
(ITEA 2 – 13017)

Enabling of Results from AMALTHEA and others
for Transfer into Application and

building Community around

Deliverable: D 4.3
Mechanisms to support certification of

multi-core development

Work Package: 4
Safety

Task: 4.3
Evaluation and integration development of mechanisms to support

certification of multi-core development

Document Type: Deliverable
Document Version: Final
Document Preparation Date: June 21, 2017

Classification: Public
Contract Start Date: 01.09.2014
Duration: 31.08.2017



History

Rev. Content Resp.
Partner

Date

V 0.1 First version of document TWT 22th April 2016
V 0.2 Content completely available TWT &

OFFIS
9th June 2017

V 1.0 First submitted version OFFIS &
TWT

21st June 2017

ii



Contents

History ii

Summary vi

1. Overview 1

2. Decoration of modelling elements 2

3. Item Definition 4

4. Hazard Analysis and Risk Assessment 8

5. Functional Safety Concept 10

6. System Design 20

7. General management of safety requirements 22

8. Conclusion 24

A. Safety Requirements for the Quadcopter 27

iii



List of Figures

2.1. Custom property for ISO 26262 labels: Automotive Safety Integrity Level (ASIL)
and Fault Tolerant Time Interval (FTTI) . . . . . . . . . . . . . . . . . . . . . 3

3.1. Item definition Adaptive Cruise Control (ACC): requirements diagram . . . . . 5
3.2. Item definition ACC: Block Definition Diagram (BDD) context defintion . . . . 6
3.3. Item definition ACC: BDD interface specification . . . . . . . . . . . . . . . . . 7

4.1. Hazardous Event (HaEv) classification and ASIL determination . . . . . . . . . 8
4.2. Operational Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3. Hazards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1. Linking from DOORS to APP4MC . . . . . . . . . . . . . . . . . . . . . . . 10
5.2. Snippet of the ACC requirements document. . . . . . . . . . . . . . . . . . . . . 12
5.3. Snippet of the ACC functional safety requirements with linking. . . . . . . . . . 12
5.4. SysML diagrams of the ACC example. . . . . . . . . . . . . . . . . . . . . . . . 13
5.5. Capra links between the requirments document and the SysML model. . . . . . 15
5.6. The simplified hardware architecture of the quadcopter . . . . . . . . . . . . . 19

A.1. The original hardware architecture of the quadcopter . . . . . . . . . . . . . . 28

iv



List of Tables

A.1. SUP formalisation of the safety requirements. . . . . . . . . . . . . . . . . . . . 29
A.2. Abbreviations used in Table A.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



Summary

This document comprises and discusses the results of Tasks 4.3 and 4.4 of the project AMAL-
THEA4Public and constitutes the main outcome and result of WP 4 “Safety”.
In this deliverable, the results are additionally described along the lines of two examples in

order to show the practical relevance of the work conducted within the project. The focus
within this deliverable is to describe the methods and tools used in order to enable APP4MC
to be compliant with standards of functional safety as, e. g., ISO26262. Compliance with
such standards can be interpreted in many different ways and the considerations within the
project follow the considerations described in the following lines and whose technical details
are reported in this deliverable.
For the work done in AMALTHEA4public and reported in the deliverables, compliant with

standards of functional safety refers to the ability of APP4MC and the AMALTHEA modelling
language to

1. define development artefacts that are relevant for the development of, e. g., safety mech-
anisms in harware or software,

2. include safety-related information for development artefacts,

3. establish linking and traceability of safety-related development artefacts.

D4.1 [2] reports the gap analysis between AMALTHEA and ISO26262, i. e., the common
standard for functional safety in the automotive domain. D4.2 [3] reports on methods and
tools used within the safety-lifecycle of ISO26262 in industrial practice and makes proposals
for the integtration of these methods and tools in AMALTHEA4public, i. e., in AMALTHEA’s
modelling language and in APP4MC. Based on the considerations of D4.1 [2] and D4.2 [3],
Tasks 4.3 and 4.4 are dedicated to define the concrete integration of methods and tools in order
to enable functional-safety compliant development with AMALTHEA’s modelling language and
with APP4MC. Moreover, the suitability of the approach has been validated by considering
two use cases with their specific needs for safety-related development.
In this deliverable we describe how to use AMALTHEA’s modelling language, APP4MC

and the tool Capra in order to enable functional-safety standard compliant development with
APP4MC. We describe how modelling artefacts in APP4MC shall be decorated with, say,
safety-related meta data. Moreover, we describe how modelling and development artefacts
shall be linked togehter in order to establish traceability of safety-related information: this
is a mandatory requirements of all safety-related developments and demanded by all stan-
dards on functional safety. The discussions in this deliverable are given along the lines of the
safety-lifecycle of ISO26262, i. e., we consider the item definition, the Hazard Analysis and Risk
Assessment, the Functional Safety Concept, the System Design, and the general management
of safety requirements.
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1. Overview

Based on the resuts reported in D4.1 [2] and D4.2 [3], we describe how the different tasks of
the safety lifecycle of ISO26262 shall be handled within a development using AMALTHEA. As
already stated in D4.2, we do only consider the branch of the V-model, i. e., specification and
implementation.
For each phase of the safety lifecycle, i. e., item definition, Hazard Analysis and Risk Assess-

ment, Functional Safety Concept, System Design, hardware design and software design we de-
scribe how these steps shall be handled during the development of a system with AMALTHEA,
i. e., with APP4MC. For this, we describe firstly how elemtents of AMALTHEA’s modelling
notation shall be decorated with safety-related information, see Chapter 2.
The subsequent chapters describe the approaches for the different phases of the safety lifecycle

and are all organised similarly. The structure of these chapters is as follows. First, we describe
the approach to be followed in order to be, say, safety-standard compliant. Second, the approach
is illustrated in one or two examples. Third, each chapter closes with a short conclusion to
summarise the main points of the approach in a few words.
The examples that are used in the following discussion are:

1. An ACC system that is in many modern cars as one of the advanced driver assistance
systems. The focus of this example is to show how AMALTHEA would be used in a serial
development within the automotive industry.

