

 Copyright IDEALISM Consortium

D4.1.3: Requirement Specification and

Standards for the Engineering

Language Workbench - final

Author, company:

Marc Eheim, IILS

Stephan Rudolph, University of Stuttgart

Roland Weil, IILS

Jürgen Freund, University of Stuttgart

Kjell Bengtsson, Jotne

Maarten Nelissen, KE-works

Erwin Moerland, DLR

Roberto d’Ippolito, NOESIS

Martin Motzer, DRÄXLMAIER

Kevin van Hoogdalem, KE-works

Jochen Haenisch, Jotne

Franz Stöckl, DRÄXLMAIER

Til Hendrich, KE-works

Akshay Raju Kulkarni, TU-Delft

Marco Panzeri, NOESIS

Sebastian Deinert, Airbus Defence & Space

Maurice Hoogreef, TU-Delft

Johnny van Lugtenburg, Fokker Elmo

Version:

1.2

Date:

October 12, 2017

Status:

Final / Released

Confidentiality:

Public

2/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

CHANGE LOG

Vers. Date Author Description

0.1 29.05.2017 Marc Eheim - Removed not used requirements for the use-cases
based on V&V D5.1.2; put obsolete requirements
into the annex for traceability;
- Modified chapters 1 and 8 for final version;
- added one requirement to cover user stories (Req-

ELW-CH-5)

0.2 30.05.2017 Marc Eheim updated tool description for DC43 (in chapter 5)

0.3 30.05.2017 Marc Eheim Some minor modifications in chapters 2 and 6

0.4 01.06.2017 Marco Panzeri Updated tool description

0.5 06.06.2017 Marc Eheim status: To be reviewed

0.6 20.06.2017 Johnny van
Lugtenburg

Review performed.

0.7 23.06.2017 Marc Eheim Processed reviewers comments; Added commonly
used file formats; re-added GBDL physics
requirements; added one additional requirement;

0.8 01.08.2017 Sebastian Deinert Added requirement in section 4.2.1

0.9 11.08.2017 Erwin Moerland Added requirements in section 4.2.1

1.0 14.08.2017 Marc Eheim Merged document with requirements for HDOT,
finalised

1.1 21.08.2017 Marc Eheim Removed requirements of engineering services

1.2 12.10.2017 Johnny van
Lugtenburg

Added description of the Engineering Services in
scope of UC2 in section 4.2.1.

3/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Table of Contents

1 Introduction ... 7

2 Engineering Language Workbench .. 8

2.1 State-of-the-Art ... 8

2.2 Vision .. 9

3 Requirements for the Engineering Language Workbench .. 13

3.1 Engineering Language Workbench .. 13

3.1.1 Description .. 13

3.1.2 Component requirements .. 13

3.2 High Level Design Languages ... 14

3.2.1 Description .. 14

3.2.2 Component requirements .. 15

4 Requirements for the Engineering Library .. 16

4.1 Engineering Library ... 16

4.1.1 Description .. 16

4.1.2 Component requirements .. 16

4.2 Engineering Services .. 17

4.2.1 Description .. 17

4.3 Standard interfaces and exchange formats .. 20

4.3.1 Description .. 20

4.3.2 Component requirements .. 21

4.4 Existing information and predefined solutions .. 21

4.4.1 Description .. 21

4.4.2 Component requirements .. 21

5 Inventory list of current used data formats ... 23

5.1 Fraunhofer LBF ... 23

5.2 IILS ... 24

5.3 iMinds-DistriNet, KU Leuven.. 25

5.4 Jotne EPM Technology AS .. 26

5.5 KE-works .. 27

5.6 DLR .. 28

5.7 NOESIS Solutions ... 30

4/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

6 Standard Interfaces and Data Formats .. 32

6.1 Standardisation Strategy ... 32

6.2 BPMN ... 32

6.3 OWL ... 33

6.4 STEP – ISO 10303 .. 33

7 Commonly used data formats .. 36

7.1 CPACS ... 36

7.2 GBDL .. 37

7.3 KBL ... 38

7.4 VEC .. 39

8 Conclusion .. 41

9 References ... 42

Annex A: Step on a page .. 43

Annex B: XML... 46

Annex C: Requirements classification ... 46

Annex D: Not applicable requirements .. 47

5/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

List of Abbreviations

AIF Advanced Integration Framework

AP Application Protocol

API Application Programming Interface

BPMN Business Process Model and Notation

CAD Computer-Aided Design

CAE Computer-Aided Engineering

CFD Computational Fluid Dynamics

COTS Commercial Off-The-Shelf

CPACS The Common Parametric Aircraft Configuration Schema

CR2 Change Request 2

DSL Domain Specific Language

EL Engineering Library

ELW Engineering Language Workbench

EWIS Electrical Wiring Interconnection System

FEM Finite Element Method

FPP Full Project Proposal

GBDL Graph-Based Design Language

HLDL High Level Design Language

IGES Initial Graphics Exchange Specification

JT Jupiter Tessellation

KBL Kabelbaumliste

MDM Master Data Management

MDO Multi-disciplinary Design Optimization

6/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

MoSCoW Must haves, Should haves, Could haves, Won't haves, according to MoSCoW

prioritization technique (see Annex C: Requirements classification)

OEM Original Equipment Manufacturer

OWL Web Ontology Language

PDM Product Data Management

PLM Product Lifecycle Management

RDE Resource Description Framework

STEP STandard for the Exchange of Product model data

SysML Systems Modeling Language

UML Unified Modeling Language

VDA Verband der Automobilindustrie

VDAFS Verband der Automobilindustrie - Flächenschnittstelle

VEC Vehicle Electric Container

VHDL Very High Speed Integrated Circuit Hardware Description Language

W3C World Wide Web Consortium

WP Work Package

XML Extensible Markup Language

XSD XML Schema Definition

XSLT Extensible Stylesheet Language Transformations

7/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

1 Introduction

The objective of Work Package 4 (WP4) is to develop an Engineering Language Workbench

(ELW), providing a service development toolkit to generate flexible engineering workflows and

services featuring a set of domain specific and high-level modelling languages, ontologies and

standard interfaces and data formats. It enables the generation and integration of engineering

services and workflows into the Advanced Integration Framework1 (AIF), developed in WP3 of the

IDEaliSM project. Besides describing used data standards, the purpose of this deliverable is to

specify the functional- and technical requirements for each of the sub-components of the ELW.

The requirements of the Engineering Library (EL) are described as well, since the EL is a task of

WP4. Following the MoSCoW (see Annex C: Requirements classification) method, the

requirements were initially based on the FPP [1], revised for the new tasks added with change

request CR2 [2] and were more detailed with the Use Case Specifications D2.1.x in three

iterations (see [3], [4] and [5]).

WP4 follows the overall iterative approach in IDEaliSM and thereby delivers three versions of the

ELW during the project. During each of the iterations, the sub-components of the workbench are

matured, seamlessly serving the building phase of the use cases within the project.

This is the third and final iteration of the deliverable for requirement specification and standards

for the ELW (D4.1.3). The final requirements analysis is based on the second version of validation

and verification of the demonstrators [6] of WP5 and the final definition of the Use Case

Specifications [5] of WP2. It forms the foundation to establish the final iteration of the ELW and

the EL.

The ELW is based on the development and use of High Level Design Languages (HLDLs) to

enable the engineers to create automated engineering services. For the interoperability of the

engineering services in the AIF, a common knowledge base is needed as well as standardized

interfaces and data formats such as CPACS, STEP and UML.

This document is organised as follows:

 Chapter 2 contains a description of the state-of-the-art of data exchange standards

(section 2.1) and the vision of the standardisation strategy within IDEaliSM (section 2.2)

 Chapter 3 describes the requirements of the ELW and its contents

 Chapter 4 describes the requirements of the EL and its contents

 Chapter 5 provides an overview of the current state of used tools in the consortium and

their supported data formats and standards

 Chapter 6 contains a description of the Standard Interfaces and Data Formats which play

a key role in the project setup

 Chapter 7 contains wide-spread data formats, which are used in design processes every

day

 Chapter 8 concludes the most important aspects

1 Requirements of the Advanced Integration Framework are described in D3.1.3 [1].

8/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

2 Engineering Language Workbench

The Engineering Language Workbench (ELW) serves the ultimate goal of flexibly creating

engineering services and workflows for multi-disciplinary simulation and analysis models, as well

as tasks and optimizations. It therefore heavily relies on a set of High-Level Design Languages

(HLDLs) and domain specific languages (DSLs) with their ontologies. Together with data

standards, these languages enable a flexible configuration of engineering workflows and services

and a straightforward integration into the distributed Advanced Integration Framework (AIF).

Sections 2.1 describes the current state-of-the-art concerning interfaces and exchange formats

before section 2.2 describes the IDEaliSM vision for achieving the project goals.

2.1 State-of-the-Art

The design of complex engineering products and systems involves the concurrent development of

hardware and software. Furthermore, the current design and development processes for

engineering complex systems as reflected in the project use cases (aircraft design, 1-month

rudder, 3-weeks cockpit and 10-day harness) are characterized by heavy coupling across

disciplines. The design of such complex systems involves a multitude of domain specialists and

typically follows a system-of-systems approach.

