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Summary

The deliverable D2.2 describes the Workpackage 2 concept for partitioning, mapping, and trac-
ing for multi- and many-core systems. This deliverable complements the previous deliverable
D2.1 "Concept for Requirements and Architectural Models for Multicore Systems": D2.1 fo-
cuses on the front-end activities while D2.2 focuses on the back-end activities.
With respect to the back-end activities, the first part of this deliverable is devoted to parti-

tioning and mapping. New methods and improved implementation of these tools are discussed
to deal with feedback from industrial application.
The second part of this deliverable discusses a couple of aspects related to partitioning and

mapping: an extended development process for partitioning and mapping of ECU networks,
safety aspects in partitioning and mapping, management of shared resources, and further de-
velopment of the WP2 case studies.
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1 Introduction

The deliverable D2.2 describes the Workpackage 2 concept for partitioning, mapping, and trac-
ing for multi- and many-core systems. This deliverable complements the previous deliverable
D2.1 "Concept for Requirements and Architectural Models for Multicore Systems": D2.1 fo-
cuses on the front-end activities while D2.2 focuses on the back-end activities.
With respect to the back-end activities, the first part of this deliverable (Chapter 2 and 3) is

devoted to partitioning and mapping. Partitioning was already a subject of the past Amalthea
project. In Amalthea4public, we incorporate into the partitioning tool experiences we col-
lected from applications in industrial practice in the meanwhile:

• More algorithms - we investigate so-called list scheduling and bin packing algorithms for
partitioning (i.e., assigning runnables to tasks)

• Automation - Partitioning should be accessible by workflows written using the Eclipse
Advanced Scripting Environment (EASE)

• Visualization - the results of partitioning call for a graphical representation to make them
accessible to an embedded software engineer

Similar to partitioning, a mapping tool based on Integer Linear Programming (ILP) was de-
veloped in the past Amalthea project. This mapping tool is also enhanced in Amalthea4public
according to new requirements and experiences made in industrial practice:

• More algorithms - a new approach to mapping based on genetic algorithms was inves-
tigated to address more than one quality attribute (e.g., performance and energy) and
extensions to ILP

• More degrees of freedom - aspects that may change during optimization

• Constraints - mapping should be aware of various constraints that effectively reduce the
solution space

The second part of this deliverable (Chapter 4-7) discusses a couple of aspects related to
partitioning and mapping:

• extended development process for partitioning and mapping of ECU networks,

• safety aspects in partitioning and mapping,

• management of shared resources, and

• further development of the case studies introduced in Deliverable D2.1.

The intended readers are developers involved in embedded multicore development and tool
providers who are looking for new techniques to add to their tooling.
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2 Partitioning

Partitioning in App4mc is the initial approach to identify partitions respectively tasks that
can run in parallel on different processing cores without violating various constraints, e.g.,
in regard to timing, safety, behavior, etc. The partitioning feature is briefly introduced in
the App4mc help documentation and further described in detail in Amalthea deliverable
D3.4 [7]. In Amalthea4public, we plan to extend the partitioning approaches available in
the App4mc platform and provide more effective and more efficient implementations. Apart
from accessibility through Javascript workflows (e.g., shown in the help documentation), we
evaluated various existing applicable approaches that could improve efficiency or partitioning
results for specific use cases. These approaches and methodologies are described in the following
sections.
The remainder of this chapter is structured as follows: The next section 2.1 presents the idea

of some applicable list scheduling approaches that can be utilized in App4mc by means of new
partitioning strategies. Afterwards, section 2.2 describes some new features that affect efficiency
and effectiveness of possible partitioning results. Section 2.3 describes how the partitioning
approaches can be used and configured via a workflow to perform multiple generations among
various models and different configurations sequentially in one single workflow. Afterwards,
Section 2.4 describes and compares four different possibilities to visualize runnable dependency
graphs, i.e., the basis for the partitioning strategies. Finally, section 2.5 sums up the different
sections and forms a conclusion of this partitioning chapter.

2.1 Related Partitioning Strategies

In order to keep this chapter simple, the state-of-the-art analysis is reduced to the strategies
that might be applicable to Amalthea models in App4mc. Some promising list scheduling ap-
proaches are described in the following sections 2.1.2 and 2.1.1. App4mc’s basic parallelization
idea is based upon Foster’s approach presented in [25].
The implemented approaches ESSP and CPP (in App4mc) focus on causal order based

analysis of a software model’s parallelization potential. While considering runnable instructions
(node weights) and communication overheads (edge weights), a runnable to task distribution
is identified to reduce overall response times. As soon as runnable instructions deviate from a
specific constant and have a dynamic behavior, list scheduling approaches described in sections
2.1.1 and 2.1.2 can help to provide more effective results due to instructions being related to
specific processes. Moreover, some applications may not require causal order consideration. In
this case, bin packing algorithms can provide a more efficient way to get partitioned results
(see Section 2.1.4).

2.1.1 HEFT

List scheduling algorithms perform their metric calculations based on a graph G = {V,E} with
V = {v1, ...., vn} representing n vertexes (i.e., runnables) and E = {e1, ..., em} (i.e., runnable

3
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dependencies: RunnableSequencingConstraints) representing m directed edges between two
vertexes vsource and vtarget. Vertexes and Edges have a value denoting its weight. List schedul-
ing algorithms further have computation cost matrix denoting costs of a vertex on different
processors.
Consequently, the HEFT algorithm is a list scheduling algorithm [48] for heterogeneous and

dynamic software behavior (Heterogeneous Earliest-Finish-Time) [48]. Based on two metrics,
the algorithm’s goal is to minimize Signal-to-Length-Ratio (SLR). The first metric defines an
upper rank:

ranku(vi) = wi + max
vj∈succ(vi)

(ci,j + ranku(vj)) (2.1)

The second metric defines a downward rank:

ranku(vi) = max
vj∈prec(vi)

{rankd(vj) + wj + cj,i} (2.2)

with wi denoting a vertex’s mean weight, i.e., the mean runnable instructions and ci,j denoting
the communication cost between vi and vj . Further, the ranku of exit vertexes is denoted by
their mean weight: ranku(vexit) = wexit. Finally, together with the computation cost matrix,
the algorithm identifies the sum of the both ranks as the priority of a vertex to be scheduled
next (the higher the value is, the earlier it is chosen for processor assignment). Processor
assignment is then based on greedy minimization of the total SLR. In terms of partitioning,
processor assignment can be considered as partition (ProcessPrototype) assignment. HEFT
scheduling was the first to improve Levelized-Min Time (LMT).

2.1.2 PETS

The PETS algorithm (Performance Effective Task Scheduling) was introduced in [32] and can
be used in App4mc since it comprises the consideration of heterogeneous and dynamic software
behavior in form of a list scheduling algorithm. Instead of statically deriving execution times
from processor speeds and function instructions, the PETS algorithm relies on a computation
cost matrix T × P with T = {T0, T1, ...Tn}, n = number of tasks and P = {P0, P1, ...Pm},
m = number of processors. The overall optimization goal is to minimize the schedule length:
SL = max{AFT(vexit)}, with AFT = actual finish time and vexit denoting all exit vertexes
(i.e., runnables that have no outdoing dependency). The algorithm performs level sorting,
vertex prioritization and processor selection. Level sorting is done to process the given vertexes
in topological order. The vertex prioritization assigns a value to each vertex (i.e., its priority)
regarding the vertex’s average computation cost (ACC), the data transfer cost (DTC), and
a rank of predecessor vertex (RPT). Where ACC and DTC are clear, RPT is defined via:
RPT(vx) = max(rank(vw)) where vw are immediate predecessors of vx and rankvi = ACCvi +
DTCvi + RPTvi . A vertex’s priority is a topological level based integer value starting with
one (for the highest rank value), that increases by one for each vertex at the same topological
level regarding the next lower rank value. The highest rank receives priority 1, the lowest
rank receives the highest integer in its topological level. The priority value is used to decide
in which order tasks are selected. In this order, the vertexes (vi) are assigned to a processor
that minimizes AFT(vi). The results are very effective for FFT graph structures but produces
worse results for random graph generators with higher amounts of tasks [10].

4
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2.1.3 PEFT

Arabnejad et al. assess many list scheduling algorithms regarding random task graphs, gaus-
sian elimination approaches, fast fourier transformation, montage workflows and epigenomic
workflows in [10]. They further present a new list scheduling algorithm Predict Earlist Finish
Time (PEFT) that further introduces an optimistic cost table:

OCT(vi, pk) = max
vj∈succ(vi)

[
min
pw∈P

{OCT(vj , pw) + w(vj , pw) + ci,j}
]

(2.3)

with ci,j = 0 if pw = pk, i.e., the average communication cost ci,j is 0 if vi is evaluated for
processor pk. Similar to the previously described approaches, vi would correspond a runnable,
pw a partition or task, and ci,j the communication cost between runnables i and j. OCT is used
in the task prioritizing phase to determine ranks. Instead of three phases, PEFT only performs
task prioritization and processor selection. During processor (i.e., partition) selection, a rank
is calculated via OCT, that defines which task is selected to assignment :

rankOCT(vi) =

∑P
k=1OCT(vi, pk)

P
(2.4)

rankOCT produces better selection orders in 99,5% of random graphs compared with ranku from
the HEFT approach and reduces the amount of computations [10]. A processor is selected that
minimizes OEFT(vi, pj) = EFT(vi, pj) + OCT(vi, pj) i.e., not only the earliest finish time is
considered, but also the longest path to an exit vertex.

2.1.4 Bin Packing

In some application use cases, developers expect partitions that simply provide a balanced
runnable distribution without the need of dependency consideration. This may be the case if
implementations do not necessarily depend on latest updated memory (values) or if deadlines
are either easily met in any distribution or deadlines are not required at all. An interesting
approach could be using a bin packing algorithm that considers stackability conflicts, e.g., [13].
Instead of Hanoi conflicts, that define a single value (e.g., topological order, naming derived
in [13] from the mathematical game called Tower of Hanoi), directed conflicts further provide
specific item sizes (i.e., runnable instructions in our case) to be considered in addition to their
topology. The formulas on page 38 in [13] could be used in combination with an ILP solver to
get optimal solutions.

2.2 New Miscellaneous Features

2.2.1 Hyperperiods

The hyper period is the Least Common Multiple (LCM) of the task periods i.e., the smallest
natural number that is an integer multiple of every task period [44], also called major cycle.
Considering data transfer rate per hyper-period allows to compare communication cost between
various runnables irrespective of their periods [24].
Hyper-periods can be used in App4mc as an alternative to simply grouping runnables ref-

erencing the same activation. If these activation groups are not configured, CPP and ESSP
partitioning mechanisms treat runnables without considering their activation reference. Having
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a set of runnables with different instruction and activation parameters, their instructions can
be matched regarding the overall hyper period in order to form partitions that call runnables
multiple times corresponding to their activation references. A simple example illustrates the
idea more clearly in Figure 2.1.

A B C

D

E

F

B

2ms

1ms

4ms

A2 B C

D1

E1

F

B1

E2 E3 E4

D2

A1 B2

a) b) c)

Figure 2.1: Hyper period consideration concept for partitioning

The fictional example (Figure 2.1, b)) shows a graph of 6 runnables (A-F) referencing 3 differ-
ent activations (Figure 2.1, a): A,B,D: 2ms, C,F: 4ms, E: 1ms). The overall hyper period is
consequently 4ms. For the purpose of assessing instruction consumption and communication
costs while considering different periodic activations, runnables can be instantiated multiple
times by the factor their activation period must be multiplied with to match the hyper period
value. For example runnable A is instantiated twice since its periodic activation of 2ms must be
multiplied with 2 to fit the hyper period of 4ms. Correspondingly, E should be instantiated 4
times since 1ms · 4 = 4ms. This instantiation result is shown on the right side in Figure 2.1 c).
Many additional edges are created that force the partitioning to order the runnable instances
sequentially (shown in Figure 2.2 a)).

0 1 2 3 4 5 6 7 8 9 10 11

A1 B1 C D1 E1 FA2 E2E3 E4 D2B2

A2 C D1 E1 FB1 E2 E3 E4D2A1 B2a)

b)

Figure 2.2: Possible hyper period partitioning results of Figure 2.1

However, this may not be desired in some cases and the instances should be stretched along the
partition as much as possible. An idea in this regard is to partition the initial graph without
the additional instances and insert the instances evenly along the partition afterwards as shown
in Figure 2.2 b).

2.2.2 Communication Consideration

In previous releases, communication overheads were assumed equally and their weight was not
considered at all. With the new approach in App4mc, not only the amount of intertask com-
munication, but also their cumulated weight is minimized. This new feature becomes most
obvious when having a look at Figure 2.3.
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Figure 2.3: a): input graph b): possible result, lots of inter partition communication; c): better
result, less inter partition communication, same SLR

The recent approach created solution b) that provides the minimal SLR but has lots of commu-
nications between the left side (partition1) and the right side (partition2). The new advanced
approach first calculates the best mean SLR via

mSLR =

∑
IR

#P

i.e., the sum of all runnable’s instructions divided by the number of partitions. Afterwards,
the critical path is assigned to the first partition and filled with directly dependent runnables
until the partition’s sum of instructions equals mSLR or is as near to this value as possible.
This assignment calculates metric for the directly dependent runnables to effectively start with
runnables that have most communication savings and that have lowest shifting flexibility. To
address both of these optimization goals, the shifting value is defined by an inverse percentage
parameter that is multiplied with the communication weight and amount. The shift parameter
is calculated via

sf = 1− lit− eit+ 1

mSLR

and the priority via: priority = (COcurrent + 2 · COother) · sf .

The following fictional example illustrates this optimization: mSLR = 10, cpl = 6 (i.e.,
critical path length); 5 directly dependent runnables (each runnable consumes 1 instruction in
this example). Consequently just 4 from the 5 directly dependent runnables should be assigned
to the initial partition that already contains the critical path. The metrics for the 5 runnables
are shown in Table 2.1.
Consequently, the highest rank, i.e., the runnable with ID II, will not be selected for the initial
partition. Runnables I,III,IV, and V are inserted right after their predecessor.
Assuming the graph from Figure 2.3, the critical path could be A, D, E, and G. Directly

dependent runnables would be F, B, C, and K. With mSLR = 7, just three out of F, B, C,
and K should be selected for the initial partition and the following metrics of Table 2.2 are
calculated.
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runnableID COcurrent COother sf priority rank
I 2 2 0,6 3,6 4
II 1 3 0,8 5,6 5
III 2 1 0,8 3,2 2
IV 0 1 0,9 1,8 1
V 1 2 0,7 3,5 3

Table 2.1: Fictional example - metrics for partition assignment to reduce inter partition com-
munication

runnableID COcurrent COother sf priority rank
F 0 1 0,57 1,14 1
B 0 1 0,86 1,71 2
C 1 1 0,86 2,57 3
K 2 2 0,86 5,14 4

Table 2.2: Metrics for partition assignment to reduce inter partition communication for Figure
2.3

Consequently, the algorithm skips K for the initial partition and creates the result shown in
Figure 2.3 c). Obviously, the amount of inter partition communication is reduced from 10 to 2
and the algorithm also considers the communication weights.

2.2.3 Backpointer Usage

The usage of back-pointers eases accessing Amalthea models and improves model handling
significantly. Especially when dealing with containments, back-pointers can be used to access
upward source elements that had to be manually found without back-pointers, e.g., via iterating
among all possible source elements. Assuming that a user wants to, e.g., get accessing runnables
to a given label, the use of the label’s back-pointer references all runnables that access this
label. Hence, read-only back-pointers provide a more efficient way to identify model element’s
containers. Another example can be to get a ProcessPrototype that contains a given runnable.
This usage saves a lot of processing time and reduces the time until, e.g., the partitioning finishes
its execution. This is meaningful especially when using industrial models with huge amounts
of model elements.

2.2.4 AffinityConstraint Consideration

The partitioning approaches have been further extended to consider runnable pairings in form
of AffinityConstraints. These runnable Pairing Entries are supposed to bind runnables to-
gether and prevent the partitioning or other processings from separating theses runnables. Such
information can be exemplary derived from safety-critical information e.g., functional safety /
ASIL as stated in Section 5.2. Furthermore, functional safety information may force runnables
to be separated (runnableSeparataionConstraints) due to their resource safety-critical (RSC)
properties. In general, affinity constraints can address tasks, runnables or schedulers either to
pair or to separate them. Their target can be set to CallSequences, cores, tasks or sched-
ulers. Since the partitioning only creates partitions represented by ProcessPrototypes, the

8



D2.2 – draft Concept for Partitioning, Mapping, and Tracing
for Multi- and Many-core Systems ITEA 2 – 13017

affinity constraints’ targets are not relevant here. Moreover, only runnable entity groups are
considered since neither tasks nor schedulers are usually available or modeled at this design
step. The consideration mechanism is realized such that runnable pairings are assumed as a
single runnable and their instructions and Label accesses are cumulated. After the partitioning
finished its processing, the paired runnables are split back into their original form.

PrePartitioned Model Cumulation Partitioning Reconstruction

Figure 2.4: AffinityConstraints consideration during partitioning

Figure 2.4 shows the AffinityConstraint handling along with an example during the par-
titioning process from left to right. The most left part shows an pre-partitioned example
model consisting of two graphs, various dependencies, and ten runnables in total. The two
nodes (i.e., runnables) with dashed (red) stroke are supposed to be paired together in form
of an AffinityConstraint in order to prevent the partitioning process from separating them
into different partitions. For this purpose, each affinity constraint is decomposed into a single
runnable with the name ’Cumulatedrunnable’ + index that is shown in the ’Cumulation’ part
(second from the left) in Figure 2.4. Since a runnable pairing may contain mutliple runnables,
a cumulated runnable can be composed of multiple runnables. After the cumulation took place,
that partitioning approaches are performed normally (’Partitioning’ phase in Figure 2.4, second
from right). Finally, a reconstruction process needs to decompose the cumulated runnables into
the original runnables as seen in Figure 2.4, most right part. The reconstruction needs to

1. delete the cumulated runnables, their runnable calls and RunnableSequencingConstraints
containing the cumulated runnables (so all references to the cumulated runnables)

2. add the original runnables from the PrePartitioned model

3. create RunnableSequencingConstraints via all original runnables’ label accesses

4. create runnableCalls for all original runnables at the same place of their corresponding
cumulated runnable calls

These necessary steps provide the original model structure whilst having runnables that are
referenced by runnable pairing constraints in the same partitions correspondingly.
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2.3 Workflow

The workflow used in earlier
Amalthea releases used the
MWE2 engine that was replaced
by the Java EASE script method-
ology with App4mc. This further
provides MWE2-independent
workflow usage while supporting
the same workflow structure used
up to this point. The partitioning
classes accessed by the workflow
just required minor changes. An
example workflow excerpt is shown
in Listing 2.1. A more detailed ver-
sion can be found at the App4mc
multicore help documentation.
Using workflows facilitates the
utilization of multiple features in
combination with different config-
uration parameters and provides
defining various input files and
multiple output files generated by
just starting the workflow file as
an EASE script.

