


2



D.2.4.1 Specification of the Knowledge

Representation Language output by the Parser and

input to the Generator

Mariem Mahfoudh and Claire Gardent
CNRS/LORIA, Nancy (France)

1 Introduction

Representing knowledge is “the area of Artificial Intelligence (AI) concerned
with how knowledge can be represented symbolically and manipulated in
an automated way by reasoning programs” [BLR92]. It consists in formally
representing knowledge in order to simplify their extraction and to automate
the reasoning on the facts which they represent.

Several languages and formalisms have been proposed in the literature to
represent knowledge: semantic networks [Sow14, PS03], petri nets [CKC90],
description logics [Bor96, CDGLN01, BHS05], Frames [Min75, KLW95],
Knowledge Interchange Format (KIF) [GF+92], conceptual graphs [Sow92],
ontologies [Gua95], etc.

In the ModelWriter project, we are interested in synchronising text and
formal models. In particular, Work Package 2 (WP2), aims to automat-
ically map text to models using semantic parsing and conversely, to map
models to text using natural language generation. For these two processes
(semantic parsing and natural language generation) to be compatible1, it
is necessary to choose a language that formalize knowledge and which can
function as both the source of natural language generation and the target of
semantic parsing. In addition, in the framework of the ModelWriter project,
this language must be a plausible pivot language for a wide variety of meta-
models. In this deliverable, we therefore focus on languages which have a
well defined syntax and semantics and which are widely used for knowl-
edge representation, namely, languages such as Description Logic and the
Resource Description Framework (RDF) which are commonly used by the
semantic web and by the knowldege representation communities. As these
have been less researched in the NLP community (where for a long time, first

1By “compatible” here, we mean that it should be possible to use semantic parsing to
map the text T to the meaning representation φ and conversely, to use natural language
generation to map the same meaning representation φ to the same text T or to one of its
paraphrases.

3



order or higher order logic was the preferred language for meaning represen-
tation), developing means of going back and forth between text and these
knowledge representation languages will not only be useful for ModelWriter
applications but also provide an interesting NLP challenge and hopefully
result in interesting insights on how to automate the relation between text
and the Semantic Web languages.

The rest of the deliverable is organized as follow. Section 2 intro-
duces Description Logics (DL). Section 3 represents the Resource Descrip-
tion Framework language (RDF). Section 4 represents the Resource Descrip-
tion Framework Schema language (RDFS). Section 5 represents the Web
Ontology Language (OWL). Section 6 concludes.

2 Description Logics (DL)

Description logics are a family of formalisms for knowledge representation.
They are based on three entities: 1) the concepts that correspond to classes
of individuals, 2) roles that are relations (properties) between these individ-
uals, and 3) individuals that are concrete examples of classes.
Two components are distinguished in description logics:

• the Terminological box (Tbox) which defines the ontology structure
(the concepts and the roles) and the axioms.

• the Assertional box (ABox) which specifies the individuals and their
assertions.

The description logics have a common base, called Attributive Language
(AL), whose the constructors are presented in the Table 1. These construc-
tors represent knowledge with a simple expressivity.

Constructors Syntax Semantic

universal concept > 4I

bottom concept ⊥ ∅
atomic concept A A ⊆ 4I

atomic negation ¬A 4I \AI

intersection C uD CI ∩DI

value restriction ∀R.C {x ∈ 4|∀y.[(x, y) ∈ R ∧
y ∈ C]}

limited existential quantification ∃R.> {x ∈ 4|∃y.[(x, y) ∈ R ∧
y ∈ C]}

Table 1: Attributive Language constructors.

Figure 1 shows an example of a light ontology represented by attribu-
tive language. It is an extract from component ontology of Airbus com-

4



pany which describes the system installation component of planes Airbus
(more details of this ontology can be founded in [GMCLM15]). The ex-
tracted ontology is composed by : 1) four classes (”Component”, ”Flexible-
Component”, ”RigidComponent” and ”ATAChapter”), 2) one role ”relate-
dATA”(”Component”, ”ATAChapter”), 3) two individuals (”ATA-22-41”
and ”ATA-45”) and 4) two subsumption axioms (”FlexibleComponent” is-a
”Component” and ”RigidComponent” is-a ”Component”).