This system-of-systems approach starts with topology decisions (i.e. the architectural design

decisions). The second step involves the dimensioning of the design parameters. Since many

disciplinary models are used for disciplinary analyses, the consistency between these models in

the automated model generation process plays a crucial role for a successful automation of the

model generation process, frequently occurring in iterative design processes.

It is current state-of-the-art that these development steps of engineering information occur in

process chains between different programs and models using a multitude of interfaces. These

interfaces frequently rely on more or less well elaborated and established standards ; some of

these are open-source, some of these are proprietary. It is hereby a common experience that

despite the fact that interfaces between major engineering modelling and analysis programs exist,

a complete and consistent flow of information from one program to the other is not always

guaranteed. Instead, parts of the information might be lost or distorted during the transmission

over the interface. Manual rework is therefore frequently necessary to check, repair or complete

an already completed digital model once it has been written by one system and been loaded into

another system.

Standards are important to support collaboration. When specified appropriately, standards provide

an appropriate trade-off between restriction and guidance. Today’s industry standards , like STEP,

frequently date back more than 20 years. However, they are still largely underused, either

because they are not always flexible or expressive enough for the specific user needs, because

they are too complex and cumbersome to adhere to, because they are replaced by proprietary

data and information exchange formats, or simply because they are ignored. However,

standardisation in terms of information representation format is critical due to several reasons.

First, data formats need to support projects during their entire life-time. In the aerospace industry

this implies a life-span of 50 years or more, in order to ensure maintenance and certification

issues, just to name the most important ones. Then, standards are essential for collecting,

structuring, encoding and debugging engineering knowledge that is too valuable to be encoded

9/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

into any form of a digital proprietary format. If that software supplier goes out of business,

substantial investments on the customer side are at stake.

Interface and design information representation standards are currently controversia lly discussed

in the automotive- and aerospace industry. This can be concluded from the long list of alternative

standards such as UML, SysML, AutomationML, STEP, VHDL and all kinds of XML

implementations, which have already consumed much development effort and have seen many

updates. All of the aforementioned standards have both strong- and weak points (typically a

standard well suited for representing geometry is not well adapted for representing functional

behaviour and vice versa). Therefore, none of these standards was able to dominate and become

the de-facto market standard so far.

Concerning data exchange in the automotive industry, the landscape of standards is even more

heterogeneous: for the exchange of product geometry, IGES, VDAFS and more recently STEP

AP242 and JT seem to become a de-facto standard, however many OEMs still insist/prefer

exchanging native CAD formats in order to avoid losing (fully or in part) the internal construction

logic or other relevant product data during the translation process. In the domain of electrical wire

harness development a similar radical transformation process occurs as product geometry has

undergone over the last 30 years in CAD systems, but in much less time. As a consequence,

current standards for harness information such as the VEC (Vehicle Electric Container)2 as the

successor of the KBL3 standard have not yet fully converged and thus undergo steady

improvements. The German Association of the Automotive Industry (VDA) recommends the VEC

for the exchange of harness design data across process steps.

All-in-all, it can be concluded that standards are potentially valuable, but they currently suffer from

certain drawbacks (e.g. limitation in applicability) that limit them in the fulfilment of their potential.

One of the possible solutions to overcome these limitations would be the development of a

consistent and unified theory of design from which the needs for a finalized version of an

exchange standard could be theoretically derived. By means of such a unified theory of design, it

could be concluded what the real need of the information flow between different computer

programs looks like, facilitating the design of an enduring standard which would be complete and

consistent and therefore a worthwhile financial investment into valid and secure digital

engineering process chains. However, such a unified theory of design is so far still unknown.

2.2 Vision

In the current IDEALISM project, the aforementioned deficiencies of the data exchange formats

underlying the digital process chains have raised the need for the successful development of a

framework consistently supporting the product life-cycle needs of addressing, manipulating and

evaluating design as well as manufacturing knowledge along the entire product lifecycle.

Novel means to represent the design- and manufacturing knowledge needs to be developed in

order to fully automate, semi-automatically or interactively assist such design- and manufacturing

development activities and processes along the product development process. To relieve the

design engineering teams by automatic model generation from tedious routine works, automated

2 http://ecad-wiki.prostep.org/doku.php?id=specifications:vec:start
3 http://ecad-wiki.prostep.org/doku.php?id=specifications:kbl

http://ecad-wiki.prostep.org/doku.php?id=specifications:vec:start
http://ecad-wiki.prostep.org/doku.php?id=specifications:kbl

10/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

engineering services and workflows allow topological and parametrical product variations by re-

use of design rules and design knowledge. To capture the design knowledge, High Level Design

Languages are used, which can handle and capture different domain specific ontologies. With an

ELW such High Level Design Languages can be developed and used to create manifold

engineering services and workflows. The ELW is based on the representation of both globally

generic engineering background knowledge and locally specific engineering product design and

manufacturing knowledge in a re-useable engineering ontology. The ELW therefore enables:

 Representing engineering knowledge in a human-readable and digitally processable way

according to the philosophical approach “design as a language” [7]

 Decomposition and structuring of the engineering design knowledge in the form of an

abstract domain specific language

 Allowing the merging, mapping and extension of the knowledge representation by

processing mechanisms ensuring consistency and correctness

 Model generation of all necessary disciplinary engineering analysis models by generation

of consistent, domain-specific model representations

For this purpose, the concepts of High Level Design Languages will be used and partially

extended. The creation of such a generic applicable language that can be used for domain

specific knowledge representation involves the cooperation of several specialists, as a

consequence several means have to be developed in order to ensure the capability of cooperation

of specialists separated in space and time (i.e. support of concurrent distributed engineering

concepts) and to automatically merge and integrate their partial ontologies into a globally

consistent and system-wide accessible and valid re-useable knowledge representation.

The first goal of the ELW involves the following list of syntactical features definitions and

developments:

 Demonstration of merging and integration capabilities of separated, partial ontologies into

an overall, system-wide valid ontology to ensure global consistency of engineering

concepts. This includes the development of consistency checks for validation and

verification and the development of knowledge representation regulations to ensure the

correctness of both global representation and processing during its construction.

 Demonstration of mapping capabilities of partial ontologies from one representation format

(such as UML) into other data formats (such as CPACS) by means of import and/or export

filters. This is tested in a first step by mapping ontology information between equivalent

vocabulary and rule content represented in CPACS/STEP and UML.

 Investigation and exploration of round-trip engineering capabilities. That means an ability

of establishing a potentially permanent and interactive mapping between a domain-

specific language (edited in its domain-specific editor) and the generic knowledge

representation in the high level design language and/or ontology.

 Interface and integration of design optimization loops via generic/abstract optimization

“adaptors” coupling the design language components to the optimizer capability. These

depend on the mathematical properties of the representation space (discrete decisions for

topology-based methods versus parametric decisions for gradient-based methods).

The second development goal of the ELW involves the following list of semantical feature

definitions and developments:

11/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

 Abstract geometry ontology representation: this involves the definition of geometry

representation (for example in a graph-based design language) including the

demonstration of mappings (i.e. translation capabilities) of abstract geometry elements to

distinct domain-specific geometry representations in distinct domain-specific languages.

This includes demonstration of extension capabilities for new geometry features. These

features allow to create design trades where function is traded versus form (“form follows

function”) and its inverse trade (“function follows form”), reflecting frequen tly occurring

“top-down” and “bottom-up” design activities.

 Together with an abstract geometry, an abstract way of representing geometrical

constraints will be developed. It allows the positioning of geometry components with

respect to each other (i.e. component A is located “on top of” component B, or, line A “is

perpendicular to” plane B, etc.).

 Validation of correct geometry constructions by checking the water-proof (continuous)

property of the geometry in an automated meshing tool.

 Verification of correct geometry construction by means of dedicated test grammars which

systematically test the defined design language features.

Besides the aforementioned aspects of a so-called “abstract geometry”, means to also define

physical properties of objects or processes are provided. For this, an abstract physics ontology

representation needs to be developed. This involves several definitions as follows:

 Physics properties (e.g. material values) have to be represented and mapped to different

target systems. Demonstration and extension capability of an abstract physics ontology

representation.

 Together with an abstract geometry, an abstract way of representing physical boundary

conditions (e.g. flow speed at the wall is zero) is to be developed. It allows the expression

of physical properties related to abstract geometry (i.e. force F “is perpendicular to” plane

C, or, force F “is aligned with” line D.).

 Propagation of the physical properties and enrichment of an automatically generated

mesh with these boundary conditions in an appropriate domain-specific representation

suited for engineering analysis and simulation such as finite element (FEM for structural

mechanics analysis)

 Validation of mesh enrichment with physical properties in a FEM-analysis process by

analysing and comparing the generated simulation results with known reference cases

from industry within the provided use cases.

 Verification of correct mesh enrichment with physical properties by analysing and

comparing the generated simulation results of the FEM-analysis with known reference

analytical results.