2. A Quadcopter. The focus of this example is set on the development of a safety concept
that relies on multicore systems. Hence, with this example it is shown that the consider-
ations in WP4 are not restricted to developments that are in accordance with ISO26262:
our results and approaches can be used within any development of safety-critical systems.

However, not in all chapters both examples are used to illustrate the belonging approach. For
example, the item definition, see Chapter 3, is illustrated by means of the ACC.
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2. Decoration of modelling elements

In this introductory chapter, the method used in order to decorate modelling elements within
AMALTHEA models with safety-related information is described.
Development artefacts that are created during the development of the item and its safety

mechanisms can roughly be discriminated by the following property: either an element is used
in order to fulfill a safety goal or an element is not used to fulfill a safety goal. For example, the
distance sensor can be considered as a development artefact that is not used to fulfill a safety
goal in an ACC system. The distance sensor is a development artefact that is used for the
nominal behaviour of the ACC. On the other hand, the watchdog1 is a developmemt artefact
that is used to fulfill a safety goal in the ACC system. More precisely, the watchdog is one of
the safety-mechanisms that is realised for the ACC
Due to the process prescribed by ISO 26262, each development artefact that is used to fulfill

a safety goal will be linked to the safety goals. That kind of linking is either a direct link as, for
example, for top-level development artefacts. Or a development artefact is linked to another
development artefact that already is deemed to be used in order to fulfill a safety goal. In both
cases, the information on, e. g., ASIL, can be traced back to the safety goal itself. However, it
makes sense to have a possibility to decorate the development artefacts with, say, ISO 26262
labels. There might exist labels for the following information:

• ASIL;

• Diagnostic Test Interval (DTI);

• Fault Detection Time (FDT);

• FTTI;

• Fault Reaction Time (FRT);

• safe state.

ISO 26262 labels can directly be included in the AMALTHEA model by using the custom
property attribut as, e. g., shown in Figure 2.1, for the ASIL of software-runnables. Hence, the
meta model of AMALTHEA already provides a mechanism to include the necessary information.
However, this apporach has advantages as well as disadvantages. The main advantage is

that high flexibility in the definition of the used ISO 26262 labels is given and the process that
has to be followed by the developers can be tailored by the process authority as needed. For
example, the ISO 26262 label FTTI might be left out due to process reasons without having
empty labels at the development artefacts. As all of the ISO 26262 labels are covered as custom
property the main disadvantage is the following. Automatic processing of the ISO 26262 labels
requires an alanysis of all custom properties although these might be used also for other labels
than ISO 26262 labels. Hence, the logic that has to be implemented for automatic processing

1No matter whether realised as software- or hardware-component.
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Figure 2.1.: Custom property for ISO 26262 labels: ASIL and FTTI

needs to be richer in comparison to approaches where the ISO 26262 labels would be given
within the meta model.

3



3. Item Definition

According to ISO 26262 the ([9, 5.1]) “objective is to define and describe the item, its depen-
dencies on, and interaction with the environment and other items.” The required information
is the necessary input for the item definition and covers:

• the functional concept;

• the operational and environmental constraints;

• legal requirements, national and international standards;

• behaviour achieved by similar functions, items or elements;

• assumptions on behaviour expected from the item; and

• potential consequences of behavioural shortfalls including know failure modes and haz-
ards.

In D4.2 [3] it is highlighted for this required information whether tool and method support
external to AMALTHEA has to be considered. In a nutshell, the conclusion drawn in D4.2 [3]
has been that no external tooling is necessary for the item definition.
However, it definitely makes sense to enable linkage to other modelling formalisms as, e. g.,

Systems Modelling Language (SysML). The different stakeholder of the development chain
usually use different tools and modelling notations for the description of their system under
development. Moreover, the definition of the item, or more precise its description, covers
different levels of detail. In order to be able to describe different levels of detail in a process that,
for example, follows the Object-Oriented Systems Engineering Method (OOSEM)1, different
development tools will be used. This is necessary in order to cover the description of the
item itself and also to realise the description of the boundary of the item. SysML is one of
the modelling languages that is used in Model-Based Systems Engineering (MBSE) in that
context. Other involved methods cover, for example, AUTomotive Open System ARchitecture
(AUTOSAR)2 and Electronics Architecture and Software Technology - Architecture Description
Language (EAST-ADL)3.
Hence, in order to enable connections to the AMALTHEA plattform, i. e., APP4MC4, the

methods and languages used in order to describe the item shall not be restricted. The challenge
to connect the artifacts, e. g., requirements, block definition diagramms, diagrams describing
dynamic behaviour, of different development tools to APP4MC shall thus be met. Links from
development artifacts of one tool to another tool can be established by using Capra5. Capra is
one of the results of Amalthea4public and is used for managing traceability links. Additionally,

1http://www.omgwiki.org/MBSE/doku.php?id=mbse:incoseoosem
2http://www.autosar.org
3http://www.east-adl.info/
4http://www.eclipse.org/app4mc/
5https://projects.eclipse.org/projects/modeling.capra
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Figure 3.1.: Item definition ACC: requirements diagram

in order to be compliant with safety standards, the linkage of, e. g., safety requirements to
elements of the functional concept of the item and the implemented safety mechanisms, and its
traceability is of major interest and importance.

