

ITEA2 - 13024

The Concurrency and Locality Challenge

D3.7 COLOC state of the art

Editor:

Emmanuel Jeannot

Inria

Visibility Restricted

Release 1.1

Date 21/10/2016

Authors

Inria, FOI, Bull,

DA, UVSQ, Efieldl

Pages 19

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 2/19

History of Changes

Release Author, Institution Changes

1.0 Emmanuel Jeannot First version

1.1 Q. Carayol, Q. Dinh (DA) + description of DA’s CEM code
+ clarifications in section 6.2

Abstract

We present here the state of the art related to the different activities of the COLOC

project: hardware, resource manager, performance modeling, etc.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 3/19

Table of contents

History of Changes ... 2

Table of contents ... 3

1 Introduction .. 4

2 Hardware ... 5

2.1 NUMA Systems .. 5

2.2 Manycore architecture .. 5

2.3 Supercomputers .. 6

3 Programming models ... 7

3.1 MPI Model - Message Passing Interface .. 7

3.2 PGAS Model - Partitioned Global Address Space ... 7

3.3 OpenMP Worksharing Model .. 7

3.4 Cilk Plus ... 8

4 Performance and application modeling .. 9

5 Resource manager .. 10

6 Applications ... 12

6.1 Finite Element Methods ... 12

6.2 Method of Moments, Boundary Element Method and Fast Multipole Method 12

6.3 AETHER .. 13

6.4 FOISOL .. 13

6.5 Efield Software ... 13

6.6 SPECTRE ... 14

7 Final Remarks ... 15

8 References.. 16

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 4/19

1 Introduction

The ITEA 2 COLOC projects aims to provide simulation software developers with
methodologies and tools to optimize their applications and HPC users to gain the most value
from expensive and heterogeneous computing resources.

We here present the state of the art of the different parts of the project. In Section 2, we
survey the different hardware component of modern supercomputers. Programming models
are surveyed in Section 3. In Section 4, we give an overview of performance and application
modeling. Resources job management systems related to locality management are discussed
in Section 5 and finally COLOC applications are shortly described in Section 6.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 5/19

2 Hardware

In COLOC we need to model multicore machine to be able to express and abstract locality.

2.1 NUMA Systems

The increasing number of cores accessing a shared memory at a same time has induced
critical memory contentions. Non Uniform Memory Access (NUMA) architectures have been
introduced to address this problem by providing separate memory for different set of cores.
Each distributed compute node, i.e. NUMA node, has its own separate memory. Inside the
NUMA nodes, each core has its own private Level 1 (L1) cache, and one or two additional
cache levels shared with the other cores of the same processor. The main Random Access
Memory (RAM) is shared among all the processors of the node. While data exchanges
between distributed processes are handled through communications, every core within a
shared memory space has a global vision of the main memory. However, the access times
may vary a lot according to the proximity of the accessed data. Data locality is therefore more
and more critical as the size of the NUMA nodes increases to reduce memory duplication and
bandwidth contention.

Similarly, the increasing number of cores and larger caches within a same processor led to
studies on Non Uniform Cache Access (NUCA) [40, 44]. In NUCA architectures, the cache is
broken into smaller memory banks which can be accessed at different latencies. The D-
NUCA design proposed in [40] has better scalability properties since accesses are serviced
with different close banks.

Modeling the NUMA architecture is an important topic. Discovering all the computing
and memory resources in computing platform has only been recently mastered with tools such
as hwloc [8]. Former approaches were often less portable or do not expose as many details
about cache sharing etc. MemAxes [31] offers fine-grained memory performance analysis
with a graphical radial hierarchy display. However, it only focuses on static post-mortem
analysis of memory accesses while our approach is dynamic and works for all performance
metrics and more kinds of resource sharing. LIKWID [65] is a set of performance analysis
tools that use advanced knowledge of the hardware topology. This knowledge is used for task
placement while we also propose to combine it with performance monitoring for better
analysis. LIKWID is actually complementary to our work, it will soon use hwloc for better
topology discovery, while we may use LIKWID performance monitoring abilities when they
will be exported as a C programming interface.

