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Abstract 

We present here the state of the art related to the different activities of the COLOC 

project: hardware, resource manager, performance modeling, etc.  
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1 Introduction 

The ITEA 2 COLOC projects aims to provide simulation software developers with 
methodologies and tools to optimize their applications and HPC users to gain the most value 
from expensive and heterogeneous computing resources. 

We here present the state of the art of the different parts of the project. In Section 2, we 
survey the different hardware component of modern supercomputers. Programming models 
are surveyed in Section 3. In Section 4, we give an overview of performance and application 
modeling. Resources job management systems related to locality management are discussed 
in Section 5 and finally COLOC applications are shortly described in Section 6. 
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2 Hardware 

In COLOC we need to model multicore machine to be able to express and abstract locality. 

2.1 NUMA Systems 

The increasing number of cores accessing a shared memory at a same time has induced 
critical memory contentions. Non Uniform Memory Access (NUMA) architectures have been 
introduced to address this problem by providing separate memory for different set of cores. 
Each distributed compute node, i.e. NUMA node, has its own separate memory. Inside the 
NUMA nodes, each core has its own private Level 1 (L1) cache, and one or two additional 
cache levels shared with the other cores of the same processor. The main Random Access 
Memory (RAM) is shared among all the processors of the node. While data exchanges 
between distributed processes are handled through communications, every core within a 
shared memory space has a global vision of the main memory. However, the access times 
may vary a lot according to the proximity of the accessed data. Data locality is therefore more 
and more critical as the size of the NUMA nodes increases to reduce memory duplication and 
bandwidth contention.  

Similarly, the increasing number of cores and larger caches within a same processor led to 
studies on Non Uniform Cache Access (NUCA) [40, 44]. In NUCA architectures, the cache is 
broken into smaller memory banks which can be accessed at different latencies. The D-
NUCA design proposed in [40] has better scalability properties since accesses are serviced 
with different close banks. 

Modeling the NUMA architecture is an important topic. Discovering all the computing 
and memory resources in computing platform has only been recently mastered with tools such 
as hwloc [8]. Former approaches were often less portable or do not expose as many details 
about cache sharing etc. MemAxes [31] offers fine-grained memory performance analysis 
with a graphical radial hierarchy display. However, it only focuses on static post-mortem 
analysis of memory accesses while our approach is dynamic and works for all performance 
metrics and more kinds of resource sharing. LIKWID [65] is a set of performance analysis 
tools that use advanced knowledge of the hardware topology. This knowledge is used for task 
placement while we also propose to combine it with performance monitoring for better 
analysis. LIKWID is actually complementary to our work, it will soon use hwloc for better 
topology discovery, while we may use LIKWID performance monitoring abilities when they 
will be exported as a C programming interface. 

2.2   Manycore architecture 

Recently, Intel has proposed with its Many Integrated Core (MIC) architecture as trade-off 
between GPUs and classical CPUs. The Intel Xeon Phi is the latest commercial release of the 
MIC architecture. Although it can be seen as an accelerator such as GPUs, it can be 
standalone and an Operating System (OS) can directly be installed on it. It is designed to 
exploit existing x86 parallel applications originally conceived for standard multicores. 
However, most applications designed for multicores will not have good performance when 
running on a Xeon Phi. The MIC architecture inherits many design elements from the 
Larrabee research project from 2008 [57]. A first prototype, called Knights Ferry (KNF), has 
been released to developers in 2010. In 2011, Intel officially released the Knights Corner 
(KNC) architecture under the Xeon Phi commercial name. It is composed of 61 cores clocked 
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at around 1 GHz and possesses 8 to 16 GB of GDDR5 memory depending on the version. 
Since the KNC can run an OS inside, a core is often used to service requests like interrupts 
and it may end up with 60 cores available for the user application. KNC proposes also large 
SIMD units of 512 bits and an adapted x86 Instruction Set Architecture (ISA) called Initial 
Many Core Instructions (IMCI). However, large access ranges involve more cache lines and 
therefore negatively impact the performance [16]. There is also support for masked 
instructions, where specific vector lanes can be excluded from an instruction. This KNC 
architecture has been integrated in many modern supercomputers present in the Top500 [64]. 
The Knights Landing (KNL) is the second architecture of this type. It will be composed of up 
to 72 Atom cores built at a 14 nm process size and will have up to 16 GB of 3D memory. It 
will still use 512 SIMD units but with the more generic AVX-512 ISA. On June 2016, a first 
version based on this architecture has been released.  

