the same place as
our RadioLib::No_Radio_Packets. This operator merges a set of packets into the packet stream.
We can see that the pattern is identical to sending packets from a balise. Even the data structures
are the same (see figure 26)

Figure 26. Composing packets for a L2/3 Movement Authority message (view from SCADE model)

5 Implementation of additional user stories

During the remaining period of openETCS, we may extend the track model to reflect additional
scenarios. We consider the balise part of the model as stable, as we are on a Level 2 infrastructure.
Hence, we simply need to add or derive radio message models consisting of specific combinations
of

• Messages and Packets

• Trigger conditions

5.1 Building your own tracks

A detailed HOWTO guide on how to build new test tracks using the provided design templates
and libraries will be provided for the final iteration of openETCS.

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 41

6 Connecting with existing environments

The dynamic track model is intended to be used as part of the existing testing and validation
ecosystem around ETCS. It could also be extended, using the same principles, to reflect national
systems, or be used for experiments with new approaches such as ERTMS Regional.

6.1 Subset-076

The Dynamic Track Simulation model relies on a formalisation of Subset-026 chapters 6,7, and
8 provided by the openETCS TrackMessages library. This library provides data structures which
are compatible with Subset-076, but require some interfacing work. openETCS WP4 is working
on the integration.

6.2 Subset-094

Thanks to the open architecture of openETCS and the openETCS track simulation approach,
integration with existing Subset-094 compliant onboard testing systems is feasible. Extension of
the openETCS demonstrator to a full Subset-094 implementation may be an interesting topic for
future exploitation of the project’s results.

7 Closing remarks

We have extended the openETCS approach to exploring the possibilities of formal modelling also
on Trackside ETCS infrastructure. The main focus for this iteration was on creating an extensible,
modular approach to reflect the dynamic behaviour of trackside train automation installations.
We had, to a large extent, to rely on reverse engineering techniques and are aware that the model
is far from complete as far as the RBC messages are concerned.

References

[1] European Rail Agency: Applicable standards in HS Control-Command and Signalling TSI
(2006/860/EC) ERA/Interoperability/JCP/hpi/2008/208 Version 1.0, 2008

[2] ERA - UNISIG - EEIG ERTMS USERS GROUP Subset-026 System Requirements Specification
Chapter 6 Management of older System Versions Issue 3.3.0. 2012.

[3] ERA - UNISIG - EEIG ERTMS USERS GROUP Subset-026 System Requirements Specification
Chapter 7 ERTMS/ETCS language Issue 3.3.0. 2012.

[4] ERA - UNISIG - EEIG ERTMS USERS GROUP Subset-026 System Requirements Specification
Chapter 8 Messages Issue 3.3.0. 2012.

[5] ERTMS/ETCS Subset-076 Test cases, Version 3.1.0. 2015.

[6] ERTMS/ETCS Subset-094: FUNCTIONAL REQUIREMENTS FOR AN ON-BOARD REFERENCE
TEST FACILITY, Version 3.0.0. 2014.

[7] Rod Muttram, Bombardier: Delivering the upgraded Amsterdam-Utrecht corridor.. HighSpeed 2008
Amsterdam 6th World Congress on High Speed Rail, 2008.

[8] Paolo De Cicco, Olivier Levêque, UIC: ETCS Implementation Handbook. Paris, 2008.

[9] ProRail: Het rijden van ETCS treinen op het trace Amsterdam-Utrecht. Version 7.0, 2010, German
Translation by Shivana Daparoe

This work is licensed under the "openETCS Open License Terms" (oOLT).

OETCS/WP3/D3.5.4 Appendix: Trackside 42

[10] Esterel Technologies: Methodology Handbook: Efficient Development of Safe Railway Applications
Software with EN 50128 Objectives Using SCADE Suite®. Third Edition (Revision 1), Elancourt,
2012

[11] S. Besure: Alstom OpenETCS WP3 contribution: EXTRACT FROM ALSTOM TRB MODEL.
OpenETCS_DNOT_0001 Rel. A, Charleroi 2013

This work is licensed under the "openETCS Open License Terms" (oOLT).