2.2 Manycore architecture

Recently, Intel has proposed with its Many Integrated Core (MIC) architecture as trade-off
between GPUs and classical CPUs. The Intel Xeon Phi is the latest commercial release of the
MIC architecture. Although it can be seen as an accelerator such as GPUs, it can be
standalone and an Operating System (OS) can directly be installed on it. It is designed to
exploit existing x86 parallel applications originally conceived for standard multicores.
However, most applications designed for multicores will not have good performance when
running on a Xeon Phi. The MIC architecture inherits many design elements from the
Larrabee research project from 2008 [57]. A first prototype, called Knights Ferry (KNF), has
been released to developers in 2010. In 2011, Intel officially released the Knights Corner
(KNC) architecture under the Xeon Phi commercial name. It is composed of 61 cores clocked

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 6/19

at around 1 GHz and possesses 8 to 16 GB of GDDR5 memory depending on the version.
Since the KNC can run an OS inside, a core is often used to service requests like interrupts
and it may end up with 60 cores available for the user application. KNC proposes also large
SIMD units of 512 bits and an adapted x86 Instruction Set Architecture (ISA) called Initial
Many Core Instructions (IMCI). However, large access ranges involve more cache lines and
therefore negatively impact the performance [16]. There is also support for masked
instructions, where specific vector lanes can be excluded from an instruction. This KNC
architecture has been integrated in many modern supercomputers present in the Top500 [64].
The Knights Landing (KNL) is the second architecture of this type. It will be composed of up
to 72 Atom cores built at a 14 nm process size and will have up to 16 GB of 3D memory. It
will still use 512 SIMD units but with the more generic AVX-512 ISA. On June 2016, a first
version based on this architecture has been released.

2.3 Supercomputers

Supercomputers are large and powerful computational centers, a.k.a clusters. The first
supercomputer was designed by Seymour Cray. At this time it was composed of a small
number of processors and of specific vectorial computing units.

Supercomputers performance is measured in FLoating-point OPerations per Second
(FLOPS). The 500 most powerful supercomputers around the world are ranked twice a year in
lists made by the Top500 organization [64]. They are ranked according to their maximal
performance, RMax, achieved using the High Performance LINPACK (HPL) benchmark [22]
proposed by Dongarra et al. According to the last list of June 2016 the actual most powerful
supercomputer is the Sunway Taihulight from China. It is composed of 10 649 600 cores
coming from the Chinese Sunway processor. It reaches a maximal performance of 93.01
PFLOPS while consuming 15.4 MW.

The first supercomputer to reach the petascale, i.e. 1015 FLOPS, was the Roadrunner, built
by IBM in 2008. The number of cores has then continued to grow until reaching the million
with the IBM Sequoia supercomputer and more than three millions with Tianhe-2. Given the
current speed of progress, supercomputers are projected to reach the exascale around 2023.
However, mainly due to economic reasons, it is unlikely to reach the exascale by just
increasing the number of parallel resources exploiting actual technologies. The projection of
actual technologies used in Tianhe-2 or Titan into exascale machines leads to energy
consumption of around 500 MW which is closed to the electric production of the first nuclear
stations.

On behalf of system power other challenges are waiting supercomputer constructors.
Memory are not keeping pace with the increase in flops, memory bandwidth and capacity per
processor falling dramatically. The I/O system at all levels as well the parallel File System
will need to be renewed to follow the machine speed. Data movement, both in energy
consumed and in performance need to be minimized. Reliability and resiliency will be critical
at the scale of billion-way concurrency...

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 7/19

3 Programming models

To make efficient use of the recent heterogeneous architectures presented previously, several
parallelization strategies have to be combined together to exploit the multiple levels of
parallelism. Usually at top level, there is the distributed memory parallelization model which
consists in distributing the problem across a number of compute nodes with explicit message
passing between them for synchronizing the application or exchanging data between the
remote processes. The Message Passing Interface (MPI) presented in 3.1 has become the
default implementation of this model. A recent alternative to message passing is the
Partitioned Global Address Space (PGAS) model. It consists in splitting a memory region
over distributed processes and providing them a direct remote access. At the lower levels,
threads programming models (such as OpenMP) are used for programming shared memory
systems. Other models such as task-based ones have also been proposed.

3.1 MPI Model - Message Passing Interface

To exploit the parallelism for distributed computing infrastructure, the MPI model has
become a standard. Several MPI implementations exist such as MPICH [33], OpenMPI [28],
or Intel MPI [38]. The idea of MPI is to provide an interface to parallelize an application by
creating several processes, called MPI ranks or tasks, and to exchange data between them
using messages. Each MPI rank is mapped to a distinct compute core. A subdomain part of
the problem is assigned to each MPI rank.

However, MPI also handles shared memory resources to communicate between ranks on a
same NUMA node. Furthermore, thread-based versions of MPI such as TMPI [61], Adaptive
MPI (AMPI) [36], or MPC-MPI [51] have appeared. They map MPI ranks to threads instead
of processes inside each NUMA node using process virtualization.

3.2 PGAS Model - Partitioned Global Address Space

A more recent approach used to exploit distributed memory parallelism is the Partitioned

Global Address Space (PGAS) model. PGAS model consists in allocating a global memory
space which is partitioned among the distributed processes resources. Each process has a local
part of the segment and a direct access to the other remote parts of the segment. It is therefore
possible to access, both in read and write, the memory of remote processes without their
active involvement. These processes can be assigned to heterogeneous architectures.