Example

In Figure 3.1 the requirements to the ACC are given as a requirements diagram in SysML. This
diagram shows the top-level requirement, i. e., the element on top of the requirements, say, tree.
This top-level requirement, for example, contains6 requirments on Activation, Maintain Speed
and Crash Prevention.
In Figure 3.2 the context of the item ACC is given as BDD. Roughly speaking, the diagram

shows the context in which the ACC is, say, embedded. For example, the ACC is part of the
EgoVehicle and the Drive Train is also part of the EgoVehicle.

In Figure 3.3 the interface specification of ACC is given as BDD. Here, it is shown which
interfaces are needed in order to implement the ACC.

6Containment link is a connection type defined for and used in SysML.
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Figure 3.2.: Item definition ACC: BDD context defintion
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Figure 3.3.: Item definition ACC: BDD interface specification

Conclusion

Dedicated interfaces from tools and methods used for modelling and designing the item into
APP4MC are not necessary. Rather, the level-of-detail that will be modelled for the item will
cover different abstraction levels. Some of these abstraction levels will be covered by languages
as, e. g., SysML, while others will directly be covered in APP4MC. Hence, the previously
described possibility to link these development artifacts to each other via Capra is deemed to
be sufficient in order to support certification of multi-core development with respect to (w.r.t.)
ISO 26262.

7



4. Hazard Analysis and Risk Assessment

For Hazard Analysis and Risk Assessment (HARA) it is highlighted in D4.2 [3] that no exter-
nal tooling or methods will be included in the design flow of AMALTHEA. Rahter, the tooling
already used in industrial practice for both identifying hazards and documenting hazards shall
be linked to the corresponding development artefacts in APP4MC. This kind of linkage can
be established by using and tailoring Capra. As soon as the development of safety mecha-
nisms arise, it makes sense to include information on, e. g., ASIL directly in the AMALTHEA
modelling elements. This can be done as pointed out in Chapter 2.

Example

For the ACC system, an exemplified classification of HaEvs and the determination of the ASIL
is given in Figure 4.1. Recall, that a according to ISO26262 a HaEv is the combination of an
Operational Situation (OpSi) and a hazard. The OpSis for this example are given in Figure 4.2
and the hazards are given in Figure 4.3.
The corresponding development artefacts that shall be linked to information on HaEvs are

given in the subsequent chapters of this deliverable.

Conclusion

Capra shall be used in order to link information from dedicated tooling and methods that are
external to APP4MC to modelling artefacts in APP4MC. With such linking, AMALTHEA will
be enabled to support certification of multi-core development.

Figure 4.1.: HaEv classification and ASIL determination
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Figure 4.2.: Operational Situations

Figure 4.3.: Hazards

9



5. Functional Safety Concept

The functional safety concept contains the functional safety requirements and the allocation of
these requirements to preliminary architectural elements. Hence, two challenges arise: safety re-
quirements need to be documented either in APP4MC or in external tooling; secondly, the safety
requirements shall be allocated to preliminary architectural elements of the item. In D4.2 [3]
we have already highlighted, that different possibilities exist but that we focus on the following
solutions. For the first challenge, i. e., the documentation of functional safety requirements,
two different solutions are appropriate depending on the tooling that is used for, say, functional
safety requirements management. In case that Rational Doors by IBM (DOORS) is used
for functional safety requirements management, a direct interface from DOORS to APP4MC
shall be used in order to tackle the second challenge, i. e., the allocation of functional safety
requirements to preliminary architectural elements. Here, we implemented an OSLC [5] server
that also implements the necessary interfaces to the IBM Jazz platform [7]. Since DOORS is
also part of IBM Jazz, we can use OSLC and Jazz technology to link requirements located in
DOORS to architecture elements located on the APP4MC OSLC server. Our OSLC server
implements simple HTML-based selection and preview interfaces. These are displayed inside
the DOORS web frontend and facilitate the selection of architectual elements to be linked and
a preview of link targets. The latter is shown in Figure 5.1: One of the requirements from
Example 2 below has been linked to the ‘Voter’ component. The link is listed in the bottom
right corner of the screenshot and the preview embedded into the speech bubble in the front.
In case that any other requirements management tooling is used for functional safety require-

ments, the integration of these requirements into APP4MC shall be realised with Capra. That
is, allocation of functional safety requirements to preliminary architectural elements of the item
shall be done by using links in Capra.
As already briefly mentioned in Chapter 3, architectural elements of the item might be present

at different levels of detail and thus, a cascade of linking has to be used. In this cascade, the

Figure 5.1.: Linking from DOORS to APP4MC
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functional safety requirements shall be linked to the top-level of the architecture. In a typical
development process, linkage from these top-level architectural elements to lower-level architec-
tural elements has to be enabled. As soon as the level of APP4MC is reached, linking directly
works with Capra. For links between tooling used on higher levels of abstraction, we propose to
use and possibly extend Capra in order to establish linkage. In summary, this has the benefit
that, e. g., SysML and EAST-ADL models, can be linked to functional safety requirements
as well as SysML modelling blocks to EAST-ADL modelling blocks. Subsequently, APP4MC
modelling elements can be linked via Capra to modelling blocks of SysML or EAST-ADL.

Example1

We demonstrate one way of specifying the Functional Safety Requirement (FSR) for the ACC
system, which was partially definded in Chapter 3 as a SysML model. In particular we focus
on how the FSR specification and the SysML model can be linked with each other, such that
traceability between the different models of our functional safety concepts can be established.