2.3 Supercomputers 

Supercomputers are large and powerful computational centers, a.k.a clusters. The first 
supercomputer was designed by Seymour Cray. At this time it was composed of a small 
number of processors and of specific vectorial computing units.  

Supercomputers performance is measured in FLoating-point OPerations per Second 
(FLOPS). The 500 most powerful supercomputers around the world are ranked twice a year in 
lists made by the Top500 organization [64]. They are ranked according to their maximal 
performance, RMax, achieved using the High Performance LINPACK (HPL) benchmark [22] 
proposed by Dongarra et al. According to the last list of June 2016 the actual most powerful 
supercomputer is the Sunway Taihulight from China. It is composed of 10 649 600 cores 
coming from the Chinese Sunway processor. It reaches a maximal performance of 93.01 
PFLOPS while consuming 15.4 MW. 

The first supercomputer to reach the petascale, i.e. 1015 FLOPS, was the Roadrunner, built 
by IBM in 2008. The number of cores has then continued to grow until reaching the million 
with the IBM Sequoia supercomputer and more than three millions with Tianhe-2. Given the 
current speed of progress, supercomputers are projected to reach the exascale around 2023. 
However, mainly due to economic reasons, it is unlikely to reach the exascale by just 
increasing the number of parallel resources exploiting actual technologies. The projection of 
actual technologies used in Tianhe-2 or Titan into exascale machines leads to energy 
consumption of around 500 MW which is closed to the electric production of the first nuclear 
stations. 

On behalf of system power other challenges are waiting supercomputer constructors. 
Memory are not keeping pace with the increase in flops, memory bandwidth and capacity per 
processor falling dramatically. The I/O system at all levels as well the parallel File System 
will need to be renewed to follow the machine speed. Data movement, both in energy 
consumed and in performance need to be minimized. Reliability and resiliency will be critical 
at the scale of billion-way concurrency... 
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3 Programming models 

To make efficient use of the recent heterogeneous architectures presented previously, several 
parallelization strategies have to be combined together to exploit the multiple levels of 
parallelism. Usually at top level, there is the distributed memory parallelization model which 
consists in distributing the problem across a number of compute nodes with explicit message 
passing between them for synchronizing the application or exchanging data between the 
remote processes. The Message Passing Interface (MPI) presented in 3.1 has become the 
default implementation of this model. A recent alternative to message passing is the 
Partitioned Global Address Space (PGAS) model. It consists in splitting a memory region 
over distributed processes and providing them a direct remote access. At the lower levels, 
threads programming models (such as OpenMP) are used for programming shared memory 
systems. Other models such as task-based ones have also been proposed. 

3.1 MPI Model - Message Passing Interface 

To exploit the parallelism for distributed computing infrastructure, the MPI model has 
become a standard. Several MPI implementations exist such as MPICH [33], OpenMPI [28], 
or Intel MPI [38]. The idea of MPI is to provide an interface to parallelize an application by 
creating several processes, called MPI ranks or tasks, and to exchange data between them 
using messages. Each MPI rank is mapped to a distinct compute core. A subdomain part of 
the problem is assigned to each MPI rank.  

However, MPI also handles shared memory resources to communicate between ranks on a 
same NUMA node. Furthermore, thread-based versions of MPI such as TMPI [61], Adaptive 
MPI (AMPI) [36], or MPC-MPI [51] have appeared. They map MPI ranks to threads instead 
of processes inside each NUMA node using process virtualization. 