For example, the GASPI API [34, 58] implemented in the GPI-2 library [24]. But many
other PGAS languages exist such as Unified Parallel C (UPC) [11], Titanium [2], Co-Array
Fortran [48], Chapel [13], or yet X10 [15]. MPI-RMA could also have been used for PGAS
languages, but the strong restrictions on memory access pattern, the lack of semantic
guarantees, and the absence of the remote completion concept restrain it [7].

3.3 OpenMP Worksharing Model

OpenMP [14] is a shared memory parallelization runtime using pragmas to create and manage
threads. It first appeared in late 1990s and was initially published for the Fortran language and
quickly after released for C and C++ languages. It is a bulk-synchronous fork-join model
originally based on loop parallelization. This is done by the omp parallel pragma. To

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 8/19

parallelize loops, the omp parallel for pragma splits the loop iterations into independent
chunks and schedules then among the different threads.

3.4 Cilk Plus

Cilk is a task-based runtime designed for multithreaded parallel programming and developed
as an extension to the C programming languages [6, 26]. The C elision of a Cilk program
produces a syntactically and semantically correct C code. Cilk was originally developed at the
MIT in 1994 by Leiserson et al[26]. The name of Cilk is an allusion to the silk, which can be
described as "nice threads", and to the C programming language. In 2006, Leiserson launched
Cilk Arts and decided to modernize it into Cilk++ [43]. Cilk++ integrates the support for the
C++ language, loop parallelization, and hyperobjects such as reducers or thread local storages
named holders [25]. Since 2009, Cilk Arts is part of Intel Corporation and has been renamed
into Cilk Plus.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 9/19

4 Performance and application modeling

Performance analysis of a parallel program can be performed at different levels of granularity,
from individual instructions up to the entire program. Analyzing the performance at the
instruction level with tools such as MAQAO [4], PIN [46] or Intel VTune Amplifier is a part
of the development and optimization process. Coarse-grain performance analysis still requires
dynamic monitoring over time. It may involve real time tools such as numatop or
tiptop [55], or offline temporal analysis with one of the existing tracing tools such as
VampirTrace [41].

Multiple metrics may be used to diagnose topology-related performance issues, including
memory link contention, cache conflicts, or computing unit shared accesses. Performance
counters are the main solution for analyzing the behavior of codes and numerous tools are
available such as PAPI [9] or the Linux perf utility. Other metrics exist for entire cluster-
wide, such as congestion in network switches or links, which may be studied with tools such
as SCALASCA [29] or Paraver [52].

A parallel application distributes its work among entities (MPI processes or threads) that
run in parallel on the various physical computing units of the machine (processors or cores).
These entities share data or exchange data through messages. The affinity between the
processing entities is a useful abstraction to describe the fact that the performance of sharing
data is more efficient when some pairs of processing entities are mapped closed to each other.
Indeed, as parallel programs are running on NUMA systems with distributed memory nodes
connected by a network communication, memory sharing costs depends on the location of
these computing entities. Modeling this affinity is often done by a communication pattern
matrix that describes the amount of data or the number of messages exchanged (or shared)
between pairs [39].

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 10/19

5 Resource manager

In COLOC we extend the SLURM [68], to take into account locality constraints and
application needs. The goal is to carefully map application taking into account energy, affinity
and locality.

The idea of using the most adequate hardware resource to a specific application is not new
and has been explored in previous work. It has been particularly popular in the context of
grids environments ([45], [60], [56]) where it is important to select the best set of resources
(clusters in this case) to use. Such work try to reduce the impact of WAN communication in
grids but do not address the deeper details of the physical topology, such as NUMA effects or
cache hierarchy for instance.

More recently, some works have targeted a specific type of applications, that is,
MapReduce-based applications. For instance, the TARA [42] uses a description of the
application to allocate the resources. However, this work is tailored for a very specific class of
applications and does not address hardware details.

The mapping of a parallel application tasks to the physical processors based on the
network topology can lead to important performance improvements [5]. Network topology
characteristics can be taken into account by the scheduler [47] so as to favor the choice of
group of nodes that are placed on the same network level, connected under the same network
switch or even placed close to each other so as to avoid long distance communications. This
kind of feature is taken into account by most of open-source and proprietary RJMSs. However
even if most of them use the characteristics of the underlying physical topology, they
eventually fail to take into consideration the application behavior when allocating resources
and this is something that this work specifically addresses. HTCondor (formerly Condor)
leverages a so-called matchmaking approach [53] that allows it to match the applications
needs to the available hardware resources. However, the application behavior is not part of
this matchmaking and HTCondor targets both clusters and networks of workstations.
SLURM [68], as previously described, provides an option to minimize the number of network
switches used in the allocation, so as to reduce the communication costs during the
application execution (switches that are the deeper in the tree topology are supposed to be the
less costly than upper ones). The same idea of topology-aware placement is exploited by PBS
Pro [50], Grid Engine[49], and LSF [59]. Fujitsu [27] provides the same but only for its
proprietary Tofu network. As far as our knowledge, SLURM [68] remains the only one
providing a best-fit topology-aware selection whereas the others propose first-fit algorithms.