Requirements

We specify requirements for the ACC with the Requirements Management Framework (RMF)
for Eclipse while using the ProR tool.1 RMF is a framework for working with textual require-
ments while using the Requirements Interchange Format (ReqIF), the industry standard for
exchanging requirements.2 The ProR tool is an Eclipse plugin, providing a GUI that allows
working with requirements under the ReqIF standard.
Figure 5.2 shows a snippet of the requirement definition for the ACC. The requirements

document shows two safety goals:

1. The ego vehicle must not stay below the safety distance;

2. The ego vehicle must not break unintendedly

Further, Figure 5.2 depicts six functional safety requirements w.r.t. these two safety goals. Note
that some requirements only refer to one safety goal, while others can be assiciated with both.
In this case REQ-1 and REQ-2 refer to safety goal 1, REQ-19 to safety goal 2, and REQ-4,
REQ-5 and REQ-20 refer to both. Besides, Figure 5.2 also shows some resulting technical and
hardware safety requirements.

Linkage

To link requirements with each other, we can create associations between them within the
ReqIF specification. Figure 5.3 shows how such linking is represented within ProR workspace.
For example, consider the requirement REQ-4. Besides the description it shows a 1 → 3
linking relation. That means, that REQ-4 is linked to 3 other specifications within the ReqIF
specification, and has 1 dependency, i.e. another specification is linked to REQ-4.
While it is possible to link specifications within the ReqIF specification, we also need a way

to link amongst different models within our functional safety concept. In this case, we want to
link our FSRs with our SysML model. Therefore, we will use Capra to establish traceability

1http://www.eclipse.org/rmf/
2http://www.omg.org/spec/ReqIF/
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Figure 5.2.: Snippet of the ACC requirements document.

Figure 5.3.: Snippet of the ACC functional safety requirements with linking.

links between our requirements specified in ProR and our SysML specification modelled with
Papyrus.3

Linking between models. Figure 5.5 depicts some relations between our FSRs as depicted
in Figure 5.3 and the SysML diagrams of the ACC-ECU depicted in Figure 5.4a, and the ego
vehicle depicted in Figure 5.4b. Now lets consider the Capra linking depicted in Figure 5.5c.
Here the linking shows that REQ-1 is related to the distancecontroller and speedcontroller
of the ACC-ECU as well as the distance sensor and speed sensor of the ego vehicle. This
relation helps us to navigate between the FSR and the SysML model. Hence, by clicking on

3https://eclipse.org/papyrus/
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(a) SysML diagram of the ACC-ECU.

(b) SysML diagram of the ego vehicle.

Figure 5.4.: SysML diagrams of the ACC example.

the requirement REQ-1 in ProR we will obtain the relation graph from Figure 5.5c. Hence, we
can directly associate the requirement with the corresponding elements in the SysML model,
and vice versa.
However, these traceability links between the models are not generated automatically, but

rather manually by the user. That means, while writing the FSRs in ProR or modelling the
SysML diagram in Papyrus, the user has to establish the relation by adding elements to the
Capra selection. Then, Capra is able to establish relations between the elements and e.g.
provide graphs like in Figure 5.5. Thus, the user is responsible to to relate elements between
the different safety concepts, while Capra provides the functionality to do so.

13
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Importance of traceability. As described prior and briefly mentioned in Chapter 3, architec-
tural elements of an item might be present at different levels of detail. In our example, the
ACC, we have represented the top-level architecture with SysML, while the FSRs are specified
at a different level under the ReqIF standard. Without traceability between these two levels, it
would be much harder to relate architectural elements with their role in the functional safety
of the system.
For example, consider the statusdisplaycontroller in Figure 5.4a. By inspecting its relation as

depicted in Figure 5.5d one can observe that it is connected to the FSRs REQ-4 and REQ-5.
Hence, we have a direct relation of the statusdisplaycontroller and FSRs. Thus, if we
would change the architecture and make changes to the statusdisplaycontroller, we also
have to reevaluate the related FSRs. Without this traceability, the relation could easily be
overseen, and thus we could end up with an incompatible safety concept, since the FSRs and
the SysML model may not be compatible anymore.
Furthermore, since the user is responsible for initiating the relations between the different

models, i.e. relate FSRs and SysML elements, gaps in the architecture are more easily spotted.
For example, consider the FSRs REQ-1, REQ-2 and REQ-19. All refer to the implementation
of a Triple Modular Redundancy (TMR). However, when trying to link these FSRs to the
architecture, the user will observe that the current SysML specification does not describe a
TMR. Thus, by executing the step of establishing traceability links, we have discovered a gap
in our architectural design that can now be fixed.
By observing the previous two examples, we can conclude that traceability between models

is a crucial property for establishing a coherent safety concept over different level of detail. On
the one hand, by having links between different levels it is possible to easily keep track between
the relations of e.g. the architectural model and the FSR. Therefore, when e.g. a change is
performed on either, the relation will tell the user what other parts of the safety concept have to
be considered. On the other hand, the workflow of creating the relations between the different
models already provides a first level of validation. Hence, the process of linking between e.g.
the architectural model and FSRs can reveal gaps.

Example2

We show our safety concept using a quadcopter as a demonstrator for general multi-core plat-
forms. The original internal hardware architecture can be found in Figure A.1 in the Appendix.

Hardware Architecture

For the sake of simplicity, we have simplified the hardware architecture of the quadcopter
subject to the following

1. we abstract away from the sensors and assume that all sensor values are always present and
up-to-date, thus we abstract from potential sensor failures, from sensor value processing
times and (polling) delays

2. in the same way, we abstract away from the remote control and assume that remote
control information is always present and up-to-date

3. we abstract from the internal (computation) behaviour of components

14
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(a)

(b)

(c) (d)

(e) (f) (g)

Figure 5.5.: Capra links between the requirments document and the SysML model.