For the listed development goals, IDEaliSM will make use of open, internationally standardized

knowledge representation standards, such as Graph-Based Design Languages based on UML,

STEP (and any other data format which can be generated therefrom). This is considered

mandatory for the establishment of a secure and long-term knowledge processing effort. On the

other hand, IDEaliSM will critically look at the issues faced by present standards and provide

suggestions for improvement (e.g. by providing proposals for future standards like CPACS). For

example, most of the CAD/CAE systems are able to import/export STEP files; however, a lot of

the product information and data structuring is often ignored by these systems, which severely

limits tools interoperability. IDEaliSM will look at STEP standards not only to exchange product

12/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

model information including CAD, CAE and PLM data, but also for the definition of the product

structure ontology (STEP ISO 10303) as well as for the structuring requirements (STEP ISO

10303-209/233/-239/242).

Figure 1 shows the components of the ELW and EL with their relations as defined and described

in the Engineering Language Workbench documentation (see D4.3.1 [8], D4.3.2 [9]). In the next

two chapters the requirements for the Engineering Language Workbench, the Engineering Library

and their components are described.

Engineering Language Workbench

Engineering Service Development Toolkit

domain specific language

Engineering Service

Engineering Library

interface(s) to existing
libraries / services

data exchange
interface(s)

development support system(s)

high level design language

(combination of)
ontologies

rules
(building /
process)

product
structure

specialized
computing
templates

general purpose
computing
language

programming
language
modelling
language
mark-up
language

available libraries /
services

data exchange
formats & standards

external
engineering

service

internal
engineering

service

Figure 1: Components of the ELW and EL with their relations

13/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

3 Requirements for the Engineering Language Workbench

3.1 Engineering Language Workbench

3.1.1 Description

The creation of an Engineering Language Workbench is necessary for the application of High

Level Design Languages. This will be accomplished if methods could be defined and applied for

decomposing and structuring engineering design knowledge. These High Level Design

Languages (requirements described in section 3.2) can be used to create various engineering

services and workflows. They are a great tool for packing engineering knowledge into a

formalized representation. But to complete such languages, efficient processing mechanisms for

merging, mapping and extending the knowledge have to be developed ensuring consistency and

correctness at all times.

This involves the following developments:

 Automated merging and integration capabilities of partial ontologies into an overall

ontology

 Establishment of round‐trip engineering capabilities between a domain‐specific language

(edited in a domain‐specific editor) and the design language and/or ontology

 Interface and integration of des ign optimization loop via generic workflow “adaptors”.

3.1.2 Component requirements

Table 1 is a summary of the high-level requirements derived from the discussions above. For the

requirements classification the MoSCoW method is used (see Annex C: Requirements

classification).

Table 1: Requirements of the Engineering Language Workbench

Area (Identifier)
Requirement

Description Classification

Functional (Req-ELW-DLW-1)

Tool Creation
Ability to develop automation tools that can create
and adapt product models, including CAD
(D2.1.1)

MUST

Functional (Req-ELW-DLW-2)

Represent
knowledge

Enable representing engineering knowledge in a
(human-readable and) digital machine-executable
way (FPP)

MUST

Functional (Req-ELW-DLW-3)

Decomposition
and structuring
knowledge

Decomposition and structuring of the formalised
engineering design knowledge in the form of
design languages (FPP)

MUST

Functional (Req-ELW-DLW-4)

Rule based
modification

Knowledge rules must be (re)configurable in
standard libraries, to achieve different, case-
specific tool behaviour without having to
reprogram the automation system. This implies
rule based model modification (D2.1.1)

MUST

Functional (Req-ELW-DLW-5)

Knowledge
merging

Automated merging and integration capabilities of
separated, partial ontologies into an overall,
system-wide valid ontology to ensure global
consistency of engineering concepts (FPP)

MUST

14/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

3.2 High Level Design Languages

3.2.1 Description

Engineering design knowledge needs formalization to be re-useable. This formalization will be

designed and developed into appropriate domain specific ontologies and representations using

generic and existing ontologies. These ontologies will be captured in Domain Specific Languages

using High Level Design Languages (HLDL). HLDLs will cover the knowledge for the various use

cases, domains and disciplines and will therefore form the building blocks for the engineering

services and workflows in WP3. Representations of physics, structural design and analysis,

electrical design and analysis, cost, weight, manufacturing and process knowledge will be the

content of these languages.

An abstract geometry ontology allows the mapping of the geometry information to different distinct

CAD modellers and should support a vendor neutral CAD geometry representation and is of

importance to the different domains and use cases. Implementation of high level design language

components do also include methods for a generic automated 3D routing service, an automated

finite element analysis and the description of business- and simulation workflows.

This includes:

 Implementation of a dedicated routing graph-based design language for the modelling of

use case 3 (3 weeks cockpit) which can interact with other graph-based design languages

which express other engineering design tasks.

Functional (Req-ELW-DLW-6)

Knowledge
mapping

Automated mapping capabilities of partial
ontologies from one representation format into
other data formats by means of import and/or
export filters (FPP)

SHOULD

Functional (Req-ELW-DLW-7)

Model
generation

Model generation of all necessary disciplinary
engineering analysis models by compilation of the
design language into consistent, domain-specific
model representations. (FPP)

SHOULD

Functional (Req-ELW-DLW-9)

Traceability
The ELW should be able to create tools with full
traceability of the product design – e.g. for
certification and future re-use (D2.1.1)

SHOULD

Functional (Req-ELW-DLW-10)

Design
Optimization

Interface and integration of design optimization
loops via generic/abstract optimization “adaptors”
coupling the design language components to the
optimizer capability. (FPP)

SHOULD

Functional (Req-ELW-DLW-11)

Analysis Tools
Ability to develop automation tools that can
evaluate and analyse product models (D2.1.1)

COULD

Security (Req-ELW-DLW-12)

Secure Access
Considering the sensitive nature of software
source code and design data and tools the access
to it could be restricted by different user accounts
(if there are different user types using the same
development system) (D2.1.2)

SHOULD

Functional (Req-ELW-DLW-13)

Versioning
Versioning should be supported throughout the
system including the requirements, source code
and the created engineering services to have
the flexibility to switch to an alternative design
solution (D2.1.2)

SHOULD

15/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

 Implementation of an interface in an Engineering Service Development Toolkit for a finite

element solver for use case 1 (rudder in a month).

 Establishment of a set of test examples which allow for the establishment of automatic

testing of individual ontology mapping and routing features.

 Standardized language to express business and simulation workflows

3.2.2 Component requirements

Table 2 is a summary of the high-level requirements derived from the discussions above.

Table 2: Requirements of the High Level Design Languages

Area (Identifier)
Requirement

Description Classification

Ontology (Req-ELW-DSL-1)

Hybrid Workflow
Ontology

A set of semantic models and ontologies must be
delivered to interconnect the distributed
knowledge bases for hybrid workflows and related
product models in a flexible and scalable manner

MUST

Geometry
GBDL

(Req-ELW-DSL-2)

Geometry GBDL
basics

Abstract geometry ontology representation in a
design language including the demonstration of
mappings (i.e. translation capabilities) of abstract
geometry elements to distinct domain-specific
geometry representations in distinct domain-
specific languages.

MUST

Geometry
GBDL

(Req-ELW-DSL-3)

Geometry GBDL
constraints

Together with an abstract geometry, an abstract
way of representing geometrical constraints
should be developed. It allows the positioning of
geometry components in respect to each other.

SHOULD

Geometry
GBDL

(Req-ELW-DSL-5)

Geometry GBDL
verification

Verification of correct geometry construction by
means of dedicated test grammars which system-
atically test the defined design language features.

COULD

Physics
GBDL

(Req-ELW-DSL-6)

Physics GBDL
interface

Implementation of an interface in an Engineering
Service Development Toolkit to a finite element
solver

MUST

Physics
GBDL

(Req-ELW-DSL-7)

Physics GBDL
basics

Physics properties must be represented and
mapped to different target systems.
Demonstration and extension capability of an
abstract physics ontology representation.

MUST

Physics
GBDL

(Req-ELW-DSL-8)

Physics GBDL
constraints

Together with an abstract geometry, an abstract
way of representing physical boundary conditions
should be developed. It allows the expression of
physical properties related to abstract geometry.

SHOULD

Physics
GBDL

(Req-ELW-DSL-9)

Physics GBDL
meshing

Propagation of the physical properties and
enrichment of an automatically generated mesh
with these boundary conditions in an appropriate
domain-specific representation suited for
engineering analysis and simulation such as finite
element (FEM)

SHOULD

Routing
GBDL

(Req-ELW-DSL-11)

Routing GBDL
basics

A Routing GBDL for representation of cable
harnesses must be developed which can be
coupled with other design languages including
related data like electrical schematic information.

