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Executive summary 

Nowadays, safety and security are two risk-driven activities that are tackled separately, giving rise to the indus-
trial challenge of efficiently and economically co-engineering these two specialities. It is evident that there is a 
major opportunity to share on onomastics

1
, algorithms, (formal) methods and tools, in particular to reach higher 

levels of assurance at contained costs. 

Deliverable D3.4.4 is split in two parts. Part A (companion document) is an extensive state of the art on safety 
and security co-engineering of software intensive critical information systems. It essentially covers academic 
publications and industry standards. 

Part B (this document) first reports on two prototype tools dedicated to safety and security co-engineering. The 
first prototype was designed and developed by MERgE partners based on safety and security requirements 
from the MERgE software-defined radio test case. The document recalls the requirements and presents the 
high-level design. Assessment results of this prototype can be found in deliverable D1.1.1d – TCS Evaluation. 
The second prototype, called AVATAR, is developed by Télécom ParisTech and was identified during our study 
of the state of the art. We performed an in-depth assessment of this academic tool. Based on the experience we 
gained during the state of the art work (of which a synthesis is provided herein) and tool prototyping work, Part 
B proceeds with research and development recommendations for new federative approaches, whilst remaining 
realistic with respect to industrial constraints, i.e. costs, legacy workbenches, training constraints, etc. 

Note: the executive summary is common to both parts A and B. 
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 Study of names and naming. 
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There will always be engineering failures. But the worst kinds of failures are 
those that could readily be prevented if only people stayed alert and took 
reasonable precautions. Engineers, being human, are susceptible to the 
drowsiness that comes in the absence of crisis. Perhaps one characteristic 
of a professional is the ability and willingness to stay alert while others doze. 
Engineering responsibility should not require the stimulation that comes in 
the wake of catastrophe.  

—Samuel C. Florman  

The Civilized Engineer 
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Extended executive summary 

Safety and security are two risk-driven activities that are traditionally tackled separately. It is thus possible to 
distinguish two communities, each working on their own standards, organising their own conferences, publishing 
in their own journals. Since the 9/11 attacks on the Twin Towers in the Aeronautics domain and the discovery of 
the Stuxnet computer worm in the Industrial Control Systems domain in June 2010 (cf. Figure 1), it is more and 
more recognised worldwide that both engineering specialties cannot continue to ignore each other. 

Early 2014, when we started this state of the art on safety and security co-engineering for software-intensive 
systems, we thought we would rapidly establish a comprehensive picture of this small community living in the 
shadows of the big safety community on the one hand, and of the security community on the other hand. In our 
minds, safety and security co-engineering questions where intimately linked to niche safety-critical systems 
markets, such as the Integrated Modular Avionics (IMA), Industrial Control Systems (ICS) or similar networked 
control systems.  

Much to our surprise, we discovered a bustling academic community, with a significant number of publications 
explicitly addressing safety and security co-engineering concerns (cf. part A, §2), and actively organising work-
shops and conferences on the subject (cf. part A, §6). As illustrated in Figure 1, our state of the art on academic 
safety and security co-engineering publications comprehends some 160 references (on a total of over 400 ref-
erences in the deliverable) concentrating essentially on the last 10 years

2
, even if a few references go back to 

the early 90’s. Recent attention to the topic may be related to the explosion of the number of cyber-physical 
systems (CPS), system of systems (SoS) and Internet of Things (IoT) in general public markets. We also found 
an industrial community actively revising existing safety-related standards or elaborating new standards to cope 
with business security issues with a certain level of rigor (cf. part A, §3). This standardisation activity is all the 
more surprising that there is a real lack of international regulation concerning security risk management for safe-
ty-critical systems. The last but not least of our surprises was in the education domain: there seems to be very 
few courses addressing both cyber-security and safety engineering, which does not bode well for the future (cf. 
part A, §5). 

Our state of the art was first organised 
in a chronological order (cf. part A of 
this deliverable), and then analysed as 
a whole. This analysis led us to organ-
ise the publications in three groups (cf. 
part B, §5). A first group comprehends 
the papers that state the issues related 
to engineering safety and security sepa-
rately, and assert that there is room for 
improvement, but do not explain how. 
The second group comprehends the 
papers that propose to improve one 
specialty by adapting techniques from 
the other specialty, in other words, safe-
ty and security cross-fertilisation. Here, 
one specialty is seen as more important 
than the other one, giving way to securi-
ty for safety or vice-versa.  

 

Figure 1: Number of safety and security co-engineering related re-
search publications per year 

The last set of publications relates to novel clean-slate approaches for safety and security co-engineering, con-
sidering both specialties as peers. Amongst these publications, one tool, called TTool/AVATAR, caught our at-
tention and was analysed in depth (cf. Part B, §4). 

From the mass of aforementioned publications and after an analysis of internal MERgE case test safety and 
security co-engineering requirements (cf. part B, §2): 

 we identified and developed a new formal system modelling and verification framework for security and 
safety assessment (cf. part B, §3), which extends the classical safety-related dysfunctional modelling with 
security-related concerns; 

 we ventured to formulate a couple of facts, and a couple of trends (cf. part B, §6). 

                                                      
2
  The number of references for 2015 is significantly low due to the fact that we stopped our systematic search of publications early 2015, 

and simply referenced occasional findings.  
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The first fact is that safety and security co-engineering seems to be primarily a concern of the safety engineer-
ing community. Indeed, the increasing number of cyber-attacks in the world tends to show that safety-critical 
systems, and in particular the rising number of cyber-physical systems, which are particularly exposed by na-
ture, may not be as safe as they claim, if they are not also secure. The multiplication of security-related work-
shops in conjunction to safety-related conferences, and the multiplication of safety standards updates that in-
clude security concerns both provide significant testimonies of this growing interest for safety and security co-
engineering by the safety community. There is no similar booing within the security community: security experts 
seem to be interested in safety studies in only two cases: (i) to assess if safety-critical systems are more vulner-
able when they switch into fail-safe modes; (ii) to re-use safety techniques when availability and integrity are the 
primary concerns of the security engineering work, by opposition to confidentiality or privacy concerns. 

The second major fact is that the security regulation is somehow lagging behind industrial initiatives to produce 
security standards. This may be explained considering that security is a National sovereignty prerogative, whilst 
safety regulation has often been transferred to transnational organisations (e.g. European Commission, Interna-
tional Civil Aviation Organisation) since decades. Depending on the domains, National regulation may be seen 
as too weak or on the contrary an effective means to affect worldwide businesses. In the nuclear domain, re-
newed national regulation is a driver for unified safety and security considerations as the example of STUK YVL 
guides suggest. Other industries (e.g. in the aviation domain) have been developing security standards, which 
cannot be termed as acceptable means of compliance (AMC), since there is no regulation to comply with. This 
situation is bound to change. 

 

 

Figure 2: Identified trends in safety and security engineering 

 

Trends (cf. Figure 2) were a bit more difficult to establish. We have formulated two of them based on concordant 
events happening in multiple domains (e.g. aviation, electronics, nuclear), and on both side of the Atlantic: 

 the safety communities thrive to maintain current organizational approaches as stable as possible, because 
regulations, acceptable means of compliance and standards have proven efficiency records and are ex-
tremely difficult to change, technically and / or politically; some minor updates to the processes and meth-
ods are however necessary to ensure interaction points, such as safety-aware security in the avionics do-
main, or security-aware safety in the electrical / electronic / programmable electronic domain; the safety 
communities seems to be moving away from revolutionising standard safety processes, even if all individual 
members of those communities do not seem to adhere to this trend; 

 the academic and industrial communities are adapting and extending existing, architectures and tools, to 
cover both safety and security properties; within this trend, the adoption and seamless integration of formal 
methods and tools occupies a significant part. 

These two trends cover quality assurance for the former, to ensure in-depth defence, and quality control for the 
latter, to cope with known and controlled risks. All of the above is detailed in the current document. 

The document concludes on a set of proposals for continued enhanced safety and security co-engineering. The 
proposals are based on a set of three assumptions: 

 industrial safety and security engineering processes / methods are difficult / slow to change; 

 safety and security vernacular is difficult / slow to change; 

 safety and security tools are diverse, but tend towards a formalisation of their conceptual data model. 
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Based on these hypotheses, our state of the art and our technical work, the document concludes on three pro-
posals that may feed a safety and security co-engineering research and development roadmap: 

 the development of a common pivot model to support artefact sharing between engineering specialties; 

 the management of conflicts between safety and security engineering processes seen as independent pro-
cesses; 

 the criteria to be respected by engineering tools to allow for successful cross-fertilisation between engineer-
ing domains. 



D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011 

  11 / 92 

 

1 Introduction 

1.1 Purpose of the document 
The purpose of deliverable D3.4.4 is to provide research and development recommendations for safety and 
security co-engineering of software-intensive safety-critical information and / or embedded systems. The deliv-
erable is split in two parts. This document is part B. 

The recommendations (cf. §6) are based on a solid state of the art (cf. Part A of this deliverable), of which a 
synthesis is provided herein (cf. §5). The recommendations are also backed by end-user requirements from the 
MERgE end-users (cf. §2), and on technical work related to two prototypes: an internally developed tool (cf. §3) 
and a third-party tool (cf. §4). 

1.2 Scope of the document 
The scope of the study is the following: 

 focus on the safety and security co-engineering of software-intensive critical information and / or em-
bedded systems, but not excluding other systems; 

 end-to-end safety and security co-engineering, i.e. from safety and security requirements elicitation, 
through to the implementation of safety and security solutions, and the verification and validation of those 
properties; 

 safety and security co-engineering modelling methods and tools. 

This document addresses neither safety and security taken independently, nor safe and secure computing solu-
tions which do not require engineering practices. 

1.3 Motivations 
There are at least five main motivations for driving this study about safety and security co-engineering. 

 

Motivation n°1: the question is no more if your system is going to be subject to a cyber-attack, but when. 

On Dec. 8
th
, 2014, the SC Magazine  (Stephenson, 2014) makes a title on Information security in 2014: another 

year of big events, and the article  starts as follows: As 2014 draws to a close we can look back over one of the 
most tumultuous years in recent history. This has been the year of the major security breach. The Target breach 
was just a warm-up for a laundry list of attacks against large, presumably well-protected, companies and gov-
ernment agencies. Candidly, these organizations – public and private – should be ashamed of themselves. Un-
deniably, from the cyber-attack point of view, the world is becoming more dangerous every day. As end-users 
awareness increase, they now consider normal that up to 6% of a safety-critical system’s cost may be dedicated 
to security issues. 

 

Motivation n°2: safety-critical systems are no 
more an exception to the rule, being them also 
subject to cyber-attacks. 

As safety-critical systems become more and 
more complex (cf. Figure 3), and more and more 
interconnected, cf. (25-356-SC, 2008) and (25-
357-SC, 2007), they also become more and more 
vulnerable to cyber-attacks. A major driver of this 
evolution is the increasing number of software 
updates, versus hardware upgrades. This re-
quires ports and protocols for remote mainte-
nance / configuration, which are as many open-
ings for malevolent actions.  

Figure 3: Exponential code size evolution on Airbus aircraft 

 

Motivation n°3: components-off-the-shelf (COTS) have become ubiquitous in software engineering. 
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The Service and Component Architecture (SCA) has effectively leveraged reuse in the software engineering 
process, including for safety-critical and/or embedded systems. However, when COTS are massively used in 
the software design, proving overall safety and security properties is a real challenge. A strategy for COTS se-
lection needs to be defined beforehand, together with guidance on how to use / configure them. 

Note: sub-contracted software development fall under the same category as COTS when limited trust is granted 
to the sub-contractors with respect to the existence of backdoors and / or Trojan horses in the delivered soft-
ware. 

 

Motivation n°4: system maintenance in secure conditions (MSC) and system maintenance in operational condi-
tions (MCO) go by very different update rates and live cycles. 

Safety-critical systems are hard to certify; once certified, modifications are kept minimal in order to avoid running 
the complete certification process all over again. On the contrary, system maintenance in secure conditions 
requires frequent updates to keep up with the ever rising new threats and related patches. Living with both the-
se safety and security constraints requires well-thought system architectures. 

 

Motivation n°5: there are no complete and convincing solutions on the market to address simultaneously safety 
and security engineering, including trade-off decision support. 

The safety engineering has a long history of good practices, standards and tools, which have reached a high 
degree of maturity. The security engineering domain is newer and is subject to constant evolution. Both com-
munities have lived side-by-side with few interactions. One partial exception to this statement is the MILS archi-
tecture used for real-time operating systems (RTOS). The MILS architecture assures properties that are rele-
vant to both safety and security, typically non-bypassable, evaluable, always invoked, and tamperproof. MILS 
currently appears in commercial products, e.g. PikeOs by (Sysgo, 2014), Integrity Multivisor by (Green Hills 
Software, 2014), VxWorks by (Wind River, 2015), LynxOS by (Lynx Software Technologies, 2015)

3
 or QNX® 

Hypervisor by (QNX, 2015). However, by itself, MILS is far from being a complete solution, to cover the com-
plete safety lifecycle, from the functional hazard analyses and safety cases, to verification and validation. 

1.4 Targeted audience 
The targeted audience of this release of the deliverable is the safety and security co-engineering community, 
without any restriction. 

1.5 Structure of the document 
This document is structured as follows. 

 Chapter 1 is the current introduction. 

 Chapter 2 recalls our end-user safety and security co-engineering requirements, as expressed in the MERgE 

test cases. 

 In chapter 3 and 4 we report on two formal safety and security verification experiments, one with a tool de-

veloped in the scope of the MERgE project, one with a third-party tool. 

 Chapter 5 provides an overall synthesis of the state of the art (as presented in Part A of this deliverable). 

 Based on this synthesis and the above technical work, chapter 6 provides some elements that may feed a 

safety and security co-engineering research and development roadmap. 

 Chapters 7 and 8 provide respectively the references and definitions of acronyms. 

 

                                                      
3
 Previously known as “LynuxWorks”. 
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2 Analysis of MERgE case test safety and security 
co-engineering requirements 

2.1 SDR safety and security co-engineering requirements 
This section recalls the safety and security requirements of the TCS Software Defined Radio (SDR) test case, 
as extracted from MERgE deliverable D1.1.1.a, TCS - Scenarios and use cases definition. 

In general, radio communication equipment may have to be compliant with the (ISO/IEC 15408-1, 2009) and 
(RTCA DO-178B, 1992) / (EUROCAE ED-12B, 1992) standards presented in the next paragraphs. Since radio 
equipment is long-lived, RTCA DO-178B is still being used. In the long term, (RTCA DO-178C, 2011) / 
(EUROCAE ED-12C, 2012) should be used. Critical Software Defined Radio (SDR) systems may be designed 
according to the security architectural pattern defined by Multiple Independent Levels of Security/Safety (MILS). 
MILS is a security architecture that uses partitioning techniques to host applications with different security lev-
els. 

The TCS SDR test case targets an EAL3+ level. The current Design Assurance Level (DAL) required for TCS 
radio equipment is DAL D. Thus, TCS has identified the following safety and security requirements. 

Note: The traceability of the SDR requirements to the test case realisation with the MERgE platform is provided 
in deliverable D1.1.1.d - TCS – Evaluation. 

2.1.1 Security requirements  

The security viewpoint should support risk analyses.  

For instance, an attack tree analysis may be handled in the security viewpoint or delegated to an external secu-
rity analysis tool. 

The security viewpoint should support security evaluations according to the Common Criteria.  

For instance, the security viewpoint should support the concepts of the Common Criteria such as EAL, Threats, 
TOE Security Functions (TSF), TSF Interface (TSFI) to model the security target. 

The security viewpoint shall support the definition of security components with their interfaces, parameters and 
errors messages.  

The security viewpoint shall support the assembly of security components to specify the security architecture.  

At system level, the security viewpoint shall support the deployment of waveform and platform components to 
allowed security domains.  

For instance, waveform components are designed to work in the red or black domains. 

At software level, MyCCM and SCA component frameworks shall verify that waveform components are de-
ployed on the required security domain.  

At system level, the security viewpoint shall support the specification of allowed connections between waveform 
components and radio platform components.  

At software level, MyCCM and SCA component frameworks shall verify that the type of waveform and type of 
platform component ports are compatible.  

At system level, the security viewpoint shall support the specification of allowed messages between compo-
nents, which may depend on a combination of parameters such as: 

 Platform state, e.g. boot, initialisation, update, deployment; 

 User roles/rights, e.g. end-users, maintainers, security officers; 

 Security domains, e.g. red/black; 

 Connection between component ports; 

 Parameter identifier and value. 

At system level, the security viewpoint should support the specification of formal rules using a dedicated lan-
guage to check the validity of requests to services.  

At software level, MyCCM and SCA component frameworks should perform access control at runtime based on 
formal rules defined in the system model.  

At system level, the security viewpoint should support the specification of allowed read, write, read-only access 
to waveform and platform component properties.  
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At software level, MyCCM and SCA component frameworks should perform access control at runtime based on 
the read, write, read-only access rights defined in the system model.  

At system level, the security viewpoint should support the specification of valid ranges for waveform and plat-
form property values.  

At software level, MyCCM and SCA component frameworks should verify at runtime the range of waveform and 
platform property values based on the rules defined in the system model.   

At system level, the security viewpoint tool shall allow the definition of Explicit Secure Communication Channels 
to define allowed information flows between components.  

At system level, the security viewpoint tool shall allow the definition of Logical Security Partitions to separate 
application and platform components with different security requirements.  

For instance, the Logical Security Partitions may enforce the separation of waveform applications from the radio 
platform. 

At system level, the security viewpoint tool shall allow the definition of Logical Security Partitions to separate 
different applications from one another with different security requirements.  

For instance, the Logical Security Partitions may enforce the separation between waveform applications. 

At software level, Security Partitions should be defined for the deployment of waveform and platform compo-
nents on Red and Black security domains.  

At system level, the security viewpoint shall support the identification of confidential information and the condi-
tions under which they may be accessed.  

For instance, confidential information may designate waveform binary code or configuration files stored in the 
platform file system. 

At system level, the security viewpoint shall support the identification of information whose integrity must be 
verified.  

At system level, the security viewpoint shall support the identification of information whose authenticity must be 
verified.  

At software level, MyCCM and SCA component frameworks may verify the integrity and authenticity of wave-
form and platform components before their deployment on the radio platforms according to system model re-
quirements.  

2.1.2 Safety Requirements 

The safety viewpoint should support safety analysis.  

For instance, a fault tree analysis may be handled in the safety viewpoint or delegated to an external tool. 

At system level, the safety viewpoint shall support the definition of Logical Safe Partitions to specify the isolated 
execution of waveform and platform components.  

At software level, Logical Safe Partitions may rely on software partitioning technologies such as software com-
ponent containers, separation kernels and hypervisors.   

At system level, the safety viewpoint shall allow the definition of platform properties to be monitored.  

Examples of platform properties that may be monitored include CPU, memory and battery consumption. 

The safety viewpoint should support safety evaluations according to the (RTCA DO-178B, 1992) / (EUROCAE 
ED-12B, 1992). 

2.2 ICS safety and security co-engineering requirements 
This section recalls the safety and security requirements identified in the ICS use-case, as extracted from the 
MERgE deliverable D1.1.4.a: ICS – Scenarios and use case definition. There are several public information 
security standards and frameworks available to help organisations to address ICS security concerns. The fol-
lowing have been selected for the test case: 

 NIST 800 series: (NIST SP 800-53, 2013), (NIST SP 800-82, 2013); 

 IEC 62443
4
 (formerly ISA-99); 

 ISA Secure certification for embedded ICS devices. 

The traditional way of defining security is to divide it into three sub-requirements namely confidentiality, integrity 
and availability (CIA). The CIA definition/division applies also in ICS, but the prioritization is different. Whereas 
confidentiality of data is often the most important requirement in standard ICT systems, the data in ICS is often 

                                                      
4
 See (IEC/TS 62443-1-1, 2009), (IEC 62443-2-1, 2010), (IEC/TR 62443-3-1, 2009), and (IEC 62443-3-3, 2013). 
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not confidentiality-critical. Integrity of data is equally important in both ICT and ICS domains, especially in indus-
trial automation where lacking integrity in the communication channels can result in significant safety hazards. 
Availability is often not so critical in ICT system, although downtime in critical business systems can result in 
loss of business or business continuity. 