4. we disregard the battery and battery status information, thus we prove our safety concept
under the assumption that the battery power is always sufficient

5. we abstract away from all general_information signals

The simplified internal (sub)architecture of the quadcopter is shown in Figure 5.6.
The components shown are found on one FPGA chip (as suggested by the dashed frame

in Figure A.1). In our simplified (sub)architecture, the system consists of three cores (a
MicroBlaze SoftCore, a LEON SoftCore and an ARM Core), a Voter and a motor_communicator.
The latter serves as interface to the physical hardware controlling the quadcopter. Each core
has its own set of sensors (not shown/considered here) providing the current position, magnetic
field and pressure, as well as a receiver to receive the current user input (from the remote

15
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control).
Each of the two soft cores periodically and independently computes the control signal for

the motor_communicator, i.e. the control signal used to control and operate the motors of the
quadcopter. For this, the soft cores use the sensor’s and remote control data as input. The ARM
Core is responsible for other (non-safety critical) tasks, like for example processing camera data.
The two control signals of the soft cores are sent to the Voter, whose task it is to compare the
two signals. If the signals are identical (up to some threshold), the Voter forwards the control
signal to the motor_communicator, which in turn transforms it into a control signal to be sent
to the motors. If, however, the control signals of the two cores are not identical, the Voter
sends an interrupt signal ($ARMitrpt) to the ARM Core. As soon as the ARM Core receives the
interrupt, it has to stop its current task and start computing a third control signal. This is sent
back to the Voter, who compares it to the other two control signals. It forwards the correct
control signal to the motor_communicator based on a two-out-of-three decision.4

The interrupt handling and computation of the control signal done by the ARM Core needs to
be fast enough to guarantee that the frequency of control signals from the motor_communicator
to the motor hardware does not drop below 400Hz (i.e., one signal every 2.5ms). This is also
the top level verification requirement.

Safety Requirements

Initially, for the original hardware architecture (cf. Figure A.1), a set of about 100 requirements
covering all aspects (functional/technical/hardware/software, safety/functionality/comfort, ...)
has been defined for the quadcopter. After first removing those constraints that are not needed
in the simplified architecture anymore, among the remaining requirements we have identified
those that are necessary to prove the top-level safety requirement, which we state formally as

(If one of the soft cores fails, the switch over to the ARM core must be fast enough
such that)
The frequency of motor_control_signals sent to the motor_communicator must
not drop below 400Hz
(to guarantee safe operation of the quadcopter)

The result is a list of seven requirements, which can be found in Appendix A.5 We formalised
the requirements using the Simplified Universal Pattern (SUP), cf. [1, 4]. The formalisation
can be found in Table A.1 in Appendix A.
In short, SUPs relate triggers/preconditions with actions/postconditions, both expressed as

boolean expressions over the observables of the system. The semantics of SUPs is based on
(simulation) runs of the system, SUPs can thus be viewed as observers. An SUP accepts a run if
both trigger and action are traversed successfully, and rejects a simulation run (the simulation
run is called violating) if the trigger is traversed successfully but the action is not. See [1] for
a detailed introduction to SUPs.

4We do not consider the case where all three control signals are different, since that would require to consider
a more complex (sub)architecture than the one shown in 5.6. The complexity of such an example would be
beyond of the scope intended for the example here.

5Initially, the requirements were parametrised in the timing constants. Our verification approach is to check
that a given set of timing constants—namely those chosen in Appendix A—satisfies the top-level requirement.
Another verification approach would be to automatically derive the timing constants needed to satisfy the
top-level safety requirement, but this is out of the scope of this example.
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To provide some insight into the functionality of the SUP, we explain in detail the formal-
isation of the 3. requirement: "As soon as the Voter has received the signals $MBctrl and
$LEONctrl and they are identical, it sends the $motorctrl signal to the motor_communicator
in less than 2ms". The corresponding SUP fragments (including those that were left out for
readability in A.1) are explained below.

Activation Mode: Cyclic Since we want the requirement to hold repeatedly, we use the acti-
vation mode Cyclic. This allows (re)activation of the SUP after a previous observation
cycle with an inconclusive or passed result, i.e., as long as it is not violated

Interpretation Type: Progress The interpretation type Progress is used to express liveness:
the action shall follow the trigger within a certain time interval (or at a certain point in
time)

Trigger Start Event Identical to Trigger Condition since the Trigger Condition is characterised
as a single point in time (see below)

Trigger Condition: ($MBctrl 6= 0) ∧ ($LEONctrl 6= 0) ∧ ($MBctrl == $LEONctrl) The trigger
of this SUP is the point in time where the Voter receives both the control signals from
the MicroBlaze SoftCore ($MBctrl 6= 0)6 and the LEON SoftCore ($LEONctrl 6= 0), and
where both signals are identical ($MBctrl == $LEONctrl)

Trigger End Event Identical to Trigger Condition since the Trigger Condition is characterised
as a single point in time (see above)

Trigger Duration Interval: [0, 0] The Trigger Duration Interval has length zero since the Trig-
ger Condition is characterised as a single point in time (see above)

Trigger Exit Condition: false The Trigger Exit Condition guards the time interval between
the system start (or the end of a previous SUP observation for subsequent occurrences)
and the occurrence of the Trigger End Event. If it evaluates to true during this period,
the observation cycle is terminated with an inconclusive result. But since the Trigger
Condition is characterised as a single point in time (see above), we don’t need such an
"abort criterion"

