
Template V 2.0 MERgE ITEA2 Project # 11011

ITEA2 – Project #11011

Multi-Concerns Interactions
System Engineering

01.12.2012 to 31.03.2016

-

Project Deliverable D3.4.4 - Part B (Julien Brunel, ONERA)

Task 3.4 – Advanced concepts in safety and security co-engineering (Laurent RIOUX, TRT)

WP3 – Advanced multi-concerns engineering concepts (Sam MICHIELS, KUL)

Status [] Draft

[] To be reviewed

[X] Final

 Confidentiality [X] Public (for public distribution)

[] Restricted (only MERgE internal use)

[] Confidential (only for individual partner(s))

Document Created : 18.08.2015

Last edited : 22.04.2016

Due date : 28.02.2016

Ready for review :01.02.2016

Document Version : 1.0

Pages : 92

Contributors : TRT, ALL4TEC, ONERA, STUK

Executive summary

Nowadays, safety and security are two risk-driven activities that are tackled separately, giving rise to the indus-
trial challenge of efficiently and economically co-engineering these two specialities. It is evident that there is a
major opportunity to share on onomastics

1
, algorithms, (formal) methods and tools, in particular to reach higher

levels of assurance at contained costs.

Deliverable D3.4.4 is split in two parts. Part A (companion document) is an extensive state of the art on safety
and security co-engineering of software intensive critical information systems. It essentially covers academic
publications and industry standards.

Part B (this document) first reports on two prototype tools dedicated to safety and security co-engineering. The
first prototype was designed and developed by MERgE partners based on safety and security requirements
from the MERgE software-defined radio test case. The document recalls the requirements and presents the
high-level design. Assessment results of this prototype can be found in deliverable D1.1.1d – TCS Evaluation.
The second prototype, called AVATAR, is developed by Télécom ParisTech and was identified during our study
of the state of the art. We performed an in-depth assessment of this academic tool. Based on the experience we
gained during the state of the art work (of which a synthesis is provided herein) and tool prototyping work, Part
B proceeds with research and development recommendations for new federative approaches, whilst remaining
realistic with respect to industrial constraints, i.e. costs, legacy workbenches, training constraints, etc.

Note: the executive summary is common to both parts A and B.

1
 Study of names and naming.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 2 / 92

Version Content Resp. Partner Date

0.01 Creation of the document based on D3.4.3.

Enhancement of the state of the art.

S. Paul (TRT)

L. Rioux (TRT)

J. de Oliveira (TRT)

G. Gailliard (TCS)

J.-L. Gilbert (TCS)

T. Wiander (STUK)

F. Vallée (All4Tec)

M. Bakkali (All4tec)

A. Faucogney (All4tec)

J. Brunel (ONERA)

D. Chemouil (ONERA)

18/08/2015

0.02 Extension of the state of the art with the papers from
the ISSE’15 workshop.

Stéphane Paul (TRT) 22/09/2015

0.03 Further enhancement of the state of the art. Stéphane Paul (TRT) 06/10/2015

0.04 Split of the document in two parts.

Contribution on TTool/AVATAR.

Stéphane Paul (TRT) 24/11/2015

0.05 Correction of formatting errors. Stéphane Paul (TRT) 30/11/2015

0.06 Adapted Executive Summary and Introduction.

Restructured chapters 2 and 6.

Solved chapter reference errors, solved printing prob-
lems and other minor issues.

Stéphane Paul (TRT) 04/01/2016

0.07 Correction of the document template.

Restructuring of §3.

Restructured and extended §6.

S. Paul (TRT)

L. Rioux (TRT)

F. Vallée (All4Tec)

M. Bakkali (All4tec)

J. Brunel (ONERA)

07/01/2016

0.08 Extended state of the art.

Clean-up of bibliography (non-cited references).

Stéphane Paul (TRT) 12/01/2016

0.09 New section §3.2, and adaptation of §3 and §3.1.

Update of Fig. 1.

Julien Brunel (ONERA)

Stéphane Paul (TRT)

19/01/2016

0.10 Revised §3, new section §3.3.

Submission for internal review.

Stéphane Paul (TRT) 25/01/2016

0.99 Peer review. Grégory Gailliard (TCS) 16/02/2016

1.00 Final submission. Stéphane Paul (TRT) 16/02/2016

Reviewed & Accepted Name Partner

Independent Reviewer
(outside WP)

G. Gailliard Thales Communications & Security

Validation from Manage-
ment Board

S. Michiels Katholieke Universiteit Leuven

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 3 / 92

Contents

Recommendations for Security and Safety Co-engineering (Release n°3) ... 1

1 Introduction .. 11

1.1 Purpose of the document ... 11

1.2 Scope of the document .. 11

1.3 Motivations ... 11

1.4 Targeted audience.. 12

1.5 Structure of the document .. 12

2 Analysis of MERgE case test safety and security co-engineering requirements 13

2.1 SDR safety and security co-engineering requirements .. 13

2.1.1 Security requirements .. 13
2.1.2 Safety Requirements ... 14

2.2 ICS safety and security co-engineering requirements ... 14

2.3 Other test cases ... 15

3 A formal system modelling and verification framework for security and safety assessment 16

3.1 Standalone approach ... 16

3.1.1 Alloy in a nutshell ... 16
3.1.2 The Coy Modelling Framework.. 16
3.1.3 Fire detection example .. 18

3.2 Integrated approach ... 23

3.2.1 Alloy/Kodkod model ... 24
3.2.2 Formal proofs... 24

4 An analysis of a third-party tool: TTool/AVATAR ... 26

4.1 Introduction to the AVATAR UML / SysML profile .. 26

4.1.1 Third-party companion tools .. 27
4.1.2 Licences ... 27
4.1.3 Tool installation and configuration assessment... 28
4.1.4 User manual .. 28

4.2 Methodology assessment ... 28

4.3 Tool assessment .. 29

4.3.1 Elicitation of assumptions .. 30
4.3.2 Requirements capture ... 30
4.3.3 System analysis ... 32
4.3.4 System design ... 34
4.3.5 Property modelling ... 41
4.3.6 Formal verification ... 47

4.4 Conclusions .. 53

Annex A – Microwave Use Case Supplementary Data .. 56

Annex B – TEPE Supplementary Data .. 58

Annex C – Formalising Safety Properties using TEPE ... 61

5 State of the art synthesis .. 63

5.1 Houston, we have a problem! ... 63

5.2 S4S: security for safety or safety for security? ... 64

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 4 / 92

5.2.1 Improving safety engineering .. 64
5.2.2 Improving security engineering.. 66

5.3 Towards safety and security co-engineering .. 66

5.4 Conclusion .. 69

6 Recommendations for safety and security co-engineering .. 71

6.1 Assumptions ... 71

6.2 Proposals for safety and security co-engineering .. 71

6.2.1 Proposal n°1: a Common Model ... 71
6.2.2 Proposal n°2: Independent Engineering Processes .. 72
6.2.3 Proposal n°3: Conditions for successful cross-fertilisation .. 73

7 References .. 74

8 Acronyms .. 88

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 5 / 92

List of Figures

Figure 1: Number of safety and security co-engineering related research publications per year........................... 8

Figure 2: Identified trends in safety and security engineering .. 9

Figure 3: Exponential code size evolution on Airbus aircraft .. 11

Figure 4: Graphical depiction of the Coy meta-model (projected over Time) ... 18

Figure 5: Second time step of the counter example (failErr on the heat detector) ... 22

Figure 6: First time step of the counter-example (failLoss on the pull station) ... 22

Figure 7: Integrated approach ... 23

Figure 8: Alloy/Kodkod model ... 24

Figure 9: Creating a diagram for the methodology ... 29

Figure 10: The six phases of the AVATAR methodology .. 29

Figure 11: Example of AVATAR Modelling Assumption Diagram .. 30

Figure 12: AVATAR requirements diagram for the microwave system (extract with safety requirements) 31

Figure 13: AVATAR requirements diagram for the microwave system (extract with security requirements) 32

Figure 14: Example of AVATAR attack tree .. 33

Figure 15: AVATAR blocks and cryptoblocks ... 34

Figure 16: Data types required for the AVATAR cryptoblocks .. 35

Figure 17: Overall AVATAR Block Diagram for the Microwave System ... 36

Figure 18: Secrecy assumption verification error .. 37

Figure 19: Example of static key pairing ... 38

Figure 20: AVATAR block state-machine of the microwave oven controller .. 39

Figure 21: Declaration of Flow Properties of type Signal .. 40

Figure 22: Configuring communication channels with respect to security .. 40

Figure 23: Example of confidentiality property .. 41

Figure 24: State-machines of the remote control (left) and of the oven’s wireless communication unit (right) 42

Figure 25: Examples of authenticity properties ... 42

Figure 26: State-machines of Alice and Bob exchanging a signed message ... 43

Figure 27: State-machines of Alice and Bob exchanging a signed message with nonce 43

Figure 28: Observer for safety property n°1 .. 44

Figure 29: State-machine of the microwave microcontroller ... 45

Figure 30: Signal association settings for the safety observer.. 46

Figure 31: State-machine for the safety property n°1 observer .. 46

Figure 32: De-scoping the design model and syntax analysis .. 47

Figure 33: Menu to launch the formal verifications ... 48

Figure 34: ProVerif's code generation dialogue window ... 48

Figure 35: ProVerif's code execution dialogue window .. 49

Figure 36: UPPAAL’s formal verification dialogue window ... 50

Figure 37: State-machines for handshake protocol n°2 .. 51

Figure 38: Reports about confidentiality assessment ... 51

Figure 39: Reports about authenticity assessment on the Alice & Bob use protocol with nonce 52

Figure 40: Reports about authenticity assessment on the microwave protocol with a symmetrical encryption ... 53

Figure 41: Results from the verification of the safety property ... 53

Figure 42: AVATAR Use Case Diagram for the microwave system ... 56

Figure 43: AVATAR Context Diagram for the microwave system .. 56

Figure 44: Example of AVATAR Sequence Diagram for the microwave system.. 56

Figure 45: Example of AVATAR Activity Diagram for the microwave system .. 57

Figure 46: State-machines of the microwave’s door (left) and microwave’s magnetron (right) 57

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 6 / 92

Figure 47: Attribute-based operators .. 58

Figure 48: Attribute-based operators with their attribute ports (left), signal ports (middle) and property ports
(right) ... 58

Figure 49: Signal-based operators with their signal ports (left), and property ports (right) 59

Figure 50: The different semantics of the TC operator ... 59

Figure 51: Property-based operators with their property ports ... 60

Figure 52: Property “Door not open” ... 61

Figure 53: Property “Bell” .. 62

Figure 54: Publication dates of core referenced papers ... 63

Figure 55: Identified trends in safety and security engineering .. 70

Figure 56: Proposal for a common work product model ... 72

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 7 / 92

There will always be engineering failures. But the worst kinds of failures are
those that could readily be prevented if only people stayed alert and took
reasonable precautions. Engineers, being human, are susceptible to the
drowsiness that comes in the absence of crisis. Perhaps one characteristic
of a professional is the ability and willingness to stay alert while others doze.
Engineering responsibility should not require the stimulation that comes in
the wake of catastrophe.

—Samuel C. Florman

The Civilized Engineer

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 8 / 92

Extended executive summary

Safety and security are two risk-driven activities that are traditionally tackled separately. It is thus possible to
distinguish two communities, each working on their own standards, organising their own conferences, publishing
in their own journals. Since the 9/11 attacks on the Twin Towers in the Aeronautics domain and the discovery of
the Stuxnet computer worm in the Industrial Control Systems domain in June 2010 (cf. Figure 1), it is more and
more recognised worldwide that both engineering specialties cannot continue to ignore each other.

Early 2014, when we started this state of the art on safety and security co-engineering for software-intensive
systems, we thought we would rapidly establish a comprehensive picture of this small community living in the
shadows of the big safety community on the one hand, and of the security community on the other hand. In our
minds, safety and security co-engineering questions where intimately linked to niche safety-critical systems
markets, such as the Integrated Modular Avionics (IMA), Industrial Control Systems (ICS) or similar networked
control systems.

Much to our surprise, we discovered a bustling academic community, with a significant number of publications
explicitly addressing safety and security co-engineering concerns (cf. part A, §2), and actively organising work-
shops and conferences on the subject (cf. part A, §6). As illustrated in Figure 1, our state of the art on academic
safety and security co-engineering publications comprehends some 160 references (on a total of over 400 ref-
erences in the deliverable) concentrating essentially on the last 10 years

2
, even if a few references go back to

the early 90’s. Recent attention to the topic may be related to the explosion of the number of cyber-physical
systems (CPS), system of systems (SoS) and Internet of Things (IoT) in general public markets. We also found
an industrial community actively revising existing safety-related standards or elaborating new standards to cope
with business security issues with a certain level of rigor (cf. part A, §3). This standardisation activity is all the
more surprising that there is a real lack of international regulation concerning security risk management for safe-
ty-critical systems. The last but not least of our surprises was in the education domain: there seems to be very
few courses addressing both cyber-security and safety engineering, which does not bode well for the future (cf.
part A, §5).

Our state of the art was first organised
in a chronological order (cf. part A of
this deliverable), and then analysed as
a whole. This analysis led us to organ-
ise the publications in three groups (cf.
part B, §5). A first group comprehends
the papers that state the issues related
to engineering safety and security sepa-
rately, and assert that there is room for
improvement, but do not explain how.
The second group comprehends the
papers that propose to improve one
specialty by adapting techniques from
the other specialty, in other words, safe-
ty and security cross-fertilisation. Here,
one specialty is seen as more important
than the other one, giving way to securi-
ty for safety or vice-versa.

Figure 1: Number of safety and security co-engineering related re-
search publications per year

The last set of publications relates to novel clean-slate approaches for safety and security co-engineering, con-
sidering both specialties as peers. Amongst these publications, one tool, called TTool/AVATAR, caught our at-
tention and was analysed in depth (cf. Part B, §4).

From the mass of aforementioned publications and after an analysis of internal MERgE case test safety and
security co-engineering requirements (cf. part B, §2):

 we identified and developed a new formal system modelling and verification framework for security and
safety assessment (cf. part B, §3), which extends the classical safety-related dysfunctional modelling with
security-related concerns;

 we ventured to formulate a couple of facts, and a couple of trends (cf. part B, §6).

2
 The number of references for 2015 is significantly low due to the fact that we stopped our systematic search of publications early 2015,

and simply referenced occasional findings.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 9 / 92

The first fact is that safety and security co-engineering seems to be primarily a concern of the safety engineer-
ing community. Indeed, the increasing number of cyber-attacks in the world tends to show that safety-critical
systems, and in particular the rising number of cyber-physical systems, which are particularly exposed by na-
ture, may not be as safe as they claim, if they are not also secure. The multiplication of security-related work-
shops in conjunction to safety-related conferences, and the multiplication of safety standards updates that in-
clude security concerns both provide significant testimonies of this growing interest for safety and security co-
engineering by the safety community. There is no similar booing within the security community: security experts
seem to be interested in safety studies in only two cases: (i) to assess if safety-critical systems are more vulner-
able when they switch into fail-safe modes; (ii) to re-use safety techniques when availability and integrity are the
primary concerns of the security engineering work, by opposition to confidentiality or privacy concerns.

The second major fact is that the security regulation is somehow lagging behind industrial initiatives to produce
security standards. This may be explained considering that security is a National sovereignty prerogative, whilst
safety regulation has often been transferred to transnational organisations (e.g. European Commission, Interna-
tional Civil Aviation Organisation) since decades. Depending on the domains, National regulation may be seen
as too weak or on the contrary an effective means to affect worldwide businesses. In the nuclear domain, re-
newed national regulation is a driver for unified safety and security considerations as the example of STUK YVL
guides suggest. Other industries (e.g. in the aviation domain) have been developing security standards, which
cannot be termed as acceptable means of compliance (AMC), since there is no regulation to comply with. This
situation is bound to change.

Figure 2: Identified trends in safety and security engineering

Trends (cf. Figure 2) were a bit more difficult to establish. We have formulated two of them based on concordant
events happening in multiple domains (e.g. aviation, electronics, nuclear), and on both side of the Atlantic:

 the safety communities thrive to maintain current organizational approaches as stable as possible, because
regulations, acceptable means of compliance and standards have proven efficiency records and are ex-
tremely difficult to change, technically and / or politically; some minor updates to the processes and meth-
ods are however necessary to ensure interaction points, such as safety-aware security in the avionics do-
main, or security-aware safety in the electrical / electronic / programmable electronic domain; the safety
communities seems to be moving away from revolutionising standard safety processes, even if all individual
members of those communities do not seem to adhere to this trend;

 the academic and industrial communities are adapting and extending existing, architectures and tools, to
cover both safety and security properties; within this trend, the adoption and seamless integration of formal
methods and tools occupies a significant part.

These two trends cover quality assurance for the former, to ensure in-depth defence, and quality control for the
latter, to cope with known and controlled risks. All of the above is detailed in the current document.

The document concludes on a set of proposals for continued enhanced safety and security co-engineering. The
proposals are based on a set of three assumptions:

 industrial safety and security engineering processes / methods are difficult / slow to change;

 safety and security vernacular is difficult / slow to change;

 safety and security tools are diverse, but tend towards a formalisation of their conceptual data model.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 10 / 92

Based on these hypotheses, our state of the art and our technical work, the document concludes on three pro-
posals that may feed a safety and security co-engineering research and development roadmap:

 the development of a common pivot model to support artefact sharing between engineering specialties;

 the management of conflicts between safety and security engineering processes seen as independent pro-
cesses;

 the criteria to be respected by engineering tools to allow for successful cross-fertilisation between engineer-
ing domains.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 11 / 92

1 Introduction

1.1 Purpose of the document
The purpose of deliverable D3.4.4 is to provide research and development recommendations for safety and
security co-engineering of software-intensive safety-critical information and / or embedded systems. The deliv-
erable is split in two parts. This document is part B.

The recommendations (cf. §6) are based on a solid state of the art (cf. Part A of this deliverable), of which a
synthesis is provided herein (cf. §5). The recommendations are also backed by end-user requirements from the
MERgE end-users (cf. §2), and on technical work related to two prototypes: an internally developed tool (cf. §3)
and a third-party tool (cf. §4).

1.2 Scope of the document
The scope of the study is the following:

 focus on the safety and security co-engineering of software-intensive critical information and / or em-
bedded systems, but not excluding other systems;

 end-to-end safety and security co-engineering, i.e. from safety and security requirements elicitation,
through to the implementation of safety and security solutions, and the verification and validation of those
properties;

 safety and security co-engineering modelling methods and tools.

This document addresses neither safety and security taken independently, nor safe and secure computing solu-
tions which do not require engineering practices.

1.3 Motivations
There are at least five main motivations for driving this study about safety and security co-engineering.

Motivation n°1: the question is no more if your system is going to be subject to a cyber-attack, but when.

On Dec. 8
th
, 2014, the SC Magazine (Stephenson, 2014) makes a title on Information security in 2014: another

year of big events, and the article starts as follows: As 2014 draws to a close we can look back over one of the
most tumultuous years in recent history. This has been the year of the major security breach. The Target breach
was just a warm-up for a laundry list of attacks against large, presumably well-protected, companies and gov-
ernment agencies. Candidly, these organizations – public and private – should be ashamed of themselves. Un-
deniably, from the cyber-attack point of view, the world is becoming more dangerous every day. As end-users
awareness increase, they now consider normal that up to 6% of a safety-critical system’s cost may be dedicated
to security issues.

Motivation n°2: safety-critical systems are no
more an exception to the rule, being them also
subject to cyber-attacks.

As safety-critical systems become more and
more complex (cf. Figure 3), and more and more
interconnected, cf. (25-356-SC, 2008) and (25-
357-SC, 2007), they also become more and more
vulnerable to cyber-attacks. A major driver of this
evolution is the increasing number of software
updates, versus hardware upgrades. This re-
quires ports and protocols for remote mainte-
nance / configuration, which are as many open-
ings for malevolent actions.

Figure 3: Exponential code size evolution on Airbus aircraft

Motivation n°3: components-off-the-shelf (COTS) have become ubiquitous in software engineering.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 12 / 92

The Service and Component Architecture (SCA) has effectively leveraged reuse in the software engineering
process, including for safety-critical and/or embedded systems. However, when COTS are massively used in
the software design, proving overall safety and security properties is a real challenge. A strategy for COTS se-
lection needs to be defined beforehand, together with guidance on how to use / configure them.

Note: sub-contracted software development fall under the same category as COTS when limited trust is granted
to the sub-contractors with respect to the existence of backdoors and / or Trojan horses in the delivered soft-
ware.

Motivation n°4: system maintenance in secure conditions (MSC) and system maintenance in operational condi-
tions (MCO) go by very different update rates and live cycles.

Safety-critical systems are hard to certify; once certified, modifications are kept minimal in order to avoid running
the complete certification process all over again. On the contrary, system maintenance in secure conditions
requires frequent updates to keep up with the ever rising new threats and related patches. Living with both the-
se safety and security constraints requires well-thought system architectures.

Motivation n°5: there are no complete and convincing solutions on the market to address simultaneously safety
and security engineering, including trade-off decision support.

The safety engineering has a long history of good practices, standards and tools, which have reached a high
degree of maturity. The security engineering domain is newer and is subject to constant evolution. Both com-
munities have lived side-by-side with few interactions. One partial exception to this statement is the MILS archi-
tecture used for real-time operating systems (RTOS). The MILS architecture assures properties that are rele-
vant to both safety and security, typically non-bypassable, evaluable, always invoked, and tamperproof. MILS
currently appears in commercial products, e.g. PikeOs by (Sysgo, 2014), Integrity Multivisor by (Green Hills
Software, 2014), VxWorks by (Wind River, 2015), LynxOS by (Lynx Software Technologies, 2015)

3
 or QNX®

Hypervisor by (QNX, 2015). However, by itself, MILS is far from being a complete solution, to cover the com-
plete safety lifecycle, from the functional hazard analyses and safety cases, to verification and validation.

1.4 Targeted audience
The targeted audience of this release of the deliverable is the safety and security co-engineering community,
without any restriction.

1.5 Structure of the document
This document is structured as follows.

 Chapter 1 is the current introduction.

 Chapter 2 recalls our end-user safety and security co-engineering requirements, as expressed in the MERgE

test cases.

 In chapter 3 and 4 we report on two formal safety and security verification experiments, one with a tool de-

veloped in the scope of the MERgE project, one with a third-party tool.

 Chapter 5 provides an overall synthesis of the state of the art (as presented in Part A of this deliverable).

 Based on this synthesis and the above technical work, chapter 6 provides some elements that may feed a

safety and security co-engineering research and development roadmap.

 Chapters 7 and 8 provide respectively the references and definitions of acronyms.

3
 Previously known as “LynuxWorks”.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 13 / 92

2 Analysis of MERgE case test safety and security
co-engineering requirements

2.1 SDR safety and security co-engineering requirements
This section recalls the safety and security requirements of the TCS Software Defined Radio (SDR) test case,
as extracted from MERgE deliverable D1.1.1.a, TCS - Scenarios and use cases definition.

In general, radio communication equipment may have to be compliant with the (ISO/IEC 15408-1, 2009) and
(RTCA DO-178B, 1992) / (EUROCAE ED-12B, 1992) standards presented in the next paragraphs. Since radio
equipment is long-lived, RTCA DO-178B is still being used. In the long term, (RTCA DO-178C, 2011) /
(EUROCAE ED-12C, 2012) should be used. Critical Software Defined Radio (SDR) systems may be designed
according to the security architectural pattern defined by Multiple Independent Levels of Security/Safety (MILS).
MILS is a security architecture that uses partitioning techniques to host applications with different security lev-
els.

The TCS SDR test case targets an EAL3+ level. The current Design Assurance Level (DAL) required for TCS
radio equipment is DAL D. Thus, TCS has identified the following safety and security requirements.

Note: The traceability of the SDR requirements to the test case realisation with the MERgE platform is provided
in deliverable D1.1.1.d - TCS – Evaluation.

2.1.1 Security requirements

The security viewpoint should support risk analyses.

For instance, an attack tree analysis may be handled in the security viewpoint or delegated to an external secu-
rity analysis tool.

The security viewpoint should support security evaluations according to the Common Criteria.

For instance, the security viewpoint should support the concepts of the Common Criteria such as EAL, Threats,
TOE Security Functions (TSF), TSF Interface (TSFI) to model the security target.

The security viewpoint shall support the definition of security components with their interfaces, parameters and
errors messages.

The security viewpoint shall support the assembly of security components to specify the security architecture.

At system level, the security viewpoint shall support the deployment of waveform and platform components to
allowed security domains.

For instance, waveform components are designed to work in the red or black domains.

At software level, MyCCM and SCA component frameworks shall verify that waveform components are de-
ployed on the required security domain.

At system level, the security viewpoint shall support the specification of allowed connections between waveform
components and radio platform components.

At software level, MyCCM and SCA component frameworks shall verify that the type of waveform and type of
platform component ports are compatible.

At system level, the security viewpoint shall support the specification of allowed messages between compo-
nents, which may depend on a combination of parameters such as:

 Platform state, e.g. boot, initialisation, update, deployment;

 User roles/rights, e.g. end-users, maintainers, security officers;

 Security domains, e.g. red/black;

 Connection between component ports;

 Parameter identifier and value.

At system level, the security viewpoint should support the specification of formal rules using a dedicated lan-
guage to check the validity of requests to services.

At software level, MyCCM and SCA component frameworks should perform access control at runtime based on
formal rules defined in the system model.

At system level, the security viewpoint should support the specification of allowed read, write, read-only access
to waveform and platform component properties.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 14 / 92

At software level, MyCCM and SCA component frameworks should perform access control at runtime based on
the read, write, read-only access rights defined in the system model.

At system level, the security viewpoint should support the specification of valid ranges for waveform and plat-
form property values.

At software level, MyCCM and SCA component frameworks should verify at runtime the range of waveform and
platform property values based on the rules defined in the system model.

At system level, the security viewpoint tool shall allow the definition of Explicit Secure Communication Channels
to define allowed information flows between components.

At system level, the security viewpoint tool shall allow the definition of Logical Security Partitions to separate
application and platform components with different security requirements.

For instance, the Logical Security Partitions may enforce the separation of waveform applications from the radio
platform.

At system level, the security viewpoint tool shall allow the definition of Logical Security Partitions to separate
different applications from one another with different security requirements.

For instance, the Logical Security Partitions may enforce the separation between waveform applications.

At software level, Security Partitions should be defined for the deployment of waveform and platform compo-
nents on Red and Black security domains.

At system level, the security viewpoint shall support the identification of confidential information and the condi-
tions under which they may be accessed.

For instance, confidential information may designate waveform binary code or configuration files stored in the
platform file system.

At system level, the security viewpoint shall support the identification of information whose integrity must be
verified.

At system level, the security viewpoint shall support the identification of information whose authenticity must be
verified.

At software level, MyCCM and SCA component frameworks may verify the integrity and authenticity of wave-
form and platform components before their deployment on the radio platforms according to system model re-
quirements.

2.1.2 Safety Requirements

The safety viewpoint should support safety analysis.

For instance, a fault tree analysis may be handled in the safety viewpoint or delegated to an external tool.

At system level, the safety viewpoint shall support the definition of Logical Safe Partitions to specify the isolated
execution of waveform and platform components.

At software level, Logical Safe Partitions may rely on software partitioning technologies such as software com-
ponent containers, separation kernels and hypervisors.

At system level, the safety viewpoint shall allow the definition of platform properties to be monitored.

Examples of platform properties that may be monitored include CPU, memory and battery consumption.

The safety viewpoint should support safety evaluations according to the (RTCA DO-178B, 1992) / (EUROCAE
ED-12B, 1992).

2.2 ICS safety and security co-engineering requirements
This section recalls the safety and security requirements identified in the ICS use-case, as extracted from the
MERgE deliverable D1.1.4.a: ICS – Scenarios and use case definition. There are several public information
security standards and frameworks available to help organisations to address ICS security concerns. The fol-
lowing have been selected for the test case:

 NIST 800 series: (NIST SP 800-53, 2013), (NIST SP 800-82, 2013);

 IEC 62443
4
 (formerly ISA-99);

 ISA Secure certification for embedded ICS devices.

The traditional way of defining security is to divide it into three sub-requirements namely confidentiality, integrity
and availability (CIA). The CIA definition/division applies also in ICS, but the prioritization is different. Whereas
confidentiality of data is often the most important requirement in standard ICT systems, the data in ICS is often

4
 See (IEC/TS 62443-1-1, 2009), (IEC 62443-2-1, 2010), (IEC/TR 62443-3-1, 2009), and (IEC 62443-3-3, 2013).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 15 / 92

not confidentiality-critical. Integrity of data is equally important in both ICT and ICS domains, especially in indus-
trial automation where lacking integrity in the communication channels can result in significant safety hazards.
Availability is often not so critical in ICT system, although downtime in critical business systems can result in
loss of business or business continuity.

In ICS on the other hand, availability is the most critical subcomponent of safety and security. The availability
requirement in ICS is often solved by separating the communication system from the control system. Even if the
system responsible for communications crashes, or reboots, or becomes deadlocked, the control system must
be able to continue or must be able to shut down the critical control logic into a safe state. Quite often the digital
communications logic is complemented with analogue controls that allow process continuity even in cases of
break-down of communications network or components. Shutting down the digital controls can sometimes also
be seen as a defence against attacks.

The following list provides examples of design requirements for ICS systems.

Systems shall be designed with the assumption of physical security.

No tampering with the devices, software or networks shall be allowed to anyone without specific clearance.

System shall remain up and running at all times.

There shall be no possibility for reboots or reinstalls or patching of security issues.

Scheduled maintenance breaks shall happen very rarely, such as once a year or even more infrequently.

Data integrity shall be maintained.

Systems shall be robust to handle anything thrown at them.

Many ICS communication technologies do not implement any unnecessary security functions. Authentication or
data integrity checks are often forbidden as they can result in critical messages being dropped from the sys-
tems.