3.2 PGAS Model - Partitioned Global Address Space 

A more recent approach used to exploit distributed memory parallelism is the Partitioned 

Global Address Space (PGAS) model. PGAS model consists in allocating a global memory 
space which is partitioned among the distributed processes resources. Each process has a local 
part of the segment and a direct access to the other remote parts of the segment. It is therefore 
possible to access, both in read and write, the memory of remote processes without their 
active involvement. These processes can be assigned to heterogeneous architectures. 

For example, the GASPI API [34, 58] implemented in the GPI-2 library [24]. But many 
other PGAS languages exist such as Unified Parallel C (UPC) [11], Titanium [2], Co-Array 
Fortran [48], Chapel [13], or yet X10 [15]. MPI-RMA could also have been used for PGAS 
languages, but the strong restrictions on memory access pattern, the lack of semantic 
guarantees, and the absence of the remote completion concept restrain it [7]. 

3.3  OpenMP Worksharing Model 

OpenMP [14] is a shared memory parallelization runtime using pragmas to create and manage 
threads. It first appeared in late 1990s and was initially published for the Fortran language and 
quickly after released for C and C++ languages. It is a bulk-synchronous fork-join model 
originally based on loop parallelization. This is done by the omp parallel pragma. To 
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parallelize loops, the omp parallel for pragma splits the loop iterations into independent 
chunks and schedules then among the different threads. 

3.4 Cilk Plus 

Cilk is a task-based runtime designed for multithreaded parallel programming and developed 
as an extension to the C programming languages [6, 26]. The C elision of a Cilk program 
produces a syntactically and semantically correct C code. Cilk was originally developed at the 
MIT in 1994 by Leiserson et al[26]. The name of Cilk is an allusion to the silk, which can be 
described as "nice threads", and to the C programming language. In 2006, Leiserson launched 
Cilk Arts and decided to modernize it into Cilk++ [43]. Cilk++ integrates the support for the 
C++ language, loop parallelization, and hyperobjects such as reducers or thread local storages 
named holders [25]. Since 2009, Cilk Arts is part of Intel Corporation and has been renamed 
into Cilk Plus. 
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4 Performance and application modeling 

Performance analysis of a parallel program can be performed at different levels of granularity, 
from individual instructions up to the entire program. Analyzing the performance at the 
instruction level with tools such as MAQAO [4], PIN [46] or Intel VTune Amplifier is a part 
of the development and optimization process. Coarse-grain performance analysis still requires 
dynamic monitoring over time. It may involve real time tools such as numatop or 
tiptop [55], or offline temporal analysis with one of the existing tracing tools such as 
VampirTrace [41]. 

Multiple metrics may be used to diagnose topology-related performance issues, including 
memory link contention, cache conflicts, or computing unit shared accesses. Performance 
counters are the main solution for analyzing the behavior of codes and numerous tools are 
available such as PAPI [9] or the Linux perf utility. Other metrics exist for entire cluster-
wide, such as congestion in network switches or links, which may be studied with tools such 
as SCALASCA [29] or Paraver [52]. 

A parallel application distributes its work among entities (MPI processes or threads) that 
run in parallel on the various physical computing units of the machine (processors or cores). 
These entities share data or exchange data through messages. The affinity between the 
processing entities is a useful abstraction to describe the fact that the performance of sharing 
data is more efficient when some pairs of processing entities are mapped closed to each other. 
Indeed, as parallel programs are running on NUMA systems with distributed memory nodes 
connected by a network communication, memory sharing costs depends on the location of 
these computing entities. Modeling this affinity is often done by a communication pattern 
matrix that describes the amount of data or the number of messages exchanged (or shared) 
between pairs [39]. 
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5 Resource manager 

In COLOC we extend the SLURM [68], to take into account locality constraints and 
application needs. The goal is to carefully map application taking into account energy, affinity 
and locality. 