Some other RJMS offer task placement options that can enforce a clever placement of the
application processes. That is the case of Torque [17] which proposes a NUMA-aware job
task placement. OAR [10] uses a flexible hierarchical representation of resources which offers
the possibility to place the application processes upon the hierarchy within the computing
node. However, in these existing works, only the network topology is taken in account and the
nodes internal architecture is left unaddressed when performance gains are expected from
exploiting the memory hierarchy.

Jingjin Wu et al. in [66] introduced a hierarchical task mapping strategy for modern
supercomputers based on generic recursive algorithms for both fat-tree and torus network
topologies showing very good performance with low overhead. Rashti et al. [54] proposed a
weighted graph model for the whole physical topology of the computing system, including
both the inter and intra node topologies. Even if both previous related works have shown
interesting results with application sets, they have not been integrated with real resource and
job management system neither tested with real workload traces, which is our case in this
paper.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 11/19

A study for torus network topology [3] showed how processor ordering takes place based
on space filling curve, such as Hilbert Curve, to map the nodes of the torus onto a 1-
dimensional list in order to preserve locality information. This paper described the study
about the allocation strategies implemented on the proprietary Cray Application Level
Placement Scheduler (ALPS). Similar strategies, have been recently incorporated within
SLURM with1 (or without2) the use of ALPS. Another interesting work [67] adapted only for
torus topology, presented a window-based locality-aware job scheduling strategy that tries to
optimize job and system performance in the same time. Its goal is to preserve node contiguity
by considering multiple jobs for scheduling while making use of the 0-1 Multiple Knapsack
problem for resource allocation. The last 2 related works do not consider communication
patterns as parameters within the algorithms.

Several binding policies are available, and they are compatible with the policies
implemented in Open MPI. In all these solutions, the user has to retrieve the architectural
details before submitting his job. Also, the placement options offered leave the user with the
burden to determine his/her policy beforehand, and the application communication scheme is
not taken into account.

In the COLOC project our goal is to improve this functioning on three levels: first, we
take into account not only the network but also the node internal structure. The information
used is based on the structure of the nodes and the memory hierarchy. In other words, we do
not use latency and bandwidth figures to compute our allocation. Then, this information is
retrieved directly by a plugin and does not have to be supplied by the user. All the technical
details are hidden. Last, but not least, we also take into account not only the architecture but
also the application behavior both for the allocation and the execution of a job.

1 http://slurm.schedmd.com/cray_alps.html
2 http://slurm.schedmd.com/cray.html

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 12/19

6 Applications

Here we first describe numerical methods (FEM, MoM, BEM and FMM) used in the
applications that COLOC targets. And then we describe the applications themselves:
AETHER, SPECTRE from DA, FOISOL from FOI and one from Efield.

6.1 Finite Element Methods

We describe here Irregular applications based on Finite Element Method (FEM) [21, 37],
presented in and working on 3D unstructured meshes as it is one of the main COLOC
applications. FEM applications commonly use the domain decomposition approach to
generate data parallelism. Each process is assigned to the execution of a mesh subdomain and
the communications between processes are usually handled by MPI. Unfortunately, most of
the FEM applications currently in use exploit MPI domain decomposition both at distributed
and shared memory levels. This results in increasing communication and memory
bottlenecks. Indeed, in the FEM context, the large number of processes and subdomains
induces data duplication of the frontier values, a.k.a halos, and a larger amount of
communications.

In the context of finite element method, the main computational workloads consist of
loops iterating over elements, nodes, or edges. These loops are non-trivial to parallelize in
shared memory since they access large amount of data, generate many indirections, and bring
several dependencies between iterations. In addition, most of the industrial HPC applications
work on unstructured meshes with irregular geometries and variable number of neighbors,
making their parallelization even more challenging.

6.2 Boundary Element Method, Method of Moments and Fast
Multipole Method

In several domains of COLOC, applications such as electromagnetic or fluid mechanics, there
is a need to solve linear partial differential equations formulated as integral equations.
Boundary Element Method (BEM) is a numerical computation designed to solve such
problems. One of the advantages of BEM is to be more interesting than FEM when the
modeled domains become infinite. In BEM, the problem is transformed into an Algebraic
form Ax=B where x is the vector of unknown. The MoM[35] is a special case of BEM, which
consists in applying the Galerkin method [23] (test functions and basis functions are
identical).