Extensive robustness testing is required by industry standard to show resistance to broken or hostile communi-
cations and measurement data.

It should be noted that industry specific standards and frameworks are in development. As example, in the nu-
clear sector there is a new standard, namely Nuclear Power Plants - Instrumentation and control systems - Re-
quirements for security programmes for computer-based systems (IEC 62645, 2014).

2.3 Other test cases
The two other MERgE test cases are the automotive and aerospace test cases.

The MERgE automotive case study is centred on the Hall Effect Sensors of Melexis. In deliverable D1.1.2a:
Automotive case: Scenarios and use case definition, only safety and availability requirements have been identi-
fied for this case study, i.e. no security requirements, no joint safety and security design process.

Likewise, in deliverable D1.1.3.a, SASNV - Scenarios and Use Cases Definition, only safety and dependability
requirements have been identified for this test case, i.e. no security requirements.

Thus, for the automotive and aerospace test cases, there are no domain-specific challenges to be considered in
this study.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 16 / 92

3 A formal system modelling and verification
framework for security and safety assessment

In a first section, we present a stand-alone framework, called Coy, that allows:

 modelling system architectures including potential failures of components, security threats, and the
propagation of components failures and threats along the architecture, in the spirit of Model Based Safety &
Security Assessment (MBS&SA) ;

 checking safety and security requirements, relying on the formal semantics of Coy and the Alloy Analyzer
tool.

In a second section, we present an integrated approach that maximises the use of the MERgE platform. In par-
ticular, Capella system engineering models can be used as input to the safety and security analyses, without
having to redefine the complete system architecture, as with the stand-alone Coy framework.

3.1 Standalone approach
Previous experiments of formal safety and security verification have already been published in (Brunel, et al.,
2014a), (Bieber, et al., 2014) and (Brunel, et al., 2014b)

5
. Following these earlier works, we propose here to

address the question of safety and security assessment using the Alloy language and the Alloy Analyzer free-
software tool. Alloy (Jackson, 2006) is a formal modelling language amenable to automatic analyses.

Our motivation for relying on Alloy instead of, say, AltaRica is to take benefit from the model-based aspect of
Alloy and its expressiveness for the specification of the properties to check. Indeed, Alloy allows to define meta-
models easily, which allows for instance to devise domain-specific meta-models. Here, as will be seen, we de-
veloped in Alloy a modelling framework called Coy, which can be partly seen as the embedding of the general
concepts of AltaRica into Alloy (ignoring concepts we do not need). Furthermore, with Alloy, the specification of
the properties we check is expressed in relational first-order logic, with many features adapted to model-based
reasoning.

With respect to our previous propositions around using Alloy for MBS&SA, we devise here a richer architectural
framework and, more importantly, we formalize a notion of behaviour so as to be able to check properties of the
considered system along time.

This section is organized as follows: in §3.1.1, we give a very brief account of Alloy. Then, in §3.1.2, we de-
scribe the Coy modelling framework that we implemented in Alloy to model system architectures and their be-
haviour. We show how Alloy is well adapted to designing domain-specific meta-models and to getting some
flexibility in the modelling of time and behaviour. In §3.1.3, we illustrate our approach on a fire detection exam-
ple that we model in Alloy following the Coy meta-model. In particular, we show how using Alloy allows to ex-
press "in one shot" properties ranging over a set of elements selected by navigating in the model structure.

3.1.1 Alloy in a nutshell

Alloy is a formal modelling language that is well adapted to the following (non-exhaustive) list of activities: ab-
stract modelling of a problem or of a system; production of a meta-model (model corresponding to a viewpoint);
analysis of a model using well-formedness or formal semantic rules; automatic generation of an instance con-
forming to a model, possibly according to supplementary constraints; finding interesting instances of a model.
Models designed in Alloy can deal with static aspects only, or integrate also dynamic aspects, so as to check
behavioural properties.

We now give a brief glance at the main concepts of the language using a simple example. The most important
type of declaration is that of a signature which introduces a structural concept. It may be seen as a class or enti-
ty in modelling parlance. A signature is interpreted as a set of possible instances; and it can also come with
fields that may be seen, as a first approximation, as class attributes or associations.

sig Data {consumedBy : some System}

sig System {}

sig Criticality {

concernedData : one Data,

 concernedSystem : one System

}

5
 See Part A, §2 for short summaries of these publications.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 17 / 92

Here, we defined 3 concepts: Data, System and Criticality. Alloy advocates not delving into unnecessary details
and only giving information on things we want to understand or analyse. Thus, here, a system is just defined to
be a set of “things”, but we do not say anything about the exact nature of its elements.

The keywords some or one give details on the multiplicity
6
 of the relation, as 1..* and 1 in UML. Here the field

declarations mean that: every datum is consumed by at least one (some) system; every criticality concerns ex-
actly one (one) data and one system.

Then, we can add constraints on possible instances of our model. For instance, we would like to state that every
system consumes at least one datum. This can be done by writing additional facts (facts are axioms, so as few
facts as possible should be stated in order to avoid over-specification):

fact {

// every system consumes at least one datum

 all s : System - some consumedBy.s

 // for any system which consumes a given datum, the said

 // datum and system should belong to a same unique criticality

 all d : Data - all s : System | one c : Criticality |

 c.concernedData = d and c.concernedSystem = s

}

The . operator yields the join of two relations, matching the last column from the first one to the first column of
the second one. Thus one may write d.consumedBy to get the systems consuming a data “d”, but also “con-
sumedBy.s” to get the data consumed by the system s.

The formal foundation of Alloy is relational first order-logic, which is first-order logic extended with relational
terms (including the transitive closure of a binary relation). Besides allowing navigation in models, this logic suf-
fices to encode various models of time, e.g. to go from a linear to a tree view of time, or to give either an inter-
leaving or a true-concurrency semantics.

Finally, although the language does not preclude unbounded verification in principle, in practice the Alloy Ana-
lyzer works only on finite models, reducing a given problem to a SAT instance, the analysis of which is delegat-
ed to an off-the-shelf SAT solver. Then Alloy may be used to carry out some explorations (the command builds
instances that satisfy a given statement) or to check whether a given assertion is satisfied by all instances of the
model (command). Therefore, as analysis is sound but carried out on finite instances only, the Alloy Analyzer is
able to find counter-examples up to a certain bound but it cannot prove the validity of an assertion. This is not a
problem in our case because:

1) the system architecture we consider is fixed in advance so its number of instances may not vary and

2) only time (i.e. the size of the time model) may be unbounded but, in our analyses, we do not aim at proving

the absence of errors but rather that a bounded number of events does not lead to a feared situation (which

induces that bounded time is sufficient).

3.1.2 The Coy Modelling Framework

We now present the Coy modelling framework, implemented as a meta-model in Alloy, i.e. a model where each
signature is abstract and only instantiated in a second model corresponding to the system under study. We take
inspiration in model-based safety assessment but our formalization is not specific to this sole family of proper-
ties.

As will be seen hereafter, Coy models essentially represent hierarchical structures of transition systems com-
municating instantaneously through data ports.

The overall structure of the framework is presented graphically in the next figure. Extension links are figured
using black dashed arrows. As the meta-model contains n-ary relations with n > 2, the figure shows these after
projection on parts of their domain (this is indicated using square brackets, as in conns[Port] for instance).
Furthermore, the meta-model contains a “Time” signature: its purpose is that every signature field with Time as
its last column can be conceptually seen as a mutable field, i.e. its value may change (discretely) over time.
Notice that the meta-model in the following figure is projected over Time, hence it is not shown in the diagram.

6 Other possible multiplicities are: lone which means at most one (0..1); and set which means any number (0..*).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 18 / 92

Figure 4: Graphical depiction of the Coy meta-model (projected over Time)

3.1.2.1 Composite Structure

Let us now delve into more details in the meta-model. In what follows, for the sake of readability, we do not
show all Alloy facts enforcing the well-formedness of instance models or just classical properties. The basic
architectural element is a node. Nodes are arranged hierarchically as a tree, so we use the classical Composite
design pattern and devise a notion of AbstractNode which is inherited by signatures CompositeNode and
LeafNode, the former pointing back to abstract nodes.

Every node comes with a set IPort of input ports and a set OPort of output ports. These sets are disjoint and
every port belongs to a single node. Every port carries a value at every instant (possible values may differ for
distinct ports).

Connections (between ports) are constrained so that they cannot cross a parent node boundary or many levels
of composition. In other words, nodes are arranged as trees and connections can only happen between siblings
or between a parent and a child. Furthermore, connected ports always carry the same value.

abstract sig Port {

 // a port carries one value at every instant

 Value one -> Time,

}

abstract sig IPort, OPort extends Port {}

abstract sig AbstractNode { // input and output ports

 input : set IPort,

 output : set Oport,

}

abstract sig CompositeNode extends AbstractNode {

 // a composite node contains at least one sub-node

 subs : some AbstractNode,

 // port connections with siblings and between sub-nodes

 //and this node

 conns : subs.@output -> subs.@input

 + input -> subs.@input

 + subs.@output -> output,

} { // connected ports always carry the same value

 all t : Time, po, pi : Port - po->pi in conns

 implies po.val.t = pi.val.t

 // + other structural properties

 ...

}

abstract sig LeafNode extends AbstractNode {...}

3.1.2.2 Behaviour

As Coy is mainly aimed at describing systems where atomic nodes are endowed with behaviour, we now intro-
duce a notion of state (for leaf nodes) and of events that may happen. One approach to deal with such models
could be to rely on classical model-checkers, such as Spin or NuSMV, the modelling languages of which are
well-suited for describing transition systems. While this is of course a possibility, our aim with using Alloy is:

 to be able to easily adapt the Coy meta-model depending on the domain of study (e.g. to add a notion of
connectors as in many architecture-description languages);

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 19 / 92

 as explained earlier, to change the model of time if need be (e.g. to go from a linear to a tree view of time, or
to give either an interleaving or a true-concurrency semantics);

 and above all, to allow the use of logic for specification, which brings two interesting aspects:
▪ it provides a single language to specify both models and expected properties;

▪ the logic allows for the expression of rather abstract properties (e.g. relying on under-specification) or
to navigate through elements of a model to specify a given property in only one formula.

Thus, every leaf node is in one given state at any time (the set of possible states may vary for two different
nodes). Besides, such nodes may undergo events. An event is an instance of an event type that happens at a
certain instant and concerns a given node: this distinction between events and event types then allows to con-
sider events of a certain type only, for instance to characterize their effects.

Notice also we impose the end-user to give, for any leaf node, the set of its possible states and the set of event
types that concern it: this is a bit redundant from the theoretical point of view but it provides a sort of additional
safety check akin to a poor man's typing that we deem important from a methodological point of view.

abstract sig LeafNode extends AbstractNode {

 possibleStates : some State,

 state : possibleStates one -> Time,

 possibleEventTypes : set EventType,

}

abstract sig EventType {}

abstract sig Event {// event occurrence

 instant : one Time,

 node : one LeafNode,

 type : one EventType

} { type in node.possibleEventTypes }

Finally, as Alloy does not feature a native notion of time, we encode it by characterizing finite traces of instants.
The fact accounting for this says how states change depending on events, at every instant.

fact traces {

//if a node state changed, there was an event concerning this node

 all t : Time, t' : t.next, n : LeafNode |

 n.state.t != n.state.t' implies some e : Event |

 e.instant = t and e.node = n

}

In practice, in the context of safety and security engineering, failures and threat scenarios are modelled as event
types, as we will see in the next section. Their effect on a node must be described as an Alloy fact.

3.1.3 Fire detection example

In this section, we provide an illustration of Coy with a fire detection system in a facility such as, for example, an
airport or a port.

3.1.3.1 Presentation of the system

The system consists of the following components: a smoke detector and a heat detector, which are part of the
automatic fire alarm system; a manual fire alarm pull station; the local firemen, inside the facility; and the city
firemen, in the nearest city.

The automatic fire alarm system, which is activated by either of the two detectors, directly calls the city firemen.
The manual pull station, triggered by a human present on site, calls both the local and the city firemen.

We also represent two possible failures for each of the components: (1) the loss of a component: once a com-
ponent is lost, it does not send any information, (2) an erroneous failure of a component: after this kind of fail-
ure, a component sends a corrupted data (in the case of a fire detector, for instance, it can be a false alarm or a
false negative). Lastly, we represent three security threats scenarios (called simply threats in the reminder): (1)
intentional wrong activation of the pull station, (2) the deactivation of the smoke detector and (3) of the heat de-
tector.

Notice that the loss of a component and the deactivation of the smoke detector (or of the heat detector) have
the same effect on a component (the availability is not ensured) although they do not have the same nature (the
former is a failure, the latter is a security threat). The same applies to an erroneous failure and the intentional
wrong activation of the pull station, which both affect the integrity of the information. Nevertheless, it is important
to distinguish between these failure and threat events in order to allow a pure safety analysis, a pure security
analysis, and a combined analysis.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 20 / 92

3.1.3.2 Coy model

The Coy model of this system imports the Coy meta-model, declares instances of signatures and relates them.
Components of the system are modelled as Coy nodes. The following Alloy code illustrates a particular instance
of the fire detection model at a given instant. As can be seen, at this instant, that all nodes are in the state OK
and that all ports yield a correct data (modelled by OKVal). The occurrence of an event of type failLoss (see
the declaration of event types below) can be observed on the node pullStation.

Regarding the possible failures and threats mentioned above, we use the following event types, node states and
possible values for the node ports.

one sig failLoss, failErr, threatBlock, threatPull

 extends EventType {}

one sig OK, Lost, Err extends State {}

one sig OKVal, LostVal, ErrVal extends Value {}

Then, we can declare the components and ports, as instances of the corresponding Coy concepts. For instance,
here is the declaration of the fire pull station.

one sig pullStation extends LeafNode {} {

 input = none and output = oPullStation

 possibleStates = OK +Lost +Err

 and possibleEventTypes = failLoss +threatPull

}

The model also comprises axioms stating what happens to nodes depending on observed events. An interesting
point here is that this description is declarative and does not depend on the effective nodes and ports. Concern-
ing an event of type failLoss:

 the event can only occur on a node which is not in the state Lost,

 after the occurrence of the event, the node moves to the state Lost.

Here, we chose to model events of type threatBlock in the same way (the node also moves to the state
Lost). So, they have the same effect (but they do not occur on the same components). In further analysis, if we
want to distinguish between the effects of both kinds of events, we just have to use a specific node state and a
specific port value corresponding to the occurrence of threatBlock.

The behaviour of events of type failErr and threatPull are specified in a similar way.

fact behaviour {

 all e : Event | e.type in failLoss +threatBlock

 implies e.node.state.(e.instant) =Lost

 and e.node.state.(e.instant.next) = Lost

 all e : Event | e.type in failErr +threatPull

 implies e.node.state.(e.instant) = OK

 and e.node.state.(e.instant.next) = Err

}

The propagation of values is also described by an Alloy fact. For example, here is the description of the value
propagation for leaf nodes with one input:

// leaf nodes w/ 1 input

all n : LeafNode, t : Time | {

 one n.output // tautology for this specific model,

 // but useful if we extend it

 one n.input

} implies {

 n.state.t = OK implies n.output.val.t = n.input.val.t

 n.state.t = Err implies n.output.val.t = ErrVal

 n.state.t = Lost implies n.output.val.t = LostVal

}

3.1.3.3 Properties verification

Now we can express the safety and security properties that we want to check as Alloy assertions. We have
mainly expressed properties related to the consequence of some failures/threats or to the robustness of the
system to a given number of failures/threats. For instance, the following assertion states that whenever the
smoke detector is lost (and all other nodes are OK) then the firemen can still act.

assert smokeDetectorLoss {

 all t : Time | {

 all n : LeafNode − smokeDetector | n.state.t = OK

 smokeDetector.state.t = Lost

 }implies (localFiremen +CityFiremen).output.val.t = OKVal

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 21 / 92

}

The following assertion expresses that whenever the pull station is attacked, (and all other nodes are OK) then
at least one firemen department is able to act.

assert pullStationThreatPull{

 all t : Time | {

 all n : LeafNode − heatDetector | n.state.t = OK

 heatDetector.state.t = Err

 } implies OKVal in (localFiremen +CityFiremen).output.val.t

}

Notice that the first-order quantifiers and the object-oriented syntax allow navigating easily through the model
and are convenient to state safety properties.

The following assertion expresses that whenever the smoke detector is erroneous and the pull station is at-
tacked threatPull, then both local and city firemen are unable to act.

assert smokeDetectorFailErrPullStationThreatPull {

 all t : Time | {

 all n : LeafNode − (smokeDetector +pullStation)

 | n.state.t = OK

 smokeDetector.state.t = Err

 pullStation.state.t = Err

 }implies OKVal not in (localFiremen +CityFiremen).output.val.t

}

The following assertions express the robustness of some parts of the system to possible failures/threats. We
took benefit from the possibility to reason about a set cardinality in Alloy. Here, we count the number of events
(corresponding to failures/threats) that occurred before the system enters a bad situation. For instance, the fol-
lowing assertion expresses that in order to make both local and city firemen unable to act properly, either the
threat threatPull has occurred, or there has been at least two distinct failures/threats. Remark that it would have
been also possible to reason independently about the number of failures and about the number of threats.

assert noSingleFailureThreatLeadsToFiremenNotOK {

 all t : Time |

 OKVal not in (localFiremen +CityFiremen).output.val.t

 implies some e : Event |

 e.type = threatPull and lt[e.instant, t]

 or let events = { e : Event | lt[e.instant, t] } |

 #events ≥ 2

}

In order to check assertions, Alloy Analyzer searches for counter-examples up to a certain bound (i.e. the coun-
ter-examples are such that their signatures have a cardinality less than the bound). The bound can be given by
the user or chosen by the tool. In general, this bounded verification is thus incomplete: the tool may not find
counter-examples whereas there are some. But in our case, the cardinality of all the signatures (nodes, ports,
etc.) is fixed by the model itself. Therefore, the verification performed by the Alloy Analyzer is complete.

The aforementioned four assertions have been validated by the Alloy Analyzer (i.e. it did not find any counter-
example).

The following assertion expresses that in order to make both local and city firemen unable to act, there has to
be at least three failures/threats in the architecture.

assert noDoubleFailureThreatLeadsToFiremenNotOK {

 all t : Time |

 OKVal not in (localFiremen +CityFiremen).output.val.t

 implies let events = { e : Event | lt[e.instant, t] } |

 #events ≥ 3

}

This last assertion is not satisfied by the model. Alloy Analyzer exhibits a counter-example where the pull station
and the city firemen are lost after two events. The following figures show respectively the first time step and the
second time step of this counter-example. In these figures, leaf nodes are beige rectangles, output ports are red
trapeziums, input ports are green trapeziums and connections between ports are blue arrows.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 22 / 92

Figure 5: Second time step of the counter example
(failErr on the heat detector)

Figure 6: First time step of the counter-example (failLoss
on the pull station)

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 23 / 92

3.2 Integrated approach
We have proposed and prototyped an approach which consists in decoupling the system architecture model
from safety & security models (cf. Figure 7). In this approach, every engineer, whether architect, or security /
safety engineer, can focus solely on his concerns, with dedicated tools and terminology.

As of now, we chose to use two separate models: one for the safety concern and the second for the security
concern. The main motivation for this separation is that safety and security domains are quite different in terms
of practices, concepts used and wording.

As the safety and security models rely on the system architecture model, we extract the required information
(e.g. function interactions, ports and their links, data…) from the architecture model and we set up initial safety
and security models in Safety Architect. Starting from this, safety and security engineers complete their model
by adding safety and security dysfunctional behaviour. The safety and security models contain two kinds of in-
formation:

 the safety and/or security dysfunctional behaviours; a safety dysfunctional behaviour represents how errors
are propagated in the system architecture, and a security dysfunctional behaviour represents how the
effects of security threats are propagated in the system architecture;

 the safety and/or security properties / requirements that the system architecture must satisfy, e.g. the
integrity of the output data shall be preserved even under specific attacks.

These two models are then combined to produce a formal Alloy model containing all the necessary inputs for
the analysis. The Kodkod tool formally validates the safety and security properties. If a property is violated,
Kodkod will show a readable counter-example. Thus, the engineers can identify the best way to correct the ar-
chitecture.

Figure 7: Integrated approach

The main principles of this approach are illustrated in Figure 7. The first model transformation yields an initial
Safety Architect model from the System Design Model. This transformation is trivial as it only reflects the struc-
tural part of the architecture. Capella functions are mapped to Safety Architect blocks. Ports give input and out-
put ports, while data links yield data links.

Then, safety engineers and security engineers can work within Safety Architect, either using separated views or
a merged view, to describe the way failures and security threats propagate inside the architecture: this activity is
called dysfunctional modelling. Then dysfunctional analysis techniques already available in Safety Architect can
be applied, such as the automatic generation of fault trees or attack trees.

The last part of the approach consists in taking benefits from the Alloy formal specification and verification
method, and its relying Java Kodkod API, to enhance the analyses we can perform. The idea is to build a

Safety Architect
Model

System Design
Model

Security
View

Safety
View

Safety Architect

Architect
Designer

Safety
Engineer

Security
Engineer

KodKod
Model

KodKod (relying on
a Sat Solver)

S&S Properties

S&S PROOF (DO-356)

Capella

S&S properties

Structural &
dysfunctional
behaviour models

Proofs or
counter-examples

Structural model

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 24 / 92

Kodkod model that represents the architecture of the system and the rules that describe the way failures and
threats propagate inside each block, and along the architecture. Then we can use all the expressive power of
the Alloy logic and the verification capability of Alloy Analyzer/Kodkod to check various kinds of properties. In
the approach we propose, the building of the Kodkod model and the verification of formal properties are proto-
typed and called from Safety Architect.

3.2.1 Alloy/Kodkod model

Although our prototype uses Kodkod, it is more convenient to explain the main ideas behind the Kodkod model
in Alloy terms, because Alloy is a language, whereas Kodkod is a Java API.

The main concepts of Safety Architect are declared as Alloy signatures and fields
7
. For example, Figure 8

shows an excerpt of the graphical view of the Alloy model corresponding to the structural part of the Safety Ar-
chitect model, in which blocks, ports, input and output ports are defined as signatures, whereas values (i.e. as-
signing a status to a port) ins, outs (i.e. associating each block with its input and output ports) and binds (i.e.
representing bindings between ports) are defined as fields.

Figure 8: Alloy/Kodkod model

We also define signatures and fields to represent all the concepts of Safety Architect, such as barriers, internal
failures, and propagation trees, which express the way threats and failures propagate inside each block, includ-
ing the effect of barriers and internal failures.

Now, in a particular instance of an Alloy/Kodkod model, each port of each bock in the architecture is associated
with a particular status (either OK, or one of the failure modes that are declared). The statuses of ports have to
respect the following constraints:

 if two ports are bound, then they have the same status,

 the statuses of ports respect the propagation trees inside each block.

As an illustration, the former constraint is expressed in Alloy as follows:

all op : Oport | all ip : op.binds | op.value = ip.value

In this formula, the term op.binds represents all the input ports that are associated with op through the field
binds.

3.2.2 Formal proofs

The main goal of building a Kodkod model from a Safety Architect model is to be able to apply formal verifica-
tion. We call property, the safety and security properties that the architect is interested in verifying on a given
system model. In this section, we present two classes of properties that we can check easily with our approach,
in the sense that their verification does not require a high level of Alloy or Kodkod expertise. Other kinds of
properties can be verified, but they need to be specified directly in Java, using the Kodkod API, and this requires
specific expertise.

7 Please refer to §3.1.1 for a definition of signature and field.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 25 / 92

3.2.2.1 Structural properties

This first class of properties deals with the structure of the model (i.e. the blocks, their ports, the bindings be-
tween ports) but not with the safety- or security-related aspects (i.e. statuses of ports, feared events…). More
precisely, it reflects a certain form of correction in the binding of ports:

If an output port op is bound to an input port ip, then the possible statuses of op and ip (de-

fined by all the propagation trees that lead to op and all the propagation trees that take ip as

input) are the same.

This property is easily defined in Alloy/Kodkod as a formula. Since this formula relies on the signatures and
fields related to the propagation trees, we do not express it in this document. It is defined in Kodkod in our proto-
type. Note that the non-satisfaction of this constraint is not an error: it raises a warning that points out a possible
conceptual problem in the model.

Other kinds of structural properties could also be expressed and checked in Java using the Kodkod API. But
they are not predefined in the prototype and would then require a high level of expertise in Kodkod.

3.2.2.2 Properties related to feared events

The second class of properties that we handle is related to feared events.

First, a feared event needs to be defined as a Boolean combination of statuses of ports, e.g.:

The output port op1 has the status lost and the output port op2 has the status erroneous.

This concept is defined in Kodkod in our prototype, which allows the engineer to express a number of properties
that he wants to check over the architecture related to feared events, provided he has an expertise in Kodkod.

The specific class of properties that we defined in our prototype (in order to ease its verification by an engineer)
concerns the minimum number of failures that is necessary to reach a feared event: the method atLeastNFail-
ures(FearedEvent fe, int n) is defined as a formula expressing the following statement in Alloy/Kodkod logic :

If a feared event occurs, then the set of failures that occurred is greater than n.

We can also express in Kodkod properties about the consequences of a threat or a failure, or about the impact
of a given (set of) threat(s) or failure(s) on a feared event, etc., but this would require an expertise in Kodkod.

Kodkod is able to formally check these properties and it answers:

 either “correct”, if the property is true for every possible instance of the architecture, i.e., exploring for each
port every possible status that is compliant with the aforementioned constraints of the Kodkod model,

 or “not correct”, in which case, it shows an instance that violates the property.

3.3 Lessons learnt
In this chapter, we have experimented different formal techniques relying on the Alloy method to support safety
and security co-engineering.

First, we have proposed a standalone approach, Coy, in which the users (i.e. safety and security engineers) are
expected to model the system architecture and the properties to check using the Alloy language. This work re-
quires specific expertise.

Then, we have proposed an approach that relies, from the user point of view, on existing industrial tools: Capel-
la for architecture design and Safety Architect for safety and security engineering. The formal verification capa-
bilities are directly available from (an extension of) Safety Architect. Some of the verification queries are pre-
defined and easy to call from Safety Architect. For other formal verification activities, which use the underlying
Kodkod model, the user must master the Kodkod language.

These two approaches allow for the generation of a proof that certain properties related to feared events are
fulfilled, and allow for the generation and study of scenarios that violate a property, if there are some. In the first
approach, Coy allows specifying rich architecture models and offers a high expressiveness in terms of proper-
ties to verify. This is particularly true if the temporal evolution of the system architecture or the temporal ordering
of failure/threat occurrences matters. In the second approach, the expressiveness is limited, e.g. the architec-
ture model is purely static, the user cannot add new concepts to the language, etc. But in this second approach,
an expertise in Alloy is not needed, at least to check the properties that are pre-defined in the approach.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 26 / 92

4 An analysis of a third-party tool: TTool/AVATAR

Following the state of the art work presented in Part A of this deliverable, TTool/AVATAR appeared to us as one
of the most interesting tools readily available. We have therefore decided to perform an in-depth analysis of the
tool.

The Automated Verification of reAl Time softwARe tooled-up profile (AVATAR, 2015) is an extension of SysML
(System Modelling Language), provided by Telecom Paris-Tech, enabling the formal modelling and verification
of safety and security properties.

TTool, the toolkit implementing the AVATAR profile, transforms the AVATAR model into the appropriate timed
automata or pi-calculus model, launches UPPAAL or ProVerif in the background to verify respectively safety
and security properties, and provides the designer with the results, as a textual display and / or as back-
annotations on the AVATAR model. The simplicity of the profile and the tool’s ergonomics enable system / soft-
ware designers with a generic UML/SysML background to formally model and verify safety and security proper-
ties, where formal method experts are classically needed.

Even though it is possible to develop an application completely using AVATAR, the goal of AVATAR is essen-
tially to model the control logic of an application in order to verify its safety and security properties. The use of
AVATAR is thus compatible with the existence of a legacy system / software engineering workbench.

With respect to security, AVATAR supports the modelling of confidentiality and authenticity properties. Security
properties are modelled as SysML pragmas, thus inducing no significant formal modelling overhead; in addition,
formal verification is straightforward, allowing formal proofs to be produced at little costs. The scope of applica-
tion is the definition of new secure communication protocols, or the securing of existing communication proto-
cols. It is to be noted that the relevance of AVATAR may be limited for companies using standard communica-
tion protocols.

With respect to safety, AVATAR supports the modelling of any safety property, through the use of SysML ob-
server blocs and the reachability and / or liveness of some of the observer states. Temporal operators allow for
the modelling of complex safety properties for real-time systems. The scope of application is therefore very
wide, and should be usable by any company designing safety-critical systems. However, the current modelling
approach based on SysML represents a significant work overhead; in the long run, safety properties should be
modelled in AVATAR using the TEPE (TEmporal Property Expression) language, bringing down the formal
modelling overhead to an acceptable level.

A complete evaluation of AVATAR is provided below.

4.1 Introduction to the AVATAR UML / SysML profile
The AVATAR profile (Apvrille, 2015) stands for Automated Verification of reAl Time softwARe. It targets the
modelling and formal verification

8
 of real-time embedded systems.

To support the use of UML and SysML models in a verification-centric method, the AVATAR profile rests upon:

 a toolkit called TTool for the edition and the simulation
9
 of extended UML and SysML diagrams;

 a formal property expression language called TEPE, for TEmporal Property Expression language;

 the third-party UPPAAL and ProVerif tools dedicated to the formal validation of safety and security proper-
ties, as expressed in the AVATAR diagrams.