Local Scope: [0, 2] Time between the end of the trigger (Trigger End Event) and the begin-
ning of the action (Action Start Event), this value is directly derived from the textual
description above

Action Start Event Identical to Action Condition since the Action Condition is characterised
as a single point in time (see below)

Action Condition: ($motorctrl 6= 0) The action consists of the single point in time where the
$motorctrl signal is sent to the motor_communicator

Action End Event Identical to Action Condition since the Action Condition is characterised
as a single point in time (see above)

6We use real-valued observables for the control signals, where a value == 0 indicates that the signal is absent,
and a value 6= 0 indicates that the signal is present.
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Action Duration Interval: [0, 0] The Action Duration Interval has length zero since the Action
Condition is characterised as a single point in time (see above)

Action Exit Condition: false The Action Exit Condition guards the time interval between
the end of the trigger (occurrence of Trigger End Event) and the beginning of the action
(occurrence of Action Start Event). The explanation is analogue to the Trigger Exit
Condition above

Global Scope: ∞ Time frame for the observation of all occurences of the SUP. Since this
interval is not bound (the requirement should hold "forever"), it is set to infinity

Verification

We use a Consistency Analysis Tool that is based on the work presented in [6] to verify that
the set of requirements is consistent, i.e. that all requirements hold. Since this includes the
top-level requirement, we were thus able to infer that the top-level requirement is met, i.e., that
the frequency of motor_control_signals arriving at the motor_communicator does indeed not
drop below 400Hz.
The Consistency Analysis Tool allows to specify requirements (amonst others) in the SUP

format. A consistency check can then be performed on a chosen set of requirements. For the set
of seven requirements,7 consistency could be checked in a matter of seconds. A modification of
the top-level requirement with a frequency of 1000Hz showed that indeed this frequency cannot
be guaranteed.

Conclusion

The tooling used in industrial practice for safety-requirements management differs highly from
company to company. Hence, when direct linking of safety requirments to architectural ele-
ments as for, e. g., DOORS linkage to SysML, is not possibly, Capra shall be used in order to
establish allocation from safety requirements to preliminary architectural elements of the item.
With either possibilities, AMALTHEA will be enabled to support certification of multi-core
development.

7Since there is no explicite typing in the tool, we actually had to add some more requirements to guarantee
type consistency; we omit the technical details here.
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Figure 5.6.: The simplified hardware architecture of the quadcopter
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6. System Design

The product development at the system level, i. e., part 4 of ISO 26262 [8], covers the definition of
Technical Safety Requirements (TSRs) as well as the development of the System Design (SysD)
in combination with the development of the Technical Safety Concept (TSC).

Technical Safety Requirements

The specification of TSRs and their documentation has to be done either in APP4MCor in
external tooling as, e. g., DOORS or Integrity by PTC (Integrity), or methods like, for
example, SysML. As or the Functional Safety Concept (FSC), see Chapter 5, we propose to
use toolings or methods external to APP4MCfor the specification and documentation of TSRs.
With this, the currently used development workflows at the companies along the development
chain only need minor changes in order to use APP4MCfor multi-core development. Addition-
ally, the usage of Capra allows to link and trace requirements and any development artefacts as
already highlighted in Chapter 5. Note, that this refines the solution envisaged and described
in D4.2 [3]. There, we proposed to extend the meta model of AMALTHEA in order to represent
TSRs.

System Design and Technical Safety Concept

One of the great challenges in the development of the SysD is that ([10, Sec. 7.2]) “safety-related
and non-safety-related requiements are handled within one development process.” Hence, there
needs to be a possibility to discriminate between elements of the SysD that are safety-related
and those that are not safety-related. The mechanism to be used is described in Chapter 2: the
feature of custom properties will be used as soon as the development continues in APP4MC.
Elements between requiements tooling and development tools or between different development
tools is realised by Capra and appropriate tailoring.
In D4.1 [2] and D4.2 [3] we already highlighted three main points to be considered within

AMALTHEA4PUBLIC w.r.t. SysD:

SD1 allocation of TSRs to corresponding system elements;

SD2 ASIL attribution of system elements;

SD3 Hardware-Software Interface (HSI) specification and traceability of hardware resources to
software as well as HSIs to TSRs

These main points are covered as follows.

SD1 and SD3 are covered by Capra and its linking and traceability properties. In D4.2 [3]
we point out that it shall be possible to check whether each TSR is allocated to at least one
system element. This can be realised by user and customer specific extensions of Capra’s
implementation.
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SD2 The attribution of system elements with ASIL will be realised by using the custom
property attribute. In D4.2 [3] we point out that it that, for example, it shall be possible to
check that ([10, Section 7.4.2.3]) “If an element is comprised of sub-elements with different ASILs
assigned, or of non-safety-related sub-elements and safety-related sub-elements, then each of
these shall be treated in accordance with the highest ASIL, unless the criteria for coexistence,
in accordance with ISO 26262-9:2011, Clause 6, are met.” This check can be easily realised by
accessing the custom property when stringent syntax is used for the attribution with ASIL.

Example

At the time of finishing this deliverable, not all information on the ACC example has been
created completely. Hence, we can not show the linkage of elements of the SysD to parts of
the, say, SysD that is used for Safety Mechanisms (SaMes). However, linkage with Capra has
already been shown in previous sections and linkage and traceability for SysD works in exactly
the same way for ACC.