The idea of using the most adequate hardware resource to a specific application is not new 
and has been explored in previous work. It has been particularly popular in the context of 
grids environments ([45], [60], [56]) where it is important to select the best set of resources 
(clusters in this case) to use. Such work try to reduce the impact of WAN communication in 
grids but do not address the deeper details of the physical topology, such as NUMA effects or 
cache hierarchy for instance. 

More recently, some works have targeted a specific type of applications, that is, 
MapReduce-based applications. For instance, the TARA [42] uses a description of the 
application to allocate the resources. However, this work is tailored for a very specific class of 
applications and does not address hardware details. 

The mapping of a parallel application tasks to the physical processors based on the 
network topology can lead to important performance improvements [5]. Network topology 
characteristics can be taken into account by the scheduler [47] so as to favor the choice of 
group of nodes that are placed on the same network level, connected under the same network 
switch or even placed close to each other so as to avoid long distance communications. This 
kind of feature is taken into account by most of open-source and proprietary RJMSs. However 
even if most of them use the characteristics of the underlying physical topology, they 
eventually fail to take into consideration the application behavior when allocating resources 
and this is something that this work specifically addresses. HTCondor (formerly Condor) 
leverages a so-called matchmaking approach [53] that allows it to match the applications 
needs to the available hardware resources. However, the application behavior is not part of 
this matchmaking and HTCondor targets both clusters and networks of workstations. 
SLURM [68], as previously described, provides an option to minimize the number of network 
switches used in the allocation, so as to reduce the communication costs during the 
application execution (switches that are the deeper in the tree topology are supposed to be the 
less costly than upper ones). The same idea of topology-aware placement is exploited by PBS 
Pro [50], Grid Engine[49], and LSF [59]. Fujitsu [27] provides the same but only for its 
proprietary Tofu network. As far as our knowledge, SLURM [68] remains the only one 
providing a best-fit topology-aware selection whereas the others propose first-fit algorithms. 

Some other RJMS offer task placement options that can enforce a clever placement of the 
application processes. That is the case of Torque [17] which proposes a NUMA-aware job 
task placement. OAR [10] uses a flexible hierarchical representation of resources which offers 
the possibility to place the application processes upon the hierarchy within the computing 
node. However, in these existing works, only the network topology is taken in account and the 
nodes internal architecture is left unaddressed when performance gains are expected from 
exploiting the memory hierarchy. 

Jingjin Wu et al. in [66] introduced a hierarchical task mapping strategy for modern 
supercomputers based on generic recursive algorithms for both fat-tree and torus network 
topologies showing very good performance with low overhead. Rashti et al. [54] proposed a 
weighted graph model for the whole physical topology of the computing system, including 
both the inter and intra node topologies. Even if both previous related works have shown 
interesting results with application sets, they have not been integrated with real resource and 
job management system neither tested with real workload traces, which is our case in this 
paper. 
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A study for torus network topology [3] showed how processor ordering takes place based 
on space filling curve, such as Hilbert Curve, to map the nodes of the torus onto a 1-
dimensional list in order to preserve locality information. This paper described the study 
about the allocation strategies implemented on the proprietary Cray Application Level 
Placement Scheduler (ALPS). Similar strategies, have been recently incorporated within 
SLURM with1 (or without2) the use of ALPS. Another interesting work [67] adapted only for 
torus topology, presented a window-based locality-aware job scheduling strategy that tries to 
optimize job and system performance in the same time. Its goal is to preserve node contiguity 
by considering multiple jobs for scheduling while making use of the 0-1 Multiple Knapsack 
problem for resource allocation. The last 2 related works do not consider communication 
patterns as parameters within the algorithms. 

Several binding policies are available, and they are compatible with the policies 
implemented in Open MPI. In all these solutions, the user has to retrieve the architectural 
details before submitting his job. Also, the placement options offered leave the user with the 
burden to determine his/her policy beforehand, and the application communication scheme is 
not taken into account. 