TTool (pronounce "tea-tool"), whose first version was published in 2003, currently supports several UML pro-
files, including:

 AVATAR
10

: UML 2.x and SysML-based profile for the modelling and formal verification of real-time embed-
ded systems;

 DIPLODOCUS: UML profile dedicated to the partitioning of Systems-on-Chip;

 Network Calculus: profile dedicated to the dimensioning of critical systems;

 CTTool: profile dedicated to the modelling and verification of component-based and distributed systems;

8
 We insist here on the formal verification, rather than on the modelling, because modelling may be limited to the minimal effort necessary to

support formal verification.
9
 Simulation capabilities are not detailed in this document. For the end-user interested by this feature, it is to be noted that method calls are

not executed during the simulation.
10

 AVATAR replaces TURTLE (Timed UML and RT-LOTOS Environment). TURTLE was a UML 1.5 profile targeting the modelling and for-
mal verification of real-time embedded systems, and is obsolete since end 2010.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 27 / 92

 SysML-sec, a profile created with a sub-part of AVATAR and a sub-part of DIPLODOCUS, with a new meth-
odology.

TTool and most of its profiles are provided by Télécom Paris Tech
11

. They have given way to multiple
publications, all referenced and availble on the TTool web site (Apvrille, 2015). They are used for teaching at
EURECOM (“Ecole d’ingénieur et centre the recherche en télécommunications”). TTool’s external references
include Thales Alenia Space

12
, UDcast, Texas Instruments

13
, Freescale, the EVITA project, the SACRA project,

ISAE, LAAS-CNRS, Tesa, INRIA, and DOCEA Power. The latest version of the TTool package (including the
different profiles) is v0.97, published in January 28

th
, 2015. This shows that the tool has regularly evolved and

has been maintained for close to 15 years. During our tests, we started with version 0.97, then switched to the
beta version of 0.98, which allowed us to benefit from the latest features and some specific patches.

The TEmporal Property Expression (TEPE) language (Knorreck, et al., 2010) is a graphical and formal language
based on SysML parametric diagrams provided by Télécom Paris Technical and seamlessly integrated to
AVATAR. TEPE allows for the expression of physical time and unordered signal reception. In TEPE, various
design elements, such as SysML blocks, attributes, and signals, can be combined together with logical (e.g.,
sequence of signals) and temporal operators (e.g., a time interval for receiving a signal) to build up complex but
graphical properties. The strength of the AVATAR-TEPE combination is that requirement capture, analysis, de-
sign, property description and verification tasks can seamlessly be accomplished in the same TTool environ-
ment. The designer is merely required to have minor UML skills and does not need to be familiarized with formal
languages like CTL or UPPAAL.

4.1.1 Third-party companion tools

UPPAAL (UP4ALL) is an integrated tool environment for modelling, validation and verification of real-time sys-
tems modelled as networks of timed automata. UPPAAL consists of three main parts: a description language, a
simulator and a model-checker. The description language is a non-deterministic guarded command language
with data types, e.g. bounded integers, arrays. It serves as a modelling or design language to describe system
behaviour as networks of automata extended with clock and data variables. The simulator is a validation tool
which enables examination of possible dynamic executions of a system during early design (or modelling) stag-
es and thus provides an inexpensive mean of fault detection prior to verification by the model-checker, which
covers the exhaustive dynamic behaviour of the system. The model-checker can check invariant and reachabil-
ity properties by exploring the state-space of a system, i.e. reachability analysis in terms of symbolic states rep-
resented by constraints. The tool is developed in collaboration between the Department of Information Technol-
ogy at Uppsala University, Sweden, and the Department of Computer Science at Aalborg University in Den-
mark. UPPAAL is commercialised through a spin-off called UP4ALL International AB.

ProVerif (Blanchet) is a toolkit that relies on Horn clauses resolution for the automated analysis of security prop-
erties over cryptographic protocols. ProVerif takes as input a set of Horn Clauses, or a specification in pi-
calculus (process algebra) and a set of queries. ProVerif outputs whether each query is satisfied or not. In the
latter case, ProVerif tries to identify a trace explaining how it came to the conclusion that a query is not satisfied.
In ProVerif, a specification takes the form of a system represented as spi-calculus processes, and properties are
represented as queries. Queries can be used to express confidentiality

14
 and authenticity

15
 requirements.

ProVerif also makes it possible to study the reachability of events, based on queries; therefore, ProVerif may
also be used for proving safety properties on the system augmented with the attacker. ProVerif integrates its
own attacker model, which is a process implementing a Dolev-Yao approach (Dolev, et al., 1983). ProVerif is
provided by INRIA.

4.1.2 Licences

TTool is a software computer program distributed under two licenses:

 BSD+ license for some source files and icons, distributed by SUN Microsystems;

11

 Ludovic Apvrille is the main developer of AVATAR, with some contributions by a few students; one LIP6 permanent and one LIP6 student
are also currently contributing on the deployment features. On SysML-sec, there are currently multiple PhD students working, and some
code produced by Freescale has been integrated, the lot being validated by many significant test cases. AVATAR should directly benefit
from the work on SysML-sec. In the past, there have been contributions to AVATAR by Freescale, PhD students and students.

12
 According to Isabelle Buret (TAS), the experience with TURTLE, the ancestor of AVATAR, was non-conclusive. The approach was
deemed too singular or “avant-garde” for the target, i.e. mission-critical embedded software for satellites.

13
 Texas Instruments funded the development of DIPLODOCUS for 5 years, without directly contributing to the code, but showing interest in
the results.

14
 Confidentiality queries directly express which data must not be accessible to the attacker, e.g., that a private key shall not be accessible to
an attacker: query attacker:myKey.

15
 Authenticity of messages relies on ProVerif events and correspondence assertions. Whenever a message m, sent by a process A to a
process B, must be authenticated, one event is included in each process: one is included in A before the sending of m (e.g.,
eventSendM), and one after the receiving of m (e.g., eventReceiveM). Since the attacker is not allowed to execute events, it suffices to
prove that to each receiving event of m corresponds exactly one sending of m. Thus, an injective query is used to model authenticity:
query evinj:eventReceiveM(x) ==> evinj:eventSendM(x).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 28 / 92

 CeCILL license for all other parts.

UPPAAL is available as a commercial version for industry and national research agencies, or as a free academ-
ic version, for academic users.

ProVerif, is distributer either as a source package under the GNU General Public License, or as a binary pack-
age for Windows, under the BSD license.

4.1.3 Tool installation and configuration assessment

Complete instructions for the installation and configuration of TTool / AVATAR are given on the web site
(Apvrille, 2015). Supported platforms include Windows and Unix (incl. MacOS).

We performed the installation on Windows XP, and later on Windows 7.

The installation was straightforward, including for third-party companion tools, i.e. UPPAAL and ProVerif.

4.1.4 User manual

The AVATAR profile for TTool has no user manual as such. A lot of guidance can be found on the web site
(Apvrille, 2015), including material for EURECOM students (Apvrille, 2014) (Apvrille, et al.). However, the mate-
rial is incomplete, and often obsolete.

To proceed, we contacted Telecom Paris Technical directly. Excellent tool support was found through direct
contact with Prof. Ludovic Apvrille, and a PhD student, Florian Lugou. They provided advice, examples and
even patches within hours.

4.2 Methodology assessment
The AVATAR profile for TTool comes with its own methodology. It supports six

16
 methodological phases (cf.

Figure 10):

 requirements capture: requirements and properties are structured using the AVATAR requirement dia-

grams, as per SysML; at this stage, requirements are just defined with a specific label – see the property

modelling phase below for the formalisation of the requirements; during this phase, system and environmen-

tal assumptions may be captured using AVATAR Modelling Assumptions Diagrams (MADs).

 system analysis: a system may be analysed using usual UML diagrams, i.e. use case, context, activity and

sequence diagrams; the system may also be analysed using attack trees, but since the AVATAR attack trees

involve Blocks, they need to be developed iteratively with the system design;

 system design: the system is designed in terms of communicating SysML blocks described in an AVATAR

block diagram, and in terms of behaviours described with AVATAR state machines
17

;

 property modelling: the formal semantics of properties is defined using AVATAR property diagrams; model-

ling is performed using the TEmporal Property Expression (TEPE) language within Parametric Diagrams

(PDs); since TEPE PDs involve elements defined in the system design (e.g, a given integer attribute of a

block), TEPE PDs must be defined iteratively with the system design;

 formal verification: this phase can be conducted over the system design, and for each test case defined in

the requirement diagrams;

 code generation: can finally be used to generate a fully executable code; the latter can be compiled and

executed on the SoCLib prototyping platform directly from TTool.

Property modelling, using the TEPE language, comes with its own methodology. The main lines are given be-
low. For more details concerning the TEPE language concepts, please refer to Annex B, or to (Knorreck, et al.,

2010).

16

 The (obsolete) TURTLE profile supported four methodological phases: requirements capture, system analysis, system design, and de-
ployment.

17
 A state-machine diagram is automatically created for each new block.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 29 / 92

Figure 9: Creating a diagram for
the methodology

Figure 10: The six phases of the AVATAR methodology

A TEPE parametric diagram
18

 is supposed to be constructed in the following way:

 First, blocks are represented with their particular attributes and signals subject to verification. These entities
should normally have been identified during the design phase.

 Values derived from original attributes and signals are introduced (using equation and alias operators).

 The reasoning about the sequential and temporal behaviour of the system is expressed in terms of logical
and temporal operators connected to signals and properties. These logical and temporal operators can be
cascaded.

 Several properties may be merged using logical property operators (conjunction, disjunction, property defini-
tion operators).

 Finally the formal property is labelled to link it to an informal SysML requirements diagram and to determine
whether (non-) liveness or (non-) reachability should be verified on that property.

To avoid overloaded diagrams, the constituting properties of a requirement can be spread over several dia-
grams.

Assessment
take-away

The AVATAR profile is provided with a methodology and its integration inside the tool as a
specific diagram with a traceability feature to other diagrams has been much appreciated.

However, the methodology would require some fine tuning to deal with dependencies between
steps, and would gain in being more detailed.

4.3 Tool assessment
The tool assessment is performed using a simple running example and follows the recommended methodology
(cf. §4.2).

The running example is a case of a microwave oven that is used to heat meals for a defined duration on the
press of a button, or via a remote control command. Whenever the door is opened, the magnetron must be
turned off (safety constraint), and to avoid an overload of the magnetron, it should not be operated more than 10
units of time at full power (safety constraint). The remote control must be secured, that is, a remote control must

18

 In TTool, the AVATAR property diagrams are organised under the umbrella of the requirements diagrams.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 30 / 92

be attached to only one specific oven (authenticity constraint), and messages sent from the remote control must
not be disclosed

19
 (confidentiality constraint).

Using the tool, a diagram can be created (cf. Figure 9) with the phases of the methodology (cf. Figure 10). An
interesting feature is that each phase of the methodology can list the diagrams that are related to it. A minor
issue is that the steps of the methodology diagram are not identical to the steps described in the methodology
documentation (Apvrille, 2015), even if a mapping may be extrapolated.

4.3.1 Elicitation of assumptions

AVATAR allows for the capture of assumptions. Assumptions are characterised by the following tags:

 Type: it is possible to choose between two stereotypes, namely <<System Assumption>> and <<Environ-
ment Assumption>>;

 Name: identifier (spaces are not allowed);

 Text: it allows for the description of the assumption in an informal way;

 Durability: this tag may take for value Undefined, Permanent or Temporary;

 Source: this tag may take for value Undefined, End-user, Stakeholder, or Model creator;

 Status: this tag may take for value Undefined, Applied or Alleviated;

 Scope: this tag may take for value Undefined, Language, Tool, Modelling activity or Verification.

Figure 11: Example of AVATAR Modelling Assumption Diagram

In addition to the possibility of creating assumptions, the AVATAR Modelling Assumptions Diagram allows for:

 decomposing assumptions;

 versioning assumptions;

 adding references to diagrams and / or model elements that meet those assumptions.

Figure 11 shows an example of an AVATAR Modelling Assumption Diagram with the assumption that “The wire-
less interface of the microwave oven and its remote control share a common symmetric encryption key”. The
assumption can be traced for its implementation to the block diagram in general, and two of its blocks in particu-
lar (cf. §4.3.4).

Assessment
take-away

The AVATAR capability of explicitly capturing assumptions and tracing them to design ele-
ments is deemed very important.

However, many properties in AVATAR are captured as pragmas, and traceability is not sup-
ported to UML comments. This needs to be enhanced.

4.3.2 Requirements capture

TTool allows for the capture of requirements, as per SysML. Some of these requirements may however be ste-
reotyped as safety and security requirements, possibly derived from functional requirements. See Figure 12 for

19

 This constraint is a bit artificial in the case of a microwave oven, but it allows for the coverage of confidentiality, an important security
criterion.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 31 / 92

examples of safety requirements, and cf. Figure 13 for examples of security requirements. These requirements
are explicitly shown here because they will be used throughout the running example.

In addition to the standard SysML tags (i.e. id and text) on requirements (OMG SysML, 2012), the tags defined
on a standard AVATAR requirement are:

 Type, whose possible (fixed set) values are:

 Functional,
 Non-Functional,
 Performance,
 Privacy,
 Confidentiality,
 Non-repudiation,
 Controlled access (authorization),
 Availability,
 Immunity,
 Integrity,
 Data origin authenticity,
 Freshness,
 Other;

 Risk, whose possible (fixed set) values are:

 Low,
 Medium,
 High;

 References.

Figure 12: AVATAR requirements diagram for the microwave system (extract with safety requirements)

When the requirement is stereotyped as a safety requirement, an additional tag called Violated action is defined.
Because safety requirements are verified through the use of observers (cf. §4.3.5.2 and §4.3.6.6), it is possible
to document here which action of a model observer will be triggered when the safety requirement is violated.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 32 / 92

Figure 13: AVATAR requirements diagram for the microwave system (extract with security requirements)

When the requirement is stereotyped as a security requirement, an additional tag called targeted attacks (cf.
Figure 13) is defined. The latter allows for the tracing of the requirement to an attack tree node, as described in
§4.3.3. The attribute has been implemented to allow for an automated check of the coverage of attacks, but, at
the date of writing this report, the verification itself has not yet been implemented. Moreover the label of the at-
tack tree node is currently entered textually, and there is no syntax verification that this attack tree node really
exists. The implementation of the automated check of the coverage of attacks is in TTool’s improvement
roadmap.

Assessment
take-away

The AVATAR extension to SysML requirements seems interesting.

However, the full potential of the extensions cannot actually be exploited because the neces-
sary analysis functions have not (yet) been implemented.

4.3.3 System analysis

To support system analysis, TTool implements:

 use cases diagrams, cf. Figure 42;

 context diagrams, cf. Figure 43;

 sequence diagrams, cf. Figure 44;

 activity diagrams, cf. Figure 45;

 and attack tree diagrams, cf. Figure 14.

Since the first four types of diagrams are not specific to safety and security engineering, we did not assess
AVATAR with respect to these diagrams, and some illustrations are only given in Annex A – Microwave Use
Case Supplementary Data on page 56. Thus, we present here, as part of system analysis, only the attack tree
diagram of AVATAR (Apvrille, et al., 2014).

Instead of using a traditional attack tree approach, the AVATAR methodology suggests that threats can be
modelled with a more relational approach, using slightly customized SysML parametric diagrams. Threats are
modelled as values embedded into blocks that represent the target of the attacks, thus achieving a representa-
tion that is more compact and better mapped to the system architecture. Attacks (i.e. artefact stereotyped with
<< attack >>) can be linked together with logical operators, like OR, and AND, as well as temporal causality
operators, like SEQUENCE, BEFORE, or AFTER. The latter constructs are helpful to describe situations of real-
time embedded systems in which there is a maximum duration between two causally related attacks, e.g. due to
the expiration of a time-limited authentication.

As mentioned in §4.3.2, security requirements can be linked to attacks.

Figure 14 shows an attack tree for the flashing process of the microwave oven running example. It is assume
that the flashing can be done remotely (i.e. via Internet), or by a maintenance station.

The documentation provided herein on attack trees is rather short as the approach is new and still under devel-
opment as part of the SysML-sec project at Telecom Paris-Tech. Further publications are expected soon
(Apvrille, et al., 2015).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 33 / 92

Figure 14: Example of AVATAR attack tree

A weakness of the AVATAR implementation is the fact that there is no consistency check between the SysML
blocks defined in the context diagrams, the attack tree diagrams and the design block diagrams.

A weakness of the AVATAR methodology is the fact that attack tree diagrams may be defined only after a first
system design has been performed. Thus, some form of loop should be enacted between the Analysis and the
Design phases of the methodology.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 34 / 92

Assessment
take-away

The AVATAR version of the attack tree is an innovative relational approach. It needs to be as-
sessed with respect to scalability.

4.3.4 System design

System design is the phase of the system / software life-cycle for which AVATAR brings the most added-value
with respect to safety (Apvrille, et al., 2013) and security (Pedroza, et al., 2011). This assessment section is
therefore rather long and organised per major AVATAR feature. The main diagram for the AVATAR system de-
sign is the block diagram, with the automatic creation of a state-machine diagram per block defined in the block
diagram.

In line with SysML, an AVATAR block defines a list of attributes, methods and signals. Signals can be sent over
synchronous or asynchronous channels

20
. Channels are defined using connectors between ports. Those con-

nectors contain a list of signal associations.

AVATAR state machine diagrams are built upon SysML state machines, including hierarchical states, but en-
hanced with temporal operators to deal with task complexity and delay between tasks.

This section only describes enhancements with respect to standard SysML diagrams.

4.3.4.1 Defining blocks to handle secured communications

Handling secured communications is a common requirement for security engineering, and indeed, our case
study has one such requirement (cf. Figure 13). AVATAR provides specific support for this.

The AVATAR block diagram allows for the creation of two types of blocks (cf. Figure 15):

 standard SysML blocks, stereotyped <<block>> in accordance to the SysML standard (OMG SysML, 2012);

 blocks that need to handle secured communications, stereotyped <<cryptoblock>>.

Figure 15: AVATAR blocks and cryptoblocks

The crypto block presupposes the existence of two data types called Key and Message (cf. Figure 16). These
data types must be defined by the designer.

20

 From the ProVerif viewpoint, successive flows on a channel are not ordered; for its proof, ProVerif will verify all sequencing options, pos-
sibly leading to a combinatorial explosion. The designer must be careful not to multiply flows if they can be concatenated within a unique
flow.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 35 / 92

Figure 16: Data types required for the AVATAR cryptoblocks

Using these two data types, the cryptoblock defines 19 methods (with a package visibility) that are commonly
used to handle secured communications:

 aencrypt(Message msg, Key pub) and adecrypt(Message msg, Key priv), for respectively encrypting and

decrypting messages with asymmetric keys;

 sencrypt(Message msg, Key k) and sdecrypt(Message msg, Key k), for respectively encrypting and decrypt-

ing messages with a symmetric key;

 MAC(Message msg, Key k) and verifyMAC(Message msg, Key k, Message macm), for respectively compu-

ting and verifying message authentication codes; here, the model is very strong: it considers the MAC essen-

tially as a random oracle
21

, which is much stronger than the typical computational assumption on MACs (un-

forgeability);

 sign(Message msg, Key priv) and verifySign(Message msg, Message sig, Key pub), for respectively signing

and verifying the signature of a message;

 hash(Message msg), for generating a hash ; it takes as input and returns a message; it captures pre-image

resistance
22

, second pre-image resistance
23

 and collision resistance
24

 properties;

 pk(Key k), which takes an argument of type private key and returns a public key, to capture the notion of

constructing a key pair; in §4.3.4.2, a pragma is defined to support the pairing of keys prior to system execu-

tion; the pk() method supports dynamic pairing during system execution;

 cert(Key pub, Message caSignedPub), verifyCert(Message cert, Key caPub) and getpk(Message cert) for

respectively creating a cryptographic certificate
25

, verifying a cryptographic certificate and extracting the pub-

lic key from the cryptographic certificate;

 concat2(Message msg1, Message msg2), concat3(Message msg1, Message msg2, Message msg3) , con-

cat4(Message msg1, Message msg2, Message msg3, Message msg4) and get2(Message msg, Message

msg1, Message msg2), get3(Message msg, Message msg1, Message msg2, Message msg3) and

get4(Message msg, Message msg1, Message msg2, Message msg3, Message msg4) for concatenating

messages, and reversely, extracting a message from a concatenated message.

The concat and get functions are rendered necessary by the fact that ProVerif supports only one datum at a
time in a communication channel. The concat functions return an object of type Message. The get functions
allow retrieving the multiple instances of messages that were concatenated using a concat function.

It is important to note that the use of the <<cryptoblock>> is not necessary to handle secured communications
using AVATAR. It is only shorthand to declare usual cryptographic functions. The 19 methods predefined on a
cryptoblock may be redefined by the designer on a standard SysML block. If the method signatures are pre-
served, the methods will be recognised for what they are, as defined above.

The microwave oven design is made using several types of blocks and elements (see Figure 17):

 a main block named RemotelyControlledMicrowave, which contains all other blocks modelling the system,

i.e. the RemoteControl, and the MicroWaveOven, which is itself composed of a OvenWirelessComminuca-

tionUnit, a Microcontroller, a Magnetron, a Door, a Bell and a ControlPanel; each block declares attributes,

methods and signals;

 the declaration of two data types (i.e. Key and Message);

 the declaration of communication channels
26

 between blocks;

 the declaration of a security-related constraint in the note located at the top of the diagram.

21

 I.e., a theoretical black box that responds to every unique query with a truly random response chosen uniformly from its output domain.
22

 I.e., for essentially all pre-specified outputs, it is computationally infeasible to find any input which hashes to that output.
23

 I.e., it is computationally infeasible to find any second input that has the same output as a specified input.
24

 I.e., it is computationally infeasible to find any two distinct inputs x, x′ which hash to the same output.
25

 A cryptographic certificate is a user's public key, which has been signed and encrypted using the private key of a well-known Certificate
Authority.

26
 Ports filled in black represent synchronous communication whereas ports filled in white represent asynchronous communications. Signals
and ports can be used by the block declaring them, and by the blocks it contains. For example, all blocks may use the asynchronous
channel connecting RemotelyControlledMicrowave to itself.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 36 / 92

Note here that the RemoteControl and the OvenWirelessCommunicationUnit have been declared as cryp-
toblocks.

Figure 17: Overall AVATAR Block Diagram for the Microwave System

A minor weakness of the AVATAR implementation is the fact that blocks cannot be refactored, for example to
change their stereotypes from <<block>> to <<cryptoblock>>.

Assessment
take-away

The AVATAR cryptoblock extension to SysML blocks is a key feature of AVATAR with respect
to security engineering: it is both easy to use and highly productive to design secure communi-
cations.

4.3.4.2 Modelling cryptographic keys

This section explains how symmetric and asymmetric keys can be declared.

Pre-sharing of symmetric keys between explicitly stated actors

When symmetric keys are used, it is important to capture the fact that the keys are confidential and pre-shared
between the communicating actors prior to the communication itself.

SysML offers several ways to share data between classes, using for example block attributes, or using a dedi-
cated block storing shared knowledge. Unfortunately, those solutions suffer from two drawbacks: (i) the sharing
is not really explicit, i.e., it is not clear which block intends to use the shared data; (ii) the sharing is defined for
the entire system execution. To overcome those two limitations, AVATAR proposes to use specific directives -
or pragmas - in notes of block diagrams. The syntax of the two pragmas is the following:

#InitialSystemKnowledge BlockID.attributeID [BlockID.attributeID]*

#InitialSessionKnowledge BlockID.attributeID [BlockID.attributeID]*

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 37 / 92

The pragmas specify that the values of the listed attributes are identical and shared respectively prior
27

 to the
use of the system, or the running of a session.

In our running example (cf. Figure 17), the assumption “The wireless interface of the microwave oven and its
remote control share a common symmetric encryption key” (cf. §4.3.1) is captured as follows:

#InitialSystemKnowledge RemoteControl.PSK OvenWirelessCommunicationUnit.PSK

In addition, to cover the confidential nature of the key, AVATAR proposes another pragma, whose syntax is as
follows:

#SecrecyAssumption BlockID.attributeID

According to (Blanchet, et al., 2014), this pragma formally asserts that the attacker cannot have access to the
key. This assumption differs from the informal assumptions discussed in §4.3.1 in that this assertion is checked
by ProVerif, thus preserving soundness. It also differs from the confidentiality property (cf. §4.3.5.1) in that, if the
claim is true, no feedback is given by the tool, and if the claim is false, the verification is stopped prior to the
verification of any other property (cf. Figure 18).

Figure 18: Secrecy assumption verification error

This syntax, based on pragmas, correctly covers the modelling need for the pre-sharing of confidential symmet-
ric cryptographic keys. However, a small inconvenience of this approach is that traceability of security require-
ments to the pragmas cannot be ensured, because UML notes do not have identifiers.

Pairing public and private keys

When asymmetric keys are used, it is important to model the fact that: (i) the public and private keys are paired;
(ii) the public key is indeed public, and therefore known to the attacker and all communicating parties; (iii) the
private key is indeed secret. To cover all these modelling needs for key pairing before system execution,
AVATAR proposes to use a set of three pragmas:

#PrivatePublicKeys BlockID privKeyAttributeID pubKeyAttributeID

#InitialSystemKnowledge BlockID.attributeID [BlockID.attributeID]*

#SecrecyAssumption BlockID.attributeID

The first pragma declares the pairing of the public and private keys. With respect to the attacker model of
ProVerif, this pragma also implicitly publishes the public key to the attacker.

The second and third pragmas are identical to the ones used for symmetric keys: they simply allow declaring
that the communicating parties all store a copy of the same public key, and that all these copies are confidential.

An example of static key pairing, i.e. pairing before system execution, is given in Figure 19. In case dynamic
paring (i.e. pairing during system execution) is required, the pk() function can be used, cf. §4.3.4.1 for more de-
tails.

27

 For the designer, it is important to note that these attributes must not be assigned a value at runtime, or else the shared value property is
considered lost.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 38 / 92

Figure 19: Example of static key pairing

As for the symmetric keys, this syntax correctly covers the modelling need, but forbids traceability of security
requirements to the pragmas.

About certificates

AVATAR does not allow for the modelling of initial knowledge concerning certificates. This means that when a
system is assumed to have one or more pre-installed certificates, then the complete installation process involv-
ing the certification authority must be designed using state-machines.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 39 / 92

Assessment
take-away

The AVATAR extensions to model cryptographic keys are concise, expressive and readable
with respect to defining different types of keys.

AVATAR is a significantly weaker concerning the modelling of certificates, since certificates
can only be modelled dynamically (i.e. no initial knowledge concerning certificates). This ap-
proach may become dramatically complex in case of certification chains.

4.3.4.3 Defining the real-time behaviour of blocks using temporal operators in state-machines

Figure 20: AVATAR block state-machine of the microwave oven controller

Each time a block is created, TTool creates an empty state-machine diagram for that block. AVATAR state ma-
chine diagrams are built upon SysML state machines, enhanced with two temporal operators to support real-
time system schedulability analysis:

 after (tmin, tmax): it models a variable delay during which the activity of the block is suspended, waiting for a

delay between tmin and tmax to expire;

 computeFor (tmin, tmax): it models a time during which the activity of the block actively executes instruc-

tions, before transiting to the next state: that computation may last from tmin to tmax units of time.

The most important state-machine for the microwave oven running example is the state-machine of the Control-
ler block; it is given in Figure 20. It shows multiple uses of the after() method.

Assessment
take-away

The temporal operators offered by AVATAR are very far from the capabilities of MARTE, but
they offer the minimal operators to start defining the real-time behaviour of blocks.

4.3.4.4 Defining the communication architecture

With AVATAR, the goal of the communication architecture is only
28

 to support the application’s control logic.
This can (and must) be done using simple types (i.e. Int, Bool, and Timer) or user-defined data types, but the

28

 The application’s algorithms, requiring more complex data types, must be written in C code, as part of the body of methods.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 40 / 92

latter may themselves only be defined using integers and Booleans. Moreover, if the intent is to use ProVerif,
the communications must be limited to a single datum element per communication channel flow

29
.

Figure 21: Declaration of Flow Properties of type Signal

The communication architecture is designed with flow properties of type Signal. An “out” FlowProperty of type
Signal means that the owning Block may send the signal via connectors and an “in” FlowProperty means that
the owning block is able to receive the Signal (cf. Figure 21).

Figure 22: Configuring communication channels with respect to security

The association between “in” and “out” signals is performed through the configuration of port connectors, cf.
Figure 22. Beyond the usual configuration, e.g. synchronous vs. asynchronous communication, the AVATAR
settings include a toggle switch specifying if the connector represents a private channel, i.e. a channel that an
attacker cannot listen to.

29

 For complex flows, see the get() and concat() methods in §4.3.4.1.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 41 / 92

In our running example, a synchronous broadcast public connection is configured between the remote control
and the oven. Connections between elements inside the oven are considered private.

TTool/AVATAR integrates, through the use of ProVerif (Blanchet), its own attacker model, which is a process
implementing a Dolev-Yao approach (Dolev, et al., 1983). In other words, the attacker model is implicit, i.e.,
there is no need to model an attacker either at block diagram level, or at state machine diagram level. The pro-
cess implementing the Dolev-Yao approach acts like an adversary relying upon a set of known names, variables
and terms which is referred to as knowledge. The increase of the attacker knowledge relies on public channel
probing and execution of functions that are non-prohibited to the attacker. The attacker is assumed to be an
active eavesdropper, i.e. someone who: (i) can obtain any message passing through public networks; (ii) is a
legitimate user of the network, i.e. can initiate a conversation with any other user; (iii) has the opportunity to be a
receiver to any other user. More details are given in (Dolev, et al., 1983) and (Pedroza, et al., 2011).

Assessment
take-away

Overall, the AVATAR extensions to SysML for the communication architecture are deemed
useful and easy to configure.

4.3.5 Property modelling

This section should normally corresponds to the Property Modelling phase of the AVATAR methodology (as
described in §4.2), which is dedicated to the modelling of safety properties using the TEPE language. However,
the transformation of TEPE towards UPPAAL has not (yet) been implemented, thus rendering the formalisation
somehow useless, because automated verification cannot be performed. This section therefore focuses on the
specification of security properties (cf. §4.3.5.1) and safety properties (cf. §4.3.5.10) that can be formally veri-

fied. The reader interested in the TEPE language and the way to formalise safety properties using TEPE may
refer to Annex B and Annex C.