1 bc . Workflow {
2 // setups with ’ loadModule ( . . . ) ’ commands ; package

imports ; l ogg ing con f i gu r a t i on ; const BASE PROJECT and
MODEL_LOCATIONs d e f i n i t i o n s

3 . . .

5 var ctx = new DefaultContext ( )
6 var reader = new ModelReader ( )
7 reader . addFileName (MODEL_LOCATION1)
8 reader . run ( ctx )

10 // p r ePa r t i t i on i ng ( ModelSlot same name)
11 var prepart = new PrePart i t ioningWrkf lw ( )
12 prepart . setAa ( f a l s e )
13 prepart . setGgp ( f a l s e )
14 prepart . setMinimEdge ( f a l s e )
15 prepart . setEf fEdge ( f a l s e )
16 prepart . run ( ctx )
17 // pa r t i t i o n i n g ( ModelSlot same name)
18 var part = new GeneratePar t i t i on ing ( )
19 part . setModelLoc (MODEL_LOCATION1) ;
20 part . setMode lS lot ( " p r ePa r t i t i on i ng " )
21 part . s e tPa r t i t i on i ngA l g ( " essp " )
22 part . setNumberOfPart it ions ( "4" )
23 part . run ( ctx )

25 //Writer
26 var wr i t e r = new ModelWriter ( )
27 wr i t e r . s e t S i n g l e F i l e ( t rue )
28 wr i t e r . setModelS lot ( " p r ePa r t i t i on i ng " )
29 wr i t e r . setFileName ( " p r ePa r t i t i on i ng " )
30 wr i t e r . setOutputDir (PROJECT + "/workflow−output" )
31 wr i t e r . run ( ctx )
32 wr i t e r . setModelS lot ( " p a r t i t i o n i n g " )
33 wr i t e r . setFileName ( " pa r t i t i o n i n g " )
34 wr i t e r . setOutputDir (PROJECT + "/workflow−output" )
35 wr i t e r . run ( ctx )

37 pr in t ( " Fin i shed Workflow" )
38 ctx . c l e a r ( )
39 endWorkflow ( )
40 }

Listing 2.1: Workflow partitioning example

The workflow shown in Listing 2.1 performs the pre-partitioning (line 16) and partitioning
(line 23) methodologies whereas different configuration parameters are defined before the run
method calls (pre-partitioning lines 12-15, partitioning lines 19-22). The writer component
(lines 26-35) finally writes the result models (stored in the model slots) into separate files (lines
31 and 35).

2.4 Visualization

For providing a distinct alternative to JGraphT [39] based applet visualization of task graphs
or runnable graphs, we investigated different existing frameworks that can be integrated to
App4mc.

2.4.1 Applet

The Applet generation has been extended from the approach presented in [7] to support column
wise runnable orders regarding their ProcessPrototype reference. Java applets can be easily
started from web pages to be executed in a JVM. However, App4mc applets have JRE as well
as JGraphT dependency such that they cannot be visualized without access to any of these
and further were not directly embedded in Eclipse. Consequently, the following sections outline
different possibilities to visualize task graphs or runnable graphs.
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2.4.2 Sirius

Sirius is a great modeling framework that provides different easy to use interfaces that can
be used for visualization in App4mc. It can be used in combination with any arbitrary EMF
models. For this purpose, a viewpoint specification project must be created, that refers the EMF
model i.e., Amalthea in App4mc in its Plug-in dependencies respectively its MANIFEST.MF
file [9]. The viewpoint description file has a ’.odesign’ ending and can have a similar structure
to the description shown in Figure 2.5 at the bottom.

Figure 2.5: Sirius runnable dependency graph

Figure 2.5 illustrates the Democar [26] runnable dependency graph. The dependencies are
specified and accessed via the RunnableSequencingConstraints as shown in the ’.odesign’
properties for edges in the lower right part of Figure 2.5. The dependency graph is shown in
the upper part of the figure whereas the dependencies are shown in form of edges from the
runnable source (bottom) to the runnable target (top). Various specifications can be used in
order to adjust the visualization. Sirius also provides table based, tree based or sequence based
visualizations. Furthermore, the editors can be used to add elements to the model and adjust
model entities and properties.
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2.4.3 PlantUML

PlantUML is a tool that supports UML based visualization. It requires Graphviz [30] and
supports online diagram updates based on Java or expressions described in [42].

Even EMF models can be interpreted. As soon
as the framework has been installed via its up-
date site, the PlantUML viewer can be opened
and used to visualize the currently selected file
from the workspace. Java classes are automat-
ically interpreted whereas comment keywords
provide further visual possibilities. Assuming
the code from listing 2.2, the diagram from Fig-
ure 2.6 is automatically generated. Such anno-
tations could be added to generated and parti-
tioned results to allow corresponding plantUML
visualizations.

1 @startuml
2 package ProcessPrototype1 {
3 ABSCalculation<<(R, orch id )>>
4 APedSensor<<(R, orch id )>>
5 APedVoter<<R, orchid>>
6 ABSCalculation −−> APedSensor
7 APedSensor −−> APedVoter
8 }
9 package ProcessPrototype2 {

10 class MassAirFlowSensor<<R, orchid>>{
11 wr i t e MassAirFlow ;
12 }
13 class BaseFuelMass<<R, orchid>>{
14 read MassAirFlow ;
15 }
16 MassAirFlow<<L,#FF7700>>
17 MassAirFlowSensor−−>MassAirFlow
18 MassAirFlow−−>BaseFuelMass
19 }
20 package ProcessPrototype3 {
21 Ignit ionTiming<<R, orchid>>
22 Ignit ionTimeActuation<<R, orchid>>
23 Igni t ionTiming −−> Ignit ionTimeActuat ion
24 }
25 @enduml

Listing 2.2: PlantUML code for
visualization

ProcessPrototype1 ProcessPrototype2 ProcessPrototype3

ABSCalculation

APedSensor

APedVoter

MassAirFlowSensor

write MassAirFlow;

BaseFuelMass

read MassAirFlow;

MassAirFlow

IgnitionTiming

IgnitionTimeActuation

Figure 2.6: PlantUML diagram excerpt: 3 ProcessPrototypes, 7 runnables and one label

Listing 2.2 generates Figure 2.6 that shows 3 ProcessPrototypes (’packages’), that vertically
show some runnables (from the democar project [26]) and their dependencies are denoted as ar-
rows. ProcessPrototye2 further illustrates a label between the runnables MassAirFlowSensor
and BaseFuelMass, that is read by the latter runnable and written by MassAirFlowSensor.
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2.4.4 JGraphT DOT Exporter

Finally, the used JGraphT library features a dot exporter, that generates a .dot file that can be
visualized by the GraphViz software [30]. Having a graph representation within the JGraphT
library, it is possible to use the DOTExporter from the jgrapht.ext library to export a dot file
as shown in the following code:
1 f ina l VertexNameProvider<Runnable> vnp = new VertexNameProvider<runnable >() {
2 @Override
3 pub l i c S t r ing getVertexName ( f ina l Runnable arg0 ) {
4 return arg0 . getName ( ) ;
5 }
6 } ;
7 f ina l DOTExporter<Runnable , RunnableSequencingConstraint> dote = new DOTExporter<Runnable ,

RunnableSequencingConstraint >(vnp , nul l , nu l l ) ;
8 f ina l Writer w = new Fi l eWr i t e r ( " dotexport . dot" ) ;
9 dote . export (w, cp . getGraph ( ) ) ;

10 w. c l o s e ( ) ;
11 }

Listing 2.3: Java code accessing the JGraphT DOTExporter class

The source code from listing 2.3 first creates a VertexNameProvider (lines 1-6), that is required
to express runnable names only for the ellipse style representations in the generated graph.
Afterwards, the DOTExporter class is instantiated whereas vertices represent runnables and
edges represent RunnableSequencingConstraints. .dot files can be opened in the GraphViz
software [30] and creates the output illustrated in Figure 2.7.
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Figure 2.7: GraphViz JGraphT Dot export

Another function (not shown in Listing 2.3) has been implemented, that represents edge
names i.e., the number of bits (size) of the label that is accessed by the two runnables (written
by the source runnable [RunnableSequencingConstraints group 0] and read be the target
runnable [RunnableSequencingConstraint group 1])

2.5 Summary

The previous sections outline new partitioning strategies, new features such as communication
consideration, hyper-periods, AffinityConstraints, and workflow accessibility and present
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four different runnable dependency graph visualization concepts.
The new partitioning strategies provide the generation of heterogeneous partitions and thereby

allow more configuration possibilities in order to generate more effective partitions regarding
subsequent mapping to heterogeneous hardware.
The extended and added features described in section 2.2 support advanced runnable bind-

ing possibilities, hyper period and communication cost consideration as well as more efficient
implementation using backpointers.
In terms of visualization, Sirius and PlantUML can easily be embedded to the Eclipse

platform. In contrast, the JGraphT DOTExporter just requires very few lines for generat-
ing the visualizations but requires the external GraphViz software for visualization. There
has been an Eclipse view plug-in for .dot file visualization (https://github.com/abstratt/
eclipsegraphviz), but it is not maintained and does not work with the newest Eclipse release.
PlantUML is rather easy to use compared with Sirius, but has limited and less customization
possibilities. However, all four possibilities provide runnable dependency graph visualizations
that can be used in App4mc. The selection of one of them depends on the desired ease of use
and customizability.
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3 Mapping

The development of embedded multi-core systems is a complex process with several challenging
tasks. One of these tasks is finding a valid allocation of software to hardware, we call this step
mapping, that combines challenges from various domains. From an embedded point of view, the
software has to be executed on very limited resources while meeting (hard) deadlines. Moreover,
sporadic events (e.g. interrupts) also have to be considered. From a multi-core point of view,
it is necessary to distribute the software to multiple processors or processor cores in due con-
sideration of software dependencies, e.g. task ordering, or specific software requirements, like
the availability of floating point units. Moreover, passing information between tasks, which are
allocated to different cores, requires valid data paths and communication performance, which
depends on the architecture and speed of the communication hardware. This communication
can occur at various transfer speeds that depend on the underlying network. The communica-
tion network itself can be understood as shared resource, which may delay concurrent accesses,
leading to additional bottlenecks if not considered appropriately. Heterogeneous architectures,
which are common for embedded systems, increase the complexity of this step even further,
since allocations to a non optimal core may change the run-time of the software drastically [37].
In order to cope with this complexity, it is necessary to utilize proper tooling. A tool which

aims at distributing software to hardware has been developed within the Amalthea project as
OpenMapping-Plugin and was already described in deliverable D3.4 [6]. The extensions of this
tool with regard to Amalthea4public have been briefly introduced within deliverable D2.1
[8].
This chapter describes the mapping feature within Amalthea4public with a focus on its

extension as well as the plugin implementing the mapping functionality as part of the plat-
form App4mc. Moreover, it provides an outlook to the concepts which will be the basis for
implementations subject to deliverable D2.3.
Section 3.1 discusses the related optimization methods such as Integer Linear Programing or

Genetic Algorithms. The concept of the mapping approach is shown in Section 3.2 along with an
evaluation of how different optimization goals (Section 3.2.1), degrees of freedom (Section 3.2.2)
as well as constraint handling (Section 3.2.3) can be supported by App4mc. A recommendation
on hardware model extensions as part of Task 2.1 is presented in Section 3.3, followed by a
description of the adaptations and enhancements that have been performed on the mapping
plugin in Section 3.4. Finally, the integrated mapping strategies are outlined in Section 3.5. A
summery, which reflects the mapping process, closes this chapter in Section 3.6.

3.1 Related Optimization Methods

Just determining a valid mapping of software to hardware often is not sufficient on its own. For
instance, if a sequential program is executed solely on the first core of a very performant multi-
core system, it may be valid in terms of meeting constraints (deadlines, avoiding deadlocks etc),
but it will most likely not utilize any of the multi-core platform’s benefits (e.g. concurrency).
Consequently, it is desirable to optimize the distribution of software to hardware and eventually
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achieve the best result towards one or more objectives, e.g. achieving the best performance
(minimizing the execution time), or the most energy-saving distribution (minimizing the energy
consumption).
From a mathematical point of view, optimization problems are represented in terms of equa-

tions and an objective. The objective describes the goal of an optimization, i.e. which value or
function should be minimized or maximized. This can be, e.g., the amount of utilized memory,
the overhead of communications, or any other attribute that can be represented by formulas.
Further equations are used to define constraints, which allow limiting the solution space. In
the context of embedded multi-core systems, such constraints are used for describing the lim-
ited resources of the hardware, e.g. the maximal amount of available memory, the limit of
concurrently processed tasks, an available bandwidth etc., and ensure the correct allocation of
the software to hardware, e.g., by ordering tasks w.r.t. their predecessors, their maintaining
deadlines, etc.
Mathematical models can be classified into several optimization problem categories based on

their structure. The most common categories as well as optimization techniques that are used
in approaches for software to hardware distribution [3] are defined as follows:

• Linear Programming (LP) problems are one of the simplest forms of optimization
problems and known to contain efficient solving strategies for many problem cases [46].
The general form of LP problems is specified as

z =
∑n

j=1 cjxj

for an objective z, with n number of variables x with their respective constant c, and∑n
j=1 aijxij ≤≥= bi ∀ iε{1, . . . ,m}

for constraints, with a, b being constants as well as the comparators ’≤’, ’≥’ and ’=’ for
all m number of constraints [46]. As the name of this optimization category suggests, all
terms in LP problems’ equations must be formed of linear expressions and utilize only
real numbers for variables.

• Integer Linear Programming (ILP) can be understood as special case of LP problems.
In terms of the problem’s model, the only difference lies in the usage of integer typed
variables in the constraint specifications, which usually make the problem NP-hard to
solve. However, commercial and open source solvers are capable of solving many small
and medium sized models efficiently [21].

Due to the nature of many mapping and scheduling problems (allocating a task to an
integer number of cores), ILP is a popular approach among those of mathematical opti-
mization for modeling these problems.

• Mixed Integer Linear Programming (MIP or MILP) and Binary Linear Pro-
gramming (BP) are further specializations of the ILP problem. The difference in com-
parison to ILP problems lies in the types of values the variables of the problem may
attain, i.e. a mixture of real and integer values (MIP, MILP), or binary (0–1) values
(BP). [18]

• Quadratic Programming (QP) problems belong to the class of non linear problems
and are similar in their structure to LP problems. The objective function consists of
quadratic terms instead of linear terms, whereas the constraints must still be linear. The
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complexity in solving QP problems is influenced by the number of constraints and the
characteristics of the objective function [40], which will either be NP-hard or efficient to
solve.

• Special Ordered Sets (SOS) can be understood as specific case of an MILP problem.
The main benefit in using SOSs lies in a noticeable reduction of the effort, which has to
be spend in solving (optimizing) a problem.

• Genetic Algorithms (GA) and Evolutionary
Algorithms (EA) are numerical optimization al-
gorithms inspired by natural selection as well as
natural genetics [19]. They are known to be robust
and are hence one of the widely used approaches in
the software engineering domain [3]. Usually GA
begin with a random or guessed population of indi-
viduals, which is encoded as a binary or real-valued
string, although hybrid approaches also implement
other techniques such as Simulated Annealing in or-
der to create the initial population.

Analogue to natural genetics, the population iter-
ates over the operations selection, crossover and
mutation (cf. Fig. 3.1). As in natural selection,
the selection operator promotes fitter individuals
more often compared to bad performing. Accord-
ingly, these exchange information is used during the
crossover operation, e.g. by applying the single
point crossover method, which choses a pair of in-
dividuals and flips the left half of the information
string between those two. Finally, the mutation
operator flips a single bit of the information string,
which helps escaping local optima. Once these op-
erators have been performed, a new population is
generated, which provides the basis for the next it-
eration of the algorithm.

Figure 3.1: GA flow chart

3.2 Concept for Mapping Approach

As part of the extensions within Amalthea4public, the original automated mapping ap-
proach [6] has been enhanced by libraries and abstractions for the utilization of genetic algo-
rithm based strategies [37] as shown in Fig. 3.2. Three mandatory input models (Software,
Hardware, Constraints) provide the required information about the software, hardware, and
task ordering for the mapping generation process. An optional model containing constraints
(Property Constraints) will be used to reduce the solution space of the mapping.
Currently, four mapping strategies have been integrated that can be split into the categories

Heuristic methods, Integer Linear Programming (ILP) based methods, and Genetic Algorithm
based methods. Unlike ILP based methods, Genetic Algorithm and Heuristic methods, such
as the Heuristic Data Flow Graph (DFG) load balancing, will immediately create a mapping,
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Figure 3.2: Concept for an automated mapping approach using the AMALTHEA Tool Platform

whereas the ILP based methods generate an ILP model of the mapping problem according to
the selected mapping strategy. Once the ILP model has been created, it can be solved by one
of the mathematical Solvers, which is provided by the open source project Oj!Algo [41] in our
case. In order to optimize genetic algorithm based strategies, the open source library Jenetics
[50] has been integrated.
Contrarily, ILP based methods need to generate an ILP model of the mapping problem

according to the selected mapping strategy, e.g. ILP based load balancing or Energy aware
mapping in advance. An optional MPS1 generator can be utilized for MPS file generation,
which contains the whole mapping problem in terms of equations. This allows using external
(e.g. commercial) solvers, which tend to be more efficient in solving larger models compared to
open source Java implementations, without integrating them into the Tool Platform.