In ICS on the other hand, availability is the most critical subcomponent of safety and security. The availability 
requirement in ICS is often solved by separating the communication system from the control system. Even if the 
system responsible for communications crashes, or reboots, or becomes deadlocked, the control system must 
be able to continue or must be able to shut down the critical control logic into a safe state. Quite often the digital 
communications logic is complemented with analogue controls that allow process continuity even in cases of 
break-down of communications network or components. Shutting down the digital controls can sometimes also 
be seen as a defence against attacks. 

The following list provides examples of design requirements for ICS systems. 

Systems shall be designed with the assumption of physical security. 

No tampering with the devices, software or networks shall be allowed to anyone without specific clearance. 

System shall remain up and running at all times. 

There shall be no possibility for reboots or reinstalls or patching of security issues. 

Scheduled maintenance breaks shall happen very rarely, such as once a year or even more infrequently. 

Data integrity shall be maintained. 

Systems shall be robust to handle anything thrown at them. 

Many ICS communication technologies do not implement any unnecessary security functions. Authentication or 
data integrity checks are often forbidden as they can result in critical messages being dropped from the sys-
tems. 

Extensive robustness testing is required by industry standard to show resistance to broken or hostile communi-
cations and measurement data. 

It should be noted that industry specific standards and frameworks are in development. As example, in the nu-
clear sector there is a new standard, namely Nuclear Power Plants - Instrumentation and control systems - Re-
quirements for security programmes for computer-based systems (IEC 62645, 2014). 

2.3 Other test cases 
The two other MERgE test cases are the automotive and aerospace test cases. 

The MERgE automotive case study is centred on the Hall Effect Sensors of Melexis. In deliverable D1.1.2a: 
Automotive case: Scenarios and use case definition, only safety and availability requirements have been identi-
fied for this case study, i.e. no security requirements, no joint safety and security design process. 

Likewise, in deliverable D1.1.3.a, SASNV - Scenarios and Use Cases Definition, only safety and dependability 
requirements have been identified for this test case, i.e. no security requirements. 

Thus, for the automotive and aerospace test cases, there are no domain-specific challenges to be considered in 
this study. 
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3 A formal system modelling and verification 
framework for security and safety assessment 

In a first section, we present a stand-alone framework, called Coy, that allows: 

 modelling system architectures including potential failures of components, security threats, and the 
propagation of components failures and threats along the architecture, in the spirit of Model Based Safety & 
Security Assessment (MBS&SA) ; 

 checking safety and security requirements, relying on the formal semantics of Coy and the Alloy Analyzer 
tool. 

In a second section, we present an integrated approach that maximises the use of the MERgE platform. In par-
ticular, Capella system engineering models can be used as input to the safety and security analyses, without 
having to redefine the complete system architecture, as with the stand-alone Coy framework. 

3.1 Standalone approach 
Previous experiments of formal safety and security verification have already been published in (Brunel, et al., 
2014a), (Bieber, et al., 2014) and (Brunel, et al., 2014b)

5
. Following these earlier works, we propose here to 

address the question of safety and security assessment using the Alloy language and the Alloy Analyzer free-
software tool. Alloy (Jackson, 2006) is a formal modelling language amenable to automatic analyses. 

Our motivation for relying on Alloy instead of, say, AltaRica is to take benefit from the model-based aspect of 
Alloy and its expressiveness for the specification of the properties to check. Indeed, Alloy allows to define meta-
models easily, which allows for instance to devise domain-specific meta-models. Here, as will be seen, we de-
veloped in Alloy a modelling framework called Coy, which can be partly seen as the embedding of the general 
concepts of AltaRica into Alloy (ignoring concepts we do not need). Furthermore, with Alloy, the specification of 
the properties we check is expressed in relational first-order logic, with many features adapted to model-based 
reasoning. 

With respect to our previous propositions around using Alloy for MBS&SA, we devise here a richer architectural 
framework and, more importantly, we formalize a notion of behaviour so as to be able to check properties of the 
considered system along time. 

This section is organized as follows: in §3.1.1, we give a very brief account of Alloy. Then, in §3.1.2, we de-
scribe the Coy modelling framework that we implemented in Alloy to model system architectures and their be-
haviour. We show how Alloy is well adapted to designing domain-specific meta-models and to getting some 
flexibility in the modelling of time and behaviour. In §3.1.3, we illustrate our approach on a fire detection exam-
ple that we model in Alloy following the Coy meta-model. In particular, we show how using Alloy allows to ex-
press "in one shot" properties ranging over a set of elements selected by navigating in the model structure. 

3.1.1 Alloy in a nutshell 

Alloy is a formal modelling language that is well adapted to the following (non-exhaustive) list of activities: ab-
stract modelling of a problem or of a system; production of a meta-model (model corresponding to a viewpoint); 
analysis of a model using well-formedness or formal semantic rules; automatic generation of an instance con-
forming to a model, possibly according to supplementary constraints; finding interesting instances of a model. 
Models designed in Alloy can deal with static aspects only, or integrate also dynamic aspects, so as to check 
behavioural properties. 

We now give a brief glance at the main concepts of the language using a simple example. The most important 
type of declaration is that of a signature which introduces a structural concept. It may be seen as a class or enti-
ty in modelling parlance. A signature is interpreted as a set of possible instances; and it can also come with 
fields that may be seen, as a first approximation, as class attributes or associations. 

 

sig Data {consumedBy : some System} 

sig System {} 

sig Criticality { 

concernedData : one Data, 

 concernedSystem : one System 

} 

 

                                                      
5
 See Part A, §2 for short summaries of these publications. 
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Here, we defined 3 concepts: Data, System and Criticality. Alloy advocates not delving into unnecessary details 
and only giving information on things we want to understand or analyse. Thus, here, a system is just defined to 
be a set of “things”, but we do not say anything about the exact nature of its elements. 

The keywords some or one give details on the multiplicity
6
 of the relation, as 1..* and 1 in UML. Here the field 

declarations mean that: every datum is consumed by at least one (some) system; every criticality concerns ex-
actly one (one) data and one system. 

Then, we can add constraints on possible instances of our model. For instance, we would like to state that every 
system consumes at least one datum. This can be done by writing additional facts (facts are axioms, so as few 
facts as possible should be stated in order to avoid over-specification): 

 

fact { 

// every system consumes at least one datum 

  all s : System - some consumedBy.s 

 // for any system which consumes a given datum, the said 

 // datum and system should belong to a same unique criticality 

 all d : Data - all s : System | one c : Criticality | 

   c.concernedData = d and c.concernedSystem = s 

} 

 

The . operator yields the join of two relations, matching the last column from the first one to the first column of 
the second one. Thus one may write d.consumedBy to get the systems consuming a data “d”, but also “con-
sumedBy.s” to get the data consumed by the system s. 

The formal foundation of Alloy is relational first order-logic, which is first-order logic extended with relational 
terms (including the transitive closure of a binary relation). Besides allowing navigation in models, this logic suf-
fices to encode various models of time, e.g. to go from a linear to a tree view of time, or to give either an inter-
leaving or a true-concurrency semantics. 

Finally, although the language does not preclude unbounded verification in principle, in practice the Alloy Ana-
lyzer works only on finite models, reducing a given problem to a SAT instance, the analysis of which is delegat-
ed to an off-the-shelf SAT solver. Then Alloy may be used to carry out some explorations (the command builds 
instances that satisfy a given statement) or to check whether a given assertion is satisfied by all instances of the 
model (command). Therefore, as analysis is sound but carried out on finite instances only, the Alloy Analyzer is 
able to find counter-examples up to a certain bound but it cannot prove the validity of an assertion. This is not a 
problem in our case because: 

1) the system architecture we consider is fixed in advance so its number of instances may not vary and 

2) only time (i.e. the size of the time model) may be unbounded but, in our analyses, we do not aim at proving 

the absence of errors but rather that a bounded number of events does not lead to a feared situation (which 

induces that bounded time is sufficient). 

3.1.2 The Coy Modelling Framework 

We now present the Coy modelling framework, implemented as a meta-model in Alloy, i.e. a model where each 
signature is abstract and only instantiated in a second model corresponding to the system under study. We take 
inspiration in model-based safety assessment but our formalization is not specific to this sole family of proper-
ties. 

As will be seen hereafter, Coy models essentially represent hierarchical structures of transition systems com-
municating instantaneously through data ports. 

The overall structure of the framework is presented graphically in the next figure. Extension links are figured 
using black dashed arrows. As the meta-model contains n-ary relations with n > 2, the figure shows these after 
projection on parts of their domain (this is indicated using square brackets, as in conns[Port] for instance). 
Furthermore, the meta-model contains a “Time” signature: its purpose is that every signature field with Time as 
its last column can be conceptually seen as a mutable field, i.e. its value may change (discretely) over time. 
Notice that the meta-model in the following figure is projected over Time, hence it is not shown in the diagram. 

                                                      

6 Other possible multiplicities are: lone which means at most one (0..1); and set which means any number (0..*). 
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Figure 4: Graphical depiction of the Coy meta-model (projected over Time) 

3.1.2.1 Composite Structure 

Let us now delve into more details in the meta-model. In what follows, for the sake of readability, we do not 
show all Alloy facts enforcing the well-formedness of instance models or just classical properties. The basic 
architectural element is a node. Nodes are arranged hierarchically as a tree, so we use the classical Composite 
design pattern and devise a notion of AbstractNode which is inherited by signatures CompositeNode and 
LeafNode, the former pointing back to abstract nodes. 

Every node comes with a set IPort of input ports and a set OPort of output ports. These sets are disjoint and 
every port belongs to a single node. Every port carries a value at every instant (possible values may differ for 
distinct ports). 

Connections (between ports) are constrained so that they cannot cross a parent node boundary or many levels 
of composition. In other words, nodes are arranged as trees and connections can only happen between siblings 
or between a parent and a child. Furthermore, connected ports always carry the same value. 

 

abstract sig Port { 

 // a port carries one value at every instant 

  Value one -> Time, 

} 

abstract sig IPort, OPort extends Port {} 

abstract sig AbstractNode { // input and output ports 

 input : set IPort, 

 output : set Oport, 

} 

abstract sig CompositeNode extends AbstractNode { 

  // a composite node contains at least one sub-node 

 subs : some AbstractNode, 

 // port connections with siblings and between sub-nodes 

 //and this node 

  conns : subs.@output -> subs.@input 

  + input -> subs.@input 

  + subs.@output -> output, 

} { // connected ports always carry the same value 

 all t : Time, po, pi : Port - po->pi in conns 

    implies po.val.t = pi.val.t 

 // + other structural properties 

  ... 

} 

abstract sig LeafNode extends AbstractNode {...} 

3.1.2.2 Behaviour 

As Coy is mainly aimed at describing systems where atomic nodes are endowed with behaviour, we now intro-
duce a notion of state (for leaf nodes) and of events that may happen. One approach to deal with such models 
could be to rely on classical model-checkers, such as Spin or NuSMV, the modelling languages of which are 
well-suited for describing transition systems. While this is of course a possibility, our aim with using Alloy is: 

 to be able to easily adapt the Coy meta-model depending on the domain of study (e.g. to add a notion of 
connectors as in many architecture-description languages); 
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 as explained earlier, to change the model of time if need be (e.g. to go from a linear to a tree view of time, or 
to give either an interleaving or a true-concurrency semantics); 

 and above all, to allow the use of logic for specification, which brings two interesting aspects: 
▪ it provides a single language to specify both models and expected properties; 

▪ the logic allows for the expression of rather abstract properties (e.g. relying on under-specification) or 
to navigate through elements of a model to specify a given property in only one formula. 

Thus, every leaf node is in one given state at any time (the set of possible states may vary for two different 
nodes). Besides, such nodes may undergo events. An event is an instance of an event type that happens at a 
certain instant and concerns a given node: this distinction between events and event types then allows to con-
sider events of a certain type only, for instance to characterize their effects. 

Notice also we impose the end-user to give, for any leaf node, the set of its possible states and the set of event 
types that concern it: this is a bit redundant from the theoretical point of view but it provides a sort of additional 
safety check akin to a poor man's typing that we deem important from a methodological point of view. 

 

abstract sig LeafNode extends AbstractNode { 

 possibleStates : some State, 

 state : possibleStates one -> Time, 

 possibleEventTypes : set EventType, 

} 

abstract sig EventType {} 

abstract sig Event {// event occurrence 

 instant : one Time, 

 node : one LeafNode, 

 type : one EventType 

} { type in node.possibleEventTypes } 

 

Finally, as Alloy does not feature a native notion of time, we encode it by characterizing finite traces of instants. 
The fact accounting for this says how states change depending on events, at every instant. 

 

fact traces { 

//if a node state changed, there was an event concerning this node 

 all t : Time, t' : t.next, n : LeafNode | 

  n.state.t != n.state.t' implies some e : Event | 

   e.instant = t and e.node = n 

} 

 

In practice, in the context of safety and security engineering, failures and threat scenarios are modelled as event 
types, as we will see in the next section. Their effect on a node must be described as an Alloy fact. 

3.1.3 Fire detection example 

In this section, we provide an illustration of Coy with a fire detection system in a facility such as, for example, an 
airport or a port. 

3.1.3.1 Presentation of the system 

The system consists of the following components: a smoke detector and a heat detector, which are part of the 
automatic fire alarm system; a manual fire alarm pull station; the local firemen, inside the facility; and the city 
firemen, in the nearest city. 

The automatic fire alarm system, which is activated by either of the two detectors, directly calls the city firemen. 
The manual pull station, triggered by a human present on site, calls both the local and the city firemen. 

We also represent two possible failures for each of the components: (1) the loss of a component: once a com-
ponent is lost, it does not send any information, (2) an erroneous failure of a component: after this kind of fail-
ure, a component sends a corrupted data (in the case of a fire detector, for instance, it can be a false alarm or a 
false negative). Lastly, we represent three security threats scenarios (called simply threats in the reminder): (1) 
intentional wrong activation of the pull station, (2) the deactivation of the smoke detector and (3) of the heat de-
tector. 

Notice that the loss of a component and the deactivation of the smoke detector (or of the heat detector) have 
the same effect on a component (the availability is not ensured) although they do not have the same nature (the 
former is a failure, the latter is a security threat). The same applies to an erroneous failure and the intentional 
wrong activation of the pull station, which both affect the integrity of the information. Nevertheless, it is important 
to distinguish between these failure and threat events in order to allow a pure safety analysis, a pure security 
analysis, and a combined analysis. 



D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011 

  20 / 92 

 

3.1.3.2 Coy model 

The Coy model of this system imports the Coy meta-model, declares instances of signatures and relates them. 
Components of the system are modelled as Coy nodes. The following Alloy code illustrates a particular instance 
of the fire detection model at a given instant. As can be seen, at this instant, that all nodes are in the state OK 
and that all ports yield a correct data (modelled by OKVal). The occurrence of an event of type failLoss (see 
the declaration of event types below) can be observed on the node pullStation. 

Regarding the possible failures and threats mentioned above, we use the following event types, node states and 
possible values for the node ports. 

 

one sig failLoss, failErr, threatBlock, threatPull 

  extends EventType {} 

one sig OK, Lost, Err extends State {} 

one sig OKVal, LostVal, ErrVal extends Value {} 

 

Then, we can declare the components and ports, as instances of the corresponding Coy concepts. For instance, 
here is the declaration of the fire pull station. 

 

one sig pullStation extends LeafNode {} { 

 input = none and output = oPullStation 

 possibleStates = OK +Lost +Err 

 and possibleEventTypes = failLoss +threatPull 

} 

 

The model also comprises axioms stating what happens to nodes depending on observed events. An interesting 
point here is that this description is declarative and does not depend on the effective nodes and ports. Concern-
ing an event of type failLoss: 

 the event can only occur on a node which is not in the state Lost, 

 after the occurrence of the event, the node moves to the state Lost. 

Here, we chose to model events of type threatBlock in the same way (the node also moves to the state 
Lost). So, they have the same effect (but they do not occur on the same components). In further analysis, if we 
want to distinguish between the effects of both kinds of events, we just have to use a specific node state and a 
specific port value corresponding to the occurrence of threatBlock. 

The behaviour of events of type failErr and threatPull are specified in a similar way. 

 

fact behaviour { 

 all e : Event | e.type in failLoss +threatBlock 

  implies e.node.state.(e.instant) =Lost 

   and e.node.state.(e.instant.next) = Lost 

 all e : Event | e.type in failErr +threatPull 

  implies e.node.state.(e.instant) = OK 

   and e.node.state.(e.instant.next) = Err 

} 

 

The propagation of values is also described by an Alloy fact. For example, here is the description of the value 
propagation for leaf nodes with one input: 

 

// leaf nodes w/ 1 input 

all n : LeafNode, t : Time | { 

 one n.output  // tautology for this specific model, 

    // but useful if we extend it 

 one n.input 

} implies { 

 n.state.t = OK implies n.output.val.t = n.input.val.t 

 n.state.t = Err implies n.output.val.t = ErrVal 

 n.state.t = Lost implies n.output.val.t = LostVal 

} 

3.1.3.3 Properties verification 

Now we can express the safety and security properties that we want to check as Alloy assertions. We have 
mainly expressed properties related to the consequence of some failures/threats or to the robustness of the 
system to a given number of failures/threats. For instance, the following assertion states that whenever the 
smoke detector is lost (and all other nodes are OK) then the firemen can still act. 

 

assert smokeDetectorLoss { 

 all t : Time | { 

 all n : LeafNode − smokeDetector | n.state.t = OK 

  smokeDetector.state.t = Lost 

 }implies (localFiremen +CityFiremen).output.val.t = OKVal 
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} 

 

The following assertion expresses that whenever the pull station is attacked, (and all other nodes are OK) then 
at least one firemen department is able to act. 

 

assert pullStationThreatPull{ 

 all t : Time | { 

  all n : LeafNode − heatDetector | n.state.t = OK 

  heatDetector.state.t = Err 

 } implies OKVal in (localFiremen +CityFiremen).output.val.t 

} 

 

Notice that the first-order quantifiers and the object-oriented syntax allow navigating easily through the model 
and are convenient to state safety properties. 

The following assertion expresses that whenever the smoke detector is erroneous and the pull station is at-
tacked threatPull, then both local and city firemen are unable to act. 

 

assert smokeDetectorFailErrPullStationThreatPull { 

 all t : Time | { 

  all n : LeafNode − (smokeDetector +pullStation) 

   | n.state.t = OK 

   smokeDetector.state.t = Err 

   pullStation.state.t = Err 

 }implies OKVal not in (localFiremen +CityFiremen).output.val.t 

} 

 

The following assertions express the robustness of some parts of the system to possible failures/threats. We 
took benefit from the possibility to reason about a set cardinality in Alloy. Here, we count the number of events 
(corresponding to failures/threats) that occurred before the system enters a bad situation. For instance, the fol-
lowing assertion expresses that in order to make both local and city firemen unable to act properly, either the 
threat threatPull has occurred, or there has been at least two distinct failures/threats. Remark that it would have 
been also possible to reason independently about the number of failures and about the number of threats. 

 

assert noSingleFailureThreatLeadsToFiremenNotOK { 

 all t : Time | 

 OKVal not in (localFiremen +CityFiremen).output.val.t 

 implies some e : Event | 

  e.type = threatPull and lt[e.instant, t] 

  or let events = { e : Event | lt[e.instant, t] } | 

  #events ≥ 2 

} 

 

In order to check assertions, Alloy Analyzer searches for counter-examples up to a certain bound (i.e. the coun-
ter-examples are such that their signatures have a cardinality less than the bound). The bound can be given by 
the user or chosen by the tool. In general, this bounded verification is thus incomplete: the tool may not find 
counter-examples whereas there are some. But in our case, the cardinality of all the signatures (nodes, ports, 
etc.) is fixed by the model itself. Therefore, the verification performed by the Alloy Analyzer is complete. 

The aforementioned four assertions have been validated by the Alloy Analyzer (i.e. it did not find any counter-
example). 