4.3.5.1 Modelling of security properties

Security properties can usually be defined with a criterion (e.g., confidentiality), and with a few elements related
to that criterion (e.g., the confidentiality of an attribute of a block). In AVATAR, that simplicity results in a simple
modelling solution relying on pragmas provided in notes of block diagrams.

Confidentiality

Confidentiality is the assurance that information is not disclosed to system entities (users, processes, devices)
unless they have been authorized to access the information. With AVATAR, the confidentiality of an attribute of
a block is modelled as a simple pragma provided in the note of a block diagram, according to the following syn-
tax:

#Confidentiality BlockID.attributeID

In our running example, we have a confidentiality requirement (cf. Figure 13), stating that “Data sent by the re-
mote control of the microwave shall remain confidential”. The corresponding property in AVATAR is illustrated in
Figure 23.

Figure 23: Example of confidentiality property

Details on the verification of a confidentiality property is given in §4.3.6.2.

Authenticity

Authenticity is confidence in the validity of a transmission, a message, or message originator. In AVATAR, the
authenticity of a message transmission between a block A and a block B is modelled as a pragma that states
that a message m2 received by the block B was necessarily sent before in a message m1 by the block A. The
syntax of the authenticity pragma requires the specification of two states:

 state s1, corresponding to the state of block A right before
30

 the sending of m1,

30

 It is important du note that the message m1 must be formed before state s1, i.e. it is not allowed

to form m1 on the transition between s1

and the sending of m1. If the message is formed between state s1 and the sending of m1, then the verification of the authenticity will pro-

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 42 / 92

 state s2, corresponding to the state of block B after message m2 has been received and accepted as au-

thentic
31

, hereby meaning that some certificate / signature verifications or decryption operation are normally

performed
32

.

The syntax is the following:

#Authenticity SenderBlockId1.stateId1.messageId1 ReceiverBlockId2.stateId2.messageId2

In our running example, we have an authenticity requirement (cf. Figure 13) stating that “Data received wireless-
ly by the oven must have been sent by the corresponding remote control”. The corresponding property in
AVATAR can only be written after defining the state-machines (cf. Figure 24) of the communicating parties, i.e.
the remote control and of the oven’s wireless communication unit (cf. Figure 17).

Figure 24: State-machines of the remote control (left) and of the oven’s wireless communication unit (right)

Given these two state-machines, the authenticity property of the message transmission can be expressed as
shown in the first UML comment of Figure 25. The verification of this property should normally fail

33
.

Figure 25: Examples of authenticity properties

We therefore built another simple example whereby Alice sends a signed message to Bob through a public
channel; upon receiving the message, Bob checks the signature (cf. Figure 26). This protocol uses the sign()
and verifySign() methods pre-defined on cryptoblocks, as explained in §4.3.4.1.

vide inconsistent results and no error message will be generated. The syntax is therefore error prone, and some form of syntax verifica-
tion would be welcome.

31
 It is important to note that the signature verification or message decryption must be performed before state s2. If not, the verification of the
authenticity will provide inconsistent results and no error message will be generated. Moreover, we discovered that the message variable
used in the proof should not be re-used before state s2. For example, in the state-machine of Figure 24, writing “msg2=sdecrypt(msg2,
PSK)” instead of “msg3 = sdecrypt(msg2, PSK)” confuses ProVerif and provides inconsistent results. The syntax is therefore error prone,
and some form of syntax verification to avoid such pitfalls would be welcome.

32
 It is important to note that if a decryption operation is illegal, e.g. use of the wrong key, then the state-machine transition cannot be taken.

33
 In ProVerif, the formalization of symmetrical encryption is authenticated. It is indeed difficult to model general unauthenticated encryption
in formal protocol provers. In reality, symmetrical encryption can support some level of authentication when the encrypted message is
long: in that case, the semantics of the decrypted message allows the addressee to assess if the message was indeed encrypted with the
symmetric key, or if it was a random message. By contrast, when the message is very short, e.g. an integer, any random value may be
decrypted as an integer, thus allowing for impersonation attacks.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 43 / 92

Figure 26: State-machines of Alice and Bob exchanging a signed message

Given these two state-machines, two authenticity properties of the message transmission were expressed, as
shown in the second UML comment of Figure 25, to verify the AVATAR results depending on the validity of the
signature.

However, this protocol is subject to replay.

Figure 27: State-machines of Alice and Bob exchanging a signed message with nonce

Thus, we extended the Alice and Bob use case, to include a nonce. The corresponding state machines are giv-
en in Figure 27. Given these two state-machines, four authenticity properties of the message transmission were
expressed, as shown in the last UML comment of Figure 25, to verify the AVATAR results depending on the
validity of the signature, and the validity of the nonce.

The results of the verification of the authenticity properties are given in §4.3.6.5.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 44 / 92

Assessment
take-away

Overall, the AVATAR syntax for modelling confidentiality and authenticity is deemed both clear
and user friendly.

However, as already pointed out, the use of pragmas for the modelling creates a traceability
issue, as UML comments do not have identifiers.

4.3.5.2 Modelling of safety properties

To formally model safety properties, AVATAR offers to use observers, usually one observer per property. This is
a second choice solution, because in UML / SysML, observers cannot observe events without consuming those
events. Therefore, observers must be explicitly fed with events: this can only be done by modifying the state-
machines of the blocks creating and / or consuming the original events, dramatically polluting the original sys-
tem design block and state-machine diagrams

34
.

Although it is purely a matter of interpretation
35

, the literature distinguishes positive observers, which express
possibility properties

36
, from negative observers, which express safety properties

37
.

To assess the capabilities of AVATAR in terms of safety property modelling, we will provide the formalisation of
one safety requirements (cf. §4.3.2) of our microwave running example. The other properties can be built in a
similar manner.

Figure 28: Observer for safety property n°1

The selected
38

 safety requirement from our microwave running example is “The heating unit is not started when
the door is open.”

To formalise the property on the basis of an observer, we must first create an observer block and make the as-
sumption that it is capable of observing the opening and closing of the microwave’s door, as well as the starting
of the magnetron.

Considering the design of the microwave (cf. the state-machine of the Microcontroller in Figure 29 and the state-
machines of the Door and the Magnetron in Figure 46), these three signals are accessible from the micro-

34

 This is why modelling properties with TEPE in the Requirements Diagram would have been a much cleaner approach, i.e. TEPE would
automatically and transparently generate the observers. Unfortunately, safety properties formally modelled in TEPE cannot currently be

formally verified with AVATAR (cf. introduction of §4.3.5.2), so observers must be manually crafted.
35

 Satisfying a negative observer amounts to violating a positive observer, and vice-versa.
36

 I.e., it is possible that something good will eventually happen (AG EF in CTL). This differs from liveness, i.e. something good will eventual-
ly happen (AF in CTL) and reachability (EF in CTL).

37
 I.e., nothing bad ever happens.

38
 This same example is also provided as a TEPE formalisation, cf. Annex C.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 45 / 92

controller. It is thus possible
39

 to connect the observer to the oven’s microcontroller, and to define the corre-
sponding events on the observer, as shown in Figure 28.

The state-machine of the Microcontroller in Figure 29 shows a modified state-machine in which all open, close
and start signals are immediately repeated for the benefit of the observer. Looking at Figure 20, it can be com-
pared to the same state-machine before adjunction of the observer.

Figure 29: State-machine of the microwave microcontroller

The communication channel between the observer and the microcontroller is defined as synchronous and pri-
vate, i.e. an attacker may not have access to this channel, in order not to compromise the assessment of securi-
ty properties. A one-to-one correspondence is established between the signals in the micro-controller and in the
observer, as shown in Figure 30.

39

 An alternative would have been to connect the observer directly to the door and to the magnetron. Considering that the communication
between the door and the micro-controller, and the communication between the magnetron and the micro-controller are synchronous and
lossless, both models are equivalent. If the communications are lossy, the alternative implementation of the observer will provide different
results.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 46 / 92

Figure 30: Signal association settings for the safety observer

Figure 31: State-machine for the safety property n°1 observer

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 47 / 92

Now, to model the property with this observer, we need to reword the requirement as follows: “The state in
which the observer arrives when it has observed that the door has been opened and the magnetron started
whilst the door is still open, should not be reachable. This results in the state-machine shown in Figure 31 for
the observer. A right-click on the “Error” state allows notifying UPPAAL that it should verify the reachability and /
or liveliness of that state.

Assessment
take-away

The AVATAR TEPE extensions to model safety properties are extremely interesting. However,
TTool does not (yet) support the automated verification of properties expressed in TEPE. The
AVATAR fall-back solution is based on the definition of observers. These observers perform
the job, but they have significant detrimental effects on the readability of the system / software
model, and thus cannot be considered as a long-term solution.

4.3.6 Formal verification

4.3.6.1 Prerequisites

Prior to performing a formal verification with a third-party tool, TTool must perform some syntax analysis of the
AVATAR model (cf. Figure 32). This normally prevents the generation of incorrect code for ProVerif and
UPPAAL.

Note: syntax analysis can also be useful to discover errors in the AVATAR model, at early stages of the design.

Figure 32: De-scoping the design model and syntax analysis

Another more subtle goal of the TTool syntax analysis is the de-scoping of the design model for the formal anal-
yses. Indeed, the transformation of all AVATAR constructs is not (yet) supported. Some correct AVATAR con-
structs may trigger errors in ProVerif and / or UPPAAL. TTool offers a dialogue window in which it is possible to
select the SysML blocks to take into account in the syntax analysis. This filtering is then (implicitly) used to limit
the scope of the subsequent formal analyses.

The TTool syntax analysis also erases all back annotations on the AVATAR model.

Once the syntax verification is done, it is possible to launch the formal verifications using ProVerif and / or
UPPAAL, as illustrated in Figure 33.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 48 / 92

Figure 33: Menu to launch the formal verifications

4.3.6.2 Prerequisites to formal verifications using ProVerif

ProVerif can be used to verify:

 confidentiality properties, cf. §4.3.6.4;

 authenticity properties, cf. §4.3.6.5.

When the ProVerif option is selected in the menu (cf. Figure 33), a window opens to control the code genera-
tion, i.e. model transformation from AVATAR to ProVerif (cf. Figure 34).

Figure 34: ProVerif's code generation dialogue window

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 49 / 92

This dialogue window recalls the directory in which the ProVerif code will be generated, in a file called “pvspec”.
This is useful to check the generated code

40
, and potentially to launch ProVerif directly without using TTool.

The dialogue window also allows selecting an option to compute state reachability. This option is verbose, and
should therefore be deactivated if one needs to analyse the traces generated by ProVerif.

After pressing “Start”, TTool generates the code and a window opens to control the execution of the generated
code by ProVerif, cf. Figure 35. Here, it is possible to ask to show all the traces produces by ProVerif, if one
needs to understand the reasoning behind the results

41
.

Figure 35: ProVerif's code execution dialogue window

Pressing start will:

 launch the verification;

 provide the results textually in the window;

 back-annotate the AVATAR model with the results.

4.3.6.3 Prerequisites to formal verifications using UPPAAL

UPPAAL can be used to verify:

 the existence of deadlocks;

 the reachability of selected states;

 the liveness of selected states;

 the “leads to” property between two states
42

;

 or any other custom property, as long as it can be expressed as a CTL formula.

When the UPPAAL option is selected in the menu (cf. Figure 33), a window opens to control the verification
process, cf. Figure 36.

Assessment
take-away

The AVATAR syntax verification was found to be very useful in debugging the model, even if it
can still be improved to cover more cases.

40

 It is important to note that currently TTool does not check if the writing of the pvspec file is processed correctly. If the pvspec file is opened
prior to code generation, code generation will fail, but no message will be produced. Thus, the AVATAR verification results will corre-
spond to those of the opened file, not to the AVATAR model (if modifications have been made since the last generation).

41
 For simple cases only. A test with a complex protocol led to the generation of 1935 pages of traces…

42
 I.e. if the 1

st
 state is accessed, then the 2

nd
 one is eventually reached.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 50 / 92

Figure 36: UPPAAL’s formal verification dialogue window

4.3.6.4 Confidentiality assessment

To assess the performance of AVATAR with respect to confidentiality, we have implemented three handshake
protocols, as provided in (Dolev, et al., 1983). We start by briefly recalling these three protocols.

Let:

 A and B be communicating partners;

 Ex(M) be the encryption of message M with the public key of X;

 XY be the concatenation of X and Y.

Protocol n°1:

A  B: (A, EB(M), B)

B  A: (B, EA(M), A)

Protocol n°2:

A  B: (A, EB(MA), B)

B  A: (B, EA(MB), A)

Protocol n°3:

A  B: (A, EB(EB(M)A), B)

B  A: (B, EA(EA(M)B), A)

Protocol n°2 is secure. Protocols n°1 and n°3 are both breakable, as shown below. Let Z be a saboteur.

MitM attack protocol n°1:

Z intercepts the message from A to B

Z  B: (Z, EB(M), B)

B  Z: (B, EZ(M), Z)

Z decodes EZ(M), thus obtaining M

MitM attack protocol n°3:

Z intercepts the message from B to A, thus obtaining EA(EA(M)B)
here after noted EA(N)

Z  A: (Z, EA(EA(N)Z), A)

A  Z: (A, EZ(EZ(N)A), Z)

Z decodes EZ(EZ(N)A), thus obtaining N, and therefore EA(M)

Z  A: (Z, EA(EA(M)Z), A)

A  Z: (A, EZ(EZ(M)A), Z)

Z decodes EZ(EZ(M)A), thus obtaining M

The protocols were designed in AVATAR using two cryptoblocks A and B (cf. Figure 19), and implementing the
protocols with state machines. Protocol n°2 is illustrated in Figure 37. The other protocols are similar and are
not shown here. TTool / AVATAR provided the correct answers for all three protocols. The results are shown
textually and graphically in Figure 38. This figure shows twice the A cryptoblock, once for the execution of pro-
tocol n°1 after which the secret n°1 is back annotated with a red lock, and once for the execution of the protocol
n°2 after which the secret n°2 is back annotated with a green lock.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 51 / 92

Figure 37: State-machines for handshake protocol n°2

During the implementation, one complexity that we faced is that the protocol narrations, as provided above, do
not specify the checks that should be made by the participants during the execution of the protocol. If these
checks are not made, then an attacker may exploit the vulnerability and therefore compromise the confidentiality
of data. It is in particular the case for the test performed by actor B (cf. Figure 37), to abort the protocol in case
of impersonation. If this test is not designed, the TTool / AVATAR signals the protocol as unsecure.

Figure 38: Reports about confidentiality assessment

For fun:

 We leaked the private key of A as the 1
st
 step of protocol 2; unsurprisingly, TTool / AVATAR correctly report-

ed that the confidentiality of the secret n°2 was compromised.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 52 / 92

 We chained the three protocols; much to our surprise, TTool / AVATAR reported that the confidentiality of the

secret n°2 was now compromised, even though secret n°2 is only exchanged using the secure protocol n°2;

looking at the ProVerif traces, it was seen that the attacker Z can retrieve EB(MA) during the exchange in

protocol n°2, and then use for example the third protocol, to decipher secret n°2 as follows:

Z  B: (Z, EB(EB(MA)Z), B)

B  Z: (B, EZ(EZ(MA)B), Z)

Z decodes EZ(EZ(MA)B), thus obtaining M. Alternatively, the attacker can also use the first protocol to break

secret n°2.

Assessment
take-away

Overall, the evaluation results for confidentiality assessment are extremely positive. Three
handshake protocols and a number of secure communications were assessed, and all results
met our expectations.

4.3.6.5 Authenticity assessment

To assess the performance of AVATAR with respect to the authenticity of a message transmission, we checked
the results returned by TTool on the authenticity pragmas defined in §4.3.5.1.

The initial results provided by TTool were erroneous results. Telecom Paris-Tech provided a patch after which it
was shown that TTool did not differentiate weak authentication from strong authentication

43
 in its result display

panel. A second patch was provided by Telecom Paris-Tech to clearly differentiate both cases.

The output for the most complete Alice & Bob protocol with a signature and a nonce (cf. §4.3.5.1), is shown in
Figure 39. These results are fully satisfactory.

Figure 39: Reports about authenticity assessment on the Alice & Bob use protocol with nonce

The output for the microwave protocol with a symmetrical encryption, is shown in Figure 40. These results show
a weak authentication and a non-proved query, which is a reasonable output considering the way ProVerif man-
ages symmetrical encryption (cf. footnote in §4.3.5.1).

43

 See Assessment Take-Away below for definitions of weak and strong authenticity.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 53 / 92

Figure 40: Reports about authenticity assessment on the microwave protocol with a symmetrical encryption

Assessment
take-away

The formal verification of authenticity was time-consuming due to a number of bugs that re-
quired patches, but the results exceeded our expectations since AVATAR was shown to be
able to differentiate weak authentication from strong authentication, with the following seman-
tics:

 weak authentication assures that the message was forged by the communicating partner,

i.e. message content and source authenticity,

 strong authentication assures, in addition, that the message was sent by the communicating

partner, i.e. transmission authenticity, or in other words, the message has not being re-

played.

Overall, the evaluation results for the formal verification of authenticity properties are therefore
extremely positive.

4.3.6.6 Assessment of safety properties

To assess the performance of AVATAR with respect to safety properties, we checked the results returned by
TTool on the safety property defined in §4.3.5.2. We checked for the reachability of the error state. As shown in
Figure 41, the results were in line to our expectations.

Figure 41: Results from the verification of the safety property

Assessment
take-away

The formal verification of safety properties is straight forward and intuitive.

We however regret (again) that the formal verification is not based on a TEPE model, but on
observers (cf. §4.3.5.2).

4.4 Conclusions
We conclude on a SWOT of the tool.

Strengths:

 Security constraints and properties, including the pre-sharing of secret information between a defined set of

actors, are easy to formalise using AVATAR.

 Specific block stereotype, called <<cryptoblock>>, to help design secured communications. This stereotype

provides the signature of the methods commonly used in designing secured communications.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 54 / 92

 Methodology integrated inside the tool, with traceability between the methodological phases and the dia-

grams.

 Capability to capture informally stated assumptions, and trace them to model elements.

 Specific stereotypes, called <<Safety Requirement>> and <<Security Requirement>>, with ad-hoc tags, to

manage SysML-based safety and security requirements.

 Two temporal operators that extend the SysML standard state-machines to support real-time system sched-

ulability analysis.

 Stable tool.

 Syntax verification prior to transformation to ProVerif and UPPAAL.

Weaknesses
44

:

 Lack of documentation.

 ProVerif does not support loops in the state diagrams of SysML blocks
45

. ProVerif theoretically starts an infi-

nite number of processes, so loops are not necessary considering the ProVerif semantics. However, loops

may be necessary for safety proofs with UPPAAL. In this case, the combination of both safety and security

proofs may become complex. For example, in the microwave oven example, blocks that have loops in their

state-machines must be excluded when transforming the model the ProVerif format.

 Security constraints and properties are formally expressed as pragmas in UML notes, but UML notes do not

have an identifier, so traceability between these elements and other model elements, e.g. requirements, is

not possible.

 Communication is restricted to point-to-point communications: broadcast and multicast are not supported.

 All private channels are managed as a unique channel
46

: this may cause undesired interactions.

 Block properties can only be of type Int, Bool, Timer. This means that: (i) the application’s control logic must

be defined using only those simple types; the application’s algorithms, requiring more complex data types,

must be written in C code, as part of the body of methods.

 Refactoring of block, attribute and method names is not supported.

 Refactoring the names of diagrams is not well supported with respect to their traceability from the methodol-

ogy diagram, since the traceability link is lost (without warning).

 ProVerif supports only one datum element at a time in a communication channel. The use of the ‘concat’ and

‘get’ functions of the TTool Cryptoblocks help in designing communication protocols with more complex

flows, but this perturbs readability.

 The zoom capability on diagrams is poorly supported.

 The undo capability on diagrams is effective, but generates a change of diagram that is rather disturbing.

 With ProVerif, tests can only be performed on Booleans. Tests on other types must be handled using con-

stant identifiers and pre-shared knowledge.

Opportunities:

 Safety properties can be formalised using the TEPE language, but the transformation of TEPE towards

UPPAAL has not (yet) been implemented, thus forbidding any form of automated verification. There is a

pressing need to transform TEPE properties into safety observers.

 A security requirement may reference an attack node in an attack tree; this ensures a basic traceability

mechanism, but there is no automated check of the coverage of attacks. According to Ludovic Apvrille, the

development of this feature is on the tool’s evolution roadmap.

 There are some integration issues with UPPAAL: (i) if the UPPAAL licence is obsolete, TTool does not rec-

ognise it and considers that UPPAAL proved all properties to be true; (ii) some syntax errors
47

 in the TTool

code are not detected by the TTool syntax checker, but trigger a message stating that UPPAAL is incorrectly

installed or configured. According to Ludovic Apvrille, the correction of these issues is on the tool’s evolution

roadmap.

44

 Please consider that weaknesses that are bugs in nature have been reported to the Ludovic Apvrille, and many have already been cor-
rected.

45
 Télécom ParisTech has announced a patch to manage loops. Future deliveries should raise this major limitation.

46
 Télécom ParisTech has announced a patch separate private channels. Future tool versions should not suffer from such an issue.

47
 As for example, a semicolon at the end of an instruction on a transition.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 55 / 92

 There are also some integration issues with ProVerif: currently, only the blocks involved in a security proper-

ty verification must be selected before launching ProVerif. If more blocks are selected, a ProVerif compilation

error may occur. According to Ludovic Apvrille, the correction of this issue is on the tool’s evolution roadmap.

 Improve syntax checking, in particular with respect to authenticity properties.

Threats:

 The tool is hand-held essentially by one person, Ludovic Apvrille.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 56 / 92

Annex A – Microwave Use Case Supplementary Data

Figure 42: AVATAR Use Case Diagram for the microwave system

Figure 43: AVATAR Context Diagram for the microwave system

Figure 44: Example of AVATAR Sequence Diagram for the microwave system

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 57 / 92

Figure 45: Example of AVATAR Activity Diagram for the microwave system

Figure 46: State-machines of the microwave’s door (left) and microwave’s magnetron (right)

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 58 / 92

Annex B – TEPE Supplementary Data

A specification in the TEPE language represents functional and non-functional properties in a formal way, using
Parametric Diagrams (PDs). As opposed to informal SysML PDs, TEPE PDs are amenable to automated verifi-
cation.

A small set of operators are leveraged to make up complex properties. TEPE operators manipulate three kinds
of data:

 attributes, which are defined in blocks at system design level, or as new attributes, from existing ones.

 signals, which are defined in blocks at system design level, or as new signals, from existing ones, or which

can be one of the two following additional signals: entry(state) and exit(state).

 properties, which are Boolean values resulting from SysML constraints, i.e. either equations, or temporal /

logical constraint operators.

In TEPE, each property is expressed as a graph of signals, attributes, constraints and properties. This section
presents rapidly the main TEPE concepts to support the reader in defining safety properties (cf. §4.3.5.1). For
the TEPE methodology, please refer to §4.2.

Attribute-based operators

Two AVATAR operators allow for the definition of attributes in TEPE PDs:

 the <<attribute>> stereotype, when the attribute has already been defined in a block at system design level,

 the <<setting>> stereotype, for a new attribute.

Figure 47: Attribute-based operators

The equation operator takes attributes as input, and it outputs a property.

Attribute operators output a signal indicating a value change (toggle).

An example of the three types of attribute-based operators is shown in Figure 47.

Figure 48: Attribute-based operators with their attribute ports (left), signal ports (middle) and property ports (right)

Since the attribute-based operators allow for different kinds of flows (i.e. attributes, signals and properties), they
comprise different types of ports, which are highlighted by TTool, depending on the type of relation that needs to
be drawn, cf. Figure 48. The ports are characterised by their position, which gives an indication of the type of
flow, and by their colour, which gives an indication of the flow direction

48
. The colour code is as follows:

 cyan: output only;

 dark blue: input only;

48

The ports on the toggle of <<setting>> should be “output only” (a patch will be provided).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 59 / 92

 brownish: input / output.

Graphically, when a property flow is connected to a port of an operator, a white circle is displayed to recall that it
is indeed a property flow (cf. Figure 52). This effectively increases readability.

In terms of ergonomics, TTool does not allow to select existing blocks and attributes from a list. The names
need to be fully typed. This input modus operandi is error prone and should be revised.

Signal-based operators

Two AVATAR operators allow for the definition of signals in TEPE PDs:

 the <<signal>> stereotype, when the signal has already been defined in a block at system design level,

 the <<alias>> stereotype, for a merge of several distinct signals to one.

To evaluate signals, AVATAR offers three operators that translate the temporal behaviour of signals into proper-
ties:

 the logical constraint (LC) operator: this operator has for inputs two sets of signals (i.e. Sn, the normal input

signals and Sf, the failure input signals), whose intersection is void, and an input property Pi (optional, con-

sidered to be true by default); the LC operator has for output one property Po; once any signal Sfirst in Sn is

encountered, the operator requires all signals Sn\{sfirst} to be observed for Po to be true; if none of the signals

Sn is ever received, Po is defined to be true; furthermore, the operator handles failure signals forcing Po to be

false in case they are notified between the first received signal of Sn and the last one; in addition to that, Pi is

required to be true during all that period, otherwise Po is set to false;

 the logical sequence (LS) operator: this operator works similarly to the Logical Constraint operator, apart

from the fact that the order in which input signals are received is imposed;

Figure 49: Signal-based operators with their signal ports (left), and property ports (right)

 the temporal constraint (TC) operator: this operator has for inputs two signals s1, s2 (the latter is optional),

two time values tmin, tmax (either of the two is optional) and a property Pi (optional, considered to be true by

default); the TC operator has for output one property Po; depending on the provided arguments, Po is defined

to be true under the following conditions (cf. Figure 50):

 s2 has to occur at least tmin, at most tmax after s1 and Pi must be true from the reception of s1 to the recep-
tion of s2;

 s2 has to occur at most tmax after s1 and Pi must be true from the reception of s1 to the reception of s2;
 s2 has to be notified at least tmin after s1 and Pi must be true from the reception of s1 to the reception of s2;
 after reception of s1, Pi must be true for at least tmin and at most tmax;
 after reception of s1, Pi must be true for at most tmax;
 after reception of s1, Pi must be true for at least tmin.

Figure 50: The different semantics of the TC operator

Graphically, the normal input signals (Sn) of the LC and LS operators need to be connected to the 6 ports on the
left of the operator, whilst the failure input signals (Sf) need to be connected to the 4 ports on the top left of the
operator. When a failure input signal is connected to a port on the top left of the operator, a small cross is dis-
played to recall that it is indeed a failure signal (cf. Figure 52). This effectively increases readability.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 60 / 92

Property-based operators

Property operators comprise conjunction and disjunction functions for properties.

Property definition operators assign a name to a property, and specify its verification kind: (non-)reachability or
(non-)liveness.

Figure 51: Property-based operators with their property ports

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 61 / 92

Annex C – Formalising Safety Properties using TEPE

To assess the capabilities of AVATAR in terms of safety property modelling, we provide the formalisation of two
safety requirements (cf. §4.3.2) of our microwave running example. Each requirement is be covered by a prop-
erty expressed using the TEPE language. Readers not familiar with the TEPE language should first read Annex
B.

Formalisation example n°1

Our 1
st
 example of safety requirement is “The heating unit is not started when the door is open.”

To ease the understanding of the property, please refer to:

 the state-machine corresponding to the Microcontroller (cf. Figure 29), which controls the Magnetron, and

may be interrupted by the Door,

 the state-machines of the Door and the Magnetron (cf. Figure 46); in the state-machine of the Door, please

note that the door is considered to be initially closed.

Now, the property corresponding to the formalisation of the requirement can be expressed as shown in Figure
52.

Figure 52: Property “Door not open”

With this expression:

 the property is true if the door is never opened;

 the property is true if the door is opened and closed before starting the magnetron,

 starting the magnetron when the door is opened will definitively make the property false, and thus the

liveness of the property cannot be proved.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 62 / 92

Formalisation example n°2

Our 2
nd

 example of safety requirement is “The bell rings only if the cooking time has expired.” The property cor-
responding to the formalisation of the requirement can be expressed as shown in Figure 53.

Figure 53: Property “Bell”

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 63 / 92

5 State of the art synthesis

This chapter provides an overall synthesis of the state of the art as presented in Part A of this deliverable.

Safety and security are two risk-driven activities that are traditionally tackled separately. It is thus possible to
distinguish two communities, each working on their own standards, organising their own conferences, publishing
in their own journals, and implementing on their own technical solutions. Since the 9/11 attacks on the Twin
Towers in the Aeronautics domain and the discovery of the Stuxnet computer worm in the Industrial Control
Systems domain in June 2010, it is more and more recognised worldwide that both engineering specialties can-
not continue to ignore each other (cf. Figure 54).

Figure 54: Publication dates of core referenced papers
49

It is evident that there are major opportunities to share on onomastics, algorithms, (formal) methods and tools,
in particular to reach higher levels of safety and security assurance at contained costs. Much work has already
been done. This section provides a synthesis of the bibliography of research papers on safety and security en-
gineering since the early 90’s as reported in part A of this deliverable. The bibliography only covers papers that
explicitly address both engineering specialties. Even papers dealing with dependability (Laprie, 1992) have
been discarded if they do not explicitly mention safety and security.

The synthesis is organised in three groups. A first group (cf. §5.1) comprehends the papers that state the issues
related to engineering safety and security separately, and assert that there is room for improvement, but do not
explain how. The second group (cf. §5.2) comprehends the papers that propose to improve security engineer-
ing by adapting safety-related techniques, or vice-versa, in other words, safety and security cross-fertilisation.
Here, one specialty is seen as more important than the other one, giving way to “security for safety” or vice-
versa. The last set of papers (cf. §5.3) groups those that propose novel clean slate approaches for safety and
security co-engineering, considering both specialties as peers.