3.2.1 Optimization Goals

As stated in Section 3.1, it is often not sufficient to just find any allocation of software elements
to hardware components. Instead, solutions which improve one or more aspects of the system,

1File format used to store linear programing or mixed integer programing problems

18



D2.2 – draft Concept for Partitioning, Mapping, and Tracing
for Multi- and Many-core Systems ITEA 2 – 13017

e.g. the energy consumption, reliability, safety or response time, should be found. This section
outlines common optimization goals, also referred to as quality attributes [3], and evaluates how
these goals can be supported by App4mc and integrated into the platform.
Currently, the approaches integrated into App4mc support either optimizing the performance

or the energy consumption of the mapping generation’s result, which are only a small fraction
of the well established quality attributes illustrated in [3] (cf. Table 3.1). Especially in the
domain of automotive systems, optimizing the cost, reliability, weight, safety, and security can
be crucial.
Table 3.1 shows a quantitative summary of the quality at-
tributes encountered during the literature review of soft-
ware architecture optimization methods in [3].
The most widespread optimization goals among those
methods are the performance, cost and reliability (44%
– 37%) of a system. In order to optimize the mapping
towards these attributes, it is important to identify how
the quality towards these goals can be quantified. The
probably most simple approach for this lies in directly
annotating these values to an element if they behave stat-
ically, e.g. as in cost or reliability of a hardware, which
usually remains unchanged by other aspects like software
or its distribution. The performance on the other hand
usually highly depends on a core’s speed, instruction set,
and features as well as the nature of the software and
its instructions. Hence, it is necessary to provide op-
portunities to annotate this information as illustrated in
Sections 3.5.1 and 3.5.2

Performance 44%
Cost 39%
Reliability 37%
Availability 13%
General 12%
Energy 9%
Weight 3%
Safety 2%
Reputation 2%
Modifiability 2%
Area 2%
Security <1%

Table 3.1: Summary of Quality
Attributes [3]

Less common optimization goals, such as general attributes, weight, safety, reputation, area,
and security are usually achieved very similar to maximizing the reliability of a system. In
App4mc, it is possible to annotate each object of the model with so called custom attributes
that can obtain any value, which may be evaluated during the mapping process.
A limitation on the model can be observed if more complex information is required, e.g.

for minimizing the energy consumption of a system. On an abstract level, an average power
consumption may be sufficient for, e.g., identifying an allocation target. However, if the energy
minimization should be achieved by configuring voltage levels, it becomes necessary to link
multiple attributes with each other, e.g. the consumed voltage level with a certain processing
speed on a core. While it is possible to achieve this by e.g. naming conventions, such solutions
are prone to errors and should ultimately be implemented by suitable constructs, e.g. fields or
structures.

3.2.2 Degrees of Freedom

Optimizing the quality attributes of an embedded system can be achieved by modifying a huge
variety of parameters. For example, the runtime of software can highly depend on the imple-
mentation, the underlying hardware’s speed, the allocation of tasks to cores, their ordering, the
mapping and scheduling of communications to networks and data to memories, the accesses to
shared resources like peripherals, etc. All those aspects, which are often changed during the
optimization process, are usually referred to as degrees of freedom (DoF) or design decisions in
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literature [3]. These can be grouped into several categories depending on the nature’s decision,
e.g. selecting an element or reordering its nested objects. In order to support these categories
within App4mc, several approaches can be utilized as described in the following:

• Allocation refers to the deployment of software elements to processing hardware compo-
nents, although it can be extended to other domains such as mapping data to memories
or communications to data paths. Naturally, this DoF can have a significant impact on
a wide area of quality attributes depending on the used abstraction level, e.g. the execu-
tion speed of a system (heterogeneous cores or boards, mutual exclusion), its reliability
(reliability of an ECU), or its cost (different prices of hardware).

Allocations of executable software to processing cores as well as mappings of data to
memories are already covered by Amalthea’s mapping model. Use cases for distributing
communications to channels as well as higher abstractions of allocations (e.g. ECUs),
however, are not yet considered and consequently require an extension of the models.

• A scheduling can be described as the mapping of operations, such as executing tasks,
passed information between tasks, or resource accesses, to a specific time interval on
a processing unit. This usually allows, e.g., preventing mutual exclusions, ultimately
leading to better performance, lower cost, or reduced energy consumption.

Amalthea distinguishes between the bare ordering (e.g. mapping to timeslots) and the
previously mentioned allocation to a target. While the latter is already covered by the
mapping model, the ordering is mainly influenced by sequencing/ordering constraints and
activation rates. Basically, each operation that can be expressed in terms of a runnable
or read/write operation can also be reordered.

• Modifying parameters allows to change the individual properties of software as well as
hardware. For instance, a core may provide unique voltage levels and can be executed
at a slower frequency while consuming less energy compared to its default value. These
constructs can be supported by custom attributes in almost all classes of the Amalthea
models, which allows annotating additional information to an object.

• Clustering, or the agglomeration of tasks, describes the process of grouping tasks in
order to reduce the complexity of allocations. From a technical point of view, the ag-
glomeration process will likely consist of merging tasks by extracting ProcessPrototype’s
runnable calls and forming new Tasks with a different runnable call distribution. Since
the task creation method within App4mc already performs such an operation, except for
modifying the distribution from runnables to tasks, this DoF can be fully supported and
represented by the Amalthea models.

• HW/SW partitioning describes the distribution of an application’s computations on a
microprocessor (software) and IC fabrics (hardware). It is mainly used to increase the
performance of a system and/or to reduce its cost.

While it is possible in Amalthea to allocate tasks to specific cores, it is not possible
to distinguish which part of software should be implemented as software and which as
hardware. In the current model version, an alternative may be to specify a ComplexNode
acting as, e.g., a FPAG or an ASIC as allocation target, although it is desirable and
planed to extend the hardware model to support this use case natively.
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• The selection of an element during the mapping process can be interpreted in various
ways, e.g. selecting a software module, a suitable hardware, or the best suited imple-
mentation (cf. HW/SW partitioning). Since the latter has already been covered within
this chapter, we reduce the scope of the DoF selection to selecting a best suited element,
either software or hardware, out of various possibilities.

Although the selection of software or hardware is not yet considered by the plugins within
Amalthea, additional plugins, such as the variability tool, aim at determining a compat-
ible hardware in an early design phase, thus, it can be considered as hardware selection
on a higher abstraction level. The models of Amalthea currently do neither provide
constructs for selecting hardware nor selecting software except for the mapping model.
However, the mapping process may re-configure a software or hardware model to support
such modifications.

• The category of replications refers to operations regarding changing the multiplicity
architectural elements in either hardware, software, or both. Examples for this are listed
as increasing the redundancy by copying a hardware along with the executed software
(hardware replication) or by n-version programing (software replication). While the mod-
els within Amalthea naturally allow to create copies of any given element in software
and hardware, it is not yet considered by the mapping process itself.

3.2.3 Constraint Handling

When developing embedded systems, the design space is naturally restricted, since not all
combinations of the DoFs can be applied or lead to feasible results. For instance, safety critical
systems will likely be kept on the same ECU while redundancy will usually be achieved by
doing the exact opposite. The limitations introduced by the hardware, e.g., the memory size,
or the software, e.g., deadlines, restrict the solution space even further.
The most common constraint handling techniques according to [3] can be categorized into

the groups prohibit, penalty and repair:

• Prohibit refers to optimization methods that discard a solution if any constraint is
violated.

• Another approach in handling constraints lies in converting the constraint optimization
problem into an unconstrained, while adding a (numeric) penalty to the final fitness
value.

• Finally, some approaches apply a repair mechanism during the optimization method if
constraints are violated. However, this requires additional knowledge about the problem
in order to repair an solution, which ultimately leads to an additional overhead to the
algorithm.

The mapping process within App4mc currently applies mapping strategies based on either
ILP or GA. Both approaches are well known to support constraint handling techniques that
either prohibit solutions violating constraints and add penalties on their fitness value, whereas
repair mechanisms will only be feasible in GA based strategies.
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3.3 Hardware Model Extensions

3.3.1 Declarations and Instances

Amalthea’s Hardware Model distinguishes between instances of a hardware element and its
type declaration, which has several benefits in describing multi- and manycore systems, e.g. a
128 core processor. Since each instance of these cores may inherit the properties of a common
core (proto-)type, the modeling overhead can be significantly reduced. Moreover, the type’s
properties also allow modifying the properties of all cores at once.
One major downside of the current implementation lies in the distribution of attributes

between types and instances. Since some properties can only be specified within an instance or
its prototype, it is not possible to choose their location freely or even overwrite their inherited
values. In order to improve this behavior, we propose the following changes for all hardware
element abstractions (Systems, ECUs, Microcontrollers, Cores, Memories, and Networks):

• All attributes will be moved to the class representing an hardware element’s prototype.

• An instance will become a specialization of its prototype class.

• If an attribute has been set within a prototype, it is inherited by the referring instance,
unless it is being overwritten by a different value in the latter.

2 class HWModel extends BaseObject {
3 conta ins Tag [ ] tags
4 // containments o f a l l hardware type de s c r i p t i on s , i . e . Core ( s ) , Memory( s ) , Network ( s ) , . . .
5 conta ins HwSystemPrototype [ ] systemPrototypes
6 conta ins ECUPrototype [ ] ecuPrototypes
7 conta ins Mic rocont ro l l e rPro to type [ ] mcPrototypes
8 conta ins CorePrototype [ ] corePrototypes
9 conta ins MemoryPrototype [ ] memoryPrototypes

10 conta ins NetworkPrototype [ ] networkPrototypes
11 conta ins AccessPath [ ] accessPaths
12 // Containment o f the system desc r ibed by t h i s model
13 conta ins HwSystem system
14 }

16 // . . .

18 class Microcont ro l l e rPro to type extends ReferableBaseObject , ITaggable
19 {
20 }

22 class Mic ro con t r o l l e r extends ComplexNode , Mic rocont ro l l e rPro to type
23 {
24 r e f e r s Mic rocont ro l l e rPro to type [ 0 . . 1 ] i nhe r i t sSe t t ing sFrom
25 conta ins Core [+] co r e s
26 }

28 class CorePrototype extends ReferableBaseObject , ITaggable
29 {
30 int i n s t ruc t i onPerCyc l e
31 int lockstepGroup
32 conta ins DataUnit bitWidth
33 }

35 class Core extends ComplexNode , CorePrototype
36 {
37 r e f e r s CorePrototype [ 0 . . 1 ] coreType
38 }

Listing 3.1: Extract of refined Hardware Model

An example illustrating these changes on an excerpt of the Hardware Model regarding the
microcontroller and core elements is shown in Listing 3.1.
The containments in Lines 5 – 11 represent holders for type descriptions of all hierarchies

(System, ECU, Microcontoller, and Core) and elements (Memory and Network). Although a
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model will only consist of one System, the SystemPrototype will be useful in storing multiple
settings for systems as well as switching between these.
Lines 18 and 28 show the type definitions for microcontrollers and cores. These contain all

attributes and properties of an element. Compared to the actual instance of their corresponding
element (Lines 22 and 35) they lack of any contained elements as well as reference to a type
where properties are inherited from. The strict separation of instances and types allows to
simplify model handling, since it will prevent overheads due to cycles in inheriting attributes
(A inherits from B, which inherits from A) or long chains (A inherits from B, which inherits
from C, ...).

3.3.2 Metric and IEC prefixes
Several attributes of the components within the
hardware model are annotated with large nu-
meric values, e.g. a quartz’s frequency (usu-
ally in terms of MHz or GHz) or memory sizes
(currently up to TB). Annotating such elements
without proper prefixes may lead to error prone
and impractical models, e.g. if the developer ac-
cidentally misses a single digit of a large num-
ber. Moreover, digital information is usually
scaled by 1024, which makes raw numeric val-
ues difficult to read on greater memory sizes
(e.g. 33554432 Bytes instead of 32 MiB).

1 enum BinaryPre f ix {
2 _undefined_ // Display : "<unit >"
3 BYTE as "Byte" = 0
4 KIBI_BYTE as "KiB" = 1
5 MEBI_BYTE as "MiB" = 2
6 GIBI_BYTE as "GiB" = 3
7 TEBI_BYTE as "TiB" = 4
8 PEBI_BYTE as "PiB" = 5
9 EXBI_BYTE as "EiB" = 6

10 }

Listing 3.2: Enumeration list for ByteSize
date type

While metric prefixes have already been added to Amalthea’s models, IEC prefixes, which
are mainly required for representing a memories size, prove to be slightly more challenging in
their implementation. In comparison to metric prefixes, infeasible byte sizes are much easier to
forge using IEC prefixes due to their scale of 1024, e.g. if 0.3 KiB are annotated (resulting in
307.2 Bytes).
Our proposition for a type, which provides IEC prefixes and the essential operations for

getting correct scaled values, is shown in Listings 3.2 and 3.3. The class consists of two attributes
(value and the binary prefix) and provides an additional method for automatically converting
these into scaled bytes (7 – 11), which are also displayed within the Amalthea model editor
(12 – 15).
1 class ByteSize {
2 double value
3 BinaryPre f ix un i t
4 op St r ing toS t r ing ( ) {
5 return value + " " + i f ( un i t == BinaryPre f ix : :_UNDEFINED_) "<unit>" else uni t . l i t e r a l
6 }
7 op Big Intege r getByteScaledValue ( ) {
8 i f ( un i t != nu l l && unit != BinaryPre f ix : :_UNDEFINED_) {
9 return new BigDecimal ( value ) . mult ip ly (new BigDecimal ( "1024" ) . pow( uni t . va lue ) ) .

toBigIntegerExact ( ) ;
10 } else return nu l l
11 }
12 @GenModel ( propertyCategory="Read only ( In fo rmat iona l Purpose ) " )
13 der ived readonly Big Intege r Bytes get {
14 return getByteScaledValue ( ) ;
15 }
16 }

Listing 3.3: Code for ByteSize
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Figure 3.3: Visualization of mapping results

3.3.3 Addressing

All types of memory addresses (e.g. offsets or absolute addresses) have been annotated as long
integer typed values, which usually are incapable of addressing any location beyond 2GB. In
order to cope with this, BigInteger values have been determined as the default value for these
types of attributes.

3.4 Tooling Extensions

This section outlines the adaptations as well as enhancements that have been performed on the
mapping plugin in order to cope with the modifications of the App4mc tool platform as well
as its Amalthea models.

3.4.1 Library supporting Genetic Algorithm

One of the long-term goals within Amalthea4public was the integration of additional opti-
mization techniques, which can cope with larger problem sizes or heavy constraint problems.
Genetic algorithms have already proven to be well suited for such an application. In order to
support GA bases strategies, integrating a library for evolutionary algorithms into App4mc
was required. Jenetics is a modern Genetic Algorithm and Evolutionary Algorithm library
written in Java, which supports Java8 and utilizes its extensions, e.g. Java streams. Providing
a clear separation of the concepts of genetic algorithms, among others, fitness functions and
chromosomes, Jenetics is highly adoptable and capable for its integration to mapping strategies
of App4mc.

3.4.2 GA based Mapping Strategies

A comparatively simple genetic algorithm based load balancing approach has been integrated
into App4mc. It utilizes the java library Jenetics and is further described in Section 3.5.4.

3.4.3 Refactoring and Visualization API

As part of the refactoring work on the mapping plugin, multiple APIs have been created to
simplify the integration of new optimization approaches as well as mapping strategies. For
instance, a package for agglomerating the allocations of tasks to cores into the mapping model
has been created, which is additionally capable of creating a textual output describing the
mapping results (cf. Fig. 3.3), e.g. the utilization of each core or the number of allocated
runnables and tasks. Consequently, this helps to provide a common and comparable output
among the mapping strategies.

24



D2.2 – draft Concept for Partitioning, Mapping, and Tracing
for Multi- and Many-core Systems ITEA 2 – 13017

3.4.4 Java8

Including the Jenetics library as well as the recent release of App4mc lead to an upgrade of the
required Java version from 7 to 8, which brought several benefits and additional features that
further allowed improving the mapping plugin. Among others, we could simplify multiple parts
of the plugin by utilizing lambda expressions and streams, e.g. for array and search operations.
Moreover, parallel streams allowed to parallelize large parts of the plugin, which provides a
significant improvement on the computation speed.

3.4.5 Workflow Examples

The workflow support of the mapping plugin allows automating the mapping process by spec-
ifying the input and output files as well as the operations (e.g. the mapping strategy) that
should be performed on the models. We extended the workflow to cover all mapping strategies
and created an additional workflow example for the energy minimization examples. It creates
two mappings for the HVAC as well as Democar software models on an i.MX6 board, while
minimizing their individual power consumption.

3.4.6 Miscellaneous Changes

The following additional modifications, which do not fit in any of the previous categories, have
been implemented and are part of the current App4mc platform.

• OjAlgo Upgrade: The library for solving ILP based strategies has been updated from
version 35.5 to its most recent version (39.0), which brings a large number of improvements
to the utilized package org.ojalgo.optimisation, e.g. bug fixes and Java8 support.2

• Operating System generation: Due to a change in Amalthea’s OSModel, an empty Op-
erating System instance is created during the mapping generation process.

• Namespace: The namespace of the mapping plugin has been changed for the eclipse
project App4mc into org.eclipse.app4mc.multicore.

• Reconfiguration: A minor group of mapping problems could not be optimized using the
OjAlgo solver. For this reason, a pragmatic reconfiguration approach has been integrated,
which extends the capability of the Solver on this group of models.

3.5 Implemented Mapping Strategies

This section outlines the already existing mapping strategies that are part of the Amalthea4public
project (Sections 3.5.1 – 3.5.3) and describes the newly integrated genetic algorithm based ap-
proach (Section 3.5.4).

3.5.1 LPT Greedy Load Balancing

The Longest Processing Time Greedy Scheduling (LPT Greedy) strategy sorts the tasks in
descending order of their instruction values and performs a greedy scheduling. While this
heuristic does not consider any constraints in the ordering of the tasks, which makes it only

2See: https://github.com/optimatika/ojAlgo/wiki/v39
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applicable on independent groups of tasks, it has a very low runtime and supports heterogeneous
architectures by estimating a task’s runtime based on its number of instructions and the core’s
Instructions per Second. The goal of this strategy is to minimize the overall execution time of
all tasks by allocating tasks to processing elements (i.e. cores).
The pseudecode for this algorithm is shown in
the listing on the right (Algorithm 1) with m
denoting the number of tasks, n the number
of cores, and p1, p2, ..., pm the list of process-
ing times for each task 1−m. Initially, all tasks
are sorted in descending order (line 1) before all
cores are initialized with no load (line 3) and an
empty list of allocated tasks is initialized (line
4). The scheduling algorithm begins with the
task having the longest execution time (line 6),
and allocates it to the core with the lowest load
(line 8) which is determined in line 7. After-
wards, task’s load is added to the selected core
(line 9) before the algorithm repeats the process
for the next task.