The following assertion expresses that in order to make both local and city firemen unable to act, there has to 
be at least three failures/threats in the architecture. 

 

assert noDoubleFailureThreatLeadsToFiremenNotOK { 

 all t : Time | 

 OKVal not in (localFiremen +CityFiremen).output.val.t 

 implies let events = { e : Event | lt[e.instant, t] } | 

   #events ≥ 3 

} 

 

This last assertion is not satisfied by the model. Alloy Analyzer exhibits a counter-example where the pull station 
and the city firemen are lost after two events. The following figures show respectively the first time step and the 
second time step of this counter-example. In these figures, leaf nodes are beige rectangles, output ports are red 
trapeziums, input ports are green trapeziums and connections between ports are blue arrows. 
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Figure 5: Second time step of the counter example 
(failErr on the heat detector) 

 

Figure 6: First time step of the counter-example (failLoss 
on the pull station) 
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3.2 Integrated approach 
We have proposed and prototyped an approach which consists in decoupling the system architecture model 
from safety & security models (cf. Figure 7). In this approach, every engineer, whether architect, or security / 
safety engineer, can focus solely on his concerns, with dedicated tools and terminology. 

As of now, we chose to use two separate models: one for the safety concern and the second for the security 
concern. The main motivation for this separation is that safety and security domains are quite different in terms 
of practices, concepts used and wording. 

As the safety and security models rely on the system architecture model, we extract the required information 
(e.g. function interactions, ports and their links, data…) from the architecture model and we set up initial safety 
and security models in Safety Architect. Starting from this, safety and security engineers complete their model 
by adding safety and security dysfunctional behaviour. The safety and security models contain two kinds of in-
formation: 

 the safety and/or security dysfunctional behaviours; a safety dysfunctional behaviour represents how errors 
are propagated in the system architecture, and a security dysfunctional behaviour represents how the 
effects of security threats are propagated in the system architecture; 

 the safety and/or security properties / requirements that the system architecture must satisfy, e.g. the 
integrity of the output data shall be preserved even under specific attacks. 

These two models are then combined to produce a formal Alloy model containing all the necessary inputs for 
the analysis. The Kodkod tool formally validates the safety and security properties. If a property is violated, 
Kodkod will show a readable counter-example. Thus, the engineers can identify the best way to correct the ar-
chitecture. 

 

Figure 7: Integrated approach 

The main principles of this approach are illustrated in Figure 7. The first model transformation yields an initial 
Safety Architect model from the System Design Model. This transformation is trivial as it only reflects the struc-
tural part of the architecture. Capella functions are mapped to Safety Architect blocks. Ports give input and out-
put ports, while data links yield data links. 

Then, safety engineers and security engineers can work within Safety Architect, either using separated views or 
a merged view, to describe the way failures and security threats propagate inside the architecture: this activity is 
called dysfunctional modelling. Then dysfunctional analysis techniques already available in Safety Architect can 
be applied, such as the automatic generation of fault trees or attack trees. 

The last part of the approach consists in taking benefits from the Alloy formal specification and verification 
method, and its relying Java Kodkod API, to enhance the analyses we can perform. The idea is to build a 
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Kodkod model that represents the architecture of the system and the rules that describe the way failures and 
threats propagate inside each block, and along the architecture. Then we can use all the expressive power of 
the Alloy logic and the verification capability of Alloy Analyzer/Kodkod to check various kinds of properties. In 
the approach we propose, the building of the Kodkod model and the verification of formal properties are proto-
typed and called from Safety Architect. 

3.2.1 Alloy/Kodkod model 

Although our prototype uses Kodkod, it is more convenient to explain the main ideas behind the Kodkod model 
in Alloy terms, because Alloy is a language, whereas Kodkod is a Java API. 

The main concepts of Safety Architect are declared as Alloy signatures and fields
7
. For example, Figure 8 

shows an excerpt of the graphical view of the Alloy model corresponding to the structural part of the Safety Ar-
chitect model, in which blocks, ports, input and output ports are defined as signatures, whereas values (i.e. as-
signing a status to a port) ins, outs (i.e. associating each block with its input and output ports) and binds (i.e. 
representing bindings between ports) are defined as fields. 

 

Figure 8: Alloy/Kodkod model 

 

We also define signatures and fields to represent all the concepts of Safety Architect, such as barriers, internal 
failures, and propagation trees, which express the way threats and failures propagate inside each block, includ-
ing the effect of barriers and internal failures. 

Now, in a particular instance of an Alloy/Kodkod model, each port of each bock in the architecture is associated 
with a particular status (either OK, or one of the failure modes that are declared). The statuses of ports have to 
respect the following constraints: 

 if two ports are bound, then they have the same status, 

 the statuses of ports respect the propagation trees inside each block. 

As an illustration, the former constraint is expressed in Alloy as follows: 

 

all op : Oport | all ip : op.binds | op.value = ip.value 

 

In this formula, the term op.binds represents all the input ports that are associated with op through the field 
binds. 

3.2.2 Formal proofs 

The main goal of building a Kodkod model from a Safety Architect model is to be able to apply formal verifica-
tion. We call property, the safety and security properties that the architect is interested in verifying on a given 
system model. In this section, we present two classes of properties that we can check easily with our approach, 
in the sense that their verification does not require a high level of Alloy or Kodkod expertise. Other kinds of 
properties can be verified, but they need to be specified directly in Java, using the Kodkod API, and this requires 
specific expertise. 

                                                      

7 Please refer to §3.1.1 for a definition of signature and field. 
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3.2.2.1 Structural properties 

This first class of properties deals with the structure of the model (i.e. the blocks, their ports, the bindings be-
tween ports) but not with the safety- or security-related aspects (i.e. statuses of ports, feared events…). More 
precisely, it reflects a certain form of correction in the binding of ports: 

 

If an output port op is bound to an input port ip, then the possible statuses of op and ip (de-

fined by all the propagation trees that lead to op and all the propagation trees that take ip as 

input) are the same. 

 

This property is easily defined in Alloy/Kodkod as a formula. Since this formula relies on the signatures and 
fields related to the propagation trees, we do not express it in this document. It is defined in Kodkod in our proto-
type. Note that the non-satisfaction of this constraint is not an error: it raises a warning that points out a possible 
conceptual problem in the model. 

Other kinds of structural properties could also be expressed and checked in Java using the Kodkod API. But 
they are not predefined in the prototype and would then require a high level of expertise in Kodkod. 

3.2.2.2 Properties related to feared events 

The second class of properties that we handle is related to feared events. 

First, a feared event needs to be defined as a Boolean combination of statuses of ports, e.g.: 

 

The output port op1 has the status lost and the output port op2 has the status erroneous. 

 

This concept is defined in Kodkod in our prototype, which allows the engineer to express a number of properties 
that he wants to check over the architecture related to feared events, provided he has an expertise in Kodkod. 

The specific class of properties that we defined in our prototype (in order to ease its verification by an engineer) 
concerns the minimum number of failures that is necessary to reach a feared event: the method atLeastNFail-
ures(FearedEvent fe, int n) is defined as a formula expressing the following statement in Alloy/Kodkod logic : 

 

If a feared event occurs, then the set of failures that occurred is greater than n. 

 

We can also express in Kodkod properties about the consequences of a threat or a failure, or about the impact 
of a given (set of) threat(s) or failure(s) on a feared event, etc., but this would require an expertise in Kodkod. 

Kodkod is able to formally check these properties and it answers: 

 either “correct”, if the property is true for every possible instance of the architecture, i.e., exploring for each 
port every possible status that is compliant with the aforementioned constraints of the Kodkod model, 

 or “not correct”, in which case, it shows an instance that violates the property. 

3.3 Lessons learnt 
In this chapter, we have experimented different formal techniques relying on the Alloy method to support safety 
and security co-engineering. 

First, we have proposed a standalone approach, Coy, in which the users (i.e. safety and security engineers) are 
expected to model the system architecture and the properties to check using the Alloy language. This work re-
quires specific expertise. 

Then, we have proposed an approach that relies, from the user point of view, on existing industrial tools: Capel-
la for architecture design and Safety Architect for safety and security engineering. The formal verification capa-
bilities are directly available from (an extension of) Safety Architect. Some of the verification queries are pre-
defined and easy to call from Safety Architect. For other formal verification activities, which use the underlying 
Kodkod model, the user must master the Kodkod language. 

These two approaches allow for the generation of a proof that certain properties related to feared events are 
fulfilled, and allow for the generation and study of scenarios that violate a property, if there are some. In the first 
approach, Coy allows specifying rich architecture models and offers a high expressiveness in terms of proper-
ties to verify. This is particularly true if the temporal evolution of the system architecture or the temporal ordering 
of failure/threat occurrences matters. In the second approach, the expressiveness is limited, e.g. the architec-
ture model is purely static, the user cannot add new concepts to the language, etc. But in this second approach, 
an expertise in Alloy is not needed, at least to check the properties that are pre-defined in the approach. 
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4 An analysis of a third-party tool: TTool/AVATAR 

Following the state of the art work presented in Part A of this deliverable, TTool/AVATAR appeared to us as one 
of the most interesting tools readily available. We have therefore decided to perform an in-depth analysis of the 
tool. 

The Automated Verification of reAl Time softwARe tooled-up profile (AVATAR, 2015) is an extension of SysML 
(System Modelling Language), provided by Telecom Paris-Tech, enabling the formal modelling and verification 
of safety and security properties. 

TTool, the toolkit implementing the AVATAR profile, transforms the AVATAR model into the appropriate timed 
automata or pi-calculus model, launches UPPAAL or ProVerif in the background to verify respectively safety 
and security properties, and provides the designer with the results, as a textual display and / or as back-
annotations on the AVATAR model. The simplicity of the profile and the tool’s ergonomics enable system / soft-
ware designers with a generic UML/SysML background to formally model and verify safety and security proper-
ties, where formal method experts are classically needed. 

Even though it is possible to develop an application completely using AVATAR, the goal of AVATAR is essen-
tially to model the control logic of an application in order to verify its safety and security properties. The use of 
AVATAR is thus compatible with the existence of a legacy system / software engineering workbench. 

With respect to security, AVATAR supports the modelling of confidentiality and authenticity properties. Security 
properties are modelled as SysML pragmas, thus inducing no significant formal modelling overhead; in addition, 
formal verification is straightforward, allowing formal proofs to be produced at little costs. The scope of applica-
tion is the definition of new secure communication protocols, or the securing of existing communication proto-
cols. It is to be noted that the relevance of AVATAR may be limited for companies using standard communica-
tion protocols. 

With respect to safety, AVATAR supports the modelling of any safety property, through the use of SysML ob-
server blocs and the reachability and / or liveness of some of the observer states. Temporal operators allow for 
the modelling of complex safety properties for real-time systems. The scope of application is therefore very 
wide, and should be usable by any company designing safety-critical systems. However, the current modelling 
approach based on SysML represents a significant work overhead; in the long run, safety properties should be 
modelled in AVATAR using the TEPE (TEmporal Property Expression) language, bringing down the formal 
modelling overhead to an acceptable level. 

A complete evaluation of AVATAR is provided below. 

4.1 Introduction to the AVATAR UML / SysML profile 
The AVATAR profile (Apvrille, 2015) stands for Automated Verification of reAl Time softwARe. It targets the 
modelling and formal verification

8
 of real-time embedded systems. 

To support the use of UML and SysML models in a verification-centric method, the AVATAR profile rests upon: 

 a toolkit called TTool for the edition and the simulation
9
 of extended UML and SysML diagrams; 

 a formal property expression language called TEPE, for TEmporal Property Expression language; 

 the third-party UPPAAL and ProVerif tools dedicated to the formal validation of safety and security proper-
ties, as expressed in the AVATAR diagrams. 

TTool (pronounce "tea-tool"), whose first version was published in 2003, currently supports several UML pro-
files, including: 

 AVATAR
10

: UML 2.x and SysML-based profile for the modelling and formal verification of real-time embed-
ded systems; 

 DIPLODOCUS: UML profile dedicated to the partitioning of Systems-on-Chip; 

 Network Calculus: profile dedicated to the dimensioning of critical systems; 

 CTTool: profile dedicated to the modelling and verification of component-based and distributed systems; 

                                                      
8
 We insist here on the formal verification, rather than on the modelling, because modelling may be limited to the minimal effort necessary to 

support formal verification. 
9
 Simulation capabilities are not detailed in this document. For the end-user interested by this feature, it is to be noted that method calls are 

not executed during the simulation. 
10

 AVATAR replaces TURTLE (Timed UML and RT-LOTOS Environment). TURTLE was a UML 1.5 profile targeting the modelling and for-
mal verification of real-time embedded systems, and is obsolete since end 2010. 
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 SysML-sec, a profile created with a sub-part of AVATAR and a sub-part of DIPLODOCUS, with a new meth-
odology. 

TTool and most of its profiles are provided by Télécom Paris Tech
11

. They have given way to multiple 
publications, all referenced and availble on the TTool web site (Apvrille, 2015). They are used for teaching at 
EURECOM (“Ecole d’ingénieur et centre the recherche en télécommunications”). TTool’s external references 
include Thales Alenia Space

12
, UDcast, Texas Instruments

13
, Freescale, the EVITA project, the SACRA project, 

ISAE, LAAS-CNRS, Tesa, INRIA, and DOCEA Power. The latest version of the TTool package (including the 
different profiles) is v0.97, published in January 28

th
, 2015. This shows that the tool has regularly evolved and 

has been maintained for close to 15 years. During our tests, we started with version 0.97, then switched to the 
beta version of 0.98, which allowed us to benefit from the latest features and some specific patches. 

The TEmporal Property Expression (TEPE) language (Knorreck, et al., 2010) is a graphical and formal language 
based on SysML parametric diagrams provided by Télécom Paris Technical and seamlessly integrated to 
AVATAR. TEPE allows for the expression of physical time and unordered signal reception. In TEPE, various 
design elements, such as SysML blocks, attributes, and signals, can be combined together with logical (e.g., 
sequence of signals) and temporal operators (e.g., a time interval for receiving a signal) to build up complex but 
graphical properties. The strength of the AVATAR-TEPE combination is that requirement capture, analysis, de-
sign, property description and verification tasks can seamlessly be accomplished in the same TTool environ-
ment. The designer is merely required to have minor UML skills and does not need to be familiarized with formal 
languages like CTL or UPPAAL. 

4.1.1 Third-party companion tools 

UPPAAL (UP4ALL) is an integrated tool environment for modelling, validation and verification of real-time sys-
tems modelled as networks of timed automata. UPPAAL consists of three main parts: a description language, a 
simulator and a model-checker. The description language is a non-deterministic guarded command language 
with data types, e.g. bounded integers, arrays. It serves as a modelling or design language to describe system 
behaviour as networks of automata extended with clock and data variables. The simulator is a validation tool 
which enables examination of possible dynamic executions of a system during early design (or modelling) stag-
es and thus provides an inexpensive mean of fault detection prior to verification by the model-checker, which 
covers the exhaustive dynamic behaviour of the system. The model-checker can check invariant and reachabil-
ity properties by exploring the state-space of a system, i.e. reachability analysis in terms of symbolic states rep-
resented by constraints. The tool is developed in collaboration between the Department of Information Technol-
ogy at Uppsala University, Sweden, and the Department of Computer Science at Aalborg University in Den-
mark. UPPAAL is commercialised through a spin-off called UP4ALL International AB. 

ProVerif (Blanchet) is a toolkit that relies on Horn clauses resolution for the automated analysis of security prop-
erties over cryptographic protocols. ProVerif takes as input a set of Horn Clauses, or a specification in pi-
calculus (process algebra) and a set of queries. ProVerif outputs whether each query is satisfied or not. In the 
latter case, ProVerif tries to identify a trace explaining how it came to the conclusion that a query is not satisfied. 
In ProVerif, a specification takes the form of a system represented as spi-calculus processes, and properties are 
represented as queries. Queries can be used to express confidentiality

14
 and authenticity

15
 requirements. 

ProVerif also makes it possible to study the reachability of events, based on queries; therefore, ProVerif may 
also be used for proving safety properties on the system augmented with the attacker. ProVerif integrates its 
own attacker model, which is a process implementing a Dolev-Yao approach (Dolev, et al., 1983). ProVerif is 
provided by INRIA. 

4.1.2 Licences 

TTool is a software computer program distributed under two licenses: 

 BSD+ license for some source files and icons, distributed by SUN Microsystems; 

                                                      
11

 Ludovic Apvrille is the main developer of AVATAR, with some contributions by a few students; one LIP6 permanent and one LIP6 student 
are also currently contributing on the deployment features. On SysML-sec, there are currently multiple PhD students working, and some 
code produced by Freescale has been integrated, the lot being validated by many significant test cases. AVATAR should directly benefit 
from the work on SysML-sec. In the past, there have been contributions to AVATAR by Freescale, PhD students and students. 

12
 According to Isabelle Buret (TAS), the experience with TURTLE, the ancestor of AVATAR, was non-conclusive. The approach was 
deemed too singular or “avant-garde” for the target, i.e. mission-critical embedded software for satellites. 

13
 Texas Instruments funded the development of DIPLODOCUS for 5 years, without directly contributing to the code, but showing interest in 
the results. 

14
 Confidentiality queries directly express which data must not be accessible to the attacker, e.g., that a private key shall not be accessible to 
an attacker: query attacker:myKey. 

15
 Authenticity of messages relies on ProVerif events and correspondence assertions. Whenever a message m, sent by a process A to a 
process B, must be authenticated, one event is included in each process: one is included in A before the sending of m (e.g., 
eventSendM), and one after the receiving of m (e.g., eventReceiveM). Since the attacker is not allowed to execute events, it suffices to 
prove that to each receiving event of m corresponds exactly one sending of m. Thus, an injective query is used to model authenticity: 
query evinj:eventReceiveM(x) ==> evinj:eventSendM(x). 
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 CeCILL license for all other parts. 

UPPAAL is available as a commercial version for industry and national research agencies, or as a free academ-
ic version, for academic users. 

ProVerif, is distributer either as a source package under the GNU General Public License, or as a binary pack-
age for Windows, under the BSD license. 

4.1.3 Tool installation and configuration assessment 

Complete instructions for the installation and configuration of TTool / AVATAR are given on the web site 
(Apvrille, 2015). Supported platforms include Windows and Unix (incl. MacOS). 

We performed the installation on Windows XP, and later on Windows 7. 

The installation was straightforward, including for third-party companion tools, i.e. UPPAAL and ProVerif. 

4.1.4 User manual 

The AVATAR profile for TTool has no user manual as such. A lot of guidance can be found on the web site 
(Apvrille, 2015), including material for EURECOM students (Apvrille, 2014) (Apvrille, et al.). However, the mate-
rial is incomplete, and often obsolete. 

To proceed, we contacted Telecom Paris Technical directly. Excellent tool support was found through direct 
contact with Prof. Ludovic Apvrille, and a PhD student, Florian Lugou. They provided advice, examples and 
even patches within hours. 

4.2 Methodology assessment 
The AVATAR profile for TTool comes with its own methodology. It supports six

16
 methodological phases (cf. 

Figure 10): 

 requirements capture: requirements and properties are structured using the AVATAR requirement dia-

grams, as per SysML; at this stage, requirements are just defined with a specific label – see the property 

modelling phase below for the formalisation of the requirements; during this phase, system and environmen-

tal assumptions may be captured using AVATAR Modelling Assumptions Diagrams (MADs). 

 system analysis: a system may be analysed using usual UML diagrams, i.e. use case, context, activity and 

sequence diagrams; the system may also be analysed using attack trees, but since the AVATAR attack trees 

involve Blocks, they need to be developed iteratively with the system design; 

 system design: the system is designed in terms of communicating SysML blocks described in an AVATAR 

block diagram, and in terms of behaviours described with AVATAR state machines
17

; 

 property modelling: the formal semantics of properties is defined using AVATAR property diagrams; model-

ling is performed using the TEmporal Property Expression (TEPE) language within Parametric Diagrams 

(PDs); since TEPE PDs involve elements defined in the system design (e.g, a given integer attribute of a 

block), TEPE PDs must be defined iteratively with the system design; 

 formal verification: this phase can be conducted over the system design, and for each test case defined in 

the requirement diagrams; 

 code generation: can finally be used to generate a fully executable code; the latter can be compiled and 

executed on the SoCLib prototyping platform directly from TTool. 