MUST

Routing
GBDL

(Req-ELW-DSL-12)

Routing GBDL
constraints

Together with the Routing GBDL, an abstract way
of representing routing related constraints should
be developed. It allows the use of gradient fields
to manipulate the cable harness routing

SHOULD

16/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

4 Requirements for the Engineering Library

4.1 Engineering Library

4.1.1 Description

The development of an Engineering Library (EL) will take place to rapidly frontload engineering

programs based on corporate standards.

The library will be composed of the following main features:

 Engineering services and workflows developed with the ELW (described in 4.2)

 Standard interfaces and exchange formats allowing quick and smooth integration of

engineering modules into the appropriate programs (described in 4.3)

 Existing information and predefined solutions (described in 4.4) like

o design requirements

o rules and constraints

o process modules (tasks, deliverables, workflows, human- and simulation-oriented)

o product modules (parts, assemblies)

 COTS (design) tools

4.1.2 Component requirements

Table 3 is a summary of the high-level requirements derived from the discussions above.

Table 3: Requirements of the Engineering Library

Area (Identifier)
Requirement

Description Classification

Contents (Req-ELW-EL-1)

Engineering
Services

The EL must contain engineering services made
available through KBE and COTS tools for the
integration in the AIF (FPP)

MUST

Contents (Req-ELW-EL-2)

KBE Tools
The EL must contain KBE tools created by the
ELW to be used as an engineering service (FPP)

MUST

Contents (Req-ELW-EL-3)

Business
process
workflows

The EL must contain business process workflows
for the use cases (FPP)

MUST

Contents (Req-ELW-EL-4)

Simulation
process
workflows

The EL must contain simulation workflows for the
use cases (FPP)

MUST

Contents (Req-ELW-EL-5)

Design
information

The EL should contain (standard) design rules,
constraints, materials, design requirements (FPP,
D2.1.1)

SHOULD

Contents (Req-ELW-EL-6)

COTS Tools
The EL should contain wrapped COTS tools for
evaluation and analysis of product models to be
used as an engineering service (FPP)

SHOULD

Functional (Req-ELW-EL-7)

Generic Tools
Automation tools should be generic, i.e. non-
customer specific (using the same standard
solutions) (D2.1.1)

SHOULD

Functional (Req-ELW-EL-8)

Visualization
Tools

The EL should contain tools to provide clear and
relevant visualization of the product model
(D2.1.1)

SHOULD

17/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Area (Identifier)
Requirement

Description Classification

Functional (Req-ELW-EL-9)

User Interaction
Automation tools should allow user interaction if
needed (D2.1.1)

SHOULD

Functional (Req-ELW-EL-10)

Large Dataset
handling

Tools should be able to cope with large datasets
for evaluation of large amounts of use cases
(D2.1.1)

SHOULD

Functional (Req-ELW-EL-11)

Standalone
Execution

Tools should be able to be executed stand-alone
(beneficial for debugging, …) (D2.1.1)

SHOULD

Functional (Req-ELW-EL-12)

Standardised
data exchange

Tools must exchange data via standardised
interfaces (D2.1.1)

MUST

Functional (Req-ELW-EL-13)

Optimization
Tool

The EL must contain optimisation tools to perform
product optimisation, design space exploration,
trade studies and to provide clear and relevant
visualizations (D2.1.1)

MUST

4.2 Engineering Services

4.2.1 Description

The engineering services in the Engineering Library (EL) are highly use case specific tools,

defined to automate one or few specific tasks. These engineering services can have requirements

independent from the EL, which are mainly in the functional area. Listing and tracking of the

detailed requirement sets related to the individual engineering services is beyond the scope of the

document and considered a partner-specific responsibility. Here the engineering services should

only be presented with its functions in general.

These engineering services comprise:

 The Airbus in-house tool Descartes is being extended to allow initialization of a

CPACS model at the beginning of the new conceptual aircraft development process. The

intention of this was to provide the means of “sketching” an aircraft model in a 3D CAD

environment with as little effort and required input as possible. This way, the conceptual

engineer would not have to invest any additional effort into creating such a sketch than he

would have to in the traditional approach based on two-side-views. The added value of the

approach using Descartes is to allow visualization and evaluation of a 3D CAD model from

the very beginning of the design process with a native interface to the parametric CPACS

data format. Therefore, a straight forward way of initializing a CPACS model with first data

SHOULD be available.

 An engineering service for automated initialization and synthesis of fighter aircraft

configurations. Using a given set of requirements and a handful of assumptions as input,

the service MUST be able to generate a consistent geometry and initial mass breakdown

of the aircraft. This is to be achieved through the creation of a knowledge base consisting

of a large set of empirical correlations available in design handbooks and from

experience. The requirements MUST be automatically read-in from the CPACS data

exchange format; resulting information (geometry, masses) MUST be made available to

subsequent engineering services using the CPACS format as well. It SHOULD be the

case that all major fighter aircraft components and disciplines are covered by the

18/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

engineering service and through flexible object-oriented programming based on discipline

and component ontologies, it MUST be guaranteed that further disciplines can be added

without large effort. Resulting geometry and mass breakdowns MUST be verified to

available data of representative fighter aircraft, in case this data can be obtained.

 Hinge-system Design and Optimization Tool (HDOT) is a KBE application built using

the Python based ParaPy KBE system which enables and automates the hinge system

design process. The tool makes use of interfaces to other engineering services in the

Engineering Library, specifically the FE solver NASTRAN and Fokker Excel-based stress

reserve factor calculation tools. Standard input data and test data used by the engineering

service are also provided in the Engineering Library.

It is part of the Use Case 1B of the Aircraft Design Challenge as described in D2.1.1. It

has the ability to carry out exhaustive search of all possible hinge components to

determine best hinge assembly satisfying the stress requirements at every hinge location

based on cost and/or weight for a given cost and weight model.

HDOT can quickly and automatically generate a simplified rudder structure based on user

defined specifications, generate a mesh based on the rudder structure and carry out

structural analysis (using COTS tool) to determine forces acting on the hinges. These

forces are in turn essential for the sizing of hinge components at different hinge locations.

The main requirements are

o The rudder outer-mold-line MUST be imported from STEP file.

o External loads MUST be imported.

o MUST allow for the generation of different torsion boxes based on 2 or more spar

layout.

o MUST automatically generate torsion box geometry, based on spars and number

of ribs using a CAD kernel.

o MUST automatically mesh the geometry in an external mesher

o MUST apply loads, extract results and determine critical load cases

o MUST select standard parts for hinge components from database

o MUST configure a feasible hinge from standard parts database, that can withstand

the loads

o MUST determine margins of safety, compliance with MS, cost and weight of all

parts

 An engineering service for automated wire harness routing including path

smoothing of harness segments. This is a modularized engineering service comprising

automated wire harness pathfinding, routing, and simulation using a multi-body approach

in order to get a physical realistic model of a wire harness. Since modifications of the

cable and harness placement occur, an additional collision check MUST be included.

Physical properties like cable stiffness’s SHOULD be taken into account as flexible input

parameters within the path smoothing capability. The calculated cable path MUST be

iteratively smoothed in real-time according to physical data using a multi-body approach.

Physical properties like cable stiffness’s SHOULD be taken into account as flexible input

parameters.

 An engineering service for harness stiffness simulation. A prediction of the

mechanical behaviour of cable harnesses for cable routing simulations will be developed.

Using the approach of the Finite Element Method (FEM) the harness stiffness for every

occurring cross section can be determined. The large variety of cross-sections of cable

19/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

harnesses will be categorized. Furthermore, uncertainties regarding geometrical

dimensions, material properties or other cable specific information will be investigated.

Results will be validated with experimentally measured data (this links to WP5). A concept

for the prediction of the mechanical behaviour of cable harnesses for cable routing simulations

MUST be developed (using FEM). Calculated values for the prediction of cable harness

stiffness MUST be validated with experimentally measured data. The homogenised material

data MUST be stored in a data base. A large variety of cross-sections of cable harnesses

SHOULD be categorized for investigation of uncertainties regarding geometrical dimensions,

material properties, etc. The data SHOULD be usable as input for the multi-body path

smoothing approach.

 An engineering service for the prediction of cable harness segment stiffness’s. A

Similarity Prognosis Model using dimensionless parameters is needed to predict wire

harness segment stiffness’s.

 An engineering service for the automatic routing of electrical signals within a

defined Main Routing Architecture. This is effectively a Tom-Tom for the EWIS

architecture. Based on the Main Routing Architecture, this engineering service routes

electrical signals through the main routings based on the most optimal conditions (e.g.

length, preferred segregation / separation, etc.). Examples include that system

segregations for independence / survivability will need to follow port and starboard sides

for system segregations 1 and 2 respectively as a requirement. Note that the number of

electrical signals is high and in the order of ten-thousands, by which it is a labor-intensive

task when conducted manually. Signals that cannot be routed according all requirements

are identified and can be defined manually. The Signal routing module is integrated with

the Component selection and Pin assignment engineering services within the detailed

electrical engineering design process (explained later).