Fast Multipole Method (FMM) is a particular solver used to accelerate the computation of
MoM solutions. The FMM was first introduced by Greengard and Rokhlin [32]. The
advantage of FMM over MoM solution by direct solvers is that it is faster and requires less
memory. It is based on making a difference between far field and close field where far field
interactions are approximated by using Green’s function expansion into spherical harmonics,
while close field interactions are computed exactly. Although the parallelization of FMM is
not trivial, its hierarchical nature makes it a strong candidate for large-scale computing.
Examples of parallel FMM library are PetFMM [18] or ScalFMM [1].

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 13/19

6.3 AETHER

For its routine aircraft design work, Dassault Aviation (DA) uses AETHER, a software
developed in-house, which is a complete simulation environment for two- and three-
dimensional CFD (Computational Fluid Dynamics) analysis. Based on sophisticated Finite
Element Method (FEM, see [21, 37]) numerical formulations, the code solves the Navier-
Stokes equations for compressible turbulent flows, discretized on fully unstructured meshes,
which may be mixtures of numerous types of elements (triangles and quadrilaterals in 2-D;
tetrahedral, bricks and prisms in 3-D). Started in the late 1980s and early 1990s, AETHER
implementation (see [12]) relies heavily on mesh partitioning techniques for its distributed
memory MPI- parallelization on clusters of SMPs (Symmetric Memory Processors).
AETHER has also been ported to vector machines and shared-memory architectures, using
multi-coloring techniques. In the COLOC project, updates of these shared-memory parallel
implementations, based on the Divide and Conquer technique (see [63]), were successfully
tested for modern multi-core and many-core architectures and will be gradually ported in
AETHER.

6.4 FOISOL

FOI uses adaptive higher order finite element approaches (HOFEM) [19] in several
disciplines, notably in computational structural mechanics (CSM) and in computational
electromagnetics (CEM) applications. Most of the computing time is spent solving sparse
symmetric linear equation systems Ax=b with huge dimensions N. Today N may be of order
O(109) unknowns for linear stress analysis in CSM, O(106) degrees of fredom for nonlinear
stress analyses. Challenging CEM scattering problems are today often of the order of O(106)
degrees of fredom. CEM analyses are linear in the harmonic case but the equation system is
symmetric complex valued, which quadruples the number of operations compared to real
arithmetic. FOISOL is a modularised version of the FOI FEM equation solver dealing with
that size of equation systems coping with moderate resources of RAM and disk. While
aeronautic CSM analyses concern stiffened shell-like structures (which have a thin direction),
electromagnetic analyses usually involve solid threedimensional computational domains,
possibly channel-like.FOISOL can handle multiple right-hand sides b which are provided in
assembled form though.

6.5 Efield Software

The Efield software was developed during the late 90s in a research collaboration between
Swedish defense industry, including Saab Aeronautics, Ericsson Microwave and the Swedish
Defense Research Agency, and top universities, KTH, the Royal Institute of Technology, and
Uppsala University. In 2006 the company Efield AB was founded for the commercialization
of the software and was later acquired by ESI Group in 2012.

The current software suite consists of a range of different solvers: finite-element, finite-
difference, boundary element and multi-pole with a common focus on full-wave analysis of
electrically large problems in aeronautics, automotive and electromagnetic interference and
compatibility (EMI/EMC).

In the COLOC project we address the parallel efficiency of four different solvers with
related industrial applications where the current state-of-the-art in simulations does not fully
meet the requirements: the multi-level fast multi-pole method (MLFMM) with applications in
radar cross-section (RCS) and performance of installed antennas and sensors, the multi-

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 14/19

domain multi-method (MDMM) cavity tool for accurate RCS analysis of air-intakes and
exhausts, the finite-element (FEM) solver for large closed domains at microwave frequencies
and the finite-difference time-domain for broadband EMI/EMC analysis of complex systems.

6.6 SPECTRE

The SPECTRE Software is the in-house Dassault Aviation software for CEM. It has been
developed since the late 80s, and includes a large number of methods and features. It is used
routinely for antenna design and location on civil and military aircraft, and for RCS
computation and stealth design on military aircraft. It is also used to compute acoustic
propagation.