Property modelling, using the TEPE language, comes with its own methodology. The main lines are given be-
low. For more details concerning the TEPE language concepts, please refer to Annex B, or to (Knorreck, et al., 

2010). 

 

                                                      
16

 The (obsolete) TURTLE profile supported four methodological phases: requirements capture, system analysis, system design, and de-
ployment. 

17
 A state-machine diagram is automatically created for each new block. 
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Figure 9: Creating a diagram for 
the methodology 

 

Figure 10: The six phases of the AVATAR methodology 

A TEPE parametric diagram
18

 is supposed to be constructed in the following way: 

 First, blocks are represented with their particular attributes and signals subject to verification. These entities 
should normally have been identified during the design phase. 

 Values derived from original attributes and signals are introduced (using equation and alias operators). 

 The reasoning about the sequential and temporal behaviour of the system is expressed in terms of logical 
and temporal operators connected to signals and properties. These logical and temporal operators can be 
cascaded. 

 Several properties may be merged using logical property operators (conjunction, disjunction, property defini-
tion operators). 

 Finally the formal property is labelled to link it to an informal SysML requirements diagram and to determine 
whether (non-) liveness or (non-) reachability should be verified on that property. 

To avoid overloaded diagrams, the constituting properties of a requirement can be spread over several dia-
grams. 

 

 
Assessment 
take-away 

The AVATAR profile is provided with a methodology and its integration inside the tool as a 
specific diagram with a traceability feature to other diagrams has been much appreciated. 

However, the methodology would require some fine tuning to deal with dependencies between 
steps, and would gain in being more detailed.  

4.3 Tool assessment 
The tool assessment is performed using a simple running example and follows the recommended methodology 
(cf. §4.2). 

The running example is a case of a microwave oven that is used to heat meals for a defined duration on the 
press of a button, or via a remote control command. Whenever the door is opened, the magnetron must be 
turned off (safety constraint), and to avoid an overload of the magnetron, it should not be operated more than 10 
units of time at full power (safety constraint). The remote control must be secured, that is, a remote control must 

                                                      
18

 In TTool, the AVATAR property diagrams are organised under the umbrella of the requirements diagrams. 
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be attached to only one specific oven (authenticity constraint), and messages sent from the remote control must 
not be disclosed

19
 (confidentiality constraint). 

Using the tool, a diagram can be created (cf. Figure 9) with the phases of the methodology (cf. Figure 10). An 
interesting feature is that each phase of the methodology can list the diagrams that are related to it. A minor 
issue is that the steps of the methodology diagram are not identical to the steps described in the methodology 
documentation (Apvrille, 2015), even if a mapping may be extrapolated. 

4.3.1 Elicitation of assumptions 

AVATAR allows for the capture of assumptions. Assumptions are characterised by the following tags: 

 Type: it is possible to choose between two stereotypes, namely <<System Assumption>> and <<Environ-
ment Assumption>>; 

 Name: identifier (spaces are not allowed); 

 Text: it allows for the description of the assumption in an informal way; 

 Durability: this tag may take for value Undefined, Permanent or Temporary; 

 Source: this tag may take for value Undefined, End-user, Stakeholder, or Model creator; 

 Status: this tag may take for value Undefined, Applied or Alleviated; 

 Scope: this tag may take for value Undefined, Language, Tool, Modelling activity or Verification. 

 

Figure 11: Example of AVATAR Modelling Assumption Diagram 

In addition to the possibility of creating assumptions, the AVATAR Modelling Assumptions Diagram allows for: 

 decomposing assumptions; 

 versioning assumptions; 

 adding references to diagrams and / or model elements that meet those assumptions. 

Figure 11 shows an example of an AVATAR Modelling Assumption Diagram with the assumption that “The wire-
less interface of the microwave oven and its remote control share a common symmetric encryption key”. The 
assumption can be traced for its implementation to the block diagram in general, and two of its blocks in particu-
lar (cf. §4.3.4). 

 

 
Assessment 
take-away 

The AVATAR capability of explicitly capturing assumptions and tracing them to design ele-
ments is deemed very important. 

However, many properties in AVATAR are captured as pragmas, and traceability is not sup-
ported to UML comments. This needs to be enhanced. 

4.3.2 Requirements capture 

TTool allows for the capture of requirements, as per SysML. Some of these requirements may however be ste-
reotyped as safety and security requirements, possibly derived from functional requirements. See Figure 12 for 

                                                      
19

 This constraint is a bit artificial in the case of a microwave oven, but it allows for the coverage of confidentiality, an important security 
criterion. 
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examples of safety requirements, and cf. Figure 13 for examples of security requirements. These requirements 
are explicitly shown here because they will be used throughout the running example. 

In addition to the standard SysML tags (i.e. id and text) on requirements (OMG SysML, 2012), the tags defined 
on a standard AVATAR requirement are: 

 Type, whose possible (fixed set) values are: 

 Functional, 
 Non-Functional, 
 Performance, 
 Privacy, 
 Confidentiality, 
 Non-repudiation, 
 Controlled access (authorization), 
 Availability, 
 Immunity, 
 Integrity, 
 Data origin authenticity, 
 Freshness, 
 Other; 

 Risk, whose possible (fixed set) values are: 

 Low, 
 Medium, 
 High; 

 References. 

 

Figure 12: AVATAR requirements diagram for the microwave system (extract with safety requirements) 

When the requirement is stereotyped as a safety requirement, an additional tag called Violated action is defined. 
Because safety requirements are verified through the use of observers (cf. §4.3.5.2 and §4.3.6.6), it is possible 
to document here which action of a model observer will be triggered when the safety requirement is violated. 
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Figure 13: AVATAR requirements diagram for the microwave system (extract with security requirements) 

When the requirement is stereotyped as a security requirement, an additional tag called targeted attacks (cf. 
Figure 13) is defined. The latter allows for the tracing of the requirement to an attack tree node, as described in 
§4.3.3. The attribute has been implemented to allow for an automated check of the coverage of attacks, but, at 
the date of writing this report, the verification itself has not yet been implemented. Moreover the label of the at-
tack tree node is currently entered textually, and there is no syntax verification that this attack tree node really 
exists. The implementation of the automated check of the coverage of attacks is in TTool’s improvement 
roadmap. 

 

 
Assessment 
take-away 

The AVATAR extension to SysML requirements seems interesting. 

However, the full potential of the extensions cannot actually be exploited because the neces-
sary analysis functions have not (yet) been implemented. 

4.3.3 System analysis 

To support system analysis, TTool implements: 

 use cases diagrams, cf. Figure 42; 

 context diagrams, cf. Figure 43; 

 sequence diagrams, cf. Figure 44; 

 activity diagrams, cf. Figure 45; 

 and attack tree diagrams, cf. Figure 14. 

Since the first four types of diagrams are not specific to safety and security engineering, we did not assess 
AVATAR with respect to these diagrams, and some illustrations are only given in Annex A – Microwave Use 
Case Supplementary Data on page 56. Thus, we present here, as part of system analysis, only the attack tree 
diagram of AVATAR (Apvrille, et al., 2014). 

Instead of using a traditional attack tree approach, the AVATAR methodology suggests that threats can be 
modelled with a more relational approach, using slightly customized SysML parametric diagrams. Threats are 
modelled as values embedded into blocks that represent the target of the attacks, thus achieving a representa-
tion that is more compact and better mapped to the system architecture. Attacks (i.e. artefact stereotyped with 
<< attack >>) can be linked together with logical operators, like OR, and AND, as well as temporal causality 
operators, like SEQUENCE, BEFORE, or AFTER. The latter constructs are helpful to describe situations of real-
time embedded systems in which there is a maximum duration between two causally related attacks, e.g. due to 
the expiration of a time-limited authentication.  

As mentioned in §4.3.2, security requirements can be linked to attacks. 

Figure 14 shows an attack tree for the flashing process of the microwave oven running example. It is assume 
that the flashing can be done remotely (i.e. via Internet), or by a maintenance station. 

The documentation provided herein on attack trees is rather short as the approach is new and still under devel-
opment as part of the SysML-sec project at Telecom Paris-Tech. Further publications are expected soon 
(Apvrille, et al., 2015). 
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Figure 14: Example of AVATAR attack tree 

A weakness of the AVATAR implementation is the fact that there is no consistency check between the SysML 
blocks defined in the context diagrams, the attack tree diagrams and the design block diagrams. 

A weakness of the AVATAR methodology is the fact that attack tree diagrams may be defined only after a first 
system design has been performed. Thus, some form of loop should be enacted between the Analysis and the 
Design phases of the methodology. 
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Assessment 
take-away 

The AVATAR version of the attack tree is an innovative relational approach. It needs to be as-
sessed with respect to scalability. 

4.3.4 System design 

System design is the phase of the system / software life-cycle for which AVATAR brings the most added-value 
with respect to safety (Apvrille, et al., 2013) and security (Pedroza, et al., 2011). This assessment section is 
therefore rather long and organised per major AVATAR feature. The main diagram for the AVATAR system de-
sign is the block diagram, with the automatic creation of a state-machine diagram per block defined in the block 
diagram. 

In line with SysML, an AVATAR block defines a list of attributes, methods and signals. Signals can be sent over 
synchronous or asynchronous channels

20
. Channels are defined using connectors between ports. Those con-

nectors contain a list of signal associations. 

AVATAR state machine diagrams are built upon SysML state machines, including hierarchical states, but en-
hanced with temporal operators to deal with task complexity and delay between tasks. 

This section only describes enhancements with respect to standard SysML diagrams. 

4.3.4.1 Defining blocks to handle secured communications 

Handling secured communications is a common requirement for security engineering, and indeed, our case 
study has one such requirement (cf. Figure 13). AVATAR provides specific support for this. 

The AVATAR block diagram allows for the creation of two types of blocks (cf. Figure 15): 

 standard SysML blocks, stereotyped <<block>> in accordance to the SysML standard (OMG SysML, 2012); 

 blocks that need to handle secured communications, stereotyped <<cryptoblock>>. 

 

Figure 15: AVATAR blocks and cryptoblocks 

The crypto block presupposes the existence of two data types called Key and Message (cf. Figure 16). These 
data types must be defined by the designer. 

                                                      
20

 From the ProVerif viewpoint, successive flows on a channel are not ordered; for its proof, ProVerif will verify all sequencing options, pos-
sibly leading to a combinatorial explosion. The designer must be careful not to multiply flows if they can be concatenated within a unique 
flow. 
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Figure 16: Data types required for the AVATAR cryptoblocks 

Using these two data types, the cryptoblock defines 19 methods (with a package visibility) that are commonly 
used to handle secured communications: 

 aencrypt(Message msg, Key pub) and adecrypt(Message msg, Key priv), for respectively encrypting and 

decrypting messages with asymmetric keys; 

 sencrypt(Message msg, Key k) and sdecrypt(Message msg, Key k), for respectively encrypting and decrypt-

ing messages with a symmetric key; 

 MAC(Message msg, Key k) and verifyMAC(Message msg, Key k, Message macm), for respectively compu-

ting and verifying message authentication codes; here, the model is very strong: it considers the MAC essen-

tially as a random oracle
21

, which is much stronger than the typical computational assumption on MACs (un-

forgeability); 

 sign(Message msg, Key priv) and verifySign(Message msg, Message sig, Key pub), for respectively signing 

and verifying the signature of a message; 

 hash(Message msg), for generating a hash ; it takes as input and returns a message; it captures pre-image 

resistance
22

, second pre-image resistance
23

 and collision resistance
24

 properties;  

 pk(Key k), which takes an argument of type private key and returns a public key, to capture the notion of 

constructing a key pair; in §4.3.4.2, a pragma is defined to support the pairing of keys prior to system execu-

tion; the pk() method supports dynamic pairing during system execution; 

 cert(Key pub, Message caSignedPub), verifyCert(Message cert, Key caPub) and getpk(Message cert) for 

respectively creating a cryptographic certificate
25

, verifying a cryptographic certificate and extracting the pub-

lic key from the cryptographic certificate; 

 concat2(Message msg1, Message msg2), concat3(Message msg1, Message msg2, Message msg3) , con-

cat4(Message msg1, Message msg2, Message msg3, Message msg4) and get2(Message msg, Message 

msg1, Message msg2), get3(Message msg, Message msg1, Message msg2, Message msg3) and 

get4(Message msg, Message msg1, Message msg2, Message msg3, Message msg4) for concatenating 

messages, and reversely, extracting a message from a concatenated message. 

The concat and get functions are rendered necessary by the fact that ProVerif supports only one datum at a 
time in a communication channel. The concat functions return an object of type Message. The get functions 
allow retrieving the multiple instances of messages that were concatenated using a concat function. 

It is important to note that the use of the <<cryptoblock>> is not necessary to handle secured communications 
using AVATAR. It is only shorthand to declare usual cryptographic functions. The 19 methods predefined on a 
cryptoblock may be redefined by the designer on a standard SysML block. If the method signatures are pre-
served, the methods will be recognised for what they are, as defined above. 

The microwave oven design is made using several types of blocks and elements (see Figure 17): 

 a main block named RemotelyControlledMicrowave, which contains all other blocks modelling the system, 

i.e. the RemoteControl, and the MicroWaveOven, which is itself composed of a OvenWirelessComminuca-

tionUnit, a Microcontroller, a Magnetron, a Door, a Bell and a ControlPanel; each block declares attributes, 

methods and signals; 

 the declaration of two data types (i.e. Key and Message); 

 the declaration of communication channels
26

 between blocks; 

 the declaration of a security-related constraint in the note located at the top of the diagram. 

                                                      
21

 I.e., a theoretical black box that responds to every unique query with a truly random response chosen uniformly from its output domain. 
22

 I.e., for essentially all pre-specified outputs, it is computationally infeasible to find any input which hashes to that output. 
23

 I.e., it is computationally infeasible to find any second input that has the same output as a specified input. 
24

 I.e., it is computationally infeasible to find any two distinct inputs x, x′ which hash to the same output. 
25

 A cryptographic certificate is a user's public key, which has been signed and encrypted using the private key of a well-known Certificate 
Authority. 

26
 Ports filled in black represent synchronous communication whereas ports filled in white represent asynchronous communications. Signals 
and ports can be used by the block declaring them, and by the blocks it contains. For example, all blocks may use the asynchronous 
channel connecting RemotelyControlledMicrowave to itself. 
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Note here that the RemoteControl and the OvenWirelessCommunicationUnit have been declared as cryp-
toblocks. 

 

Figure 17: Overall AVATAR Block Diagram for the Microwave System 

A minor weakness of the AVATAR implementation is the fact that blocks cannot be refactored, for example to 
change their stereotypes from <<block>> to <<cryptoblock>>. 

 

 
Assessment 
take-away 

The AVATAR cryptoblock extension to SysML blocks is a key feature of AVATAR with respect 
to security engineering: it is both easy to use and highly productive to design secure communi-
cations. 

4.3.4.2 Modelling cryptographic keys 

This section explains how symmetric and asymmetric keys can be declared. 

Pre-sharing of symmetric keys between explicitly stated actors 

When symmetric keys are used, it is important to capture the fact that the keys are confidential and pre-shared 
between the communicating actors prior to the communication itself. 

SysML offers several ways to share data between classes, using for example block attributes, or using a dedi-
cated block storing shared knowledge. Unfortunately, those solutions suffer from two drawbacks: (i) the sharing 
is not really explicit, i.e., it is not clear which block intends to use the shared data; (ii) the sharing is defined for 
the entire system execution. To overcome those two limitations, AVATAR proposes to use specific directives - 
or pragmas - in notes of block diagrams. The syntax of the two pragmas is the following: 

#InitialSystemKnowledge BlockID.attributeID [BlockID.attributeID]* 

#InitialSessionKnowledge BlockID.attributeID [BlockID.attributeID]* 
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The pragmas specify that the values of the listed attributes are identical and shared respectively prior
27

 to the 
use of the system, or the running of a session. 

In our running example (cf. Figure 17), the assumption “The wireless interface of the microwave oven and its 
remote control share a common symmetric encryption key” (cf. §4.3.1) is captured as follows: 

#InitialSystemKnowledge RemoteControl.PSK OvenWirelessCommunicationUnit.PSK 

In addition, to cover the confidential nature of the key, AVATAR proposes another pragma, whose syntax is as 
follows: 

#SecrecyAssumption BlockID.attributeID 

According to (Blanchet, et al., 2014), this pragma formally asserts that the attacker cannot have access to the 
key. This assumption differs from the informal assumptions discussed in §4.3.1 in that this assertion is checked 
by ProVerif, thus preserving soundness. It also differs from the confidentiality property (cf. §4.3.5.1) in that, if the 
claim is true, no feedback is given by the tool, and if the claim is false, the verification is stopped prior to the 
verification of any other property (cf. Figure 18). 

 

Figure 18: Secrecy assumption verification error 

This syntax, based on pragmas, correctly covers the modelling need for the pre-sharing of confidential symmet-
ric cryptographic keys. However, a small inconvenience of this approach is that traceability of security require-
ments to the pragmas cannot be ensured, because UML notes do not have identifiers. 

Pairing public and private keys 

When asymmetric keys are used, it is important to model the fact that: (i) the public and private keys are paired; 
(ii) the public key is indeed public, and therefore known to the attacker and all communicating parties; (iii) the 
private key is indeed secret. To cover all these modelling needs for key pairing before system execution, 
AVATAR proposes to use a set of three pragmas: 

#PrivatePublicKeys BlockID privKeyAttributeID pubKeyAttributeID 

#InitialSystemKnowledge BlockID.attributeID [BlockID.attributeID]* 

#SecrecyAssumption BlockID.attributeID 

The first pragma declares the pairing of the public and private keys. With respect to the attacker model of 
ProVerif, this pragma also implicitly publishes the public key to the attacker. 

The second and third pragmas are identical to the ones used for symmetric keys: they simply allow declaring 
that the communicating parties all store a copy of the same public key, and that all these copies are confidential. 

An example of static key pairing, i.e. pairing before system execution, is given in Figure 19. In case dynamic 
paring (i.e. pairing during system execution) is required, the pk() function can be used, cf. §4.3.4.1 for more de-
tails. 

                                                      
27

 For the designer, it is important to note that these attributes must not be assigned a value at runtime, or else the shared value property is 
considered lost. 
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Figure 19: Example of static key pairing 

As for the symmetric keys, this syntax correctly covers the modelling need, but forbids traceability of security 
requirements to the pragmas. 

About certificates 

AVATAR does not allow for the modelling of initial knowledge concerning certificates. This means that when a 
system is assumed to have one or more pre-installed certificates, then the complete installation process involv-
ing the certification authority must be designed using state-machines. 
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Assessment 
take-away 

The AVATAR extensions to model cryptographic keys are concise, expressive and readable 
with respect to defining different types of keys. 

AVATAR is a significantly weaker concerning the modelling of certificates, since certificates 
can only be modelled dynamically (i.e. no initial knowledge concerning certificates). This ap-
proach may become dramatically complex in case of certification chains. 

4.3.4.3 Defining the real-time behaviour of blocks using temporal operators in state-machines 

 

Figure 20: AVATAR block state-machine of the microwave oven controller 

Each time a block is created, TTool creates an empty state-machine diagram for that block. AVATAR state ma-
chine diagrams are built upon SysML state machines, enhanced with two temporal operators to support real-
time system schedulability analysis: 

 after (tmin, tmax): it models a variable delay during which the activity of the block is suspended, waiting for a 

delay between tmin and tmax to expire; 

 computeFor (tmin, tmax): it models a time during which the activity of the block actively executes instruc-

tions, before transiting to the next state: that computation may last from tmin to tmax units of time. 

The most important state-machine for the microwave oven running example is the state-machine of the Control-
ler block; it is given in Figure 20. It shows multiple uses of the after() method. 

 
Assessment 
take-away 

The temporal operators offered by AVATAR are very far from the capabilities of MARTE, but 
they offer the minimal operators to start defining the real-time behaviour of blocks. 