 An engineering service to select wire sizes within a network within thermal- and

voltage drop constraints. The Wire size selection engineering service automates the

selection of the minimum wire size within voltage drop & thermal constraints. It represents

a design problem with a large number of variables and constraints both due to EWIS

being a large scale system (high number of signals / wires) as well as the interactions and

dependencies within the design to be considered. An example of the latter include

interactions between thermal and voltage drop, as the cable resistance is linked to the

cable temperature. The Wire Size Selection tool will first include using aerospace standard

Thermal rules for wire selection, in the future this will be replaced by advanced thermal

design rules as in development within Fokker. Also, integration with the other design tools

will enable an even further optimization opportunity.

 An engineering service for the automatic selection of connectors (including its

components) at a production break. An aircraft can have 100s or in some cases several

1000 connectors. At each production break (an Electrical Wiring Interconnection System

(EWIS) is broken down into a multitude of wiring harnesses for reasons of producibility as

well as the aircraft being produced in sections as well) , connectors are automatically

selected to accommodate the wiring at each production break as defined by the Signal

routing engineering service. The selection of components includes the connector mating

components like contacts, insert arrangements, connector shells, etc. All component are

selected within applicable constraints, e.g. environmental characteristics and traded-off

based on cost- and weight.

20/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

 An engineering service to assign signals to pins on a connector at a production

break. This engineering service automatically assigns signals (as retrieved by Signal

routing) to contacts on connectors at production breaks (as determined by the Component

selection engineering service).

4.3 Standard interfaces and exchange formats

4.3.1 Description

In this task data formats and interfaces have to be established which represent the projects

knowledge in an integrated manner. The data standards are part of the Engineering Library (see

Figure 1).

In aircraft design CPACS (Common Parametric Aircraft Configuration Scheme) is an XML schema

definition for efficient data exchange which is currently becoming a quasi -standard across

institutions in Europe. Beside product information of multi fidelity-levels, process information is

also incorporated within CPACS. This aids in providing settings to the analysis modules with

analysis workflows, steering their behaviour according to the project at hand. The following

extensions to CPACS are envisioned:

 After identifying the analyses to be performed in l ight of the aircraft design use cases,

CPACS will be extended to cover features required to cover all product information being

exchanged between the involved analysis modules.

 Within IDEaliSM, the process information storage capabilities of CPACS will be extended,

creating the ability to save process information delivered by the components of the

Advanced Integration Framework.

The possibility of saving data lifecycle information within the central data model will be

investigated. In this, the right balance between data size and readability to data

reproducibility needs to be found.

 Finally, if needed, automated mapping capabilities for different high level design

languages will be developed by establishing in-/export filters in order to link design

languages in CPACS.

STEP, defined in ISO 10303, is a widely used set of standards for the description of arbitrary

product data that also covers requirements of the aeronautics industry. Most CAD/CAE systems

are able to process STEP files. However, their focus is shape data; a lot of the product

information is not supported by these systems, which severely limits tools interoperability.

Therefore STEP will be used within IDEaliSM not only with a sub-set of its capabilities, but in a

more holistic way.

This includes the:

 Exchange of product model information (CAD, CAE and PLM data) using one or several of

the standards STEP ISO 10303-209/233/239/242

 Integration and management of such information from different sources in a consistent

database

 Definition of the product structure ontology (STEP ISO 10303)

 Incorporation of KBL and its successor VEC into the list of addressed standards.

21/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

STEP is a set of standards that grows as new industry requirements appear. Some of these

standards, like AP233 and AP239 apply relatively general data model concepts; these can be

specialized by a reference data ontology to meet concrete industrial needs. Else, as STEP is

defined by means of the formal data modelling language EXPRESS, standardized as ISO 10303-

11, non-standard extensions may be added to STEP data dictionaries to incorporate locally

required product information.

4.3.2 Component requirements

Table 4 is a summary of the high-level requirements derived from the discussions above.

Table 4: Requirements of standard interfaces and exchange formats

Area (Identifier)
Requirement

Description Classification

CPACS (Req-ELW-SI-1)

CPACS
Use case 1

CPACS must cover all product information being
exchanged between the involved analysis modules in
the aircraft use case

MUST

CPACS (Req-ELW-SI-2)

CPACS PLM
CPACS should include product lifecycle information SHOULD

CPACS (Req-ELW-SI-3)

CPACS
Process
Information

CPACS should be extended by process information
storage capabilities to save process information
delivered by the components of the Advanced
Integration Framework

SHOULD

KBL (Req-ELW-SI-5)

KBL
The wire harness data format KBL should be a
supported standard

SHOULD

VEC (Req-ELW-SI-6)

VEC
The holistic wire harness data format VEC should
be a supported standard

SHOULD

STEP (Req-ELW-SI-7)

Exchange
product model
information

The IT-infrastructure must have the ability to exchange
product model information (CAD, CAE and PLM data)
using one or several of the standards STEP ISO
10303-209/233/239/242

MUST

STEP (Req-ELW-SI-9)

CPACS
converter to
STEP

The ability should be created to convert CPACS to
STEP

SHOULD

VEC (Req-ELW-SI-11)

VEC to KBL
converter

The ability should be created to convert VEC to KBL SHOULD

4.4 Existing information and predefined solutions

4.4.1 Description

The Engineering Library holds existing information and predefined solutions. To work with this

information with automatic engineering services, the data must be well specified. For example the

3D digital mock-up data as geometric boundary conditions is essential for the automatic routing

and of wire harnesses. This includes e.g. a meaningful partitioning of the part into assemblies and

the addition of relevant electrical data for e.g. the connectors or fixing parts.

4.4.2 Component requirements

Table 5 is a summary of the high-level requirements derived from the discussions above.

22/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Table 5: Requirements to existing information and predefined solutions

Area (Identifier)
Requirement

Description Classification

Availability (Req-ELW-MUD-1)

Availability of
realistic
geometry

A realistic cockpit geometry from the automotive
industry must be available, which can be used
as geometrical environment (CR2)

MUST

Availability (Req-ELW-MUD-2)

Availability of
electrical data

Electrical data must be available to complement
the geometrical connectors or fixing parts (CR2)

MUST

Availability (Req-ELW-MUD-3)

Part partitioning
Meaningful partitioning of parts into assemblies
should be prepared to separate entities for
application of rules (CR2)

SHOULD

23/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

5 Inventory list of current used data formats

This section is an inventory list of current tools of the solution providers and their supported

standards, API’s and data formats. Possibilities of interoperability between these tools can be

elaborated.

5.1 Fraunhofer LBF

Software application name

(version)

HSSC (Harness Segments Stiffness Calculator)

Engineering services provided Stiffness Calculation of Cable Harness Segments

Operating system (version) Microsoft Windows 7

Java Runtime Environment 8

ANSYS (R14.5, R15.0, R16.0)

Screen resolution > 1200 x 850 pixel

Virtual machine support

(version)

Not applicable

Data formats support

(version)

Geometry and stiffness information: *.vec

Information model availability,

name (version)

Not available

Information modelling

language to document the

information model

Not available

Programming languages

support

Not available

API support No

Web-services support No

Provided test data Tbd in next version

Contact name (email address) Christoph Tamm (christoph.tamm@lbf.fraunhofer.de)

Other information

mailto:christoph.tamm@lbf.fraunhofer.de

24/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

5.2 IILS

Software application name

(version)

DesignCompiler43 (version 2.2)

Engineering services provided Wire Harness Routing Service (3rd version)

Operating system (version) Windows, Linux (no special version)

64-bit recommended

Virtual machine support

(version)

with client operating system Windows or Linux

Data formats support

(version)

datasets: *.xls, *.xlsx, *.cvs

electrical information: *.kbl, *.vec

geometrical information: *.step (AP203, AP214), *.stl, *.vtp

Information model availability,

name (version)

own data model(s) based on UML

Information modelling

language to document the

information model

UML

Programming languages

support

Java, (xtend)

API support No / not yet

Web-services support No / not yet

Provided test data none

Contact name (email address) Marc Eheim (eheim@iils.de)

Other information Command line execution without GUI possible

mailto:eheim@iils.de

25/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

5.3 iMinds-DistriNet, KU Leuven

Software application

name (version)

Impera

Engineering services

provided

Integrated configuration management for automated cloud

deployment

Operating system

(version)

Linux (CentOS, Fedora, Ubuntu)

Virtual machine support

(version)

yes

Data formats support

(version)

NA – not applicable

Information model

availability, name

(version)

NA – not applicable

Information modelling

language to document the

information model

NA – not applicable

Programming languages

support

NA – not applicable

API support Python

Web-services support yes

Provided test data NA

Contact name (email

address)

Stefan Walraven (stefan.walraven@cs.kuleuven.be)

Bert Lagaisse (bert.lagaisse@kuleuven.be)

Bart van Brabant (bart.vanbrabant@cs.kuleuven.be)

Other information https://github.com/impera-io/impera

Support for deploying on OpenStack (private cloud) and Amazon

AWS

mailto:stefan.walraven@cs.kuleuven.be
mailto:bert.lagaisse@kuleuven.be
mailto:bart.vanbrabant@cs.kuleuven.be
https://github.com/impera-io/impera

26/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

5.4 Jotne EPM Technology AS

Software application

name (version)