Conclusion

Specification of TSRs will be done with tooling and methods external to APP4MC. The SysD
will be developed in different tools and with different methods. However, as soon as multi-
core development becomes relevant, APP4MC is used. The linkage between requirements and
development artefacts is realised by Capra and appropriate tailoring.
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7. General management of safety
requirements

In this chapter, the general management of safety requirements as well as the hardware and
software design are covered. In particular and as pointed out in D4.2 [3] the hardware and
software design is tightly correlated to the general management of safety requirements. From a
functional-safety point of view, hardware as well as software design will be done with specialised
tooling and the main challenge remains to establish traceability of development artefacts to
design elements as, e. g., parts of a VHDL-AMS model or UML elements.
In D4.1 [2] and D4.2 [3] we already highlighted the following main points to be considered

within AMALTHEA4PUBLIC w.r.t. the general management of safety requirements:

T1 Traceability from item definition to HARA;

T2 Traceability from Safety Goals (SGs) to FSRs;

T3 Traceability from FSRs to TSRs;

T4 Traceability from TSRs to Software Safety Requirements (SSRs);

T5 Traceability from TSRs to Hardware Safety Requirements (HSRs);

T6 Allocation of HSRs to hardware components implementing the HSRs;

T7 Allocation of SSRs to software components implementing the SSRs;

T8 Traceability from FSRs to elements of the SysD;

T9 Traceability from TSRs to elements of the SysD;

T10 The structure and dependencies of safety-related software shall be traceable.

These main points are covered as follows.

T1 Establishing traceability from the item definition to elements of HARA as, e. g., the de-
termination of ASIL for each of the hazardous events or the SGs, shall be done via Capra, see
Chapters 3 to 4. Recall, that HARA is usually done in company specific tooling and not within
the meta model of AMALTHEA.

T2 In industrial practice, dedicated tooling for requirements management is used. Within
thie tooling it is possible to establish links from one element to another. Hence, traceability
from SGs to FSRs shall be established in such tooling.

T3 Requirements linking is realised in specialised requirements management tooling. In order
to establish traceability from FSRs to TSRs that tooling shall be used as well.
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T4 and T5 As long as SSRs and HSRs are denoted in requirements management tooling,
traceability shall be established by using the linkage mechanisms of that tooling. Due to the
increasing complexity of the developed items, modern development processes tend to use more
model-based methods to denote even requirements on software and hardware. For this, model-
based languages as, e. g., SysML, are used in order to denote requirements on software as well
as on hardware. Traceability shall be established by using Capra in order to link elements of
requirements management tooling to artefacts of tooling used for model-based design.

T6 and T7 In the development process, specialised tooling is used for hardware as well
as software components. The linkage from HSRs and SSRs to those components shall be
established by extending, if needed, the capabilities of Capra.

T8 We propose to follow a model-based approach in order to neatly establish, say, holistic
traceability. However, the tools used in order to create the SysD vary in industrial practice
from company to company. Therefore, traceability from FSRs to elements of the SysD shall be
established via Capra, see Chapter 5.

T9 This is covered by the same mechanisms as explained for the traceability from FSRs to
elements of the SysD.

T10 Here, two different challenges arise. First, elements of the software architecture and
software design shall be linked for traceability. This is, say, simply possible by using tooling for
software design and according standardised modelling techniques as, e. g., Unified Modelling
Language (UML). Second, the architecture and design artefacts have to be linked to implemen-
tation artefacts that are given in a particular programming language. As most of today’s used
Integrated Development Environments (IDEs) do not support this kind of linkage, we propose
(again) to use and extent Capra in order to establish that kind of linkage.

Example

For the example on ACC we have to state the same as in Chapter 6: not all parts are already
finished and, hence, we cannot show details of the example here that show how we link, allocate
and trace information as described in T1 to T10. However, linkage, allocation and traceability
will be realised with Capra in exactly the same way as, e. g., dicsussed in Chapter 5.

Conclusion

Requirements management in general and management of (functional) safety requirements in
special, is done in industrial practice with dedicated tooling as, for instance, DOORS or even
Excel by Microsoft (Excel). However, the artefacts on requirements in this kind of tooling
needs to be linked to development artefacts as, e. g., SysD or parts of the item definition. The
conclusion for the general management of safety requirements is to use dedicated requirements
management tooling in combination with traceability tooling like Capra. For the development
of multicore systems with AMALTHEA, the usage of Capra is strongly recommended.
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8. Conclusion

In this document we have summarised the main results of WP 4 of AMALTHEA4public. We
have described how the different steps of the safety lifecycle1 shall be implemented when multi-
core systems are developed with AMALTHEA. We addressed, how modelling artefacts within
AMALTHEA shall be decorated with safety-relevant information as, e. g., the ASIL or the
WCRT. Moreover, we have discussed how information ranging from SGs, FSRs, TSRs to
SaMes and architectural elements of the item shall be linked togehter in order to establish the
demanded traceability of information. As we have also highlighted in D4.1 [2] and D4.2 [3] the
focus is set on the left-side of the V-Model, i. e., the specification and implementation tasks.
For these tasks we have discussed how they shall be implemented within AMALTHEA.

Additionally, we have shown the practical usage of our results in two examples: an ACC
system and a quadcopter. The information on these examples given in this deliverable is just a
small excerpt of the complete development artefacts that exist at the respective partners, i. e.,
the quadcopter at OFFIS and the ACC at TWT.