4.3.4.4 Defining the communication architecture 

With AVATAR, the goal of the communication architecture is only
28

 to support the application’s control logic. 
This can (and must) be done using simple types (i.e. Int, Bool, and Timer) or user-defined data types, but the 

                                                      
28

 The application’s algorithms, requiring more complex data types, must be written in C code, as part of the body of methods. 
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latter may themselves only be defined using integers and Booleans. Moreover, if the intent is to use ProVerif, 
the communications must be limited to a single datum element per communication channel flow

29
. 

 

Figure 21: Declaration of Flow Properties of type Signal 

The communication architecture is designed with flow properties of type Signal. An “out” FlowProperty of type 
Signal means that the owning Block may send the signal via connectors and an “in” FlowProperty means that 
the owning block is able to receive the Signal (cf. Figure 21). 

 

Figure 22: Configuring communication channels with respect to security 

The association between “in” and “out” signals is performed through the configuration of port connectors, cf. 
Figure 22. Beyond the usual configuration, e.g. synchronous vs. asynchronous communication, the AVATAR 
settings include a toggle switch specifying if the connector represents a private channel, i.e. a channel that an 
attacker cannot listen to. 

                                                      
29

 For complex flows, see the get() and concat() methods in §4.3.4.1. 
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In our running example, a synchronous broadcast public connection is configured between the remote control 
and the oven. Connections between elements inside the oven are considered private. 

TTool/AVATAR integrates, through the use of ProVerif (Blanchet), its own attacker model, which is a process 
implementing a Dolev-Yao approach (Dolev, et al., 1983). In other words, the attacker model is implicit, i.e., 
there is no need to model an attacker either at block diagram level, or at state machine diagram level. The pro-
cess implementing the Dolev-Yao approach acts like an adversary relying upon a set of known names, variables 
and terms which is referred to as knowledge. The increase of the attacker knowledge relies on public channel 
probing and execution of functions that are non-prohibited to the attacker. The attacker is assumed to be an 
active eavesdropper, i.e. someone who: (i) can obtain any message passing through public networks; (ii) is a 
legitimate user of the network, i.e. can initiate a conversation with any other user; (iii) has the opportunity to be a 
receiver to any other user. More details are given in (Dolev, et al., 1983) and (Pedroza, et al., 2011). 

 

 
Assessment 
take-away 

Overall, the AVATAR extensions to SysML for the communication architecture are deemed 
useful and easy to configure. 

4.3.5 Property modelling 

This section should normally corresponds to the Property Modelling phase of the AVATAR methodology (as 
described in §4.2), which is dedicated to the modelling of safety properties using the TEPE language. However, 
the transformation of TEPE towards UPPAAL has not (yet) been implemented, thus rendering the formalisation 
somehow useless, because automated verification cannot be performed. This section therefore focuses on the 
specification of security properties (cf. §4.3.5.1) and safety properties (cf. §4.3.5.10) that can be formally veri-

fied. The reader interested in the TEPE language and the way to formalise safety properties using TEPE may 
refer to Annex B and Annex C. 

4.3.5.1 Modelling of security properties 

Security properties can usually be defined with a criterion (e.g., confidentiality), and with a few elements related 
to that criterion (e.g., the confidentiality of an attribute of a block). In AVATAR, that simplicity results in a simple 
modelling solution relying on pragmas provided in notes of block diagrams. 

Confidentiality 

Confidentiality is the assurance that information is not disclosed to system entities (users, processes, devices) 
unless they have been authorized to access the information. With AVATAR, the confidentiality of an attribute of 
a block is modelled as a simple pragma provided in the note of a block diagram, according to the following syn-
tax: 

#Confidentiality BlockID.attributeID 

In our running example, we have a confidentiality requirement (cf. Figure 13), stating that “Data sent by the re-
mote control of the microwave shall remain confidential”. The corresponding property in AVATAR is illustrated in 
Figure 23. 

 

Figure 23: Example of confidentiality property 

Details on the verification of a confidentiality property is given in §4.3.6.2.  

Authenticity 

Authenticity is confidence in the validity of a transmission, a message, or message originator. In AVATAR, the 
authenticity of a message transmission between a block A and a block B is modelled as a pragma that states 
that a message m2 received by the block B was necessarily sent before in a message m1 by the block A. The 
syntax of the authenticity pragma requires the specification of two states: 

 state s1, corresponding to the state of block A right before
30

 the sending of m1, 

                                                      
30

 It is important du note that the message m1 must be formed before state s1, i.e. it is not allowed
 
to form m1 on the transition between s1 

and the sending of m1. If the message is formed between state s1 and the sending of m1, then the verification of the authenticity will pro-
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 state s2, corresponding to the state of block B after message m2 has been received and accepted as au-

thentic
31

, hereby meaning that some certificate / signature verifications or decryption operation are normally 

performed
32

. 

The syntax is the following:  

#Authenticity SenderBlockId1.stateId1.messageId1 ReceiverBlockId2.stateId2.messageId2 

In our running example, we have an authenticity requirement (cf. Figure 13) stating that “Data received wireless-
ly by the oven must have been sent by the corresponding remote control”. The corresponding property in 
AVATAR can only be written after defining the state-machines (cf. Figure 24) of the communicating parties, i.e. 
the remote control and of the oven’s wireless communication unit (cf. Figure 17). 

      

Figure 24: State-machines of the remote control (left) and of the oven’s wireless communication unit (right) 

Given these two state-machines, the authenticity property of the message transmission can be expressed as 
shown in the first UML comment of Figure 25. The verification of this property should normally fail

33
. 

 

  

Figure 25: Examples of authenticity properties 

We therefore built another simple example whereby Alice sends a signed message to Bob through a public 
channel; upon receiving the message, Bob checks the signature (cf. Figure 26). This protocol uses the sign() 
and verifySign() methods pre-defined on cryptoblocks, as explained in §4.3.4.1. 

                                                                                                                                                                                     

vide inconsistent results and no error message will be generated. The syntax is therefore error prone, and some form of syntax verifica-
tion would be welcome. 

31
 It is important to note that the signature verification or message decryption must be performed before state s2. If not, the verification of the 
authenticity will provide inconsistent results and no error message will be generated. Moreover, we discovered that the message variable 
used in the proof should not be re-used before state s2. For example, in the state-machine of Figure 24, writing “msg2=sdecrypt(msg2, 
PSK)” instead of “msg3 = sdecrypt(msg2, PSK)” confuses ProVerif and provides inconsistent results. The syntax is therefore error prone, 
and some form of syntax verification to avoid such pitfalls would be welcome. 

32
 It is important to note that if a decryption operation is illegal, e.g. use of the wrong key, then the state-machine transition cannot be taken. 

33
 In ProVerif, the formalization of symmetrical encryption is authenticated. It is indeed difficult to model general unauthenticated encryption 
in formal protocol provers. In reality, symmetrical encryption can support some level of authentication when the encrypted message is 
long: in that case, the semantics of the decrypted message allows the addressee to assess if the message was indeed encrypted with the 
symmetric key, or if it was a random message. By contrast, when the message is very short, e.g. an integer, any random value may be 
decrypted as an integer, thus allowing for impersonation attacks. 
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Figure 26: State-machines of Alice and Bob exchanging a signed message 

Given these two state-machines, two authenticity properties of the message transmission were expressed, as 
shown in the second UML comment of Figure 25, to verify the AVATAR results depending on the validity of the 
signature. 

However, this protocol is subject to replay. 

 

Figure 27: State-machines of Alice and Bob exchanging a signed message with nonce 

Thus, we extended the Alice and Bob use case, to include a nonce. The corresponding state machines are giv-
en in Figure 27. Given these two state-machines, four authenticity properties of the message transmission were 
expressed, as shown in the last UML comment of Figure 25, to verify the AVATAR results depending on the 
validity of the signature, and the validity of the nonce. 

The results of the verification of the authenticity properties are given in §4.3.6.5. 
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Assessment 
take-away 

Overall, the AVATAR syntax for modelling confidentiality and authenticity is deemed both clear 
and user friendly. 

However, as already pointed out, the use of pragmas for the modelling creates a traceability 
issue, as UML comments do not have identifiers. 

4.3.5.2 Modelling of safety properties 

To formally model safety properties, AVATAR offers to use observers, usually one observer per property. This is 
a second choice solution, because in UML / SysML, observers cannot observe events without consuming those 
events. Therefore, observers must be explicitly fed with events: this can only be done by modifying the state-
machines of the blocks creating and / or consuming the original events, dramatically polluting the original sys-
tem design block and state-machine diagrams

34
. 

Although it is purely a matter of interpretation
35

, the literature distinguishes positive observers, which express 
possibility properties

36
, from negative observers, which express safety properties

37
. 

To assess the capabilities of AVATAR in terms of safety property modelling, we will provide the formalisation of 
one safety requirements (cf. §4.3.2) of our microwave running example. The other properties can be built in a 
similar manner. 

 

Figure 28: Observer for safety property n°1 

The selected
38

 safety requirement from our microwave running example is “The heating unit is not started when 
the door is open.” 

To formalise the property on the basis of an observer, we must first create an observer block and make the as-
sumption that it is capable of observing the opening and closing of the microwave’s door, as well as the starting 
of the magnetron. 

Considering the design of the microwave (cf. the state-machine of the Microcontroller in Figure 29 and the state-
machines of the Door and the Magnetron in Figure 46), these three signals are accessible from the micro-

                                                      
34

 This is why modelling properties with TEPE in the Requirements Diagram would have been a much cleaner approach, i.e. TEPE would 
automatically and transparently generate the observers. Unfortunately, safety properties formally modelled in TEPE cannot currently be 

formally verified with AVATAR (cf. introduction of §4.3.5.2), so observers must be manually crafted. 
35

 Satisfying a negative observer amounts to violating a positive observer, and vice-versa. 
36

 I.e., it is possible that something good will eventually happen (AG EF in CTL). This differs from liveness, i.e. something good will eventual-
ly happen (AF in CTL) and reachability (EF in CTL). 

37
 I.e., nothing bad ever happens. 

38
 This same example is also provided as a TEPE formalisation, cf. Annex C. 
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controller. It is thus possible
39

 to connect the observer to the oven’s microcontroller, and to define the corre-
sponding events on the observer, as shown in Figure 28. 

The state-machine of the Microcontroller in Figure 29 shows a modified state-machine in which all open, close 
and start signals are immediately repeated for the benefit of the observer. Looking at Figure 20, it can be com-
pared to the same state-machine before adjunction of the observer. 

 

Figure 29: State-machine of the microwave microcontroller 

The communication channel between the observer and the microcontroller is defined as synchronous and pri-
vate, i.e. an attacker may not have access to this channel, in order not to compromise the assessment of securi-
ty properties. A one-to-one correspondence is established between the signals in the micro-controller and in the 
observer, as shown in Figure 30. 

                                                      
39

 An alternative would have been to connect the observer directly to the door and to the magnetron. Considering that the communication 
between the door and the micro-controller, and the communication between the magnetron and the micro-controller are synchronous and 
lossless, both models are equivalent. If the communications are lossy, the alternative implementation of the observer will provide different 
results. 
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Figure 30: Signal association settings for the safety observer 

 

Figure 31: State-machine for the safety property n°1 observer 



D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011 

  47 / 92 

 

Now, to model the property with this observer, we need to reword the requirement as follows: “The state in 
which the observer arrives when it has observed that the door has been opened and the magnetron started 
whilst the door is still open, should not be reachable. This results in the state-machine shown in Figure 31 for 
the observer. A right-click on the “Error” state allows notifying UPPAAL that it should verify the reachability and / 
or liveliness of that state. 

 
Assessment 
take-away 

The AVATAR TEPE extensions to model safety properties are extremely interesting. However, 
TTool does not (yet) support the automated verification of properties expressed in TEPE. The 
AVATAR fall-back solution is based on the definition of observers. These observers perform 
the job, but they have significant detrimental effects on the readability of the system / software 
model, and thus cannot be considered as a long-term solution. 

 

4.3.6 Formal verification 

4.3.6.1 Prerequisites 

Prior to performing a formal verification with a third-party tool, TTool must perform some syntax analysis of the 
AVATAR model (cf. Figure 32). This normally prevents the generation of incorrect code for ProVerif and 
UPPAAL. 

Note: syntax analysis can also be useful to discover errors in the AVATAR model, at early stages of the design. 

 

Figure 32: De-scoping the design model and syntax analysis 

Another more subtle goal of the TTool syntax analysis is the de-scoping of the design model for the formal anal-
yses. Indeed, the transformation of all AVATAR constructs is not (yet) supported. Some correct AVATAR con-
structs may trigger errors in ProVerif and / or UPPAAL. TTool offers a dialogue window in which it is possible to 
select the SysML blocks to take into account in the syntax analysis. This filtering is then (implicitly) used to limit 
the scope of the subsequent formal analyses. 

The TTool syntax analysis also erases all back annotations on the AVATAR model. 

Once the syntax verification is done, it is possible to launch the formal verifications using ProVerif and / or 
UPPAAL, as illustrated in Figure 33. 
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Figure 33: Menu to launch the formal verifications 

4.3.6.2 Prerequisites to formal verifications using ProVerif 

ProVerif can be used to verify: 

 confidentiality properties, cf. §4.3.6.4; 

 authenticity properties, cf. §4.3.6.5. 

When the ProVerif option is selected in the menu (cf. Figure 33), a window opens to control the code genera-
tion, i.e. model transformation from AVATAR to ProVerif (cf. Figure 34). 

 

Figure 34: ProVerif's code generation dialogue window 
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This dialogue window recalls the directory in which the ProVerif code will be generated, in a file called “pvspec”. 
This is useful to check the generated code

40
, and potentially to launch ProVerif directly without using TTool. 

The dialogue window also allows selecting an option to compute state reachability. This option is verbose, and 
should therefore be deactivated if one needs to analyse the traces generated by ProVerif. 

After pressing “Start”, TTool generates the code and a window opens to control the execution of the generated 
code by ProVerif, cf. Figure 35. Here, it is possible to ask to show all the traces produces by ProVerif, if one 
needs to understand the reasoning behind the results

41
. 

 

Figure 35: ProVerif's code execution dialogue window 

Pressing start will: 

 launch the verification; 

 provide the results textually in the window; 

 back-annotate the AVATAR model with the results. 

4.3.6.3 Prerequisites to formal verifications using UPPAAL 

UPPAAL can be used to verify: 

 the existence of deadlocks; 

 the reachability of selected states; 

 the liveness of selected states; 

 the “leads to” property between two states
42

; 

 or any other custom property, as long as it can be expressed as a CTL formula. 

When the UPPAAL option is selected in the menu (cf. Figure 33), a window opens to control the verification 
process, cf. Figure 36. 

 
Assessment 
take-away 

The AVATAR syntax verification was found to be very useful in debugging the model, even if it 
can still be improved to cover more cases. 

 

                                                      
40

 It is important to note that currently TTool does not check if the writing of the pvspec file is processed correctly. If the pvspec file is opened 
prior to code generation, code generation will fail, but no message will be produced. Thus, the AVATAR verification results will corre-
spond to those of the opened file, not to the AVATAR model (if modifications have been made since the last generation). 

41
 For simple cases only. A test with a complex protocol led to the generation of 1935 pages of traces… 

42
 I.e. if the 1

st
 state is accessed, then the 2

nd
 one is eventually reached. 
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Figure 36: UPPAAL’s formal verification dialogue window 

4.3.6.4 Confidentiality assessment 

To assess the performance of AVATAR with respect to confidentiality, we have implemented three handshake 
protocols, as provided in (Dolev, et al., 1983). We start by briefly recalling these three protocols. 

Let: 

 A and B be communicating partners; 

 Ex(M) be the encryption of message M with the public key of X; 

 XY be the concatenation of X and Y. 

Protocol n°1: 

A  B: (A, EB(M), B) 

B  A: (B, EA(M), A) 

Protocol n°2: 

A  B: (A, EB(MA), B) 

B  A: (B, EA(MB), A) 

Protocol n°3: 

A  B: (A, EB(EB(M)A), B) 

B  A: (B, EA(EA(M)B), A) 

Protocol n°2 is secure. Protocols n°1 and n°3 are both breakable, as shown below. Let Z be a saboteur. 

MitM attack protocol n°1: 

Z intercepts the message from A to B 

Z  B: (Z, EB(M), B) 

B  Z: (B, EZ(M), Z) 

Z decodes EZ(M), thus obtaining M 

MitM attack protocol n°3: 

Z intercepts the message from B to A, thus obtaining EA(EA(M)B) 
here after noted EA(N) 

Z  A: (Z, EA(EA(N)Z), A) 

A  Z: (A, EZ(EZ(N)A), Z) 

Z decodes EZ(EZ(N)A), thus obtaining N, and therefore EA(M) 

Z  A: (Z, EA(EA(M)Z), A) 

A  Z: (A, EZ(EZ(M)A), Z) 

Z decodes EZ(EZ(M)A), thus obtaining M 

The protocols were designed in AVATAR using two cryptoblocks A and B (cf. Figure 19), and implementing the 
protocols with state machines. Protocol n°2 is illustrated in Figure 37. The other protocols are similar and are 
not shown here. TTool / AVATAR provided the correct answers for all three protocols. The results are shown 
textually and graphically in Figure 38. This figure shows twice the A cryptoblock, once for the execution of pro-
tocol n°1 after which the secret n°1 is back annotated with a red lock, and once for the execution of the protocol 
n°2 after which the secret n°2 is back annotated with a green lock. 
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Figure 37: State-machines for handshake protocol n°2 

During the implementation, one complexity that we faced is that the protocol narrations, as provided above, do 
not specify the checks that should be made by the participants during the execution of the protocol. If these 
checks are not made, then an attacker may exploit the vulnerability and therefore compromise the confidentiality 
of data. It is in particular the case for the test performed by actor B (cf. Figure 37), to abort the protocol in case 
of impersonation. If this test is not designed, the TTool / AVATAR signals the protocol as unsecure. 

 

 

 

Figure 38: Reports about confidentiality assessment 

For fun: 

 We leaked the private key of A as the 1
st
 step of protocol 2; unsurprisingly, TTool / AVATAR correctly report-

ed that the confidentiality of the secret n°2 was compromised. 
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 We chained the three protocols; much to our surprise, TTool / AVATAR reported that the confidentiality of the 

secret n°2 was now compromised, even though secret n°2 is only exchanged using the secure protocol n°2; 

looking at the ProVerif traces, it was seen that the attacker Z can retrieve EB(MA) during the exchange in 

protocol n°2, and then use for example the third protocol, to decipher secret n°2 as follows:   

Z  B: (Z, EB(EB(MA)Z), B)  

B  Z: (B, EZ(EZ(MA)B), Z)   

Z decodes EZ(EZ(MA)B), thus obtaining M. Alternatively, the attacker can also use the first protocol to break 

secret n°2. 

 

 
Assessment 
take-away 

Overall, the evaluation results for confidentiality assessment are extremely positive. Three 
handshake protocols and a number of secure communications were assessed, and all results 
met our expectations. 

4.3.6.5 Authenticity assessment 

To assess the performance of AVATAR with respect to the authenticity of a message transmission, we checked 
the results returned by TTool on the authenticity pragmas defined in §4.3.5.1.  

The initial results provided by TTool were erroneous results. Telecom Paris-Tech provided a patch after which it 
was shown that TTool did not differentiate weak authentication from strong authentication

43
 in its result display 

panel. A second patch was provided by Telecom Paris-Tech to clearly differentiate both cases. 

The output for the most complete Alice & Bob protocol with a signature and a nonce (cf. §4.3.5.1), is shown in 
Figure 39. These results are fully satisfactory. 

 

Figure 39: Reports about authenticity assessment on the Alice & Bob use protocol with nonce 

The output for the microwave protocol with a symmetrical encryption, is shown in Figure 40. These results show 
a weak authentication and a non-proved query, which is a reasonable output considering the way ProVerif man-
ages symmetrical encryption (cf. footnote in §4.3.5.1). 