Note: this synthesis was also been published as two papers at the SAFE’15 conference: (Paul, et al., 2015) and
(Paul, 2015).

5.1 Houston, we have a problem!
A number of papers explicitly state the issues related to engineering safety without security or engineering safe-
ty and security separately, and assert that there is room for improvement, but they do not explain how
(Pfitzmann, 2004), (Nordland, 2008), (Gerhold, 2011). Many of these papers are domain specific, e.g. (ICAO,
2005) in the Air Traffic Management (ATM) domain, (Deleuze, et al., 2008) with respect to industrial systems,
(Bloomfield, et al., 2012) in the European Railway Traffic Management System (ERTMS) domain, (Koscher, et
al., 2010), (Gebauer, 2014) and the National Highway Traffic Safety Administration (79 FR 60574, 2014) in the
automotive domain, or (Vogt, 2014) on a Smart Grid case. Some paper pin-point the issue on very specific top-

49

 The 2015 figure is not as high as it should be, as our state of the art effort was relaxed beginning of 2015.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 64 / 92

ics like safety vs. security metrics (Schwarz, 2014). Sometimes the issue statement is just given as a side-
comment (Wiander, 2007). A striking fact is that the number of such papers does not seem to be diminishing as
the years go by.

Beyond just expressing the issues, some papers also provide high-level recommendations on the manner to
address them (Daniel, 2008), (Jalouneix, et al., 2009), (Carter, 2010), or on the directions to investigate, but
they do not run that road themselves. Such recommendations advocate, e.g., an harmonisation

50
 of safety and

security requirements engineering processes (Eames, et al., 1999), (Smith, et al., 2003), the use of formal
methods, and in particular the Liskov Substitutability Principle (LSP) when using an object-oriented paradigm
and secure programming languages such as Ada / SPARK (Dewar, 2008), or on the contrary, extensive testing
(Saglietti, 2008). Turning towards survivability engineering is also proposed (Goertzel, et al., 2009). Others are
domain specific, such as (Schmittner, et al., 2014c) in the automotive domain.

In this very busy hive, (Taguchi, et al., 2015) steps back, proposing some high-level process patterns and case
patterns corresponding to the main safety and security co-engineering approaches, but does not recommend
the path to follow.

Running a bit against the current, a few papers, e.g. (Hansen, 2009), recall that even though safe systems were
not designed to be secure, they often offer good properties against attacks, with a tendency to enter a fail-safe
state rather than provoking accidents.

5.2 S4S: security for safety or safety for security?
This section is split in two parts: the first and most important one exposes papers that aim at improving safety
engineering by considering security and / or privacy issues; the second exposes papers that aim at improving
security engineering by integrating proven safety mechanisms.

(Piètre-Cambacedes, et al., 2013a) gives a comprehensive view of methods, models, tools and techniques that
have been created in safety engineering and transposed to security engineering, or vice versa. The similarities
and differences between the two domains are analysed. A careful screening of the literature (this paper contains
201 references) made it possible to identify cross-fertilizations in various fields such as architectural concepts
(e.g. defence in depth, security or safety kernels), graphical formalisms (e.g. attack trees), structured risk anal-
yses or fault tolerance and prevention techniques. (Kriaa, et al., 2015) also proposes a survey of approaches
combining safety and security, but limiting the scope to industrial control systems.

5.2.1 Improving safety engineering

Safety engineering traditionally excludes malevolent behaviour; this is usually an implicit assumption, but it was
sometimes explicitly stated, e.g. in the obsolete (IEC 61508-1, 1998) - (IEC 61508-7, 2000) standard series.
Recent attacks in safety-critical domains, e.g. the 9/11 events in the Aviation domain, Stuxnet (Fallière, 2010) in
the Industrial Control Systems (ICS) domain, have changed the game. The safety engineering community is
addressing the issue by elaborating new focused techniques or wide-breath standards and guidelines, e.g. (S +
IEC 61508, 2010), to seamlessly cope with IT security threats that can have an impact, direct or indirect, on
safety. These techniques, standards and guidelines have major implications on the methods and tools used by
industry to efficiently develop safety-critical systems; they usually render obsolete years of best practices, indus-
trial quality baselines and require adequate training for the developers because the Security for Safety (S4S)
approach is not a simple juxtaposition of safety and security processes.

It is possible to organise these focused techniques in two groups. The first group consists of established safety-
related techniques that are enhanced to also cope with some security issues within a safety engineering pro-
cess. The second group consists of security-related techniques that are adapted to enhance safety engineering.

In the first group, a focused safety-related technique that is often proposed for adaptation to cope with security
issues is the HAZard and OPerability (HazOp) technique. A HazOp is a structured and systematic examination
of a planned or existing process or operation in order to identify and evaluate problems that may represent risks
to personnel or equipment, or prevent efficient operation. The adaptation usually comes down to defining new
guide-words (Winther, et al., 2001), (Winther, 2004), (Srivatanakul, 2005), (Yang, et al., 2007), (Cusimano, et
al., 2010), but can also be more comprehensive, as when it is used within the SeSa method (Grøtan, et al.,
2007). Other adaptations relate to the What-If method (Yang, et al., 2007), Failure Modes and Effect Analysis,
and Layer-Of-Protection Analysis (Hunter, 2009), or a combination of techniques (Brewer, 1993), (Srivatanakul,
2005), (Cusimano, et al., 2010). (Johnson, 2011) proposes the integration of security concerns into safety cas-
es, combined with the use of Boolean Driven Markov Processes (BDMP) to avoid of the state explosion.
(Netkachova, et al., 2015) also proposes security-informed safety cases. (Bezzateev, et al., 2013) and
(Kornecki, et al., 2013a) suggest taking into account security hazards during the standard fault tree analyses
and a similar approach is proposed in (Bieber, et al., 2014) with the extension of a safety-related Altarica model

50

 By opposition to the unification of the processes.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 65 / 92

to allow for security analyses. (Contini, et al., 2006) proposes the use of non-coherent fault trees. (Gorbenko, et
al., 2006) and (Babeshko, et al., 2008) present the Failure (Intrusion) Modes and Effects Analysis (F(I)MEA),
whilst (Schmittner, et al., 2014b), and its shorter counterpart (Schmittner, et al., 2014a), presents the Failure
Mode, Vulnerabilities and Effect Analysis (FMVEA) technique, which both extend the classical Failure Mode and
Effect Analysis (FMEA) technique. (Roth, et al., 2013) proposes state/event fault trees (SEFTs) to allow for the
modelling of vulnerabilities and an attacker model in complement to the traditional fault tree approach.

In the second group, (Johnson, 2004) claims that vulnerability assessment, traditionally used to improve securi-
ty, can potentially provide new insights, a fresh and vivid perspective on safety hazards, and increased safety
awareness. Likewise, (Sindre, 2007) and (Stålhane, et al., 2008) propose misuse cases to enhance safety engi-
neering. Building upon this approach, (Raspotnig, et al., 2012a) proposes to adapt the security-related misuse
sequence diagrams to support failure analysis. Pragmatically, (Mc Guire, 2011) recommends that the safety
community looks how the open-source community has deployed multiple security methods (e.g. address space
randomization) in order to simply apply those methods on their safety-critical systems.

Security specification is sometimes defined as the specification of what the system should not do, i.e. negative
properties, e.g. non-interference in multi-level security. But negative properties are not an exclusivity of security.
In safety, there are also numerous applications of negative properties, e.g. for the correct sequencing of opera-
tions

51
 or the non-propagation of faults. Such security for safety approaches are proposed by (Rushby, 1989)

and (Simpson, et al., 1998).

If the major part of the paper-contributions relates to the cross-fertilisation of safety and security techniques,
there are also some novel and / or disruptive approaches, such as the introduction of the concept of concern,
e.g. safety and security concerns, which are based on business goals and can drive the system requirements
engineering process, thus filling the gap between the operational and system views (Sommerville, 2003). (Olive,
et al., 2006) provides an overview of the Commercial Aircraft Information Security Concepts of Operation and
Process Framework (ARINC 811, 2005), which attempts to educate and bridge the gaps among the safety and
security disciplines by providing an understanding of airline operational constraints and an information security
process, and serves as common framework for communication / coordination among stakeholders. Likewise,
(Knorreck, et al., 2010), (Pedroza, et al., 2011), (De Saqui-Sannes, et al., 2011) and (Apvrille, et al., 2014) pro-
pose SysML-Sec, a SysML-based model-driven engineering environment that supports capturing and formally
verifying security requirements, with particular attention being paid to their innocuousness with respect to safety
requirements. Similarly, (Brunel, et al., 2014a) proposes an approach based on Alloy to formally model and as-
sess a system architecture with respect to safety and security requirements; this approach was then extended
(Brunel, et al., 2014b) to include Melody, a system engineering tool, and Safety Architect, a Failure Mode, Ef-
fects and Analysis (FMEA) tool, and packaged as a new framework called Coy (Brunel, et al., 2015).

Beyond the aforementioned focused techniques, there are various initiatives of the safety community which ad-
dress the issue in a more comprehensive manner, in particular with respect to standards. In general, these initi-
atives are operational domain-specific, e.g. (SEISES, 2008), (Bieber, et al., 2012), (Paulitsch, et al., 2012) in the
aeronautical, space and transport domains, (MODSafe, 2008) in the urban transport domain, (Bock, et al., 2012)
in the railway automation domain, or (Goertzel, et al., 2011) for Navy weapon systems, even if sometimes the
solutions may easily be extended to other safety and security-critical domains. We can distinguish two catego-
ries of initiatives. The first category defines new approaches that include security aspects whist maintaining
compliance to existing standards. The second category defines new standards, or new versions of standards,
that natively include security aspects.

Initiatives of the first category usually consist in analysing the gaps and overlaps between two (or more) existing
standards in order to identify additional activities that need to be performed with respect to one standard used
as baseline, in order to achieve dual compliance, e.g.:

 (Corneillie, et al., 1999) in relation to (ITSEC, 1991), (S + IEC 61508, 2010), (IEC 60880, 1986), (CENELEC
EN 50128, 1997), (ETR 367, 1997) and (RTCA DO-178B, 1992) / (EUROCAE ED-12B, 1992);

 (Alves-Foss, et al., 2002), (Taylor, et al., 2002a) and (Taylor, et al., 2002b) in relation to (RTCA DO-178B,
1992) / (EUROCAE ED-12B, 1992) and the Common Criteria (ISO/IEC 15408-1, 2009);

 (Novak, et al., 2007) in relation to (S + IEC 61508, 2010) and the Common Criteria (ISO/IEC 15408-1,
2009);

 (Ridgway, 2007) in relation to (ISO/IEC 17799, 2005) and (BS EN 61508-1, 2002)

 (Derock, et al., 2010) in relation to (ISO/IEC 15026, 1998) and (ISO/IEC 27005, 2008);

 (Blanquart, et al., 2012) in relation to (ISO/IEC 27005, 2011), (SAE ARP 4754A, 2010) / (EUROCAE ED-
79A, 2010), (EUROCAE ED-202, 2010), (ECSS-Q-ST-30C, 2009), (ECSS-Q-ST-40C, 2009), (ECSS-Q-ST-
80C, 2009), (RTCA DO-178B, 1992) / (EUROCAE ED-12B, 1992), and Common Criteria (ISO/IEC 15408-1,
2009), but limited to the notions of safety levels and security levels, and with a focus on avionics;

51

 Seen under the security viewpoint as the avoidance of incorrect sequencing of operations.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 66 / 92

 (Czerny, 2013) in the automotive domain, in relation to the (ISO 26262-1, 2011) - (ISO 26262-10, 2012)
process framework.

Initiatives of the second category are essentially domain-specific. For example, the Airworthiness Security Pro-
cess Specification (EUROCAE ED-202, 2010) / (RTCA DO-326, 2010) appeared as major contribution for Secu-
rity for Safety engineering in the aeronautical domain. This standard was extensively discussed, e.g. in (Casals,
et al., 2012), (Rowe, 2013) or (Joyce, et al., 2014) with respect to the methodology. It is noteworthy that the new
edition of this standard (EUROCAE ED-202A, 2014) / (RTCA DO-326A, 2014) has significantly changed its rec-
ommendations in terms of co-engineering approach, moving from a security sub-process of the overall safety
process, to a standalone safety-informed security process.

Likewise, in the railway domain, (CENELEC EN 20159, 2010) includes provisions for intentional attacks by
means of messages to safety-related applications but it does not cover general IT security issues and in particu-
lar it does not cover IT security issues concerning the confidentiality of safety-related information, and the over-
loading of the transmission system.

Another significant standard is (S + IEC 61508, 2010) in the Electrical / Electronic / Programmable Electronic
domain. The controversial nature of its security requirements has also been heavily discussed, e.g. in (Mc
Guire, 2011) and (Schoitsch, 2014).

Our report is intrinsically about engineering. However, we felt it was important, before closing this section about
security for safety, to give a little word about some embedded security mechanisms that are being proposed in a
safety-critical domain, namely the automotive domain, even though it is difficult to relate these initiatives directly
to co-engineering practices. Indeed, these initiatives, e.g. (Apvrille, et al., 2010b), (Groll, et al., 2010), (Stumpf,
2013), (Soja, 2014), do not explicitly appear as engineering techniques, but more explicitly as (essentially hard-
ware) security solutions, whose purpose is increased safety. The above references are extremely light, and
slightly out of scope herein, but we hope they give the reader a flavour of the whole swath of on-going security
for safety solutions, which (hopefully

52
) result from not cited co-engineering studies.

5.2.2 Improving security engineering

Safety engineering is recognised as a more mature engineering speciality than security engineering. Thus, mul-
tiple authors propose to adapt safety engineering techniques to the security domain. Adaptations cover a wide
range of techniques, from the socio-technical domain, e.g. (Brostoff, et al., 2001), (Fruth, et al., 2014), the revi-
sion of methodology, e.g. with the introduction of security-critical levels in (Gutgarts, et al., 2010), up to purely
technical approaches, as described below.

The most recurrent safety-related technique that has been adapted for security engineering purposes is the
HAZard and OPerability (HazOp) technique (Lynch, 2002). Adaptation is typically realised by defining new
guide-words (Foster, 2002), (Lano, et al., 2002), (Srivatanakul, et al., 2004). Lessons learnt seem systematically
positive, even though somehow contradictory, e.g. (Daruwala, et al., 2009) vs. (Foster, 2002). Other common
techniques include the deviation analysis approach, as used in fault tree analysis (Foster, 2002), (Helmer, et al.,
2002), (Brooke, et al., 2003), (Murdoch, et al., 2006) to support the investigation of potential vulnerabilities. Be-
cause no system-level methodology currently exists that can quantify the amount of security provided by a par-
ticular system-level approach, (Nicol, et al., 2004) proposes to adapt concepts and methodologies, normally
used for the quantitative evaluation of system dependability and frequently based on stochastic modelling, to
security evaluation. An alternative approach to the quantitative assessment of the effect of security breaches on
a computer system, based on fault trees, is proposed in (Rushdi, et al., 2004) / (Rushdi, et al., 2005).

Beyond specific techniques, some papers have a more comprehensive approach by adapting the overall good
practices and lessons learnt of safety engineering to security engineering (Axelrod, 2011). In the same spirit,
(Young, et al., 2014) also addresses the security engineering improvement challenge by proposing a significant
paradigm shift for security experts: the use of a systems-theoretic approach, shifting the majority of security
analysis away from guarding against attacks (tactics) and more towards design of the broader socio-technical
system (strategy).

5.3 Towards safety and security co-engineering
This section analyses the papers that propose novel approaches for safety and security co-engineering, consid-
ering both specialties as peers.

Amongst the first communities to address the relations between safety and security was the formal methods
community, with the challenge of formalising the concepts, the mechanisms employed to safeguard them, and
their interplay (Rushby, 1989), (Burns, et al., 1992), (Rushby, 1994), (Stavridou, et al., 1998). A key outcome of
these studies is the formalisation of non-interference specifications and invariants (Ramirez, et al., 2014). This
early work is closely related to the currently active research on the Multiple Independent Levels of Security

52

 It is unclear how far these security controls have been established as innocuous with respect to functional safety.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 67 / 92

(MILS) architecture (Boettcher, et al., 2008), (ISO 25119-2, 2010), (EURO-MILS EC FP7 Project, 2012), (Müller,
et al., 2012b), (Müller, et al., 2014), and its distributed version (D-MILS, 2007), (Cimatti, et al., 2015), for which
successful stories are starting to appear (Müller, et al., 2012). Initially developed for security, this architecture
also displays good safety properties, bringing more and more the term “MILS” to be used as a noun, rather than
as an acronym. The proponents of this architecture claim that it is a good starting point to look for synergies &
divergences for safety and security (Tverdyshev, 2014). Beyond MILS, recent fundamental advances in the for-
mal methods community, including advances in satisfiability (SAT) and satisfiability modulo theories (SMT)
solvers, separation logic, theorem provers, model checkers, domain-specific languages and code synthesis
engines suggest that developing a high-assurance software workbench based on a combination of formal meth-
ods is now possible, as shown in (Fisher, 2013), (DARPA I2O HACMS, 2014), including a runtime assurance
architecture with machine learning mechanisms (Tiwari, et al., 2014). Less industrial but still quite comprehen-
sive, (Delange, 2010) proposes a framework based on: (a) the Architecture Analysis and Design Language
(AADL) as unique representation language; (b) automated validation of the specifications; (c) code generation
for execution on an open-source partitioned operating system (POK Community, 2011); (d) automated certifica-
tion, which verifies that specification requirements are met in the implementation by analysing the system during
its execution and also evaluates its compliance against certification standards. Finally, (Sun, et al., 2009) fo-
cuses only on requirements, proposing a formal framework that assists designers in detecting conflicts between
safety and security requirements. A comprehensive review of Formal Methods for Safe and Secure Computers
Systems is given in (Garavel, et al., 2013).

Some studies are less formal, but have the similar goals of better understanding the relations between safety
and security (Pan, et al., 2007a), (Piètre-Cambacédès, et al., 2009), and establishing a common information
model for safety and security (Avizienis, et al., 2004), (Jonsson, 2006), (Stoneburner, 2006), (Firesmith, 2010)
and (Mattila, 2013). As early as 1992, (Jonsson, et al., 1992) was asking: “Should we […] look for unification of
terminology, or is it justifiable to maintain separate terminologies for each discipline?” The important characteri-
sation differences between safety and security concepts, e.g. as expressed in (Burns, et al., 1992) and in
(Piètre-Cambacédès, et al., 2009), tend to show that it is extremely difficult to provide a comprehensive picture.
(Firesmith, 2003) rightly points out that the information models of safety, security, and survivability engineering
are remarkably similar in both content and topology, and therefore safety, security, and survivability require-
ments can be elicited and analysed in terms of a risk-oriented, asset-based approach that takes into account the
associated hazards and threats from which these assets must be protected. However, this comprehensive ap-
proach brings the author to reconsider some rather standard definitions, to ensure overall consistency

53
. For

example, security is decomposed into the following sub-factors: access control, attack/harm detection, availabil-
ity protection, integrity, non-repudiation, physical protection, privacy, prosecution, recovery, security auditing,
and system adaptation. This differs significantly from the traditional focus on the confidentiality, integrity and
availability sub-factors, or even the extended list of security goal sub-factors proposed in Octave (Cherdantseva,
et al., 2013). In particular, availability protection refers to the degree to which various types of Denial of Service
(DoS) attacks are prevented, whereas availability in the safety-tradition deals with the operational availability of
the system when it is not under attack. A solution might lie in the partition proposed by (Chapon, et al., 2012) or
(Sadvandi, et al., 2012), i.e. the use of formal methods to address known and controlled risks (e.g. internal sys-
tem faults, script kiddies), and in-depth defence, to address unknown or uncontrolled risks (e.g. causes external
to the system, 0-day threats). Noteworthy as well, but focused on the automotive domain, (Schmittner, et al.,
2015b) identifies three requirements to select a candidate security standard to complement a safety standard: (i)
there should be an overlap in required work products for safety and security argumentation; (ii) assurance levels
between safety and security should be translatable; (iii) approaches and concepts from one standard should be
mirrored by the other standard.

Unifying focused engineering techniques used in safety and security is often recommended, as in (Lano, et al.,
2002) around the implementation of HAZard and Operability (HAZOP) studies and Fault Tree Analyses (FTA) in
the Unified Modelling Language (UML), or as in (Fovino, et al., 2009), (Förster, et al., 2010) with the integration
of attack trees within fault trees. In this context, (Steiner, et al., 2013) solves the problem of the missing security
events probabilities by the use of a hybrid rating scheme. (Piètre-Cambacédès, et al., 2010) proposes a similar
unification with Boolean logic Driven Markov Processes (BDMP). Likewise, (Reichenbach, et al., 2012) propos-
es an approach for combining safety analysis with security analysis by considering the Safety Integrity Levels
(SIL) of (S + IEC 61508, 2010) as an extension of the Threat Vulnerability and Risk Assessment (TVRA) meth-
od. In the automotive domain, (Macher, et al., 2015a) / (Macher, et al., 2015b) proposes the SAHARA (Security-
Aware Hazard Analysis and Risk Assessment) approach, a combination of the well-known safety-centric HARA
(Hazard Analysis and Risk Assessment) method and the security-centric Microsoft STRIDE method. An alterna-
tive approach for safety and security co-engineering in the automotive domain is presented in (Ward, et al.,
2013).

Unification is usually proposed based on a selected set of safety-related and security-related techniques. Few
papers however propose an exhaustive review of techniques to justify why specific attention is given this or that

53

 Likewise in (Jonsson, et al., 1992).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 68 / 92

technique. (Raspotnig, et al., 2013a) provides an extensive (50 pages) review of risk identification techniques
for safety and security requirements. The added-value of the article is that it proposes an assessment frame-
work. All techniques are assessed against the selected criteria to obtain knowledge on strengths and weak-
nesses of the different techniques in both the safety and security fields, and suggestions are provided to mutual-
ly enhance their efficiency.

Even if a unification or harmonisation of the safety and security engineering approaches is commonly proposed,
disruptive approaches are also proposed. (Zafar, et al., 2005) proposes the use of the Genetic Software Engi-
neering (GSE) method to deal with the formal writing and verification of safety and security requirements.
(Sallhammar, et al., 2006) presents a stochastic model for integrated security and dependability assessment
using stochastic game theory which allows for the computation of the expected attacker behaviour. (Aven, 2009)
claims that it is necessary to use a risk-informed approach where calculated probabilities and expected values
are enriched with the uncertainties of the underlying phenomena and processes. (Monakova, et al., 2012) ex-
tends classical Business Process Modelling Notation (BPMN) to cope with safety and security requirements.
(Subramanian, et al., 2013) and (Subramanian, et al., 2014) proposes the Non-Functional Requirements (NFR)
technique that allows simultaneous evaluation of both safety and security at the architectural level, using re-
spectively qualitative and quantitative reasoning to evaluate whether the properties have been achieved.
(Kornecki, et al., 2013b) compares the traditional Non-Functional Requirement (NFR) approach with a Bayesian
Belief Network (BBN) approach, which can be used when the factors related to the safety and security of cyber-
physical systems are assumed to be randomly distributed. (Vouk, 2013) asserts that engineers appear to avoid
and eliminate vulnerabilities more by luck (aleatoric process) than through knowledge driven (epistemic) meth-
ods; this opens some interesting models, e.g. for vulnerability detection or estimating the number of residual
security faults. (Pieters, et al., 2014) proposes to quantify frequencies of targeted attacks in order to integrate
security risk assessment methods in existing safety risk management practices, and support countermeasures
investment decisions. (Schneider, 2014) proposes a contract-based approach called ConSerts to address the
challenges of openness and runtime adaptation which are common the safety and security critical systems.
(Kriaa, et al., 2015b) proposes S-cube, a framework to automatically generate the different attack and failure
scenarios a system is exposed to, based on the system description.

Beyond the aforementioned focused techniques, there are various proposals for an overall unification. (MAFTIA,
2000) proposes a framework that ensures the dependability of distributed internet applications in the face of a
wide class of faults and attacks. (Sørby, 2003) and (Horn, 2005) propose a development process for security-
safety critical systems, which is based on the safety lifecycle defined in (IEC 61508-1, 1998) and the CORAS
integrated risk management and system development process (Braber, et al., 2003). (Hessami, 2004) proposes
a new paradigm for holistic systems assurance. (Altran Praxis, 2006), (Cockram, et al., 2007) and (Jackson, et
al., 2008) present SafSec that helps achieve certifications with the minimum of duplicated work. (Ibrahim, et al.,
2004) unifies the Capability Maturity Model Integration (CMMI) and the FAA integrated Capability Maturity Model
(iCMM), whilst (Firesmith, 2010) relates safety and security engineering to survivability engineering. Likewise,
(Raspotnig, et al., 2012b) proposes a unified process for the elicitation and analysis of safety and security re-
quirements, called the Combined Harm Assessment for Safety and Security of Information Systems (CHASSIS)
method, that comprehends three modelling techniques (Raspotnig, et al., 2012a) and a Harm Assessment Pro-
cess (Raspotnig, 2014); the latter was extended by (Katta, et al., 2013a) with a security requirements traceabil-
ity capability built upon the Safety Traceability Approach (Katta, et al., 2013b). (Pedroza, et al., 2011) proposes
a unified tooled-up framework based on SysML for the specification of embedded systems, integrated with
ProVerif and UPPAAL respectively for the verification of security and safety properties. (Sadvandi, et al., 2012)
proposes a safety and security integrated paradigm in which formal risk assessment frameworks may be used
to cover both safety and security known threats, and defence in-depth may help to mitigate both safety and se-
curity hardly-predictable risks. Based on the lessons learnt from the Stuxnet malware, (Aoyama, et al., 2013)
proposes a novel framework tackling plant safety and security from a more comprehensive point of view.
(Axelrod, 2012), (Axelrod, 2013b) and (Axelrod, 2013c) propose an approach to model cyber-physical systems
and measure the risks to which they are exposed in order to better minimise total risk. (Woskowski, 2014) pro-
poses to extend beyond device boundaries the (ISO 14971, 2007) risk-based approach related to the integration
and interaction of medical devices. And there are many more approaches, such as (Schoitsch, 2005), (Line, et
al., 2006), (Aven, 2007), (Aven, 2011), (Förster, et al., 2010), (Aoyama, et al., 2013).

(SeSaMo, 2012) proposes to develop a component-oriented design methodology based upon model-driven
technology, jointly addressing safety and security aspects and their interrelation for networked embedded sys-
tems in multiple domains; in (SeSaMo D2.1, 2013), eighteen basic building blocks (BBs) for safety and security
modelling are proposed, whilst (SeSaMo D3.1, 2013) provides a specification of safety and security analysis
and assessment techniques. (SeSaMo D4.1, 2014) presents the safety and security integrated design and eval-
uation methodology. SeSaMo stands slightly apart from the other approaches in that it proposes the definition of
interaction points between separate safety and security processes, rather than a unified process, but with
shared and unique work-products (Mazzini, et al., 2014). Highlights are presented in (Favaro, et al., 2014), in-
cluding security-informed safety cases. However, this genericity has it limits: specific domains have specific

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 69 / 92

constraints and specific capabilities which can dramatically impact the design approaches, as shown in
(Banerjee, et al., 2012) in the case of cyber-physical systems (CPSs).

It is difficult to assess which approach will emerge as we believe that the ultimate approach to co-engineering
has not yet been found. (Kriaa, et al., 2013) supports this statement by comparing CHASSIS and BDMP, and
concluding that these two approaches complement each other, thereby showing that neither of these two al-
ready integrated approaches is the ultimate solution. Likewise, (Schmittner, et al., 2015a) presents a case study
combining FMVEA and CHASSIS, concluding that one weakness of CHASSIS is that, while safety and security
are analysed with the same methodology, the two assessments are unacceptably done separately; moreover
both methods do not explicitly address how to conduct safety and security analysis in a continuous manner.

Unification initiatives can also be found in standards, with e.g. (ISO 31000, 2009) and (IEC 31010, 2009) for risk
assessments or (ISO/IEC 15026-2, 2011) and (OMG SACM, 2013) for assurances cases. In domains in which
compliance to standards is of utmost importance, generic co-engineering approaches and technical solutions as
presented above are rarely helpful, especially when one starts searching for the devil in the details. In this con-
text, (Åkerberg, 2011) proposes an end-to-end safe and secure communication solution for standard-compliant
heterogeneous automation networks, whilst (Braband, 2014a) and (Braband, 2014b) propose an IT security
framework compliant with the safety standards in the railway automation domain.

Of course, when both safety and security concerns are addressed for a giving system, striking the proper bal-
ance between these two, sometimes contradictory, sets of requirements may be a challenge. (Nielson, et al.,
2013) proposes an extension of the Quality Calculus to check the extent to which safety and security goals have
been met. (Labreuche, et al., 2005) proposes a generic framework using multi-criteria decision aiding (MCDA)
techniques based on the two-additive Choquet integral to help decision makers select the best option amongst
several alternatives; the main author is now working, as part of the (MERgE, 2012) project, on a specific adapta-
tion of this framework to support design decisions in the context of multi-concerns system architecting (not yet
published).

All the above references relate to design-time engineering activities. Let us close the show by citing (Pan, et al.,
2007b), a borderline paper with respect to this state of the art, which focuses on engineering activities to keep a
system safe & secure during system operation and system maintenance.

5.4 Conclusion
As can be seen from the above, the academic and standardisation communities are active as never before on
the subject of safety and security co-engineering. The subject usually raises much interest, even if there are
from time to time some signs of disillusion. E.g., in 2005, Erwin Schoitsch published Design for safety and secu-
rity of complex embedded systems: a unified approach (Schoitsch, 2005). Close to ten years later, the same
author asks: Safety and security – what about a joint process? (Schoitsch, 2014). In the mass of publications, it
is difficult to find technical safety and security development roadmaps –roadmaps we found, such as (Johnson,
2012) or (Luiijf, et al., 2015) target governmental policymakers or senior executives. It is equally difficult to pre-
dict the future, from a technical standpoint, based on the many directions that research is investigating. Howev-
er it is possible to state a couple of facts, and we ventured to formulate a couple of trends.