Data: m, n, p1, p2, ..., pm
Result: Allocation of tasks to cores

1 Sort jobs so that p1 ≥ p2 ≥ ... ≥ pm;
2 for i← 1 to m do
3 Li ← 0;
4 J(i)← ∅;
5 end
6 for j ← 1 to n do
7 i = arg min L;
8 J(i)← J(i) ∪ j;
9 Li ← Li + pj ;

10 end
Algorithm 1: LPT Greedy Algorithm

3.5.2 ILP based Load Balancing

The ILP based Load Balancing strategy is the integer linear programing (ILP) based equivalent
of the load balancing strategy described in Section 3.5.1. This approach creates a simple
mathematical model describing the machine scheduling problem, which is optimized by the
integrated Oj!Algo solver. Like the heuristic load balancing approach, this strategy targets
heterogeneous core architectures and minimizes the upper bound of the execution time among
all cores by allocating tasks to cores.

3.5.3 ILP based Energy Minimization

ILP based Energy Minimization is the second ILP based strategy. It is based on the work of
Zhang et. al. [51] and implemented as a two phased approach, where the first phase executes
a heuristic that allocates the executable software to cores while maximizing the slack. These
slacks are idle time slots on a core, i.e. slots where no software is being executed because a task
waits for the results of a predecessor on another core. The ILP part of this strategy is finally
used to slow down the cores without harming any deadlines.
Compared to the other approaches, there are several major differences. The goal of this

strategy is minimizing the total energy consumption while meeting all deadlines, e.g. the
software will not be executed as quick as possible, but quick as necessary. Moreover, it focuses
on the distribution of runnables, i.e. runnables are distributed on the cores of a target platform.
While this strategy considers constraints about the predecessors of the runnables, it does not
support heterogeneous architectures, e.g. only cores with an equal configuration are supported.
The output of this strategy is an allocation of tasks to cores, as well as the number of instructions
for each of the selected voltage levels on each core.
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3.5.4 GA based Load Balancing

As part of the extensions within Amalthea4public, a genetic algorithm based load balancing
strategy has been implemented to the App4mc platform. Naturally, it allows minimizing the
overall execution time of a given application by determining the allocations of T → C for each
task T to a core C.
The initial population of this algorithm is set to 1000 and initialized with random values.

Each chromosome contains one gene for each task describing the core it is allocated to, e.g., the
value 0 expresses an allocation to the first core, the value 1 to the second core etc., whereas the
gene’s index equals the task’s index. Due to this encoding, it is not possible to forge technically
invalid chromosomes in an unrestricted design space.
The fitness function evaluates the longest execution time of the sum of tasks among all

cores, i.e., max(T1, T2, T3, ...) with Tx being the execution time on a core x. Consequently, the
algorithm aims at minimizing the numeric value of the fitness function by applying a single point
crossover operator as well as mutations. Similar to the random initialization of the population,
these operations always produce valid chromosomes due to their encoding.

3.6 Summary

This chapter provides an outlook to the mapping concept for Multi- and Manycore Systems
along with a discussion of the major components involved in creating an optimal distribution
of software to hardware.
Section 3.1 outlines and compares several optimization methods, which may be utilized to

generate optimized distributions of software elements to hardware components. We identify and
select genetic algorithm based approaches as the best suited and most expandable candidates for
further mapping strategies due to their benefits in speed, robustness and wide area of available
strategies, and extended the mapping process accordingly as described in Section 3.2.
Moreover, we evaluate how future strategies can be implemented into App4mc by analyzing

various optimization goals, degrees of freedom, and constraint handling techniques (cf. Sec-
tions 3.2.1 – 3.2.3). This allows us to determine the restrictions given by the Amalthea
models as well as to provide recommendations for future extensions to the hardware model in
Section 3.3.
The extensions that have already been realized as part of Amalthea4public and imple-

mented in App4mc are described in Section 3.4. This covers the library for handling genetic
algorithm based mapping strategies and provides a description of the GA based mapping strat-
egy, followed by the refactoring process, common visualization among all mapping strategies,
Java8 and its parallel computation support, additional workflow examples as well as the other
minor modifications.
Finally, all supported strategies are outlined in Section 3.5 along with a detailed description

of the recently implemented GA based load balancing strategy.
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4 Scheduling for ECU Networks

In this chapter, we present an extended development process that enables partition and mapping
of runnables to Electronic Control Unit (ECU) networks based on MechatronicUML and
App4mc.
In Amalthea4public, we aim to integrate App4mc and MechatronicUML. On the one

hand, MechatronicUML provides a sophisticated compositional verification approach allow-
ing to formally verify behavioral models that have been modeled on Platform Independent
Model (PIM) level by means of model-checking. However, the deployment of Mechatron-
icUML models on multi- and many-core target platforms has not been considered in detail and
MechatronicUML lacks the timing analysis capabilities of App4mc for multi- and manycore
systems. On the other hand, Partitioning and Mapping in context of ECU networks needs to be
done manually for each ECU right now in Ḃy integrating App4mc and MechatronicUML,
we aim to provide an exemplary tool chain from software design over Partitioning and Mapping
to deployment on ECU networks and timing analysis.
In Section 4.1, we introduce the most relevant foundations for this chapter, namely an

overview of the MechatronicUML development process and the MechatronicUML
Allocation Specification Language (ASL). In Section 4.2, we present the extended Mecha-
tronicUML development process developed in context of Amalthea4public. Here, we
focus on the allocation of software components and their runnables to ECU networks. Finally,
in Section 4.3, we present the detailed concepts for the extended partitioning and mapping ap-
proach. The presented work is an extension to [2], especially sheding a light on the allocation
of software components and runnables.

4.1 Foundations

Figure 4.1 gives a brief overview of the MechatronicUML development process. Here, we
focus on the fourth step.

Requirements Software Artifacts 
(Code, Binary)

Artifact Process Step

Legend

Design Platform-
Specific Software

4
Design SW/HW 

Platform

3
Design Platform-

Independent Software 
Model

2
Specify Formal 
Requirements
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Figure 4.1: MechatronicUML Development Process (based on: [22])

The first step when developing with MechatronicUML is the scenario-driven specification
of formal software requirements (cf. [2, 31]).
Based on the formal requirements, the platform-independent software development starts in

step 2 by modeling a component-based software architecture using the MechatronicUML
domain-specific language.
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In step 3, the target platform, described by a Platform Description Model (PDM), is modeled
by the platform engineer. A platform describes an execution environment, i.e., the used hard-
ware (resources like ECUs, sensors, and actuators), operating system, and additional software
that is needed for the execution of the software system.
Step 4 concludes with the actual design of the platform-specific software. One part of this

step we focus on in the following is the allocation of software components from step 2 to the
different ECUs.
Please refer to [1, Section 3.4.6] and [22] for more detailed descriptions on the Mechatron-

icUML development process.
The amount of possible allocations of a set of software components to a set of ECUs is ex-

ponential regarding the amount of software components. This complexity can be reduced by
defining mandatory and useful allocation constraints. MechatronicUML provides a model-
driven allocation engineering approach enabling an allocation engineer to specify such allocation
constraints in an easy and expressive way. The core part of this approach is the ASL, which
enables allocation engineers to define an allocation specification, for existing software archi-
tecture and hardware platform models. The ASL provides a library with Object Constraint
Language (OCL) operations that ease the creation of the allocation specification. The alloca-
tion specification is automatically transformed to an Integer Linear Programming (ILP) that
encodes the allocation problem. The resulting ILP is solved by LPSolve. Finally, the solution
of the ILP is transformed to an allocation model via a back-transformation that maps software
components to ECUs. As a result, the solving of the whole allocation problem becomes trans-
parent for allocation engineers. They get a feasible solution without having to know how to
encode and solve the allocation problem as a large and complex ILP.
The ASL provides four commonly used allocation constraint kinds. The constraint kinds are

collocation, separateLocation, requiredLocation, and requiredResource, which we shortly intro-
duce in the following.
The collocation constraint is used to specify that two software components, e.g., named sc11

and sc12, have to be allocated to the same ECU (cf. Listing 4.1). Thereby, it is possible to avoid
safety-critical communication between components via an unreliable bus or to reduce commu-
nication latencies. The constraint evaluates to a set that consists of a 2-tuple whose concrete
type is defined by the descriptors. The elements of the tuple can be accessed via the names first-
Component and secondComponent. We use the OCL operation allocateToSameECU(instance1
: String, instance2 : String) to define the allocation constraint that the components with the
name sc11 and sc12 have to be collocated. Later, the evaluation result of this operation call is
transformed to corresponding ILP constraints. The OCL operation allocateToSameECU(. . . ) is
stored in the MechatronicUML specific allocation operation OCL library.

1 constraint collocation collocateSC11AndSC12 {
2 descriptors (firstComponent, secondComponent);
3 ocl self.allocateToSameECU(’sc11’,’sc12’); }

Listing 4.1: A Constraint of the Kind collocation

The separateLocation constraint is used to specify that two components, e.g., named sc6a and
sc6b, have to be allocated to different ECUs. Thereby, it is possible to avoid that redundant
components are allocated to the same ECU and fail at the same time in the case of an ECU
hardware fault. Listing 4.2 shows this constraint with the name separateLocationSC6aAndSC6b
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of the kind separateLocation. The constraint evaluates to a set that consists of a 2-tuple.
The elements of the tuple can be accessed via the names firstComponent and secondComponent.
We use the OCL operation allocateToDifferentECUs(instance1 : String, instance2 : String) to
specify that the components with the names sc6a and sc6b cannot be collocated. The allocate-
ToDifferentECUs 2-tuple is syntactical the same as the allocateToSameECU 2-tuple. Due to the
distinguished kind its semantics is the exact opposite.

1 constraint separateLocation separateLocationSC6aAndSC6b {
2 descriptors (firstComponent, secondComponent);
3 ocl self.allocateToDifferentECUs(’sc6a’,’sc6b’); }

Listing 4.2: A Constraint of the Kind separateLocation

The requiredLocation constraint is used to specify that a component has to be allocated to
specific ECUs or ECUs that are part of specific platforms. Thereby, it is possible to avoid that
safety-critical components are allocated to non-secure ECUs that are designed for entertainment
purposes and have, e.g., no trusted platform with appropriate authentication mechanisms for
access control. Additionally, we have to ensure that components, which communicate with
each other, are allocated to the same ECU or to ECUs that are connected via a bus or a
direct link. Listing 4.3 shows this constraint with the name requiredLocationSC8 of the kind
requiredLocation. The constraint evaluates to a set that consists of several 2-tuples. The
elements of a 2-tuple can be accessed via the names component and allowedResource. We
use the OCL operation allocateComponentToPlatform(component : String, platform : String) to
specify that the component with the name sc8 has to be allocated to one of the ECUs of the
Brake platform.

1 constraint requiredLocation requiredLocationSC8 {
2 descriptors (component, allowedResource);
3 ocl self.allocateComponentToPlatform(’sc8’, ’Brake’); }

Listing 4.3: A Constraint of the Kind requiredLocation

The requiredResource constraint is used to specify that an allocation has to respect certain
resource restrictions. Thereby, it is possible to avoid that more main memory of an ECU
is used by software components than an ECU provides. Thus, we have to specify an OCL
expression that returns for each ECU the available memory and a set that describes the memory
consumption of each component, if it is allocated to that ECU. Listing 4.4 shows a constraint
with the name maxMemoryConsumption of the kind requiredResource that is used to guarantee
that the components, which are allocated to the same ECU, do not exceed the ECU’s available
memory. The constraint evaluates to a set that consists of nine 2-tuples (one 2-tuple for each
ECU). Such a 2-tuple has the named parts availableMemory and requiredMemory. The named
part availableMemory represents an ECU’s available memory. The named part requiredMemory
refers to a set that consists of 3-tuples. Such a 3-tuple has the named parts componentInstance,
resourceInstance, and requiredMemory. The requiredMemory named part represents the required
memory of the component that is referred by the componentInstance named part, if it is allocated
to the ECU that is referred by the resourceInstance named part.

Each 2-tuple represents a constraint whose left-hand side (lhs) has to be smaller than or equal
to the right-hand side (rhs). The left-hand side is the sum over the referred 3-tuples. A 3-tuple
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contributes its requiredMemory value to sum, if its referred componentInstance is allocated to
its referred resourceInstance, and 0 otherwise. The right-hand side is given by the 2-tuple’s
availableMemory named part.

1 constraint requiredResource maxMemoryConsumption {
2 lhs requiredMemory;
3 rhs availableMemory;
4 descriptors (componentInstance, resourceInstance);
5 ocl self.maxMemoryConsumption(); }

Listing 4.4: A Constraint of the Kind requiredResource

4.2 Extended MechatronicUML Development Process

In Work Package 2 of Amalthea4public, we integrate App4mc and MechatronicUML.
This enables MechatronicUML to be used as a modeling frontend within the Amalthea
ecosystem. Here, we focus on the extension of the existing MechatronicUML allocation. This
extension enables the developer to specify a multi-core scheduling not only for single Mecha-
tronicUML software components but for ECU networks, explicitly taking communication-
and hard real-time requirements into account. To deploy the software specified in the platform-
independent model to a multi-core environment, we extend the subprocess of process step 4
“Design Platform-Specific Software” (cf. Figure 4.1). In the following, we call this process
Platform Specific Modeling (PSM) process.
In the current PSM process, a task is created for each component instance of the PIM and

allocated to an ECU. Timing properties are not considered and task properties like period,
deadline, and Worst Case Execution Time (WCET) are derived manually. However, since we
are aiming for deploying the software to a multi-core platform consisting of an ECU network,
additional steps are needed for the allocation of software components and runnables. In this
section, we give an overview of the extended development process that is used to determine a
multi-core scheduling for MechatronicUML. We refer to [28] for a detailed description of the
concepts we sketch here.

PIM Mapping

Artifact Process Step
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Figure 4.2: Extended MechatronicUML PSM Process (based on: [28])

Figure 4.2 shows all steps of the extended PSM process. Steps 1, 3, and 4 are new process
steps. Step 2 extends an existing one. We assume that a correct PIM and PDM are already
defined at this point of development and are used as input artifacts for the presented steps. In
the following, we describe each process step, the order of the steps in the process, and their
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input and output artifacts. The embedding of the presented development process in a complete
systems engineering development process is presented in [2].
At first, in Step 1, the software is separated into independently executable pieces that corre-

spond to AUTOSAR Runnables. We call this step Perform Segmentation. For each runnable,
runnable properties are defined (WCET, period, and deadline). Additionally, dependencies and
constraints between the runnables are defined, e.g., accesses to shared variables. The output
artifact of this step is a set of runnables with defined runnable properties.
In Step 2 the software is allocated to ECUs, i.e., we define which runnables are executed

on which ECU. This step is called Allocate Software Components. Hence, the input for this
step is a set of runnables (produced by the segmentation) and the PDM. Since an allocation
can affect the communication latencies, we ensure in this step that all Quality of Service (QoS)
assumptions of MechatronicUMLs Real-time Coordination Protocols are respected. The
output artifact of this step is a runnable allocation that describes the allocation of runnables
to different ECUs of an ECU network.
In Step 3, we define for each of the ECUs which runnables can be executed by one task.

This step is called Perform Partitioning. The output artifact of this step is a partitioning for
each ECU, i.e., a set of tasks per ECU. The partitioning per ECU is beeing calculated by
means of existing algorithms available in Amalthea.

In Step 4, we define for each ECU which task is executed on which ECU core. This step
is called Perform Mapping. The input for this step is the partitioning for each ECU. In the
mapping, each task gets assigned to an ECU core that will execute this task at runtime. The
mapping has to respect dependencies between the tasks and their runnables. The output of this
step is a mapping of tasks to ECU cores. Again, we use existing algorithms from Amalthea
to perform the mapping.
Finally, the remaining steps of the MechatronicUML PSM process are applied, i.e., steps

for Platform Mapping, Code Generation, and Analysis. In the platform mapping, hardware ab-
stractions in the PIM, like continuous components, get enriched by concrete platform dependent
parts, e.g., concrete Application Programming Interface (API) calls for sensors and actuators.
Afterwards, the newly created PSM, provided for each ECU, is transformed into source code
for the target platform and compiled to an executable. Finally, the software can be executed
and logged to analyze the execution on the target platform. For this, traces can be used for
further analyses of the software system, e.g., by using methods of Amalthea4public. In the
next sections, we present more details on step 2. Please refer to [1] for a detailed description
of step 1.

4.3 Partitioning and Mapping for ECU Networks

In MechatronicUML, software components do not run in isolation but are connected to
other component instances for communication. Since we consider software with hard real-time
requirements, this communication has to fulfill hard real-time requirements as well. In Mecha-
tronicUML, Real-time Coordination Protocols (RTCPs) are used on PIM level to define QoS
assumptions for communication between interacting components. These QoS assumptions are
used to verify the fulfillment of these hard real-time requirements using model checking. Hence,
the mapping has to ensure these assumptions, especially if more than one ECU is available in
the system.
An example scenario for a distributed, cooperative, and safety-critical Intelligent Technical
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System (ITS) is the autonomous overtaking of vehicles, e.g., cars. Here, we re-use such a
scenario from [28] as a running example for explanation of the concepts. We use Mecha-
tronicUML models for an overtaking scenario where an approaching vehicle is considered.
The scenario consists of three vehicles and a section control. Figure 4.3 shows a sketch of this
scenario.