TBox
FlexibleComponent v Component
RigidComponent v Component
∃ relatedChapter v Component
> v ∀ relatedChapter.ATAChapter

ABox
ATAChapter (ATA-44)

ATAChapter (ATA-22-31)

Figure 1: Example of an ontology represented with Attributive language.

In order to increase its expressiveness and define more properties and
axioms, attributive language has been enriched by several extensions which
form the description logics family (see Figure 2).

Figure 2: Description logics family [Gag07].

We present here some languages of this family:

• ALC = (AL+¬C) constitutes the base of all the expressive description
languages. It adds the definition of the following constructors:

5



1. the union between concepts (C1 t C2) ;

2. the complement (¬C) which defines the negation of a class. Note
that attributive language expresses only the negation of the atomic
concept (e.g ¬humain). Although, ALC could express the nega-
tion of not atomic concept (e.g. ¬(animal ∪ raisonnable)) ;

3. exists restriction (∃R.C) which specifies that an entity should
have at least one relation with an object while specifying the class
of this object (e.g. the specification ∃relatedChapter.ATAChapter
defines the class of all the components which are related at least
to a ”ATAChapter”) ;

• SH = (ALC + H + Tr(R)) aims to define more axioms on the roles
(relations). It specifies for examples the transitivity of a role (Tr(R))
and also the hierarchical relation between two roles (H).

• SHIF = (SH+I+F ) includes the constructors of SH and adds others
constructors such as the inverse of a role (I) and functions (F ) which
specify that a role is a function (i.e. an entity can be related at most
with one entity by this role).

• SHOIN = (SH +O+ I +N) adds the specification of the cardinality
restriction N (≤ n.R and ≥ n.R) and the enumeration (O) which
defines a class from a set of individuals (e.g. Season ≡ {Autumn,
Winter, Springer, Summer}.

3 Resource Description Framework (RDF)

RDF (Resource Description Framework) is a semantic web language which
represents web resources and the relations between them [Mil98]. It has
a simplified semantic which represents knowledge with triples < subject,
predicate, object >, where:

• the subject denotes a resource ;

• the predicate indicates the relationship between the subject and object.
It called also property ;

• the object denotes a resource.

The subject, the predicate and often the object are identified by URI (Uni-
form Resource Identifier) or also by IRI (Internationalized Resource Iden-
tifier) [Dür01] to ensure the accessibility and the share of the described
resources.
An RDF triple is represented by an oriented and labelled graph. The sub-
ject and the object are represented by nodes. The predicate is represented

6



by an edge which links the subject to the object. Figure 3 presents an
example of an RDF graph which describes the ModelWriter website. The
resource ”https://itea3.org/project/modelwriter.html” represents the sub-
ject. ”is-created-by” corresponds to the predicate and ”itea3” corresponds
to the object.

http://www.mariem-
mahfoudh.info

Mariem-Mahfoudh

a-été-créé-par

Figure 3: Exemple d’un graphe RDF.

4 Resource Description Framework Schema (RDFS)

RDFS [McB04] is a formal language which was principally proposed to ex-
tend the semantic of RDF language. It adds the specification of classes
(rdfs:class) and the hierarchical relations between them (rdfs:subClassOf).
It also enables defining properties (rdfs:property), their members (rdfs:domain
and rdfs:range) and hierarchical relations between properties (rdfs:subPropertyOf).

These features allow RDFS to represent taxonomies or ontologies light
but not heavy-weight ontologies. Note that a taxonomy is a ”a subject-based
classification that arranges the terms in the controlled vocabulary into a
hierarchy” [Gar04]. Light-weight ontologies represents concepts, taxonomy
of concepts and properties that describe these concepts [GZ09]. Heavy-
weight ontologies are ontologies that integrate axioms and can express all
the semantic of the modelled domain [FT06] ;

Although its rich semantic, RDFS suffers from some limits. For example,
it can not express the features of properties (transitivity, symmetric, etc.)
or also the cardinality restriction. Thus, to overcome these limitations, the
W3C proposed the OWL language.