                                                      
43

 See Assessment Take-Away below for definitions of weak and strong authenticity. 
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Figure 40: Reports about authenticity assessment on the microwave protocol with a symmetrical encryption 

 

 
Assessment 
take-away 

The formal verification of authenticity was time-consuming due to a number of bugs that re-
quired patches, but the results exceeded our expectations since AVATAR was shown to be 
able to differentiate weak authentication from strong authentication, with the following seman-
tics: 

 weak authentication assures that the message was forged by the communicating partner, 

i.e. message content and source authenticity, 

 strong authentication assures, in addition, that the message was sent by the communicating 

partner, i.e. transmission authenticity, or in other words, the message has not being re-

played. 

Overall, the evaluation results for the formal verification of authenticity properties are therefore 
extremely positive. 

4.3.6.6 Assessment of safety properties 

To assess the performance of AVATAR with respect to safety properties, we checked the results returned by 
TTool on the safety property defined in §4.3.5.2. We checked for the reachability of the error state. As shown in 
Figure 41, the results were in line to our expectations. 

 

Figure 41: Results from the verification of the safety property 

 

 
Assessment 
take-away 

The formal verification of safety properties is straight forward and intuitive. 

We however regret (again) that the formal verification is not based on a TEPE model, but on 
observers (cf. §4.3.5.2). 

4.4 Conclusions 
We conclude on a SWOT of the tool. 

Strengths: 

 Security constraints and properties, including the pre-sharing of secret information between a defined set of 

actors, are easy to formalise using AVATAR. 

 Specific block stereotype, called <<cryptoblock>>, to help design secured communications. This stereotype 

provides the signature of the methods commonly used in designing secured communications. 
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 Methodology integrated inside the tool, with traceability between the methodological phases and the dia-

grams. 

 Capability to capture informally stated assumptions, and trace them to model elements. 

 Specific stereotypes, called <<Safety Requirement>> and <<Security Requirement>>, with ad-hoc tags, to 

manage SysML-based safety and security requirements. 

 Two temporal operators that extend the SysML standard state-machines to support real-time system sched-

ulability analysis. 

 Stable tool. 

 Syntax verification prior to transformation to ProVerif and UPPAAL. 

Weaknesses
44

: 

 Lack of documentation. 

 ProVerif does not support loops in the state diagrams of SysML blocks
45

. ProVerif theoretically starts an infi-

nite number of processes, so loops are not necessary considering the ProVerif semantics. However, loops 

may be necessary for safety proofs with UPPAAL. In this case, the combination of both safety and security 

proofs may become complex. For example, in the microwave oven example, blocks that have loops in their 

state-machines must be excluded when transforming the model the ProVerif format. 

 Security constraints and properties are formally expressed as pragmas in UML notes, but UML notes do not 

have an identifier, so traceability between these elements and other model elements, e.g. requirements, is 

not possible. 

 Communication is restricted to point-to-point communications: broadcast and multicast are not supported. 

 All private channels are managed as a unique channel
46

: this may cause undesired interactions. 

 Block properties can only be of type Int, Bool, Timer. This means that: (i) the application’s control logic must 

be defined using only those simple types; the application’s algorithms, requiring more complex data types, 

must be written in C code, as part of the body of methods. 

 Refactoring of block, attribute and method names is not supported. 

 Refactoring the names of diagrams is not well supported with respect to their traceability from the methodol-

ogy diagram, since the traceability link is lost (without warning). 

 ProVerif supports only one datum element at a time in a communication channel. The use of the ‘concat’ and 

‘get’ functions of the TTool Cryptoblocks help in designing communication protocols with more complex 

flows, but this perturbs readability. 

 The zoom capability on diagrams is poorly supported. 

 The undo capability on diagrams is effective, but generates a change of diagram that is rather disturbing. 

 With ProVerif, tests can only be performed on Booleans. Tests on other types must be handled using con-

stant identifiers and pre-shared knowledge. 

Opportunities: 

 Safety properties can be formalised using the TEPE language, but the transformation of TEPE towards 

UPPAAL has not (yet) been implemented, thus forbidding any form of automated verification. There is a 

pressing need to transform TEPE properties into safety observers. 

 A security requirement may reference an attack node in an attack tree; this ensures a basic traceability 

mechanism, but there is no automated check of the coverage of attacks. According to Ludovic Apvrille, the 

development of this feature is on the tool’s evolution roadmap. 

 There are some integration issues with UPPAAL: (i) if the UPPAAL licence is obsolete, TTool does not rec-

ognise it and considers that UPPAAL proved all properties to be true; (ii) some syntax errors
47

 in the TTool 

code are not detected by the TTool syntax checker, but trigger a message stating that UPPAAL is incorrectly 

installed or configured. According to Ludovic Apvrille, the correction of these issues is on the tool’s evolution 

roadmap. 

                                                      
44

 Please consider that weaknesses that are bugs in nature have been reported to the Ludovic Apvrille, and many have already been cor-
rected. 

45
 Télécom ParisTech has announced a patch to manage loops. Future deliveries should raise this major limitation. 

46
 Télécom ParisTech has announced a patch separate private channels. Future tool versions should not suffer from such an issue. 

47
 As for example, a semicolon at the end of an instruction on a transition.  
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 There are also some integration issues with ProVerif: currently, only the blocks involved in a security proper-

ty verification must be selected before launching ProVerif. If more blocks are selected, a ProVerif compilation 

error may occur. According to Ludovic Apvrille, the correction of this issue is on the tool’s evolution roadmap. 

 Improve syntax checking, in particular with respect to authenticity properties. 

Threats: 

 The tool is hand-held essentially by one person, Ludovic Apvrille. 
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Annex A – Microwave Use Case Supplementary Data 

 

Figure 42: AVATAR Use Case Diagram for the microwave system 

 

Figure 43: AVATAR Context Diagram for the microwave system 

 

Figure 44: Example of AVATAR Sequence Diagram for the microwave system 
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Figure 45: Example of AVATAR Activity Diagram for the microwave system 

                   

Figure 46: State-machines of the microwave’s door (left) and microwave’s magnetron (right) 
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Annex B – TEPE Supplementary Data 

A specification in the TEPE language represents functional and non-functional properties in a formal way, using 
Parametric Diagrams (PDs). As opposed to informal SysML PDs, TEPE PDs are amenable to automated verifi-
cation. 

A small set of operators are leveraged to make up complex properties. TEPE operators manipulate three kinds 
of data: 

 attributes, which are defined in blocks at system design level, or as new attributes, from existing ones. 

 signals, which are defined in blocks at system design level, or as new signals, from existing ones, or which 

can be one of the two following additional signals: entry(state) and exit(state). 

 properties, which are Boolean values resulting from SysML constraints, i.e. either equations, or temporal / 

logical constraint operators. 

In TEPE, each property is expressed as a graph of signals, attributes, constraints and properties. This section 
presents rapidly the main TEPE concepts to support the reader in defining safety properties (cf. §4.3.5.1). For 
the TEPE methodology, please refer to §4.2. 

Attribute-based operators 

Two AVATAR operators allow for the definition of attributes in TEPE PDs: 

 the <<attribute>> stereotype, when the attribute has already been defined in a block at system design level, 

 the <<setting>> stereotype, for a new attribute. 

  

Figure 47: Attribute-based operators 

The equation operator takes attributes as input, and it outputs a property. 

Attribute operators output a signal indicating a value change (toggle). 

An example of the three types of attribute-based operators is shown in Figure 47. 

    

Figure 48: Attribute-based operators with their attribute ports (left), signal ports (middle) and property ports (right)  

Since the attribute-based operators allow for different kinds of flows (i.e. attributes, signals and properties), they 
comprise different types of ports, which are highlighted by TTool, depending on the type of relation that needs to 
be drawn, cf. Figure 48. The ports are characterised by their position, which gives an indication of the type of 
flow, and by their colour, which gives an indication of the flow direction

48
. The colour code is as follows: 

 cyan: output only; 

 dark blue: input only; 

                                                      
48

The ports on the toggle of <<setting>> should be “output only” (a patch will be provided). 
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 brownish: input / output. 

Graphically, when a property flow is connected to a port of an operator, a white circle is displayed to recall that it 
is indeed a property flow (cf. Figure 52). This effectively increases readability. 

In terms of ergonomics, TTool does not allow to select existing blocks and attributes from a list. The names 
need to be fully typed. This input modus operandi is error prone and should be revised. 

Signal-based operators 

Two AVATAR operators allow for the definition of signals in TEPE PDs: 

 the <<signal>> stereotype, when the signal has already been defined in a block at system design level, 

 the <<alias>> stereotype, for a merge of several distinct signals to one. 

To evaluate signals, AVATAR offers three operators that translate the temporal behaviour of signals into proper-
ties: 

 the logical constraint (LC) operator: this operator has for inputs two sets of signals (i.e. Sn, the normal input 

signals and Sf, the failure input signals), whose intersection is void, and an input property Pi (optional, con-

sidered to be true by default); the LC operator has for output one property Po; once any signal Sfirst in Sn is 

encountered, the operator requires all signals Sn\{sfirst} to be observed for Po to be true; if none of the signals 

Sn is ever received, Po is defined to be true; furthermore, the operator handles failure signals forcing Po to be 

false in case they are notified between the first received signal of Sn and the last one; in addition to that, Pi is 

required to be true during all that period, otherwise Po is set to false; 

 the logical sequence (LS) operator: this operator works similarly to the Logical Constraint operator, apart 

from the fact that the order in which input signals are received is imposed; 

  

Figure 49: Signal-based operators with their signal ports (left), and property ports (right) 

 the temporal constraint (TC) operator: this operator has for inputs two signals s1, s2 (the latter is optional), 

two time values tmin, tmax (either of the two is optional) and a property Pi (optional, considered to be true by 

default); the TC operator has for output one property Po; depending on the provided arguments, Po is defined 

to be true under the following conditions (cf. Figure 50): 

 s2 has to occur at least tmin, at most tmax after s1 and Pi must be true from the reception of s1 to the recep-
tion of s2; 

 s2 has to occur at most tmax after s1 and Pi must be true from the reception of s1 to the reception of s2; 
 s2 has to be notified at least tmin after s1 and Pi must be true from the reception of s1 to the reception of s2; 
 after reception of s1, Pi must be true for at least tmin and at most tmax; 
 after reception of s1, Pi must be true for at most tmax; 
 after reception of s1, Pi must be true for at least tmin. 

 

Figure 50: The different semantics of the TC operator 

Graphically, the normal input signals (Sn) of the LC and LS operators need to be connected to the 6 ports on the 
left of the operator, whilst the failure input signals (Sf) need to be connected to the 4 ports on the top left of the 
operator. When a failure input signal is connected to a port on the top left of the operator, a small cross is dis-
played to recall that it is indeed a failure signal (cf. Figure 52). This effectively increases readability. 



D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011 

  60 / 92 

 

Property-based operators 

Property operators comprise conjunction and disjunction functions for properties. 

Property definition operators assign a name to a property, and specify its verification kind: (non-)reachability or 
(non-)liveness. 

 

Figure 51: Property-based operators with their property ports 
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Annex C – Formalising Safety Properties using TEPE 

To assess the capabilities of AVATAR in terms of safety property modelling, we provide the formalisation of two 
safety requirements (cf. §4.3.2) of our microwave running example. Each requirement is be covered by a prop-
erty expressed using the TEPE language. Readers not familiar with the TEPE language should first read Annex 
B. 

Formalisation example n°1 

Our 1
st
 example of safety requirement is “The heating unit is not started when the door is open.” 

To ease the understanding of the property, please refer to: 

 the state-machine corresponding to the Microcontroller (cf. Figure 29), which controls the Magnetron, and 

may be interrupted by the Door, 

 the state-machines of the Door and the Magnetron (cf. Figure 46); in the state-machine of the Door, please 

note that the door is considered to be initially closed. 

Now, the property corresponding to the formalisation of the requirement can be expressed as shown in Figure 
52. 

 

Figure 52: Property “Door not open” 

With this expression: 

 the property is true if the door is never opened; 

 the property is true if the door is opened and closed before starting the magnetron, 

 starting the magnetron when the door is opened will definitively make the property false, and thus the 

liveness of the property cannot be proved. 
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Formalisation example n°2 

Our 2
nd

 example of safety requirement is “The bell rings only if the cooking time has expired.” The property cor-
responding to the formalisation of the requirement can be expressed as shown in Figure 53. 

 

Figure 53: Property “Bell” 
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5 State of the art synthesis 

This chapter provides an overall synthesis of the state of the art as presented in Part A of this deliverable. 

Safety and security are two risk-driven activities that are traditionally tackled separately. It is thus possible to 
distinguish two communities, each working on their own standards, organising their own conferences, publishing 
in their own journals, and implementing on their own technical solutions. Since the 9/11 attacks on the Twin 
Towers in the Aeronautics domain and the discovery of the Stuxnet computer worm in the Industrial Control 
Systems domain in June 2010, it is more and more recognised worldwide that both engineering specialties can-
not continue to ignore each other (cf. Figure 54). 

 

Figure 54: Publication dates of core referenced papers
49

 

It is evident that there are major opportunities to share on onomastics, algorithms, (formal) methods and tools, 
in particular to reach higher levels of safety and security assurance at contained costs. Much work has already 
been done. This section provides a synthesis of the bibliography of research papers on safety and security en-
gineering since the early 90’s as reported in part A of this deliverable. The bibliography only covers papers that 
explicitly address both engineering specialties. Even papers dealing with dependability (Laprie, 1992) have 
been discarded if they do not explicitly mention safety and security. 

The synthesis is organised in three groups. A first group (cf. §5.1) comprehends the papers that state the issues 
related to engineering safety and security separately, and assert that there is room for improvement, but do not 
explain how. The second group  (cf. §5.2) comprehends the papers that propose to improve security engineer-
ing by adapting safety-related techniques, or vice-versa, in other words, safety and security cross-fertilisation. 
Here, one specialty is seen as more important than the other one, giving way to “security for safety” or vice-
versa. The last set of papers (cf. §5.3) groups those that propose novel clean slate approaches for safety and 
security co-engineering, considering both specialties as peers. 

Note: this synthesis was also been published as two papers at the SAFE’15 conference: (Paul, et al., 2015) and 
(Paul, 2015). 

5.1 Houston, we have a problem! 
A number of papers explicitly state the issues related to engineering safety without security or engineering safe-
ty and security separately, and assert that there is room for improvement, but they do not explain how 
(Pfitzmann, 2004), (Nordland, 2008), (Gerhold, 2011). Many of these papers are domain specific, e.g. (ICAO, 
2005) in the Air Traffic Management (ATM) domain, (Deleuze, et al., 2008) with respect to industrial systems, 
(Bloomfield, et al., 2012) in the European Railway Traffic Management System (ERTMS) domain, (Koscher, et 
al., 2010), (Gebauer, 2014) and the National Highway Traffic Safety Administration (79 FR 60574, 2014) in the 
automotive domain, or (Vogt, 2014) on a Smart Grid case. Some paper pin-point the issue on very specific top-

                                                      
49

 The 2015 figure is not as high as it should be, as our state of the art effort was relaxed beginning of 2015. 
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ics like safety vs. security metrics (Schwarz, 2014). Sometimes the issue statement is just given as a side-
comment (Wiander, 2007). A striking fact is that the number of such papers does not seem to be diminishing as 
the years go by. 

Beyond just expressing the issues, some papers also provide high-level recommendations on the manner to 
address them (Daniel, 2008), (Jalouneix, et al., 2009), (Carter, 2010), or on the directions to investigate, but 
they do not run that road themselves. Such recommendations advocate, e.g., an harmonisation

50
 of safety and 

security requirements engineering processes (Eames, et al., 1999), (Smith, et al., 2003), the use of formal 
methods, and in particular the Liskov Substitutability Principle (LSP) when using an object-oriented paradigm 
and secure programming languages such as Ada / SPARK (Dewar, 2008), or on the contrary, extensive testing 
(Saglietti, 2008). Turning towards survivability engineering is also proposed (Goertzel, et al., 2009). Others are 
domain specific, such as (Schmittner, et al., 2014c) in the automotive domain. 

In this very busy hive, (Taguchi, et al., 2015) steps back, proposing some high-level process patterns and case 
patterns corresponding to the main safety and security co-engineering approaches, but does not recommend 
the path to follow. 

Running a bit against the current, a few papers, e.g. (Hansen, 2009), recall that even though safe systems were 
not designed to be secure, they often offer good properties against attacks, with a tendency to enter a fail-safe 
state rather than provoking accidents. 

5.2 S4S: security for safety or safety for security? 
This section is split in two parts: the first and most important one exposes papers that aim at improving safety 
engineering by considering security and / or privacy issues; the second exposes papers that aim at improving 
security engineering by integrating proven safety mechanisms. 

(Piètre-Cambacedes, et al., 2013a) gives a comprehensive view of methods, models, tools and techniques that 
have been created in safety engineering and transposed to security engineering, or vice versa. The similarities 
and differences between the two domains are analysed. A careful screening of the literature (this paper contains 
201 references) made it possible to identify cross-fertilizations in various fields such as architectural concepts 
(e.g. defence in depth, security or safety kernels), graphical formalisms (e.g. attack trees), structured risk anal-
yses or fault tolerance and prevention techniques. (Kriaa, et al., 2015) also proposes a survey of approaches 
combining safety and security, but limiting the scope to industrial control systems. 

5.2.1 Improving safety engineering 

Safety engineering traditionally excludes malevolent behaviour; this is usually an implicit assumption, but it was 
sometimes explicitly stated, e.g. in the obsolete (IEC 61508-1, 1998) - (IEC 61508-7, 2000) standard series. 
Recent attacks in safety-critical domains, e.g. the 9/11 events in the Aviation domain, Stuxnet (Fallière, 2010) in 
the Industrial Control Systems (ICS) domain, have changed the game. The safety engineering community is 
addressing the issue by elaborating new focused techniques or wide-breath standards and guidelines, e.g. (S + 
IEC 61508, 2010), to seamlessly cope with IT security threats that can have an impact, direct or indirect, on 
safety. These techniques, standards and guidelines have major implications on the methods and tools used by 
industry to efficiently develop safety-critical systems; they usually render obsolete years of best practices, indus-
trial quality baselines and require adequate training for the developers because the Security for Safety (S4S) 
approach is not a simple juxtaposition of safety and security processes. 

It is possible to organise these focused techniques in two groups. The first group consists of established safety-
related techniques that are enhanced to also cope with some security issues within a safety engineering pro-
cess. The second group consists of security-related techniques that are adapted to enhance safety engineering. 

In the first group, a focused safety-related technique that is often proposed for adaptation to cope with security 
issues is the HAZard and OPerability (HazOp) technique. A HazOp is a structured and systematic examination 
of a planned or existing process or operation in order to identify and evaluate problems that may represent risks 
to personnel or equipment, or prevent efficient operation. The adaptation usually comes down to defining new 
guide-words (Winther, et al., 2001), (Winther, 2004), (Srivatanakul, 2005), (Yang, et al., 2007), (Cusimano, et 
al., 2010), but can also be more comprehensive, as when it is used within the SeSa method (Grøtan, et al., 
2007). Other adaptations relate to the What-If method (Yang, et al., 2007), Failure Modes and Effect Analysis, 
and Layer-Of-Protection Analysis (Hunter, 2009), or a combination of techniques (Brewer, 1993), (Srivatanakul, 
2005), (Cusimano, et al., 2010). (Johnson, 2011) proposes the integration of security concerns into safety cas-
es, combined with the use of Boolean Driven Markov Processes (BDMP) to avoid of the state explosion. 
(Netkachova, et al., 2015) also proposes security-informed safety cases. (Bezzateev, et al., 2013) and 
(Kornecki, et al., 2013a) suggest taking into account security hazards during the standard fault tree analyses 
and a similar approach is proposed in (Bieber, et al., 2014) with the extension of a safety-related Altarica model 
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to allow for security analyses. (Contini, et al., 2006) proposes the use of non-coherent fault trees. (Gorbenko, et 
al., 2006) and (Babeshko, et al., 2008) present the Failure (Intrusion) Modes and Effects Analysis (F(I)MEA), 
whilst (Schmittner, et al., 2014b), and its shorter counterpart (Schmittner, et al., 2014a), presents the Failure 
Mode, Vulnerabilities and Effect Analysis (FMVEA) technique, which both extend the classical Failure Mode and 
Effect Analysis (FMEA) technique. (Roth, et al., 2013) proposes state/event fault trees (SEFTs) to allow for the 
modelling of vulnerabilities and an attacker model in complement to the traditional fault tree approach. 