Approacher

Overtaker Overtakee

Section Control

Planned Route 

Legend

Communication Channel

Figure 4.3: Scenario for Overtaking With Approacher (from [28])

Two vehicles, Overtaker and Overtakee drive on one lane in the same direction. On the
other lane, a third vehicle (Approacher) is driving in the opposing direction. Each vehicle
communicates with the Section Control and informs about its current position on the lane.
Thus, the Section Control knows the position of each vehicle. The vehicles themselves do
only know their own position.
The Overtaker drives with higher speed than the Overtakee and when the Overtaker gets

to a specific distance to the Overtakee, it adapts its speed and starts to communicate with the
Overtakee and the Section Control to initiate an overtaking action. It waits for acknowledg-
ments of both communication partners before starting the overtaking. The Section Control
has to confirm that the distance to the Approacher is large enough. The Overtakee can accept
the overtaking request and confirms that it will not accelerate during the overtaking. Here, we
focus on the Overtaker. Figure 4.4 shows its Component Instance Configuration (CIC).
The CIC of the Overtaker consists of seven atomic components. The components Overtaker-

Driver and OvertakerCommunicator define Real-time State Charts (RTSCs) as behavior and,
therefore, have timing requirements that have to be considered in segmentation, partitioning,
and mapping. Additionally, the communication of these components is defined by a so-called
RTCP Delegate. A RTCP defines QoS assumptions that have to be considered when deriving
a multi-core scheduling, e.g., an upper bound for the communication time. Furthermore, we
assume that the hardware for each vehicle consists of two multi-core ECUs.
In step 2 of the extended PSM process, we extend the existing allocation with an approach

that enables the developer to specify a multi-core scheduling for an ECU network that explicitly
takes communication requirements in hard real-time systems into account. The input for this
step is a set of runnables with defined runnable properties produced by the segmentation
in step 1. First, we allocate runnables to ECUs. Since all runnables that belong to one
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Figure 4.4: Component Instance Configuration of the Overtaker (from [28])

component instances are highly dependend, we propose to allocate all runnables of a component
instance to the same ECU. Hence, in this step, we allocate component instances to ECUs with
respect to the runnable properties and to the communication requirements. At this point
of development, we cannot apply a full schedulability analysis. Nevertheless, it is important
that at least necessary conditions for schedulability are respected in the allocation step. In
our approach, we ensure that the processing capacity of the ECU is not exceeded by the the
processing requirements for the allocated runnables, i.e., we discard allocations that are not
schedulable already in this step. Additionally, we ensure that the real-time requirements for
the communication are respected in the allocation. These two features are provided by an
extension of the ASL. We extend the ASL by providing two new ASL constraints that can
be used by the developer: validUtilization and maxDelay4RTCPs. validUtilization provides an
ASL constraint to ensure a necessary Schedulability-condition for runnables. maxDelay4RTCPs
provides an ASL constraint to satisfy the max-delay defined in RTCPs during the allocation.
In principle, the constraint ensures that the amount of computing time of the executed software
does not exceed the processing capacity of each ECU.

Condition for Schedulability Here, we present a necessary Schedulability-condition for runnables.
At his point in time, we cannot apply a full schedulability analysis for the software, be-
cause we only have specified runnables, but do not know anything about possible tasks.
Tasks will be determined during implementation by the Amalthea partitioning algo-
rithm. Nevertheless, we can restrict the allocation regarding a necessary condition for
schedulability: The amount of computing time of the executed software must not exceed
the processing capacity of the ECU. We define the processing capacity of each ECU core
as 1. Consequently, the processing capacity of each ECU CECU is defined as

CECU = |ECUCores| (4.1)

Each runnable has a defined Period π and a WCET. Note that the WCET does depend
on the executing ECU and may vary if the runnable is allocated to different WCETs.
Let WCETRunnable,ECU be the WCET for a runnable and a specific ECU. We define the
utilization factor of a runnable URunnable for a specific ECU as
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URunnable =
WCETRunnable,ECU

πRunnable
(4.2)

If the sum of the utilization factors of all runnables exceeds the processing capacity of the
ECU, it is impossible to find a scheduling for a given set of runnables (independent from
the resulting tasks). If this sum equals the processing capacity of the ECU, the resulting
scheduling would have to execute all runnables without any idling time. Since this is not
realistic for complex systems, we define as a necessary condition that this sum has to be
less than the processing capacity of the ECU.∑

r∈Runnables(ECU)
Ur < CECU (4.3)

Condition for Communication Latency A RTCP defines a contract between communication
partners. Each communication partner has to refine the behavior of a role, defined by
the RTCP. In this section, we present an approach how the max-delay defined in RTCPs
can be ensured during the allocation.

A RTCP provides QoS assumptions, like the min/max delay for the communication.
Furthermore, it refers to RTSCs that define the behavior of the roles and are refined
for the RTSCs of each port that implements the specific role. We have to consider each
instance of RTCPs in the component instance configuration separately. Figure 4.5 shows
the RTCP that is applied to component overtakerDriver and overtakerCommunicator
in our example.

Delegate

Incoming buffer: initiatorRbuf
Size: 5 
Discard Incoming Messages 
Messages:              execute()

Incoming buffer: initiatorRbuf
Size: 5 
Discard Incoming Messages 
Messages:                initiate() 

                              executed()

QoS Assumptions
Message Loss NOT Possible 
MinDelay: 5 ms 
MaxDelay: 500 ms

Figure 4.5: RTCP Delegate with QoS Assumptions (from [28])

The RTCP defines a min delay of 5 ms and a max delay of 500 ms. Thus, the message
has to be transmitted within this time interval. Otherwise, the message will be dropped,
e.g., by the middleware of the system. For our approach, we focus on the max delay. If the
message arrives before min delay, we assume that the middleware will retain the message
until it can be delivered. Delivering a message relies basically on time for generating and
sending the message, transmitting it from sender to receiver, and queuing it until the
receiving process recognizes the message. The max-delay defines the maximum time span
we have for sending, transmitting, and receiving the message. Thus, we have to consider
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Figure 4.6: Transmitting a Message can be Separated into Three Time Slots (from [28])

these time frames for deriving the condition. Figure 4.6 shows these time frames in an
exemplary schedule.

At rsend the message is sent by the sender runnable. At MWr the middleware recognizes
that a message has been sent. We call the interval between these points as Time for
Sending and denote it by ts. After that, the message is transmitted to the target and is
put into the corresponding message buffer of the component instance at MWd. We call
the interval between MWr and MWd Time for Transmitting and denote it by ttransmit.
At rrec, the receiver runnable evaluates its transitions and recognizes the new message.
We call the interval between MWd and rrec Time for Receiving and denote it by tr.

Using the upper bound values for ts, ttransmit, and tr, we can express a constraint implied
by the QoS-assumptions of the RTCP (we refer to [28, Section 5.2.2] on how these upper
bounds are derived). Let TRTCP be the max-delay value of the RTCP. Since TRTCP

specifies the upper bound for sending, transmitting, and receiving the message, the sum
of these three values has to be smaller than the max-delay. Consequently, for each RTCP
that is used in the system, the following inequation has to hold:

ts + ttransmit + tr ≤ TRTCP (4.4)

As ttransmit depends on source and target ECU, it depends on the allocation of component
instances to ECUs, if inequation 4.4 can be satisfied or not for each RTCP. Thus, they
have to be respected in the allocation step in the development process.

Example Here, we show an example for applying the maxDelay4RTCPs constraint to our
example. For this, we assume that the segmentation of the CIC is already finished and
therefore, we have a defined CIC with references to dedicated runnables. We assume that
the segmenation strategy One Runnable Per Region (cf. [28, Section 4.2.1.3]) is applied
for discrete component instances. Figure 4.7 shows a sketch of the CIC for component
overtakerVehicle and the resulting runnables.

As example, we apply the communication latency condition (cf. inequation 4.4) in the
allocation. Hence, we focus on the runnables that communicate and, therefore, contain
port behavior, i.e., runnables initiatorP and executorP.
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Figure 4.7: CIC for overtakerVehicle and the resulting Runnables (from [28])

Additionally, we assume that the PDM is defined and accessible by the ASL. The devel-
oper may also define ASL-constraints to ensure important allocation requirements, e.g.,
that all component instances of the overtaker are allocated to the ECUs of one vehicle
using the sameLocation constraint of the ASL. Additionally, we assume that all contin-
uous component instances and the connected discrete component instances are allocated
to the same ECU. In Figure 4.7, this is indicated by the red lines.

Additionally, the RTCP Delegate is used between the ports initiatorP and executorP,
which defines a max delay of 500ms (cf. Figure 4.5). Let us assume that the developer
added the ASL constraint for communication latency condition (cf. inequation 4.4) to
the allocation specification. Table 4.1 shows exemplary values for the period of sender
runnable and receiver runnable that are used in the constraints.

Table 4.1: Exemplary Runnable Properties for the Example-CIC (from [28])

Runnable Period π ts tr

initiatorP-Runnable 180 ms 180 ms 360 ms
executorP-Runnable 100 ms 100 ms 200 ms

Thus, we have ts = πinitiatorP = 180ms and tr = 2 ∗ πexecutorP = 200ms. Further-
more, we assume that Ttransmit between ECU e1 and ECU e2 has the constant value
of 150ms. Ttransmit for the communication on the same ECU has the constant value of
0ms, e.g., when global variables are used for implementation. However, if more ECUs are
involved and, therefore, Ttransmit may vary between different ECU-pairs, Ttransmit can be
annotated to the used communication channel.

In the following, we show the four ILP-Constraints resulting from the ASL-constraint for
the RTCP Delegate. For better readability, we focus on one direction of the communi-
cation, i.e., sending a message from initiatorP to executorP. Additionally, the result
for each inequation is shown using the values from Table 4.1.
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(ts,iniP+Ttransmit(e1,e1) + tr,exeP ) ∗xCI(iniatorP ),e1,CI(executorP ),e1 ≤ DelegatemaxDelay

(180+0 + 200) ∗xCI(iniatorP ),e1,CI(executorP ),e1 ≤ 500 (4.5)

(ts,iniP+Ttransmit(e1,e2) + tr,exeP ) ∗xCI(iniatorP ),e1,CI(executorP ),e2 ≤ DelegatemaxDelay

(180+150 + 200) ∗xCI(iniatorP ),e1,CI(executorP ),e2 ≤ 500 (4.6)

(ts,iniP+Ttransmit(e2,e1) + tr,exeP ) ∗xCI(iniatorP ),e2,CI(executorP ),e1 ≤ DelegatemaxDelay

(180+150 + 200) ∗xCI(iniatorP ),e2,CI(executorP ),e1 ≤ 500 (4.7)

(ts,iniP+Ttransmit(e2,e2) + tr,exeP ) ∗xCI(iniatorP ),e2,CI(executorP ),e2 ≤ DelegatemaxDelay

(180+0 + 200) ∗xCI(iniatorP ),e2,CI(executorP ),e2 ≤ 500 (4.8)

The results show, that the inequations 4.5 - 4.8 can only be fulfilled, if both runnables are
executed on the same ECU. Consequently, the QoS assumption of the RTCP can only be
satisfied, if both component instances are allocated to the same ECU. Since we specified
that all continuous component instances have to be allocated to the same ECU as the
connected component instance, the resulting allocation is, that all runnables have to be
allocated to the same ECU. Thus, the second ECU is not used. This might be a problem, if
additional ASL-constraints are used that restrict the allocation of all component instances
to the same ECU, e.g., when the constraint for the utilization factor cannot be fulfilled by
this allocation. Hence, the developer should check all runnable properties and the RTCP
for possible changes to relax the conditions for the ILP.

For each ECU, the resulting runnable sets can then be processed further by the Partitioning-
and Mapping-Step. At the end, a mapping that contains tasks is provided to execute the
software on each ECU.

Specifying Allocation Constraints We have to find an allocation, for which the conditions
4.3 and 4.4 hold. Thus, we have to specify constraints for each possible combination
of ECUs and runnables. An advantage of using the ASL is, that many of the resulting
constraints for these conditions can be expressed by only one ASL-constraint. The ASL
defines four different kinds of constraints. We reuse the constraint kind RequiredResource
for the new constraints since it provides the needed functionality to generate the ILP-
constraints. Using the extended context-model for the ASL, each of both inequations
can be specified in one ASL constraint that hides the concrete implementation from the
developer. Listing 4.5 shows the concrete call of the ASL-constraints.

1 −−ensure RTCP max delays in allocation
2 constraint requiredResource maxDelay4RTCPs {
3 ...
4 ocl self.RTCPMaxDelayConstraints();
5 }

7 −−ensure necessary condition for scheduling
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8 constraint requiredResource validUtilization{
9 ...

10 ocl self.validUtilizationFactors();
11 }

Listing 4.5: ASL constraint specification for the new constraints.

The developer has to specify a requiredResource constraint for each of both conditions.
We ommit some ASL specific parts of the constraints, indicated by three dots. The con-
crete OCL code to determine all constraints is called by one OCL-Operation for each
condition. Hence, the developer does not need any domain-knowledge to use our ap-
proach in the allocation. These ASL-constraints are translated to corresponding ILP-
constraints during the allocation automatically. Next, we show the expected number of
ILP-constraints shortly and how they can be derived for both conditions.

In general, inequation 4.4 can directly be translated into an ILP-constraint. For this, we
have to add an ILP-decision-variable to the constraint. Let xrs,ex,rr,ey be the decision-
variable that is 1, if runnable rs is allocated to ECU ex and runnable rr is allocated to
ECU ey. In all other cases it is 0. Then, we can define the following ILP-constraint:

(ts + ttransmit(ex,ey) + tr) ∗ xrs,ex,rr,ey ≤ TRTCP (4.9)

where ts is the Time for Sending, tr is the Time for Receiving, and ttransmit(ex,ey) the
time for sending a message from ECU ex to ECU ey.

Obviously, this inequation has to hold for every combination of the RTCPs with every
possible pair of ECUs. Thus, we have to specify |ECU |2 ∗ |RTCP | many constraints,
because we have to consider all possible pairs of ECUs for each RTCPs.

Furthermore, inequation 4.3 can also be translated directly into an ILP-constraint by
adding a decision-variable to the inequation. Let xr,e be this decision-variable that is 1,
if runnable r is allocated to ECU e. In all other cases, it is 0. Let Ce be the processing
capacity of ECU e. Then, we define e the following constraint for each ECU.

∑
r∈Runnables

(Ur ∗ xr,e) < Ce (4.10)

Thus, we have to define |ECU | many ILP-constraints. Note, that Ur is not a static value
for each runnable but does depend on the executing ECU (cf. equation 4.2).

For both new inequations, we have to define |ECU |2 ∗ |RTCP | + |ECU | many ILP-
constraints in total that can be expressed by only two ASL-constraints as shown in List-
ing 4.5.
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5 Safety Considerations in Partitioning and
Mapping

5.1 Motivation

In the development of software for multi-core ECUs, various challenges regarding functional
safety aspects as, e.g., defined by ISO26262 [33] are given. The main challenge is to ensure
freedom from interference as defined in ISO26262, Part 6 [36, 7.4.11] between different software
partitions. In current developments this is to the best of our knowledge most often done
manually. That is, the decision to move a particular software partition to a particular ECU is
based on the experience of the development team aided by using development tools. In case
of uncertainty within the development team that might arise due to the lack of tool support,
usually safe decisions are drawn. Typically this means, that in the case of uncertainty whether
software partition A influences software partition B such that a given goal is violated, the
decision will be to use, e.g., different ECUs for each of the software partitions when dealing
with system where only one core is used for the computation of the E/E function.
For multi-core systems the challenge becomes even larger since effects like, for example, race

conditions, have to be considered. Although these are challenges that effect the overall devel-
opment of software for multi-core systems, we focus here on the challenges that are imposed by
standards on functional safety that have to be respected in the development of automotive E/E
systems. In particular, the applicable standard is the ISO26262 [33] and for the development
of software Part 6 of the ISO norm has to be considered.
The safety life-cycle prescribes that safety goals will be formulated. Based on the safety goals

the functional safety concept will be defined in terms of functional safety requirements that are
allocated to architectural elements of the item under development. In a next development step,
the functional safety concept will be refined to the so-called technical safety requirements on
system level, see Part 4 of ISO26262 [35]. In particular, the technical safety requirements spec-
ify the system’s response to stimuli that affect the achievement of safety goals [35, 4.6.4.2.1].
Subsequently, the system design and the technical safety concept will be developed. Here, the
allocation of technical safety requirements to system design elements is one of the main devel-
opment activities in order to fulfill the requirements of ISO26262 [35, 7.4.1.2]. In subsequent
development steps, the technical safety concept is used to derive both hardware and software
safety requirements. As given in [35, 6.2]: “the software safety requirements have to consider
the constraints that are given by the hardware and the impact of these constraints on the
software”. The software safety requirements have to consider, e.g., timing constraints. When
these software safety requirements are allocated to software architectural design elements, as
forced by ISO26262 Part6 [36, 7.4.9], it has to be ensured that freedom from interference is ful-
filled. When realizing freedom from interference with methods of software partitioning, various
requirements have to be considered. For example, (1) neither code nor data shall be changed
by software of another software partition, and (2) the use of shared resources by a software
partition must not affect another software partition.

40



D2.2 – draft Concept for Partitioning, Mapping, and Tracing
for Multi- and Many-core Systems ITEA 2 – 13017

Based on the above stated challenges, a method would be useful that allows to attach software
runnables with a sufficient kind of information on the (functional, technical) safety concept such
that partitioning and mapping can be done algorithmically. In terms of App4mc, this could
be done using Affinity Constraints as described in Section 2.2.4 and Property Constraints as
described in Section 8.2 of AMALTHEA Deliverable 3.3 [5].

5.2 Functional-safety enhancement for partitioning and mapping

In order to realize a method for partitioning and mapping of software runnables, it will not
be enough to consider the Automotive Safety Integrity Level (ASIL), as given in ISO26262
Part3 [34, 7.4], alone.Additional information as, e.g., timing information, label accesses and the
usage of communication interfaces such as CAN or FlexRay have to be considered.
In the following, an example case is illustrated, that contains Runnable Pairing-, Runnable

Separation- and Property Constraints in order to support functional safety aspects during
partitioning and mapping.
In order to define the scope of this example, two prerequisites have to be introduced: Firstly,

we introduce the term “environment” as all the underlying hardware and software under which
a runnable is executed. We require that the environment in which the components of interest
shall be executed has the necessary functionality and interfaces not only from a computational
point of view but also in terms of functional safety. This means, that the hardware and runtime
environment are equipped with functional safety measures to allow the execution of software
up to a certain safety level. Hence, we can expect a all needed safety infrastructure to be in
place if we assign a runnable of a certain ASIL level to a software and/or hardware partition
that is qualified with the same or a higher ASIL level as the runnable itself. We will call this
an “infrastructure requirement” in the further reading of this section.
Secondly, we assume that the runnables to be distributed have been developed according to

functional safety standards. Frameworks like AUTOSAR encourage developers to do so and
provide respective libraries to aid functional safety compliant development but do not neces-
sarily enforce such behaviour [20]. In the worst case this could mean that software components
circumvent the safety measures of the underlying systems and by this compromise the safety
concept. However, to realistically come to an automated distribution and mapping of runnables
to ECUs and cores therein we have to be able to treat these runnables as black boxes with
certain standardized interfaces and requirements and functional safety implications that can be
derived from these black box specifications. Therefore we rely on the assumption that runnables
do comply to functional safety standards and do not work around such mechanisms.