EXPRESS Data Manager (EDM)

Engineering services

provided

ISO 10303 STEP data exchange, integration and archival

Operating system

(version)

Windows/Unix/Linux/MacOs

Virtual machine support

(version)

yes

Data formats support

(version)

XML(P28), STEP (P21)

Information model

availability, name

(version)

All ISO 10303-11 application protocols and user defined

schemas

Information modelling

language to document the

information model

EXPRESS

Programming languages

support

C/C++, JAVA, .NET, EXPRESS-X

API support Yes

Web-services support Yes

Provided test data GLIDER Aircraft

Contact name (email

address)

Kjell Bengtsson (kjell.bengtsson@jotne.com)

Other information

mailto:kjell.bengtsson@jotne.com

27/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

5.5 KE-works

Software application

name (version)

KE-chain v1.3.8

Engineering services

provided

Engineering Process Management component in the IDEaliSM

Integration Framework

Operating system

(version)

Linux based server deployment (Ubuntu-, RHEL-, Debian-

based)

Virtual machine support

(version)

VMWARE & VirtualBox

Data formats support

(version)

Custom

Information model

availability, name

(version)

Product Information Model, Workflow Information Model

Information modelling

language to document the

information model

The Workflow Information Model is loosely based on BPMN, the

Product Information Model is based on influences from Step &

UML object modelling

Programming languages

support

Python

API support -

Web-services support REST, SOAP

Provided test data -

Contact name (email

address)

Stefan van der Elst (stefan.vanderelst@ke-works.com)

Other information

mailto:stefan.vanderelst@ke-works.com

28/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

5.6 DLR

Software application

name (version)

Remote Component Environment (RCE), v6.2.1 and higher

Engineering services

provided

A distributed, workflow-driven integration environment in which

complex calculation and simulation workflows consisting of

existing design and simulation tools on dedicated servers can be

created, managed and executed.

Libraries to connect analysis modules to the central data model

CPACS

Operating system

(version)

Red Hat Enterprise Linux 6 Workstation (64 bit)

Debian 7 stable (64 bit)

SUSE Linux Enterprise Desktop ("SLED") 11 SP2 (64 bit)

Windows 7 (64 bit)

Virtual machine support

(version)

Possibly, not used up until now

Data formats support

(version)

Data formats depend on integrated design and simulation tools

Extensions are provided for XML file handling (using xml

interfacing (TIXI) and geometry interfacing (TIGL) libraries for

CPACS v2.3 and higher)

Information model

availability, name

(version)

Common Parametric Aircraft Configuration Schema (CPACS),

Version 2.3

Information modelling

language to document the

information model

XSD (XML Schema Definition)

Programming languages

support

All languages are supported. Supporting libraries provide

interfaces for: C/C++, Python, MATLAB and FORTRAN. Java if

required

API support yes: Java for RCE, C++ for CPACS supporting libraries

Web-services support

Provided test data Internally developed medium-range transport aircraft described

in CPACS, VAMPzero conceptual design tool + GUI interface

embedded in RCE

Contact name (email Erwin Moerland (erwin.moerland@dlr.de),

mailto:erwin.moerland@dlr.de

29/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

address) Thomas Zill (thomas.zill@dlr.de)

Other information Contact persons of DLR’s software department:

Doreen Seider (doreen.seider@dlr.de),

Robert Mischke (robert.mischke@dlr.de)

Software application

name (version)

Multiple Aircraft Analysis Tools

Engineering services

provided

Disciplinary analyses for aircraft conceptual and pre-design

purposes

Libraries to connect analysis modules to the central data model

CPACS

Operating system

(version)

Mostly Windows 7 (64 bit), some Linux

Virtual machine support

(version)

Possibly, not used up until now

Data formats support

(version)

All support CPACS v2.3

Information model

availability, name

(version)

Common Parametric Aircraft Configuration Schema (CPACS),

Version 2.3

Information modelling

language to document the

information model

XSD (XML Schema Definition)

Programming languages

support

All languages are supported. Supporting libraries provide

interfaces for: C/C++, Python, MATLAB and FORTRAN. Java if

required

API support C++ for CPACS supporting libraries

Web-services support

Provided test data Internally developed medium-range transport aircraft described

in CPACS

Contact name (email

address)

Erwin Moerland (erwin.moerland@dlr.de),

Thomas Zill (thomas.zill@dlr.de)

Other information Software tools remain the proprietary of the tool developer,

mailto:thomas.zill@dlr.de
mailto:doreen.seider@dlr.de
mailto:robert.mischke@dlr.de
mailto:erwin.moerland@dlr.de
mailto:thomas.zill@dlr.de

30/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

therefore individual tool contact persons vary throughout DLR

5.7 NOESIS Solutions

Software application

name (version)

Noesis Optimus 10.16 and higher

Noesis id8 enterprise web platform

Engineering services

provided

A commercial off the shelf product integration and design

optimization tool for complex and distributed multidisciplinary

optimization problems. Provides simulation workflows, design

and analysis methods for exploration and optimization, surrogate

modelling for model-based predictions, robustness and reliability

analysis, uncertainty quantification. Interfaces are provided to

most commonly used commercial tools, provides inclusion and

extension of optimization and metamodeling features, fully

scriptable in Python 2.7. Already established in major aeronautic

and automotive industry.

Full support to CPACS and any XML structured format available.

Operating system

(version)

Windows Server 2003 on x86 and x86-64 (both AMD & Intel

hardware)

Windows Vista on x86 and x86-64 (both AMD & Intel hardware)

Windows Server 2008 on x86 and x86-64 (both AMD & Intel

hardware)

Windows 7 on x86 and x86-64 (both AMD & Intel hardware)

Windows 8/8.1 on x86 and x86-64 (both AMD & Intel hardware)

Linux SUSE Enterprise 10.3 and higher on x86 and x86-64

(native 64-bit supported)

Linux RedHat Enterprise 5, 6 and 7 on x86 and x86-64 (native

64-bit supported)

Linux CentOS 5, 6 and 7 on x86 and x86-64 (native 64-bit

supported)

Virtual machine support

(version)

Yes, all virtualization engines compatible with the operating

systems above + UBUNTU

Data formats support

(version)

CATIA, MATLAB, LMS Virtual.Lab, Ricardo Wave, MS Excel,

LMS Imagine.Lab, ANSYS Workbench, ANSA, LS-Dyna,

Sigmetrix, PTC Pro/E 4 and 5, XML Generic, Moldflow,

SpaceClaim, CoCreate, CD-Adapco Star CCM+, Calc (Linux

Excel), JMAG, Siemens NX (CAD+CAE), MapleSim, Maple, AVL

Excite/Boost, MSC Nastran OP2, Samcef, GT Power,

SimulationX, MSC Adams Cars/View, Flowmaster, Abaqus, MSC

Nastran bulk (f06, blk)

31/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Information model

availability, name

(version)

Workflow XML 1.0

Information modelling

language to document the

information model

Workflow XML (WFXML, based on a specific XSD grammar)

Programming languages

support

C++, Python

API support Python

Web-services support Can connect to REST services as client.

The id8 platform supports remote web service operations

(workflows storage, simulation data post-processing, RSM

creation and execution).

 A web interface (Optimus Workflow Manager) has been

implemented to support more advanced remote operations

(execution of workflow methods, partial workflow materialization)

through REST API.

Provided test data none

Contact name (email

address)

Roberto d’Ippolito (roberto.dippolito@noesissolutions.com)

Other information

mailto:roberto.dippolito@noesissolutions.com

32/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

6 Standard Interfaces and Data Formats

Exchanging knowledge in a consistent way is fundamental to the success of the integration

project. The consortium has identified several data formats in which the central product model

could be described. These data formats and standards might be used as interchange formats

between the different engineering services and tasks. This section starts with a description of the

master data management (MDM) module, performing the central management of data within the

AIF.

6.1 Standardisation Strategy

Figure 2: Data formats contributing to the MDM

In order to guarantee consistent data management in WP4, a master data management (MDM)

module is established, depicted in Figure 2. This MDM is capable of providing data to the other

modules within the AIF, in the data format requested by the implementation. This implies the data

types used through the MDM can differ from one use case to the other. If the implementation of a

use-case requires exchanging information between the involved data standards, converter tools

are established, where necessary, aiding in the translation from the one to the other.

For example, in the case of graph-based design languages, the developed ontologies act as

interfaces to standard data formats (like STEP). These ontologies are published and maintained

by the graph-based design language developers (using the engineering workbench) and

integrated into the standard data formats of the master data model.

6.2 BPMN

The Business Process Model and Notation (BPMN) is a widely accepted standard for modelling

business processes but also technical workflows. Initially, BPMN was a standard that only

specified how a process can be visualized in a diagram but since its latest version 2.0 it also

specifies a formal data representation that allows for a standardized exchange of process models.

Since IDEaliSM aims to create an Integration Framework to integrate multiple disciplines,

departments, sites and even companies, process models play a major role in the project. Hence,

33/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

BPMN is highly relevant for the project. BPMN 2.04 will be used in the IDEaliSM framework by the

Engineering Process Management module and in interaction with the simulation workflow module.