5 Web Ontology Language (OWL)

OWL is the standard currently proposed by W3C to represent ontologies
[MVH+04]. It is a semantic web language, based on RDFS and DL. OWL is
an expressive language which defines many constructors and axioms (see ta-
bles 2 and 3). It defines the disjunction between classes (owl:disjointWith),
the equivalent (owl:equivalentOf), restrictions (owl:Restriction), cardi-
nalities (owl:cardinality, owl:minCardinality, owl:maxCardinality),
enumerated classes (owl:oneOf), etc.
OWL language has two versions OWL1 et OWL2. OWL1 has been recom-

7



mended since 2004 and offers three sub-languages with increasing expressiv-
ity:

• OWL Lite defines reduced functionalities (e.g. it cannot specify the
negation, and the defined cardinalities are limited to 0 or 1). It cor-
responds to SHIF (D) language from description logics, where D cor-
responds to Dataproperty (a constructor that relies an individual to
literal).

• OWL DL is an expressive language whose inference procedures are
complete, i.e, all inferences are calculated. It corresponds to SHOIN(D)
language and often used to represents heavy-weight ontologies ;

• OWL Full is the most complex variant of OWL which offers maximum
expressiveness, but don’t propose any guarantee of completeness and
on the termination of inference procedures.

OWL constructors DL syntax
intersectionOf (C1, C2, ...) C1 u C2

unionOf (C1, C2, ...) C1 t C2

complementOf(C) ¬C
oneOf(I1, I2, ...) {I1, I2, ...}
Restriction(P allValuesFrom(C)) ∀P.C
Restriction(P someValues-
From(C))

∃P.C

Restriction(P hasValue(I)) P : I
Restriction(P cardinality(n)) = nP
Restriction(P minCardinality(n)) 6 nP
Restriction(P maxcardinality(n)) > nP

Table 2: OWL constructors.

OWL constructors DL syntax
Axioms defined on the classes

subClassOf (C1, C2) C1 v C2

equivalentClasses (C1, ..., Cn) C1 ≡ ... ≡ Cn

disjointWith (C1, ..., C2) C1 v ¬C2

Axioms defined on the properties
subPropertyOf (P1, P2) P1 v P2

equivalentProperties (P1, ..Pn P1 ≡ ... ≡ Pn)

inverseOf (P1, P2) P1 ≡ P2
−

symetricProperty(P ) P ≡ P−

functionalProperty (P ) > v 6 1P
inverseFunctionalProperty (P ) > v 6 1P−

8



transitiveProperty(P ) Tr(P )
Axioms defined on the individuals

sameAs(I1, ..., In) I1 = ... = In
differentFrom(I1, ..., In) I1 6= ... 6= In

Table 3: OWL axioms.

6 Conclusion

In this deliverable, we presented the main languages (DL, RDF, RDFS and
OWL) used in the knowledge representation and the Semantic Web com-
munity. These will be the basis for the NLP components to be developed
in WP2. Specifically, we will use OWL as the meaning representation lan-
guage in which the ModelWriter parser will convert text and from which,
its natural language generator will generate text. The motivations for this
choice are the following.

OWL has a well-defined syntax and semantics – this will make it possible
to specify systematic translations from the metamodels that might be used
by the various ModelWriter usecases into this single NLP target represen-
tation language.

The UC-FR4 (Synchronisation of regulation documentation with a de-
sign rule repository) usecase involves a model (ontology) written in OWL
and some associated text (SIDP rules). We can therefore directly make use
of this usecase to develop, train and evaluate an OWL-based semantic parser
and generator and to test the usefulness of these NLP tools for synchronising
text and models.

OWL comes equipped with highly optimised automated reasoners such
as HermiT which supports not only the standard reasoning task of entail-
ment checking but also several specialised reasoning services such as class
and property classification, as well as a range of features outside the OWL
2 standard such as DL-safe rules, SPARQL queries, and description graphs
[GHM+14]. Furthermore, [MLH+] identify 35 OWL reasoners that are, at
least to some degree, actively maintained. More generally, using OWL gives
access to powerful reasoning and querying techniques which may well be rel-
evant for the synchronisation issues addressed by the ModelWriter project.