Some of the most commonly used features of SPECTRE are: asymptotic methods, Method of
Moments on 2D or 3D multi-domain problems, use of geometric symmetries or quasi-
symmetries, computation of periodic structures, high-order impedance boundary conditions,
MLFMM solver, Domain Decomposition Methods, computation of structures above or buried
in a PEC ground plane, design optimization using GA (Genetic Algorithms) or PSO (Particle
Swarm Optimization), …

The Method of moments can use a highly efficient in/out of core direct solver on CPU and
GPU architectures, or a multiple right-hand sides iterative solver with MLFMM acceleration
and a hybrid MPI/OpenMP parallelism for shared and distributed memory architectures. In
the COLOC project, DA focus is on the MLFMM solver, targeting many-core architectures
where the memory size per core is dwindling.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 15/19

7 Final Remarks

Parts of this document have been taken from different research papers and Ph.D dissertation
published under the COLOC umbrella [62, 20, 30]. The complete list of contributors for this
deliverable is: Erik Abenius, Quentin Carayol, Nicolas Denoyelle, Quang V. Dinh, Yannis
Georgiou, Brice Goglin, Emmanuel Jeannot, Guillaume Mercier, Loïc Thébault, Adèle
Villiermet and Adam Zdunek.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 16/19

8 References

[1] Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve, Matthias Messner, and Toru
Takahashi. Task-based fmm for multicore architectures. SIAM Journal on Scientific Computing,
36(1):C66–C93, 2014.
[2] Alex Aiken, Phil Colella, David Gay, Susan Graham, Paul Hilfinger, Arvind Krishnamurthy, Ben Liblit,
Carleton Miyamoto, Geoff Pike, Luigi Semenzato, et al. Titanium: A high-performance java dialect.
Concurrency: Practice and Experience, 10:11–13, 1998.
[3] Carl Albing, Norm Troullier, Stephen Whalen, Ryan Olson, Joe Glenski, Howard Pritchard, and Hugo
Mills. Scalable node allocation for improved performance in regular and anisotropic 3d torus
supercomputers. In EuroMPI 2011, Santorini, Greece, pages 61–70, 2011.
[4] Denis Barthou, Andres Charif Rubial, William Jalby, Souad Koliai, and Cédric Valensi. Performance
Tuning of x86 OpenMP Codes with MAQAO. In Matthias S. MÃ¼ller, Michael M. Resch, Alexander
Schulz, and Wolfgang E. Nagel, editors, Tools for High Performance Computing 2009, pages 95–113.
Springer Berlin Heidelberg, 2010.
[5] Abhinav Bhatele, Eric J. Bohm, and Laxmikant V. Kalé. Topology aware task mapping techniques: an
api and case study. In PPOPP, pages 301–302, 2009.
[6] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson, Keith H Randall,
and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Journal of parallel and distributed

computing, 37(1):55–69, 1996.
[7] Dan Bonachea and Jason Duell. Problems with using mpi 1.1 and 2.0 as compilation targets for parallel
language implementations. International Journal of High Performance Computing and Networking, 1(1-
3):91–99, 2004.
[8] François Broquedis, Jérôme Clet-Ortega, Stéphanie Moreaud, Nathalie Furmento, Brice Goglin,
Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: a Generic Framework for Managing
Hardware Affinities in HPC Applications. In IEEE, editor, PDP 2010 - The 18th Euromicro International

Conference on Parallel, Distributed and Network-Based Computing, Pisa, Italie, February 2010.
[9] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable cross-platform infrastructure
for application performance tuning using hardware counters. In Proceedings of the 2000 ACM/IEEE

Conference on Supercomputing, SC ’00, Washington, DC, USA, 2000. IEEE Computer Society.
[10] Nicolas Capit, Georges Da Costa, Yiannis Georgiou, Guillaume Huard, Cyrille Martin,
Grégory Mounié, Pierre Neyron, and Olivier Richard. A batch scheduler with high level components. In
Cluster computing and Grid 2005 (CCGrid05), Cardiff, United Kingdom, 2005. IEEE.
[11] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick, Eugene Brooks, and Karen
Warren. Introduction to UPC and language specification. Center for Computing Sciences, Institute for
Defense Analyses, 1999.
[12] F. Chalot, Q.V. Dinh, M. Mallet, A. Naïm, and M. Ravachol. A multi-platform shared- or
distributed-memory navier-stokes code. In Parallel CFD’97, Manchester, UK, May 1997.
[13] Bradford L Chamberlain, David Callahan, and Hans P Zima. Parallel programmability and the
chapel language. International Journal of High Performance Computing Applications, 21(3):291–312,
2007.
[14] Rohit Chandra. Parallel programming in OpenMP. Morgan kaufmann, 2001.
[15] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph Von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-
uniform cluster computing. Acm Sigplan Notices, 40(10):519–538, 2005.
[16] Linchuan Chen, Peng Jiang, and Gagan Agrawal. Exploiting recent simd architectural advances
for irregular applications. In Proceedings of the 2016 International Symposium on Code Generation and