The first fact is that safety and security co-engineering seems to be primarily a concern of the safety engineer-
ing community. Indeed, the increasing number of cyber-attacks in the world tends to show that safety-critical
systems, and in particular the rising number of cyber-physical systems, which are particularly exposed by na-
ture, may not be as safe as they claim, if they are not also secure. The multiplication of security-related work-
shops in conjunction to safety-related conferences, and the multiplication of safety standards updates that in-
clude security concerns both provide significant testimonies of this growing interest for safety and security co-
engineering by the safety community. There is no similar earthquake within the security community: security
experts seem to be interested in safety studies in two cases: (i) to assess if safety-critical systems are more
vulnerable when they switch into fail-safe modes; (ii) to re-use safety techniques when availability and integrity
are the primary concerns of the security engineering work, by opposition to confidentiality.

The second major fact is that the security regulation, with the exception of privacy regulation (Directive
95/46/EC, 1995), (EU COM(2012) 11 final, 2012), is somehow lagging behind industrial initiatives to produce
security standards for software-intensive systems. Indeed, security is a National sovereignty prerogative, whilst
safety regulation has been transferred to transnational organisations (e.g. European Commission, ICAO) since
decades. Depending on the domains, National regulation may be seen as too weak or on the contrary an effec-
tive means to affect worldwide businesses. In the nuclear domain, renewed national regulation can be a driver
for unified safety and security considerations, as the example of STUK YVL guides suggest (cf. part A, §4.1.2);
these guides set requirements to the nuclear power plant operators that only can be covered by seamless inte-
gration of safety and security experts. Other industries, e.g. transport the aviation domain, have privileged phys-
ical security (Prentice, 2002) and / or have been developing security standards for software-intensive systems,
which cannot be termed as acceptable means of compliance (AMC), since there is no regulation to comply with.
This situation is bound to change.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 70 / 92

Figure 55: Identified trends in safety and security engineering

Trends were a bit more difficult to establish. We have formulated two of them based on concordant events hap-
pening in multiple domains (e.g. aviation, electronics, nuclear), and on both side of the Atlantic:

 the safety communities thrive to maintain current organizational approaches as stable as possible, because
regulations, acceptable means of compliance and standards have proven efficiency records and are ex-
tremely difficult to change, technically and / or politically (cf. Figure 55); some minor updates to the process-
es and methods are however necessary to ensure interaction points (SeSaMo, 2012), such as safety-aware
security in (EUROCAE ED-202A, 2014) / (RTCA DO-326A, 2014), or security-aware safety in (S + IEC
61508, 2010); the safety communities seems to be moving away from revolutionising standard safety pro-
cesses, e.g. with the obsolete (EUROCAE ED-202, 2010) / (RTCA DO-326, 2010), even if all individual
members do not seem to adhere to this trend;

 the academic and industrial communities are adapting and extending existing techniques (Schmittner, et al.,
2014b), architectures (Boettcher, et al., 2008) and tools (EURO-MILS EC FP7 Project, 2012), (Chapon, et
al., 2012) to cover both safety and security properties; within this trend, the adoption and seamless integra-
tion of formal methods and tools (Garavel, et al., 2013), (Fisher, 2013) occupies a significant part (cf. Figure
55).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 71 / 92

6 Recommendations for safety and security co-
engineering

Our initial recommendations are based on some assumptions that have been derived from the state of the art
(cf. Part A of this deliverable and its synthesis in §5). This section first exposes these assumptions and then
proposes some way forward for safety and security co-engineering. Naturally, the proposed way forward echoes
the initial motivations of this study, as presented in §1.3.

6.1 Assumptions
This section exposes three assumptions and the grounds that led us to believe these assumptions to be true.

Assumption n°1: Industrial safety and security engineering processes / methods are difficult, and at best
very slow, to change.

The grounds for supporting that assumption are as follows:

 Industrial safety and security engineering processes / methods are defined in standards which are engineer-
ing specialty-specific

54
; for the safety specialty, they are moreover domain-specific

55
; they can also be cus-

tomer RFT-related, legacy-related, proprietary-related, etc.

 The state of the art shows that numerous safety and security co-engineering processes have been pro-
posed, but none have really emerged.

Assumption n°2: Safety and security jargon is difficult, and at best very slow, to change.

The grounds for supporting that assumption are as follows:

 There is no common glossary, even within a given engineering specialty.

 Safety and security jargon is engineering specialty-related, process-related, domain standard-related, cus-
tomer RFT-related, legacy-related, proprietary-related, etc.

 Communities of specialty-experts are and remain essentially apart, even if some efforts exist to join those
communities (cf. Part A, §6).

Assumption n°3: Safety and security tools are diverse, but tend towards a formalisation of their concep-
tual data model, in particular to suppress ambiguities & ensure coverage, to support analyses and to support
interchange between tools.

The grounds for supporting that assumption are as follows:

 the (RTCA DO-178C, 2011) / (EUROCAE ED-12C, 2012) standard now recommends the use of formal
methods;

 many techniques, e.g. Fault trees, Altarica, Attack Trees, SysML profile extensions, now support formal
analyses;

 there are some initiatives to ensure interoperability between tools, which subsumes some form of formalisa-
tion of the exchanges, e.g. OpenPSA

56
.

6.2 Proposals for safety and security co-engineering
The following proposals were exposed early in the MERgE project as elements of a research roadmap. Some
leads were followed during the project, meaning that we are now in a position to provide some feedback of the-
se early proposals, whilst other leads will need further work beyond the scope of the project.

6.2.1 Proposal n°1: a Common Model

The first proposal is artefact-related: Intermediate safety and security work products can be shared be-
tween the two engineering specialties as long as the vernacular is maintained for each specialty.

This proposal implies:

 the definition of a safety and security common work product model, hereafter called the “Common Model”;

 a mapping between specialty concepts and the Common Model concepts.

54

 Meaning safety-specific or security-specific.
55

 E.g. automotive, avionics, etc.
56

 Cf. http://open-psa.org/.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 72 / 92

In this proposal (cf. Figure 56):

 all specialty concepts do not have to be mapped; e.g. the concept of “Target Level of Safety (TLS)” in the
safety engineering specialty does not have a direct equivalent in the security engineering specialty;

 all concepts in the Common Model must have at least one counterpart in each engineering specialty;

 mapping may not always be a 1-to-1 mapping.

Figure 56: Proposal for a common work product model

In this proposal, even when specialty concepts are mapped, each engineering specialty retains its usual and / or
standard term for the concept, and engineers proceed with their usual work, using their usual processes, meth-
ods and tools. E.g. when a safety expert creates a Hazard, it may be viewed, and potentially modified, as a
Feared Event by security experts (cf. Figure 56).

When we proposed this Common Model, we identified the following major challenges related to the definition of
a safety and security common work product model and the mapping of concepts:

 the coverage of multiple standards in each engineering specialty;

 the consideration of multiple design abstraction levels, in order to cover the complete system development
lifecycle in a consistent way;

 the mapping at class level vs. a mapping at attribute level, e.g. a security risk may be mapped to a safety
risk, but are all the attributes of a security risk identical to the attributes of a safety risk?

 the scope of the different engineering specialties is not exactly the same, e.g. security engineering is more
concerned by the environment in which the system-under-study is operated than safety engineering; this
raises the question about the relevance of integrating these elements inside the common model.

We started work on the Common Model by creating a taxonomy of terms present in the Common Criteria
(ISO/IEC 15408-1, 2009) and, in a lesser measure, in the Functional Safety of E/E/PE Safety-Related Systems
(S + IEC 61508, 2010). An extract of our work related to the Common Criteria standard is presented in Part A,
§3.5 of this deliverable. The conceptual model for (ISO/IEC 15408-1, 2009) displayed approximately 200 clas-
ses, all related to each other through a complex set of associations and generalisation relationships. The safety
standard offered a smaller set of concepts, but at this very detailed level, the mapping between the concepts of
the two standards seamed tremendously complex.

The lesson learnt from this work is as follows. The establishment of a Common Model should be based on em-
pirical studies, rather than on the systematic analysis of standards. This should ensure that the resulting generic
pivot model is useful and manageable.

6.2.2 Proposal n°2: Independent Engineering Processes

The second proposal is process-related: Work on common safety and security work products should be
transparent for each specialty, except in case of conflict / inconsistencies.

In this proposal, safety (resp. security) experts may independently design safety (resp. security) barriers to im-
prove the system. However, some security barriers may have detrimental safety impacts and vice-versa. The

Safety Model

Hazard

Security Model

Security Model

Feared Event

Common Model

Security Model

Feared Event

Safety Model

Hazard
Std 1

Std …

Std N

Safety Model

Hazard

Target
level of
safety

Std Z

Std A

Std …

Risk

Risk

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 73 / 92

co-engineering workbench must ensure that there is no endless engineering loop between conflicting design
patterns.

When we proposed these Independent Engineering Processes, we identified the following major challenges for
insuring the transparency between the safety and security engineering specialties:

 detecting cases of conflict / inconsistencies between updates by the different engineering specialties;

 convergence assurance and / or optimisation of the overall de-conflicting process;

 effects of the “safety-first” or “security-first” hypotheses on the detection and solving of conflicts.

Unfortunately, none of the MERgE test cases proposed conflicting safety and security requirements for us to
experiment with. There are however some lessons learnt from this disappointing experience:

1) Obviously, safety and security requirements can be mutually reinforcing, independent, or conflicting. To our

knowledge, there are neither post-mortem statistics stating the average percentage of reinforcing, independ-

ent, and conflicting requirements in a system, nor evaluations of how hard is the decision-making related to

solving conflicting requirements, if any. These statistics and evaluations would be extremely useful to know if

it is worthwhile working on engineering support for conflicting requirements, especially concerning safety and

security requirements.

2) It is somehow artificial to limit the trade-off analysis between conflicting requirements to the sole plane of

safety and security requirements, considering all other specialities as independent. Indeed, a security re-

quirement may have a slight detrimental effect on safety that makes it an acceptable choice during a trade-

off analysis, but it may in the same time have strong detrimental effects on usability, costs and/or perfor-

mance, that make it an unacceptable choice. A trade-off approach needs to be comprehensive with respect

to all relevant criteria.

Further details can be found in (Sébastien Madelénat, 2016).

6.2.3 Proposal n°3: Conditions for successful cross-fertilisation

The third proposal is tool-vendor oriented: A new tooled-up approach may be acceptable by industry if it is
an add-on to existing (standard) processes with added-value related to formal analyses, and without
significant negative side-effects, incl. extra workload.

In D3.4.1 (Faucogney, et al., 2014), we have shown that some cross-fertilisation between engineering special-
ties has already been successful, e.g. fault trees have given rise to attack trees. New ones are regularly being
proposed, e.g. HazOp, Diagrammatical Misuse Cases (cf. Part A, §2), or SysML profiles (cf. §4). This proposal
tries to explicit the criteria for a successful cross-fertilisation.

The conditions that we see to provide a successful new approach are:

 the proposed approach must have a proven record in at least one of the engineering specialty or in main-
stream system engineering;

 the extension is optional, i.e. the technique may continue to be used as it has always been used prior to its
extension;

 the extension has limited negative side-effects, in particular in terms of extra workload;

 the new approach brings more formalisation, allowing for formal analyses.

When we proposed these conditions for successful cross-fertilisation, we identified the following major challeng-
es for the definition of new tooled-up approaches:

 choice of the most relevant abstraction level(s);

 analysis of the side-effects;

 definition of the supporting algorithms and / or tools;

 reconciliation of quantitative and qualitative approaches, e.g. to determine the probability of occurrence of
feared events and / or hazards.

During our state of the art work (cf. Part A of this deliverable), we identified one tool that satisfies all of the
above criteria, namely TTool/AVATAR. We believe that this tool has the potential for industrial adoption: this is
why it was analysed and evaluated in detail, cf. §4, and demonstrated four times within the Thales Group during
2015. The tool still suffers from some scalability issues that we hope to solve early 2016.

In parallel, we defined our own safety and security engineering tool that also satisfies all of the above criteria: it
implements a new Failure Modes, Effects and Criticality Analysis (FMECA) extended with security-related fea-
tures (cf. §3).

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 74 / 92

7 References

25-356-SC Special Conditions: Boeing Model 787-8 Airplane; Systems and Data Networks Security-Isolation or
Protection From Unauthorized Passenger Domain Systems Access [Online] // Federal Register. - Federal
Aviation Administration, 01 02 2008. - 12 11 2014. - https://federalregister.gov/a/E7-25467. - 73 FR 27.

25-357-SC Special Conditions: Boeing Model 787-8 Airplane; Systems and Data Networks Security-Protection
of Airplane Systems and Data Networks from Unauthorized External Access [Online] // Federal register. -
Federal Aviation Administration, 28 12 2007. - 10 10 2014. - https://federalregister.gov/a/E7-25075. - E7-25075.

79 FR 60574 Request for Comment on Automotive Request for Comment on Automotive Security [Book
Section] // Federal Register Volume 79, Issue 194 (October 7, 2014). - [s.l.] : Office of the Federal Register,
National Archives and Records Administration, 2014. - 194 : Vol. 79. - FR Doc. 2014–23805.

Åkerberg Johan On Safe and Secure Communication in Process Automation [Report] : PhD. Thesis / School of
Innovation, Design and Engineering. - Västerås (Sweden) : Mälardalen University Press Dissertations, 2011. -
p. 57. - ISBN: 978-91-7485-039-0.

Altran Praxis SafSec Methodology, Issue 3.1 [Report] : Standard. - 2006. - S.P1199.50.2.

Alves-Foss Jim, Rinker Bob and Taylor Carol Towards Common Criteria Certification for DO-178B Compliant
Airborne Software Systems, Comparing Evaluation Assurance Level 5 (EAL5) to DO178 [Online] // University of
Idaho, Department of Computer Science, Jim Alves-Foss, Recent Publications and Presentations. - Center for
Secure and Dependable Systems, 01 2002. - Draft. - 10 07 2014. -
http://www2.cs.uidaho.edu/~jimaf/papers/compare02b.pdf. - Not releasable to the Defense Technical
Information Center per DOD directive 3200.12..

Aoyama T. [et al.] A unified framework for safety and security assessment in critical infrastructures [Book
Section] // Safety and security engineering V / ed. Garzia F., Brebbia C. A. and Guarascio M.. - [s.l.] : WIT
Press, 2013. - Vol. 134. - DOI: 10.2495/SAFE130071.

Apvrille Ludovic [et al.] Secure automotive on-board electronics network architecture [Conference] // World
Automotive Congress. - Budapest, Hungary : FISITA, 2010b.

Apvrille Ludovic and de Saqui-Sannes Pierre Static Analysis Techniques to Verify Mutual Exclusion
Situations within SysML Models [Book Section] // SDL 2013: Model-Driven Dependability Engineering -
Proceedings of the 16th International SDL Forum, June 26-28, 2013 / ed. Khendek Ferhat [et al.]. - Montreal :
Springer Berlin Heidelberg, 2013. - 10.1007/978-3-642-38911-5_6.

Apvrille Ludovic and Knorreck Daniel UML for Embedded Systems, Laboratory Session Introduction
[Report] : User Manual. - Sophia Antipolis : Telecom ParisTech, Eurecom. - p. 13. -
http://soc.eurecom.fr/UMLEmb/labs/lab_fans_avatar_0.pdf.

Apvrille Ludovic and Roudier Yves Towards the Model-Driven Engineering of Secure yet Safe Embedded
Systems [Conference] // Proceedings of 1st International Workshop on Graphical Models for Security
(GraMSec) / ed. Kordy B., Mauw S. and Pieters W.. - Grenoble : Electronic Proceedings in Theoretical
Computer Science, 2014. - Vol. 148. - pp. 15-30. - DOI: 10.4204/EPTCS.148.2.

Apvrille Ludovic AVATAR [Online] // TTOOL. - Institut Télécom, Télécom Paris Tech, 2015. - 26 02 2015. -
http://ttool.telecom-paristech.fr/avatar.html.

Apvrille Ludovic Course on UML for Embedded Systems [Online]. - Telecom ParisTech, 2014. - 13 03 2015. -
http://soc.eurecom.fr/UMLEmb/index.html.

Apvrille Ludovic et Roudier Yves SysML-Sec Attack Graphs: Compact Representations for Complex Attacks
[Conférence] // Second International Workshop on Graphical Models for Security (GraMSec). - Verona : [s.n.],
2015. - p. 15. - (To be published).

ARINC 811 Commercial Aircraft Information Security Concepts of Operation and Process [Report] : Standard /
Airlines Electronic Engineering Committee (AEEC). - Annapolis : Aeronautical Radio Incorporated (ARINC),
2005.

AVATAR Automated Verification of reAl Time softwARe (AVATAR) [Online] // TTOOL. - Institut Télécom,
Télécom Paris Tech, 2015. - 26 02 2015. - http://ttool.telecom-paristech.fr/avatar.html.

Aven Terje A unified framework for risk and vulnerability analysis covering both safety and security [Book
Section] // Proceedings of Reliability Engineering & System Safety. - 2007.

Aven Terje A unified framework for risk and vulnerability analysis covering both safety and security [Book
Section]. - [s.l.] : IEEE, 2011. - 4th : Vol. 39. - DOI: 10.1109/EMR.2011.6093894.

Aven Terje Identification of safety and security critical systems and activities [Book Section] // Reliability
Engineering & System Safety. - 2009. - DOI: 10.1016/j.ress.2008.04.001.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 75 / 92

Avizienis Algirdas [et al.] Basic concepts and taxonomy of dependable and secure computing [Book
Section] // IEEE Trans. Dependable Secur. Comput.. - 2004.

Axelrod C. Warren Applying Lessons from Safety-Critical Systems to Security-Critical Software [Conference] //
IEEE Systems, Applications and Technology Conference (LISAT). - Farmingdale, NY, USA : [s.n.], 2011. - DOI:
10.1109/LISAT.2011.5784222.

Axelrod C. Warren Engineering Safe and Secure Software Systems [Book]. - [s.l.] : Artech House Publishers,
2012. - ISBN: 978-1-60807-473-0.

Axelrod C. Warren Managing the risks of cyber-physical systems [Book Section] // IEEE Systems, Applications
and Technology Conference (LISAT). - Farmingdale : IEEE, 2013c. - DOI: 10.1109/LISAT.2013.6578215.

Axelrod C. Warren Securing Cyber-Physical Software [Online] // APPSEC USA. - 18-21 Nov. 2013b. - 05 May
2014. - http://2013.appsecusa.org/2013/wp-content/uploads/2013/12/APPSEC2013-Presentation-Final.ppt.

Babeshko E., Kharchenko V. and Gorbenko A. Applying F(I)MEA-technique for SCADA-Based Industrial
Control Systems Dependability Assessment and Ensuring [Conference] // Third International Conference on
Dependability of Computer Systems (DepCos-RELCOMEX). - Szklarska Poreba : IEEE, 2008. - pp. 309 - 315. -
DOI: 10.1109/DepCoS-RELCOMEX.2008.23.

Banerjee Ayan [et al.] Ensuring Safety, Security, and Sustainabilityof Mission-Critical Cyber–Physical Systems
[Journal] // Proceedings of the IEEE. - [s.l.] : IEEE, 2012. - 1 : Vol. 100. - pp. 283-299. -
10.1109/JPROC.2011.2165689.

Bezzateev Sergey, Voloshina Natalia and Sankin Petr Joint Safety and Security Analysis for Complex
Systems [Conference] // 13th Conference of Open Innovations Association FRUCT. - Petrozavodsk, Russia :
[s.n.], 2013.

Bieber Pierre [et al.] Security and Safety Assurance for Aerospace Embedded Systems [Book Section] //
Embedded Real-Time Software and Systems (ERTS). - Toulouse : [s.n.], 2012.

Bieber Pierre and Brunel Julien From Safety Models to Security Models: Preliminary Lessons Learnt
[Conference] // 1st International Workshop on the Integration of Safety and Security Engineering (ISSE), 33rd
International Conference on Computer Safety, Reliability and Security (SafeComp) / ed. Bondavalli Andrea,
Ceccarelli Andrea and Ortmeier Frank. - Florence : Springer, 2014. - pp. 269-281. - LNCS 8696. - DOI:
10.1007/978-3-319-10557-4.

Blanchet Bruno ProVerif: Cryptographic protocol verifier in the formal model [Online]. - INRIA. - 02 03 2015. -
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/.

Blanchet Bruno, Smyth Ben and Cheval Vincent ProVerif 1.89: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial [Report]. - Paris-Saclay : INRIA, 2014. - p. 113. -
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf.

Blanquart Jean-Paul [et al.] Similarities and dissimilarities between safety levels and security levels [Online] //
ERTS'2012. - 03 02 2012. - 16 05 2014. - http://www.erts2012.org/Default.aspx?Id=1050&Idd=1129. - 8A.2.

Bloomfield Richard [et al.] How secure is ERTMS? [Conference] // Workshop on Dependable and Secure
Computing for Large-scale Complex Critical Infrastructures (DESEC4LCCI) / ed. Ortmeier Frank and Daniel
Peter. - Herrenkrug : Springer, 2012. - Vol. 7613. - pp. 247-258. -
http://openaccess.city.ac.uk/1522/1/How%20secure%20is%20ERTMS.pdf. - DOI: 10.1007/978-3-642-33675-
1_22.

Bock Hans-Hermann [et al.] Towards an IT Security Protection Profile for Safety-Related Communication in
Railway Automation [Conference] // 31st International Conference on Computer Safety, Reliability and Security
(SafeComp) / ed. Ortmeier Frank and Daniel Peter. - Magdeburg : Springer Berlin Heidelberg, 2012. - Vol.
7612. - pp. 137-148. - DOI: 10.1007/978-3-642-33678-2_12.

Boettcher Carolyn [et al.] The MILS Component Integration Approach to Secure Information Sharing
[Conference] // Proceedings o fthe 27th IEEE/AIAA Digital Avionics Systems Conference (DASC). - St. Paul,
MN : IEEE, 2008. - DOI: 10.1109/DASC.2008.4702758.

Braband Jens IT security for functional safety in railway automation [Conference] // 1st Workshop on Safety
and Security. - Kaiserslautern : [s.n.], 2014b. - Slides only.

Braband Jens Towards an IT Security Framework for Railway Automation [Conference] // Embedded Real-
Time Software and Systems (ERTS2). - Toulouse, France : [s.n.], 2014.

Braband Jens Towards an IT security protection profile for safety-related communication in railway automation
[Conference] // Embedded Real-Time Software and Systems (ERTS2). - Toulouse : [s.n.], 2014a.

Braber F. den [et al.] Model-based risk assessment in a component-based software engineering process: the
CORAS approach to identify security risks [Book Section] // Business Component-Based Software Engineering /
book auth. Barbier Franck. - 2003.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 76 / 92

Brewer David F. C. Applying Security Techniques to Achieving Safety [Book Section] // Directions in Safety-
Critical Systems, Proceedings of the First Safety-critical Systems Symposium, Bristol 9–11 February 1993 /
book auth. Redmill Felix and Anderson Tom. - London : Springer, 1993. - DOI: 10.1007/978-1-4471-2037-7_16.

Brooke Phillip J. and Paige Richard F. Fault trees for security system design and analysis [Journal] //
Computers & Security. - 2003. - 3 : Vol. 22. - pp. 256-264. - DOI: 10.1016/S0167-4048(03)00313-4.

Brostoff Sacha and Sasse M. Angela Safe and sound: a safety-critical approach to security [Book Section] //
NSPW'01 Proceedings of the 2001 workshop on new security paradigms / ed. ACM. - New York : [s.n.], 2001. -
DOI: 10.1145/508171.508178.

Brunel Julien [et al.] A Viewpoint-Based Approach for Formal Safety & Security Assessment of System
Architectures [Conference] // 11th Workshop on Model Driven Engineering, Verification and Validation
(MoDeVVa) / ed. Boulanger Frédéric, Famelis Michalis and Ratiu Daniel. - Valencia : [s.n.], 2014b. - pp. 39-48.

Brunel Julien [et al.] Formal Safety and Security Assessment of an Avionic Architecture with Alloy [Book
Section] // 3rd International Workshop on Engineering Safety and Security Systems (ESSS). - Singapore :
EPTCS, 2014a. - Vol. 150. - DOI: 10.4204/EPTCS.150.2.

Brunel Julien and Chemouil David Safety and Security Assessment of Behavioral Properties Using Alloy
[Conference] // 2nd International workshop on the Integration of Safety and Security Engineering / ed.
Koornneef F. and Gulijk C. van. - Delft : Springer International Publishing Switzerland, 2015. - Vol. LNCS
9338. - pp. 251–263. - DOI: 10.1007/978-3-319-24249-1 22.

BS EN 61508-1 Functional safety of electrical/ electronic/ programmable electronic safety-related systems -
General requirements [Book]. - [s.l.] : British Standards Institution (BSI), 2002. - p. 68. - Withdrawn - replaced by
BS EN 61508-1:2010. - ISBN: 0 580 32719 1.

Burns A., McDermid J. and Dobson J. On the meaning of safety and security [Book Section] // The Computer
Journal - Special issue on safety and security parallel. - Oxford : Oxford University Press, 1992. - 1st : Vol. 35. -
DOI: 10.1093/comjnl/35.1.3.

Carter Adele-Louise Safety-Critical versus Security-Critical Software [Conference] // 5th IET International
Conference on System Safety. - Manchester, United Kingdom : [s.n.], 2010. - DOI: 10.1049/cp.2010.0814.

Casals Silvia Gil, Owezarski Philippe and Descargues Gilles Risk Assessment for Airworthiness Security
[Book Section] // Computer Safety, Reliability, and Security, Lecture Notes in Computer Science. - 2012. - Vol.
7612. - DOI: 10.1007/978-3-642-33678-2_3.

CENELEC EN 20159 Railway applications - Communication, signalling and processing systems - Safety-related
communication in transmission systems [Report] : Standard. - [s.l.] : European Committee for Electro-technical
Standardization, 2010. - Supersedes EN 50159-1:2001 and EN 50159-2:2001..

CENELEC EN 50128 Railway Applications: Software for Railway Control and Protection [Report] : Standard. -
[s.l.] : European Committee for Electrotechnical Standardization, 1997.

Chapon Nicolas and Piètre-Cambacédès Ludovic Vers une ingénierie système intégrant sûreté et sécurité
(in French) [Book Section] // Génie Logiciel. - 2012. - 100th.

Cherdantseva Yulia and Hilton Jeremy A Reference Model of Information Assurance & Security
[Conference] // 8th International Conference on Availability, Reliability and Security (ARES). - Regensburg :
IEEE, 2013. - DOI: 10.1109/ARES.2013.72.

Cimatti Alessandro [et al.] Combining MILS with Contract-Based Design for Safety and Security Requirements
[Conference] // 2nd International workshop on the Integration of Safety and Security Engineering / ed.
Koornneef F. and Gulijk C. van. - Delft : Springer International Publishing Switzerland, 2015. - Vol. LNCS
9338. - pp. 264–276. - DOI: 10.1007/978-3-319-24249-1 23.

Cockram Trevor J. and Lautieri Samantha R. Combining security and safety principles in practice
[Conference] // 2nd Institution of Engineering and Technology International Conference on System Safety. -
London : IET, 2007. - pp. 159 - 164. - ISBN: 978-0-86341-863-1.

Contini S., Cojazzi G.G.M. and Renda G. On the use of non-coherent fault trees in safety and security studies
[Book Section] // Safety and Reliability for Managing Risk / book auth. Soares Guedes and Zio. - London :
Taylor & Francis Group, 2006. -
http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDkQFjAC&url=http%3A%2F%2Fw
ww.dimat.unina2.it%2Fmarrone%2Fdwnld%2FProceedings%2FESREL%2F2006%2FPdf%2FS-
341.pdf&ei=5QmUVOfGM8y9adyJgbgE&usg=AFQjCNHRv52Uh0W06G1Bbt_U-lG60IyScg&bvm=bv.8200133. -
ISBN: 0-415-41620-5.

Corneillie Pierre [et al.] SQUALE Dependability Assessment Criteria [Report]. - [s.l.] : LAAS-CNRS, 1999. - 4th
Edition. - ACTS95/AC097.

Cusimano John and Byres Eric Safety and Security: Two Sides of the Same Coin [Online]. - April 2010. -
March 2014. - http://www.controlglobal.com/articles/2010/safetysecurity1004.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 77 / 92

Czerny Barbara J. System Security and System Safety Engineering: Differences and Similarities and a System
Security Engineering Process Based on the ISO 26262 Process Framework [Journal] // Journal of Passenger
Cars – Electronic and Electrical Systems. - [s.l.] : SAE International, 2013. - 1 : Vol. 6. - DOI: 10.4271/2013-01-
1419.

Daniel Hans Security in Safety Systems: the Need to Step beyond Traditional Engineering [Conference] // The
Relationship between Safety and Security in Software-Based Systems, SafeComp Workshop. - 2008.

DARPA I2O HACMS High-Assurance Cyber Military Systems (HACMS) [Online] // Open Catalog / prod. Fisher
Kathleen. - DARPA, 06 11 2014. - 21 11 2014. - http://www.darpa.mil/opencatalog/HACMS.html.

Daruwala Burzin [et al.] Threat Analysis for Hardware and Software Products Using HazOp [Book Section] //
International Conference on Computational and Information Science (CIS’09). - Stevens Point : World Scientific
and Engineering Academy and Society (WSEAS), 2009.

De Saqui-Sannes Pierre and Apvrille Ludovic AVATAR/TTool : un environnement en mode libre pour SysML
temps réel [Conference] // Génie Logiciel. - [s.l.] : HAL, archives-ouvertes, 2011. - Vol. 98. - pp. 22-26. - In
French. - hal-00667856.