In BPMN a process consists of multiple activities and events (incl. it’s starting point and its end)

that are structured in a sequential flow (that may also feature parallel and/or alternative process

flows). It also allows for modelling organizational responsibilities for activities using the

mechanism of swim lanes (a visualization approach that is mainly targeted at a management

audience) and one may specify documents and/or development artefacts as inputs and outputs of

activities. Nesting of processes is also possible. Finally, BPMN provides a set of specialized

modelling elements for specifying details that are only relevant for workflow management (such as

email notification events or task timeouts, etc.).

Since BPMN, as a data format, is not only meant for exchanging process models but also for

exchanging process diagrams, it also features information about the visualization of process

elements as an integral part of its data representation. These elements are irrelevant for the

IDEaliSM project. There must be investigated how the BPMN model relates to the information in

the other models used in the tool in the IDEaliSM framework.

6.3 OWL

The Web Ontology Language (OWL) is a family of knowledge representation languages for

authoring ontologies. Ontologies are a formal way to describe taxonomies and classification

networks, essentially defining the structure of knowledge for various domains: the nouns

representing classes of objects and the verbs representing relations between the objects.

Ontologies resemble class hierarchies in object-oriented programming but there are several

critical differences. Class hierarchies are meant to represent structures used in source code that

evolve fairly slowly (typically monthly revisions) whereas ontologies are meant to represent

information on the Internet and are expected to be evolving almost constantly. Similarly,

ontologies are typically far more flexible as they are meant to represent information on the

Internet coming from all sorts of heterogeneous data sources. Class hierarchies on the other hand

are meant to be fairly static and rely on far less diverse and more structured sources of data such

as corporate databases.

The OWL languages are characterized by formal semantics. They are built upon a W3C XML

standard for objects called the Resource Description Framework (RDF).

6.4 STEP – ISO 10303

The growing need for interoperability of different CAD-systems resulted in the initial release of the

ISO 10303 standard in 1994 under its title: “Industrial automation systems and integration -

Product data representation and exchange”. Today the Standard for the Exchange of Product

Model Data (STEP) – as ISO 10303 is often informally referred to - is well tested and widely used

daily, especially in the CAD area. STEP, however, covers not only most of the scope of current

CAD-systems, but also most of the remaining data needed to describe a product during its

4 http://www.omg.org/spec/BPMN/2.0/

http://www.omg.org/spec/BPMN/2.0/

34/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

lifecycle, such as analysis, manufacturing and operational data. Not all of the STEP capabilities

are supported by commercial actors today.

Figure 3 illustrates the development of and its coverage of industrial data over the years : The

STEP standard

Figure 3: The development of the STEP standard over the years

There are the following reasons for the good uptake of STEP by industry:

 STEP can represent volume models with the required industrial accuracy and quality;

 STEP integrates product shape with other product properties and life-cycle information;

 STEP is a formal data model specified by the language EXPRESS (ISO 10303-11), which

is among the most powerful data modelling languages with respect to constraining a

model; this enables high data quality due to automated data verification and validation;

 STEP is not only an information model, but defines also several implementation methods,

such as, file formats and database access interfaces;

 STEP has a framework for testing of vendor translators, CAx-IF (implementers forum);

 STEP has no serious competitors.

STEP is not a single document, but a series of standards; each document is called a Part. The

following Part-numbering system has been imposed on ISO 10303 for its various aspects:

Part 1 : Overview and fundamental principles
Parts 10-19 : Description methods
Parts 20-29 : Implementation methods
Parts 30-39 : Conformance testing methodology and framework
Parts 40-99 : Integrated generic resources
Parts 100-199 : Integrated application resources
Parts 200-299 : Application protocols
Parts 300-399 : Abstract test suites
Parts 400-499 : Application Protocol Modules
Parts 500-999 : Application interpreted constructs
Parts 1000-2999 : Application modules
Parts 3000-... : Business Object Models.

35/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Additional details of ISO 10303 are included in Annex A: Step on a page.

For IDEaliSM mainly APs 209, 239 and 242 are of interest as they cover the industry domains of

the IDEaliSM partners and have considerable commercial support.

36/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

7 Commonly used data formats

This chapter contains wide-spread data formats, which are used in design processes every day.

However these data formats are not a standard yet.

There are multiple different data formats used within the project for different engineering domains

(geometry, FEM, etc.) ranging from openly available formats like IGES to proprietary formats like

CatPart for CATIA or input files for Patran and Nastran.

In the following only those data formats are described which are extended during the project or for

which converters are created. These common information formats are often based on XML (see

Annex B:).

7.1 CPACS

The conceptual and preliminary phases of aircraft design ranging up to high fidelity

Multidisciplinary Design Optimization (MDO) are characterized by their interdisciplinary character

as well as by an agile way of collaboration between heterogeneous partners. Agility goes in line

with the frequent establishment of links between analysis services. In this context the XML

schema CPACS (Common Parametric Aircraft Configuration Schema) was developed by DLR to

establish these links with minimum effort.

CPACS is a data definition for the air transportation system. Using a central model approach, the

number of interfaces between analysis modules within a design system is decreased significantly,

as shown in Figure 4. Furthermore, by adhering to a standard for data exchange, exchanging

analysis modules within a design process is significantly simplified.

Figure 4: A Central Model Approach significantly reduces the amount of interfaces within a
design process

The development of CPACS for aircraft design began in 2005. CPACS enables engineers to

exchange information between their tools. It is therefore a driver for multi-disciplinary and multi-

fidelity design in distributed environments. CPACS describes the characteristics of aircraft,

rotorcraft, engines, climate impact, fleets and mission in a structured, hierarchical manner. Not

only product but also process information is stored in CPACS. The process information helps in

setting up workflows for analysis modules. The scope is by now enlarged to take into account

topics such as high-lift, noise and climate impact, engine design and air transportation system

modelling. CPACS can be combined with existing aircraft design systems.

Several analysis modules are connected to CPACS. An example of information extracted by

multiple disciplinary analysis modules is shown in the Figure 5. Different models for structure,

aerodynamic and load analysis can be derived from the same file. As all models are derived from

the same data it is assured that they rely on the same references, i.e. geometry. Multi-disciplinary

processes are therefore enhanced from central model applications.

37/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Figure 5: Example of multi-disciplinary analysis using CPACS

Furthermore, CPACS is a hierarchic data structure therefore it is possible to work on different

levels of fidelity. The deeper the structure the more detail is present.

As CPACS is a medium for communication it is supposed to be an open standard. It is available

as Open Source Software under the Apache 2.0 license and further information can be found at

https://software.dlr.de/p/cpacs/home/.

7.2 GBDL

Graph-Based Design Languages are a way of supporting the activity of engineering design. They

are inspired by natural human languages, in which the vocabulary (i.e. the words) and the rules

(i.e. the building laws) define a so-called language grammar. This means that any correct

sentence in this language (i.e. a permissible vocabulary combinat ion) represents a valid

engineering product variant.

The increase in productivity, higher model quality and shorter time-to-market stems from

modelling and processing the design knowledge on a higher level of abstraction then done

previously using model-to model transformations. The mapping of this abstract level into a specific

data format is provided by model-to-text transformations. This avoids an intermixing of the per se

pure, product specific design knowledge with vendor-specific representation dependencies.

GBDLs on the basis of the internationally standardized Unified Modeling Language (UML)

possess therefore a well distinct information processing concept and are therefore easily

readable, editable and storable based on publicly available UML tools .

These are developed and part of the Engineering Language Workbench and are therefore

described in deliverable D4.3.1 [8] in section 3.2.1 in more detail.

https://software.dlr.de/p/cpacs/home/

38/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

7.3 KBL5

Innovations in automotive industry like adaptive cruise control or multimedia passenger

entertainment systems nowadays define themselves by electric and electronic components. As

the electrical wiring system builds the essential infrastructure for automobi le electronics, the wire

harness becomes increasingly complex. This need for increased complexity comes along with the

minimizing of design time and shortening of lead times.

Therefore the collaboration of car manufacturers and harness suppliers is a chal lenge. The

traditional way that a supplier receives harness design data from the car manufacturer has to

change. Instead of various drawings and lists in proprietary formats he needs a specification,

which describes the wire harness in its entirety so that the manufacturer can plan the

manufacturing and build the harness, based on the data he receives. Such a specification should

be based on standards to fulfil the requirements for open development partnerships.

Figure 6: Harness Design Process [10]

5 http://ecad-wiki.prostep.org/doku.php?id=specifications:kbl

http://ecad-wiki.prostep.org/doku.php?id=specifications:kbl

39/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

The objectives of the VDA Working Group “Car Electric” are the harmonization of requirements

and the development of recommendations for the exchange of product data in the area of car

electrical systems.

This recommendation is a result of the working group and has been developed with the

participation of major OEMs and harness suppliers: The “Harness Description List” [10]. This

specification is also known under the name “KBL”, which stands for “Kabelbaumliste”, the German

translation for “Harness Description List”. The recommendation defines how harness design data

coming from various sources like 3D CAD systems or CAE system can be represented in an

aggregated view.