Optimization, pages 47–58, 2016.
[17] Adaptive computing. Torque resource manager. http://docs.adaptivecomputing.com/torque/6-
0-0/Content/topics/torque/2-jobs/monitoringJobs.htm.
[18] Felipe A Cruz, Matthew G Knepley, and Lorena A Barba. Petfmmâ€”a dynamically load-
balancing parallel fast multipole library. International Journal for Numerical Methods in Engineering,
85(4):403–428, 2011.
[19] L Demkowicz, Jason Kurtz, David Pardo, M Paszyński, Waldemar Rachowicz, and Adam
Zdunek. Computing with hp-adaptive finite element method. vol. ii. frontiers: Three dimensional elliptic
and maxwell problems. Chapmann & Hall/CRC Applied Mathematics & Nonlinear Science, 2007.
[20] Nicolas Denoyelle, Brice Goglin, and Emmanuel Jeannot. A Topology-Aware Performance
Monitoring Tool for Shared Resource Management in Multicore Systems. In Springer, editor, Proceedings

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 17/19

of Euro-Par 2015 – Parallel Processing Workshops: 3rd Workshop on Runtime and Operating Systems for

the Many-core Era (ROME), Lecture Notes in Computer Science, Vienna, Austria, August 2015.
[21] Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley &
Sons, 2012.
[22] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: past, present
and future. Concurrency and Computation: practice and experience, 15(9):803–820, 2003.
[23] Alexandre Ern and Jean-Luc Guermond. Theory and practice of finite elements, volume 159.
Springer Science & Business Media, 2013.
[24] ITWM Fraunhofer. Gpi-global address space programming interface, 2013.
[25] Matteo Frigo, Pablo Halpern, Charles E Leiserson, and Stephen Lewin-Berlin. Reducers and
other cilk++ hyperobjects. In Proceedings of the twenty-first annual symposium on Parallelism in

algorithms and architectures, pages 79–90. ACM, 2009.
[26] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the cilk-5
multithreaded language. SIGPLAN Not., 33(5):212–223, May 1998.
[27] Fujitsu. Interconnect topology-aware resource assignment.
http://www.fujitsu.com/global/Images/technical-computing-suite-bp-sc12.pdf.
[28] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra, Jeffrey M
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, et al. Open mpi: Goals,
concept, and design of a next generation mpi implementation. In Recent Advances in Parallel Virtual

Machine and Message Passing Interface, pages 97–104. Springer, 2004.
[29] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd
Mohr. The SCALASCA performance toolset architecture. In Proc. of the International Workshop on

Scalable Tools for High-End Computing (STHEC), Kos, Greece, pages 51–65, June 2008.
[30] Yiannis Georgiou, Emmanuel Jeannot, Guillaume Mercier, and Adèle Villiermet. Topology-
aware Resource Management for HPC Applications. In 18th International Conference on Distributed

Computing and Networking (ICDCN 2017), Hyderabad, India, January 2017. To be published.
[31] Alfredo Gimenez, Todd Gamblin, Barry Rountree, Abhinav Bhatele, Ilir Jusufi, Peer-Timo
Bremer, and Bernd Hamann. Dissecting On-Node Memory Access Performance: A Semantic Approach. In
Proceedings of the 2000 ACM/IEEE conference on Supercomputing, pages 166–176, New Orleans, LA,
November 2014. IEEE Press.
[32] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal of

computational physics, 73(2):325–348, 1987.
[33] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Parallel computing, 22(6):789–
828, 1996.
[34] Daniel Grünewald and Christian Simmendinger. The gaspi api specification and its
implementation gpi 2.0. In 7th International Conference on PGAS Programming Models, volume 243,
2013.
[35] Roger F Harrington and Jan L Harrington. Field computation by moment methods. Oxford
University Press, 1996.
[36] Chao Huang, Orion Lawlor, and Laxmikant V Kale. Adaptive mpi. In Languages and

Compilers for Parallel Computing, pages 306–322. Springer, 2003.
[37] T.J.R. Hughes. The Finite Element Method. Prentice-Hall Inc., 1987.
[38] Intel mpi library.
[39] Emmanuel Jeannot, Guillaume Mercier, and François Tessier. Process placement in multicore
clusters: Algorithmic issues and practical techniques. Parallel and Distributed Systems, IEEE Transactions

on, 25(4):993–1002, 2014.
[40] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. SIGARCH Comput. Archit. News, 30(5):211–222,
October 2002.
[41] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger
Mickler, Matthias S. Müller, and Wolfgang E. Nagel. The vampir performance analysis tool-set. In
Proceedings of the 2nd International Workshop on Parallel Tools for High Performance Computing, July

2008, HLRS, Stuttgart, pages 139–155, 2008.
[42] Gunho Lee, Niraj Tolia, Parthasarathy Ranganathan, and Randy H. Katz. Topology-aware
resource allocation for data-intensive workloads. In APSys ’10, pages 1–6, 2010.
[43] Charles E Leiserson. The cilk++ concurrency platform. The Journal of Supercomputing,
51(3):244–257, 2010.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 18/19