Delange Julien Security and dependability integration for the construction of critical middleware (in French:
Intégration de la sécurité et de la sûreté de fonctionnement dans la construction d'intergiciels critiques)
[Report] : PhD Thesis / Laboratoire Traitement et Communication de l'Information, UMR 5141 ; Département
informatique et réseau. - Paris : Ecole Nationale Supérieure des Télécommunications (TELECOM ParisTech),
2010. - p. 276. - pastel-00006301.

Deleuze Gilles [et al.] Are safety and security in industrial systems antagonistic or complementary issues?
[Book Section] // 17th European safety and reliability conference (ESREL) / book auth. Martorell Sebastián,
Guedes Soares Carlos and Barnett Julie. - Valencia : CRC Press, 2008. - http://hal-ineris.ccsd.cnrs.fr/ineris-
00970394.

Derock A., Hebrard P. and Vallée F. Convergence of the latest standards addressing safety and security for
information technology [Book Section] // On-line proceedings of Embedded Real Time Software and Systems
(ERTS2 2010). - Toulouse, France : [s.n.], 2010.

Dewar Robert B. K. Safety and security: two sides of the same coin? [Conference] // The Relationship between
Safety and Security in Software-Based Systems, SafeComp Workshop. - 2008.

Directive 95/46/EC Directive 95/46/EC of the European Parliament and of the Council of 24 October 1995 on
the protection of individuals with regard to the processing of personal data and on the free movement of such
data [Online] // EUR-Lex. - European Parliament, Council of the European Union, 24 10 1995. - 18 09 2015. -
http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:31995L0046.

D-MILS Distributed MILS for Dependable Information and Communication Infrastructures [Online]. - Scott
Hansen, 2007. - 12 06 2015. - www.d-mils.org/.

Dolev Danny and Yao Andrew C. On the security of public key protocols [Journal] // IEEE Transactions on
Information Theory / ed. IEEE. - 1983. - 2 : Vol. 29. - pp. 198-208. - DOI: 10.1109/TIT.1983.1056650.

Eames David Peter and Moffett Jonathan The Integration of Safety and Security Requirements [Book
Section] // SAFECOMP '99 Proceedings of the 18th International Conference on Computer Computer Safety,
Reliability and Security. - London : Springer-Verlag, 1999. - ISBN:3-540-66488-2 .

ECSS-Q-ST-30C Space product assurance - Dependability [Report] : Standard / ESA Requirements and
Standards Division. - Noordwijk : European Cooperation on Space Standardization (ECSS), 2009. - p. 54.

ECSS-Q-ST-40C Space product assurance - Safety [Report] : Standard / ESA Requirements and Standards
Division. - Noordwijk : European Cooperation on Space Standardization (ECSS), 2009. - p. 75.

ECSS-Q-ST-80C Space product assurance - Software product assurance [Report] : Standard / ESA
Requirements and Standards Division. - Noordwijk : European Cooperation on Space Standardization (ECSS),
2009. - p. 113.

ETR 367 Telecommunications Security; Guidelines on the relevance of security evaluation to ETSI standards
[Report] : ETSI Technical Report (ETR) 367. - Sophia Antipolis - Valbonne : European Telecommunications
Standards Institute, 1997. - p. 21. - DTR/SEC-002701.

EU COM(2012) 11 final Reform of the data protection legal framework in the EU [Online] // European
Commission - Justice - Data protection. - 01 2012. - 18 09 2015. - http://ec.europa.eu/justice/data-
protection/reform/index_en.htm.

EUROCAE ED-12B Software Considerations in Airborne Systems and Equipment Certification [Report] :
Standard. - [s.l.] : European Organisation for Civil Aviation Equipment, 1992. - Superseded by EUROCAE ED-
12C:2012. - WG-12.

EUROCAE ED-12C Software Considerations in Airborne Systems and Equipment Certification [Report] :
Standard. - [s.l.] : European Organisation for Civil Aviation Equipment, 2012. - WG-12.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 78 / 92

EUROCAE ED-202 Airworthiness security process specification [Report]. - [s.l.] : European Organization for
Civil Aviation Equipment (EUROCAE), 2010. - Superseded by EUROCAE ED-202A:2014. - WG-72.

EUROCAE ED-202A Airworthiness Security Process Specification [Report] : Standard. - [s.l.] : European
Organization for Civil Aviation Equipment (EUROCAE), 2014.

EUROCAE ED-79A Guidelines for Development of Civil Aircraft and Systems [Rapport] : Standard. - [s.l.] :
European Organisation for Civil Aviation Equipment, 2010.

EURO-MILS EC FP7 Project EURO-MILS [Online]. - 01 10 2012. - 16 09 2014. - http://www.euromils.eu/.

Fallière Nicolas Stuxnet Introduces the First Known Rootkit for Industrial Control Systems [Online] // Symantec
Connect (Blog). - Symantec, 06 08 2010. - 24 11 2014. - http://www.symantec.com/connect/blogs/stuxnet-
introduces-first-known-rootkit-scada-devices.

Faucogney Anthony and al. Report on open-issues in security and safety concern integration [Report] / ITEA2
– Project #11011. - [s.l.] : Multi-Concerns Interactions System Engineering (MERgE), 2014. - D3.4.1.

Favaro John and Stroud Robert ARTEMIS SESAMO Project: Work Achieved and Perspectives
[Conference] // 1st International Workshop on the Integration of Safety and Security Engineering (ISSE), 33rd
International Conference on Computer Safety, Reliability and Security (SafeComp). - Florence : [s.n.], 2014. -
Introductory talk - Slides only.

Firesmith Donald G. Common concepts underlying safety, security, and survivability engineering [Report] /
Software Engineering Institute ; Carnegie Mellon University. - 2003. - CMU/SEI-2003-TN-033.

Firesmith Donald G. Tutorial: Engineering safety- and security-related requirements for software-intensive
systems [Conference] // 6th International Workshop on Software Engineering for Secure Systems (SESS’10)
Workshop at the 32nd ICSE Conference. - Cape Town, South Africa : [s.n.], 2010.

Fisher Kathleen High Assurance Cyber Military Systems (HACMS): Making sure you are in control of your
vehicle [Conference]. - [s.l.] : DARPA, 2013. - p. 33.

Förster Marc, Schwarz Reinhard and Steiner Max Integration of modular safety and security models for the
analysis of the impact of security on safety [Report]. - [s.l.] : Fraunhofer IESE, 2010. - IESE-078.10/E.

Foster Nathalie Louise The application of software and safety engineering techniques to security protocol
development [Report] : Thesis. - [s.l.] : University of York, 2002.

Fovino Igor Nai, Masera Marcelo and De Cian Alessio Integrating Cyber Attacks within Fault Trees
[Journal] // Reliability Engineering and System Safety / ed. LTD ELSEVIER SCI. - 2009. - 9 : Vol. 94. - pp. 1394-
1402. - 10.1016/j.ress.2009.02.020.

Fruth Jana and Nett Edgar Uniform Approach of Risk Communication in Distributed IT Environments
Combining Safety and Security Aspects [Conference] // 1st International Workshop on the Integration of Safety
and Security Engineering (ISSE), 33rd International Conference on Computer Safety, Reliability and Security
(SafeComp) / ed. Bondavalli Andrea, Ceccarelli Andrea and Ortmeier Frank. - Florence : Springer, 2014. - pp.
289-300. - DOI: 10.1007/978-3-319-10557-4_32.

Garavel Hubert and Graf Susanne Formal Methods for Safe and Secure Computers Systems [Report] :
Survey. - [s.l.] : Federal Office for Information Security, 2013. - p. 326. - BSI Study 875.

Gebauer Carsten Safety and security as drivers for future system development [Conference] // 1st Workshop
on Safety and Security. - Kaiserslautern : [s.n.], 2014. - Slides only.

Gerhold Lars The Future of Research on Safety and Security in Germany - Results from an Explorative Delphi
Study [Book Section] // Security in Futures – Security in Change, Proceedings of the Conference “Security in
Futures – Security in Change”, 3-4 June 2010, Turku, Finland / book auth. Auffermann Burkhard and Kaskinen
Juha / ed. Auffermann Burkhard and Kaskinen Juha. - 2011. - FFRC eBOOK 5/2011.

Goertzel Karen Mercedes, Winograd Theodore and Hamilton Booz Allen Safety and Security
Considerations for Component-Based Engineering of Software-Intensive Systems [Report]. - [s.l.] : Navy
Software Process Improvement Initiative (SPII) and Department of Homeland Security, 2011.

Goertzel, Mercedes Karen and Feldman Larry Software Survivability: Where Safety and Security Converge
[Book Section] // Proceedings of the American Institute of Aeronautics and Astronautics (AIAA)
Infotech@Aerospace Conference. - Seattle : [s.n.], 2009.

Gorbenko Anatoliy [et al.] F(I)MEA-technique of Web Services Analysis and Dependability Ensuring [Book
Section] // Rigorous Development of Complex Fault-Tolerant Systems, Lecture Notes in Computer Science / ed.
Butler Michael [et al.]. - Berlin Heidelberg : Springer, 2006. - Vol. 4157. - DOI: 10.1007/11916246_8.

Green Hills Software Integrity Real-Time Operating System [Online]. - 2014. - 16 12 2014. -
http://www.ghs.com/products/rtos/integrity.html.

Groll André [et al.] Next Generation of Automotive Security: Secure Hardware and Secure Open Platforms
[Conference] // 17th ITS World Congress. - Busan, Korea : [s.n.], 2010.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 79 / 92

Grøtan Tor Olav [et al.] The SeSa Method for Assessing Secure. Remote Access to Safety Instrumented
[Report]. - Trondheim : Sintef, 2007. - p. 44. - https://www.sintef.no/globalassets/project/pds/reports/sintef-
a1626-the-sesa-method-for-assessing-secure-remote-access-to-safety-instrumented-systems.pdf. - SINTEF
A1626.

Gutgarts Peter B. and Temin Aaron Security-Critical versus Safety-Critical Software [Book Section] //
Proceedings of IEEE International Conference on Technologies for Homeland Security (HST). - 2010. - DOI:
10.1109/THS.2010.5654973.

Hansen Kai Security attack analysis of safety systems [Book Section] // Proceedings of IEEE Conference on
Emerging Technologies & Factory Automation (ETFA). - Mallorca : [s.n.], 2009. - DOI:
10.1109/ETFA.2009.5347258.

Helmer Guy [et al.] A Software Fault Tree Approach to Requirements Analysis of an Intrusion Detection
System [Journal] // Requirements Engineering. - London : Springer-Verlag, 2002. - 4 : Vol. 7. - pp. 207-220. -
DOI: 10.1007/s007660200016.

Hessami Ali G. A systems framework for safety and security: The holistic paradigm [Section] // Systems
Engineering. - [s.l.] : Wiley Periodicals, 2004. - 2nd : Vol. 7. - DOI: 10.1002/sys.10060.

Horn Marianne Developing safety-security critical systems: A prototype LEGO Mindstorm Detection System
[Report] : Technical Report / Department of Computer and Information Science (IDI). - Trondheim : Norwegian
University of Science and Technology (NTNU), 2005. - p. 82. - URL:
http://www.idi.ntnu.no/grupper/su/fordypningsprosjekt-2005/horn-fordyp05.pdf.

Hunter Bruce Integrating Safety and Security into the System Lifecycle [Conference] // Improving Systems and
Software Engineering Conference (ISSEC) / ed. (ISSEC) Improving Systems and Software Engineering
Conference. - Canberra : Eventcorp Pty Ltd, 2009. - pp. 147-158. - ISBN: 978-0-9807680-0-8.

Ibrahim Linda [et al.] Safety and Security Extensions for Integrated Capability Maturity Models [Report] /
United States Federal Aviation Administration. - 2004.

ICAO ICAO Secretariat Study on the Safety and Security Aspects of Economic Liberalization [Report]. - [s.l.] :
International Civil Aviation Organization, 2005.

IEC 31010 Risk management -- Risk assessment techniques [Report]. - [s.l.] : International Electrotechnical
Commission, 2009. - p. 176. - ISO/TMBG.

IEC 60880 Software for computers in the safety systems of nuclear power stations [Report] : Standard. - [s.l.] :
International Electrotechnical Commission, 1986. - p. 133. - Superseded by IEC 60880 ed2.0 (2006-05).

IEC 61508-1 Functional safety of electrical / electronic / programmable electronic safety-related systems - Part
1: General requirements [Report] : Standard. - [s.l.] : International Electrotechnical Commission, 1998. - p. 115. -
(withdrawn). - Ed1.0.

IEC 61508-7 Functional safety of electrical/electronic/programmable electronic safety-related systems - Part 7:
Overview of techniques and measures [Report] : Standard. - [s.l.] : International Electrotechnical Commission,
2000. - p. 229. - (withdrawn). - ISBN: 2-8318-5151-3.

IEC 62443-2-1 Industrial communication networks - Network and system security - Part 2-1: Establishing an
industrial automation and control system security program [Report] : Standard. - [s.l.] : International
Electrotechnical Commission, 2010. - TC/SC 65.

IEC 62443-3-3 Industrial communication networks - Network and system security - Part 3-3: System security
requirements and security levels [Report] : Standard. - [s.l.] : International Electrotechnical Commission, 2013.

IEC 62645 Nuclear power plants - Instrumentation and control systems - Requirements for security programmes
for computer-based systems [Report] : Standard. - [s.l.] : International Electrotechnical Commission, 2014. - p.
93.

IEC/TR 62443-3-1 Industrial communication networks - Network and system security - Part 3-1: Security
technologies for industrial automation and control systems [Report] : Standard. - [s.l.] : International
Electrotechnical Commission, 2009.

IEC/TS 62443-1-1 Industrial communication networks - Network and system security - Part 1-1: Terminology,
concepts and models [Report] : Standard. - [s.l.] : International Electrotechnical Commission, 2009. - TC/SC 65.

ISO 14971 Medical devices -- Application of risk management to medical devices [Report]. - [s.l.] : International
Organization for Standardization, 2007. - p. 82. - Revises ISO 14971:2000. - ISO/TC 210.

ISO 25119-2 Tractors and machinery for agriculture and forestry -- Safety-related parts of control systems --
Part 2: Concept phase [Report]. - [s.l.] : International Organization for Standardization, 2010. - p. 37. - ISO/TC
23/SC 19.

ISO 26262-1 Road vehicles -- Functional safety -- Part 1: Vocabulary [Report] : Standard. - [s.l.] : International
Organization for Standardization, 2011. - p. 23. - ISO/TC 22/SC 3.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 80 / 92

ISO 26262-10 Road vehicles -- Functional safety -- Part 10: Guideline on ISO 26262 [Report] : Standard. - [s.l.] :
International Organization for Standardization, 2012. - p. 89. - ISO/TC 22/SC 3.

ISO 31000 Risk management – Principles and guidelines [Report] : Standard. - [s.l.] : International Organization
for Standardization, 2009. - p. 24. - ISO/TC 262.

ISO/IEC 15026 Information technology -- System and software integrity levels [Report] : Standard. - [s.l.] :
International Standards Organization / International Electrotechnical Commission, 1998. - Withdrawn. - ISO/IEC
JTC 1/SC 7.

ISO/IEC 15026-2 Systems and software engineering -- Systems and software assurance -- Part 2: Assurance
case [Report] : Standard. - [s.l.] : International Standards Organization / International Electrotechnical
Commission, 2011. - p. 10. - ISO/IEC JTC 1/SC 7.

ISO/IEC 15408-1 Information technology -- Security techniques -- Evaluation criteria for IT security -- Part 1:
Introduction and general model [Report] : Standard. - [s.l.] : International Standards Organization / International
Electrotechnical Commission, 2009. - p. 64. - ISO/IEC JTC 1/SC 27.

ISO/IEC 17799 Information technology -- Security techniques -- Code of practice for information security
management [Report] : Standard. - [s.l.] : International Standards Organization / International Electrotechnical
Commission, 2005. - Revised by: ISO/IEC 27002:2005. - ISO/IEC JTC 1/SC 27.

ISO/IEC 27005 Information technology -- Security techniques -- Information security risk management [Report] :
Standard. - [s.l.] : International Standards Organization / International Electrotechnical Commission, 2011. - p.
68. - ISO/IEC JTC 1/SC 27.

ISO/IEC 27005 Information technology -- Security techniques -- Information security risk management [Report] :
Standard. - [s.l.] : International Standards Organization / International Electrotechnical Commission, 2008. -
Withdrawn. - ISO/IEC JTC 1/SC 27.

ITSEC Information Technology Security Evaluation Criteria (ITSEC) - Harmonized Criteria of France, Germany,
the Netherlands, the United Kingdom [Report] / Department of Trade and Industry. - London : Commission of
the European Communities, 1991. - p. 164. - Withdrawn - Available:
https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/itsec-en_pdf.pdf.

Jackson Daniel Software Abstractions: Logic, Language, and Analysis. [Book]. - [s.l.] : The MIT Press, 2006. -
ISBN:0262101149.

Jackson Dave and Dobbing Brian Changing Regulation in Safety and Security – Implications and
Opportunities [Conference] // The Relationship between Safety and Security in Software-Based Systems,
SafeComp Workshop. - 2008.

Jalouneix Jean, Cousinou Patrick and Jean Couturier Denis Winter Approche comparative entre sûreté et
sécurité nucléaires [Report] : Technical Report. - [s.l.] : Institut de Radioprotection et the Sûreté Nucléaire
(IRSN), 2009. - p. 26. - [inFrench]. - IRSN 2009/117.

Johnson Chris W. Using Assurance Cases and Boolean Logic Driven Markov Processes to Formalise Cyber
Security Concerns for Safety-Critical Interaction with Global Navigation Satellite Systems [Conference] // 4th
Formal Methods for Interactive Systems Workshop / ed. Bowen J. and Reeves S.. - Limerick, Ireland : [s.n.],
2011. - URL: http://www.dcs.gla.ac.uk/~johnson/papers/FMIS2011/Chris.pdf.

Johnson Christopher W. CyberSafety: On the Interactions Between CyberSecurity and the Software
Engineering of Safety-Critical Systems [Book Section] // Achieving System Safety / book auth. Dale C. and
Anderson T.. - London : Springer Verlag, 2012. - Paper to acompany a keynote address, 20th Annual
Conference of the UK Safety-Critical Systems Club. - ISBN: 978-1-4471-2493-1.

Johnson Roger G. Adversarial safety analysis: borrowing the methods of security vulnerability assessments
[Journal] // Journal of Safety Research. - Amsterdam : Elsevier Science B.V., 2004. - 3 : Vol. 35. - pp. 245-248. -
DOI: 10.1016/j.jsr.2004.03.013.

Jonsson Erland and Olovsson Tomas On the Integration of Security and Dependability in Computer Systems
[Conference] // International Conference on Reliability, Quality Control and Risk Assessment (IASTED). -
Washington DC : [s.n.], 1992. - pp. 93-97. -
http://publications.lib.chalmers.se/records/fulltext/167782/local_167782.pdf. - ISBN: 0-88986-171-4.

Jonsson Erland Towards an integrated conceptual model of security and dependability [Conference] // First
International Conference on Availability, Reliability and Security (ARES). - [s.l.] : IEEE, 2006. - pp. 646-653. -
DOI: 10.1109/ARES.2006.138.

Joyce Jeff and Fabre Laurent Integration of security & airworthiness in the context of certification and
standardization [Conference] // 1st workshop on the Integration of Safety and Security Engineering (ISSE). -
Florence : [s.n.], 2014. - p. 18. - Invited talk - Slides only.

Katta Vikash and Stålhane Tor Traceability of Safety Systems: Approach, Meta-Model and Tool Support
[Report] : Technical Report / OECD Halden Reactor Project. - Trondheim : Institute for Energy Technology
(IET), 2013b. - Available upon request. - HWR-1053.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 81 / 92

Katta Vikash, Raspotnig Christian and Stålhane Tor Requirements management in a combined process for
safety and security assessments [Conference] // 8th International Conference on Availability, Reliability and
Security (ARES). - Regensburg, Germany : [s.n.], 2013a.

Knorreck Daniel and Apvrille Ludovic TEPE: A SysML Language for Time-Constrained Property Modeling
and Formal Verification [Conference] // Third IEEE International workshop UML and Formal Methods
(UML&FM). - Shanghai : IEEE, 2010. - DOI:10.1145/1921532.1921556.

Kornecki Andrew J. and Liu Mingye Fault Tree Analysis for Safety/Security Verification in Aviation Software
[Journal]. - [s.l.] : Electronics, 2013a. - 1 : Vol. 2. - pp. 41-56. - DOI:10.3390/electronics2010041.

Kornecki Andrew J., Subramanian Nary and Zalewski Janusz Studying Interrelationships of Safety and
Security for Software Assurance in Cyber-Physical Systems: Approach Based on Bayesian Belief Networks
[Conference] // Proceedings of the 2013 Federated Conference on Computer Science and Information Systems
(FedCSIS). - Kraków : IEEE, 2013b. - pp. 1381–1387.

Koscher Karl [et al.] Experimental Security Analysis of a Modern Automobile [Conference] // Symposium on
Security and Privacy (SP). - Oakland, CA, USA : IEEE, 2010. - pp. 447 - 462. - ISBN: 978-1-4244-6894-2.

Kriaa Siwar [et al.] A survey of approaches combining safety and security for industrial control systems
[Journal] // ScienceDirect Publication: Reliability Engineering & System Safety. - [s.l.] : Elsevier, 2015. - Vol.
139. - pp. 156-178. - http://freepaper.me/download/PDF/10.1016-
J.RESS.2015.02.008.PDF?hash=MMMz7yMUAtoI5XReLMQNGw. - DOI: 10.1016/j.ress.2015.02.008 .

Kriaa Siwar [et al.] Comparing two approaches to safety and security modelling: BDMP technique and
CHASSIS method [Conference] // OECD Halden Reactor Project, 37th Enlarged Halden Programme Group
(EHPG) meeting. - Storefjell : [s.n.], 2013. - number C4.14.

Kriaa Siwar, Bouissou Marc and Laarouchi Youssef A Model Based Approach For SCADA Safety and
Security Joint Modelling: S-cube [Conference] // IET Safety and Cyber-Security Conference. - Bristol : [s.n.],
2015b.

Labreuche Christophe and Lehuédé Fabien MYRIAD: a tool suite for MCDA [Conference] // 4th Conference
of the European Society for Fuzzy Logic and Technology (EUSFLAT) / ed. Montseny E. and Sobrevilla P.. -
Barcelona : [s.n.], 2005. - pp. 204-209. - http://www.eusflat.org/publications_proceedings_EUSFLAT-
LFA_2005.php. - ISBN: 84-7653-872-3.

Lano Kevin, Clark David and Androutsopoulos Kelly Safety and Security Analysis of Object-Oriented
Models [Book Section] // Computer Safety, Reliability and Security - Proceedings of 21st International
SAFECOMP Conference, Catania, Italy, September 10–13, 2002 / ed. Heidelberg Springer Berlin. - 2002. - Vol.
2434. - DOI: 10.1007/3-540-45732-1_10.

Laprie Jean-Claude Dependability: Basic Concepts and Terminology [Book]. - Vienna : Springer, 1992. - Vol.
5 : pp. 3-245. - DOI: 10.1007/978-3-7091-9170-5.

Line Maria B. [et al.] Safety vs. Security? [Conference] // International Conference on Probabilistic Safety
Assessment and Management (PSAM 8). - New Orleans, USA : [s.n.], 2006.

Luiijf Eric and Paske Bert Jan te Cyber Security of Industrial Control Systems [Conference] // Global
Conference on CyberSpace (GCCS). - The Hague, The Netherlands : [s.n.], 2015. -
https://www.gccs2015.com/sites/default/files/documents/Cyber%20Security%20of%20Industrial%20Control%20
Systems%20GCCS2015.pdf.

Lynch J. A. Applying Safety Critical Systems Engineering Techniques to Secure Systems [Report]. - 2002. - p.
82. -
http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQFjAA&url=htt
p%3A%2F%2Fwww-
users.cs.york.ac.uk%2F~jac%2FPublishedPapers%2FJimLynch.doc&ei=DPSTVMXxH9OUav6dgIgI&usg=AFQj
CNFHqroMkJZN_waDdyfIWwzHkHS5rQ&bvm=bv.82001339,d.d2.

Lynx Software Technologies [Online]. - 2015. - 06 03 2015. - http://www.lynx.com/.

Macher Georg [et al.] A Combined Safety-Hazards and Security-Threat Analysis Method for Automotive
System [Conference] // 2nd International workshop on the Integration of Safety and Security Engineering / ed.
Koornneef Floor and Gulijk Coen van. - Delft : Springer International Publishing Switzerland, 2015b. - Vol. LNCS
9338. - pp. 237–250. - DOI: 10.1007/978-3-319-24249-1 21.

Macher Georg [et al.] SAHARA: A Security-Aware Hazard and Risk Analysis Method [Conference] // Design,
Automation & Test in Europe Conference & Exhibition (DATE). - Grenoble : IEEE, 2015a. - pp. 621-624. - ISBN:
978-3-9815-3704-8.

MAFTIA Malicious-and Accidental-Fault Tolerance for Internet Applications [Online] // LAAS. - IST MAFTIA
Project n°11583, 01 01 2000. - 25 09 2014. - http://webhost.laas.fr/TSF/cabernet/maftia/.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 82 / 92

Mattila Minna Different Views on Defining Safety, Security and Social Responsibility [Journal] // Interdisciplinary
Studies Journal - Special Issue on Security, Safety and Social Responsibility / ed. Laakkonen Tarja, Paasonen
Jyri and Mattila Minna. - Helsinki : Prima Oy, 2013. - 1 : Vol. 3. - pp. 7-20. - ISSN: 1799-2710.

Mazzini Silvia [et al.] Security and Safety Modelling in Embedded Systems [Conference] // Embedded Real
Time Software and Systems (ERTS). - Toulouse : [s.n.], 2014.

Mc Guire Nicholas Utilizing security methods of FLOSS GPOS for safety [Conference] // Embedded World
Exhibition & Conference. - Nürnberg : [s.n.], 2011.

MERgE [Online] // Multi-Concerns Interactions System Engineering (MERgE) Project - Safety & Security / prod.
6 ITEA 2 call. - 2012. - 27 11 2014. - http://www.merge-project.eu/. - https://itea3.org/project/merge.html. -
11011.

MODSafe Modular Urban Transport Safety and Security Analysis [Online]. - EU FP7, 01 09 2008. - 21 05
2014. - http://www.modsafe.eu/.

Monakova Ganna, Brucker Achim D. and Schaad Andreas Security and safety of assets in business
processes [Conference] // 27th Annual ACM Symposium on Applied Computing. - New York, NY, USA :
Association for Computing Machinery, 2012. - pp. 1667-1673 . - DOI: 10.1145/2245276.2232045.

Müller Kevin [et al.] MILS-Based Information Flow Control in the Avionic Domain: a Case Study on
Compositional Architecture and Verification [Conference] // 31st Digital Avionics Systems Conference (DASC). -
Williamsburg : IEEE, 2012. - pp. 1-13. - DOI: 10.1109/DASC.2012.6382411.

Müller Kevin [et al.] MILS-related information flow control in the avionic domain: A view on security-enhancing
software architectures [Conference] // 42nd International Conference on Dependable Systems and Networks
Workshops (DSN-W). - Boston, MA : IEEE, 2012b. - pp. 1-6. - 10.1109/DSNW.2012.6264665.

Müller Kevin [et al.] On MILS I/O Sharing Targeting Avionic Systems [Conference] // 10th European
Dependable Computing Conference (EDCC). - Newcastle : IEEE, 2014. - pp. 182-193. -
10.1109/EDCC.2014.35.

Murdoch John [et al.] Security Measurement [Report] : White-Paper / Safety & Security Technical Working
Group (TWG). - [s.l.] : Practical Software and Systems Measurement (PSM), 2006. - p. 67. - v3.0.

Netkachova Kateryna [et al.] Security-Informed Safety Case Approach to Analysing MILS Systems
[Conference] // 1st International Workshop on MILS: Architecure and Assurance for Secure Systems. -
Amsterdam, The Netherlands : [s.n.], 2015. - http://mils-workshop-2015.euromils.eu/.

Nicol David M., Sanders William H. and Trivedi Kishor S. Model-based evaluation: from dependability to
security [Journal] // IEEE Transactions on Dependable and Secure Computing. - [s.l.] : IEEE, 2004. - 1 : Vol. 1. -
pp. 48-65. - DOI: 10.1109/TDSC.2004.11.

Nielson Hanne Riis and Nielson Flemming Safety versus Security in the Quality Calculus [Book Section] //
Theories of Programming and Formal Methods, Lecture Notes in Computer Science / book auth. Liu Zhiming,
Woodcock Jim and Zhu Huibiao. - Berlin Heidelberg : Springer, 2013. - Vol. 8051. - DOI: 10.1007/978-3-642-
39698-4_18.

NIST SP 800-53 Security and Privacy Controls for Federal Information Systems Federal Information Systems,
Special Publication 800-53, Revision 4 [Report] / Computer Security Division ; Information Technology
Laboratory. - Gaithersburg : National Institute of Standards and Technology, 2013. - p. 460. -
http://dx.doi.org/10.6028/NIST.SP.800-53r4.

NIST SP 800-82 Guide to Industrial Control Systems (ICS) Security, Special Publication 800-82, Revision 1
[Report] : Standard / Computer Security Division ; Information Technology Laboratory. - Gaithersburg : National
Institute of Standards and Technology, 2013. - p. 170. - http://dx.doi.org/10.6028/NIST.SP.800-82r1.

Nordland Odd Some Security Aspects in Safety-Related Systems [Conference] // The Relationship between
Safety and Security in Software-Based Systems, SafeComp Workshop. - 2008.

Novak Thomas, Treytl Albert and Palensky Peter Common Approach to Functional Safety and System
Security in Building Automation and Control Systems [Book Section] // Proceedings of Conference on Emerging
Technologies and Factory Automation (ETFA). - [s.l.] : IEEE, 2007.