5.3 Example case

The example case illustrates the functional safety considerations of a basic adaptive cruise con-
trol (ACC) system and the constraints that these safety considerations impose on the software
components. The architecture of the software runnables and their relations within the fictional
ACC software system are depicted in Figure 5.1 while important aspects will be visualized in
the zoomed views in Figures 5.2 and 5.3.
As a result of the safety analysis of the ACC system the system has to comply to ASIL

level C and should have an overall Worst Case Response Time (WCRT) of 250ms, i.e., the
time between an external stimulus and the system response should be less than the WCRT. In

41



D2.2 – draft Concept for Partitioning, Mapping, and Tracing
for Multi- and Many-core Systems ITEA 2 – 13017

ACC_Software

«Block»

:SensorReadoutSpeed21

Values

ASIL_Level:ASIL=B

p:ms=40

WCET:ms=4

:SensorReadoutSpeed11

Values

ASIL_Level:ASIL=B

p:ms=40

WCET:ms=4

:PlausibilitySpeed11

Values

ASIL_Level:ASIL=A

p:ms=40

WCET:ms=2

Speed

:PlausibilitySpeed21

Values

ASIL_Level:ASIL=A

p:ms=40

WCET:ms=2

Speed

:FusionSpeed1

Values

ASIL_Level:ASIL=C

p:ms=40

WCET:ms=7

Speed

Speed

:FusionDistance1

Values

ASIL_Level:ASIL=C

p:ms=20

WCET:ms=12 :ActuatorBrake1

Values

ASIL_Level:ASIL=C

p:ms=10

WCET:ms=2

:ActuatorThrottle1

Values

ASIL_Level:ASIL=A

p:ms=40

WCET:ms=20

:UserOutputAccActive1

Values

ASIL_Level:ASIL=QM

p:ms=120

:UserOutputWarning1

Values

ASIL_Level:ASIL=A

p:ms=40

WCET:ms=30

:UserInputAccActivation1

Values

ASIL_Level:ASIL=QM

p:ms=250

:UserInputMinDistance1

Values

ASIL_Level:ASIL=C

p:ms=250

:UserInputTargetSpeed1

Values

ASIL_Level:ASIL=C

p:ms=250

:UserInputBrake1

Values

ASIL_Level:ASIL=C

p:ms=40

WCET:ms=4

:DriveSpeedCalculation1

Values

ASIL_Level:ASIL=B

p:ms=40

WCET:ms=4

Distance

Speed
ActiveState

MinDistance

TargetSpeed

Brake

:UserInputAccelerator1

Values

ASIL_Level:ASIL=A

p:ms=120

WCET:ms=4

Accelerator

:DriveSpeedCalculation1

Values

ASIL_Level:ASIL=B

p:ms=40

WCET:ms=4

«RSC»«RSC»
:PlausibilityDriveSpeedCalculation1

Values

ASIL_Level:ASIL=C

p:ms=40

WCET:ms=10

Brake, Accelerate

Brake, Accelerate

Brake

Accelerate

ActiveState

Warning

«RSC»

«RSC»

«RSC»

«RSC»

:ActuatorBrake1

Values

ASIL_Level:ASIL=C

p:ms=10

WCET:ms=2

Brake

:DistanceSensorChain1

:SensorReadoutDistancePrimary1

Values

ASIL_Level:ASIL=C

p:ms=10

WCET:ms=5

:PlausibilityDistancePrimary1

Values

ASIL_Level:ASIL=C

P:ms=10

WCET:ms=7

Distance

:SensorReadoutDistanceSecondary1

Values

ASIL_Level:ASIL=A

p:ms=12

WCET:ms=5

:PlausibilityDistanceSecondary1

Values

ASIL_Level:ASIL=B

P:ms=15

WCET:ms=10

Distance

Distance

«RSC» «RSC»

:DistanceSensorChain1

:PlausibilityDistanceSecondary1

Values

ASIL_Level:ASIL=B

P:ms=15

WCET:ms=10

:SensorReadoutDistanceSecondary1

Values

ASIL_Level:ASIL=A

p:ms=12

WCET:ms=5

Distance

:PlausibilityDistancePrimary1

Values

ASIL_Level:ASIL=C

P:ms=10

WCET:ms=7

Distance

:SensorReadoutDistancePrimary1

Values

ASIL_Level:ASIL=C

p:ms=10

WCET:ms=5
Distance

«RSC»
«RSC»

«RSC»
«RSC»

Bustype2

AccActiveIndicator

UserWarning

BrakeActivation

Bustype1

ThrottleActivation

BrakeActivation

BusType2

RawSpeed

RawSpeed

PrimSensorData

SecSensorData

Activation

Brake

SpeedUpDown

DistUpDown

Accelarator

BusType1

SecSensorData

PrimSensorData

Bustype2

Bustype1

BusType2

BusType1

Page 1 of 1

Figure 5.1: Architectural model of the example ACC
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the following work process these safety requirements for the whole system have been decomposed
and translated into safety requirements for every single component within the system.

5.3.1 Functional safety relevant information attached to runnables

Each runnable can have the following safety relevant information attached which have been
derived during the development and implementation of the safety concept:

• its ASIL level,

• the WCET, which is the maximum time a runnable may take between being called and
terminating successfully,

• the execution period p, i.e., the time intervals in which the runnable must be executed,
and

• the qualified dependencies of the runnable to other runnables.

The first three items are indicated as attributes of the respective blocks while the dependencies
are visualized by the connections between single runnables.

Figure 5.2: Detail view of the distance sensor part in the ACC model.

ASIL level

The ASIL level imposes several implications which are mostly infrastructure requirements as
defined in Section 5.2 for the distribution and mapping of runnables to comply to the concept
of freedom from interference. First and foremost a runnable of a certain ASIL level is only
allowed to run in an environment that has been developed under the same or a higher ASIL.
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Secondly, the concept of freedom from interference demands that runnables of different ASIL
are not allowed to have direct access to the same resources like memory or labels. Especially,
it has to be prevented that a runnable of lower safety level can compromise the execution
of a runnable of higher safety level. Such a situation can be seen in Figure 5.2 between
the components “SensorReadoutDistanceSecondary” (ASIL A) and “PlausibilityDistanceSec-
ondary” (ASIL B) as well as “PlausibilityDistanceSecondary” and “PlausibilityDistancePrimary”
(ASIL C). In such situations the respective runnables have to be put in different partitions of the
environment and the safety mechanisms provided by the environment have to ensure freedom
from interference by supervising the data flows between them.

Worst Case Execution Time and execution period

The WCET relates to the longer WCRT that is used on a higher level like a group of software
components by the following relationship: The total WCRT of a group of software components
Ci that are executed sequentially and connected to each other via the communication paths j
with signaling time constants tj is WCRTt =

∑
iWCETi+

∑
j tj . Where a component contains

several components or component groups that are executed in parallel the WCRT of the whole
component is just defined by the path(s) in the parallel execution with the longest WCRT. By
these two rules it is possible break the WCRT of a whole system or software components down
to a WCET for every single runnable.
As already the ASIL level the WCET and execution period impose mainly an infrastructure

requirement since it has to be ensured that the partition to execute a certain runnable provides
enough resources to run it within the required time frame and frequency.

Dependencies

For the qualification of the dependency between runnables we have two dimensions: safety-
criticality and timing-criticality. Hence, the following four possibilities exist for a qualified
dependency:

1. safety-critical and timing-critical,

2. safety-critical and not timing-critical,

3. not safety-critical and timing-critical.

4. not safety-critical and not timing-critical,

However, the cases 3 and 4 can be treated equally because the timing-dependency on non-safety
critical dependent runnables is not of importance for the partitioning and mapping of those
runnables.
The qualification of a dependency can be derived by looking at the ends of a connector

between two blocks: Criticality in either of the two dimensions is given if both ends are have
a respective criticality property, i.e., both have an ASIL level higher than “QM” and/or have
a WCET attached. If no or only one end of the connection has such a property attached, the
dependency can be considered not critical in the respective dimension. Examples of the cases 1,
2, and 4 can be seen in Figure 5.3: With respect to the block “DriveSpeedCalculation” (ASIL
B and with a WCET), the connection to “UseInputBrake” (ASIL and WCET) is safety and
timing critical (case 1), the connection to “UserInputTargetSpeed” (ASIL but no WCET) is
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Figure 5.3: Detail view of the user input section of the ACC model.
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only safety critical (case 2), while the connection to “UserInputAccActivation” (ASIL QM and
no WCET) is neither safety nor timing critical (case 4).
In addition to the three cases above, we define another class of dependency between runnables

which we call resource safety-critical (RSC). Two runnables are RSC with respect to a resource
A, if they are not allowed to share resource A. Here, resource A means especially resources
that are outside of the direct control of the respective software system, i.e., components of the
environment like access to memory partitions, processor cores, or communication interfaces.
Resources that are within the control of the software system such as access to shared labels
where some runnables have write and and another runnables have read access should already
be covered by safe programming concepts like a client-server or sender-receiver approach. That
way they can be handled safely by the safety measures of the underlying operating system if
runnables are separated across operating or hardware resource borders that are not necessary
by safety considerations but only have been introduced by the distribution of the runnables to
different ressources under other than safety-related criteria.
RSC dependencies typically come into play where the safety concept requires a redundant

design to minimize the risk of failure. Such RSC dependencies can be seen in Figure 5.2
between the two big “DistanceSensorChain” blocks and the “FusionDistance” block and in Fig-
ure 5.3 between the “DriveSpeedCalculation” blocks. Unless there exists already an explicit
RSC dependency definition concerning certain resources from the safety concept – like the two
“DistanceSensorChain” blocks in Figure 5.2 which by design get their inputs from two redun-
dant bus types (“BusType” ports on the left edge of Figure 5.2) – it is yet to be checked whether
a heuristic can be derived to determine by which resources a separation should be done.

5.3.2 Relation to general mapping and partition constraints

For this ACC exmple case, various requirements arise to the partitioning and mapping of
runnables. These requirements can be fulfilled by the methods introduced in Chapters 2 and 3.
The concrete application of these methods to the previously introduced example, and more
generic to safety-standard related developments, will be discussed in the upcoming deliverable,
i. e., D2.3, of WP2.
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6 Resource Management

This chapter addresses resource management in embedded and concurrent systems. Partition-
ing, mapping, and resource protocols influence each other such that different combinations
should be investigated and assessed. This assessment can be done by analyzing traces in order
to check for busy waiting periods (the time a resource keeps spinning until a locked resource
becomes available).
Shared memory must be managed by mechanisms, algorithms or protocols to support error-

free and simultaneously effective utilization of shared resources. Usually, a semaphore is used to
lock a resource, perform an action, and release (unlock) the resource afterwards. The problem
of deadlocks, spinlocks, and mutual exclusion as well as regarding concepts of AUTOSAR were
already outlined in Deliverable D2.1 [8].

6.1 Protocols

The protocols presented in this chapter aim at the automatic and efficient management of
accessing shared resources while considering timing, precedence or resource constraints. Timing
constraints can be activation, completion (deadlines) or jitter. Precedence constraints usually
impose execution orders whereas resource constraints ensure a synchronized access to mutual
exclusive resources. Gomes et al. [29] describe briefly various protocols in the domain of
resource synchronization protocols.
The most common way of lock implementations are semaphores consisting of:

1. a counter,

2. a queue,

3. a pointer to the next semaphore control block,

4. and a holder .

The next sections describe the evolution of basic protocols from the early beginning of NPP
(Section 6.1.1) to a complex and very recent approach PWLP (Section 6.1.12). Basic ideas,
extensions, benefits, and references are given. The list does not intend to be a cross-domain
complete enumeration but rather gives an impression of shared resource management protocol’s
evolution.

6.1.1 NPP

The Non Preemption Protocol (NPP) gives the ‘caller’ (in terms of App4mc the runnable
that accesses the shared label) the highest priority such that it will not be preempted. Upon
releasing the resource, the ’caller’ resets its priority to its initial value. However, this most
simple method results in low priority tasks blocking higher priority tasks resulting in possible
missed deadlines but avoids deadlocks.
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6.1.2 BIP / PIP

The Priority Inheritance Protocol (PIP) [45] or Basic Priority Inheritance Protocol (BIP) sets
the lock-holder’s (L) priority to the priority of a higher priority task (H ), if H ’s lock request
is rejected since L is holding it. In other words, the blocked task’s priority is inherited to the
blocking task. The disadvantage of BIP / PIP is that it is subject to potential deadlocks and
chained blocking occurs with many preemptions. In contrast to PCP (Section 6.1.4), priority
inheritance does not require a priori resource ceiling value calculations.

6.1.3 HLP

The Highest Locker Protocol introduces a ceiling value to locks (semaphores) that is the highest
priority of the tasks that access the lock (statically calculated offline). This approach is deadlock
free since a task holding a lock runs at the same priority as any other tasks that want to access
the lock, such that the other tasks will no preempt the lock holding task. The ‘Holder’ in the
semaphore structure (Section 6.1 item 4) is replaced by the ceiling priority for HLP [17].

6.1.4 PCP

The Priority Ceiling Protocol [45] is a combination of HLP and BIP. A blocking task (the task
holding a lock) increases its priority only if a higher priority task tries to acquire the lock (the
blocking task’s priority is set to the higher priority task’s priority). PCP results in bounded
priority inversion, deadlock free results, blocking number = 1, and a better response time for
high priority tasks.

6.1.5 SRP

The Stack Resource Policy (SRP) protocol [11] extends PCP by “(1) unifying the treatment of
stack, reader-writer, and multiunit resources, and binary semaphores; (2) applying directly to
some dynamic scheduling policies, including EDF, as well as to static priority policies; (3) with
EDF scheduling, supporting a stronger schedulability test; (4) reducing the maximum number
of context switches for a job execution request by a factor of two” [11]. It thereby addresses
dynamic priority scheduling and introduces static preemption levels for shared resources. Stack
resources are defined by νR denoting the amount of currently available resources and υR(J)
is the maximal amount job J requires of R. Via calculating system ceiling

∏
s(t) and current

static resource ceiling ceil(pk), a job can derive whether it is allowed to preempt a job or not.
For preemption, it is required that the J has the highest priority among the jobs ready to run
and that its preemption level is higher than the system ceiling.

6.1.6 DPCP

Dynamic PCP was developed concurrently to the SRP protocol and is another attempt to
address dynamic priorities for PCP [16]. It provides partially improved processor utilization
compared with EDF, prevents priority inversion, chained blocking, and keeps the system dead-
lock free. To achieve this, each critical section is assigned a dynamic priority ceiling value, that
reflects the earliest deadline of tasks trying to access the resource at a specific time instance.
Tasks are blocked if their priority is not higher than all currently used resource ceiling priorities.
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6.1.7 MPCP

In [43], Rajkumar presented the first approach to provide mutual exclusive access to resources
not only in a multi task environment, but also for multiple processors, where multiple tasks run
concurrently (Multiprocessor Priority Ceiling Protocol - MPCP). It is explicitly stated, that
only critical section accesses can affect (block) other tasks, since critical section code is very
small compared to non-critical execution time. Tasks accessing local semaphores on a processor
use PCP locally. Among resources shared globally among processors, global semaphores are
used upon a dedicated synchronization processor. Using more synchronization processors that
also execute application tasks is denoted as the generalized MPCP. Global ceiling priorities are
inherited if a higher priority task wants to access a resource that is hold by lower priority task.
In this case, the lower priority task inherits the higher priority task’s priority and continues
execution. Critical sections can be preempted, if a task wants to access a global resource thats
ceiling priority is higher than the currently hold resource and the resources are not the same.
With a single dedicated processor for global semaphores, global resource accesses are always
executed sequentially.
Similar to DPCP, MPCP extends priority inheritance (priority of a resource holding task is

raised to the maximal priority of itself and all tasks waiting for the same resource) with priority
boosting via unconditionally elevating a priority temporarily above the highest-possible base
priority to expedite the request completion [15].

6.1.8 MSRP

Gai et al. extended SRP with preemption thresholds in [27] (SRPT) by letting tasks share
pseudo-resources to make them mutually non-preemptive. The idea produces very little over-
head, retains advantages of SRP (preventing deadlocks, bounds maximal blocking times, re-
duction of context switches, supporting multiunit resources), and reduces the maximal stack
space requirement by reducing preemption. Therefore, an optimal assignment of preemption
thresholds to tasks as well as a set of non-preemptive groups minimizing total stack size is
identified. Instead of suspension-based protocols, MSRP uses spinning i.e., busy waiting.

6.1.9 FMLP

The Flexible Multiprocessor Locking Protocol (FMLP) is described in [12]. Initially, instead of
directly scheduling tasks to processors, Block et al. first link tasks to processors. Consequently,
a task can be linked but not scheduled such that the task is non-preemptively blocked or a task
is scheduled but not linked such that the task is not one of the highest priority tasks but is
scheduled due to it is non-preemptive. This mechanism is denoted as G-EDF (global earliest
deadline first) for suspendable and non-preemptable jobs. FMLP further distinguishes between
short and long resource holding durations (specified by the user), executes only short requests
non-preemptively, and groups resources to efficiently deal with short, non-nestable resources.
Such resource groups are protected by queue locks and address nested resource accesses i.e.,
cases where resource accesses are contained in other resource accesses (e.g., ...lock(r1), ...,
lock(r2), ... rel(r2), ...rel(r1)). This mechanism performs more effectively compared with
MSRP regarding schedulability.
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6.1.10 OMLP

Brandenburg et al. introduce in [15] the priority inversion metric (pi-blocking) and present
the O(m) locking protocol (OMLP).While considering JLSP (job level static priority) sched-
ulers, Brandenburg et al. demonstrate that neither priority inheritance nor priority boosting
can be the basis for asymptotically optimal locking protocols. With OMLP, a lower bound
on pi-blocking is defined for each resource request that differs whether suspension-aware or
suspension-oblivious approaches are addressed. Furthermore, a resource holding job is always
scheduled and the duration of pi-blocking is bounded by the maximum request span. By illus-
trating ‘priority donation’, it is shown that an ‘unlucky’ job cannot be preempted repeatedly.
“A priority donor is a job that suspends to allow a lower-priority job to complete its request”
[14]. Experiments illustrate that OMLP preforms better than all MPCP experiments where
spinning (busy waiting) is used and also better than all MPCP results for a resource request
probability of 20%. With 40% resource request probability, OMLP only performs better than
suspension based MPCP below 50% processor utilization. The main application of OMLP is
clustered scheduling.