In the COLOC project our goal is to improve this functioning on three levels: first, we 
take into account not only the network but also the node internal structure. The information 
used is based on the structure of the nodes and the memory hierarchy. In other words, we do 
not use latency and bandwidth figures to compute our allocation. Then, this information is 
retrieved directly by a plugin and does not have to be supplied by the user. All the technical 
details are hidden. Last, but not least, we also take into account not only the architecture but 
also the application behavior both for the allocation and the execution of a job. 

                                                 
1 http://slurm.schedmd.com/cray_alps.html 
2 http://slurm.schedmd.com/cray.html 
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6 Applications 

Here we first describe numerical methods (FEM, MoM, BEM and FMM) used in the 
applications that COLOC targets. And then we describe the applications themselves: 
AETHER, SPECTRE from DA, FOISOL from FOI and one from Efield.  

6.1 Finite Element Methods 

We describe here Irregular applications based on Finite Element Method (FEM) [21, 37], 
presented in and working on 3D unstructured meshes as it is one of the main  COLOC 
applications. FEM applications commonly use the domain decomposition approach to 
generate data parallelism. Each process is assigned to the execution of a mesh subdomain and 
the communications between processes are usually handled by MPI. Unfortunately, most of 
the FEM applications currently in use exploit MPI domain decomposition both at distributed 
and shared memory levels. This results in increasing communication and memory 
bottlenecks. Indeed, in the FEM context, the large number of processes and subdomains 
induces data duplication of the frontier values, a.k.a halos, and a larger amount of 
communications. 

In the context of finite element method, the main computational workloads consist of 
loops iterating over elements, nodes, or edges. These loops are non-trivial to parallelize in 
shared memory since they access large amount of data, generate many indirections, and bring 
several dependencies between iterations. In addition, most of the industrial HPC applications 
work on unstructured meshes with irregular geometries and variable number of neighbors, 
making their parallelization even more challenging. 

6.2 Boundary Element Method, Method of Moments and Fast 
Multipole Method 

In several domains of COLOC, applications such as electromagnetic or fluid mechanics, there 
is a need to solve linear partial differential equations formulated as integral equations. 
Boundary Element Method (BEM) is a numerical computation designed to solve such 
problems. One of the advantages of BEM is to be more interesting than FEM when the 
modeled domains become infinite. In BEM, the problem is transformed into an Algebraic 
form Ax=B where x is the vector of unknown. The MoM[35] is a special case of BEM, which 
consists in applying the Galerkin method [23] (test functions and basis functions are 
identical).  

Fast Multipole Method (FMM) is a particular solver used to accelerate the computation of 
MoM solutions. The FMM was first introduced by Greengard and Rokhlin [32]. The 
advantage of FMM over MoM solution by direct solvers is that it is faster and requires less 
memory. It is based on making a difference between far field and close field where far field 
interactions  are approximated by using Green’s function expansion into spherical harmonics, 
while close field interactions are computed exactly. Although the parallelization of FMM is 
not trivial, its hierarchical nature makes it a strong candidate for large-scale computing. 
Examples of parallel FMM library are PetFMM [18] or ScalFMM [1].  
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6.3 AETHER 

For its routine aircraft design work, Dassault Aviation (DA) uses AETHER, a software 
developed in-house, which is a complete simulation environment for two- and three- 
dimensional CFD (Computational Fluid Dynamics) analysis. Based on sophisticated Finite 
Element Method (FEM, see [21, 37]) numerical formulations, the code solves the Navier-
Stokes equations for compressible turbulent flows, discretized on fully unstructured meshes, 
which may be mixtures of numerous types of elements (triangles and quadrilaterals in 2-D; 
tetrahedral, bricks and prisms in 3-D). Started in the late 1980s and early 1990s, AETHER 
implementation (see [12]) relies heavily on mesh partitioning techniques for its distributed 
memory MPI- parallelization on clusters of SMPs (Symmetric Memory Processors). 
AETHER has also been ported to vector machines and shared-memory architectures, using 
multi-coloring techniques. In the COLOC project, updates of these shared-memory parallel 
implementations, based on the Divide and Conquer technique (see [63]), were successfully 
tested for modern multi-core and many-core architectures and will be gradually ported in 
AETHER. 