9



References

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Mechaniz-
ing Mathematical Reasoning, volume 2605, chapter Descrip-
tion logics as ontology languages for the semantic web, pages
228–248. Springer, 2005.

[BLR92] Ronald J Brachman, Hector J Levesque, and Raymond Reiter.
Knowledge representation. MIT press, 1992.

[Bor96] Alex Borgida. On the relative expressiveness of description
logics and predicate logics. Artificial intelligence, 82(1):353–
367, 1996.

[CDGLN01] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,
and Daniele Nardi. Reasoning in expressive description logics.
Handbook of Automated Reasoning, 2:1581–1634, 2001.

[CKC90] Shyi-Ming Chen, Jyh-Sheng Ke, and Jin-Fu Chang. Knowl-
edge representation using fuzzy petri nets. Knowledge and
Data Engineering, IEEE Transactions on, 2(3):311–319, 1990.

[Dür01] Martin J Dürst. Internationalized resource identifiers: From
specification to testing. In 19th International Unicode Confer-
ence, IUC 2001, San Jose, CA, 2001.

[FT06] Frédéric Fürst and Francky Trichet. Raisonner sur des ontolo-
gies lourdes à l’aide de graphes conceptuels. In 24 ème Congrès
INFORSID (INFormatique des ORganisations et Systèmes
d’Information et de Décision, pages 879–894, Hammamet,
Tunisie, 2006.

[Gag07] Michel Gagnon. Logique descriptive et owl. Cours dispensé à
l’école polytechnique de Montréal, Canada, 2007.

[Gar04] Lars Marius Garshol. Metadata? thesauri? taxonomies? topic
maps! making sense of it all. Journal of information science,
30(4):378–391, 2004.

[GF+92] Michael R Genesereth, Richard E Fikes, et al. Knowledge
interchange format-version 3.0: Reference manual. 1992.

[GHM+14] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and
Zhe Wang. Hermit: An owl 2 reasoner. Journal of Automated
Reasoning, 53(3):245–269, 2014.

10



[GMCLM15] Claire Gardent, Mariem Mahafoudh, Samuel Cruz-Lara, and
Anne Morceaux. D2.1.2 documentation of the corpora, mod-
elwriter, text and model-synchronized document engineering
platform. Technical report, CNRS-LORIA, 2015.

[Gua95] Nicola Guarino. Formal ontology, conceptual analysis and
knowledge representation. International journal of human-
computer studies, 43(5):625–640, 1995.

[GZ09] Fausto Giunchiglia and Ilya Zaihrayeu. Lightweight ontolo-
gies. In Encyclopedia of Database Systems, pages 1613–1619.
Springer, 2009.

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical founda-
tions of object-oriented and frame-based languages. Journal
of the ACM (JACM), 42(4):741–843, 1995.

[McB04] Brian McBride. The resource description framework (rdf) and
its vocabulary description language rdfs. In Handbook on on-
tologies, pages 51–65. Springer, 2004.

[Mil98] Eric Miller. An introduction to the resource description frame-
work. Bulletin of the American Society for Information Sci-
ence and Technology, 25(1):15–19, 1998.

[Min75] Marvin Minksy. A framework for representing knowledge. The
psychology of computer vision, pages 211–277, 1975.

[MLH+] Nicolas Matentzoglu, Jared Leo, Valentino Hudhra, Uli Sat-
tler, and Bijan Parsia. A survey of current, stand-alone owl
reasoners. In Informal Proceedings of the 4th International
Workshop on OWL Reasoner Evaluation, volume 1387.

[MVH+04] Deborah L McGuinness, Frank Van Harmelen, et al. Owl
web ontology language overview. W3C recommendation,
10(10):2004, 2004.

[PS03] Stephen Peters and Howard E Shrobe. Using semantic net-
works for knowledge representation in an intelligent environ-
ment. page 323. IEEE, 2003.

[Sow92] John F Sowa. Conceptual graph summary. Conceptual Struc-
tures: Current Research and Practice. Ellis Horwood, New
York London Toronto, pages 3–66, 1992.

[Sow14] John F Sowa. Principles of Semantic Networks: Explorations
in the representation of knowledge. Morgan Kaufmann, 2014.

11