6.1.11 RNLP

Ward et al. [49] compare FMLP and OMLP based on partitioned, clustered and global schedul-
ing as well as spinning, s-aware, and s-oblivious analysis and present the Realtime Nested
Locking Protocol (RNLP). Unlike group locks, RNLP provides more fine grained nested resource
requests that only requires partial order on resource acquisitions. Therefore, a k-exclusion to-
ken lock and a request satisfaction mechanism (RSM) is used. The token lock defines when
to react according to incomplete resource requests. It is stated that tasks waiting for a token
make progress via priority boosting, inheritance or donation. There are six rules to compete
for a shared resource in RSM after receiving a token. For each resource, a queue that is ordered
by priority and increasing timestamps defines for “a nested resource request to effectively ‘cut
in line’ to where it would have been had it requested the nested resource at the time of its
outermost resource request” [49]. RNLP improves average-case pi-blocking due to fine-grained
locking where nested resource requests are not grouped and individual (separate) resources can
be hold by jobs concurrently.

6.1.12 PWLP

The Preemptable Waiting Locking Protocol (PWLP) was published by App4mc project partner
colleagues from Regensburg [4] to address disadvantages of the OSEK-PCP for concurrent
systems i.e., the possibility of deadlocks to occur and OSEK-PCP’s inapplicability to dynamic
priority schedulings. With a new mean Normalized Blocking Time metric (mNBT), temporal
synchronization effectiveness is evaluated. Based on the resource model from FMLP (Section
6.1.9), PWLP retains advantages of FMLP i.e., supporting partitioned and global scheduling
with job-fix, task-fix or dynamic priorities while allowing nesting and further minimizes priority
inversion via preemptive busy waiting. Experiments were performed with varying numbers for
sharing degree α, resource accesses per task K, periods P , and task utilizations (here 0.1%
to 10%) whereas other parameters were static: the number of tasks and processors was set to
1000 resp. 4. With α = 0.5 all task sets were schedulable. While FMLP is able to schedule
more task sets without deadline violations (in average among all numbers of resource accesses
per task) for α = 4, K = 0 . . . 19 and periods from 10ms to 100ms, PWLP schedules more task
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sets for α = 1, K = 0 . . . 12 and task periods of 3ms to 33ms. It is stated that this fact might
probably be caused by increased nesting if tasks recur in shorter intervals.

6.2 OSEK-PCP in AUTOSAR

A brief overview of spinlocks used in AUTOSAR was given in Deliverable D2.1 [8], chapter
2.3.6. Furthermore, Gomes et al. [29] outline resource sharing problems in AUTOSAR and the
corresponding inefficiency of OSEK-PCP like the violation of base priorities, no task suspension
during holding a resource causing inefficient and error prone system designs and allocation
overheads as well as spinlocks. The fact that tasks waiting for a resource among cores are
not ordered further causes more unpredictable blocking times as well as priority inversions to
take longer. To address this, Gomes et al. [29] propose the concept of dynamic hinting for
resource management in order to improve system reactivity. This dynamic hinting is applied
to spinlocks that are globally shared resources among cores in AUTOSAR. The idea is that
hints are generated upon blocked tasks indicating the lower priority task holding the resource
to release it due to its spurious influence. For this purpose, a cross-core waiting priority queue
was implemented to provide that always the highest priority task receives access to a spinlock
next. Consequently, only the highest priority task will busy wait upon the spinlock while other
tasks wait.
The next section briefly introduces a concept to further reduce busy waiting in AUTOSAR

based on a priori knowledge about task structures, that are composed of instruction consuming
runnables. Therefore, specific time slots of accesses to shared resources within a task are
identified and based on runnable causality and task release deltas (system state), runnable
orders are shifted to reduce the total amount of resource conflicts.

6.3 Resource Management Concept for APP4MC

Instead of introducing a new protocol and with the knowledge about runnable orders and label
accesses, we can estimate shared resource access collisions depending on conflicting task release
time (RT) and delta values RTtx − RTty = δtx→ty . The approach is denoted as Task Delta
based Runnable Rescheduling (TDRR) that defines Runnable Schedule Orders (RSO(c,∆c)
that depends on a conflict c and the task release delta values within ∆c that defines multiple
δtx→ty values for different tasks tx and ty.

The following Figure 6.1 illustrates an example case showing three tasks, consisting of three
runnables each, whereas the first task accesses a lock at its first runnable, the second task at
its second runnable, and the third task at its last runnable.

L

L

L

L

L

L

A

B

C

L

L

L

t
ẟB→A ẟC→A ẟC→B

Figure 6.1: Three conflicting tasks, 3 label accesses
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Within the RSO calculation, different task δ values are considered. Since a task cannot have
a delta release times to itself, the matrix’s main diagonal is 0 if there is no conflict in case all
tasks are released at the same time or 1 if there is a conflict for the same release time across
all conflicting tasks. Another example is given in Figure 6.2.
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ẟA→B
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L L

ẟA→C

L L

L L

ẟC→B

Figure 6.2: Three conflicting tasks, six label accesses, conflicts considered between two tasks

The actual release times of tasks vary and depend on the system state. If the ∆ matrix has
multiple values in a column > 0, then a RSO must be calculated for the current task while
considering multiple tasks of the corresponding column.
Busy waiting periods occur when a runnable’s request to a lock is rejected since another

runnable is already holding the lock (cf. Section 6.1, Figure 6.1, red marks, or Figure 6.4, case
(e)).
Runnable schedule orders RSO can be calculated that define for each conflict c and potential

task release delta values that would result in busy waiting, a schedule order for a latter released
task. In particular, at each release of a task, the system is observed whether one or more
conflicting tasks are already executing (i.e. they were release earlier). If this is the case, the
task is released with a runnable schedule order that minimizes busy waiting.
Consequently, as already stated in the task declaration, a RSO is a task instance i.e. a

concrete permutations of a ProcessPrototye. Such permutation can differ from permutations of
other instances of tm that already finished their execution.The concrete permutations (runnable
schedule orders) are calculated to minimize busy waiting periods (BW(c,∆c)) as described in
the following along with an example.
Having static runnable orders, busy waiting can appear at any given instance of time and

causes unpredictable delayed task release times, hence, less deterministic behavior. In order to
illustrate the described problem and its corresponding solution, the following directed acyclic
graph (Figure 6.3) is given, consisting of runnables r0− r9, that each consume a single instruc-
tion (time instance) for simplification and comprehension purposes. Runnables have directed
dependencies (edges) denoted with arrows.

r1

r2

r0

r6

r5

r7

L
r4

r3
r8

r9

Figure 6.3: Runnable dependency graph with two tasks and a shared label
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The two tasks t0, t1 share one common label L, that is written by r1 and r5 and read by
r2 and r6. Due to concurrent system architecture, the label must be protected by a lock e.g.,
a semaphore. Assuming the spinlocks for globally shared resources in AUTOSAR, the task
is granted access with the highest priority causing the lower priority task to wait until the
resource’s lock is released (spinlocks address the tasks being assigned to different hardware pro-
cessing units resulting in concurrently progressing tasks). Using the RSO, such busy waiting
can be reduced to keep response times low and retain deterministic behavior. Possible execu-
tion results are illustrated in Figure 6.4.
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Figure 6.4: Timline diagrams showing the execution of tasks of Figure 6.3 regarding five differ-
ent task release deltas with and without RSO utilization

Figure 6.4 shows ten possible concurrent executions cases (a) − (j) of the two tasks (t0, t1)
with five runnables each, in regard to five different release deltas (columns): δc0t0→t1 =
{0, 1, 2}, δc0t1→t0 = {1, 2}. Furthermore, cases for δc0t0→t1 = {3, 4}, δc0t1→t0 = {3, 4} are shown
in Figure 6.5.
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Figure 6.5: Timline diagrams showing the execution of tasks of Figure 6.3 regarding further
four task release deltas with and without RSO utilization
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Accesses to the shared label respectively its lock are denoted as red arrows (lock granted),
green arrows (lock released), and blue arrows (rejected accesses). Such rejected accesses caused
by a locked resources result in blocked tasks that will busy wait until the locks are released and
available. The task released first is assumed to the reveal static runnable schedule order. The
latter released task uses the pre-calculated RSO if it predicts busy waiting based on the task
release delta ∆c e.g., cases (g), (k), and (o) are replaces with (h),(l), and (p) such that busy
waiting is reduced completely.
In case multiple tasks are waiting for the same resource, the concept from [4] could be used

in order to assign the resource to tasks with highest priority and longest polling periods first.
Without TDRR (first rows, cases (a),(c),(e),(g),(i),(k),(m),(o),(q)), the runnable execution or-
der remains static and may be blocked by a locked resource as in case (g), (k), and (o). With
TDRR, (second rows: cases (b),(d),(f),(h),(j),(l),(n),(p),(r)), the runnable execution order is
based on the pre-calculated RSO and no busy waiting occurs in case (h), (l), and (p), resulting
in a reduced response time. In this example, only three schedule orders for case (h),(l), and (p)
are be calculated. It may be of interest, to keep lock requests close to each other, shown in other
cases with TDRR. Such narrowed down locking time may grand the resource to further tasks
and reduce busy waiting there. These calculations are intended to be configurable, such that
either the static order from the first row is executed or the RSO are calculated and executed
correspondingly. To sum up, the amount of busy waiting reduction consequently depends (1)
on the amount of conflicts C, (2) the runnable dependency structure that is derived from the
graph DAG (the DAG also defines the conflicting runnable’s shifting times tsrr , tswr), and (3)
on the task release delta ∆c.
RSO are selected at release time and will be static for a single instantiation of the task.

TDRR intends to provide RSO for as many different system states as possible. However, the
amount of cases that have to be investigated for busy waiting rises significantly very early as
shown in the following example.
A simple fictional system consists of task t0 sharing a resource A with tasks t1 (c0) and

another resource B with task and t2 and t3 (c1). t0’s instruction length is 3 and
It1 = 100, It2 = 50, It3 = 10 correspondingly. The overall number of task delta combinations for
the tasks is already 680. It has further to be investigated, if RSO should be calculated offline
for potential conflicts and how the amount of delta combinations can be effectively reduced.

6.4 Summary

The previously described TDRR approach conceptually seems promising for reducing busy
waiting that occurs in multi processor systems when shared resources are managed via spin-
locks e.g., in AUTOSAR. Various simulations and evaluations need to be performed in order
to validate the benefits of TDRR. Furthermore, the solution space exploration requires specific
restriction techniques since multiple shared resources can be accessed by multiple runnables
along with various task release deltas while each combination reveals different runnable order
combinations that have to be investigated. Since schedule tables also affect other label ac-
cesses, a good idea might by to initially abstract from runnable dependency graphs to resource
graphs (e.g., shown in [11]). This would identify which tasks influence other tasks in case
their runnables are reordered and which tasks can be analyzed independently. The graph from
Figure 6.3 would result in simply t0 − t1 (undirected, denoted inter task communication graph
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(ITCG)), denoting that t0 influences t1 and the other way around. Such shared resource graphs
would have to be taken into account for calculating the RSO(c,∆c).
It has to be shown that TDRR provides a more deterministic behavior and less busy waiting

compared to AUTOSAR or currently available approaches. It can further be assessed regarding
the protocols presented in section 6.1. The proposed TDRR concept is intended to be imple-
mented and tested along with App4mc as well as evaluated with simulation tools (e.g. Timing
Architects Toolsuite) in the near future. Also, hardware execution combined with tracing is
intended to be used to validate the results.
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7 Case Study

7.1 Parallax ActivityBot

The Parallax ActivityBot has been briefly described in Amalthea4public deliverable D2.1
[8]. The following sections provide a more detailed insight into the progressed use of the
ActrivityBot.

7.1.1 Application Description

The application described in the following was used along with the summer school 2016 at
Dortmund University of Applied Sciences and Arts. It includes a simple structure that is
modeled in App4mc to utilize parallelism possibilities of the ActivityBot. The application is
intended to do the following:

• Click on a button

– robot drives until an obstacle in front is detected and then turns to the right by a
∼ 90 degree angle

– at the same time , two LEDs are blinking: LED 26 and LED 27 in different frequen-
cies (LED 26 → 5Hz, LED 27 → 2,5Hz)

• Another click on the button

– robot continues to drive until obstacle in front is detected and then turns to the left
by a ∼ 90 degree angle

– the two LEDs 27 and 26 are blinking in swapped frequencies (LED 26 → 2,5Hz,
LED 27 → 5Hz)

7.1.2 Modeling

The application was structured into the following 23 runnables:

Activation Runnables
1000ms pin11, buttonPushed, pause(1000)
200ms LED26(200ms), LED27(200ms)
125ms init, servoLeft, servoRight, driveForwardsButtonStateTwo, driveForwardsBut-

tonStateOne, buttonStateOne, buttonStateTwo, driveLeft, driveRight, click
100ms LED26(100ms), LED27(100ms)
220ms ping, distance, pause(200ms)
12ms abdrive, setRampStep, rampStep

Table 7.1: Runnable’s activation references
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The runnables were traced to derive the following instructions:

Runnable_Name Instructions Runnable_Name Instructions
distance 97008 pause(200) 2400000
driveForward- buttonPushed 8292
ButtonStateOne 228048 pin11 8544
driveLeft 227904 pause(1000ms) 12000000
driveForward- buttonStateTwo 228048
ButtonStateTwo 228048 driveRight 228049
init 8496 servoLeft 8352
servoRight 8340 abdrive 8880
ping 97008 click 8544
rampStep 120684 setRampStep 8880
LED26(100ms) 1200012 LED26(200ms) 2400042
LED27(100ms) 1200103 LED27(200ms) 2400096

Table 7.2: Instruction Constants of Runnables

Dependencies (RunnableSequencingConstraints) are shown in Figure 7.1.

Figure 7.1: ActivityBot software model
Figure 7.2: ActivityBot hardware model

Additionally, the partitioning must be constrained to prevent separating specific runnables.
This separation prevention can be addressed by the runnable pairing constraints, contained
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in the affinity constraints. The following three pairing constraints were created to bind the
mentioned runnables and ensure a correct execution of the program:

1. pin11, buttonPushed, pause(1000ms)

2. ping, distance, pause(200ms)

3. abdrive, setRampStep, rampStep

These runnable pairings are considered as described in Section 2.2.4. Furthermore, a hardware
model was created as shown in Figure 7.2. It contains the following memories:

• name: 32KB global, size: 32786, type: RAM

• name: 2KB local, size: 2048, type: CACHE

• name: 32KB ROM, size: 32786, type: FLASH_INT

Additionally, the elements for the ECU, the micro-controller, the 8 cores, a prescaler, and
all corresponding properties were defined. Based on this model, the mapping methodology
described in chapter 3 could be utilized.

7.1.3 Code Generation

The application’s basis was implemented within a Yakindu state chart model, that was further
used to generate code. The state chart model is shown in Figure 7.3.

Figure 7.3: ActivityBot state chart model

The generated code required certain adaptations and extension to be finally compiled to the
ActivityBot using the SimpleIDE tool. Such adaptation especially address triggering the servo
motors, accessing the ActivityBot’s buttons in order to change between the button states,
reading the ultrasonic sensors, and the LED setup required to set the specific pins that are
related to the LEDs.
Partitioning and mapping results were implemented via cogstart, cog_run, and cog_end

commands that define which functions run on which cores.
The result was a working parallel application that provides an efficient distribution of software

functions to the different cores of the ActivityBot. The presented steps become necessary
for bigger projects especially in the automotive domain. The development highly benefits
from automatic parallelization in form of partitioning and mapping as well as a common and
standardized data exchange model.
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7.2 RC-Car XMOS

The RC-Car application has been briefly described in App4mc deliverable D2.1 [8]. The fol-
lowing provides a more detailed insight into the progressed use of the RC-Car.
The most important progress is the addition of a raspberry pi 3 (RPI3) to the platform.

With four cores each of the speed 1.2GHz, it (1) has powerful processing cores required for
image processing, (2) consumes relatively low energy (5 Volts, 1-2 Ampere → 5-10 Watts),
(3) is impressively cheap, and (4) provides existing interfaces and implementations regarding
Ethernet data transmission, OpenCV library usage and camera drivers.
The new RC-Car’s architecture is shown in Figure 7.4.

Figure 7.4: RC-Car’s architecture

The remote control Android application has been extended to also support a Joystick GUI.
In addition, the RC-Car application can perform basic traffic cone detection and correspond-
ing steering with the help of the PRI3 and its Ethernet interface connected to the XMOS
ExplorerKit board.
The Amalthea model for the RC-Car application is still under development. We intend

to use property constraints for binding the OpenCV implementations to the RPI3 and affinity
constraints for the partitioning to prevent mixing up OpenCV and steering respectively RC-Car
related functions.
In the later course of Amalthea4public, we plan to investigate and evaluate the paral-

lelization features partitioning and mapping for the RC-Car with App4mc. This plan is also
intended to be subject to a related publication.

7.3 Multicore Communications API Implementation

The concepts of the Multicore Communications API (MCAPI), developed by the Multicore
Association (MCA), have been briefly introduced within deliverable D2.1 [8]. The next step was
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to implement selected parts of this application programming interface for the NXP MPC5668G1

multicore processor for demonstrating these concepts within the range of Amalthea4public.
This chapter first describes the basic concept of this implementation and the design of the
different modules. Moreover, a test scenario which shows a communication between the two
cores of the MPC5668G, using the MCAPI, will be described.

7.3.1 Implementation Concept

For best portability and reusability the implementation uses a layered architecture. On the top
layer the MCAPI functions, as defined in [47], are located, which also include the logic and
semantics for error handling. Under the MCAPI layer lies the transport layer, whose functions
will be initiated by the MCAPI functions. The functions of this layer are responsible for creating
a MCAPI environment, the actual transfer of data between the two cores and finalizing the
MCPAI environment when all communication is done. Through a strictly separation of these
layers there will not be any cycles inside the dependency graph because only functions from
a higher layer have access to functions below and not the other way around. Underneath the
transport layer are functions that are used for message queues within the data transfer and
functions with direct access to the hardware of the MPC55668G (e.g. acquiring a hardware
semaphore). So changing to a different target platform is possible without much effort. Only
the hardware dependent parts have to be replaced and the layers above remain unaffected. The
following section will give a deeper insight into the individual modules.

7.3.2 Module Design

The module design is based on a stub implementation done by the MCA board member NXP
Semiconductor.

Transport Layer

The transport layer contains all functions for transferring data using the messages concept
of the MCAPI. This includes for example creating a node, encoding and decoding a message
transfer handle and getting the IDs of a node. The most relevant functions will be describe
below.

• mcapi_trans_initialize():
With this function a MCAPI environment will be created for a calling node. If this
function is called the first time, the database address is defined and the node will be
added to the database with its domain ID and node ID. Trying to initialize a node with
IDs already used or adding a node where there is no empty space in the database will
result in an error.