6.4 FOISOL 

FOI uses adaptive higher order finite element approaches (HOFEM) [19] in several 
disciplines, notably in computational structural mechanics (CSM) and in computational 
electromagnetics (CEM) applications. Most of the computing time is spent solving sparse 
symmetric linear equation systems Ax=b with huge dimensions N. Today N may be of order 
O(109) unknowns for linear stress analysis in CSM, O(106) degrees of fredom for nonlinear 
stress analyses. Challenging CEM scattering problems are today often of the order of O(106) 
degrees of fredom. CEM analyses are linear in the harmonic case but the equation system is 
symmetric complex valued, which quadruples the number of operations compared to real 
arithmetic. FOISOL is a modularised version of the FOI FEM equation solver dealing with 
that size of equation systems coping with moderate resources of RAM and disk. While 
aeronautic CSM analyses concern stiffened shell-like structures (which have a thin direction), 
electromagnetic analyses usually involve solid threedimensional computational domains, 
possibly channel-like.FOISOL can handle multiple right-hand sides b which are provided in 
assembled form though. 

6.5  Efield Software 

The Efield software was developed during the late 90s in a research collaboration between 
Swedish defense industry, including Saab Aeronautics, Ericsson Microwave and the Swedish 
Defense Research Agency, and top universities, KTH, the Royal Institute of Technology, and 
Uppsala University. In 2006 the company Efield AB was founded for the commercialization 
of the software and was later acquired by ESI Group in 2012. 

The current software suite consists of a range of different solvers: finite-element, finite-
difference, boundary element and multi-pole with a common focus on full-wave analysis of 
electrically large problems in aeronautics, automotive and electromagnetic interference and 
compatibility (EMI/EMC). 

In the COLOC project we address the parallel efficiency of four different solvers with 
related industrial applications where the current state-of-the-art in simulations does not fully 
meet the requirements: the multi-level fast multi-pole method (MLFMM) with applications in 
radar cross-section (RCS) and performance of installed antennas and sensors, the multi-



COLOC State of the Art  R1.0 

© COLOC Consortium. Restricted 14/19 

domain multi-method (MDMM) cavity tool for accurate RCS analysis of air-intakes and 
exhausts, the finite-element (FEM) solver for large closed domains at microwave frequencies 
and the finite-difference time-domain for broadband EMI/EMC analysis of complex systems. 

6.6 SPECTRE 

The SPECTRE Software is the in-house Dassault Aviation software for CEM. It has been 
developed since the late 80s, and includes a large number of methods and features. It is used 
routinely for antenna design and location on civil and military aircraft, and for RCS 
computation and stealth design on military aircraft. It is also used to compute acoustic 
propagation. 

Some of the most commonly used features of SPECTRE are: asymptotic methods, Method of 
Moments on 2D or 3D multi-domain problems, use of geometric symmetries or quasi-
symmetries, computation of periodic structures, high-order impedance boundary conditions, 
MLFMM solver, Domain Decomposition Methods, computation of structures above or buried 
in a PEC ground plane, design optimization using GA (Genetic Algorithms) or PSO (Particle 
Swarm Optimization), … 

The Method of moments can use a highly efficient in/out of core direct solver on CPU and 
GPU architectures, or a multiple right-hand sides iterative solver with MLFMM acceleration 
and a hybrid MPI/OpenMP parallelism for shared and distributed memory architectures. In 
the COLOC project, DA focus is on the MLFMM solver, targeting many-core architectures 
where the memory size per core is dwindling.    
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7 Final Remarks 

Parts of this document have been taken from different research papers and Ph.D dissertation 
published under the COLOC umbrella [62, 20, 30].  The complete list of contributors for this 
deliverable is:  Erik Abenius, Quentin Carayol, Nicolas Denoyelle, Quang V. Dinh, Yannis 
Georgiou, Brice Goglin, Emmanuel Jeannot, Guillaume Mercier, Loïc Thébault, Adèle 
Villiermet and Adam Zdunek.  
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