Olive Michael L., Oishi Roy T. and Arentz Stephen Commercial Aircraft Information Security — An Overview
of ARINC Report 811 [Conference] // 25th Digital Avionics Systems Conference (DASC). - Portland : IEEE,
2006. - pp. 1-12. - DOI: 10.1109/DASC.2006.313761.

OMG SACM Structured Assurance Case Meta-model [Online] // Object Management Group. - 2 2013. - 23 05
2014. - http://www.omg.org/spec/SACM.

OMG SysML OMG Systems Modeling Language v1.3 [Report] = OMG SysML™ : Standard. - [s.l.] : Object
Management Group (OMG), 2012. - p. 271. - formal/12-06-01.

Pan Dong-bo and Huang Wei Operation of Functional Safety and Security [Conference] // 2nd IEEE
Conference on Industrial Electronics and Applications (ICIEA). - [s.l.] : IEEE, 2007b. - pp. 1318 - 1322 . - DOI:
10.1109/ICIEA.2007.4318619.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 83 / 92

Pan Dong-bo and Liu Feng Influence between Functional Safety and Security [Conference] // 2nd IEEE
Conference on Industrial Electronics and Applications (ICIEA). - [s.l.] : IEEE, 2007a. - pp. 1323 - 1325. - DOI:
10.1109/ICIEA.2007.4318620.

Paul Stéphane and Rioux Laurent Over 20 Years of Research in Cybersecurity and Safety Engineering: a
short Bibliography [Conference] // 6th International Conference on Safety and Security Engineering (SAFE). -
Opatija : [s.n.], 2015. - p. 15.

Paul Stéphane On the Meaning of Security for Safety (S4S) [Conference] // 6th International Conference on
Safety and Security Engineering (SAFE). - Opatija : [s.n.], 2015.

Paulitsch Michael [et al.] Evidence-Based Security in Aerospace: From Safety to Security and Back Again
[Conférence] // IEEE 23rd International Symposium on Software Reliability Engineering Workshops (ISSREW). -
[s.l.] : IEEE, 2012. - pp. 21-22. - DOI: 10.1109/ISSREW.2012.37.

Pedroza Gabriel, Apvrille Ludovic and Knorreck Daniel AVATAR: A SysML environment for the formal
verification of safety and security properties [Conference] // 11th International Conference on New Technologies
of Distributed Systems (NOTERE). - Paris : IEEE, 2011. - pp. 1-10. - DOI: 10.1109/NOTERE.2011.5957992.

Pfitzmann Andreas Why Safety and Security Should and Will Merge, Volume [Book Section] // Computer
Safety, Reliability, and Security, Lecture Notes in Computer Science. - 2004. - Vol. 3219. - DOI: 10.1007/978-3-
540-30138-7_1.

Pieters Wolter [et al.] Reconciling malicious and accidental risk in cyber security [Journal] // Journal of Internet
Services and Information Security. - 2014. - 2 : Vol. 4. - pp. 4-26. - ISSN: 2182-2077 .

Piètre-Cambacedes Ludovic and Bouissou Marc Cross-fertilizations between safety and security engineering
[Journal] // Reliability Engineering & System Safety. - [s.l.] : Elsevier B.V., 2013a. - Vol. 110. - pp. 110–126. -
DOI: 10.1016/j.ress.2012.09.011.

Piètre-Cambacédès Ludovic and Bouissou Marc Modeling safety and security interdependencies with BDMP
(Boolean logic Driven Markov Processes), IEEE International Conference Systems Man and Cybernetics (SMC)
[Book Section]. - Istanbul : [s.n.], 2010. - DOI: 10.1109/ICSMC.2010.5641922.

Piètre-Cambacédès Ludovic and Chaudet Claude Disentangling the relations between safety and security
[Book Section] // AIC'09 Proceedings of the 9th WSEAS international conference on Applied informatics and
communications. - Stevens Point : [s.n.], 2009. - ISBN: 978-960-474-107-6.

POK Community Home page [Online] // A Partioned Operating System (POK). - 31 01 2011. - 04 07 2014. -
http://pok.tuxfamily.org/.

Prentice Stephen P. Safety Vs. Security: can we afford both? [Online] // AviationPros. - 01 04 2002. - 12 05
2015. - http://www.aviationpros.com/article/10387597/safety-vs-security-can-we-afford-both.

QNX QNX Hypervisor [Online]. - 2015. - 06 03 2015. - http://www.qnx.com/products/hypervisor/index.html.

Ramirez Adrian Garcia [et al.] On Two Models of Noninterference: Rushby and Greve, Wilding, and Vanfleet
[Conference] // 33rd International Conference (SAFECOMP) / ed. Bondavalli Andrea and Giandomenico Felicita
Di. - Florence : Springer International Publishing, 2014. - Vol. 8666. - pp. 246-261. - DOI: 10.1007/978-3-319-
10506-2_17.

Raspotnig Christian and Opdahl Andreas L. Comparing risk identification techniques for safety and security
requirements [Journal] // Journal of Systems and Software. - 2013a. - 4 : Vol. 86. - pp. 1124 – 1151. - DOI:
10.1016/j.jss.2012.12.002.

Raspotnig Christian and Opdahl Andreas L. Improving security and safety modelling with failure sequence
diagrams [Book Section] // International Journal of Secure Software Engineering (IJSSE). - 2012a. - DOI:
10.4018/jsse.2012010102.

Raspotnig Christian Requirements for safe and secure information systems [Rapport] : Thesis / University of
Bergen. - 2014.

Raspotnig Christian, Karpati Peter and Katta Vikash A Combined Process for Elicitation and Analysis of
Safety and Security Requirements [Book Section] // Enterprise, Business- Process and Information Systems
Modeling (EMMSAD), Lecture Notes in Business Information Processing / book auth. Bider I. [et al.]. - [s.l.] :
Springer Berlin Heidelberg, 2012b. - Vol. 113. - DOI: 10.1007/978-3-642-31072-0_24.

Reichenbach Frank [et al.] A pragmatic approach on combined safety and security risk analysis [Book
Section] // IEEE 23rd International Symposium on Software Reliability Engineering Workshops (ISSREW). -
Dallas : IEEE, 2012. - DOI: 10.1109/ISSREW.2012.98.

Ridgway John Achieving Safety through Security Management [Book Section] // The Safety of Systems / ed.
Redmill Felix and Anderson Tom. - London : Springer, 2007. - DOI: 10.1007/978-1-84628-806-7_1.

Roth Michael and Liggesmeyer Peter Modeling and Analysis of Safety-Critical Cyber Physical Systems using
State/Event Fault Trees [Conference] // ERCIM/EWICS Workshop on Dependable Embedded and Cyber-
physical Systems (DECS) / ed. Roy Matthieu. - Toulouse : [s.n.], 2013. - hal-00848640.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 84 / 92

Rowe Jayson Software Security & Design Assurance [Conference] // Design & Manufacture Seminar. - [s.l.] :
Civil Aviation Safety Authority, Australian Goverment, 2013. - p. 35. - Slides only. -
http://www.casa.gov.au/wcmswr/_assets/main/lib100210/d1t05.pdf.

RTCA DO-178B Software Considerations in Airborne Systems and Equipment [Report] : Standard. -
Washington : Radio Technical Commission for Aeronautics, 1992. - Not superseded by RTCA DO-178C:2011. -
SC-167.

RTCA DO-178C Software Considerations in Airborne Systems and Equipment [Report] : Standard. -
Washington : Radio Technical Commission for Aeronautics, 2011. - p. 144. - RTCA DO-178C does not
superseed RTCA DO-178B:1992. - SC-205.

RTCA DO-326 Airworthiness Security Process Specification [Report] : Standard. - [s.l.] : Radio Technical
Commission for Aeronautics, 2010. - Superseded by RTCA DO-326A. - SC-216.

RTCA DO-326A Airworthiness Security Process Specification [Report] : Standard. - Washington : Radio
Technical Commission for Aeronautics (RTCA), 2014. - p. 88. - SC-216.

Rushby John Critical properties: survey and taxonomy [Report] / Computer Science Laboratory ; SRI
International. - Menlo Park : [s.n.], 1994. - CSL-93-01.

Rushby John Kernels for Safety? [Book Section] // Safe and Secure Computing Systems / book auth.
Anderson T.. - [s.l.] : Blackwell Scientific Publications, 1989.

Rushdi Ali Muhammad and Ba-Rukab Omar M. A doubly-stochastic fault-tree assessment of the probabilities
of security breaches in computer systems [Book Section] // Proceedings of the 2nd Saudi Science Conference. -
2004. - Vol. 4.

Rushdi Ali Muhammad and Ba-Rukab Omar M. Fault-tree modelling of computer system security [Journal] //
International Journal of Computer Mathematics. - 2005. - Vol. 82. - pp. 805-819. - DOI:
10.1080/00207160412331336017.

S + IEC 61508 Functional safety of electrical / electronic / programmable electronic safety-related systems
[Report] : Standard. - [s.l.] : International Electrotechnical Commission, 2010. - p. 1000. - Ed2.0.

Sadvandi Sara, Chapon Nicolas and Piètre-Cambacédès Ludovic Safety and Security Interdependencies in
Complex Systems and SoS: Challenges and Perspectives [Book Section] // Complex Systems Design and
Management (CSDM) / book auth. Hammami O., Krob D. and Voirin J.-L.. - [s.l.] : Springer Berlin Heidelberg,
2012. - DOI: 10.1007/978-3-642-25203-7_16.

SAE ARP 4754A Guidelines for Development of Civil Aircraft and Systems [Report] : Standard / Aerospace
Recommended Practice (ARP). - [s.l.] : Society of Automotive Engineers (SAE) International, 2010.

Saglietti Francesca Common Analysis and Verification Techniques for Safety- and Security- Critical Software
Systems [Conference] // The Relationship between Safety and Security in Software-Based Systems, SafeComp
Workshop. - 2008.

Sallhammar Karin, Helvik Bjarne E. and Knapskog Svein J. Towards a Stochastic Model for Integrated
Security and Dependability Evaluation [Conference] // First International Conference on Availability, Reliability
and Security. - Washington : IEEE, 2006. - pp. 156-165. - DOI: 10.1109/ARES.2006.137.

Schmittner Christoph [et al.] A Case Study of FMVEA and CHASSIS as Safety and Security Co-Analysis
Method for Automotive Cyber-physical Systems [Conference] // 1st ACM Workshop on Cyber-Physical System
Security (CPSS). - New York : ACM, 2015a. - pp. 69-80 . - DOI: 10.1145/2732198.2732204.

Schmittner Christoph [et al.] Security Application of Failure Mode and Effect Analysis (FMEA) [Conference] //
33rd International Conference on Computer Safety, Reliability and Security (SafeComp) / ed. Bondavalli Andrea
and Giandomenico Felicita Di. - Florence : Springer, 2014b. - DOI: 10.1007/978-3-319-10506-2_21.

Schmittner Christoph and Ma Zhendong Towards a Framework for Alignment Between Automotive Safety
and Security Standards [Conference] // EWICS/ERCIM/ARTEMIS Dependable Cyber-physical Systems and
Systems-of-Systems Workshop (DECSoS) / ed. Koornneef Floor and Gulijk Coen van. - Delft : Springer
International Publishing Switzerland, 2015b. - Vol. LNCS 9338. - pp. 133–143. - DOI: 10.1007/978-3-319-
24249-1 12.

Schmittner Christoph, Ma Zhendong and Gruber Thomas Standardization Challenges for Safety and
Security of Connected, Automated and Intelligent Vehicles [Conference] // 3rd International Conference on
Connected Vehicles & Expo (ICCVE). - Vienna : [s.n.], 2014c.

Schmittner Christoph, Ma Zhendong and Smith Paul FMVEA for Safety and Security Analysis of Intelligent
and Cooperative Vehicles [Conference] // 1st International Workshop on the Integration of Safety and Security
Engineering (ISSE), 33rd International Conference on Computer Safety, Reliability and Security (SafeComp) /
ed. Bondavalli Andrea, Ceccarelli Andrea and Ortmeier Frank. - Florence : Springer, 2014a. - pp. 282–288. -
LNCS 8696. - DOI: 10.1007/978-3-319-10557-4_31.

Schneider Daniel Runtime certification of safety and security in cyber-physical system [Conference] // 1st
Workshop on Safety & Security. - Kaiserslautern : [s.n.], 2014. - Slides only..

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 85 / 92

Schoitsch Erwin Design for safety and security of complex embedded systems: a unified approach [Book
Section] // Cyberspace Security and Defense: Research Issues, NATO Science Series II: Mathematics, Physics
and Chemistry / book auth. Kowalik J., Gorski J. and Sachenko A.. - [s.l.] : Springer Netherlands, 2005. - Vol.
196. - DOI: 10.1007/1-4020-3381-8_9.

Schoitsch Erwin Safety and security – what about a joint process? [Conference] // 1st Workshop on Safety &
Security. - Kaiserslautern : [s.n.], 2014. - p. 37. - Slides only.

Schwarz Reinhard My thoughts on safety and security metrics [Conference] // 1st IESE Workshop on Safety
and Security. - Kaiserslautern : [s.n.], 2014. - Slides only.

Sébastien Madelénat Christophe Labreuche, Jérôme Le Noir, Grégory Gailliard Comparing several
candidate architectures (variants) : An Industrial Case Study [Conference] // Embedded Real Time Software and
Systems (ERTS²). - Toulouse, France : [s.n.], 2016. - p. 10. - http://www.erts2016.org/programme-
thursday.html.

SEISES Cooperative Projects [Online] // Aerospace Valley. - FUI, 2008. - 21 05 2014. - http://www.aerospace-
valley.com/les-projets?keywords=seises. - In French.

SeSaMo D2.1 Specification of Safety and Security Mechanisms [Report]. - [s.l.] : Security and Safety Modelling,
Artemis JU Project Grant Agreement no.: 295354, 2013.

SeSaMo D3.1 Specification of Safety and Security Analysis and Assessment Techniques [Report]. - [s.l.] :
Security and Safety Modelling, Artemis JU Project Grant Agreement no.: 295354, 2013.

SeSaMo D4.1 Integrated Design and Evaluation Methodology [Report]. - [s.l.] : Security and Safety Modelling,
Artemis JU Project Grant Agreement no.: 29535, 2014.

SeSaMo Security and Safety Modelling [Online]. - 2012. - 20 05 2014. - http://sesamo-project.eu/.

Simpson Andrew, Woodcock Jim and Davies Jim Safety through Security [Book Section] // IWSSD'98
Proceedings of the 9th international workshop on Software specification and design / ed. Society IEEE
Computer. - Washington : [s.n.], 1998. - ISBN:0-8186-8439-9.

Sindre Guttorm A look at misuse cases for safety concerns [Book Section] // Situational Method Engineering:
Fundamentals and Experiences / book auth. Ralyt’e9 J., Brinkkemper S. and Henderson-Sellers B. / ed. Boston
Springer. - [s.l.] : IFIP International Federation for Information Processing, 2007. - Vol. 244. - DOI: 10.1007/978-
0-387-73947-2_20.

Smith J., Russell S. and Looi M. Security as a Safety Issue in Rail Communications [Book Section] //
Proceedings of SCS'03, 8th Australian Workshop on Safety Critical Systems and Software, Canberra, October
9-10, 2003 / ed. Australian Computer Society Inc.. - Darlinghurst : ACM, 2003. - Vol. 33. - ISBN:1-920-68215-5.

Soja Richard Automotive Security: From Standards to Implementation [Report] : White paper. - [s.l.] :
Freescale, 2014. - URL:
http://cache.freescale.com/files/automotive/doc/white_paper/AUTOSECURITYWP.pdf. - AUTOSECURITYWP
REV 1.

Sommerville Ian An Integrated Approach to Dependability Requirements Engineering [Book Section] // Current
Issues in Safety-Critical Systems / book auth. Redmill Felix and Anderson Tom / ed. Springer. - London : [s.n.],
2003. - DOI: 10.1007/978-1-4471-0653-1_1.

Sørby Karine Relationship between security and safety in a security-safety critical system: Safety
consequences of security threats [Report] : Master Thesis. - Trondheim, Norway : Norwegian University of
Science and Technology (NTNU), 2003. - p. 185.

Srivatanakul Thitima Security Analysis with Deviational Techniques [Report] : PhD. Thesis. - York : University
of York, Department of Computer Science, 2005. - p. 279.

Srivatanakul Thitima, Clark John A. and Polack Fiona Effective Security Requirements Analysis: HazOp and
Use Cases [Book Section] // Information Security, Lecture Notes in Computer Science / book auth. Zhang K.
and Zheng Y.. - Berlin / Heidelberg : Springer, 2004. - Vol. 3225.

Stålhane Tor and Sindre Guttorm Safety Hazard Identification by Misuse Cases: Experimental Comparison of
Text and Diagrams [Book Section] // Model Driven Engineering Languages and Systems, Lecture Notes in
Computer Science / book auth. Czarnecki K. [et al.]. - [s.l.] : Springer Berlin Heidelberg, 2008. - Vol. 5301.

Stavridou V. and Dutertre B. From Security to Safety and Back [Book Section] // Computer Security,
Dependability and Assurance: From needs to Solutions. Proceedings / ed. IEEE. - York : [s.n.], 1998. - DOI:
10.1109/CSDA.1998.798365.

Steiner Max and Liggesmeyer Peter Combination of Safety and Security Analysis - Finding Security Problems
that Threaten the Safety of a System [Conference] // ERCIM/EWICS Workshop on Dependable Embedded and
Cyber-physical Systems (DECS), 32nd International Conference on Computer Safety, Reliability and Security
(SAFECOMP). - 2013.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 86 / 92

Stephenson Peter Information security in 2014: Another year of big events [Online] // Reviews. - SC Magazine,
8 12 2014. - 12 12 2014. - http://www.scmagazine.com/information-security-in-2014-another-year-of-big-
events/article/384497/.

Stoneburner G. Toward a Unified Security-Safety Model [Book Section]. - [s.l.] : IEEE Computer, 2006. - Vol.
39.

Stumpf Frederic CycurHSM: An Automotive-qualified Software Stack for Hardware Security Modules [Report] :
White paper. - Stuttgart, Germany : Escrypt, 2013. - p. 9. - URL:
https://www.escrypt.com/fileadmin/escrypt/pdf/CycurHSM-Whitepaper.pdf.

Subramanian Nary and Zalewski Janusz Assessment of Safety and Security of System Architectures for
Cyberphysical Systems [Conference] // International Systems Conference (SysCon). - Orlando, FL : IEEE,
2013. - pp. 634 - 641. - DOI: 10.1109/SysCon.2013.6549949.

Subramanian Nary and Zalewski Janusz Quantitative Assessment of Safety and Security of System
Architectures for Cyberphysical Systems Using the NFR Approach [Journal] // IEEE Systems Journal / ed.
IEEE. - 09 01 2014. - 99 : Vol. PP. - pp. 1-13. - DOI: 10.1109/JSYST.2013.2294628.

Sun Mu [et al.] Addressing Safety and Security Contradictions in Cyber-Physical Systems [Conference] // 1st
Workshop on Future Directions in Cyber-Physical Systems Security (CPSSW). - Newark : US Department of
Homeland Security, 2009. - http://cimic.rutgers.edu/positionPapers/cpssecurity09_MuSun.pdf.

Sysgo PikeOS Hypervisor [Online]. - 2014. - 16 12 2014. - http://www.sysgo.com/products/pikeos-rtos-and-
virtualization-concept/.

Taguchi Kenji, Souma Daisuke and Nishihara Hideaki Safe & Sec Case Patterns [Conference] // 3rd
International Workshop on Assurance Cases for Software-Intensive Systems (ASSURE) / ed. Koornneef Floor
and Gulijk Coen van. - Delft : Springer International Publishing Switzerland, 2015. - Vol. LNCS 9338. - pp. 27–
37. - DOI: 10.1007/978-3-319-24249-1 3.

Taylor Carol, Alves-Foss Jim and Rinker Bob Merging Safety and Assurance: the Process of Dual
Certification of Software [Conference] // Software Technology Conference. - 2002b.

Taylor Carol, Alves-Foss Jim and Rinker Bob Towards Common Criteria Certification for DO-178B:
Executive Summary [Online] // University of Idaho, Department of Computer Science, Jim Alves-Foss, Recent
Publications and Presentations. - Center for Secure and Dependable Systems, 03 2002a. - 10 07 2014. -
http://www2.cs.uidaho.edu/~jimaf/papers/compare02a.pdf.

Tiwari Ashish [et al.] Safety Envelope for Security [Conference] // 3rd international conference on High
Confidence Networked Systems (HiCoNS). - Berlin : ACM Digital Library, 2014. - pp. 85-94. -
http://www.csl.sri.com/users/tiwari/papers/hicons14.pdf. - DOI: 10.1145/2566468.2566483.

Tverdyshev Sergey MILS – Architecture for Safety and Security [Conference] // 1st workshop on safety and
security. - Kaiserslautern : [s.n.], 2014. - Slides only.

UP4ALL Design Verification for Embedded Systems [Online]. - UP4ALL International AB. - 02 03 2015. -
http://www.uppaal.com/index.php.

Vogt Roland Safety / security conflicts in large system architectures [Conference] // 1st Workshop on Safety
and Security. - Kaiserslautern : [s.n.], 2014. - Slides only.

Vouk Mladen A. Differences and Similarities between Software Reliability and Software Security Engineering
[Conference] // Software Reliability in 2013: Theory & Practice. - Levallois-Perret : IEEE-RS, 2013.

Ward David, Ibarra Ireri and Ruddle Alastair Threat Analysis and Risk Assessment in Automotive Cyber
Security [Conference] // SAE World Congress & Exhibition. - [s.l.] : SAE Int., 2013. - DOI:10.4271/2013-01-
1415.

Wiander Timo Positive and Negative Findings of the ISO/IEC 17799 Framework [Conference] // Proceedings of
the 18th Australasian Conference on Information Systems (ACIS). - Toowoomba : AIS Electronic Library
(AISeL), 2007. - Paper 75..

Wind River VxWorks [Online]. - 2015. - 06 03 2015. - http://www.windriver.com/products/vxworks/.

Winther Rune Qualitative and Quantitative Analysis of Security in Safety and Reliability Critical Systems [Book
Section] // Probabilistic Safety Assessment and Management / ed. Schmocker Cornelia Spitzer . Ulrich and
Dang Vinh N.. - London : Springer, 2004. - Vol. 6. - DOI: 10.1007/978-0-85729-410-4_377.

Winther Rune, Johnsen Ole-Arnt and Gran Bjørn Axel Security assessments of safety critical systems using
HAZOPs [Book Section] // SafeComp'01 Proceedings of the 20th International Conference on Computer Safety,
Reliability and Security / ed. Springer-Verlag. - London : [s.n.], 2001. - ISBN:3-540-42607-8.

Woskowski Christoph A Pragmatic Approach towards Safe and Secure Medical Device Integration
[Conference] // 33rd International Conference on Computer Safety, Reliability, and Security (SAFECOMP) / ed.
Bondavalli Andrea and Giandomenico Felicita Di. - Florence : Springer International Publishing, 2014. - Vol.
LNCS 8666. - pp. 342-353. - DOI: 10.1007/978-3-319-10506-2_23.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 87 / 92

Yang Lili and Yang S. H. A Framework of Security and Safety Checking for Internet-Based Control Systems
[Journal] // Int. J. Information and Computer Security. - 2007. - 1/2 : Vol. 1. - pp. 185-200.

Young William and Leveson Nancy G. Inside Risks: An Integrated Approach to Safety and Security Based on
Systems Theory [Article] // Communications of the ACM. - 2014. - 2 : Vol. 57. - pp. 31-35. - DOI:
10.1145/2556938.

Zafar Saad and Dromey R. G. Integrating Safety and Security Requirements into Design of an Embedded
System [Conference] // 12th Asia-Pacific Software Engineering Conference (APSEC). - [s.l.] : IEEE, 2005. -
DOI: 10.1109/APSEC.2005.75.

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 88 / 92

8 Acronyms

Term/ abbreviation Explanation

A Action

AADL Architecture Analysis and Design Language

ADO Delivery and Operation

AFRL Air Force Research Laboratory

AGD Guidance Documents

AIP Ambulatory Infusion Pump

ALARP As Low As Reasonably Practicable

AMC Acceptable Means of Compliance

ANS Air Navigation Service

ARE Admiralty Research Establishment

ARM ARgument Meta-model

AT Attack Tree

AVA Vulnerability Assessment

AVATAR Automated Verification of reAl Time softwARe

BACS Building Automation and Control System

BBN Bayesian Belief Network

BDMP Boolean logic Driven Markov Process

BEV Battery-Electric Vehicles

CAA Civil Aviation Authority

CAE Claims-Argument-Evidence

CBT Component Behaviour Tree

CC Common Criteria

CENELEC Committee for Electro-technical Standardization

CFT Component Fault Tree

CHASSIS Combined Harm Assessment for Safety and Security of Information Systems

CHAZOP Control HAZard and OPerability

CIA Confidentiality, Integrity and Availability

CIN Component Interaction Network

CLM Component Logic Model

CLUSIF French Cyber-Security Club (In French: Club de la Sécurité de l’Information Français)

CMMI Capability Maturity Model Integration

CObIT Control Objectives for Information and related Technology

CPS Cyber-Physical System

CR Critical Resource

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 89 / 92

CS Computer System

CS Certification Specifications

CSP Communication Sequential Process

CWE Common Weakness Enumeration

D Defence

DAH Design Approval Holder

DAL Development Assurance Level

DAR Decision, Analysis and Resolution

DARPA Defense Advanced Research Project Agency

DDQS Design, Develop and Qualify the Solution

D-MUC Diagrammatical Misuse Case

DoD Department of Defence

DoS Denial of Service

DRA Defence Research Agency

E/E/PE Electrical / Electronic / Programmable Electronic

EAL Evaluation Assurance Level

EASA European Aviation Safety Agency

EFT Extended Fault Tree

ERTMS European Railway Traffic Management System

ETCS European Train Control System

ETSI European Telecommunications Standards Institute

EWICS European Workshop on Industrial Computer Systems Reliability, Safety and Security

F Failure

FA Free Agent

FAA Federal Aviation Authority

FAIR Factor Analysis of Information Risk

FAR Federal Aviation Regulation

FCV Fuel-Cell Vehicle

FDA Food and Drug Administration

FHA Functional Hazard Analysis

FMEA Failure Mode and Effect Analysis

FPTC Failure Propagation and Transformation Calculus

FSD Failure Sequence Diagram

FT Fault Tree

GEMS Generic Error-Modelling System

GM Guidance Material

GPP General Purpose Processor

GSE Genetic Software Engineering

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 90 / 92

GSN Goal Structuring Notation

GWV Greve, Wilding, and Vanfleet

H Harm

HACMS High-Assurance Cyber Military Systems

HazOp HAZard and Operability

HEV Hybrid Electric Vehicles

HLR High-Level Requirement

I&C Instrumentation and Control

IACS Industrial Automation and Control System

IAEA International Atomic Energy Agency

IBT Integrated Behaviour Tree

ICAO International Civil Aviation Organisation

iCMM integrated Capability Maturity Model

ICS Industrial Control System

IDS Intrusion Detection System

IMA Integrated Modular Avionics

INCOSE International Council on System Engineering

ISR Instruction Set Randomization

KUL Katholieke Universiteit Leuven

LLR Low-Level Requirement

LOPA Layer-Of-Protection Analysis

LSP Liskov Substitutability Principle

MAFTIA Malicious-and Accidental-Fault Tolerance for Internet Applications

MBS&SA Model Based Safety & Security Assessment

MCS Machine-Control Systems

MCS Minimal Cut Set

MILS Multiple Independent Levels of Security (obsolete)

MLS Multiple Levels of Security

MOD Ministry of Defence (UK)

MSC Minimal Sufficient Condition

MUSD Misuse Sequence Diagram

NFR Non-Functional Requirement

NIST National Institute of Standards and Technology

NSA National Security Agency

O Operator

OE Operational Environment

OMG Object Management Group

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 91 / 92

ONERA Office National d'Études et de Recherches Aérospatiales (The French Aerospace Lab)

OS Operating System

OSI Open Systems Interconnection

P Probability

PP Protection Profile

PSM Practical Software and Systems Measurement

PSSA Preliminary System Security Assessment

R Rating

RAE Requirements Analysis and Elicitation

RBT Requirement Behaviour Tree

RESS Rechargeable Energy Storage System

RFT Request For Tender

RTCA Radio Technical Commission for Aeronautics

S Secret

SACM Structured Assurance Case Meta-model

SAEM Software Assurance Evidence Meta-model

SAL Symbolic Analysis Laboratory

SAM Safety Assessment Methodology

SAT Satisfiability

SaTrAp Safety Traceability Approach

SCA Software Communication Architecture

SCIS Software-intensive Critical Information Systems

SDR Software Defined Radio

SeCM Security Conceptual Model

SEFT State/Event Fault Tree

SEISES Secured and Safe IT Embedded Systems

SEMA System vs. Environment & Malicious vs. Accidental

SIL Safety Integrity Level

SIS Safety Interlock System

SL Security Level

SL Single Level (of Security)

SMT Satisfiability Modulo Theory

SQUALE Security, Safety and Quality Evaluation for Dependable Systems

STAMP System-Theoretic Accident Model and Processes

STUK Radiation and Nuclear Safety Authority (of Finland)

TCS Thales Communications & Security

TEPE TEmporal Property Expression

T-MUC Textual Misuse Cases

TOE Target of Evaluation

D3.4.3 Recommendations for Security and Safety Co-engineering MERgE ITEA2 Project # 11011

 92 / 92

TRT Thales Research & Technology

TS Top Secret

TSF Target of Evaluation Security Function

TSFI TSF Interface

TTOOL TURTLE Tool

TVRA Threat, Vulnerability and Risk Assessment

VIA Vulnerability Identification and Analysis