In the second group, (Johnson, 2004) claims that vulnerability assessment, traditionally used to improve securi-
ty, can potentially provide new insights, a fresh and vivid perspective on safety hazards, and increased safety 
awareness. Likewise, (Sindre, 2007) and (Stålhane, et al., 2008) propose misuse cases to enhance safety engi-
neering. Building upon this approach, (Raspotnig, et al., 2012a) proposes to adapt the security-related misuse 
sequence diagrams to support failure analysis. Pragmatically, (Mc Guire, 2011) recommends that the safety 
community looks how the open-source community has deployed multiple security methods (e.g. address space 
randomization) in order to simply apply those methods on their safety-critical systems. 

Security specification is sometimes defined as the specification of what the system should not do, i.e. negative 
properties, e.g. non-interference in multi-level security. But negative properties are not an exclusivity of security. 
In safety, there are also numerous applications of negative properties, e.g. for the correct sequencing of opera-
tions
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 or the non-propagation of faults. Such security for safety approaches are proposed by (Rushby, 1989) 

and (Simpson, et al., 1998). 

If the major part of the paper-contributions relates to the cross-fertilisation of safety and security techniques, 
there are also some novel and / or disruptive approaches, such as the introduction of the concept of concern, 
e.g. safety and security concerns, which are based on business goals and can drive the system requirements 
engineering process, thus filling the gap between the operational and system views (Sommerville, 2003). (Olive, 
et al., 2006) provides an overview of the Commercial Aircraft Information Security Concepts of Operation and 
Process Framework (ARINC 811, 2005), which attempts to educate and bridge the gaps among the safety and 
security disciplines by providing an understanding of airline operational constraints and an information security 
process, and serves as common framework for communication / coordination among stakeholders. Likewise, 
(Knorreck, et al., 2010), (Pedroza, et al., 2011), (De Saqui-Sannes, et al., 2011) and (Apvrille, et al., 2014) pro-
pose SysML-Sec, a SysML-based model-driven engineering environment that supports capturing and formally 
verifying security requirements, with particular attention being paid to their innocuousness with respect to safety 
requirements. Similarly, (Brunel, et al., 2014a) proposes an approach based on Alloy to formally model and as-
sess a system architecture with respect to safety and security requirements; this approach was then extended 
(Brunel, et al., 2014b) to include Melody, a system engineering tool, and Safety Architect, a Failure Mode, Ef-
fects and Analysis (FMEA) tool, and packaged as a new framework called Coy (Brunel, et al., 2015). 

Beyond the aforementioned focused techniques, there are various initiatives of the safety community which ad-
dress the issue in a more comprehensive manner, in particular with respect to standards. In general, these initi-
atives are operational domain-specific, e.g. (SEISES, 2008), (Bieber, et al., 2012), (Paulitsch, et al., 2012) in the 
aeronautical, space and transport domains, (MODSafe, 2008) in the urban transport domain, (Bock, et al., 2012) 
in the railway automation domain, or (Goertzel, et al., 2011) for Navy weapon systems, even if sometimes the 
solutions  may easily be extended to other safety and security-critical domains. We can distinguish two catego-
ries of initiatives. The first category defines new approaches that include security aspects whist maintaining 
compliance to existing standards. The second category defines new standards, or new versions of standards, 
that natively include security aspects. 

Initiatives of the first category usually consist in analysing the gaps and overlaps between two (or more) existing 
standards in order to identify additional activities that need to be performed with respect to one standard used 
as baseline, in order to achieve dual compliance, e.g.: 

 (Corneillie, et al., 1999) in relation to (ITSEC, 1991), (S + IEC 61508, 2010), (IEC 60880, 1986), (CENELEC 
EN 50128, 1997), (ETR 367, 1997) and (RTCA DO-178B, 1992) / (EUROCAE ED-12B, 1992); 

 (Alves-Foss, et al., 2002), (Taylor, et al., 2002a) and (Taylor, et al., 2002b) in relation to (RTCA DO-178B, 
1992) / (EUROCAE ED-12B, 1992) and the Common Criteria (ISO/IEC 15408-1, 2009); 

 (Novak, et al., 2007) in relation to (S + IEC 61508, 2010) and the Common Criteria (ISO/IEC 15408-1, 
2009); 

 (Ridgway, 2007) in relation to (ISO/IEC 17799, 2005) and (BS EN 61508-1, 2002) 

 (Derock, et al., 2010) in relation to (ISO/IEC 15026, 1998) and (ISO/IEC 27005, 2008); 

 (Blanquart, et al., 2012) in relation to (ISO/IEC 27005, 2011), (SAE ARP 4754A, 2010) / (EUROCAE ED-
79A, 2010), (EUROCAE ED-202, 2010), (ECSS-Q-ST-30C, 2009), (ECSS-Q-ST-40C, 2009), (ECSS-Q-ST-
80C, 2009), (RTCA DO-178B, 1992) / (EUROCAE ED-12B, 1992), and Common Criteria (ISO/IEC 15408-1, 
2009), but limited to the notions of safety levels and security levels, and with a focus on avionics; 
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 (Czerny, 2013) in the automotive domain, in relation to the (ISO 26262-1, 2011) - (ISO 26262-10, 2012) 
process framework. 

Initiatives of the second category are essentially domain-specific. For example, the Airworthiness Security Pro-
cess Specification (EUROCAE ED-202, 2010) / (RTCA DO-326, 2010) appeared as major contribution for Secu-
rity for Safety engineering in the aeronautical domain. This standard was extensively discussed, e.g. in (Casals, 
et al., 2012), (Rowe, 2013) or (Joyce, et al., 2014) with respect to the methodology. It is noteworthy that the new 
edition of this standard (EUROCAE ED-202A, 2014) / (RTCA DO-326A, 2014) has significantly changed its rec-
ommendations in terms of co-engineering approach, moving from a security sub-process of the overall safety 
process, to a standalone safety-informed security process. 

Likewise, in the railway domain, (CENELEC EN 20159, 2010) includes provisions for intentional attacks by 
means of messages to safety-related applications but it does not cover general IT security issues and in particu-
lar it does not cover IT security issues concerning the confidentiality of safety-related information, and the over-
loading of the transmission system. 

Another significant standard is (S + IEC 61508, 2010) in the Electrical / Electronic / Programmable Electronic 
domain. The controversial nature of its security requirements has also been heavily discussed, e.g. in (Mc 
Guire, 2011) and (Schoitsch, 2014). 

Our report is intrinsically about engineering. However, we felt it was important, before closing this section about 
security for safety, to give a little word about some embedded security mechanisms that are being proposed in a 
safety-critical domain, namely the automotive domain, even though it is difficult to relate these initiatives directly 
to co-engineering practices. Indeed, these initiatives, e.g. (Apvrille, et al., 2010b), (Groll, et al., 2010), (Stumpf, 
2013), (Soja, 2014), do not explicitly appear as engineering techniques, but more explicitly as (essentially hard-
ware) security solutions, whose purpose is increased safety. The above references are extremely light, and 
slightly out of scope herein, but we hope they give the reader a flavour of the whole swath of on-going security 
for safety solutions, which (hopefully
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) result from not cited co-engineering studies. 

5.2.2 Improving security engineering 

Safety engineering is recognised as a more mature engineering speciality than security engineering. Thus, mul-
tiple authors propose to adapt safety engineering techniques to the security domain. Adaptations cover a wide 
range of techniques, from the socio-technical domain, e.g. (Brostoff, et al., 2001), (Fruth, et al., 2014), the revi-
sion of methodology, e.g. with the introduction of security-critical levels in (Gutgarts, et al., 2010), up to purely 
technical approaches, as described below. 

The most recurrent safety-related technique that has been adapted for security engineering purposes is the 
HAZard and OPerability (HazOp) technique (Lynch, 2002). Adaptation is typically realised by defining new 
guide-words (Foster, 2002), (Lano, et al., 2002), (Srivatanakul, et al., 2004). Lessons learnt seem systematically 
positive, even though somehow contradictory, e.g. (Daruwala, et al., 2009) vs. (Foster, 2002). Other common 
techniques include the deviation analysis approach, as used in fault tree analysis (Foster, 2002), (Helmer, et al., 
2002), (Brooke, et al., 2003), (Murdoch, et al., 2006) to support the investigation of potential vulnerabilities. Be-
cause no system-level methodology currently exists that can quantify the amount of security provided by a par-
ticular system-level approach, (Nicol, et al., 2004) proposes to adapt concepts and methodologies, normally 
used for the quantitative evaluation of system dependability and frequently based on stochastic modelling, to 
security evaluation. An alternative approach to the quantitative assessment of the effect of security breaches on 
a computer system, based on fault trees, is proposed in (Rushdi, et al., 2004) / (Rushdi, et al., 2005). 

Beyond specific techniques, some papers have a more comprehensive approach by adapting the overall good 
practices and lessons learnt of safety engineering to security engineering (Axelrod, 2011). In the same spirit, 
(Young, et al., 2014) also addresses the security engineering improvement challenge by proposing a significant 
paradigm shift for security experts: the use of a systems-theoretic approach, shifting the majority of security 
analysis away from guarding against attacks (tactics) and more towards design of the broader socio-technical 
system (strategy). 

5.3 Towards safety and security co-engineering 
This section analyses the papers that propose novel approaches for safety and security co-engineering, consid-
ering both specialties as peers. 

Amongst the first communities to address the relations between safety and security was the formal methods 
community, with the challenge of formalising the concepts, the mechanisms employed to safeguard them, and 
their interplay (Rushby, 1989), (Burns, et al., 1992), (Rushby, 1994), (Stavridou, et al., 1998). A key outcome of 
these studies is the formalisation of non-interference specifications and invariants (Ramirez, et al., 2014). This 
early work is closely related to the currently active research on the Multiple Independent Levels of Security 
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(MILS) architecture (Boettcher, et al., 2008), (ISO 25119-2, 2010), (EURO-MILS EC FP7 Project, 2012), (Müller, 
et al., 2012b), (Müller, et al., 2014), and its distributed version (D-MILS, 2007), (Cimatti, et al., 2015), for which 
successful stories are starting to appear (Müller, et al., 2012). Initially developed for security, this architecture 
also displays good safety properties, bringing more and more the term “MILS” to be used as a noun, rather than 
as an acronym. The proponents of this architecture claim that it is a good starting point to look for synergies & 
divergences for safety and security (Tverdyshev, 2014). Beyond MILS, recent fundamental advances in the for-
mal methods community, including advances in satisfiability (SAT) and satisfiability modulo theories (SMT) 
solvers, separation logic, theorem provers, model checkers, domain-specific languages and code synthesis 
engines suggest that developing a high-assurance software workbench based on a combination of formal meth-
ods is now possible, as shown in (Fisher, 2013), (DARPA I2O HACMS, 2014), including a runtime assurance 
architecture with machine learning mechanisms (Tiwari, et al., 2014). Less industrial but still quite comprehen-
sive, (Delange, 2010) proposes a framework based on: (a) the Architecture Analysis and Design Language 
(AADL) as unique representation language; (b) automated validation of the specifications; (c) code generation 
for execution on an open-source partitioned operating system (POK Community, 2011); (d) automated certifica-
tion, which verifies that specification requirements are met in the implementation by analysing the system during 
its execution and also evaluates its compliance against certification standards.  Finally, (Sun, et al., 2009) fo-
cuses only on requirements, proposing a formal framework that assists designers in detecting conflicts between 
safety and security requirements. A comprehensive review of Formal Methods for Safe and Secure Computers 
Systems is given in (Garavel, et al., 2013). 

Some studies are less formal, but have the similar goals of better understanding the relations between safety 
and security (Pan, et al., 2007a), (Piètre-Cambacédès, et al., 2009), and establishing a common information 
model for safety and security (Avizienis, et al., 2004), (Jonsson, 2006), (Stoneburner, 2006), (Firesmith, 2010) 
and (Mattila, 2013). As early as 1992, (Jonsson, et al., 1992) was asking: “Should we […] look for unification of 
terminology, or is it justifiable to maintain separate terminologies for each discipline?” The important characteri-
sation differences between safety and security concepts, e.g. as expressed in (Burns, et al., 1992) and in 
(Piètre-Cambacédès, et al., 2009), tend to show that it is extremely difficult to provide a comprehensive picture. 
(Firesmith, 2003) rightly points out that the information models of safety, security, and survivability engineering 
are remarkably similar in both content and topology, and therefore safety, security, and survivability require-
ments can be elicited and analysed in terms of a risk-oriented, asset-based approach that takes into account the 
associated hazards and threats from which these assets must be protected. However, this comprehensive ap-
proach brings the author to reconsider some rather standard definitions, to ensure overall consistency
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. For 

example, security is decomposed into the following sub-factors: access control, attack/harm detection, availabil-
ity protection, integrity, non-repudiation, physical protection, privacy, prosecution, recovery, security auditing, 
and system adaptation. This differs significantly from the traditional focus on the confidentiality, integrity and 
availability sub-factors, or even the extended list of security goal sub-factors proposed in Octave (Cherdantseva, 
et al., 2013). In particular, availability protection refers to the degree to which various types of Denial of Service 
(DoS) attacks are prevented, whereas availability in the safety-tradition deals with the operational availability of 
the system when it is not under attack. A solution might lie in the partition proposed by (Chapon, et al., 2012) or 
(Sadvandi, et al., 2012), i.e. the use of formal methods to address known and controlled risks (e.g. internal sys-
tem faults, script kiddies), and in-depth defence, to address unknown or uncontrolled risks (e.g. causes external 
to the system, 0-day threats). Noteworthy as well, but focused on the automotive domain, (Schmittner, et al., 
2015b) identifies three requirements to select a candidate security standard to complement a safety standard: (i) 
there should be an overlap in required work products for safety and security argumentation; (ii) assurance levels 
between safety and security should be translatable; (iii) approaches and concepts from one standard should be 
mirrored by the other standard. 

Unifying focused engineering techniques used in safety and security is often recommended, as in (Lano, et al., 
2002) around the implementation of HAZard and Operability (HAZOP) studies and Fault Tree Analyses (FTA) in 
the Unified Modelling Language (UML), or as in (Fovino, et al., 2009), (Förster, et al., 2010) with the integration 
of attack trees within fault trees. In this context, (Steiner, et al., 2013) solves the problem of the missing security 
events probabilities by the use of a hybrid rating scheme. (Piètre-Cambacédès, et al., 2010) proposes a similar 
unification with Boolean logic Driven Markov Processes (BDMP). Likewise, (Reichenbach, et al., 2012) propos-
es an approach for combining safety analysis with security analysis by considering the Safety Integrity Levels 
(SIL) of (S + IEC 61508, 2010) as an extension of the Threat Vulnerability and Risk Assessment (TVRA) meth-
od. In the automotive domain, (Macher, et al., 2015a) / (Macher, et al., 2015b) proposes the SAHARA (Security-
Aware Hazard Analysis and Risk Assessment) approach, a combination of the well-known safety-centric HARA 
(Hazard Analysis and Risk Assessment) method and the security-centric Microsoft STRIDE method. An alterna-
tive approach for safety and security co-engineering in the automotive domain is presented in (Ward, et al., 
2013). 

Unification is usually proposed based on a selected set of safety-related and security-related techniques. Few 
papers however propose an exhaustive review of techniques to justify why specific attention is given this or that 
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technique. (Raspotnig, et al., 2013a) provides an extensive (50 pages) review of risk identification techniques 
for safety and security requirements. The added-value of the article is that it proposes an assessment frame-
work. All techniques are assessed against the selected criteria to obtain knowledge on strengths and weak-
nesses of the different techniques in both the safety and security fields, and suggestions are provided to mutual-
ly enhance their efficiency. 

Even if a unification or harmonisation of the safety and security engineering approaches is commonly proposed, 
disruptive approaches are also proposed. (Zafar, et al., 2005) proposes the use of the Genetic Software Engi-
neering (GSE) method to deal with the formal writing and verification of safety and security requirements. 
(Sallhammar, et al., 2006) presents a stochastic model for integrated security and dependability assessment 
using stochastic game theory which allows for the computation of the expected attacker behaviour. (Aven, 2009) 
claims that it is necessary to use a risk-informed approach where calculated probabilities and expected values 
are enriched with the uncertainties of the underlying phenomena and processes. (Monakova, et al., 2012) ex-
tends classical Business Process Modelling Notation (BPMN) to cope with safety and security requirements. 
(Subramanian, et al., 2013) and (Subramanian, et al., 2014) proposes the Non-Functional Requirements (NFR) 
technique that allows simultaneous evaluation of both safety and security at the architectural level, using re-
spectively qualitative and quantitative reasoning to evaluate whether the properties have been achieved. 
(Kornecki, et al., 2013b) compares the traditional Non-Functional Requirement (NFR) approach with a Bayesian 
Belief Network (BBN) approach, which can be used when the factors related to the safety and security of cyber-
physical systems are assumed to be randomly distributed. (Vouk, 2013) asserts that engineers appear to avoid 
and eliminate vulnerabilities more by luck (aleatoric process) than through knowledge driven (epistemic) meth-
ods; this opens some interesting models, e.g. for vulnerability detection or estimating the number of residual 
security faults. (Pieters, et al., 2014) proposes to quantify frequencies of targeted attacks in order to integrate 
security risk assessment methods in existing safety risk management practices, and support countermeasures 
investment decisions. (Schneider, 2014) proposes a contract-based approach called ConSerts to address the 
challenges of openness and runtime adaptation which are common the safety and security critical systems. 
(Kriaa, et al., 2015b) proposes S-cube, a framework to automatically generate the different attack and failure 
scenarios a system is exposed to, based on the system description. 

Beyond the aforementioned focused techniques, there are various proposals for an overall unification. (MAFTIA, 
2000) proposes a framework that ensures the dependability of distributed internet applications in the face of a 
wide class of faults and attacks. (Sørby, 2003) and (Horn, 2005) propose a development process for security-
safety critical systems, which is based on the safety lifecycle defined in (IEC 61508-1, 1998) and the CORAS 
integrated risk management and system development process (Braber, et al., 2003). (Hessami, 2004) proposes 
a new paradigm for holistic systems assurance. (Altran Praxis, 2006), (Cockram, et al., 2007) and (Jackson, et 
al., 2008) present SafSec that helps achieve certifications with the minimum of duplicated work. (Ibrahim, et al., 
2004) unifies the Capability Maturity Model Integration (CMMI) and the FAA integrated Capability Maturity Model 
(iCMM), whilst (Firesmith, 2010) relates safety and security engineering to survivability engineering. Likewise, 
(Raspotnig, et al., 2012b) proposes a unified process for the elicitation and analysis of safety and security re-
quirements, called the Combined Harm Assessment for Safety and Security of Information Systems (CHASSIS) 
method, that comprehends three modelling techniques (Raspotnig, et al., 2012a) and a Harm Assessment Pro-
cess (Raspotnig, 2014); the latter was extended by (Katta, et al., 2013a) with a security requirements traceabil-
ity capability built upon the Safety Traceability Approach (Katta, et al., 2013b). (Pedroza, et al., 2011) proposes 
a unified tooled-up framework based on SysML for the specification of embedded systems, integrated with 
ProVerif and UPPAAL respectively for the verification of security and safety properties.  (Sadvandi, et al., 2012) 
proposes a safety and security integrated paradigm in which formal risk assessment frameworks may be used 
to cover both safety and security known threats, and defence in-depth may help to mitigate both safety and se-
curity hardly-predictable risks. Based on the lessons learnt from the Stuxnet malware, (Aoyama, et al., 2013) 
proposes a novel framework tackling plant safety and security from a more comprehensive point of view. 
(Axelrod, 2012), (Axelrod, 2013b) and (Axelrod, 2013c) propose an approach to model cyber-physical systems 
and measure the risks to which they are exposed in order to better minimise total risk. (Woskowski, 2014) pro-
poses to extend beyond device boundaries the (ISO 14971, 2007) risk-based approach related to the integration 
and interaction of medical devices. And there are many more approaches, such as (Schoitsch, 2005), (Line, et 
al., 2006), (Aven, 2007), (Aven, 2011), (Förster, et al., 2010), (Aoyama, et al., 2013). 