[44] Javier Lira, Carlos Molina, and Antonio González. Analysis of non-uniform cache architecture
policies for chip-multiprocessors using the parsec benchmark suite. In Proceedings of the workshop on

managed many-core systems, pages 1–8, 2009.
[45] Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angulo. Design and evaluation of a resource
selection framework for grid applications. In HPDC ’02, pages 63–, 2002.
[46] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney,
Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’05, pages 190–200, New York, NY, USA,
2005. ACM.
[47] Javier Navaridas, José Miguel-Alonso, Francisco Javier Ridruejo, and Wolfgang Denzel.
Reducing complexity in tree-like computer interconnection networks. Parallel Computing, 36(2-3):71–85,
2010.
[48] Robert W. Numrich and John Reid. Co-array fortran for parallel programming. SIGPLAN

Fortran Forum, 17(2):1–31, August 1998.
[49] Oracle. Grid engine.
[50] PBSWorks. Pbs. http://www.pbsworks.com/PBSProduct.aspx? n=PBS-
Professional&c=Overview-and-Capabilities.
[51] Marc Pérache, Patrick Carribault, and Hervé Jourdren. Mpc-mpi: An mpi implementation
reducing the overall memory consumption. In Recent Advances in Parallel Virtual Machine and Message

Passing Interface, pages 94–103. Springer, 2009.
[52] V. Pillet, J. Labarta, T. Cortes, and S. Girona. PARAVER: A Tool to Visualize and Analyze
Parallel Code. In Patrick Nixon, editor, Proceedings of WoTUG-18: Transputer and occam Developments,
pages 17–31, mar 1995.
[53] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Distributed resource
management for high throughput computing. In HPDC’7, Chicago, IL, July 1998.
[54] Mohammad J. Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and William Gropp.
Multi-core and network aware MPI topology functions. In EuroMPI 2011, Santorini, Greece, pages 50–60,
2011.
[55] Erven Rohou. Tiptop: Hardware Performance Counters for the Masses. Research Report RR-
7789, Inria, November 2011.
[56] Cipriano A. Santos, Akhil Sahai, Xiaoyun Zhu, Dirk Beyer, Vijay Machiraju, and Sharad
Singhal. Policy-Based Resource Assignment in Utility Computing Environments, pages 100–111. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004.
[57] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep Dubey,
Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, et al. Larrabee: a many-core x86
architecture for visual computing. ACM Transactions on Graphics (TOG), 27(3):18, 2008.
[58] Christian Simmendinger, Mirko Rahn, and Daniel Gruenewald. The gaspi api: A failure
tolerant pgas api for asynchronous dataflow on heterogeneous architectures. In Sustained Simulation

Performance 2014, pages 17–32. Springer, 2015.
[59] C. Smith, B. McMillan, and I. Lumb. Topology aware scheduling in the lsf distributed resource
manager. In Proceedings of the Cray User Group Meeting, 2001.
[60] O. Sonmez, H.H. Mohamed, and D.H.J. Epema. Communication-aware job placement policies
for the koala grid scheduler. In e-Science’06, pages 79–86, Dec 2006.
[61] Hong Tang and Tao Yang. Optimizing threaded mpi execution on smp clusters. In Proceedings

of the 15th international conference on Supercomputing, pages 381–392. ACM, 2001.
[62] Loïc Thébault. Algorithmes parallèles efficaces appliqués aux calculs sur maillages non

structurés. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), 2016.
[63] Loïc Thebault, Eric Petit, Marc Tchiboukdjian, Quang Dinh, and William Jalby. Divide and
conquer parallelization of finite element method assembly. Parallel Computing: Accelerating

Computational Science and Engineering (CSE), Advances in Parallel Computing 25, 2014.
[64] Top500 lists november 2015.
[65] Jan Treibig, Georg Hager, and Gerhard Wellein. Likwid: A lightweight performance-oriented
tool suite for x86 multicore environments. In Wang-Chien Lee and Xin Yuan, editors, ICPP Workshops,
pages 207–216. IEEE Computer Society, 2010.
[66] Jingjin Wu, Xuanxing Xiong, and Zhiling Lan. Hierarchical task mapping for parallel
applications on supercomputers. The J. of Supercomputing, 71(5):1776–1802, 2015.
[67] Xu Yang, Zhou Zhou, Wei Tang, Xingwu Zheng, Jia Wang, and Zhiling Lan. Balancing job
performance with system performance via locality-aware scheduling on torus-connected systems. In
Cluster’2014, pages 140–148, 2014.

COLOC State of the Art R1.0

© COLOC Consortium. Restricted 19/19

[68] AndyB. Yoo, MorrisA. Jette, and Mark Grondona. Slurm: Simple linux utility for resource
management. In Job Scheduling Strategies for Parallel Processing, pages 44–60. Springer, 2003.