1As given in ISO 26262 and as already described and used in D4.1 [2] and D4.2 [3].
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Acronyms and Tools

ACC Adaptive Cruise Control

ASIL Automotive Safety Integrity Level

AUTOSAR AUTomotive Open System ARchitecture

BDD Block Definition Diagram

DTI Diagnostic Test Interval

DOORS Rational Doors by IBM

EAST-ADL Electronics Architecture and Software Technology - Architecture
Description Language

Excel Excel by Microsoft

ECU Electronic Control Unit (dt: Steuergerät)

FDT Fault Detection Time

FRT Fault Reaction Time

FSC Functional Safety Concept

FSR Functional Safety Requirement

FTTI Fault Tolerant Time Interval

HARA Hazard Analysis and Risk Assessment

HSI Hardware-Software Interface

HSR Hardware Safety Requirement

HaEv Hazardous Event

IDE Integrated Development Environment

Integrity Integrity by PTC

MBSE Model-Based Systems Engineering

OpSi Operational Situation

OOSEM Object-Oriented Systems Engineering Method

ReqIF Requirements Interchange Format
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RMF Requirements Management Framework

SaMe Safety Mechanism

SG Safety Goal

SSR Software Safety Requirement

SysD System Design

SysML Systems Modelling Language

TSC Technical Safety Concept

TSR Technical Safety Requirement

TMR Triple Modular Redundancy

UML Unified Modelling Language

VHDL-AMS Very high-speed integrated circuit Hardware Description Language with
Analog and Mixed-Signal extensions

WCRT Worst-Case Response Time

w.r.t. with respect to
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A. Safety Requirements for the Quadcopter

Prerequisites

For the formalisation of the safety requirements, we assume the following observables (cf. Figure
5.6 on Page 19):

$MBctrl: the control signal sent from the MicroBlaze SoftCore to the Voter

$LEONctrl: the control signal sent from the LEON SoftCore to the Voter

$motorctrl: the control signal sent from the Voter to the motor_communicator

$ARMitrpt: the interrupt sent from the Voter to the ARM core

$ARMctrl: the control signal sent from the Voter to the motor_communicator

The $ARMitrpt signal is a binary signal, and the other signals are real-valued (assuming that
all necessary control signal information can be encoded as a real number). For all signals, a
value == 0 indicates that the signal is absent, and a value 6= 0 indicates that the signal is
present.
Using the above variables, the textual description of the safety requirements is given in the

following overview, where item 7 represents the top level safety requirement:

1. Every 2ms, the MicroBlaze SoftCore sends the $MBctrl signal to the Voter

2. Every 2ms, the LEON SoftCore sends the $LEONctrl signal to the Voter

3. As soon as the Voter has received the signals $MBctrl and $LEONctrl and they are
identical, it sends the $motorctrl signal to the motor_communicator in less than 2ms

4. As soon as the Voter has received the signals $MBctrl and $LEONctrl and they are not
identical, it sends the $ARMitrpt signal to the ARM Core in less than 2ms

5. As soon as the ARM Core has received the $ARMitrpt signal, it sends the $ARMctrl signal
back to the Voter in less than 2ms

6. As soon as the Voter has received the $ARMctrl signal, it sends the $motorctrl signal
to the motor_communicator in less than 2ms

7. The $motorctrl signal must be sent from the Voter to the motor_communicator at least
every 2.5ms [equivalent to 400Hz]
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Figure A.1.: The original hardware architecture of the quadcopter
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No. TSE = TC = TEE LS ASE = AC = AEE
1. true [2, 2] ($MBctrl 6= 0)

2. true [2, 2] ($LEONctrl 6= 0)

3. ($MBctrl 6= 0) ∧ ($LEONctrl 6=
0) ∧ ($MBctrl == $LEONctrl)

[0, 2] ($motorctrl 6= 0)

4. ($MBctrl 6= 0) ∧ ($LEONctrl 6=
0) ∧ ($MBctrl 6= $LEONctrl)

[0, 2] ($ARMitrpt)

5. $ARMitrpt [0, 2] ($ARMctrl 6= 0)

6. ($ARMctrl 6= 0) [0, 2] ($motorctrl 6= 0)

7. true [0, 2.5] ($motorctrl 6= 0)

Table A.1.: SUP formalisation of the safety requirements.

TSE Trigger Start Event ASE Action Start Event
TC Trigger Condition AC Action Condition
TEE Trigger End Event AEE Action End Event
LS Local Scope

Table A.2.: Abbreviations used in Table A.1

SUP Formalisation

We use the Simplified Universal Patter ([1, 4]) to formalise the above requirements.
In short, SUPs relate triggers/preconditions with actions/postconditions, both expressed as

boolean expressions over the observables of the system. The semantics of SUPs is based on
(simulation) runs of the system, SUPs can thus be viewed as observers. An SUP accepts a run if
both trigger and action are traversed successfully, and rejects a simulation run (the simulation
run is called violating) if the trigger is traversed successfully but the action is not. See [1] for
a detailed presentation of SUPs.
In our formalisation, all requirements use the activation mode "cyclic"1 and the interpretation

type "progress"2. This combination of activation mode and interpretation type allows for
an arbitrary number of sequential instances of each pattern. The formalisation of the above
requirements is shown in Table A.1 (the abbreviations used are shown in Table A.2). To
improve readability, we omit the information about activation mode and interpretation type
from the table, since these are identical for all requirements. For the same reason, we also omit
the information about Trigger Duration Interval and Action Duration Interval (the intervals
are [0, 0] for all requirements), Trigger Exit Condition and Action Exit Condition (false for
all requirements), as well as the Global Scope (∞ for all requirements), and we unite columns
with identical content.

1The activation of the SUP (re)starts after a previous observation cycle with an inconclusive ore passed result,
i.e., the SUP is cyclically (re)activated as long as it is not violated.

2Used to express liveness: an action shall follow a trigger at a certain point in time or within a certain time
interval.
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