(SeSaMo, 2012) proposes to develop a component-oriented design methodology based upon model-driven 
technology, jointly addressing safety and security aspects and their interrelation for networked embedded sys-
tems in multiple domains; in (SeSaMo D2.1, 2013), eighteen basic building blocks (BBs) for safety and security 
modelling are proposed, whilst (SeSaMo D3.1, 2013) provides a specification of safety and security analysis 
and assessment techniques. (SeSaMo D4.1, 2014) presents the safety and security integrated design and eval-
uation methodology. SeSaMo stands slightly apart from the other approaches in that it proposes the definition of 
interaction points between separate safety and security processes, rather than a unified process, but with 
shared and unique work-products (Mazzini, et al., 2014). Highlights are presented in (Favaro, et al., 2014), in-
cluding security-informed safety cases. However, this genericity has it limits: specific domains have specific 
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constraints and specific capabilities which can dramatically impact the design approaches, as shown in 
(Banerjee, et al., 2012) in the case of cyber-physical systems (CPSs). 

It is difficult to assess which approach will emerge as we believe that the ultimate approach to co-engineering 
has not yet been found. (Kriaa, et al., 2013) supports this statement by comparing CHASSIS and BDMP, and 
concluding that these two approaches complement each other, thereby showing that neither of these two al-
ready integrated approaches is the ultimate solution. Likewise, (Schmittner, et al., 2015a) presents a case study 
combining FMVEA and CHASSIS, concluding that one weakness of CHASSIS is that, while safety and security 
are analysed with the same methodology, the two assessments are unacceptably done separately; moreover 
both methods do not explicitly address how to conduct safety and security analysis in a continuous manner. 

Unification initiatives can also be found in standards, with e.g. (ISO 31000, 2009) and (IEC 31010, 2009) for risk 
assessments or (ISO/IEC 15026-2, 2011) and (OMG SACM, 2013) for assurances cases. In domains in which 
compliance to standards is of utmost importance, generic co-engineering approaches and technical solutions as 
presented above are rarely helpful, especially when one starts searching for the devil in the details. In this con-
text, (Åkerberg, 2011) proposes an end-to-end safe and secure communication solution for standard-compliant 
heterogeneous automation networks, whilst (Braband, 2014a) and (Braband, 2014b) propose an IT security 
framework compliant with the safety standards in the railway automation domain. 

Of course, when both safety and security concerns are addressed for a giving system, striking the proper bal-
ance between these two, sometimes contradictory, sets of requirements may be a challenge. (Nielson, et al., 
2013) proposes an extension of the Quality Calculus to check the extent to which safety and security goals have 
been met. (Labreuche, et al., 2005) proposes a generic framework using multi-criteria decision aiding (MCDA) 
techniques based on the two-additive Choquet integral to help decision makers select the best option amongst 
several alternatives; the main author is now working, as part of the (MERgE, 2012) project, on a specific adapta-
tion of this framework to support design decisions in the context of multi-concerns system architecting (not yet 
published). 

All the above references relate to design-time engineering activities. Let us close the show by citing (Pan, et al., 
2007b), a borderline paper with respect to this state of the art, which focuses on engineering activities to keep a 
system safe & secure during system operation and system maintenance. 

5.4 Conclusion 
As can be seen from the above, the academic and standardisation communities are active as never before on 
the subject of safety and security co-engineering. The subject usually raises much interest, even if there are 
from time to time some signs of disillusion. E.g., in 2005, Erwin Schoitsch published Design for safety and secu-
rity of complex embedded systems: a unified approach (Schoitsch, 2005). Close to ten years later, the same 
author asks: Safety and security – what about a joint process? (Schoitsch, 2014). In the mass of publications, it 
is difficult to find technical safety and security development roadmaps –roadmaps we found, such as (Johnson, 
2012) or (Luiijf, et al., 2015) target governmental policymakers or senior executives. It is equally difficult to pre-
dict the future, from a technical standpoint, based on the many directions that research is investigating. Howev-
er it is possible to state a couple of facts, and we ventured to formulate a couple of trends. 

The first fact is that safety and security co-engineering seems to be primarily a concern of the safety engineer-
ing community. Indeed, the increasing number of cyber-attacks in the world tends to show that safety-critical 
systems, and in particular the rising number of cyber-physical systems, which are particularly exposed by na-
ture, may not be as safe as they claim, if they are not also secure. The multiplication of security-related work-
shops in conjunction to safety-related conferences, and the multiplication of safety standards updates that in-
clude security concerns both provide significant testimonies of this growing interest for safety and security co-
engineering by the safety community. There is no similar earthquake within the security community: security 
experts seem to be interested in safety studies in two cases: (i) to assess if safety-critical systems are more 
vulnerable when they switch into fail-safe modes; (ii) to re-use safety techniques when availability and integrity 
are the primary concerns of the security engineering work, by opposition to confidentiality. 

The second major fact is that the security regulation, with the exception of privacy regulation (Directive 
95/46/EC, 1995), (EU COM(2012) 11 final, 2012), is somehow lagging behind industrial initiatives to produce 
security standards for software-intensive systems. Indeed, security is a National sovereignty prerogative, whilst 
safety regulation has been transferred to transnational organisations (e.g. European Commission, ICAO) since 
decades. Depending on the domains, National regulation may be seen as too weak or on the contrary an effec-
tive means to affect worldwide businesses. In the nuclear domain, renewed national regulation can be a driver 
for unified safety and security considerations, as the example of STUK YVL guides suggest (cf. part A, §4.1.2); 
these guides set requirements to the nuclear power plant operators that only can be covered by seamless inte-
gration of safety and security experts. Other industries, e.g. transport the aviation domain, have privileged phys-
ical security (Prentice, 2002) and / or have been developing security standards for software-intensive systems, 
which cannot be termed as acceptable means of compliance (AMC), since there is no regulation to comply with. 
This situation is bound to change. 
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Figure 55: Identified trends in safety and security engineering 

Trends were a bit more difficult to establish. We have formulated two of them based on concordant events hap-
pening in multiple domains (e.g. aviation, electronics, nuclear), and on both side of the Atlantic: 

 the safety communities thrive to maintain current organizational approaches as stable as possible, because 
regulations, acceptable means of compliance and standards have proven efficiency records and are ex-
tremely difficult to change, technically and / or politically (cf. Figure 55); some minor updates to the process-
es and methods are however necessary to ensure interaction points (SeSaMo, 2012), such as safety-aware 
security in (EUROCAE ED-202A, 2014) / (RTCA DO-326A, 2014), or security-aware safety in (S + IEC 
61508, 2010); the safety communities seems to be moving away from revolutionising standard safety pro-
cesses, e.g. with the obsolete (EUROCAE ED-202, 2010) / (RTCA DO-326, 2010), even if all individual 
members do not seem to adhere to this trend; 

 the academic and industrial communities are adapting and extending existing techniques (Schmittner, et al., 
2014b), architectures (Boettcher, et al., 2008) and tools (EURO-MILS EC FP7 Project, 2012), (Chapon, et 
al., 2012) to cover both safety and security properties; within this trend, the adoption and seamless integra-
tion of formal methods and tools (Garavel, et al., 2013), (Fisher, 2013) occupies a significant part (cf. Figure 
55). 
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6 Recommendations for safety and security co-
engineering 

Our initial recommendations are based on some assumptions that have been derived from the state of the art 
(cf. Part A of this deliverable and its synthesis in §5).  This section first exposes these assumptions and then 
proposes some way forward for safety and security co-engineering. Naturally, the proposed way forward echoes 
the initial motivations of this study, as presented in §1.3. 

6.1 Assumptions 
This section exposes three assumptions and the grounds that led us to believe these assumptions to be true. 

Assumption n°1: Industrial safety and security engineering processes / methods are difficult, and at best 
very slow, to change. 

The grounds for supporting that assumption are as follows: 

 Industrial safety and security engineering processes / methods are defined in standards which are engineer-
ing specialty-specific

54
; for the safety specialty, they are moreover domain-specific

55
; they can also be cus-

tomer RFT-related, legacy-related, proprietary-related, etc. 

 The state of the art shows that numerous safety and security co-engineering processes have been pro-
posed, but none have really emerged. 

Assumption n°2: Safety and security jargon is difficult, and at best very slow, to change. 

The grounds for supporting that assumption are as follows: 

 There is no common glossary, even within a given engineering specialty. 

 Safety and security jargon is engineering specialty-related, process-related, domain standard-related, cus-
tomer RFT-related, legacy-related, proprietary-related, etc. 

 Communities of specialty-experts are and remain essentially apart, even if some efforts exist to join those 
communities (cf. Part A, §6). 

Assumption n°3: Safety and security tools are diverse, but tend towards a formalisation of their concep-
tual data model, in particular to suppress ambiguities & ensure coverage, to support analyses and to support 
interchange between tools. 

The grounds for supporting that assumption are as follows: 

 the (RTCA DO-178C, 2011) / (EUROCAE ED-12C, 2012) standard now recommends the use of formal 
methods; 

 many techniques, e.g. Fault trees, Altarica, Attack Trees, SysML profile extensions, now support formal 
analyses; 

 there are some initiatives to ensure interoperability between tools, which subsumes some form of formalisa-
tion of the exchanges, e.g. OpenPSA

56
. 

6.2 Proposals for safety and security co-engineering 
The following proposals were exposed early in the MERgE project as elements of a research roadmap. Some 
leads were followed during the project, meaning that we are now in a position to provide some feedback of the-
se early proposals, whilst other leads will need further work beyond the scope of the project. 

6.2.1 Proposal n°1: a Common Model 

The first proposal is artefact-related: Intermediate safety and security work products can be shared be-
tween the two engineering specialties as long as the vernacular is maintained for each specialty. 

This proposal implies:  

 the definition of a safety and security common work product model, hereafter called the “Common Model”; 

 a mapping between specialty concepts and the Common Model concepts. 

                                                      
54

 Meaning safety-specific or security-specific. 
55

 E.g. automotive, avionics, etc. 
56

 Cf. http://open-psa.org/. 
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In this proposal (cf. Figure 56): 

 all specialty concepts do not have to be mapped; e.g. the concept of “Target Level of Safety (TLS)” in the 
safety engineering specialty does not have a direct equivalent in the security engineering specialty; 

 all concepts in the Common Model must have at least one counterpart in each engineering specialty; 

 mapping may not always be a 1-to-1 mapping. 

 

Figure 56: Proposal for a common work product model 

In this proposal, even when specialty concepts are mapped, each engineering specialty retains its usual and / or 
standard term for the concept, and engineers proceed with their usual work, using their usual processes, meth-
ods and tools. E.g. when a safety expert creates a Hazard, it may be viewed, and potentially modified, as a 
Feared Event by security experts (cf. Figure 56). 

When we proposed this Common Model, we identified the following major challenges related to the definition of 
a safety and security common work product model and the mapping of concepts: 

 the coverage of multiple standards in each engineering specialty; 

 the consideration of multiple design abstraction levels, in order to cover the complete system development 
lifecycle in a consistent way; 

 the mapping at class level vs. a mapping at attribute level, e.g. a security risk may be mapped to a safety 
risk, but are all the attributes of a security risk identical to the attributes of a safety risk? 

 the scope of the different engineering specialties is not exactly the same, e.g. security engineering is more 
concerned by the environment in which the system-under-study is operated than safety engineering; this 
raises the question about the relevance of integrating these elements inside the common model.  

We started work on the Common Model by creating a taxonomy of terms present in the Common Criteria 
(ISO/IEC 15408-1, 2009) and, in a lesser measure, in the Functional Safety of E/E/PE Safety-Related Systems 
(S + IEC 61508, 2010). An extract of our work related to the Common Criteria standard is presented in Part A, 
§3.5 of this deliverable. The conceptual model for (ISO/IEC 15408-1, 2009) displayed approximately 200 clas-
ses, all related to each other through a complex set of associations and generalisation relationships. The safety 
standard offered a smaller set of concepts, but at this very detailed level, the mapping between the concepts of 
the two standards seamed tremendously complex. 

The lesson learnt from this work is as follows. The establishment of a Common Model should be based on em-
pirical studies, rather than on the systematic analysis of standards. This should ensure that the resulting generic 
pivot model is useful and manageable. 

6.2.2 Proposal n°2: Independent Engineering Processes 

The second proposal is process-related: Work on common safety and security work products should be 
transparent for each specialty, except in case of conflict / inconsistencies. 

In this proposal, safety (resp. security) experts may independently design safety (resp. security) barriers to im-
prove the system. However, some security barriers may have detrimental safety impacts and vice-versa. The 
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co-engineering workbench must ensure that there is no endless engineering loop between conflicting design 
patterns. 

When we proposed these Independent Engineering Processes, we identified the following major challenges for 
insuring the transparency between the safety and security engineering specialties: 

 detecting cases of conflict / inconsistencies between updates by the different engineering specialties; 

 convergence assurance and / or optimisation of the overall de-conflicting process; 

 effects of the “safety-first” or “security-first” hypotheses on the detection and solving of conflicts. 

Unfortunately, none of the MERgE test cases proposed conflicting safety and security requirements for us to 
experiment with. There are however some lessons learnt from this disappointing experience: 

1) Obviously, safety and security requirements can be mutually reinforcing, independent, or conflicting. To our 

knowledge, there are neither post-mortem statistics stating the average percentage of reinforcing, independ-

ent, and conflicting requirements in a system, nor evaluations of how hard is the decision-making related to 

solving conflicting requirements, if any. These statistics and evaluations would be extremely useful to know if 

it is worthwhile working on engineering support for conflicting requirements, especially concerning safety and 

security requirements. 

2) It is somehow artificial to limit the trade-off analysis between conflicting requirements to the sole plane of 

safety and security requirements, considering all other specialities as independent. Indeed, a security re-

quirement may have a slight detrimental effect on safety that makes it an acceptable choice during a trade-

off analysis, but it may in the same time have strong detrimental effects on usability, costs and/or perfor-

mance, that make it an unacceptable choice. A trade-off approach needs to be comprehensive with respect 

to all relevant criteria. 

Further details can be found in (Sébastien Madelénat, 2016). 

6.2.3 Proposal n°3: Conditions for successful cross-fertilisation 

The third proposal is tool-vendor oriented: A new tooled-up approach may be acceptable by industry if it is 
an add-on to existing (standard) processes with added-value related to formal analyses, and without 
significant negative side-effects, incl. extra workload. 

In D3.4.1 (Faucogney, et al., 2014), we have shown that some cross-fertilisation between engineering special-
ties has already been successful, e.g. fault trees have given rise to attack trees. New ones are regularly being 
proposed, e.g. HazOp, Diagrammatical Misuse Cases (cf. Part A, §2), or SysML profiles (cf. §4). This proposal 
tries to explicit the criteria for a successful cross-fertilisation. 

The conditions that we see to provide a successful new approach are: 

 the proposed approach must have a proven record in at least one of the engineering specialty or in main-
stream system engineering; 

 the extension is optional, i.e. the technique may continue to be used as it has always been used prior to its 
extension; 

 the extension has limited negative side-effects, in particular in terms of extra workload; 

 the new approach brings more formalisation, allowing for formal analyses. 

When we proposed these conditions for successful cross-fertilisation, we identified the following major challeng-
es for the definition of new tooled-up approaches: 

 choice of the most relevant abstraction level(s); 

 analysis of the side-effects; 

 definition of the supporting algorithms and / or tools; 

 reconciliation of quantitative and qualitative approaches, e.g. to determine the probability of occurrence of 
feared events and / or hazards. 

During our state of the art work (cf. Part A of this deliverable), we identified one tool that satisfies all of the 
above criteria, namely TTool/AVATAR. We believe that this tool has the potential for industrial adoption: this is 
why it was analysed and evaluated in detail, cf. §4, and demonstrated four times within the Thales Group during 
2015. The tool still suffers from some scalability issues that we hope to solve early 2016. 

In parallel, we defined our own safety and security engineering tool that also satisfies all of the above criteria: it 
implements a new Failure Modes, Effects and Criticality Analysis (FMECA) extended with security-related fea-
tures (cf. §3). 
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F Failure 

FA Free Agent 

FAA Federal Aviation Authority 

FAIR Factor Analysis of Information Risk 

FAR Federal Aviation Regulation 

FCV Fuel-Cell Vehicle 

FDA Food and Drug Administration 

FHA Functional Hazard Analysis 

FMEA Failure Mode and Effect Analysis 

FPTC Failure Propagation and Transformation Calculus 

FSD Failure Sequence Diagram 

FT Fault Tree 

GEMS Generic Error-Modelling System 

GM Guidance Material 

GPP General Purpose Processor 

GSE Genetic Software Engineering 
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GSN Goal Structuring Notation 

GWV Greve, Wilding, and Vanfleet 

H Harm 

HACMS High-Assurance Cyber Military Systems 

HazOp HAZard and Operability 

HEV Hybrid Electric Vehicles 

HLR High-Level Requirement 

I&C Instrumentation and Control 

IACS Industrial Automation and Control System 

IAEA International Atomic Energy Agency 

IBT Integrated Behaviour Tree 

ICAO International Civil Aviation Organisation 

iCMM integrated Capability Maturity Model 

ICS Industrial Control System 

IDS Intrusion Detection System 

IMA Integrated Modular Avionics 

INCOSE International Council on System Engineering 

ISR Instruction Set Randomization 

KUL Katholieke Universiteit Leuven 

LLR Low-Level Requirement 

LOPA Layer-Of-Protection Analysis 

LSP Liskov Substitutability Principle 

MAFTIA Malicious-and Accidental-Fault Tolerance for Internet Applications 

MBS&SA Model Based Safety & Security Assessment 

MCS Machine-Control Systems 

MCS Minimal Cut Set 

MILS Multiple Independent Levels of Security (obsolete) 

MLS Multiple Levels of Security 

MOD Ministry of Defence (UK) 

MSC Minimal Sufficient Condition 

MUSD Misuse Sequence Diagram 

NFR Non-Functional Requirement 

NIST National Institute of Standards and Technology 

NSA National Security Agency 

O Operator 

OE Operational Environment 

OMG Object Management Group 
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ONERA Office National d'Études et de Recherches Aérospatiales (The French Aerospace Lab) 

OS Operating System 

OSI Open Systems Interconnection 

P Probability 

PP Protection Profile 

PSM Practical Software and Systems Measurement 

PSSA Preliminary System Security Assessment 

R Rating 

RAE Requirements Analysis and Elicitation 

RBT Requirement Behaviour Tree 

RESS Rechargeable Energy Storage System 

RFT Request For Tender 

RTCA Radio Technical Commission for Aeronautics 

S Secret 

SACM Structured Assurance Case Meta-model 

SAEM Software Assurance Evidence Meta-model 

SAL Symbolic Analysis Laboratory 

SAM Safety Assessment Methodology 

SAT Satisfiability 

SaTrAp Safety Traceability Approach 

SCA Software Communication Architecture 

SCIS Software-intensive Critical Information Systems 

SDR Software Defined Radio 

SeCM Security Conceptual Model 

SEFT State/Event Fault Tree 

SEISES Secured and Safe IT Embedded Systems 

SEMA System vs. Environment & Malicious vs. Accidental 

SIL Safety Integrity Level 

SIS Safety Interlock System 

SL Security Level 

SL Single Level (of Security) 

SMT Satisfiability Modulo Theory 

SQUALE Security, Safety and Quality Evaluation for Dependable Systems 

STAMP System-Theoretic Accident Model and Processes 

STUK Radiation and Nuclear Safety Authority (of Finland) 

TCS Thales Communications & Security 

TEPE TEmporal Property Expression 

T-MUC Textual Misuse Cases 

TOE Target of Evaluation 
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TRT Thales Research & Technology 

TS Top Secret 

TSF Target of Evaluation Security Function 

TSFI TSF Interface 

TTOOL TURTLE Tool 

TVRA Threat, Vulnerability and Risk Assessment 

VIA Vulnerability Identification and Analysis 

 