• mcapi_trans_endpoint_create():
Each initialized node needs at least two endpoints for communication. One for sending
data and one for receiving data. Calling this function will create an endpoint which could
be identified by the parameters domain ID, node ID and port ID. After checking if the
maximal number of endpoints has not been reached, the endpoint will be added to the

1http://www.nxp.com/mpc5668G, online, access June 2016
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database. Afterwards a handle will be created using the three IDs to identify the endpoint
in the system.

• mcapi_trans_send_data():
This function is responsible for transferring the data via a buffer. First of all the queue
of the receiving endpoint is checked if it is already full. If the checking function returns
positive, the next empty entry will be searched and the index will be returned. Data will
be copied into a buffer and the buffer will be linked to the queue entry.

• mcapi_trans_recv_data():
For receiving data, the corresponding entry will be removed form the queue and the index
of the buffer will be stored temporary. After checking if the application buffer has at least
the same size as the transfer buffer, the data will be copied into it. Once the receiving
process is complete, the transfer buffer could be used for another communication.

• mcapi_trans_finalize():
At the end of all communications, the nodes have to be finalized before closing the MCAPI
environment. Thus every node has to call mcapi_trans_finalize() whereby this node
will be marked as invalid. If the calling node is the last node in the system, the MCAPI
environment will be closed.

A closer look at these functions and their corresponding sequence diagrams could be found in
the following section 7.3.3.

Database

The MCAPI specification defines a precise topology of an MCAPI environment. At the top
of every system a domain or multiple domains are located. Each domain could have one to
many nodes (implementation specific) whereby each node could create one to many endpoints
(implementation specific). The topology created for this implementation is shown in figure 7.5.
The database elements are realized as struct data types. At the top of this implementation is
the mcapi_database struct. It contains the domains created in an environment, the buffers for
transferring the data and a counting variable for the number of domains in the system. The
trans_buffer struct contains a variable for transferring scalar values (scalar) using the scalar
channels, which could be implemented in a further version. If a buffer is already in use, it will
be marked using the selected variable. The actual size of the data will be stored in size and
the data itself in buff. For this example ten buffers could be used.
Each domain in a system (two for this example) has its unique domain_id with which it

could be identified. This ID will be set during initialization of the first node in the specific
domain. The variable valid signals if a domain is still valid and is important for finalizing the
whole system. Moreover, the domain struct contains the created nodes and a counter for the
number of nodes inside a domain.
For identifying a node, a node_id has to be set during initialization. This ID could not be

changed during runtime. In this example the maximum number of nodes is five. Marking a
node as valid is similar to the domains, using the valid variable. With endpoint_count, the
actual number of endpoints related to a node could be queried.
An endpoint (up to ten in this example) is indicated by its port_id. Similar to domains

and nodes valid provides information about the validity of an endpoint. For a subsequent
extension of this implementation, the endpoint struct contains variables for checking if an
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mcapi_database

- domains : domain
- buffers : trans_buffer
-domain_count : uint16_t

trans_buffer

- scalar : uint64_t
- selected : uint32_t
- size : size_t
- buff : char[]

1..10

domain

- domain_id : mcapi_domain_t
- valid : mcapi_boolean_t
- nodes_count : uint16_t
- nodes : node

node

- node_id : mcapi_node_t
- valid : mcapi_boolean_t
- endpoint_count : uint16_t
- endpoints : endpoint

1..5

endpoint 

- port_id : mcapi_port_t
- valid : mcapi_boolean_t
- connected : mcapi_boolean_t
- open : mcapi_boolean_t
- recv_queue : queue

1..10

queue

- channel_type : uint8_t
- elements_count : uint16_t
- head : uint16_t
- tail : uint16_t
- elements : buffer_index

1

buffer_index

- index : int32_t
- active : int32_t

0..11

2

Figure 7.5: Datbase model for example implementation
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endpoint is connected to a channel (connected) and if connected, the channel has been opened
for transferring data (open). To process the messages in order they were send, a reference to
the buffer will be added to the receive endpoint recv_queue. Each endpoint has one receive
queue.
In the receive queue struct following information are stored: channel_type (defines whether

data is transferred via channels), elements_count (number of elements in the queue), head
and tail (indicates the first and last element in the queue) and a buffer_index component to
link a buffer to a message communication. For this functionality the buffer_index component
contains an index and an active variable which store the buffer index and signals whether the
buffer is in use. In this implementation a queue consists of a maximum of eleven elements.

Queue and hardware layer functions

Transferring the data is done by using buffers which are referenced in the receive endpoints
queue. The receive queue is realized as a circular buffer with an implementation specific size.
If the queue is full, no further elements could be added to the queue until the application on
receiver side removes elements. The queue component contains four functions for controlling
the queue. With the function push_queue() an element is added to the queue and the index is
returned to the calling function, indicating the position of the added element. Moreover, the
counter variable and the pointer to the last element will be incremented by one. For getting
an element from the queue, the function pop_queue() is used. It returns the index belonging
to the buffer with the data. The counter variable will be decremented by one and the pointer
to the first element will incremented by one. Due to the fact that the queue operates on the
FIFO principle, every time pop_queue() is called, the oldest at that time unread element is
taken from the queue.
Additionally to the pop and push functions, the queue module contains two functions for

checking whether the queue is full or empty. full_queue() checks if the queue is full by compar-
ing the actual number of elements in the queue with the maximum specified in the requirements.
Thus it is not possible to remove an element from an empty queue, empty_queue() checks if
there are any elements in the queue by comparing the counter with 0.

For this implementation the hardware semaphores of the MPC5668G were used. These
functions were defined in the module semaphore_mpc(), which only contains functions with
direct access to the hardware registers of the MPC5668G. This enables a good portability to
another target platform, since only this module has to be implemented for a new processor.
In order to prevent conflicts when accessing the database, the semaphores are used. Before

an access occurs, a semaphore will be locked, so that only one core of the MPC5668G could
operate on the database. To identify which core uses the semaphore the processor ID of each
core will be used. In the special-function register (SPR) 286 the ID is stored. With a single
instruction the ID could be moved to a general-purpose register for further processing. With
this ID the function gateLock() could lock a semaphore for the calling core by writing a lock
value (processor ID + 1) to the semaphore register. If the other core tries to lock the semaphore,
it has to wait in a spin-wait loop, until the semaphore is released by the first core. Releasing
a semaphore is done by calling the function gateRelease(). In this functions the semaphore is
released by writing 0 to the register.
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7.3.3 Communication Example

For illustrating a message communication via the MCAPI, this section shows an example com-
munication using the MPC5668G. Therefore two domains with each containing one node will
be created. One domain belongs to one core of MPC5668G. For sending and receiving data,
two endpoints will be created per node. The sequence of each step will be shown in a sequence
diagram.

Initializing

The first step in every communication process is initializing the MCAPI environment by cre-
ating nodes. Each core gets its own domain ID and node ID. In the main-routine of the
respective core the process of creating a node is started by calling mcapi_initialize() (shown
in figure 7.6). This function may be called once per node and a node has to be finalized before
calling mcapi_initialize() again. On the MCAPI layer error handling is done by analyzing
the results of the transport layers checking functions. With mcapi_trans_valid_node() and
mcapi_trans_initialized() will be reviewed whether the node parameters are valid and whether
the node has already been initialized. Within the checking function mcapi_trans_initialized()
the function mcapi_trans_get_ids() returns the IDs of the calling node for comparing these
with the actual parameters. Processor_ID() is used to identify which core is calling the initial-
ized function.
After completing the checking functions, by callingmcapi_trans_initialize() the initialization

will be started. In a first step the processor ID will be requested and the database will be locked
by calling gateLock(). In the next step the database will be initialized. Afterwards some checks
will be done, ensuring that there is no domain with the same ID already contained in the
database and whether the maximum number of nodes is reached for this domain. Only if all
tests are successful, the node will be added to the database with its specific IDs. In the end,
the semaphore will be unlocked and returning MCAPI_TRUE indicates that the initialization
was successful.
After initializing the nodes, the next step is creating one or many endpoints depending on

the requirements for a communication.

Creating an endpoint

By calling the function mcapi_endpoint_create(), the process of creating an endpoint will be
started, which could be seen in figure 7.7. At first the domain ID will be returned by calling
mcapi_domain_id_get() and the transport layer function mcapi_trans_get_doamin_num().
With subsequent checks it will be proved, whether an endpoint with the port ID already exists
(mcapi_trans_endpoint_exists()), the maximum number of endpoints for a node is reached
(comparison of maximum value with result ofmcapi_trans_num_endpoints()) and whether the
port ID is in accordance with the specifications (mcapi_trans_valid_port()). Ends none of the
checks in an error, the endpoint could be created by calling mcapi_trans_endpoint_create().
Since calling this function leads to a database access, the database must be protected from
simultaneous access by locking a semaphore. In the next step the IDs will be requested and
the next empty index for a new endpoint will be searched. The endpoint will be added to
the database and a handle will be generated to identify the endpoint in the environment. A
handle consists of the domain index, the node index and the endpoint index combined with a
shift value. After completing the creation the semaphore will be unlocked and MCAPI_TRUE
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main.c mcapi.c
mcapi_trans_

base_func.c

mcapi_initialize()

mcapi_trans_valid_node()

mcapi_trans_initialized()

mcapi_trans_initialize()

semaphore_

mpc.c

Processor_ID()

gateLock()

gateRelease()

mcapi_trans_get_ids()

Processor_ID()

Figure 7.6: Sequence diagram for initializing a node
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main.c mcapi.c
mcapi_trans_

base_func.c

mcapi_endpoint_create()

semaphore_

mpc.c

mcapi_domain_id_get()

mcapi_trans_get_domain_num()

mcapi_trans_get_ids()

Processor_ID()

mcapi_trans_endpoint_exists()
mcapi_trans_get_ids()

Processor_ID()

mcapi_trans_num_endpoints()
mcapi_trans_get_ids()

Processor_ID()

mcapi_trans_valid_port()

mcapi_trans_endpoint_create()
gateLock()

mcapi_trans_get_ids()

Processor_ID()

mcapi_trans_encode_handle()

gateRelease()

Figure 7.7: Sequence diagram for creating an endpoint
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indicates a successful process. With return the created handle, the endpoint could be used
sending and receiving data from the main-routine. The next step will be sending data from
one endpoint to another.

Sending data

The sending process (seen in figure 7.8) starts by calling mcapi_msg_send(). The function is

main.c mcapi.c
mcapi_trans_

base_func.c

mcapi_msg_send()

semaphore_

mpc.c

mcapi_trans_valid_endpoints()

mcapi_trans_msg_send()

mcapi_trans_msg_send_i()

mcapi_trans_valid_priority()

gateLock()

gateRelease()

gateLock()

mcapi_trans_decode_handle()

mcapi_trans_send_data()

queue.c

full_queue()

push_queue()

gateRelease()

mcapi_trans_decode_handle()

Figure 7.8: Sequence diagram for sending data via messages

called with the parameters start and destination endpoint, the data which should be transferred,
the size of the data, a possible priority for each message and a status code which indicates
success or failure of a sending process. Before sending the data it will be checked, if the priority
is valid (mcapi_trans_valid_priority()) and in the next step whether the endpoints are valid
(mcapi_trans_valid_endpoints()). Inside the function, the database access for another node
will be locked and the endpoint handle will be decoded in the indices. In order to ensure that
the message size is not bigger than the buffer size, a comparison of the values will be done on
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the MCAPI layer.
The actual sending process is initiated by calling mcapi_trans_msg_send() and inside this

function mcapi_trans_msg_send_i() (_i stands for immediately). Splitting these functions
will serve as a basis for prospective functions, which implement blocking sending. A semaphore
will be locked and the receiving endpoints handle will be decoded in its indices by using the
mcapi_trans_decode_handle() function. With the mcapi_trans_send_data() function, the
sending will be realized. This function is also provided for sending data via scalar and packet
channels. Before sending, the queue will be checked whether it is full or not. If there is
an empty entry, a free buffer for sending data will be searched, placed into the queue by
calling push_queue() and marked as active. Afterwards, the data will be copied into the buffer
and returning MCAPI_TRUE indicates a successful sending process. The semaphore will be
unlocked and the status is set to MCAPI_SUCCESS. The data remains in the buffer until the
application, which owns the receiving endpoint, calls mcapi_msg_recv() to get the data.

Receiving data

Receiving data works similar to sending data. The process is initiated by calling the func-
tion mcapi_msg_recv() and after checking if the applications receive buffer corresponds to
the specifications (mcapi_trans_valid_buffer_param()) and whether the receive endpoint is
valid (mcapi_trans_valid_endpoint()), the actual receiving process will be started by the
(mcapi_trans_msg_recv()) function. It follows the same procedure as sending the data, with
the difference, that an element is taken from the queue (pop_queue()) and the data is copied
into the applications receive buffer. Moreover, the transfer buffer will be released and is ready
for reuse and the semaphore will be unlocked. MCAPI_TRUE will be returned, indicating a
successful receiving process.

In this example for the MPC5668G, the received data will be processed and send back to
the other core by using two additional endpoints for sending and receiving. After finishing
the communication, the nodes will be finalized by calling mcapi_finalize() and the MCAPI
environment will be closed.

To sum up, the MCAPI environment and the implemented functions provide a lightweight
interface for transferring data between nodes. The functionality is kept simple and fast for use
on embedded systems.

7.4 Linux as Amalthea-target Platform

A further planned demonstrator should be realized using a linux with real-time capabilities
as a target platform running on raspberry pi or beagleboard. Due to the fact that many
developers already own one of these platforms, they could easily start using the Amalthea
Tool Platform. Linux itself is not real-time capable. But there are several, more or less difficult
to implement, approaches which turn linux into a classic real-time operating system, like using
a second smaller kernel next to the linux kernel which provides the hardware infrastructure to
the real-time tasks (using a real-time hardware abstraction layer (RTHAL)) and manages the
interrupts. An example for this approach is RTAI2 (Real Time Application Interface). Using

2https://www.rtai.org
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RTAI, the linux kernel itself will be treated as a real-time task with the lowest priority (idle
task) and only runs when no real-time task with a higher priority is currently running. The real-
time tasks communicate with each other using mailboxes and semaphores while communicating
with non real-time task occurs via shared memory and FIFOs. [38]
Due to its structure, implementing real-time applications using the RTAI needs much pro-

gramming effort. Applications have to be divided into real-time and non real-time parts and
a communication path between these parts must also be developed. In order to achieve hard
real-time requirements, applications must be executed in kernel space, where fatal errors can
lead to a crash of the entire system. But nevertheless RTAI has become a stable solution for
making linux real-time capable which is still maintained with the latest test version released in
May 2016.
Another, more popular, approach turning linux into a classic real-time operating system, is

using the PREEMPT_RT patch, mainly maintained by Ingo Molnár and Thomas Gleixner.
During the last years, most of the PREEMPT_RT functions were merged to the mainline
linux kernel, with only a few functions left which have to patched to make the kernel full
preemptable. Moreover, the Real Time Linux collaborative project was established by the
Linux Foundation3, to support the developers and provide the needed resources for mainlining
the PREEMPT_RT. With using the PREEMPT_RT patch there is no need of a second API.
All function are included and the programmer can use the POSIX programming interface.
New locking and synchronization functions are also included. To make the locking primitives
preemptable, spinlocks were replaced by rtmutexes with those higher prioritized tasks could
preempt tasks with a lower priority. This solves the priority inversion problem. Real-time tasks
could run in user-space where debugging is much easier. Moreover, real-time tasks could get
a priority from 1 to 99, with 99 representing the highest priority. These real-time tasks get as
much computation time as they need. Normal tasks get computation time when all real-time
tasks have finished their work. To set a priority, POSIX provides the function sched_setparam().
In a multicore system you need to assign tasks to different processors, which could be done
by calling sched_setaffinity(). Furthermore PREEMPT_RT includes high resolution timer
(hrtimer) with a resolution in nanosecond range. Real Time Linux supports the most common
hardware architectures like the Power architecture, ARM and x86. [23], [38]
Summing up, real-time with linux is possible more than ever and so it could be a good oppor-

tunity using it for a Amalthea4public demonstrator. With RTAI and the PREEMPT_RT
patch linux is capable for real-time applications with the PREEMPT_RT patch beeing the
popular approach particularly because it is mainlined in the linux kernel and supported by the
Linux Foundation.

3http://www.linuxfoundation.org/collaborate/workgroups/real-time

69



8 Conclusion

In Chapter 2 we investigated so-called list scheduling and bin packing algorithms for parti-
tioning (i.e., assigning runnables to tasks) and discussed a couple of improvements to ease the
application of the partitioning tool in practice (e.g., visualization frameworks).
Next, Chapter 3 described the current state of the mapping tool. It was enhanced in

Amalthea4public according to new requirements and experiences made in industrial prac-
tice: a new approach to mapping based on genetic algorithms was investigated to address more
than one quality attribute and the hardware model (a basis for mapping) was extended in
several directions based on the feedback of the Amalthea4public partners.
Chapter 4 introduces the idea to widen the scope of partitioning and mapping from a single

ECU to ECU networks. The MechatronicUML offers a domain-specific language called ASL
(based on the OMG Object Constraint Language) for specifying allocation constraints. The
ASL is extended by a set of conditions and allocations constraints defined on theses conditions
to address specific aspects of ECU networks (e.g.,communication latency).
Chapter 5 illustrated how safety concepts as defined in ISO26262 (e.g., safety goals, require-

ments) affect the WP2-relevant concepts of the AMALTHEA software model. An example case
was presented, to enhance partitioning and mapping by adding constraints derived from safety
concepts (e.g., property constraints on communication interfaces such as CAN vs. FlexRay).
In Chapter 6 we discussed the current protocols for accessing shared resources by synchronized

tasks. A new resource management concept for Amalthea4public called Test Delta based
Runnable Rescheduling (TDRR) was presented, which makes use of the AMALTHEA software
model (e.g., execution orders of runnables, label accesses) to calculate a Runnable schedule
that reduces busy waiting times.
Finally, Chapter 7 presents the latest developments on the WP2 case studies. One area of

activity was the implementation of selected concepts of the MCAPI to enable communication
between cores for the NXP MPC5668G (a dual core CPU for embedded automotive appli-
cations). A second area of activity was the evaluation Linux as a possible platform for case
studies, as Linux-based controllers are wide-spread and cheap.
The final deliverable D2.3 will focus on the prototypical implementation and validation of

selected techniques presented in D2.1 and D2.2.
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