The newest version of the recommendation, also called KBL 2.4, is a bridge release. Its objective

is to enable a smooth migration from KBL to VEC:

 Lower the implementation hurdle for VEC, especially for the supplier interface

 Define the migration path to VEC

 Extensions to KBL 2.4 to enable the interoperation with VEC modeling

 All new KBL concepts are addressed by VEC, too

 Keep KBL scope (physical harness)

The data format is described in more detail in the document ‘Harness Description List (KBL)’ [10],

accessible via:

https://www.vda.de/de/services/Publikationen/Publikation.~1267~.html

7.4 VEC6

The complexity of today's vehicle electrical systems is constantly growing. A vast variety of

options is on the market. Firmly organized and integrated cross-company development processes

are essential, combined with powerful, integrated IT infrastructures to support all cross

stakeholders.

Against this background, the joint VDA and ProSTEP iViP Association project group "Process

Chain Car Electric" has developed standardised data formats for the uniform description of wiring

harnesses and related data. Providing the Harness Description List (KBL, VDA 4964 [10]) and

supplementing schemas was a leap forward with regard to the improvement of car electric

development processes and their integration in the development processes for complete vehicles.

But for supporting the whole car electric development processes the provided specifications were

not sufficient. Therefore additional use cases have to be addressed. The objective of the joint

VDA and ProSTEP iViP Association project group "Process Chain Car Electric" was against this

background to name these use cases and on that basis specify the Vehicle Electric Container

(VEC, VDA 4968 [11]) as the required standardised data format in this context.

In the end, the VEC data format specification harmonizes and integrates the already existing

solutions with the newly gathered requirements. The VEC data format specification addresses a

significantly extended field of application, focussing not only on one sing le wiring harness but on

the whole electric system. The VEC data format specification is capable of supporting a huge

amount of data exchange use cases all along the electric system development process.

6 http://ecad-wiki.prostep.org/doku.php?id=specifications:vec:start

https://www.vda.de/de/services/Publikationen/Publikation.~1267~.html
http://ecad-wiki.prostep.org/doku.php?id=specifications:vec:start

40/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Focus within the VEC specification was to address automotive requirements. But it is also

expected that the available VEC specification addresses the needs of the aerospace industry as

well.

The data format is described in more detail in the document ‘Vehicle Electric Container (VEC) ’

[11], accessible via:

https://www.vda.de/de/services/Publikationen/vehicle-electric-container-vec.html

https://www.vda.de/de/services/Publikationen/vehicle-electric-container-vec.html

41/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

8 Conclusion

The objective of WP4 is to design and develop an Engineering Language Workbench to enable

the creation of automated engineering services and workflows as well as an Engineering Library

to hold all the building blocks that can be used in the Advanced Integration Framework.

This document discusses the data standards which are required to build the services to

seamlessly integrate the services into the AIF. Furthermore, the requirements for both, the ELW

and the EL are specified and added to the document.

Compared to the previous version of the document some minor changes were made due to the

feedback loop from the validation and verification of the demonstrators [6]. Seven requirements

were removed, that are not applicable by the use cases. In Annex D: these requirements can be

accessed for traceability reasons, of which 2 are SHOULD, and 5 are COULD. One requirement is

obsolete because it is no longer necessary due to improvement of engineering services (Req-

ELW-DSL-4). The remaining 6 are just not needed in the defined use-cases. Furthermore, the

requirements for the specific functions of the engineering services were removed, since these are

out-of-scope in this document and should the responsibility of the associated partners.

Since no new user stories are defined in the final Use-case Specification [5], no new requirements

emerge to cover new user needs. Considering completeness in translating the user stories into

requirements, one missing requirement was identified and added (Req-ELW-SI-11).

This document contains the bases for creating the third and final iteration of the engineering

capabilities emerging from ELW and EL which will be documented in D4.2.3 and D4.3.3. These

capabilities will be finally industrially validated in deliverable D5.1.3.

42/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

9 References

[1] IDEaliSM, „Full Project Proposal,“ 2014.

[2] IDEaliSM, „Change Request (CR) #2: Integrated & Distributed Engineering Services

framework for MDO,“ 2016.

[3] IDEaliSM, „D2.1.1 Use-case Specification - Baseline,“ 2015.

[4] IDEaliSM, „D2.1.2 Use-case Specification - Update,“ 2016.

[5] IDEaliSM, „D2.1.3 Use-case Specification - Final,“ 2017.

[6] IDEaliSM, „D5.1.2 Integration framework validation - Update,“ 2017.

[7] B. Arthur, The Nature of Technology - What It Is and How It Evolves, New York: Free Press,

2009.

[8] IDEaliSM, „D4.3.1 Engineering Language Workbench - Baseline,“ 2016.

[9] IDEaliSM, „D4.3.2 Engineering Language Workbench - Update,“ 2017.

[10] V. d. Automobilindustrie, „Harness Description List (KBL) (VDA-Recommendation 4964 V2),“

2014.

[11] V. d. Automobilindustrie, „Vehicle Electric Container (VEC) (VDA-Recommendation 4968),“

2014.

[12] IDEaliSM, „D3.1.2 Requirement Specification for Advanced Integration Framework - Update,“

2016.

[13] IDEaliSM, „D5.1.1 Integration framework validation - Baseline,“ 2016.

[14] IDEaliSM, „D4.2.1 Engineering Library - Baseline,“ 2016.

[15] IDEaliSM, „D4.2.2 Engineering Library - Update,“ 2017.

[16] IDEaliSM, „D3.1.3 Requirement Specification for Advanced Integration Framework - Final,“

2017.

43/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Annex A: Step on a page

This annex includes a summary of ISO 10303 STEP on three pages: a description, an overview of

resource parts and an overview of modules. These documents are maintained by NIST, USA

(http://www.mel.nist.gov/sc5/soap/).

http://www.mel.nist.gov/sc5/soap/

44/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

45/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

46/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Annex B: XML
The Extensible Markup Language (XML) is a markup language to create common information

formats and electronically share structured data using standard ASCII text. XML formats are

characterized by their flexibility and simplicity and therefore they are human (and machine)

readable. XML is playing an increasingly important role in the exchange of data. For example

UML, CPACS and the harness information standards KBL and VEC are formatted using XML.

To formally describe the elements in a XML document, a XML Schema Definition (XSD) can be

used. XML Schemas express shared vocabularies and rules for defining the structure, content

and semantics of XML documents. To transform the structure of an XML document into an XML

document with a different structure, XSLT (Extensible Stylesheet Language Transformations) are

usually used. For all three standards (XML, XSD, XSLT), recommendations on usage are

provided by the W3C.

Annex C: Requirements classification

Letter Meaning Description

M MUST Describes a requirement that must be satisfied in the final solution for the
solution to be considered a success.

S SHOULD Represents a high-priority item that should be included in the solution if it is
possible. This is often a critical requirement but one which can be satisfied in
other ways if strictly necessary.

C COULD Describes a requirement which is considered desirable but not necessary. This
will be included if time and resources permit.

W WON'T Represents a requirement that stakeholders have agreed will not be
implemented in a given release, but may be considered for the future. (Note:
occasionally the word "Would" is substituted for "Won't" to give a clearer
understanding of this choice).

47/47

Document: Requirement Specification and Standards for the Engineering Language Workbench - final

Version: 1.2

Date: October 12, 2017

Annex D: Not applicable requirements

This table shows the requirements that are not deemed applicable to the use-cases and are

therefore removed.

Area (Identifier)
Requirement

Description Classification

Functional (Req-ELW-DLW-8)

Round-trip
engineering

Round-trip engineering capabilities by means of
establishing a potentially permanent and
interactive mapping between a domain-specific
language and the generic knowledge
representation in the design language and/or
ontology (FPP)

COULD

Geometry
GBDL

(Req-ELW-DSL-4)

Geometry
GBDL validation

Validation of correct geometry constructions by
checking the water-proof property of the
geometry in an automated meshing tool.

SHOULD

Physics
GBDL

(Req-ELW-DSL-10)

Physics GBDL
mesh validation

Validation of mesh enrichment with physical
properties in a FEM-analysis (and optionally a
CFD-analysis process) by analysing and
comparing the generated simulation results with
known reference cases from industry within the
provided use cases.

COULD

CPACS (Req-ELW-SI-4)

Mapping
capabilities of
GBDL and
CPACS

Automated mapping capabilities for different
design languages could be developed by
establishing in-/export filters in order to link
GBDL and CPACS

COULD

STEP (Req-ELW-SI-8)

Consistent
database

STEP should be used to integrate and
manage such information from different
sources in a consistent database (single
source of truth) (D2.1.1)

SHOULD

STEP (Req-ELW-SI-10)

Harness
information
converter to
STEP

Converters could be created for mapping wire
harness information of KBL/VEC to STEP

COULD

Availability (Req-ELW-MUD-4)

Variants
Different variants for the use case could be
prepared (CR2)

COULD

